
Certification of Compiler Optimizations
using Kleene Algebra with Tests

Maria-Cristina Patron Dexter Kozen

Cornell University
Ithaca, New York 14853-7501

December 27, 1999

Abstract

We use Kleene algebra with tests to verify a wide assortment of common compiler optimiza-
tions, including dead code elimination, common subexpression elimination, copy propagation,
loop hoisting, induction variable elimination, instruction scheduling, algebraic simplification,
loop unrolling, elimination of redundant instructions, array bounds check elimination, and intro-
duction of sentinels. In each of these cases, we give a formal equational proof of the correctness
of the optimizing transformation.

1 Introduction
Kleene algebra (

���
) is the algebra of regular expressions. It was first introduced by Kleene in 1956

[9] and further developed in the 1971 monograph of Conway [6]. It has reappeared in many contexts
in mathematics and computer science [23, 10, 22, 16, 17, 1, 8].

In [12], an extension of
���

called Kleene algebra with tests (
�����

) was introduced. This system
combines programs and assertions in a simple, purely equational system. In [14] it was shown that�����

strictly subsumes propositional Hoare logic, is of no greater complexity, and is deductively
complete over relational models (Hoare logic is not). Moreover,

�����
requires nothing beyond the

constructs of classical equational logic, in contrast to Hoare logic, which requires a specialized
syntax involving partial correctness assertions.�����

has been applied successfully in various low-level verification tasks involving communi-
cation protocols, basic safety analysis, source-to-source program transformation, and concurrency
control [12, 2, 3, 4]. A useful feature of

�����
in this regard is its ability to accommodate certain

basic equational assumptions regarding the interaction of atomic instructions. This feature makes�����
ideal for reasoning about the correctness of low-level code transformations.

In this paper we show how
�����

can be used to verify a variety of common compiler optimiza-
tions: dead code elimination, common subexpression elimination, copy propagation, loop hoist-
ing, induction variable elimination, instruction scheduling, algebraic simplification, loop unrolling,
elimination of redundant instructions, array bounds check elimination, and introduction of sentinels.
In each of these cases, we give a formal, machine-verifiable equational proof of the correctness of
the optimizing transformation.

The verification of compiler optimizations is more than just a theoretical exercise. We were led
to these investigations by recent work in typed assembly language (TAL) [18], proof-carrying code
(PCC) [19], and efficient code certification (ECC) [13]. These are systems that provide a means for
an untrusted compiler to convince a trusted verifier that the object code it produces meets certain
safety requirements.

1

PCC is the most powerful of these systems. It quite flexible in the security policies it can
express, but a significant problem is the size of certificates [20]. ECC addresses this issue by taking
advantage of compiler conventions, giving a significant reduction in certificate size. In ECC, the
production and verification of certificates is very efficient and invisible to both the code producer
and consumer. However, these savings come only at a cost of reduced expressiveness and compiler
dependence. In particular, whereas TAL and PCC deal well with optimizing transformations, ECC,
being more dependent on the form of the object code produced by the compiler, is less robust with
respect to code motion. To verify optimized code, ECC would require the certificate to include a
concise description of the sequence of optimizing transformations that were performed, along with
a machine-verifiable justification of these transformations. Such an extension might be based on the
system

�����
as described here.

2 Kleene Algebra and Kleene Algebra with Tests
In this section we briefly review the definitions of Kleene algebra and Kleene algebra with tests; see
[11] for a more thorough introduction.

2.1 Kleene Algebra (�	�)
The following axiomatization is from [11]. A Kleene algebra
������������������� is an idempotent
semiring under ���������� satisfying

���! " � # � (1)

���! � # � (2)$ �% �&(')&+* � $ ')& (3)$ �,&- %')&+* $ � ')&. (4)

where ' refers to the natural partial order on � :

 %' $ /�021354 �� $ # $76
The operation � gives the supremum with respect to ' . All the operators are monotone with respect
to ' ; that is, if %' $, then for any & , �&�' $ & , &- !'8& $, 9�,&9' $ �:& , and ;�<' $ � .

In the presence of the other axioms, (3) and (4) are equivalent to

 =&9'8& * � &�'>& (5)

&- !'8& * &- � '>&. (6)

respectively. These axioms say essentially that � behaves like the reflexive transitive closure opera-
tor of relational algebra or the Kleene asterate operator of formal languages.

The following are some basic properties of � :

�+' ? � (7)

? ' ? � (8)

? � ? � # ? � (9)
? �"� # ? � 6 (10)

We will find the following two identities particularly useful for simplifying expressions:

 �
 $ �� � #
@ $ � � (11)

A 9� $ � � # �
 $ � � � #
@ � $ � � � 6 (12)

The identities (11) and (12) are called the sliding rule and the denesting rule, respectively. In
addition, the following result will prove useful:

2

Lemma 2.1 In any Kleene algebra,

B=C # B�CDB * B=C �5# B
 C7B � � 6
Proof. We show independently that

B=C ' B�CDB * B=C � ' B
 C7B � � (13)B=C7B ' B=C * B
 CDB � � ' B=C � 6 (14)

To show (13), by (4) it is enough to show

B�C ' B=C7B * B � B
 C7B � � C ' B
 CDB � � 6
Reasoning under the assumption B=C ' B=C7B , we have

B � B
 C7B � � C # B �E
 B=C ��� B=C by the sliding rule (11)

' B �E
 B=C ��� B=C7B by the assumption B=C ' B�C7B

F�G�E
 B�C �H� B�C � B distributivity

 B�C ��� B by (2)
B
 CDB �H� by the sliding rule (11).

For (14), reasoning under the assumption B=C7B ' B�C , we have

B � B=C7B=C � ' B � B�CDC � by the assumption B=C7B ' B�C
B
F��� C7C �7� distributivity
B�C � by (1),

thus by (3),

 B�C � � B ' B=C � 6
The right-hand side of (14) then follows from the sliding rule (11). I
2.2 Kleene Algebra with Tests (�	�KJ)
A Kleene algebra with tests is a Kleene algebra with an embedded Boolean subalgebra. Formally,
it is a two-sorted structure
L�!;MN���O����� ;�=O��� such that

P
��!���O�Q���;�=O��� is a Kleene algebra;

P
�M<���O�Q ;��O��� is a Boolean algebra; and

P MSRT� .

The Boolean complementation operator is defined only on M .
The elements of M are called tests. We will denote arbitrary elements of � by the letters

 � $ U&.-V"HWXUY�UZ� 6�6[6 and tests by ?��\.H].�^= 6[6[6 .
When applied to arbitrary elements of � , the operators ���������� refer to nondeterministic

choice, composition, fail and skip, respectively. Applied to tests, they take on the additional mean-
ing of Boolean disjunction, conjunction, falsity and truth, respectively. These two usages do not
conflict—for example, sequentially testing \ and] is the same as testing their conjunction \X] —and
their coexistence permits considerable economy of expression.

For applications in program verification, the standard interpretation would be a
���

of binary
relations on a set and the Boolean algebra of subsets of the identity relation. One can also consider

3

trace models in which the Kleene elements are sets of traces (sequences of states) and the boolean
elements are sets of states (traces of length 0).

The encoding of the while program constructs is as in Propositional Dynamic Logic [7]:

 %_ $`/[021# $ (15)

if \ then else $`/[021# \2 �� \ $ (16)

while \ do /[021#
L\2 �� � \ 6 (17)

The following result, also observed in [12], follows directly from Lemma 2.1. Intuitively, if the
execution of the program $ does not affect the value of the test \ , then neither does $ � .

Lemma 2.2 In any Kleene algebra with tests, if \ $ # $ \ , then

\ $ � #
a\ $ �H��\ # $ �7\ # \b
 $ \c��� 6
Proof. If \ $ # $ \ , then by Boolean algebra \ $ # \[\ $ # \ $ \ , thus \ $ � # \.
 $ \c�H� by Lemma 2.1.

The other equations follow from the sliding rule (11) and symmetry. I
2.3 �	�KJ and Hoare Logic
Hoare is a system for deriving partial correctness properties of compound programs compositionally
from properties of their constituent parts. Traditionally, these properties are expressed by partial
correctness assertions (PCAs) of the form d.\�e� 9df]fe , where \ and] are assertions in the underlying
assertion language and is a program. Intuitively, the PCA df\�eO gd�].e says that if the property \
holds at the start of execution of , and if halts, then] must be true in the halting state.

As mentioned in the introduction,
�����

subsumes Hoare logic [14]. The PCA d.\�e� hd�].e is
expressed \2] # � , or equivalently, \2 # \2 �] . Intuitively, \2] # � says that there is no halting
computation of satisfying precondition \ and postcondition] , and \i # \2 �] says that testing]
after executing with precondition \ is always redundant.

In traditional Hoare logic, atomic programs are assignments Bkj #ml and the only atomic as-
sumption is the assignment rule

dfnpo Brq l�s e B!j #tl d�n9e 6
Hoare logic operates by deriving PCAs involving compound programs inductively, using the as-
signment rule as an axiom. The operation of

�����
is analogous, except that the assumptions and

conclusions are equations between programs, and the form of the assumptions can be more general.
Theorems of

�����
are universally quantified Horn formulas of the form

 ru # $ uKv(�w # $ wKvh�[�[�fvx �y # $ y * # $76
In our applications below, the �z # $ z are typically premises involve atomic instructions and tests
that are immediately self-evident, and the conclusion # $ is the equivalence of the unoptimized
and optimized code fragments.

In our optimization examples, there are certain kinds of premises that occur frequently. For
example, we often need to know that two atomic instructions that do not affect each other can occur
in either order. This would be expressed in

�����
by a commutativity condition of the form $ # $.

We would take this assertion as a premise on the left-hand side of the Horn formula above. Another
common example is the fact that after loading a register with a value, that register contains that
value. This is expressed by an equation of the form # �? , where is the load instruction and ? is
the assertion that the register contains the value. This assertion allows us to introduce new assertions
into an annotated program and delete them when they are no longer needed. As a final example,
the fact that if a register already contains a value, then there is no need to load it again would be
encoded as an equation of the form ?� # ? . This premise allows us to delete redundant instructions.

4

We use such atomic premises extensively in the derivations of Section 3. In all cases the truth
of the premise is directly evident. Moreover, it has been observed that in the decision procedure for�����

, premises of the form # � can be eliminated without loss of efficiency [2, 15].

3 Verifying Optimizations in {}|�~
In this section we consider several examples of common compiler optimizations and show how they
can be encoded and verified in

�����
. In each case, we give the program fragments before and after

the optimizations, their translations into the language of
�����

, and an equational proof that the two
fragments are equivalent.

3.1 Dead Code Elimination
Dead code elimination is a code transformation that removes unreachable instructions. Let us start
with a very simple example. Consider the following program:

 %_
if ? then $ _

This is expressed in
�����

as

 �
�? $ � ?�� 6
The ? in this expression represents the implicit else clause. Suppose we know that the test ? is
always false after the execution of . This would imply that the test of the if statement is false in the
program above, so $ would never be executed. We could remove it to obtain the optimized fragment
 .

The assumption that the test ? is always false after the execution of is expressed in
�����

by the
identity # ? , or equivalently �? # � . Intuitively, immediately after the execution of , we must
always be in a state in which ? holds. In this case, executing the guard ? after is always redundant;
equivalently, executing the guard ? after aborts the computation.

Reasoning in
�����

, we have

 �
L? $ � ?�� # ?�
L? $ � ?�� by the assumption # ?
?D? $ �% ? ? distributivity
�� $ �% ? Boolean algebra
���! ? 0 is an annihilator for �
? 0 is an identity for �
again by the assumption # ? .

Thus the
�����

expressions representing the two program fragments are equal.
Now we treat the case of a while loop. Consider the following fragment:

 %_
while ? do $ _

which is encoded in
�����

as the expression �
L? $ �-� ? . Again, suppose that the test ? is always false
after the execution of ; that is, ? # . This means that the while loop will never be executed, and
we should again be able to obtain the optimized fragment .

5

Reasoning in
�����

, we have

 �
�? $ � � ? # ?�
�? $ �H� ? by assumption
?�
F���8? $
L? $ �H��� ? by (1)
? ?��% ?�? $
L? $ � � ? distributivity
?��! �� $
�? $ �H� ? Boolean algebra
?��8� 0 is an annihilator for �
? 0 is an identity for �
by assumption.

Thus the two expressions are equal.
Both of these cases give examples of how assumptions about atomic programs and tests (here

 # ?) are used to derive the equivalence of the unoptimized and optimized programs. We have
essentially given purely equational proofs of the universal Horn formulas

 # ? * �
�? $ � ?7� #
 # ? * �
�? $ � � ? # 6

3.2 Common Subexpression Elimination
Common subexpression elimination is a code transformation that avoids redundant evaluation of the
same expression by using the result of the first computation. For example, consider the fragment� j #����c��� _� j #��H�c��� _
where l B =& is an expression not containing

�
. We wish to show that this can be replaced by:� j #����c��� _� j # � _

Consider the following programs and tests:

 /�021# � j #��H�c���
$ /�021# � j #��H�c���
& /�021# � j # �
� /�021# make

�
undefined

? /�021354 � #����X���
\ /�021354 � # � 6

We wish to prove that $ # �& . We can postulate the following premises:

�H # �H �? atomic PCA d �H�c����#����c��� e � j #����c��� d � #��H�c��� e
? $ # ? $ \ atomic PCA d � #����c��� e � j #����c��� d � # � e
\-& # \ there is no need to assign

� j # � if
� # � already

& # � & �
is dead immediately before the assignment

� j # �$f� # � an assignment to a dead variable is redundant.

The first two of these are both instances of the Hoare assignment rule. Under these premises, we
can reason equationally as follows:

 $ # �U $ # �U �? $ # �H �? $ \ # �U �? $ \X& # �U �? $ &# �U $ & # $ & # $f� & # � & # =& 6

6

3.3 Copy Propagation
Copy propagation is a code transformation that eliminates an assignment of the form

� j # �
and

replaces all further references to
�

by references to
�
. For example, consider the program fragment� j #��H�c��� _� j #����X��� _� j #t� � � �8�9_

where
�

and
�

do not occur in ���c��� . By common subexpression elimination (Section 3.2), this is
equivalent to � j #����X��� _ � j # � _ $� j #�� � � �>�9_ &
First we argue that we can replace this fragment by� j #����c��� _ � j # � _ $� j #�� � � �>�(_ V

The notations for the constituent computations appear to the right. We wish to show that $ & #
 $ V . It suffices to show that $ & # $ V . Consider the program and tests

? /[021394 � � � �>� #t� � � �8��
\ /[021394 � #�� � � �>��� /[021# make

�
undefined 6

As above, we postulate the following premises:

� $ # � $? atomic PCA d � � � �>� #t� � � �>��e � j # � d � � � �>� #t� � � �8��e?D& # ?�&b\ atomic PCA d � � � �>� #t� � � �8��e � j #�� � � �>�	d � #�� � � �8��e\cV # \ there is no need to assign
� j #�� � � �8� if

� #�� � � �8� already
V # � V �

is dead immediately before the assignment
� j #t� � � �8�& � # � an assignment to a dead variable is redundant.

The first two of these are instances of the Hoare assignment rule. Using these assumptions, we can
reason as follows:$ & # � $ & # � $?�& # � $?�&b\ # � $?D&b\cV # � $?D&bV# � $ &bV # $ &bV # $ & � V # $f� V # $ V 6

Moreover, if we know that
�

is a dead variable, we can optimize further by removing the assign-
ment to

�
, obtaining the code: � j #��H�c��� _ � j #t� � � �8� V

Letting

Z /[021# make
�

undefined
we wish to show that $ V[Z # �V�Z . We have

V[Z # Z�V since
�

does not occur in V$ Z # Z if
�

is dead, the assignment is redundant

which allow us to conclude

 $ V[Z # $ Z�V # =Z�V # �V�Z 6

7

3.4 Loop Hoisting
Loop hoisting is a transformation that involves moving code out of loops. It can take one of two
forms: in the first form, an expression whose value does not depend on the number of times through
the loop need not be evaluated inside the loop, but can be evaluated once before the first execution
of the body of the loop. In the second, an expression whose value is not used anywhere inside the
loop need not be evaluated inside the loop, but can be evaluated once after the loop.

As an example of the first type of transformation, consider the following program fragment:

�X���Tj # ��_ �p�����L� ��' � ')�<���}d�X����j # �X��� � � � �H�c��� _ $� j # � �t��_ V
e

where ���c��� is an expression not containing
�

or �X��� . Let
�

be a new variable. This fragment is
equivalent to the fragment

�-����j # ��_ � j #����c��� _ Y�5�����L� ��' � ')�<���}d�X��� j # �X��� � � � � _ &� j # � ����_ V
e

Formally, “
�

is a new variable” is captured by saying that
�

does not appear in any expression in the
first fragment and that

�
can be made undefined immediately after the execution of the fragment.

Define the program and tests

? /�021354 ��' � '>�O
\ /�021354 � #����c���
� /�021# make

�
undefined 6

We would like to show

 �
�? $ Vf� � ? � # =Y�
�?D&bVf� � ? �x6
Postulating the assumptions

Y # Yr\ � #����X��� after
� j #����X��� , since

�
does not occur in ���c��� (18)

\ # \XY if
� #����c��� already, no need to assign

� j #��H�c��� (19)
\ $ # $ \ since �X��� does not occur in ���c��� (20)
\[V # Vf\ since

�
does not occur in �H�c��� (21)

\-& # &b\ since �X��� does not occur in ���c��� , (22)

we can argue as follows:

 =Y�
�?D&bVf� � # =Yr\.
�?D&bVf� � by (18)
=Yr\.
�?�\-&bVf�H� by Lemma 2.2, using (21) and (22)
=Yr\.
�?�\-Y�&bV���� by (19)
=Yr\.
�?�\ $ Vf�H� by copy propagation (Section 3.3)
=Yr\.
�? $ Vf�H� by Lemma 2.2 and Boolean algebra
=Y�
�? $ Vf�H� by (18) 6

8

Now since � commutes with ? , ? , $, and V , we have by Lemma 2.2 that �
�? $ Vf�X� #
�? $ Vf�H� � . Also,
Y � # � since there is no need to assign to a dead variable. Thus

 �Y�
L? $ Vf� � ? � # =Y �
�? $ Vf� � ?
�
L? $ V�� � ?
�
L? $ Vf� � ? �x6

In conclusion, �Y�
L?D&.Vf��� ? � # �
L? $ V���� ? � , which is what we had to prove.
As an example of the second type of transformation, consider the following program in which

the computation inside the loop and the test ? do not use
�
:

�p������� ?����Nd� j # &�_ Y
 %_
& j # &¡����_ $

e� j # &(_ Y
Since

�
is assigned a different expression each time the loop is executed, the previous example does

not apply. Nevertheless, since
�

is not used in the rest of the loop, we still obtain the optimized code:

�p������� ?����Nd
 %_
& j # &¡����_ $

e� j # &(_ Y
We would like to prove

L?�YD $ � � ?DY #
L?� $ � � ?DY 6
Defining the atomic program

� /[021354 make
�

undefined,

we have the following postulates:

Y # � Y �
is dead just before the assignment

� j # & (23)� $ # $f� and $ do not refer to
�

(24)
Y � # � an assignment to a dead variable is redundant. (25)

Reasoning under these assumptions, we have

L?�YD $ � � ?DY #
L? � Y� $ �H� ? � Y by (23)

 � ?DY� $ �H� � ?7Y ? does not refer to

�
�
�?DY� $f� �H� ?DY the sliding rule (11)
�
�?DY � $ �H� ?DY by (24)
�
�? � $ � � ?DY by (25)

L?� $ �H� � ?DY by (24) and Lemma 2.2

L?� $ � � ? � Y ? does not refer to

�

L?� $ �H� ?�Y by (23).

9

3.5 Induction Variable Elimination
This is a loop optimization that replaces multiplicative operations inside the loop with less expensive
additive ones. This type of optimization might arise in matrix algorithms. For example, consider
the program

� j #£¢¥¤=¢¥¦ _ Y� j # � � �H�c��� w _ $
�5�����L� ?����}d� j # � � �H�c��� u _ � j # � � ���c��� w _ $
e

where
�

and
�

do not occur in ���c��� u and �H�c��� w . Note that whenever
�

is increased by ���c��� u , � is
increased by ���X��� u � ���c��� w . The optimized code is

� j #k¢¥¤�¢¥¦ _ Y� j # � � �H�c��� w _ $
�5�����L� ?����}d� j # � � �H�c��� u _ � j # � � �H�c��� u � �H�c��� w _ &
e

Using the transformation of Section 3.4, we can further optimize to obtain
� j #£¢¥¤�¢¥¦ _� j # � � �H�c��� w _§¨j #����c��� u _� j #��H�c��� u � ���c��� w _�p���L��� ?����}d� j # � � § _� j # � �:�©_
e

To establish the equivalence of the first two programs, we need to prove Y $
�?� $ � � ? # Y $
�?� =&b� � ? .
It suffices to prove $
L?� $ ��� # $
�?� =&b�H� . Consider the tests

\ /�021354 � # � � ���c��� w
\Xª /�021354 � � ���c��� u � ���X��� w #
 � � �H�c��� u � � �H�c��� w
] /�021354 � � ���c��� u � ���X��� w # � � �H�c��� w

We have the assumptions

$ # $ \ (26)

\ # \ $
\ # \ ª (27)

]X& #]X&b\ (28)
\2 # \2 �] (29)
] $ #]X& (30)

Equation (27) is from basic number-theoretic reasoning. Equation (28) is an instance of the Hoare
assignment rule. Equation (29) follows from (27) and the instance df\ ª e- �df]fe of the Hoare assignment
rule.

10

Equation (30) is an instance of the property that if two expressions have the same value, then
the assignment of either expression to the variable

�
has the same effect. This would hold even if

�
occurred in both expressions. Here,

�
does not occur in the expression

� � ���c��� w , and using

� /�021354 make
�

undefined

along with the premises �	$ # $ and & � # � , (30) can be proved by

]X& #]X&b\ #]X&b\ $ #]X&b\ �	$ #]X& ��$ #] ��$ #] $76
The property (30) holds even in the more general case in which

�
can occur in both expressions. We

do not know how to prove this in Hoare logic or Kleene algebra from more primitive assumtions
without introducing new symbols into the underlying programming or assertion language. However,
we would be content to take (30) as a primitive assumption.

We have

\2 $ # \i �] $ # \2 �] $ \ # \2 �]X&b\ # \2 �]X& # \2 =& 6 (31)

Since \2 $ # \2 $ \ , it follows from (26) and (31) that \X?� $ # \X?� $ \ and \X?� =& # \X?� =&b\ . We then
have

$
L?� $ � � # $ \.
�?� $ \[�H� by (26) and Lemma 2.1
$
L\X?� $ ����\ the sliding rule (11)
$
L\X?� =&b����\ by (31)
$ \.
�?� =&b\c��� the sliding rule (11)
$
�?� =&b�H� by (26) and Lemma 2.1.

3.6 Instruction Scheduling
Unrelated instructions can be reordered so as to maximize the throughput of a processor pipeline.
For example, �_ $ and $ _� are equivalent if there is no dependency between the instructions
 and $. The nondependency assumption is expressed in

�����
by the equation $ # $. These

assumptions can be used to reorder instructions arbitrarily as long as no dependencies are violated.

3.7 Algebraic Simplification
This transformation eliminates the statements corresponding to algebraic identities, which occasion-
ally arise due to constant propagation and other previous transformations. For example, consider
the two equivalent programs:

� j #��H�c��� _ � j # � �8�5_ $
and

� j #��H�c��� _
Using the test ? /�021354 � #��H�c��� , we have # �? , since verifies the test ? , and ? $ # ? , since the
computation $ does not change the value of

�
. This gives

 $ # �? $ # �? # 6
A similar proof is obtained for the computation B # B � � .

11

3.8 Loop Unrolling
Sometimes it is possible to reduce the number of tests and jumps executed in a loop by unrolling
the loop. We can unroll the loop while ? do once to obtain

�p������� ?����Nd
 %_
if ? then %_

e
We have to prove
�?� ���� ? #
�?� �
L?� %� ?��U��� ? . The following lemma of pure

�����
captures the

essence of this transformation.

Lemma 3.1 In any Kleene algebra,

Y � #
F���:Y��[
«Y�Y�� � 6
Proof. For the direction ¬ ,

F�G�:Yr�c
«Y�Yr� � #
«Y�Yr�H���,Y�
«Y�Yr�H� distributivity

' Y;��
«Y�Yr�7�����,Y;��
«Y�Yr�7��� (7), (8), and monotonicity
Y �
«Y�Y � � � idempotence

«Yp�,Yr�H� the denesting rule (12)
Y � idempotence.

For the direction ' , by (3) it is enough to prove

���:Y�
U���,Yr�c
�Y�Yr� � '
F���:Y��[
«Y�Y�� � 6
We have

���:Y�
U���,Yr�c
�Y�Yr� � # Y�
«Y�Y�� � �t���:Y�Y�
«Y�Yr� �
Y�
«Y�Y�������
�Y�Yr�H� by (1)

U�G�,Yr�c
�Y�Yr�H� distributivity.

I
We can now prove the equivalence of the two programs:

L?� �
�?� �� ?��U� � ? #
�?� �?� ��8?� ?D��� ? distributivity

U
�?� ?7���7?� �?� �����
�?� ?���� ? the denesting rule (12)

U
F���E
�?� ?7���7?� ?��F?� �?� ��H��
L?� ?��H� ? by (2)

�?� �?� ��E
�?� ?��H��?� ?�?� �?� ��H��
L?� ?��H� ? distributivity

�?� �?� �����
�?� ?���� ? Boolean algebra

�?� �?� �����
F���>?� ?�
�?� ?������ ? by (1)

�?� �?� �����
F���>?� ?��:?� ?D?� ?�
�?� ?D����� ? by (1) and distributivity

�?� �?� �����
F���>?� ?7� ? Boolean algebra

�?� �?� ���� ?��E
�?� �?� ��H�D?� ? distributivity

�?� �?� ���� ?��8?� �
L?� �?� ��H� ? the sliding rule (11)

F���8?� ��c
L?� �?� ��H� ? distributivity

�?� �� � ? Lemma 3.1.

12

3.9 Redundant Loads and Stores
In the instruction sequence

� ����®&. � ¯[° �=± � &. � $
the second instruction is redundant, since the first ensures that the value of

�
is the same as the

contents of register & . We obtain the optimized code:

� ����®&. �
Considering the test ? /�021354 & # � , we can postulate

 # �? after loading
�

into register & , the test & # � is redundant

? $ # ? storing & in
�

is redundant if the value is already there.

Under these assumptions, we have

 $ # �? $ # �? # 6

3.10 Array Bounds Check Elimination
Consider the following program to initialize the elements of an array:

� j # �=_
while

��² B�6 ³ l ��´DWUµ do dB o � s j #El
 � �X_� j # � ���"_
e

A compiler has to check that array accesses fall within bounds:
� j # � Y¶8j¨°��7¯�° � ¬ � 6�· �c¤7¸b¦«¹º ° ±.» ��¼½ ��¾,¿�» °�� l
 � �
if
�

in bounds then B o � s j #El
 � � $
�7�L¯���� ±�±.��± V� j # � �t� ZÀ � ° � ¶¼,jÁ6[6�6

The bounds check inside the loop is redundant. The optimized code is
� j # � Y¶:j¨°��D¯�° � ¬ � 6Q· �[¤D¸"¦¥¹º ° ±.» ��¼½ ��¾,¿�» °�� l
 � � B o � s j #�l
 � � $� j # � ��� ZÀ � ° � ¶¼,jÁ6�6[6

13

Consider also the tests

? /[021354 ��' �
\ /[021354 �K² � 6Q· �[¤D¸"¦¥¹
] /[021354 ?7\ 354 �

is in bounds 6
We have to prove

Y�
L\2 �
�] $ �][Vf�FZ7� � \ # Y�
L\2 $ Z7� � \ 6
We see that if ? is true at the beginning of the loop, it remains true after one iteration; that is,

?�
L\2 �
�] $ �]�V��FZ7� # ?�
L\i �
�] $ �][Vf�iZ��F? 6 (32)

We obtain

Y�
a\2 �
L] $ �][Vf�FZ7� � \
Y�?�
a\2 �
L] $ �][Vf�iZ��H� \ Y # Y�?
Y�?�
L?�\2 �
L] $ �][Vf�iZ��H� \ by Lemma 2.2 and (32)
Y�?�
L]i �
L] $ �][Vf�FZ7��� \ ?�\ #]
Y�?�
@ �]b
L] $ �][Vf�FZ7��� \ �] #]i , since does not change the value of

�
Y�?�
@ �] $ Z��H� \ by dead code elimination (Section 3.1)
Y�?�
L?�\2 $ Z��H� \ �] #]i and ?�\ #]
Y�?�
a\2 $ Z��H� \ by Lemma 2.2 and ?�
L\i $ Z�� #
L\i $ Z��F?
Y�
L\2 $ Z7��� \ Y�? # Y ,

which is what we had to prove.
Note that

�����
does not contain explicit machinery for number-theoretic reasoning; that is a

separate issue. However, as shown in this example, it does reduce the correctness of the optimizing
code transformation to a set of basic number-theoretic assumptions on atomic programs and tests
that justify the transformation.

3.11 Introduction of Sentinels
Our last example is also related to arrays. Suppose we want to check if a certain element, say Â , is
among the elements of a nonempty array B of length � . This can be done by:

� j # �9_ �5�����L� ��² � and B o � s�Ã# Â8���}d� j # � ����_ $
e
if
��² � then found = true _ W

else found = false _ V
In order to eliminate one of the tests of the while loop, we introduce a sentinel: we extend the arrayB by a new element initialized with Â . The optimized program is

B o � s j # ÂÄ_ Y� j # �5_ �p�������	B o � s�Ã# Â8���}d� j # � �t��_ $
e
if
��² � then found = true _ W

else found = false _ V
14

To prove that the two programs are equivalent, consider the tests

? /[021394 �K² �
\ /[021394 B o � s�Ã# Â
] /[021394 B o � s�# Â
^ /[021394 � '>� 6

Since B o � s will not be used further in the program, we can also use

� /[021394 make B o � s undefined.

We want to prove

 �
�?�\ $ � � ?7\b
�?DWr� ?�Vf� � # Y� �
L\ $ � � \.
�?DW;� ?�Vf� �x6 (33)

Since Y � # � and Y commutes with the programs � $ �V�UW and the tests ? and ?�\ , we can introduce
Y on the left-hand side of (33) and move it to the front of the expression using Lemma 2.2. It
therefore suffices to prove

Y� �
�?�\ $ � � ?�\.
L?DWr� ?�V�� � # YD �
a\ $ � � \f
L?DW;� ?�Vf� �x6
Since Y # Y�] ,]i # �] , and # �^ , we have YD # YD �][^ , thus it suffices to prove

][^�
L?7\ $ � � ?�\ #]c^�
L\ $ � � \ 6 (34)

Now note that]c^7\	')? , or in other words]c^7\ #][^D\X? ,] $ # $] , and ? $ # ? $ ^ . Then

]c^7\ $ #]c^7\X? $ #]c^7\X? $ ^ #][]c^D\c? $ ^ #]c^7\X? $]c^ #]c^7\ $]c^ 6
We have

]c^�
�?�\ $ � � ?�\ #]c^�
�?�\ $]c^7�H� ?7\ Lemma 2.1 with B #]c^ and C # ?7\ $

�][^�?�\ $ ���7]c^�
 ?�� \X� the sliding rule (11) and a De Morgan law

�][^�?�\ $ ����
�]c^ ?��:]c^ \X� distributivity

�][^�?�\ $ ���7]c^ \ since]c^ ?N' \

�][^D\ $ ���7]c^ \ since]c^D\c? #][^D\
]c^�
L\ $][^D��� \ the sliding rule (11)
]c^�
L\ $ ��� \ Lemma 2.1 with B #]c^ and C # \ $.

This proves (34).

4 A Paradox
We conclude with some remarks concerning a paradox that arises when dealing with dead vari-
ables (variables whose values will never be used). The reader will have noticed that we have made
extensive use of the construct

� /[021354 make
�

undefined,

which was essentially used to declare the variable
�

a dead variable, along with the atomic assertions
 � # � and � # , where is an assignment to

�
of an expression not containing

�
. The reader

may have wondered why we did not use the test

^ /�021354 �
is a dead variable

15

and the assertions �? # ? and ?� # instead. For example, if

 /[021# � j # �
$ /[021# � j # ��

we could postulate the atomic premises

 # ^� �
is dead immediately before the assignment $ ^ # ^ $ the assignment $ does not affect

�
 �^ # ^ an assignment to a dead variable is redundant

then eliminate the first assignment to
�

in the program
� j # ��_ � j # �9_ � j # �

by arguing

 $ # $ ^[# �^ $ # ^ $ # $ ^[# $ 6
The problem is that the proposition “

�
is a dead variable” does not commute with other tests

involving
�
, which it must in order to be a Boolean element of a Kleene algebra with tests. Thus the

use of ^ as a test is paradoxical in the context of
�����

and can lead to erroneous results.
To illustrate this, consider the following calculation. Defining

? /[021394 � # ��
we have

 # �? � # � immediately after the assignment
?� # ? the assignment is redundant if

� # � already.

But then

 � # �?7^� since �? # ^� #
�^D?� by commutativity
^D? since �^ # ^ and ?� # ? ,

which is clearly an erroneous conclusion.
Our solution to this dilemma is to use the program � , which is not required to commute with

tests, instead of ^ .

References
[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, Reading, Mass., 1975.

[2] Ernie Cohen. Hypotheses in Kleene algebra.
Available as ftp://ftp.bellcore.com/pub/ernie/research/homepage.html, April 1994.

[3] Ernie Cohen. Lazy caching.
Available as ftp://ftp.bellcore.com/pub/ernie/research/homepage.html, 1994.

[4] Ernie Cohen. Using Kleene algebra to reason about concurrency control. Available as
ftp://ftp.bellcore.com/pub/ernie/research/homepage.html, 1994.

16

[5] Ernie Cohen, Dexter Kozen, and Frederick Smith. The complexity of Kleene algebra with
tests. Technical Report 96-1598, Computer Science Department, Cornell University, July
1996.

[6] John Horton Conway. Regular Algebra and Finite Machines. Chapman and Hall, London,
U.K., 1971.

[7] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. J. Comput.
Syst. Sci., 18(2):194–211, 1979.

[8] Kazuo Iwano and Kenneth Steiglitz. A semiring on convex polygons and zero-sum cycle
problems. SIAM J. Comput., 19(5):883–901, 1990.

[9] S. C. Kleene. Representation of events in nerve nets and finite automata. In C. E. Shannon and
J. McCarthy, editors, Automata Studies, pages 3–41. Princeton University Press, Princeton,
N.J., 1956.

[10] Dexter Kozen. On induction vs. *-continuity. In Kozen, editor, Proc. Workshop on Logic
of Programs, volume 131 of Lecture Notes in Computer Science, pages 167–176, New York,
1981. Springer-Verlag.

[11] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra of regular events.
Infor. and Comput., 110(2):366–390, May 1994.

[12] Dexter Kozen. Kleene algebra with tests. Transactions on Programming Languages and
Systems, pages 427–443, May 1997.

[13] Dexter Kozen. Efficient code certification. Technical Report 98-1661, Computer Science
Department, Cornell University, January 1998.

[14] Dexter Kozen. On Hoare logic and Kleene algebra with tests. Trans. Computational Logic,
2000. To appear.

[15] Dexter Kozen and Frederick Smith. Kleene algebra with tests: Completeness and decidability.
In D. van Dalen and M. Bezem, editors, Proc. 10th Int. Workshop Computer Science Logic
(CSL’96), volume 1258 of Lecture Notes in Computer Science, pages 244–259, Utrecht, The
Netherlands, September 1996. Springer-Verlag.

[16] Werner Kuich. The Kleene and Parikh theorem in complete semirings. In T. Ottmann, editor,
Proc. 14th Colloq. Automata, Languages, and Programming, volume 267 of Lecture Notes in
Computer Science, pages 212–225, New York, 1987. EATCS, Springer-Verlag.

[17] Werner Kuich and Arto Salomaa. Semirings, Automata, and Languages. Springer-Verlag,
Berlin, 1986.

[18] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly
language. In 25th ACM SIGPLAN/SIGSIGACT Symposium on Principles of Programming
Languages, pages 85–97, San Diego California, USA, January 1998.

[19] George C. Necula. Proof-carrying code. In Proc. 24th Symp. Principles of Programming
Languages, pages 106–119. ACM SIGPLAN/SIGACT, January 1997.

[20] George C. Necula and Peter Lee. The design and implementation of a certifying compiler.
In Proc. Conf. Programming Language Design and Implementation, pages 333–344. ACM
SIGPLAN, 1998.

[21] K. C. Ng. Relation Algebras with Transitive Closure. PhD thesis, University of California,
Berkeley, 1984.

17

[22] Vaughan Pratt. Dynamic algebras as a well-behaved fragment of relation algebras. In
D. Pigozzi, editor, Proc. Conf. on Algebra and Computer Science, volume 425 of Lecture
Notes in Computer Science, pages 77–110, Ames, Iowa, June 1988. Springer-Verlag.

[23] A. Tarski. On the calculus of relations. J. Symb. Logic, 6(3):65–106, 1941.

18

