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Abstract

Word segmentation is an important issue in Japanese language processing because
Japanese is written without space delimiters between words. We propose a simple
dictionary-less method to segment Japanese kanji sequences into words based solely
on character n-gram counts from an unannotated corpus. The performance was often
better than that of rule-based morphological analyzers over a variety of both standard
and novel error metrics.

1 Introduction

This paper describes a simple, effective dictionary-less method to segment Japanese kanji se-
quences into words based solely on character n-gram counts from a completely unannotated
corpus.

Word segmentation is an important issue in Japanese language processing because Japanese is
written without space delimiters between words. Robust segmentation to recover the lexical
items is thus a key preprocessing step to essentially any Japanese text analysis. Also, segmen-
tation is often used to aid term extraction, either for automatically creating and augmenting
dictionaries, or for indexing documents (Nagao and Mori, 1994; Nagata, 1996a; Fung, 1998).
Wu and Tseng (1993) discuss the importance of segmentation to Chinese information retrieval
(Chinese also lacks word delimiters). Yet another application that has been proposed in the
literature is OCR spelling correction (Nagata, 1996b).

Typically, Japanese word segmentation is performed by morphological analysis based on lexical
and grammatical knowledge. However, when unknown words – those not found in the analyzer’s
lexicon – are encountered, heuristics must be employed. These heuristics may take advantage
of the fact that there are three types of Japanese characters: kanji (characters borrowed from
Chinese), hiragana, and katakana. Changes in character type often indicate word boundaries,
although Nagata (1997) notes that using this heuristic alone achieves less than 60% accuracy.

Fung (1998) attributes the difficulties in Chinese morphological analysis to a lack of morpholog-
ical clues, and argues in favor of a statistical approach. Similar difficulties occur in the morpho-
logical analysis of long Japanese kanji sequences. These sequences are typically noun phrases
or compound nouns, so grammatical constraints do not aid segmentation. For instance, sha-

choh-ken-gyoh-mu-bu-choh (“a president as well as a general manager of business”) should be



Kanji sequence length # of characters Percent of all characters
1 - 3 characters 20,405,486 25.6%
4 - 6 characters 12,743,177 16.1%
more than 6 characters 3,966,408 5.1%
Total 37,115,071 46.8%

Figure 1: Statistics from 1993 Japanese newswire (NIKKEI), 79,326,406 characters total. The
sequence length categories are disjoint, i.e., “theQUICKbrownFOX” has three lower-case char-
acters in sequences of length 1-3 and five lower-case characters in sequences of length 4-6.

segmented as follows: sha-choh/ken/gyoh-mu/bu-choh (president/both/business/general man-
ager). An example of an incorrect segmentation is: sha-choh/ken-gyoh/mu/bu-choh (presi-
dent/subsidiary business/Tsutomu (personal name)/general manager). Since both alternatives
are sequences of four nouns, they cannot be distinguished by part-of-speech information alone.
Furthermore, heuristics based on character type clearly do not apply because all the characters
are kanji. Thus, kanji sequences are problematic for morphological analysis.

Although potentially difficult to process, kanji sequences often contain domain terms and proper
nouns, which are important in many applications such as information retrieval, information
extraction, and text summarization. For example, Fung (1998) notes that 50-85% of the terms
in various technical dictionaries are composed at least partly of kanji. Also, long kanji sequences
can comprise a nontrivial portion of Japanese text, as shown in Figure 1. Since kanji sequences
longer than 3 characters generally consist of more than one word, we see that 21.2% of 1993
Nikkei newswire consists of kanji sequences that need to be segmented, with 5.1% of the corpus
made up of relatively long sequences. Thus, the accuracy of kanji sequence segmentation is an
important aspect of the total segmentation process.

Many algorithms previously proposed for Japanese segmentation rely on lexical knowledge or
pre-segmented training data. In contrast, the method we present in this paper for segmenting
kanji sequences has the following four key features:

1. It uses neither a lexicon nor grammar;

2. It does not require annotated training data;

3. It does not rely on Japanese-specific heuristics (and therefore may be applicable to other
languages as well), and

4. It is conceptually quite simple.

Our results show that in the segmentation of long kanji strings, our algorithm can provide error
rate reductions of up to 41% with respect to Juman (Matsumoto et al., 1994) and Chasen
(Matsumoto et al., 1997), two lexicon-based morphological analyzers in widespread use.
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2 Algorithm

Our algorithm uses only the counts of character n-grams to make segmentation decisions. Before
formally presenting it, we illustrate its use with an example.

Let “A B C D W X Y Z” represent an eight-kanji sequence. To decide whether the fourth
location (between D and W) should be a word boundary, we check whether n-grams that are
adjacent to the proposed boundary, such as the trigrams “B C D” and “W X Y”, tend to be
more frequent than n-grams that straddle it, such as the trigram “C D W”. If this is indeed the
case, then we have evidence that there is a word boundary between D and W, since there seems
to be relatively little cohesion between the characters occurring to the left and those occurring
to the right of the fourth location.

We choose to consider only a fixed set N of n-gram orders to use as evidence in the segmentation
decision. Continuing with our example, suppose that N = {2}. Then, letting #(s) denote the
number of times the character n-gram s occurs in the (unannotated) training corpus, we pose
the following two questions:

Is #(C D) > #(D W)?
Is #(W X) > #(D W)?

Each “yes” constitutes evidence that there should be a boundary between D and W. If N =
{2, 4}, then six more questions are posed:

Is #(A B C D) > #(B C D W)? Is #(W X Y Z) > #(B C D W)?
Is #(A B C D) > #(C D W X)? Is #(W X Y Z) > #(C D W X)?
Is #(A B C D) > #(D W X Y)? Is #(W X Y Z) > #(D W X Y)?

In order to compensate for the fact that there are more questions for (n + 1)-grams than there
are for n-grams, we calculate the fraction of affirmative answers separately for each n in N .
Our algorithm then simply creates a segment boundary if and only if the average fraction of
affirmative answers is either (1) greater than that of both the locations to the immediate left
and right (i.e., a local maximum), or (2) exceeds some threshold t. The second condition is
necessary to allow for words consisting of a single character. Notice that it also gives us a
degree of control over the granularity of the segmentation: if the threshold value is high, then
longer words are created.

More formally, let gn(x) denote the n-gram starting at the xth character; for instance, in the
example above, g4(2) = “B C D W”. Let I>(y, z) be an indicator function that is 1 when y > z,
and 0 otherwise. Then, for each location i (i.e., the location just after the ith character), we
compute vn(i), the average evidence from n-character sequences for i being a word boundary,
as follows:

vn(i) =
1

2n − 2

i∑

k=i−n+2

(I> (#(gn(i − n + 1)), #(gn(k))) + I> (#(gn(i + 1)), #(gn(k))))
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The quantity vN (i) is the average vn(i):

vN (i) =
∑

n∈N

vn(i)/|N |.

After vN (i) is computed for every location i of the sequence, word boundaries are located at
all locations ` such that either

• vN (`) > vN (` − 1) and vN (`) > vN (` + 1), or

• vN (`) ≥ t, the threshold parameter.

The algorithm can be implemented to be efficient both in the training (count acquisition) and
testing phase. Computing n-gram statistics for all possible values of n simultaneously can
be done in a space-efficient manner using suffix arrays in O(m log m) time, where m is the
training corpus size (Manber and Myers, 1993; Nagao and Mori, 1994). However, if the set
of n-gram orders N is known ahead of time, conceptually simpler algorithms with the same
or linear running times suffice; we implemented an O(m log m) procedure that explicitly stores
the n-gram counts in a table. Memory allocation for this table can be significantly reduced by
omitting n-grams occurring only once and assuming the count of unseen n-grams to be one.
For instance, the kanji n-gram table for N = {2, 3, 4, 5, 6} extracted from our 150-megabyte
corpus was 18 megabytes in size, which fits easily in memory. The size of the n-gram table
grows very slowly with corpus size once the corpus is sufficiently large.

In the application phase, the algorithm is clearly linear in the size of the test data, assuming
|N | is treated as a constant.

3 Experimental Framework

The data for our experiments was drawn from 150 megabytes of 1993 Japanese newspaper
articles (details of this corpus are given in Figure 1 above). Five test sets were obtained from
this corpus. Proposed segmentations were evaluated by comparison to a segmentation created
by hand.

Section 3.1 describes the test sets and our procedure for annotating them. Section 3.2 briefly
sketches the morphological analyzers and simple baseline algorithm against which we compared
our segmentation method. In section 3.3, the error metrics we used to measure performance
are presented.

3.1 Test datasets

The five disjoint test sets, summarized in Figure 2, consisted of randomly extracted kanji
sequences at least ten characters in length: long sequences were selected as being the most
difficult to segment (Takeda and Fujisaki, 1987).
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# of sequences (tokens) average length # of words average word length
test1 500 12.27 2554 2.40
test2 500 12.40 2574 2.41
test3 500 12.05 2508 2.40
test4 500 12.12 2540 2.39
test5 500 12.22 2556 2.39

Figure 2: The statistics of test datasets. Lengths are in characters.

To obtain the gold-standard segmentations of the test datasets, we added bracket annotations to
them by hand. Our annotation scheme was motivated by an observation of Takeda and Fujisaki
(1987) that many kanji compound words consist of two-character stem words together with one-
character prefixes and suffixes. Using this terminology, our two-level hand segmentation may be
described as follows. At the word level, both a stem word and its affixes are bracketed together
as a single word. At the morpheme level, stem words are divided from their prefixes and
suffixes. For example, den-wa-ki (phone device) is segmented as [[den-wa][ki]]: den-wa (phone)
can be used independently, but ki, a suffix that adds the meaning “device”, cannot. Following
Takeda and Fujisaki (1987), we treat a one-character word that can be appear on its own as an
affix when it serves such a role. For instance, although both naga-no (Nagano) and shi (city)
can appear as individual words, naga-no-shi (Nagano city) is bracketed as [[naga-no][shi]], since
shi serves as a suffix in naga-no-shi.

Loosely speaking, word-level bracketing demarcates discourse entities; it appears to be a natural
segmentation level for native Japanese speakers (as shown below). Morpheme-level brackets
enclose strings that cannot be segmented into smaller pieces without loss of meaning.1 For
instance, if naga-no in naga-no-shi is segmented into the two units naga (long) and no (field),
the intended meaning disappears.

Numerics are grouped with the unit (measure)2 at the word level; the characters representing the
actual number were bracketed together as a single morpheme. For instance, ichi-kyuh-kyuh-san-

nen (the year 1993) is segmented as [[ichi kyuh kyuh san][nen]] ([[one nine nine three][year]]).
Reasonable alternative bracketings of numeric expressions exists; however, in our tests we
altered the output of all the algorithms tested so as to conform to this bracketing, so that our
numerics segmentation policy does not affect the relative performance of the various methods.

Three native Japanese speakers participated in the annotation of the test data: one human
segmented all the test data based on the above rules, and the other two reviewed 350 sequences
in total. The percentage of agreement with the first person’s bracketing was 98.42%: at only
62 out of 3927 locations did one or both of the humans disagree with the annotation. It is
interesting to note that all disagreement was at the morpheme level.

1This level of segmentation may be seen as consistent with the Monotonicity Principle for segmentation proposed by
Wu (1998).

2In Japanese, measure words are used after numbers to indicated the unit of measure. That is, one must say san
satsu no hon (three book-units of book); san hon is not permissible.
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3.2 Baseline algorithms

In order to evaluate our segmentation method, we chose to compare its performance against
that of three other algorithms.

Juman (Matsumoto et al., 1994), downloadable from http://www-nagao.kuee.kyoto-u.ac.jp/-

nl-resource/juman-e.html, is a state-of-the-art user-extensible morphological analyzer. Chasen
(Matsumoto et al., 1997), which can be found at the URL http://cactus.aist-nara.ac.jp/-

lab/nlt/chasen.html, is a later version of Juman. In both cases, the default values were used
for all parameters, and the dictionaries and grammar rules were used as distributed without
modification.

We also tested a simple baseline algorithm that produces a boundary after every second char-
acter (the average test-set word length, according to Figure 2). However, the segmentation
performance using this method was very poor; we omit the results from our discussion below.

3.3 Metrics

To evaluate a given proposed segmentation against the gold-standard test annotation, we em-
ployed the following evaluation metrics: word and morpheme precision and recall; a modified
crossing brackets rate and zero crossing brackets rate; and location precision, location recall,
and location total error rates.

3.3.1 Word and Morpheme Accuracy

The most standard performance metrics in word segmentation are, naturally, word precision
and recall. Treating a segmentation as a flat (i.e., non-nested) bracketing3, word precision is
defined as the percentage of proposed brackets that exactly match word-level brackets in the
annotation; word recall is the percentage of word-level annotation brackets that are proposed
by the algorithm in question.

One problem that arises in using word precision and recall is that our main baseline algorithms,
being morphological analyzers, are meant to produce morpheme-level segments. To compensate
for this fact in our word-level experiments, we altered the segmentations produced by Juman
and Chasen by concatenating together stem words with their affixes (identified by the part-
of-speech information Juman and Chasen provide). Numeric strings were also problematic,
because Juman and Chasen appear to implement different segmentation policies with respect
to these types of character sequences. To factor out this difference, we removed boundaries
between numeric kanji characters from the segmentations produced by every algorithm tested,
including our own. Since in practice, it is easy to implement a post-processing step that
concatenates together number characters, we do not feel that this change misrepresents the
performance of any of the algorithms.

Since Juman and Chasen were designed to segment at the morphemic level, we also measured
morpheme precision and morpheme recall, defined analogously to word precision and word

3For instance, the segmentation “| A B | C |” corresponds to the bracketing “[ A B ][ C ]”.
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[[data][base]][system] (annotation brackets)

Proposed segmentation word morpheme compatible-bracket errors
errors errors crossing bracket morpheme-dividing

[data][base] [system] 2 0 0 0
[data][basesystem] 2 1 1 0
[database] [sys][tem] 2 3 0 2

Figure 3: Examples of word, morpheme, and compatible-bracket errors. The sequence “data
base” has been annotated as “[[data][base]]” because “data base” and “database” are inter-
changeable.

recall. Numerical expressions were again resegmented as in the word accuracy tests.

3.3.2 Compatible Brackets and All-Compatible Brackets Rates

Although word-level accuracy is a standard performance metric, it is clearly very sensitive to
the test annotation. The authors of Juman and Chasen may well have tuned their algorithms
using different notions of word and morpheme than the definitions we used in annotating the
data. We therefore also developed a new, more robust metric, the compatible brackets rate,
intended to measure the number of proposed brackets that would be incorrect with respect to
any reasonable annotation.

The compatible brackets rate takes into account two types of errors. The first type, a cross-

ing bracket, is a proposed bracket that overlaps but is not contained within an annotation
bracket (Grishman et al., 1992). Crossing brackets cannot coexist with the annotation brack-
ets; furthermore, it is unlikely that another human would create a segmentation with brackets
that cross the annotation brackets4. The second type of error is a bracket that subdivides a
morpheme-level annotation bracket. Recall that if morpheme-level brackets are divided, loss
of meaning results; thus, we expect that any reasonable bracketing should not further segment
morphemes. See Figure 3 for some examples.

We define a compatible bracket as a proposed bracket that is neither a crossing bracket nor a
morpheme-dividing bracket. Then, we define the compatible brackets rate as the compatible
brackets precision:

Compatible brackets rate =
# of compatible brackets

# of proposed brackets

We observe that the compatible brackets rate metric accounts for different levels of segmentation
simultaneously. The granularity of Chasen’s segmentation varies from morpheme level to word
level to compound word level (by our definition); for instance, the name of a well-known
university is recognized as one segment, whereas a lesser-known university name is divided into
the name and the word “university”. Using the compatible brackets rate, both segmentations
can be counted as correct.

4The situation is different for parsing, where attachment decisions are involved.
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We use the all-compatible brackets rate (related to the zero crossing brackets rate) to measure
the number of kanji sequence segmentations in which all brackets are compatible:

all-compatible brackets rate =
# of sequences segmented without incompatible brackets

# of sequences

Intuitively, this function corresponds to the ease with which a human could correct the output of
the segmentation algorithm. That is, if the all-compatible brackets rate is high, then the errors
are concentrated in relatively few sequences; if it is low, then a human doing post-processing
would have to expend effort on a great many sequences.

3.3.3 Location precision, recall and total accuracy

Using the compatible brackets rate, we can robustly measure the fitness of a proposed seg-
mentation with respect to multiple levels of a correctly structured segmentation. However, the
compatible brackets rate, being a measure of precision, tends to favor minimal bracketings:
indeed, if the whole sequence is deemed to be a single (large) segment, the crossing brack-
ets rate is 0%. Furthermore, this measure evaluates the goodness of an output segmentation
as a bracketing, rather than as a segmentation per se, which may not be appropriate for all
applications.

To measure the tradeoff between precision and recall in the placement of segmentation bound-
aries, we use location precision, recall, and total accuracy, defined as follows. Let Lall be the
set of all locations between characters in a given test set, and let BM and BW be the set of
morpheme and word boundaries, respectively. Let T be the set of boundaries proposed by
the algorithm being tested. To account for the two levels of bracketing in the gold standard
segmentation, we allow the algorithm being tested to omit morpheme boundaries (recall that
this was the level at which all the human disagreements occurred); however, both omitting a
word boundary and positing a boundary where there is none count as mistakes:

location precision = |T ∩ (BM ∪ BW ))|/|T |

location recall = |T ∩ BW |/|BW |

location total accuracy = (|T ∩ (BW ∪ BM)| + |(Lall − T ) ∩ (Lall − BW − BM)|) /|Lall|

4 Experimental Results and Analysis

The five test datasets were segmented using our algorithm, Juman, Chasen, and the baseline
algorithm. Section 4.1 describes the test results. In section 4.2, the error cases are analysed.

4.1 Experimental Results

In this section, we report the best average results over the five test sets from preliminary
searches of the parameter space, namely, the values for the set N of n-gram orders to consider
and the threshold parameter t. However, a formal search for parameter settings optimizing
performance on a held-out parameter training set was not performed.
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Figure 4: Word precision and recall.

Figure 4 depicts word precision and recall rates for Juman, Chasen, and our algorithm for
parameter settings (N , t) = ({2, 4}, 100%) and (N , t) = ({2, 4, 6}, 100%) (in this and all per-
formance graphs, the “error bars” represent one standard deviation). Our algorithm achieves
much higher precision, with recall falling between that of Juman and that of Chasen. We note
that the higher the value of t, the longer the segments produced by the algorithm tend to be,
which accounts for the extremal value of t in this test of word-level accuracy; however, such
a high value makes the algorithm more conservative, which causes its recall performance to
suffer.

We conjecture that the relatively poor performance of Chasen with respect to the older version
Juman may be due to the fact that our notion of a correct segmentation differs from that of
the authors of these two programs. Thus, our comparative results should be taken with a grain
of salt.

Figure 5 shows morpheme precision and recall rates. Since segmentation at the morpheme-level
requires shorter brackets, a lower value of the threshold parameter (t = 35%) gave better results.
Here, the performance of our algorithm with setting N = {2, 4} was somewhere between Juman
and Chasen, but with setting N{2, 4, 6}, our algorithm has worse precision and recall than the
morphological analyzers. Again, though, note that Chasen seems to perform more poorly than
Juman, which may indicate a mismatch in the notion of morpheme we used and the notion
employed by the creators of Juman and Chasen.

We now turn to our more robust metrics, meant to measure “egregious” segmentation mistakes
that should be incorrect with respect to any human annotation. Figure 6 depicts the com-
patible brackets and all-compatible brackets rates. Our algorithm does noticeably better on
both metrics. Observe that Chasen yields higher accuracy than its predecessor Juman, which
provides added confidence in the fitness of our compatible-brackets measures.

Finally, Figure 7 shows location accuracy rates. As in the word and morpheme accuracy cases,
we see that our algorithm yields better precision but inferior recall with respect to Juman and
Chasen. The total location accuracy did not greatly differ from algorithm to algorithm.
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Figure 5: Morpheme precision and recall.
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4.2 Analysis of Results

To study the influence of n, we evaluated performance on a single test set, test1, for parameter
settings N = {2}, {3}, {4}, {5}, and {6}. To avoid the influence of changing the threshold,
t = 100% was used for this experiment.

The count column in Figure 8 shows the number of words and possible compound words of each
length (possible compound words were counted based on the assumption that any consecutive
words can make a compound word, as an approximation of the actual word length distribution).
Figure 8 shows that the ranking of the n-gram orders by word count almost exactly matches
the ranking of n-gram orders by performance on the compatible brackets rate and location
precision measures. We also see that N = {2} and {4} yield good performance with respect
to the other error metrics as well. These ranking correlations are preserved for the averages
over all the data sets. Thus, it appears that the effectiveness of a given n is correlated with
word-length distribution in the test dataset.

n count rank c.b. rank L-prec rank all-c.b. rank L-rec rank L-total rank
2 1427 1 94.09 1 98.02 1 82.0 2 85.2 1 93.65 1
4 913 2 87.59 3 96.07 2 76.8 3 46.59 2 78.84 2
6 599 3 88.28 2 95.73 3 84.6 1 25.86 5 71.13 4
5 524 4 80.45 4 90.39 4 75.6 4 26.87 4 70.89 5
3 508 5 80.01 5 87.71 5 69.2 5 39.92 3 74.81 3

Figure 8: Performance on test1 of n-grams for different n, t = 100%, sorted by counts.

Figure 9 ranks various values of N for the compatible-brackets and location measures on test1.
When compatible brackets are used for the evaluation, N = {2, 3, 4, 5, 6} yields the best per-
formance, whereas N = {2, 4, 6} is the best setting for location precision and recall.

In terms of the types of mistakes our method makes, mis-associated affixes and unseparated
one-character words are the major errors. An example of a mis-associated prefix is that
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N c.b. rank all-c.b. rank L-prec rank L-rec rank L-total rank
{2, 4, 6} 95.61 2 85.6 3 98.59 1 87.83 1 94.84 1
{2, 4} 95.60 3 85.8 2 98.42 2 87.05 2 94.49 2
{2, 3, 4} 95.31 4 85.2 4 98.24 4 86.47 3 94.21 3
{2, 3, 4, 5, 6} 95.87 1 87.2 1 98.42 2 85.54 4 93.93 4
{2} 94.42 6 83.4 6 98.02 6 85.2 5 93.65 5
{2, 3} 94.83 5 84.2 5 98.21 5 84.71 6 93.54 6

Figure 9: Performance on test1 for different values for N , t = 100%, sorted by location total
accuracy.

[ei-gyoh][[fuku][bu-choh]] ([business][[vice][manager]]) is segmented as [ei-gyoh-fuku][bu-choh] –
the character fuku has been mistakenly attached to ei-gyoh instead of bu-choh. An example
of an unseparated 1-character word occurs when [bu-choh][ken][sha-choh] ([manager][as well
as][president]) is segmented as [bu-choh-ken][sha-choh]. Figure 10 classifies the errors observed
when using (N , t) = ({2, 4, 6}, 50%) for test1. For the purpose of comparison, the same error
types are counted for Chasen.

({2, 4, 6}, 50%) Chasen
Mis-associated prefix or suffix 33 0
Unseparated 1-character words 46 0
Wrongly segmented proper nouns:

Location name 6 10
Person name 6 35
Organization name 1 13

Last and first name concatenated 39 0

Figure 10: Error types on test1.

Our algorithm does not model one-character words or morphemes directly: single-character
segments appear as a result of the words around them being recognized correctly. Thus, it is
not surprising that one-character words and affixes are the main causes of errors. Further work
should be done to improve this point.

Since proper nouns tend to be unknown words, Chasen’s error rates in this category are high.
While Chasen tends to segment an uncommon name into one-character words found in the
dictionary, our algorithm tends to recognize person names comparatively well. It often con-
catenates first and last names, but this type of error is better than excessive segmentation in
practical applications. It is also worthwhile to note that in general, Chasen performs more
poorly at names, which are objects of prime importance in information extraction and related
tasks.

5 Related Work

Many previously proposed segmentation methods for Japanese text make use of either a pre-
existing lexicon (Yamron et al., 1993; Matsumoto and Nagao, 1994; Nagao and Mori, 1994;
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Takeuchi and Matsumoto, 1995; Nagata, 1997; Fuchi and Takagi, 1998) or pre-segmented
training data (Nagata, 1994; Nagata, 1996a; Papageorgiou, 1994; Kashioka et al., 1998; Mori
and Nagao, 1998). Other approaches first apply some baseline method, such as Juman, to
create an initial segmentation of the test data and then attempt to improve the segmentation
via a re-estimation method (Matsukawa et al., 1993; Yamamoto, 1996).

Unsupervised methods for Japanese segmentation which do not explicitly rely on the existence
of a lexicon do exist, but they are limited in their applicability. Tomokiyo and Ries (1997) study
the problem of learning segmentations of (transcriptions of) Japanese speech without recourse
to any data other than the (unsegmented) test data itself, applying a minimum-perplexity
induction algorithm. However, they explicitly avoid working with kanji-based text, leaving this
for future work. Teller and Batchelder (1994) report an experiment on segmenting Japanese
hiragana sequences using the probability of non-kanji bigram occurrences. Although no lexicon
or annotated training corpus is used, they employ specific morphologically-based heuristics;
furthermore, they also explicitly do not handle kanji sequences. In contrast, there are no limits
in principle to using our method on strings containing any type of character.

Although Sun et al. (1998) focus on segmentation of Chinese rather than Japanese text, their
method bears some resemblance to ours. Like us, they avoid using a lexicon or pre-segmented
training data, but rather determine whether a given location constitutes a word boundary in
part by deciding whether the two characters on either side tend to “bind” (occur) together;
and they use thresholds, local maxima, and secondary local maxima to make the segmentation
decisions. However, the statistics they use (mutual information and t-score) are more complex
than the simple n-gram counts that we employ.

Takeda and Fujisaki (1987) proposed the short unit model, a type of Hidden Markov Model
with linguistically-determined topology, to segment kanji compound words into 2-character
stem words and 1-character prefixes and suffixes. Kanji sequences are segmented based on
state transition probabilities acquired in the training phase. However, the method does not
handle three-character stem words or single-character stem words with affixes, both of which
often occur in proper nouns. In our five test datasets, we found that 13.56% of the kanji
sequences contain words that cannot be handled by the short unit model.

6 Conclusion

In this paper, we have presented a simple unsupervised algorithm that segments Japanese
kanji sequences into words based solely on the counts of character n-grams in an unannotated
corpus. We evaluated performance with respect to several metrics, including the novel com-
patible brackets and all-compatible brackets rates, and found that our algorithm could yield
performances rivaling that of lexicon-based morphological analyzers; for example, the average
compatible-brackets error was slightly less than half that for Chasen.

In future work, we plan to experiment on Japanese sentences with mixtures of character types.
Since our method does not use any Japanese-dependent heuristics, we hope to test it on Chinese
or other languages as well.
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