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Abstract

Markov Random Fields (MRF’s) can be used for a wide variety of vision problems. In this paper we address
the estimation of first-order MRF’s with a particular cliqgue potential that resembles a well. We show that the
mazimum a posteriori estimate of such an MRF can be obtained by solving a multiway cut problem on a graph.
This allows the application of near linear-time algorithms for computing provably good approximations. We
formulate the visual correspondence problem as an MRF in our framework, and show that this yields quite
promising results on real data with ground truth.

1 Introduction

Many early vision problems require estimating some spatially varying quantity (such as intensity, texture
or disparity) from noisy measurements. These problems can be naturally formulated in a Bayesian frame-
work using Markov Random Fields [4]. In this framework, the task is to find the maximum a posteriori
(MAP) estimate of the underlying quantity. Bayes’ rule states that the posterior probability Pr(f|O) of
the hypothesis f given the observations O is proportional to the product of the likelihood Pr(O|f) and the
prior probability Pr(f). The likelihood models the sensor noise, and the prior describes preferences among
different hypotheses.

In this paper, we investigate MAP estimation of a special class of first-order Markov Random Fields.
These MRF’s, which we will call Well MRF’s, have Gibbs clique potentials with a particular form that
resembles a well. We begin by describing these Well MRE’s, and giving an energy function that has a global
minimum at the MAP estimate. In section 3 we show that the global minimum of this energy function can
be obtained by finding a minimum multiway cut on a graph. Section 4 formulates the visual correspondence
problem as a Well MRF and suggests a greedy method for finding a multiway cut.

We demonstrate the effectiveness of our approach for computing stereo depth in section 5. For example,
we have bench-marked several algorithms using real images where the University of Tsukuba has produced
dense ground truth. Our method produces an incorrect result at under 3% of the pixels, while correlation-
based methods produce approximately 10% errors.

2 Markov Random Fields

Markov Random Fields were first introduced into vision by Geman and Geman [4], and have been widely
used (see [6] for a particularly readable textbook). The MRF framework can express a wide variety of
spatially varying priors, which accounts for much of its popularity. In early vision it is commonly assumed
that the underlying quantity is smooth, either piecewise [4] or globally [5].



An MRF has several components: a set P = {1,...,m} of sites p, which will be pixels; a neighborhood
system N = {\N, | p € P} where each N, is a subset of pixels in P describing the neighbors of p; and a field
(or set) of random variables FF = {F, |p € P }.

Each random variable Fj, takes a value f, in some set £ = {l1,...,lx} of the possible labels (for example,
the possible intensities or disparities). Following [6] a joint event {Fy = f1,...,Fm = fm} is abbreviated
as F = f where f = {f, | p € P} is a configuration of F, corresponding to a realization of the field. For
simplicity, we will write Pr(F = f) as Pr(f) and Pr(F, = f,) as Pr(fp). In order to be an MRF, the random
variables in the field F' must satisfy

Pr(fplfs—ip}) = Pr(folfn,), VP EP.

This condition states that each random variable F,, depends on other random variables in F' only through
its neighbors in Fy, = {Fy|q € N}

The key result concerning Markov Random Fields is the Hammersley-Clifford theorem. This states that
the probability of a particular configuration Pr(f) o exp(— 3, Ve(f)), where the sum is over all cliques
in the neighborhood system N. Here, Vi is a clique potential, which describes the prior probability of a
particular realization of the elements of the clique C.

We will restrict our attention to first-order MRF’s where each N, can contain only north, east, south
and west neighbors of pixel p. The cliques of a first-order MRF are either single pixels or ordered pairs
of neighboring pixels. Single pixel clique potentials provide a prior bias towards a particular label for a
particular pixel. In the majority of vision applications it is reasonable to assume there are no single pixel
clique potentials, leaving

Pr(f) o exp Z Z Viw,a) (fp> fa)

PEP qEN,

In general, the field F' is not directly observable in the experiment. We have to estimate its realized
configuration f based on the observation O, which is related to f by means of the likelihood function
Pr(O|f). In the context of the image restoration problem the observation O is the joint event {I, =i,}
over all p € P where I, denotes the observable intensity at pixel p and i, is its particular realization. If F,
denotes the true intensity at p then assuming i.i.d. noise

Pr(0|f) = [] 9(in, fo)

pEP

where g(ip, fp) = Pr(Ip, = ip|Fp = fp) represents the sensor noise model.
We will make a slightly more general assumption. We will assume that the likelihood can be written as

Pr(0|f) = [ 9(i-p, f), (1)

pEP

where ¢ is a configuration of some field I that can be directly observed and g is a sensor noise distribution
(0 < g <1). An example of the likelihood function with this general structure can be found in section 4.

We wish to obtain the configuration f € £ x ... x £ = L™ that maximizes the posterior probability
Pr(f|O). Bayes’ law tells us that Pr(f|O) «x Pr(O|f)Pr(f). It follows that our MAP estimate f should
minimize the posterior energy function

= Z E Viv,o) (fpr o) = Zln 0D fp))

PEP qEN, pEP

2.1 Well MRF’s

In this paper we consider first-order MRF’s with a special form of clique potentials that resembles a well. If
6(-) represents the unit impulse function, then u (1 — 6(+)) is a well with “depth” w. A first-order MRF is
called a Well MRF if its single clique potentials are zeros and clique potential for any pair of neighboring
pixels p and q is

V(p,q)(fpi fq) = U{p,q} " (1 - 6(fp - fq))



where the coefficient ug, .3 > 0 specifies the depth of the well. Note that {p,q} is a set, not a tuple, so
Vip,o) (fos fo) = Vig,p) (fo> fo). Well MREF’s are thus isotropic (i.e., independent of orientation).
The prior probability of a Well MRF is thus

Pr(f) X exp | — Z 2u{}o,q}(l - 6(.fp - fq))

{p,qa}€€N

where £y is the set of distinct {p, ¢} such that ¢ € N,. Each term in the summation above equals 2u, o3 if
p and ¢ have different labels (f, # f,) and zero otherwise. The coefficient u(, 53 can be interpreted as a cost
of a “discontinuity” between p and ¢, that is, the penalty for assigning different labels to neighboring pixels
p and ¢q. The sum in the exponent above is proportional to the total cost of discontinuities in f. Thus, the
prior probability Pr(f) is larger for configurations f with fewer discontinuities.

The posterior energy function of a Well MRF is

E(f) = Y 2upg(-6(f— 1))

{p,q}€€N

— > In(g(i,p, ) (2)

pEP

The MAP estimate f minimizes E(f). Thus, it should both agree with the observed data and have a small
number of discontinuities.

Note that the clique potential of a Well MRF resembles a robust estimator, in that it has a fixed maximum
value (in the language of robust statistics, it is re-descending). Most vision applications of MRF’s follow [4]
by introducing a line process that explicitly models discontinuities. [2] showed that if spatial restrictions on
discontinuities are ignored, the line process can be eliminated by using a robust penalty function.! We take
a somewhat similar approach, by using a re-descending clique potential instead of a line process.

3 Optimizing the energy function

In this section we show that minimizing the energy function E(f) in (2) over f € L™ is equivalent to solving
a multiway cut problem on a certain graph. In section 3.1 we give another formulation of the posterior
energy minimization problem that is equivalent to (2). This formulation, shown in equation (3), reduces the
search space for f and simplifies our transition to the graph problem. Then in section 3.2 we construct a
particular graph, and prove that solving the multiway cut problem on this graph is equivalent to minimizing
the energy function of equation (3).

3.1 Reformulating the energy function

We want to find f* € £™ that minimizes E(f) in (2). It is straightforward to reduce the search space for
f*. Assuming E(f*) is finite, we can always find some constant K (p) for each pixel p satisfying

—In(g(i,p, f;)) < K(p)-

For example, if no better argument is available we can always take K (p) = K = E(f) where f is any fixed
configuration of F' such that E(f) is finite.
For a given collection of constants K (p) we define

LP = {l €L: _ln(g(iapal)) < K(p)}

for each pixel p in P. Each £, prunes out a set of labels which cannot be assigned to p in the optimal
solution. For example, if we take K (p) = E(f) as suggested above, then for [ ¢ £, a single sensor noise term

1See [1] for further analysis of the relationship between MRF’s and robust estimation.



—In(g(¢,p,1)) in (2) will exceed the total value of the posterior energy function E(f) at some configuration
f. Since f} € L, then each L, is a nonempty set. Define also £ =Ly X ... X L. Since f* € L, our search
can be restricted to the set L.

It is possible to rewrite —In(g(s,p, fp)) as

K(p)+ Y (In(g(i,p,1)) + K(p))

leLy
1#fp

where K (p) is some constant that does not depend on f,,. It follows that minimizing E(f) in (2) is equivalent
to minimizing

E(f) = Y 2upg(-6(f— 1))

{p,q}€EN

+3°3 hiip ) (3)

pEP LELp
1#5p

where h(i,p,l) = In(g(¢,p,1)) + K(p) and the minimization takes place over f € L. Note that h(:,p,1) > 0
for any p € P and for any | € L.

3.2 Multiway cut formulation

Consider a graph G = (V, £) with non-negative edge weights, along with a set of terminal vertices £ C V. A
subset of edges C C £ is called a multiway cut if the removal of C from § completely separates all terminal
vertices from each other. The cost of the cut C is denoted by |C| and equals the sum of its edge weights.
The multiway cut problem is to find C which has the minimum cost.

The multiway cut problem reduces to the standard max flow-min cut problem in the case of 2 terminals.
With 3 or more terminals it is known to be NP-complete [3]. Fortunately, [3] also gives an almost linear time
method for computing a provably good approximation. The approximation produced is optimal to within a
factor of 2. It requires running a min cut algorithm |£| times. The worst-case complexity of computing a
min cut is worse than linear, but in practice modern algorithms run in near-linear time.

We now show that the minimization problem in (3) is equivalent to a multiway cut problem. We begin by
constructing G. We take YV = PUL. This means that G contains two types of vertices: p-vertices (pixels) and
l-vertices (labels). Note that [-vertices will serve as terminals for our multiway cut problem. Two p-vertices
are connected by an edge if and only if the corresponding pixels are neighbors in /. Therefore, the set
corresponds to the set of edges between p-vertices. We will refer to elements of Eor as n-links. Each n-link
{p,q} € Ex is assigned a weight

Wip,q} = 2U{p,q}- (4)

A p-vertex is connected by an edge to an [-vertex if and only if I € £,. An edge {p,!} that connects a
p-vertex with a terminal (an [-vertex) will be called a ¢-link and the set of all such edges will be denoted by
Er. Each t-link {p,l} € &7 is assigned a weight

Wipay = (i, p, 1) + Z W{p,q}- (5)
9EN,

Note that each p-vertex is connected to at least one terminal since £, is non-empty. No edge connects
terminals directly to each other. Therefore, £ = Eor U E7. Figure 1 shows the general structure of the graph
g.

Since a multiway cut separates all terminals it can leave at most one t-link at each p-vertex. A multiway
cut C is called feasible if each p-vertex is left with exactly one ¢-link. Each feasible multiway cut C corresponds
to some configuration f€ in £ in an obvious manner: simply assign the label [ to all pixels p which are t-linked
to the l-vertex.



terminals (l-vertices or labels)

p-vertices (pixels)

Figure 1: An example of the graph G = (V,£) where the terminals are £ = {l1,...,lx} and p-vertices are
elements of P = {1,...,p,q,...,m}. Each p-vertex is connected to at least one terminal.

Lemma 1 A minimum cost multiway cut C on G for terminals £ must be feasible.

ProoF: Due to equation (5), each t-link {p,{} has a weight larger then the sum of weights of all n-links
adjacent to the p-vertex. If a multiway cut of minimum cost is not feasible then there exists some p-vertex
with no ¢-link left. In such a case we will obtain a smaller cut by returning to the graph one ¢-link {p,} for
an arbitrary | € £, and cutting all n-links adjacent to this p-vertex. ]

Theorem 1 If C is a minimum cost multiway cut on G, then f€ minimizes E.

ProOF: Lemma 1 allows to concentrate on feasible multiway cuts only. Note that distinct feasible mul-
tiway cuts C1 and C2 can induce the same configuration f¢! = f¢2. However, among all distinct feasible
cuts corresponding to the same configuration f € £ we can always find an irreducible one that does not
sever n-links between two p-vertices connected to the same terminal. It follows that there is a one to one
correspondence between configurations f in £ and irreducible feasible multiway cuts on the G.

Obviously, the minimum multiway cut should be both feasible and irreducible. To conclude the theorem
it suffices to show that the cost of any irreducible feasible multiway cut C satisfies |C| = A + E(f€), where
A is the same constant for all irreducible feasible multiway cuts. Since C is feasible, the sum of the weights

for t-links in C is equal to
PP IR

pEP €Ly
1#£§

Since C is irreducible, the sum of weights for the n-links in the cut is equal to
> wipa(l—6(f - £5)):
{p,q}eln

The theorem now follows from (4) and (5). |

4 Computing Visual Correspondence

We now describe how our framework can be applied to the visual correspondence problem, which is the basis
of stereo and motion. Given two images of the same scene, a pixel in one image corresponds to a pixel in
the other if both pixels are projections along lines of sight of the same physical scene element. The problem
is to determine this correspondence between pixels of two images.



We begin by showing how to formulate the correspondence problem as a Well MRF, and thus as a
multiway cut problem.? We arbitrarily select one of the images to be the primary image. Let P denote the
set of pixels in the primary image and S denote a set of pixels of the second image. The quantity to be
estimated is the disparity configuration d = {d, | p € P} on the primary image where each d, establishes
the correspondence between the pixel p in the primary image and the pixel s = p@® d, in the second image.®

We assume that each d, has a value in £, which is a finite set of possible disparities. For simplicity,
we consider configurations d € £™. (This allows double-assignments, since distinct pixels p and ¢ in P can
correspond to the same pixel p@® d, = ¢ ® d,.) The information available consists of the observed intensities
of pixels in both images. Let Ip = {I, |p € P} and Is = {I; | s € S} be the random fields of intensities in
the primary and in the second images. Assume also that ¢, denotes the observed value of intensity I,.

4.1 Incorporating context

Note that the intensities of pixels in P contain information that can significantly bias our assessment of
disparities without even considering the second image. For example, two neighboring pixels p and ¢ in P
are much more likely to have the same disparity if we know that i, =~ i,. Most methods for computing
correspondence do not make use of this kind of contextual information. An exception is [7], which describes
a method also based on MRF’s. In their approach, intensity edges were used to bias the line process. They
allow discontinuities to form without penalty on intensity edges. While our MRF’s do not use a line process,
we can easily incorporate contextual information into our framework.

Formally, we assume that the conditional distribution Pr'(d) = Pr(d|Ip) is a distribution of a Well MRF
on P with neighborhood system . Pr’(d) can be viewed as a “prior” distribution of d before the information
in the second image is disclosed. Conditioning on I allows to choose well clique potential “depths” g, o1
according to

U{p,q} = U(lip — tq]), V{p,q} € En. (6)

Each ugp o) represents a penalty for assigning different disparities to neighboring pixels p and ¢ in P. The
value of the penalty uy, .3 should be smaller for pairs {p,q} with larger intensity differences |i, — i |. In
practice we use an empirically selected decreasing function U(-). Note that instead of (6) we can set the
coefficients uy, o3 according to an output of an edge detector on the primary image. For example, up 43 can
be made small for pairs {p,q} where an intensity edge was detected and large otherwise. Segmentation of
the primary image can also be used.

The following example shows the importance of contextual information. Consider the pair of synthetic
images below, with a uniformly white rectangle in front of a uniformly black background.

Primary image (I») Second Image (Is)

There is a one pixel horizontal shift in the location of the rectangle, and there is no noise. Without noise,
the problem of estimating d = {d, | p € P} is reduced to maximizing the prior Pr’(d) under the constraint
that pixel p in P can be assigned a pixel p @ d, in S only if they have the same intensity.

If w(pq) is the same for all pairs of neighbors {p,q} in P then Pr'(d) is maximized at the disparity
configuration shown either in the left or in the middle pictures below depending on the exact height of the
rectangle.

2[8] recently gave a very different formulation of the multi-camera stereo problem as a maximum flow
problem.

3To be precise, p®d, stands for the pixel in S whose 2D coordinates are obtained by adding the disparity
dp to the 2D coordinates of p.



Ulp g} = CONSL  Ugp g1 = CONSL ULy g1 # const

Suppose now that the penalty u(, oy is much smaller if 5, # i, than it is if 4, = 7,. In this case the maximum
of Pr'(d) is achieved at the disparity configuration shown in the right picture. This result is much closer to
human perception.

4.2 Sensor noise

The sensor noise is the difference in intensities between corresponding pixels. We assume that the likelihood
function is
Pr'(Is|d) = Pr(Ls |, Ip) o< [] g(ipea,lin) (7)
peEP

where d is the true disparity correspondence. Here, g(is |ip) is the conditional distribution of intensity at
pixel s in the second image given the intensity at pixel p in the primary image if the two pixels are known to
correspond. The function g is determined by the sensor noise model, and typically g(is|7,) is a symmetric
distribution centered at .

Obviously, g(ipga,|ip) can be rewritten as g(i,p,dp) and therefore the noise model in (7) is consistent
with equation (1). Note that the main idea behind assumption (7) is that sensor noise is independent.

4.3 Implementation

Equations (6) and (7) describe how to use Well MRF’s for visual correspondence. The prior distribution
Pr'(d) of the disparity configuration d is determined by the clique potentials given in (6), and the likelihood
function Pr’'(O|d) consistent with (1) is determined by equation (7). Now the multiway cut approach
explained in section 3 can be used to find the MAP estimate of d for any pair of stereo images.

Assuming that the reduction explained in section 3.1 has been made, we have a complete description
of the graph G whose terminals £ we wish to separate by a minimum multiway cut. While the multiway
minimum cut problem is NP-complete, there exist provably good approximations with near linear running
time [3], and this is an area of active research. We have developed a simple greedy method with almost
linear running time.

Each multiway cut C can be uniquely represented by a collection of completely disjoint subgraphs G¢ =
{Gi=W,&) |l € L} suchthat I € Vi, p € V) implies | € £, and & consists of all edges in G that connect
vertices in V;. As an initial solution we take a trivial collection G¢ where G; = ({I},0). At each iteration we
would like to obtain a new collection G¢ that corresponds to a cut with lower cost.

There are two steps at each iteration. At the first step we select some [ € £ in a certain order and ezpand
G; by adding in V; all vertices p in G such that £, contains [ and which are not contained in Gy for A # [.

At the second step of each iteration we run a standard min cut algorithm for terminal [ against other
terminals in £. In some arbitrary order we select one A # [. Then we reallocate pixels in V; U V) between
the terminals [ and A trying to obtain a smaller cut. More specifically, we solve a standard two terminals
min cut problem on a graph Gy; y with vertices Va3 = ViU V. The set of edges £} includes & U &y
and all other edges in £ that connect vertices in Vg x3. The output is a new pair of subgraphs G; and G,
with a smaller cut.

At each iteration we obtain a smaller multiway cut. In the current implementation we iterate through
all labels [ € £ only once. It can be easily checked that the algorithm is quadratic in the number of labels
and has the same almost linear time complexity in the number of nodes as a standard min cut algorithm.



5 Experimental results

In this section we give some experimental results on stereo data that use our greedy multiway cut algorithm.
For simplicity, we have used a uniform noise model for g. We also used a two-valued function U([i, — i4]),
which has a large value if 7, is close to 74, and a small value otherwise. The parameter values used for the
algorithms in the experiments in this section were determined by hand. We used the parameters that gave
the results with the best overall appearance. Empirically, our method’s performance does not appear to
depend strongly upon the precise choices of parameters.

We have bench-marked several methods using a real image pair with dense ground truth. We obtained an
image pair from the University of Tsukuba Multiview Image Database for which the ground truth disparity
is known at every pixel. The image and the ground truth are shown in figure 2, along with the results from
our method and an image showing the pixels where our answers are incorrect.

Having ground truth allows a statistical analysis of algorithm performance. The table below shows the
number of correct answers that are obtained by various methods. There appear to be some discretization
errors in the ground truth, so it is worth concentrating on errors larger than +1 disparity.

Method | Total errors  Errors > +1
Well MRF 8.6 2.8
LOG-filtered L4 19.9 9.0
Normalized correlation 24.7 10.0
MLMHV 24.5 11.0

We have also run our method on a number of standard benchmark images. The results are shown in figure 3.
Various details in the images (such as the front parking meter in the meter image and the sign in the shrub
image) are sharp and accurately localized.

6 Conclusions

We have described a class of MRF’s whose MAP estimate can be efficiently approximated. These Well
MREF’s can be applied to a variety of problems in computer vision. We have demonstrated that a Well MRF
formulation of the correspondence problem yields very promising experimental results.
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