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'Abstr&ct

A new algorithm for computing integrals involving the matrix
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1. Introduction

Let A, B, and Qc be real matrices of dimensions nxn, nxp, and

nxn respectively. Assume that Qc is symmetric (Qz = Qc) and positive

semidefinite (xTch 2 0 ). In this paper we present a new method for

computing the integrals
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The need for computing these integrals arises in several applica-
tions, notably, the optimal sampled-data regulator problem [ 1],
[3).

The method we shall propose involves (a) computing the expo-
nential of a certain block triangular matrix and (b) combining var-
jous submatrices of the result to obtain (1.1)-(l1.4). To illustrate
the basic idea, if
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Since all powers of C have the same block triangular struct-
ure, it is clear that eCt has the form indicated. By equating sub-
matrices in the equation

we are led to the following differential equations:

%j(t) = AjFj(E) F;(0) =1, 3=1,2,3,4

éj(t) = AGy(t) + BJFJ+1( ) G5(0) =0, 3=1,
Hg(8) = AJHS(E) + BG,,(t) + CyFs,,(6) Hy(0) =0,
kl(t) = AKX (£) + BiH, () + C1G5(t) + DIF,(t) K, (0)

The Theorem
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follows by solving these equations respectively for
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If we apply this theorem to the
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It turns out that the integrals (1.1)-(1.4) can beﬁp
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in terms of these submatrices of
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This procedure is extremely easy to implement. All that is
involved is a single call to any Padé matrix exponential subroutine
followed py somc elementary matrix computations. Ward's algorithm
with its complete error analysis is particularly well suited [9].
For problems of small dimension, this is certainly a fjustifiable

approach. However, in the interest of efficiency, the algorithm we

chall detail does not repcatedly squarc the matrix qu( £€L) as
. 2
cugested by (3.2). Instead, setting to = 3/2] we shall estimate
. A

H(to}, Q(to), M(to), and w(to) using submatrices of qu(Cto) and
then repeatedly exploit the doubling formulae:
(3.3) W(2t) = 2W(t) + Ty(e T T

i - H(t) "M(t) + M(t) H(t) + H(t) Q(t)H(t)

ATy
(3.4) M(2t) = M(t) + e [ Q(L)H(t) + M(t) )
. T

(3.5) o(2t) = o(t) + e" T o) &Mt
(3.6) ©oHee) =) + Phir)
(3.7) et o At At

These formulae follow from the definitions (1.1)-(1.4) . (See

(1} for details.) Summarizing, our algorithm is as follows:



Algorithm
AT 1 o0 o
A o -aT o o .

l. Set C = c and let 3j be the smallest

0 0 PiN B

0 0 0 0
non-negative integer such that K?; < &. . Set to = a/23 .

2 2

2. For some q 2.1 compute

~ A
Fl(to) Gl(to) Hl(to) Kl(to)
éA 0 F,(ty) G, (ty) H, (t,)
Yo = Rgl3) =
. 2 0 0 F,lty) G, (ty)
L 0 0 0 F4(to)_
and set
Fo = F3(ty)
Ho = G3(t6)
_ T
Q) = Fo(ty) G, (t,)
_ T
M, = F3(to) H, (t4)
T T T, T T
Wy = (B F3(t0) Kl(to)] + [B F3(to) Kl(to)]

3. For k = 0,...,3-1

My = 2t MM+ M s Hy Oy Hy
Mgy = Mt Fel o )
Oy = O * Py 9 Py
ey = H o+ FH
For = Fi
4. F = Fj , 0= "j , Q= Qj , M= Mj and W = "j are then approxi-

A
mates to eA , H(A), Q(A), M(A), and W(A) respectively.
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inequality and recalling that "etoﬂ < % we have

(4.7 NEl < e

From this it is easy to establish (4.5) because the Frobenius norm

A
of any submatrix of £ is less than the Frobenius norm of E. It's also

~
clear from [ 7] that E has the same block structure as 6

89 E2 E5 E7
. (0] E8 E3 EG

o [¢] El E4

o] (0] [¢) ElO

low by scrutinizing Steps 1 and 2 of the algorithm, it is clear tha

-

that
Fi(tg) = Fyltg) = Ry (-A" to). = 1Ry T = ry ) THT
and .
Fd(to) = qu(O) =1 .

On the other hand, the equation YO = e(a+ﬁ)t0 coupled with Theorem
1 tells us that

Filty) = o FATHRq) £

F,(ty) o THEg) £

Foltg) e (MBIt

F,(ty) e (0*F10) &
and therefore, Es = E9 = -R{ and Elﬂ =0 . Thus, E has.the

structure defined by (4.2).
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By equating the (3,3) and (1,2) blocks of (4.6), we see that
(4.3) and ATE2 = EZAT hold. This latter equality implies that Ez
commutes with EI since El is a function of A [7] . Thus (4.4)

is verified completing the proof of the lemma. }

Lemma 2

Iif FB(tO)’ Gz(to), G3(t0), Hz(tn) and Kl(to) are.deflned by

Step 2 of the algorithm, then
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Theorem 2
If F is defined by the Algorithm, then

IlF - eAAII < eb e(A)eCA
Proof

This follows from (4.9) with u =4 . l

.If H is defined by the Algorithm, then

€A o A

fd - H()|| ¢ e€bo(A) e” [1+ — )
2

Proof

. According to Lemma 3 (k=j) and the definition of H(A) ,

A A
H - H(8) = f (e (P*E1)s _ ASyp gg Ty f e (A+Ey)s E, ds
0 0

The Theorem follows by taking norms and applying (4.5),(4.8) and (4.9). ‘

Theorecn 4

If Q is defined by the Algorithm, then
lo - o) ¢ eb o(h)2 P 1 4 an

Pronf

From Lemma 3 (k=j) and the definition of Q(4A) ,

]
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n1lows Ly taking norms and usinag (4.5). (4.%). and (4.9).‘

The: eheoroi.
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Theorem 5
If M is defined by the algorithm, then
2
[IM - M@y < ebd o)’ % (1 + esha ]2

Proof

From Lemma 3 (k=j) and the definition of M(4) we have

A S T
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[T eBHE) TS 1o 4 gy P (ST gy as
0 (o] 3 4

A /s T
e (A*E)) s E, e (AE (571 g g gs

The Theorem follows by taking norms and invoking (4.,5), (4.8), and (4.9)
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The lemma follows from this result, (4.11)-(4.14), and the fact that

T

ey e Ty (k) - Py (e) Ry (el < nﬁlﬂ + Hizn +||€3ﬂ + HE} - Byt R (el

0

Theorem 6
If W% is defined by the algorithm, then

4 . 2¢
- wf < e ecar’e “an 4 1sare )’

Proof
Subtracting the doubling formula
- T, T T
) = 2m(t) + H(t,) Q(tk) + M(t,) H(t, ) + H(t) Q(tk)H(tk)
T
F Oy

) = 2w + HM, + MH

k+1 k k'k X'k

and taking norms gives
(4.15) l!wk+1 - w(tk+l)ﬂ < 2 Hwk - W(tk)” + 2 ”HEMk - H(tk)TM(tk)”

T T,
+ o, - e oo |

By applying Lemma 1, Lemma 3, (4.8), and (4.9) the following hounds

can be derived:

2eA, 2

T T
ot = e el < e ot )2 e (are) 2

((1+c)tk + 1]

Ntw

and

T G )T 2 2ca
o, n, - (e To el < e orey ) e (are)? 13+t (atc))
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It is thus clear from (4.15) that
(4.16) N,y - Wie,pll s 2 fw, - wie )| + 8

where

& = ¢ Bty )2 e €2 (ate) [3(avelty + 212

A simple induction argument involving (4.16) shows

, Il ¢ 29 335
(.17 v - wll = fwy - weepl ¢ 27w, - Wit + k£0 2

By using elementary properties of geometric series and the fact

that tye = 2k—J£§ , it is easy to verify that

=1 s,
(4.18) kZo 2%y < 1o 0(a)2 €242 (ate) [3(ate)d + 2)2

Now  |l¢ tO" < .5 implies at,< .5 and since 8(ty ¢ 6(4) we

have from Lemma 4,

23wy - wiegl < 2ca 0(a)? 1+ )?

The theorem follows by substituting this result together with (4.18)

into (4.17). |

-x-1
Sx
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33 ¥3'0 33

D33 G3(tg) = N3y = Fyy

.v'§3 G,(ty) = .1\!23 - D,y Fylty)

1:';3 Hz(to) = N“ - D23 G3(t0) - D24

13y Ky (tg) = By = Pyp Hy(kg) = Dy3Galtg) = Diy

Th2sé linear systems can be solved using Gaussian elimination. Since

NG AR T I L .

!’£L¢i!4 ? , it is easy to show that both D33 and N§3 are diagonally
2

¢ominant and therefore, that no pivoting is necessary [2,p.152].

Arrays are needed to form the submatrices D33,D34,Dz3,D24,D12,Dl3,
and qu.

as the above linear systems are solved.

After that, they can be overwritten

Tre implementation of the doubling formulae is straight for-
ward and does not require any special commentary. Suffice it to say
that no additional storage is necessary to execute that portion of

the

o

rogran.

Regarding storage and efficiency, it may be that not all of
the matrices F,H,Q,M, and W are desired. For cxample, suppose that
W is not wanted. We can effectively compute F,H,Q, and M by working

with

~
jnstead of C. We merely ignore all the computations which are spec-
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ific to the construction of W. The truncation error bounds (3.8)-

(3.11) still hold. Similar techniques exist if only Q,H, or F are wanted.

Through an integer variable CODE, the user can specify certain
subsets of the matrices F,H,Q,M, and W which are to be computed. This
allows for a saving-in both storage and execution time as the follow-

ing table indicates:

CODE Matrices Apgig’]_figzte Magnitude of Work
Computed Required (multiplicative operations)
. F ‘ an? [q+j+:§l]n3
2 F,H an? + 4np lq+5+31n° + (g+3)n%p
3 F,Q 8n? [3q+§j+g]n3
2773
4 “F,H,Q,M 8n2 + Tnp (3q+33+21n% + [3q+331n’p
5 F,H,Q,M,W '11n2 + 10np [4q+§’j—2]n3 + [4q+1~%j+2]n2p

The volume of computation is seen to depend upon the scale
parameter j and the degree q of the Padé approximant which is used.
The selection of j was described in Section 3. The integer q is chos-
en in accordance with a user specified tolerance TOL. From Theorems

2-6 we know that if TOL > 0 then g can be picked so
(5.1) IIr - F(A)| < eae® o(a) < TOL @(8)

(5.2) flu - w(a|

N

e 11+ 21 e < TOL B(A)

5.3) Jo - ol < ere®®®(1 + aa ) 0(8)2 ¢ TOL 0(A)?2

IA
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are to 10 significant digits:

477528143 -.522155363 -.351058933

F(4) =| .855482142  =-.994523657  -.702117866
-.855482148  1.012239296 .720433505 |
[ 1.999431436  -3.394449325
H(A) = | 1.148224072  =6.155423359
-0.166539711 7.627949901
[ 9.934877720  -11.08568953  -9.123023900
Q(a) = l-11.08568953 13.66870748  11.50451512
L -9.123023900 11.50451512  10.29179555
[ 3.515982340  -24.87596341
M(h) = | -2.516164470 -  30.94693518
[ -1.194242580 . 24.29316617
12.29648659 -5.373425530
W(s) =
L -5.373425530  105.9996704

Vith TOL = 10-3 , the computed versions of thcse matrices were

fourd to be correct through the sixth decimal place. (In this ex-

amrle, g = 4, j = 7, and THETA = 4.2.)

We do not expect the accuracy of our computed matrices to
undercut the value of TOL by such amounts in all problems. Indeed,
one must be wary of rounding errors wﬁich have not been accounted
for in our analysis. However, as experience with Ward's Padé_scaling
and squaring algorithm for matrix exponentials suggests, we can be
fairly confident of our crror bounds o long as TOL is not in the

imiadiate neighborhood of the machine precision.
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6. Conclusiohs

We conclude by contrasting our algorithm with some of the
other techniques which have been suggested for computing the var-

ious integrals (1.1)-(1.4).

Johnson and Phillips [ 4] have proposed the computation of
H(4) through the formula
m-1 ’
H(s) = [ ) (e‘“)"] H(t) mt = A
k=0

the idea being that for small t, eAt and H(t) can be accurately

computed. (Their discussion assumes B=I but it is easy to extend

their results for general B.) However, if m = 27 , their algorithm

requires about 2j[n3 + nzp] operations to compute H(a) from H(t)
in contrast to our algorithm where the .corresponding figure i§ on-
ly ‘j[n3 + nzp].

In search for an efficient squaring algorithm, Kallstrom [ 5]

has proposed repeated application of
H(2t) = H(t) [ 2I + AH(t) ] .

Unfortunately, this formula only holds if B is the identity and
therefore one has to compute H(A) by applying Kallstrom's formula

to the problem

H(A) = f eAS ds
0

and then forming H(A) = E(A)B . This increases the volume of com-
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