ON PARALLELISM IN TURING MACHINES*

*

Foundation Grant DCR75-09433.

Dexter Kozen

TR 76-282

June 1976

Department of Computer Science
Cornell University
Ithaca, New York 14853

This research has been supported in part by National Science

Core A e a6V) are—

R |

ON PARALLELISM IN TURING MACHINES*

Dexter Kozen
Department of Computer Science
Cornell University
Ithaca, New York 14853

Abstract

A model of parallel computation based on
a generalization of nondeterminism in Turing
machines is introduced. Complexity classes
//T(n)-TIME, //L(n)-SPACE, //LOGSPACE,
//PTIME, etc. are defined for these machines
in a way analogous to T(n)-TIME, L(n)-SPACE,
LOGSPACE, PTIME, etc. for deterministic ma-
chines. It is shown that, given appropriate
honesty conditions,

L(n)-SPACE < //L(n)2-TIME
T (n)-TIME € //log T(n)-SPACE
//L(n)-SPACE < exp L(n)-TIME
//T(n)-TIME < T(n)2-SPACE
thus . .
//EXPTIME = EXPSPACE
//PSPACE = EXPTIME
//PTIME = PSPACE
//LOGSPACE = PTIME
? = LOGSPACE

That is, the deterministic hierarchy LOGSPACE
€ PTIME c PSPACE ¢ EXPTIME < ... shifts by
exactly one level when parallelism is intro-
duced.

We give a natural characterization of the
polynomial time hierarchy of Stockmeyer and
Meyer in terms of parallel machines. Analo-
gous space hierarchies are defined and ex-
plored, and a generalization of Savitch's re-
sult NONDET-L(n)-SPACE ¢ L(n)2-SPACE is
given.

Parallel finite automata are defined, and
it is shown that, although they accept only

. k
regular sets, in general 22" states are neces-
sary and sufficient to simulate a k-state pa-
rallel finite automaton deterministically.

Introduction

In this paper we introduce a conceptually
simple yet powerful model of parallel compu-
tation based on the one-tape Turing machine.
our model, called a parallel Turing machine,
is obtained by generalizing the notion of non-
determinism.

One usually thinks of a nondeterministic
Tm as a machine with a single process which
must make choices during a computation, and
accepts provided some sequence of choices
leads to an accepting state. Alternatively,
one may think of a nondeterministic Tm as a
machine with an unlimited number of processes
and a Boolean value B associated with each

machine configuration a. The machine starts
with a single process in the starting configu-
ration ag; whenever a nondeterministic choice
must be made, the process spawns several inde-
pendent parallel processes, each of which fol-
lows one of the possible choices. When a pro-

cess enters an accept configuration Gpr the

* This research has been supported in part by
National Science Foundation Grant DCR75-09433.

“{A, v}

value of Ba becomes 1; when it enters a re-

ject configuration, 0. These values are then
implicitly passed back up the computation
tree, a Boolean "or" being computed at each
choice configuration. The machine accepts
provided By =1. Note that the computation

tree and the By are not explicitly represen-

ted.

The preceding may be generalized by al-
lowing Boolean and's as well as or's to be
computed at choice configurations. This is
done by associating with each state g of the

_finite control a Boolean connective Iq €

If configurations By... B, follow from

configuration o in one step, and q is the
state of the finite control associated with
configuration a, then when the computation is

finished and the values of BB e B8 have
been determined, we take 1 n
B A eeo A B if = A
B =) 81 Bn 9q T
a

V ee. VB if V.
9q

B81 Bn
As before, the machine is said to accept pro-
vided Bub=1' Again, observe that the Ba and

the computation tree are not explicitly rep-
resented; although one might argue that this
gives an oversimplified and impractical model,
it in fact allows us to extract the essential
nature of parallelism without introducing
messy structures for process communication.

Formal Definitions

A parallel Turing machine is defined
exactly as a nondeterministic Tm with a two-
way read-only input tape and two-way read-
write work tape as in [1], except that in ad-
dition we include a function g:XK - {a,v} as-
sociating with each state g of the finite con-
trol K a Boolean connective gq € {a,v}.

A machine configuration is defined to be
the contents of the work tape, position of the
input head, position of the work head, and
current state. The start configuration is
ap = <€,1,1,9p>, where g, 1s the start state.
An accept (reject) configuration is any con-
figuration of the form <x,i,j,qA(qR)>, where

dp and qR are accept and reject states. We
assume WLOG that once a machine enters an ac-
cept or reject configuration, it stays there.

The binary relation }- on configurations
is defined from the transition function § of
the machine with respect to some input string
w € £*, in the obvious way. E.g. if w = w)
e Wo and

(a ’ right R left ' p)

4 4 + 4

symbol to direction to direction to state to
print on move input move woxk enter
work tape head head

e 6 Wi ’ xj ’ q)
+ + 4
input work current
symbol symbol state
read read
then <x; ... x,i,3,9> = R IEERTSUNLE SYETRRE e
i+l,j-1,p>. The reflexive transitive closure

of |- is denoted }-.
With each configuration o is associated a
Boolean value Ba e {0,1}, defined with respect

to an input w recursively as follows:

i) Ba=1 if o is an accept configu-
ration;

ii) B, =0 if o is a reject configura-
tion;

iii) if g is not a final state and a =
<xX,1,j,9> then

Ba = A BB if gq = A,
aF—B
Ba = Vv BB if gq = V.
aF—B
iv) otherwise, Ba is undefined.
The machine is said to accept w provided

B =1.
ag
If o« = <x,i,j,q> and there are at least

two |- -successors of a, then o is an A-branch
if gq = A, an v-branch if gq = v.

It should be remarked that allowing 9q =

— does not gain us anything, since a process
could remember in its finite control when it
has seen a —, and thenceforth compute A's in-
stead of v's and vice versa, and accept in-
stead of rejecting and vice versa.

Relationships between time- and tape- .
bounded deterministic and
parallel computations

Definition

A parallel Tm is T(n)-time bounded if
every process enters an accept or reject state
after at most T(n) steps. on inputs of length
n; it is L(n)-tape bounded if every process
uses no more than L(n) tape on inputs of
length n.

The following sets are parallel counter-
parts to the deterministic complexity classes
T(n)-TIME, L(n)-TAPE, PTIME, etc.

//T(n)-TIME = {A|A is a set accepted by
a T(n)-time bounded
‘parallel Tm}
*//L(n)-SPACE = {A|A is a set accepted by
. an L(n)-tape bounded
parallel Tm}

//LOGSPACE = kgo //klogn-SPACE
//PTIME = RQO //nK-TIME
//PSPACE = | i, //nk—iPACE
//EXPTIME = kgo //20" ~TIME

//EXPSPACE = , 0, //2D -SPACE

Theorem 1

If L is a function which can be con-
structed by a deterministic Tm running in time
O(L{n)?), L(n) 2 O(n), and M is an L(n)-tape
bounded deterministic Tm, then M can be simu-
lated by a parallel Tm M* running in time
0(L(n)2).

Proof

Let A be an alphabet in which M's con-
figurations can be encoded succinctly, |A]| =
k. By judicious selection of A we can insure
that each configuration of M on input w, |w| =
n, can be written down on L(n) tape. Thus M

has at most kL(n) configurations, and accepts
w iff there is a sequence of configurations
ag — «.. ap where a, is an accept configu-

ration.
Let M* have 3 tracks on its work tape and
operate as follows:
(1) construct L(n) on the work tape.
(2) write down M's starting configu-
ration ag on track 1.

(3) write kL(n) in k-ary on track 3.
(4) "guess" an accept configuration an

and write it on track 3. This is
done by starting at the left of tape
and moving cell by cell across the
tape; at each step, each process en-
ters an v-branch, spawning k new
processes, each of which writes a
different symbol of A on track 3.

At this point there are kL(n)

processes, the ig—1 of which contains

concurrent

@9

kL(n)

By

on its work tape, where Bi is the iEE configu-

ration of M.
(5) Process i determines whether Bi is

an accept configuration, rejecting
immediately if not.

(6) Process i now enters a procedure A
which, if the tape contains

a

m

8

will determine whether uF: g in s m
steps, as follows:
(6.1) if m=0 then if a=B then accept
else reject; '
if m=1 then if a=B or a}j— 8
then accept else reject;
(6.2) "guess" (using v-branching as
in (4)) the middle cogfigura-
tion y on the path a}~ 8, and
verify in parallel (using A-
branching) that aj}— y in < m/2
steps and YFE 8 in < m/2 steps,
by calling A in parallel with
arguments

SACL AT

4oa

[T

S e A

a Y
m/2 and m/2
Y 8

The running time of A is given by
the recurrence

F(0) = bL(n)
F(m) = cL(n) + F(m/2), b, ¢
constants

which has solution
F(m) = bL(n) + cL(n)logm,
thus M*'s running time is given by

T(n) = aL(n)2 + F(k"(™)
0(L(n)2) + cL(n)log(k
0(L(n)2).

It is easy to prove that T(M*) = T(M).
One shows that procedure A works as expected
by showing that, if M* starts executing A in
configuration ao* with tape

L(n))

a

m

B

*
then a}j— B in s m steps iff B, 4=1, by induc-

tion on m. Then by (1)-(5), for each guessed
accept configuration a; of M there is a pro-

cess in configuration a*i of M* which will de-
termine whether a°F1 ay in s kL(n) steps using
A, thus M* accepts iff V B , =1 iff Ji ag = ay
i i
in < x2(M steps iff M accepts. ||
Simulating in the other direction, we get

Theorem 2

If T is a tape-constructible function,
T(n) =2 0(n), and M* is a parallel T(n)-time
bounded machine, then M* can be simulated by a

deterministic Tm M in O(T(n)?2) space.
Proof

On input w, |w|=n, M* will compute for at
most T(n) steps, hence its configurations, gi-
ven a suitable encoding, will be at most T(n)
in length. Thus M*'s computation may be re-
presented by a tree of height < T(n) whose
nodes are configurations of M*, B a son of «
iff af— 8, the start configuration «g at the
root, and accept or reject confiqurations at
the leaves.

M on input w first constructs T(n) and
writes down the start configuration ag, then
builds and traverses the tree, calculating B,

at each node a in postorder, and erasing con-
figurations it has already visited so that
tape may be reused. M accepts iff the calcu-
lated value of Bm0 is 1.

At any point in the computation, if M is
visiting node a, only a and its ancestors need
appear on the tape. Since the tree is of
‘height < T(n), at most T(n)? tape is needed. ||

Corollary 1 '
' //PTIME=PTAPE and //EXPTIME=EXPTAPE .

The above results relate parallel time
bounds to deterministic tape bounds. Similar
results relate parallel tape bounds to deter-
ministic time bounds.

Theorem 3

If L is a function which can be construc-

ted deterministically in time dL(n) for some
constant 4, L(n) 2 O(logn), and M* is an L(n)-
tape bounded parallel machine, then M* can be
simulated by a deterministic Tm M in time

cL(n) for some constant c.
Proof

Assume that on any input all processes of
M* halt. This may be effected by attaching a
counter to M* without loss of tape efficiency.
Let |A|=k where A is M*'s configuration alpha-
bet, as in Theorem 1. On input w, |w|=n, M
operates as follows:

(1) construct L(n) on track 1.

(2) write down all configurations of M*
side by side on track 1.

(3) on track 2 below the first symbol of
each configuration, place a 1 if it
is an accept configuration, 0 if a
reject configuration, N if neither.

The above 3 steps take time O(L(n)dL(n))

. for some constant d.

Hereafter the contents of the cells be-
neath the first and second symbols of confi-

guration « will be denoted lEE(a) and Zﬂg(a),
respectively.

Repeat steps (4) and (5) k times:

(4) Repeat steps (4.1) through (4.3) for
each a:
(4.1) Find and mark all configura-
tions B; ... Bh such that

u}— Bi.
(4.2) If there is only one such B,

copy 155(5) to 2ﬂg(a). Other-
wise a is either an A-branch
or an v-branch. If o is an A-
branch then execute (4.2.1),
else execute (4.2.2).

(4.2.1) (a is an A-branch)

if 1%5(g,)=1 for all 8; such
that of— B; then enter 1 in
289 (4);

st _
if l——(Bi)—l or 0 for all Bi
such that o}— B; and some
IEE(ﬁi)=0, then enter 0 in
nd
2—(a);

otherwise, enter N in Zﬂg(u).
(4.2.2) (a is an v-branch)

if IEE(Bi)=0 for all Bi such
that af— 8, then enter 0 in
222
if 125(p,)=1 or 0 for all 8,
such that af— B; and some
122(81)=1, then enter 1 in
289 (4);

L(n)

otherwise, enter N in-Zﬂg(a).
(4.3) erase all extraneous marks.

(5) move Zﬂg(a) to l§E(u) for all confi-
gurations‘a.

(6) if 1§£(ao)=l then accept, else re-
ject.

Step (4) takes O(L(n)kL(n)) time for each
configuration hence O(L(n)2k2L(n)) in all;
step (5) takes 2L(n)kL(n)
(4) and (5) repeated kL(n) times takes
O(L(n)ZkBL(n)),

4L (n) 4

of Mon w is < dk a.e., so take ¢ = dk°.
To see that M and M* accept the same set,
observe that Ba is computed for each a in the

time, hence steps

hence the total running time

computation tree starting at the leaves and
working upward toward the root. If the sub-
tree rooted at a has height h then the value

of Ba may be found in 1§E(a) after h execu-
Since the entire

tree is of height at most kL(n), IEE(QD) con-
tains BO‘o when step (6) is executed.

tions of steps (4) and (5).

We wish to prove a result simulating in
the other direction. This will be done via
two lemmas. Lemma 1 gives a parallel log-
space bounded algorithm for a PTIME-complete
set. Lemma 2 takes advantage of the logspace
reduction from any set A € PTIME to the com-
plete set in order to construct a parallel
log-space algorithm for A. The general result
follows from a padding argument.

Definition

The circuit value problem (CVP) consists
of a rooted dag @§ of out-degree < 2, with 0 or
1 associated with each leaf, and A or v asso-
ciated with each interior node. The value of
a node is the Boolean value computed in the
obvious way. The value of dfis taken to be
the value of the root. The set CVP is defined
as

cvp = {P|value (P =1}.

As demonstrated in [2], CVP is complete
for PTIME; i.e., CVP is recognized by a deter-

ministic nk-time bounded Tm, and every set in
PTIME can be reduced to CVP via a determinis-
tic log-space bounded computation.

Lemma 1
CVP € //log(n)-SPACE.
Proof

Let parallel Tm M* operate as follows:

(1) verify that the input is of the pro-
per format. Given a suitable en-
coding of directed graphs, this re-
quires only log(n) tape and can be
done deterministically.

(2) locate the root. Again, this can be
done deterministically on log(n)
tape.

(3) enter procedure A. This procedure,
when entered with the input head
pointing to vertex c, determines
whether value(c)=1l. A operates as
follows:

(3.1) if c is a leaf with value 1
then accept.

(3.2) if ¢ is a leaf with value 0
then reject.

(3.3) otherwise, ¢ is an A-node or
an v-node. Take an A-branch
or v-branch accordingly,
spawning two processes, one of
which will locate the left son
of ¢, the other the right son
(requiring log(n) tape each),
thenp both call A.

It is evident that no process uses more
than log(n) tape, and an inductive argument
shows that if A is entered with the input head
pointing to ¢ in configuration a then value(c)
=B,. Thus value(38)=Bao.

Lemma 2

If A € PTIME then A is accepted by a pa-

rallel Tm MA using O(log(n)) tape.

Proof

Let Mo be a deterministic log-space

bounded transducer computing o, where o is a
reduction from A to CVP; i.e., x € A iff o(x)

€ CVP. Note that |o(x)]| s lxlk for some k,
since MU is polynomially time bounded. We

modify M, to be a subroutine of the M* of the

previous lemma. The modified MO, when started

with m in binary on its work tape, does not

output any symbols, but instead writes the mEE

symbol it would have output on track one of
the work tape, and then returns. MA is essen-

tially M* modified to maintain a virtual input
head position on a special track of the work

tape. Initially this track contains 1. When
M* would read a symbol from its input tape, MA

calls Mc and reads the appropriate symbol from
track one of its work tape. When M* would
move its input head left or right, MA sub-

tracts or adds one, respectively, from the
virtual input head position. Thus on input x,

My simultaneously computes o(x) and runs M* on

og(x).
since M, and M* do, and the virtual input head

Moreover, MA runs in O(log(n)) space,

track never gets longer than log(lc(x)[) <
klog(n).

Theorem 4

If log(T(n)) is tape-constructible,
T(n) =2 O(n), and M is a deterministic T{(n)~
time bounded Tm, then M may be simulated by a
parallel machine M* using tape O(log T(n)).

Proof

We have the result for T(n) < 0(n2) by
Lemma 2, so assume T(n) > O0(n2). Let M' on
input w, |w|=n,

(1) check that w € £*3#*, where # ¢ E.

(2) copy w to the work tape.

(3) if w = x#k, simulate M on x. For
each step of M on x, erase one #.

1D TR

EEVRRVINIRWR

R SR IS

If no more #'s are left, rejecct.
(4) accept iff M accepted x and at least
one # is left.

Steps (1), (2), and (4) require O(n)
time. Step (3) requires at most 2n steps for
every simulated step of M, and at most n steps
are simulated, thus M' runs in time 0(n2?), and

accepts the set (x#klM accepts x and k >
T(]x])}. By lemma 2, there is a parallel log-
’

*
space bounded machine M accepting this set.
Now construct parallel machine M* which on in-

T(|x])+1

*x ¢
put x simulates M on x# as follows:

(1) construct log (T(n)) and write T(n)+
1 in binary on track 1 of the work
tape. Track 1 will contain the po-
sition of the simulated input head

%0 * 1
of M , when M would have tried to
read #'s to the right of x.

%* ¢
(2) Simulate M on x#T('xl)+l, using
the remaining work tape tracks for

* ¢ x 1
M s computation. When M would be

scanning x, M* scans the same cell
s 3 *'
on its own input tape; when M

would go beyond x, M* maintains the
distance of the head from the right

* ¢
end of M s simulated input tape on
L]

*
track 1. Whenever M would read
the current input symbol in this
situation, M* automatically supplies
*

a #. Thus M* accepts x iff M ac-

cepts x#T(‘x|)+l iff M accepts x.

Moreover M* uses tape log(T(n)) for

the simulated input head and

o(log ([T D1y o 5 10g(rm)))
*

for the work tape of M . ||

Corollary 2

//LOGSPACE = PTIME and //PSPACE = EXPTIME.

The above results not only characterize
the power of parallelism, but also reveal the
striking relationship between Turing machine
space and time, namely

. .
. .

//EXPTIME = EXPSPACE
//PSPACE = EXPTIME
//PTIME = PSPACE
//LOGSPACE = PTIME

? = LOGSPACE

That is, the deterministic hierarchy
LOGSPACE ¢ PTIME c PSPACE c EXPTIME < ...
shifts by exactly one level when parallelism
is introduced. Observe that if one could show
any implication of the form

PTIME = PSPACE » //PTIME = //PSPACE
for example, then a major open problem in com-
puter science would be solved.

A characterization of the
polynomial time hierarchy

In this section we give a useful charac-
terization of the polynomial time hierarchy in
terms of parallel machines.

Definition

Let M be a parallel Tm. We say a pro-
cess (path in the computation tree) p on in-
put w alternates k times if k is the largest

* * * *
number such that p = agl—ajl— ... o b= ag
where ap is a final configuration, a; ... a
are branches, and ay is an A-branch iff %541
an v-branch, for 1 < i < k; i.e., k is the num-
ber of alternations of A- and v-branches in p.

is

A zk-machine (Hk—machine) is a parallel
Tm in which each process alternates at most k
times, starting with an v(a).

Examples

£0- and n%-machines are deterministic
Turing machines; a fl-machine is a nondeter-
ministic Turing machine.

//z’; = {T(M)|M is a polynomially time
bounded Ek—machine}
//H; =" {T(M)|M is a polynomially time
bounded nk-machine}
Examples
0 = //n% = PTIME
//2p // P
1l = NP
/73] =
//n! = co-nP.
i th
Let 2; and Hg represent the k— I and I

levels of the polynomial time hierarchy as de-
fined by Stockmeyer.? The following theo-
rem will perhaps aid in the placement of na-
tural problems in this hierarchy.

Theorem 5

. k _ .k
(i) //ii = XE
(ii) //IIp = Hp.

Proof

We will prove (i); a proof of (ii) is
completely analogous.

As demonstrated in [3], A € Zg iff there

is a polynomial p and a deterministic poly-
nomially time bounded Tm M such that

A= (x[3y; Vpvp Fpvs -
prk [M accepts x#yl#...#yk]}

where x € ¥, ¥; € r'*, and # & ful. In the
above, Q.v; is shorthand for Qyilyilsp(lxl).

To show 2; c //Z:, let A be as above.
Let M* on input x use v-branching to guess y;.
lyil s p(|x|), and write down x#y;, then use
A-branching to write down x#y;#y, for all
possible y, with |y,| < p(|x]|), etc., until
x#y1#ya ... 4y, is written down on the tape,

then run M deterministically on x#yl#...#yk.

Then M* is a polynomially time bounded gk~

machine accepting A, thus A € //tg.
To show //Eg c 2;
Zk-machine with input alphabet I time bound p
where p is a polynomial, and maximal degree of
out-branching m (i.e. if ajl— By,e-.,af— B

then n < m). Construct deterministic Tm M
with input alphabet £ v A v {#}, where &, A,
and {#} are pairwise disjoint and |A]|=m. On
input w, M does the following:

, let M* be an arbitrary

(1) reject immediately if w is not of
the form x#yl...#yk, with x € ¥,

y; € A*, and |yi| < p(lx]).
(2) copy yl#...#yk onto track 1 of the
work tape, padding any Y of length

< p(|x]|) out to length p(|x|) with
an arbitrary but fixed element of A.
(3) Simulate some process of M* on X.
The process to be simulated is de-
termined by yl#...#yk. When the

first v-branch o of M* is encoun-

tered, M takes the path determined
by the first symbol a of y;; i.e.,
if aj~- B1seeesa—B_, n < m, and a

th n
is the i— symbol of A, then M simu-

lates moving to configuration
B(i mod n)+1° The first symbol of

¥1 js then erased. The next v-
branch is determined by the second
symbol of y;, etc., until an a-
branch is encountered. Then the
rest of y; is erased and subsequent
A-branches are determined by y,.,
etc.

(4) accept (reject) if the simulated
process ever enters an accept
(reject) state.

Since M* is p(n) time bounded, each Yy is

long enough; since M* alternates at most k
times, there are enough yi's.

Let y € A0 y Al y v Ap(lxl), and let
ay denote the configuration of M* obtained by
starting in configuration o and taking the
path specified by y, as outlined above. Note
that “%y a9y is an A-branch or final configu-

ration, and if a is an A(v)-branch then ay is
an v(A)-branch or final configuration, and no
other configuration on the path from a to ay
is an v(A)-branch.

Then

M* accepts x iff B =1
ag

iff B =1

. 3PY1 ag¥1

"iff apyl [agy; is an accept configuration
or prz B(“oyl)yz=ll
iff ...
iff 3py1 {ayy; is an accept configuration
or
przl(uoyl)y2 is an accept configu-

ration or

E ISZY

.

prk[("'(“oyl)yz)"°)yk is an
accept configuration]..]
iff apyl prz prk[yx#yz#...#yk de-

termines a path from a, to an accept
configuration of M*]

iff prl pr2 prk[M accepts x#y #...
by 1. |

The above theorem also gives us new com-
and I

el

plete problems for zk , hamely Sg(Pg) =
{#M# code(x)#3lﬂlm|M is a £¥(r¥)-machine ac-

cepting x in time m} where M is a suitable en-
coding of M. The construction is a straight-

forward generalization of the case for D

which appears in [4] (q.v. for definition of
notation), once we observe that there is a
universal parallel Tm which makes the same
sequence of alternations as the machine it is
simulating.

Other Hierarchies

By changing the resource bounds on zk-
and Hk—machines, new hierarchies are obtained.

Definition
A Zk (IIk)-machine is a
T(n)-TIME ' T(n)-TIME

T(n)-time bounded Zk(nk)—machine, and
k k
/7% (n) -r1ME /Mg (n) ~TIME

.] X X .
{T(M)|M is a ZT(n)-TIME(HT(n)—TIME)_maChlne}-
k k)
ZL (n) -SPACE (HL (n) —SPACE) -machines and

k k .
/735 (ny-spacE ¢ //™L(n)-spacg 2re defined

analogously.
Lemma 3

K _ "
/i3 my-tive = €°//Tp(n)-rvg 204

" o,k
//%5, (n)-space = ©°~//My (n)-spacE °
Proof

Given a zk—machine M, change accept (re-
ject) states to reject (accept) states, and
change v(A) states to a(v) states. The re-

sulting machine M' is a Hk—machine with the
same time and space bounds as M, accepting the
complement of T(M).

Lemma 4

k X
/7T (ny-space Y //"L(n)-spacE S

k+1 k+1
//EL (ny-space " /7ML (n)-SPACE

11
v
3
z
£
»
i
H
i

s e L o N

X X
i my-rive ¥ /M (n)-TIME S

k+1 k+1
/g (ny-rive " 7/ (n) -TIME *

Proof

All Zk-machines and Hk-machines are both

k+1 k+1

" “-machines and NI ~-machines. ||

The following theorem on space hierar-
chies generalizes Savitch's result NONDET.-
L(n)-SPACE ¢ L(n)2-SPACE.® It states that

squaring the space bound allows you to move
one step up in the hierarchy.
a«

Theorem 6
Let L be a tape-constructible function,

L(n) 2 O(logn). Then

: k+1
(1) //%(n)-spacE

. k+1
(1i) //Tp 5y -sPAcE

In

"
/71, (n) 2-space’ and

in

k
/7Ty, (n) 2-sPACE *
Proof

The proof is by induction on k. The

. 1 -
basis is provided by Savitch: a zL(n)-SPACE
machine is a nondeterministic L(n)-space
bounded Tm, thus may be simulated in L(n)?
1
L(n)-SPACE
Also, using Lemma 3,

space deterministically, hence //%
0

€ /7%y, (n) 2-sPACE’
1 IS |

/7Ny, (n)~-space = €©7//%L(n)-spacE €

- 2_ = 2. = 0
co-L(n) 2-SPACE = L(n) 2=SPACE = //I} (\2_cpacpe

Now suppose //zg(n)—SPACE <
//zfli)z-spAcg and //ng(n)—SPACE s
//ntzi)z—SPACE‘ Observe that every computa-
tion of a z;ti)_SPACE—machine M is essentially

a sequence of v-branches followed by several

. k

concurrent computations of a nL(n)-SPACE
machine M' started in different configura-
tions. By the induction hypothesis, M' is
k-1
L(n) 2-SPACE
may be replaced by a I

simulated by a I -machine M", thus M

k .
L (n) 2-SPACE machine

which initially makes the same v-branches as
M, but runs M" when the first A-branch is en-

Also, //Hk+l

countered. L(n)-SPACE

k+1 k _
c0-//Xf (n)-spacE S ©°//%L(n)2-spACE =

k
//% (n) 2-space |
Corollary 3
k k
/7Ty (ny-space ¥ //"L(h)-space S

Zk
L(n)“ -SPACE.

Proof

Induction on k, using the above theo-
rem.

Corollary 4

//zt(n)-SPACE v //Ht(n)—SPACE <
/78 (n) 2% e,
Proof
Corollary 3 and Theorem 1. ||

It is evident that the logspace hierarchy
defined by

k _ @ k -
//t106spacE = oY //*clog(n)-SPACE =

k
//zlog(n)-SPACE

k oo
//1 = v k =
LOGSPACE ¢=0 //T)04 (n)-SPACE

"
/7MY og(n) ~SPACE

is analogous to the polynomial time hierarchy
in many ways. Some of its properties are
listed below:

x "
(1) //*1o6space ¥ //TLogspace S
k+1 k+1
//Trocspace " //MLoGspacE
follows from Lemma 4;
(2). //:% v /K c
: LOGSPACE LOGSPACE <
//PTIME
follows from Corollary 2;

k k
(3) //%r06space U //Mrogspack

In

2k
(logn)“ -SPACE
follows from Corollary 3;

kK ok
(4) Spo6(Prog

{#M#code (x) #™|M is a ¥ (1¥)-machine

) =

accepting x on log(m) tapel
is complete for

X X
/723 06space //"Locspack
° x X
2o SLoG U Proc

), and
is complete for

PTIME, in the same way that

® <k k
S P
] u Py

is complete for PSPACE
k=0 P

(proof is straightforward). This
says that PTIME is the w-jump of the
logspace hierarchy, in the same way
that PSPACE is the w-jump of the
ptime hierarchy (see [3]).

Parallel Finite Automata

In this section we further characterize
the power of parallelism. A standard con-
struction shows that a k-state nondeterminis-

tic finite automaton (f.a.) is simulated de-

terministically with a 2k~state f.a. We de-
fine parallel f.a. in a natural way and show
that, despite the fact that all parallel f.a.

accept only regular sets, 2Zk states are ne-
cessary and sufficient to simulate a k-state
parallel f.a. deterministically.

Definition
A parallel f.a. is a 5-tuple
P = <K,E,q1'l“:9>

where

K is a finite set of states q, -e- G

I is a finite alphabet,
q, € K is the start state,

F ¢ K are the final states, and

g:K » (I x 2k + 2) is a function

associating with each state q; € K a Boolean

valued function g(qi) = gi:E x 2k + 2. One

can think of g; as a function which, given

some input symbol and a Boolean value asso-
ciated with each of the k states, computes a
new Boolean value to be associated with state
q;-

Let X denote a k-tuple of Boolean values

Xy eee Xpo and let Ty denote the ith projec-

tion function Ai.xi.

Let x = the characteristic vector of F,
i.e.
lif g, €F
i
wi(x) =
0 if a; e F.
Define Fi:Z* > (2k +2),1<1ic<k, in-
ductively as follows: '

Fi(e) =m = Ax.xi

Fy (aw) = k§.gi(a,Fl(w)(§),...,Fk(w)(§))
where a € I, w € ¥,
Fi(w)(x) is meant to correspond to the

I.e., F;(€)(x) =
1 iff q; is an accept state, and if aw is the

Ba of the previous sections.

input remaining, a process in state q; scans a

and splits into k processes which run to com-
pletion, determining the-values of Fj(w)(x),
1l <3<k, then kx.gi(a,x) is applied to these
values to get Fi(aw)(x). Again, there is no
explicit machinery for computing the g; or Fi'

The following definition is the natural analog
of BB = 1.
%o

Definition
P accepts w provided F,(w)(x) = 1.

The F, are defined recursively "inside

out". For technical reasons, we wish to de-
fine a similar function "outside in". Let

Gi(e) =m = Ax.xi

Gj (wa) = AX.Gj (w) (g, (a,X),...,9k(a,X)).

Lemma 5

F.=Gi, 1l <1is k.

i
Proof P

By definition Fi(e) = Gi(e) =7,. We
have
(*) AX.G; (wa) (Fy (y) (X),...,F (y) (X))

[

AX.G; (W) (g (@, Fy(y) (X) reen s Fy (¥) (X)),

.
.
.

g (arF (Y) (X) feee Fy(y) (X))
= .G (w) (F (ay) (X),...,Fy (ay) (x)).
But _ _
Gi(w) = Ax.Gi(w)(x)
= A§.Gi(w)(F1(e)(§),...,Fk(e)(§)),
and applying (*) |w| times we get
G; (W) = AX.G; (€) (F (W) (X) ,eo.,F (W) (X))

= xi.ni(Fl(w)(i),...,Fk(w)(i))
F, (w). |

]

Theorem 7
Parallel f.a. accept regular sets.

Proof

Define x ~ y iff Gl(x) = Gl(y). Then =
is an equivalence relation which is
(i) of finite index, since there are

only 22X functions 2X + 2;

(ii) right invariant, since if x = y
then
Gl(x) = Gl(y), and Va ez

G, (xa) Xi.Gl(x)(gl(a,§),...,
gk(a,x))
Ai.Gl(y)(gl(a,E),...,
gy (a,X))
Gl(ya), hence xa =z ya.

It remains to show that T(P) is a union of
m—equivalence classes. Suppose x is accepted
and X ~ y. Then by Lemma 5

Fix)(x) =12 G () =1
> G (y)(x) =1
= F,(y)x) =1,

thus y is accepted also. ||

!

By the above construction, we seesthat a
Parallel f.a. can be simulated by a deter-

ministic f.a. with 22k states.

Theorem 8

22k states are necessary, in general, to
simulate a k-state parallel f.a. determinis-
tically.

Proof

T

ases

Let ¢ = (a,b,c}. Consider a k-tuple in
k

27as a binary numeral between 0 and 2k—l, in-
clusive. Define

g, (a,%) = ith digit of (3-1) mod 2.

Let ~ be the equivalence relation defined by
X ~y iff \Iw(xw is accepted by P ++ yw is ac-
cepted by P). Then the ~-equivalence classes
give the minimal f.a. accepting T(P).
Claim

x xy 1iff x ~y.

Proof of claim

Now suppose X % y.
G, (x) (p) #
Then

Clearly x sy » X ~ Y.
Then Gl(x) # Gl(y), hence 3p e 2k

Gl(y)(p). Let n = (x-p)mod Zk.

i}

Gl (xan) (X) G1 (xan-l) (gl(a,x),---'gk(arx))
Gl(xan—l)((x-l)mod 2k)
ee = G, (x) ({(x-n)mod 25)

GI(X)(p)

and similarly Gl(yan)(x) = Gl(y)(p) hence xa"
accepted ++ ya® not accepted, thus x £ y.

It remains to construct g, (b,X),...,
9, (byx), g, (c,X),.ne, g, (c,X) so that all a-
equivalence classes are nonempty.

Take g; (b,x) = ;t_;} digit of RIfX#0 or
1
1 otherwise

ith digit of x if (x # 0 &
£ 2N ori# '

= % otherwise.

Then (gl(b,§),...,gk(b,§)) =x if x # 0,

gi(cli)

(g, (b,0),...,q (b)) = 2%

(QI(C,X),...,gk(c,x)) =X if-i # E-l
and x # 2

(g, (c,0),..0rg (c,0)) = k-1

(g, (e, 2N, .0, (e, 257 = 0.

Now given an arbitrary f:2k + 2, we construct

so that Gl(w) = £, as follows:

WoeooW
0" ¥ k-1_,
for each i, 0 < i < Zk-l, let w, be given by
w, = €
. k-1
' if £(i) = 0 and £(2 +i) = 1
k-1 . k-1
w, = a2 Tipa?t Tp,i
if £(i) = 0 and £(214i) = 0
k-1 . k-1,.
W, = a2 -1ba2 +i
. k-1
if £(i) = 1 and £(2 +i) = 1
k .
w, = a2 “1gat
. k-1
if £(i) = 1 and £(2 +i) = 0.

Then G (w) = f. |

References

J.E. Hopcroft and J.D. Ullman, Formal Lan-
guages and Their Relation to Automata,
Addison-Wesley, Reading, MA, 1969.

R.E. Ladner, "The Circuit Value Problem is
Log Space Complete for P", SIGACT NEWS
7:1, January 1975.

L.J. Stockmeyer, "The Polynomial-time
Hierarchy", Report RC5379, IBM Thomas J.
Watson Research Center, Yorktown Heights,
NY, 1975.

J. Hartmanis and H.B. Hunt III, "The LBA
Problem and its Importance in the Theory
of Computing", SIAM-AMS Proc., vol. 7,
Amer. Math. Soc., Providence, RI, 1974.

W.J. Savitch, "Relationships Between Non-
deterministic and Deterministic Tape Com-
plexities", J. Comput. System Sci. 4,
1970.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif

