An Algorithm for the Newton Resultant

John Canny*
Paul Pedersen**

TR 93-1394
October 1993

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

* Supported by a David and Lucille Packard Foundation Fellowship and by NSF PYI
Grant IRI-8958577.

** Partially supported by NYI (NSF) CCR-9258533.

An Algorithm for the Newton Resultant
JOHN CANNY * PAUL PEDERSEN **
U.C. BERKELEY CORNELL UNIVERSITY

1 Introduction

Given a system of n + 1 generic Laurent polynomials, for : = 1,... 41,
file) = Y eqgah g=(q,...,qn); ¢ = alaP..al; (11)
gEA;

with (finite) support sets 4; C L, where L is some affine lattice 1somorphic to
ZL"; we consider the Newton resultant R(fi, fa,... y Jag1). This is the unique
(up to sign) irreducible polynomial with coefficients in Z and monomials in
the ¢;g which determines whether or not system (1.1) has common roots in the
algebraic torus (C — {0})". The resultant depends only on the Newton polytopes
N; := conv(A;) C R"™ of the sets A;. If the system could not have common
roots in the torus for any choice of the c;q, then the resultant is defined to equal
1, by convention. What we call the Newton resultant appears as the “sparse
mixed resultant” in [CE], [PS], and the “.4—resultant” in [GKZ].

Our terminology emphasizes the dependence on the combinatorics of the
Newton polytopes, and removes the misleading reference to sparcity in the sense
of having few monomials. The algebraic torus is the natural setting for us, since
we are interested in the properties of systems of polynomials which are invariant
under symmetries of the affine lattice L. Translation by ¢ € L corresponds to
multiplication by z? at the level of polynomials, and since z¢ may have negative
exponents, we should restrict to points none of whose coordinates are Zero, i.e.
the algebraic torus. We refer to roots in the algebraic torus as toric roots.

2 Basics about mixed volumes

The Minkowski sum A @ B of polytopes A, B C R" is their pointwise sum,
A®B = {u+v:u€ Ave B}. Weshall consider the iterated Minkowski

* Supported by a David and Lucile Packard Foundation Fellowship and by NSF PYI
Grant IRI-8958577

** Partially supported by NYI (NSF) CCR-9258533

sum N := Nl @@Nn_l.l

A basic combinatorial-geometric invariant of any n lattice polytopes
Py, ..., P, is their mized volume MV(Py,...,P,). It is defined as the coefficient
of the monomial A\; Az -+ A, in the polynomial Vol(M Py @ AP @ ... 5 N\, Py).
Classic expositions on mixed volumes may be found in [BF], and [E].

The mixed volume is determined (and may be computed) using mized
subdivisions of the Minkowskii sum P := P, ®...® P,. Mixed subdivisions arise
by choosing (randomly) lifting functionals w; : R® — R, and then considering
“lifted polytopes” P; C R™*! = the graph of P; under w;:

P;:={(qwi(q)): g € Bi}.

Let P=D &. . @ b, _denote the Minkowski sum of the lifted polytopes. The
lower conver hull A of P is the collection of fucets F of P whose inner normal has
positive last component. Each such facet has the form F Fo.. .o Fn, Where
F; is a face of B;. We say that F is a mized facet if dim(F,) =1fori=1,.

More generally, any facet of A has a type (dq,...,d,), where d; = dlm(F)
Facets of A may be found using linear programming.

Suppose 7 : R™*! — IR™ projects to the first n coordinates, then A
{m(F): Fe A} is a subdivision of P. Each cell C of A has the form x(F) =
L ®... 8 F, where 7r(F) = F; is a face of P;. We assume that the weights w
are sujﬁczently generic, meaning that dim(C) = dim(Fy) + ... + dim(F,,), for
every C € A. In this case A is called a mized subdivision of P The projection
of mixed facets of A are mized cells of A. The sum of the volumes of the mixed
cells of any mixed subdivision A equals the mixed volume MVY(Py,...,P,). This
is an integer which does not depend on the choice of subdivision. For details on
mixed subdivisions and their relation to mixed volumes see [Bet].

Mixed cells are parallelotopes. If one considers them “half-open”, then
their volume equals their number of lattice points. We may determine a consis-
tent sense of “half open” by fixing some random direction §, and only counting
lattice points lying on facets where § is inward pointing, for instance.

In our application we have n + 1 polytopes. Their Minksowski sum also
has a mixed decomposition obtained by means identical to the above, i.e. as
the projection of the lower envelope of a lifted sum, with the difference that
now every cell, even a mixed cell, is the sum of at least one vertex fromn one
of the n 4+ 1 inputs. Mixed cells in this setting are sums of n edges and one
vertex, so that lattice points lying in mixed cells of a mixed decomposition of
N = N1 ®...® Npy1 have associated to them a unique index which contributes
the vertex. This index is crucial to the construction we are going to describe.

3 Basics about Newton Resultants

The mathematical foundations for the theory of Newton resultants can be found

in [GKZ], [PS], and [CE], where it is shown that:

(1)
deg fJ(R) =]VIV(N],...,Nj,...,Nn+]).

(2)
R(cooofi fis) =Ry fiyen) - RCy £,

(3)
R(flaf%"'afn-l-l‘) =R H f1(7)7

5

where the product in item (3) is over toric roots of f, = ... = fn+1 =0, and R’
is a product of lower dimensional resultants not involving f;.

In [CE] an algorithm is proposed for computing the Newton resultant
using analogues of Macaulay matrices. We shall describe an explicit implemen-
tation of this algorithm with complexity estimates. Maple code for the imple-
mentation is included in the Appendix.

The basic principle underlying the construction is simple: regard each
equation fj(z) = 0 as a linear relation on the power-products z¢ : g€ Aj:

filz) = (c1,...,¢cn) - (2%,...,2%) = 0. (3.1)

Any common solution z, determines a null vector of this linear system by eval-
uation of the monomials z? at zo. However, one typically has more variables
in U;A; than equations (n + 1). New equations can be generated by taking
monomial multiples z*f; = 0 of the old equations. This generates new power-
products z%*¢, and the game is to pick multiples which generate as few new
power-products as possible, so that one eventually ends up with as many equa-
tions as variables. Suppose we write this linear system as M - (z*) = 0, where
M has components cj, as in (3.1).

The vanishing of the determinant of this linear system is a necessary
condition for the existence of a common root. Therefore the resultant, which is
irreducible ([PS]) must divide det(M) . Multivariate factorization of the deter-
minant, and extraction of the factor of appropriate degree (according to item (1)
above) gives you the resultant.

This is exactly the type of algorithm defined in [CE], where a matrix M
is constructed whose columns arc indexed by the monomials of the Minkowski
sum N = N1 @...PH Np41, and whose rows are indexed by monomial multiples

of the fj,SZ pr eC CN = -Nl P... (B.Nn+1, and C = F] @...{‘E)Fn_}.], and
if 7 is the largest index for which F; is a vertex — say ¢;, corresponding to the
J-th monomial ¢;;z% of f; — then let RC(p) := (z,7). This is the so called “row
content” of p. Define M by

M. = L if ¢ — p +¢ij = gix for some k, where (i,j) = RC(p)
PO 10, ifg—p+agij € A

We refer to [CE] for details of the proof that the matrix so constructed is square
and has non-identically-vanishing determinant. We refer to this matrix M as «
Newton matriz for the system (1.1).

Our objective here is to describe a concrete implementation of this algo-
rithm. Optimally there would be exactly MV(fy,..., fir-+-s fn) rows indexed
by multiples of f;, so that the degree of the determinant det(M) would coincide
with the degree predicted in item (1) above. Generally speaking, this will not
happen. We can hope that by adding rows “greedily”, i.e. only according as we
need them to cover the monornials determined by columns of M which we have
already occupied, then we might find a sub-determinant of M which is already
good enough.

4 Description of the Algorithm
Input: A system of generic polynomials (1.1)
Output: A matrix M, whose determinans has the Newton resultant as a factor.

Parameters: n = dimension; m bounds |4, |; m bounds the number of extreme
points of N; = conv(A4;); h = the number points of the Minkowski sum N =:
N1 @®...® Npy1, which is O(m™+1).

Step 1.

Compute the convex hulls N; = conv(.A;) of the exponent vectors of the in-
puts (1.1). Assemble the vertices of N; as the columns of a matrix,

11 ... Qiim
AG) —

din1 ... Ginm
We approximate the convex hull by sorting the given lattice points in a linear

number of pseudo-random directions, and then run LP’s to determine which of
the remaining points are not hull vertices. Any such point p will be feasible for

the LP with convexity constraints

Z)‘jvj =D

JEC
2 =1,
jec
/\j >0, jeC.
where C is the current set of candidate hull vertices.

Suppose we use k random directions. The combinatorial complexity of approxi-
mating the hull is O(knmlogy(m)). The remaining LP’s run in O(md®?) steps
using interior point methods. The initial approximation appears as a heuristic
improvement.

Step 2.

Compute a collection of pseudo-random vectors which will be used to lift the
points of each polytope, L = [Li,.... Ly41]. The cost here is O(n?).

Step 3.

Set up LP equations defining the lower envelope of the Minkowski sum of the
lifted points as follows. A general point of of N; has the form

o = AG) Ny, ... Aim] T,
where the); satisfy a convexity constraint
Ai = din+ ...+ Ahim = 1.
A general point of N = N; @ ... @ N4 has the form
v = oM 4 4 pntD),

The objective function is determined by the random lifting vectors. The lower
envelope A consists of those points ¥ = (v, v,4+1) whose height v, over the
point v € N is minimal. Therefore, the objective function is defined to be

B = L] . 'U(l) + ...+ Ln+1 . 'U(n+1).

The cost here is O(nm?).
Step 4

Compute the Minkowski sum N, and the center of gravity g of N; g is used as an
initial monomial for the construction of M. Then enqueue(V,g), i.e. enqueue g
on the work queue V.

The cost here is O(h).

Step 5.

Loop:

If V is empty then break (goto 7).
Set vy := dequeue(V).

Check which polytope points contribute to the optimum sum for vg. This is done
by running the LP:

v = g,

Ai =1, 1<:<n+1
)‘ijZO
min(B)

The vertices appearing in the representation of v as a sum points from the N f
can be read off from the coefficients which equal 1 in the representation v = 1.

The cost here is O((mn)*?) since there are mn variables ;.
Step 6.
Compute the next row of the Newton matrix M:

step 6.1 Find the largest index ¢ of « vertex g;; contributing to the rep-
resentation of vy from step 3.

step 6.2 Compute the displaced lattice vector v/ := v — gij-
step 6.3 Compute the product z? - f;, placing the indeterminate coeffi-
cients in the appropriate columns of M.

step 6.4 For each column j of M hit by a monomial from step 6.3, if the
lattice point w; labeling column j is not already processed or
enqueued, then enqueue(V, w;).
step 6.5 GOTO 5 (Loop)
The cost here is linear in n and m.
Step 7. Compute det(M).

The cost here is O(h**'*<log,(h)), using Berkowitz’s algorithm [B],
where a is the current best exponent for matrix multiplication, and € > 0.

The overall cost is dominated by the cost of the determinant. Apart
from this, the dominant component of the worst case complexity comes from the
LP’s occuring in the loop at step 5. The loop may execute as many as h times,
with each loop costing as much as O((rnn)33) steps for the LP.

5 Appendix A

Maple code for the Newton matrix algorithm. (Warning: there are forward
references.)

with(linalg):
with(simplex):

BRBRBRBBBRRBRBRBRRBEBRBRERBRBRBRURBBRERERBRBRBBRERERERBRERGRER BB Y
verts -- calculates array of exponents of monomials in poly
BHBRBRBBRBRBRBRBRRBRBRBRBRBRBRBRERUEBRBBRERBRBRBERERRRERBREREREBY

verts := proc(poly, vars)

local d, n, vert;

d := nops(vars);
n := nops(poly);
vert := array(l..d, 1..n);

for i to n do
term := op(i, poly);
for j to d do
vert[j, i] := degree(term, vars[j])
od
od;
vert

end: # verts

HRBBRBBBBBRBRBRRRBBBBBRBBRERRR BB RBRBBBRBRARBBRBRBRRRRRB BB LR BB 1
randlin -- random linear functionals
RRRBBBBBBBBBRBRBRRRBRBRBBBBBBBBRRBABBRBR BBV RV R BB BB BBBBRBR BB BB RS

randlin := proc(d)

local i,j,1,die;

die := rand(1..1000);
1 := array(1..d);
for i to d do
1[i] := array(1..d-1);
for j to d-1 do 1[i][j] := die() od
od;
1

end: # randlin

RRBRBBRBRBRBBRBRBBRRRBRBRBRRBRERBERBBRBRRBRBERBERARBERBERERBRR R R
randvect -- random displacement vector of length n
HRBRBBRBRBRBBRBRBRRBRBRRRRBRBRBRBBUVDRRBRRBEBRRBRRERBBRBERBRRRRBRY

randvect := proc(n)

local rproc;

rproc := rand(1..1000);

r := array(l..n);

for i to n do r[i] := convert(rproc()/10000, float) od;
T

end: # randvect

BHURBURBRBRBRRBRBRBRBRRERERBERBRBBRBRRBRBRRGRBERBERBURBRBRRBRBERY
make_eqns -- sets up LP for lower envelope
RRRRBBLBUERRBRBRBRBRBRBRBBRRBREBERBRBRERBRBRBRBRBERERERBRBRBRBRBRY

make_eqns := proc(A, 1, d)

A = array of matrices, each contains vertices as columns.

= random linear functional
= length of A = dimension - 1;

Constructs the following input equations for LP package:
objective = \sum_i 1_i(\sum_j \lambda_{i,j} A_{i,j}),
vertex eqns lhs = \sum_{ij} \lambda_{ij} A_{ij},
conv. constr. = \sum \lambda_{i,j} = 1;

where
1.1 = random linear functional,

\lambda_{i,j} = LP variables,

local C, cd, conveq, convsum, i, ipoly, j;

local lambda, nverts, objective, vertlhs;

objective := 0; # objective function
vertlhs := vector(d-1, 0); # lhs vertex equations
conveq := {}; # convexity constraints

nverts := dotp(vector(d,1), map(coldim, A));# tot. no. vert.

for i to d do
ipoly := A[il;
convsum := 0;
cd := coldim(ipoly);

lambda := array(1l..cd); # array for new variables

for j to cd do

lambda[j] := ‘lam‘.i.‘x‘.j;
convsum := convsum + lambdal[j];
od;
conveq := conveq union {convsum = 1};

C := multiply(ipoly, lambda);

10

vertlhs add(vertlhs, C);
objective := objective + multiply(transpose(1[il), C);

od;
[objective, conveq, vertlhs, nverts]

end: # make_eqns

HHBRBRBARBRBRBRBBRBRBRBRERBRBRBBRRBBRBBERBRBRBRRRRERERERERERGRBBY
cog -- computes center of gravity
HRRRRBRBRBRRBRBRBUBRBRRBRBRRBREBRBBRRBRBERBBBRRBERBERBRRE BBV BEY

cog := proc(ipoly, d)

ipoly = array of exponent columns.
local cd, i, v;

cd := coldim(ipoly);
v := multiply(ipoly, convert(vector(cd, 1), matrix));
scalarmul(v, 1/cd)

end: # cog

BHURBBRBRBRBBRBRBRBRBRRERBRRBRBEBBRBRRBRRRRBRRBERBRBERBEBRRBRRRRY
Table of digit to num conversions
BRRRBBUBRBRBBRBERRBRRBRBRBBRBRBRRBRBRRBRRBEBRRBERBRBERBERERBRRB R

chars := 0:

chars[‘0¢] :=
chars[‘1¢] :=
chars[¢2¢] :=
chars[‘3¢] :=
chars[‘4¢] :=

chars[‘5¢] :=

[I N ¢ I S =]

chars[‘6¢] :=
chars[‘7¢] :=
chars[‘8¢] :=
chars[‘9¢] :=

© 00 N O

RARRBRARBBBRBBRBBBRRBRRRBRBERRBBREBERBRBBRBRRERBRRBBRBBRBUBBGRE LY
recode -- converts string ‘lamMxll‘ into vector [M, N]
RARBURRBRBBABRRBRRBRRBRBBRBRBBRERBRBRBRBBRERRBRBRERBRRBRGRER R YR BY

recode := proc(z)
converts string ‘lamMxN¢ into vector [M, N]
local i, L, M, N, s, state;

L := length(z);
M :=0;

N :=0;

state := 1;

for i from 4 to L do
s := substring(z,i..i);
if s = ‘x‘ then state := 2 fi;

if state = 1 then M := 10*%M + chars[s]

elif state = 2 then state := 3

elif state = 3 then N := 10%N + chars[s] fi
od;
M, N]

end:

HRBRBRUBRBABRBRBRBRBRBRBBRRRBEBRBERBRERRRBERRBRRERBRERERER ARV BRY
opt_verts -- checks which polytope points contribute

to optimum sum for vert.

11

12

RAERRBARBRBBRBRBRBBRRBRBRBABBBRBBURBEBRBBBRBBERBRERRRBRBRRRBRREBHBY

opt_verts := proc(edata, vert, d)

edata = equations from make_eqns(),

vert = vertex in Minkowski sum,
d

dimension + 1.

local assigns, conveq, eps, eqns, ivert, j, nverts, objective,

optverts, verteq, vertlhs;

Pick apart input from make_eqns()
objective := op(1, edata);# objective function
conveq := op(2, edata); # convexity constraints
vertlhs := op(3, edata); # vertex eqns left hand sides

nverts := op(4, edata); # total number of input vertices

Run LP to find optimal sum (on lower envelope) for vert
eps := 1.0 * 10°(-6);
eqns := conveq;
for j to d-1 do
eqns := eqns union {vertlhs[j] = vert[j,1]} od;
assigns := minimize(objective, eqns, NONNEGATIVE);

find vertices appearing in the representation
optverts := {};
for a in assigns do
if (abs(rhs(a)-1.0) < eps) then
optverts := optverts union {recode(lhs(a))};
fi
od;
optverts

end: # opt_verts

RARBBRBRBBRRBBARBBRRBRRRBRRBRBRRBRBBBRBBRERBRBRBBRBBRERRBRRBBRBRH
compute_rows -- greedy algorithm for rows of Newton matrix
RARLBBARBBARBRRBBBRRBRBRBRBBRBRBBBRERBEBRBRBEBREBRBRREBRBGREBRB LY

compute_rows := proc(A, B, edata, v, delta, d)

A =
B =
edata =
v =
delta =
d =

array of arrays ((d-1) X num vert.), input vert.
array of arrays like A plus interior points
eqn.’s defining lower hull for simplex package
vertex in the Minkowski sum of the inputs A[i]
random small displacement vector

dimension + 1

local cols, guide, i, imax, ipoly, jmax, overts, rows, vtl, vt2;

rows := {};

guide := {};

cols := {eval(v)};

while not (eval(v) = {}) do # i.e. cont. while v is defined
print(v);
rows := rows union {eval(v)};

lower hull vertices:

overts := opt_verts(edata, add(v,delta), d);

imax := 0;

jmax := 0;

for vtl in overts do

od;

find index of last polytope
if vt1[1] > imax then # ..contrib. vert. to opt. sum
vti[1];

vt1[2]

imax :

jmax :
fi

13

guide := guide union {[eval(v),imax,jmax]};
vt2 := add(v, col(A[imax], jmax), 1, -1);
ipoly := Bl[imax];
for i to coldim(ipoly) do # find exp. in
vtl := add(vt2, col(ipoly, i)); # ..mult. of B[imax]
if not vmem(vti, cols) then
cols := cols union {eval(vti)} fi
od;
v := {}; # undefine v, and then check
for vtl in cols do # ..if any new rows are needed
if not vmem(vtl, rows) then v := eval(vtl); break fi
’ od
od;
guide

end: # compute rows

RRBRBARBRBRBRBRBRBBERBRBRBBRRBRRBERERBBERBRBRBRBRRBRBRERERGRBR YRS
newtonres -- computes Newton resultant matrix
HHBRBARBRBRBRBRBBRRRRBRBBERRRBRRRBRERBBERERERBRBERBRRRERBRERERE Y

newtonres := proc(A, B)
A, B
A
B

array of arrays, ((d-1) X no. vert.), cols are vert.

vertices only,

all exponents in Newton polytopes

local d, delta, edata, i, ip, ipoly;

local ivert, j, k, M, msize, v, vtl, vt2;

d := rowdim(convert(A,matrix)); # no. polytopes = dim. - 1
delta := randvect(d-1); # rand. displacement vector

1 := randlin(d); # rand. linear functional

15

print(‘Computing data common to all vertex equations®);

edata := make_eqns(A, 1, d); # [obj, conveq, vertlhs]

rint(‘greedy search for row indices‘);
P g y

v := cog(A[1], d); # start at the ctr. grav.
for i from 2 to d do # ..of Minkowski sum
v := add(v, cog(A[i], d)) od;
v := map(round, v);
guide := compute_rows(A, B, edata, v, delta, d);

print(‘constructing the matrix‘);

msize := nops(guide);
guide := convert(guide, list);
M := array(l..msize, 1..msize);

for i to msize do
ivert := guide[i];
ip := ivert[2];
vtl := add(ivert[1], col(Alipl, ivert[3]), 1, -1);
ipoly := B[ip];
for j to msize do
vt2 := add(guide[jI[1], vt1, 1, -1);
M[i, j] := 0;
for k to coldim(ipoly) do
if equal(vt2, submatrix(ipoly, 1..d-1, [k])) then
M[i, j] := ‘C‘.ip.‘x‘.k
fi
od
od
od;

16

end: # mixed

RRBREBBBRBARBBRBRRBRBRBBRABRBRERBRBERERRRERBRBRBRRRRRRERERERUR YRS
randhull -- approx. convex hull, sorting in random directionms
RURBBBBRBBRBBBRBRBRBBRRBERBBRBBBRBBEBRRBRBBRBBRBVRBEREVRBRBRBBRR RS

randhull := proc(v,limit)
#tv
limit

input vector of vertices

number of random directions to sort by

local d, i, j, k, max, maxindex, min, minindex, n, newc, rv, t;
local processed, unprocessed, vertlhs, conveq, convsum, lambda;

local work, workl, possible, sub, temp;

rowdim(v); # v input vector of vertices, d = dim.

n := coldim(v); # n = numbers of vertices

processed := {};

unprocessed := {};

for i to n do unprocessed := unprocessed union {i} od;

for i to limit do

rv := randmatrix(1,d);

rv := scalarmul(rv, 1/norm(rv));
minindex := 1;

maxindex := 1;

min := multiply(rv, col(v, 1));
min := min[1];

max := eval(min);

for j from 2 to n do

t := multiply(rv, col(v, j));
t = t[1];
if t < min then

minindex := j;

min := t

elif t > max then
maxindex := j;
max := t
fi
od;

processed := processed union {minindex, maxindex};

unprocessed := unprocessed minus {minindex, maxindex}
od; # ends random iterations
Now use LP to check other vertices

lambda := matrix(1, n);

for i to n do lambdalil, i] := ‘lam‘.i od;

workl := unprocessed;
possible := processed;
work := {};

while (work minus workil <> {}) or (workl minus work <> {}) do

work := workl;

for i in work do

temp := possible minus {i};
sub := convert(temp, list);
vertlhs := vector(d, 0); # vertex equation lhs

conveq := {}; # convexity constraint

17

convsum := 0;
for j in temp do
convsum := convsum + lambda[1l, j]
od;
conveq := conveq union {convsum = 1};
vertlhs := multiply(submatrix(v, 1..d, sub),
transpose(submatrix(lambda, 1..1, sub)));
for j to d do
conveq := conveq union {vertlhs([j, 1] = v[j, i]}
od;
if feasible(conveq, NONNEGATIVE) then

print(col(v,i), ‘interior®);

workl := workl minus {i};
possible := possible minus {i}
else
possible := possible union {i}
fi
od
od;
possible;

end: # randhull

RRRRRBRBRBRBRBRBRRBBRERRBBRRBBBRBEDUERBRERBRBRBRBRRBBERERERERBRERY
dotp -- dot product of vectors
BHRBRABRABRBRRBBRBBRBRRBRRBRERERBRRRBRRBRRRBRRBARRBERBBRBVERBRR R

dotp := proc(x, y)
multiply(transpose(x), y)
end: # dotp

HERBRBBRBBERRRRBRARBRRRBRARBRBBRRBBRBBRBRBBRBVRRRBBRRBRBBBB BB BB EH
norm -- computes the 2 norm of a vector (as 1Xn matrix)
RARRRRBBRBRBBARBRBRRBBRBBRBBRRBBRBERBRBRRBRBRBBBBRBERRBBRRRBRBRBR

norm := proc(x)
local i,r;

r :=x[1,1]"2;
for i from 2 to coldim(x) do r := r + x[1,i]1"2 od;
convert (sqrt(r), float)

end: # norm

RARBRRBBRBRBBEBRRBRBBREBBRBRBRBBREBRUREBEBRRRBRERERREBERBBREREBE B
vmem -- checks if el lies in (set or list) vset, using equal
HARBARARBBBARBRRBBRBBBRBRRRBRBBBRERBRBRRBRERRRBRBBRBBRBBRBERRARRRY

vmem := proc(el, vset)
local found, el2;

found := false;
for el2 in vset do

if equal(el, el2) then found := true; break fi od;
found

end: # vmen

RRBRRBLBRBABRBRBRBRBRBRBBRBRRBRRRERBRBBRRBRBRBERERERBRERERERBRBRY
set2array -- convert set of row vectors to array of col vectors
RRRBBBBRBBRBBABRRBRBRRRRRRRBRBBRBRERBBRBRBRBRRARBREBERRBBUBRRR S 1Y

19

20

set2array := proc(s)

n :
d :

transpose(array(l..n, 1..d, convert(s, list)));

nops(s);

nops(convert(op(1, s), list));

end: # set2array

6 References

[B] Berkowitz, S. : “On computing the determinant in small parallel time with
a small number of processors”, Inform. Process. Lett., 18, (1984).

[Ber] Bernstein, D.N.: “The number of roots of a system of equations”, Func-
tional Analysis and its Applications 9 (1975), 1-4.

[Bet] Betke, U.: “Mixed volumes of polytopes”: Archiv der Mathematik 58
(1992), 388-391.

[BF] Bonnesen, T., Fenchel, W.: “Theorie der Konvexen Korper”, Chelsea Pub-
lishing, New York (1948).

[CE] Canny, J., I. Emiris: “An Efficient Algorithm for the Sparse Mixed Re-
sultant”, in Proc. AAECC-10, edited by G. Cohen, T. Mora and O. Moreno”,
Springer Lect. Notes in Comp. Sci. 263 (1993), pp. 89-104.

[E] Eggleston, H.G.: “Convexity”, Cambridge Tracts in Mathematics and Math-
ematical Physics 47, Camb. Univ. Press (1966).

[GKZ] Gelfand, I.M., M.M. Kapranov, A. V. Zelevinsky: “Discriminants of poly-
nomials in several variables and triangulations of Newton polytopes”, Algebra i
analiz (Leningrad Math. J.) 2 (1990) 1-62.

[PS] Pedersen, P., B. Sturmfels: “Product formulas for resultants and Chow
forms”, to appear in Mathematische Zeitschrift.

21

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif

