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Abstract

We have developed an effective methodology for using a proof development system to prove
properties about functional programs. This methodology includes techniques such as hiding
implementation details and using higher order theorems to structure proofs and aid in abstract
reasoning.

The methodology was discovered and refined while verifying a logic synthesis tool with the
Nuprl proof development system. The logic synthesis tool, Pbs, implements the weak division
algorithm. Pbs consists of approximately 1000 lines of code implemented in a functional
subset of Standard ML. It is a proven and usable implementation of a hardware synthesis tool.
The program was verified by embedding the subset of SML in Nuprl and then verifying the
correctness of the implementation of Pbs in the Nuprl logic.

1 Introduction

This paper describes a methodology for using a proof development system to prove properties
about functional programs. The methodology was discovered while verifying a logic synthesis tool.
The tool, Pbs: Proven Boolean Simplification, is based on Brayton and McMullen’s weak division
algorithm [BM82]. Pbs represents a case study in verifying large, functional programs: the im-
plementation of Pbs contains approximately 1000 lines of Standard ML code and the verification
required over 500 theorems.

The complete formalization of Pbs consists of a description of the properties to be proved, a seman-
tics for the implementation language (a functional subset of SML), and a mechanized proof showing
that the implementation satisfies the properties claimed by the weak division algorithm. The proof
was done in the Nuprl proof development system [C*86], and involved embedding a subset of SML
in Nuprl, verifying the implementation of Pbs in Nuprl using that subset of SML and showing the
equivalence of the semantics of this subset of SML in Nuprl and in the SML Definition [RH90].



We developed our methodology out of necessity as the verification of Pbs progressed. It quickly
became obvious that we needed a uniform way to hide implementation details and prevent du-
plicated reasoning. Through trial and error we developed techniques for verifying properties of
functions which met these goals, and from these techniques an overall methodology evolved. We
have continued to use the methodology in several areas, including a set of functions for describing
the structure of digital hardware circuits and a package for manipulating matrices. It is quite clear
that for large verification efforts to be successful, it is vital that they employ methodologies which
aid in organizing and structuring the proof process.

Because powerful proof systems are a relatively recent development, there is not a lot of collected
knowledge about how to use these systems effectively. Knowledge about what techniques to use in
different circumstances and the best overall approach to choose in tackling a problem come almost
exclusively from personal experience with using the tools and with advice from mentors who are
already experts at using the system. One of the goals of this paper is to share our experiences with
using Nuprl. Our methodology is relevant to almost anyone using a proof system to verify software,
but it will be most useful to those users whose systems are based on a higher order logic. This is
because a significant portion of the methodology exploits higher order logic to structure proofs and
capture abstract reasoning about functions.

While we agree that it is not yet feasible to rely solely on theorem proving based methods to verify
software, the development of an efficient methodology will allow theorem proving based methods to
tackle more substantial projects. Without a guiding methodology, verification engineers are forced
to decide both what proof strategy they should use at the abstract level (i.e. why is the theorem
true) and what steps are needed to implement their strategy in the proof system. By following a
methodology, the low level details of interacting with the proof system are consistent, uniform and
known ahead of time. Thus the user is free to concentrate on more abstract reasoning.

A proof effort of the magnitude of Pbs requires a significant amount of time. Nevertheless, there
are many cases when the time invested in verification will be well spent. When a program will
be used over and over again, it is often more effective to invest effort in verifying the software,
rather than verifying the output of that software each time the program is used. Proving properties
about a program forces an improved understanding of the program, which increases the opportunity
to perform safe optimizations. Theorem proving based verification is well suited for cases where
there is a large abstraction gap between the level of the specification and implementation. Higher
order logic allows for natural and expressive specifications and proof systems provide mechanisms
for automatically maintaining the consistency of large proofs. Theorem proving techniques work
best for programs written in a functional style. This is because it is much easier to reason about
functional code than code which relies on imperative features such as side effects and pointers.

In our case, Pbsis an integral part of the Bedroc hardware synthesis system [LCA*93], thus it will be
used over and over again. Because we verified Pbs, we were able to make several optimizations to the
implementation. Had we not verified Pbs, we would have been reluctant to make the optimizations,
for fear of introducing bugs into the code. The difference between the level of abstraction of
the implementation of Pbs and the specification was quite large. The specification reasons about
abstract properties of Boolean logic and properties of a division operation, while the implementation
is based on simple operations on lists. Although the weak division algorithm is complicated, it
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lends itself to a well structured implementation: all of the operations can be efficiently written in
a functional style, most of the functions are based upon simple operations on lists, and the control
structures of almost all of the functions are very simple. These factors made it desirable and feasible
to formally prove properties about an implementation of the weak division algorithm.

Because of the size and complexity of the weak division algorithm, it would have been infeasible to
try to use paper proofs to prove properties about Pbs. For large verification efforts a proof system is
an absolute necessity. Proof systems help deal with the complexity encountered in large verifcation
efforts because they ensure that definitions are used consistently, lemmas are completely proved
before they are used, and only sound inference rules are used. In addition, they provide a sound

basis for describing objects and proving theorems and automate some of the mundane aspects of
proofs.

Some estimates on the size of the verification effort are: there is a four to one ratio in the size of the
specification (theorems) to the size of the implementation. The total size of our verification effort is
over 400 pages; of these 400 pages, user input represents only eighty pages (the rest is generated by
Nuprl to make the proofs readable). It is interesting to note that a team which used a non-theorem
proving based methodology (Cleanroom [DK90]) to specify and implement a large program found
the same four to one ratio in the size of the specification to implementation. The team emphasized
that they never wrote a specification which was more formal than needed to adequately describe
the desired behavior of the code. The fact that the ratio of specification to implementation is the
same for both Pbs and the Cleanroom project illustrates that mechanized proof system may be used
to efficiently describe the specifications of programs.

Our development of the proofs proceeded almost entirely within the Nuprl system. Many proofs
were done entirely within Nuprl, without any need to sketch out arguments on paper before using
Nuprl or any need to print out a copy of the proof while working on it. The fact that we were
able to do so much of the work within Nuprl demonstrates that there are now proof development
systems available which are sophisticated enough to be truly considered environments for creating
proofs, as opposed to tools simply used to check proofs once they have been developed.

1.1 Related Work

The developement and verification of Pbs was motivated in part by past research in using mechan-
ical proof systems for verifying digital hardware. Originally, most work in this area was done by
proving the correctness of an implementation after it was designed [Coh88, Hun86]. This method-
ology suffers from the fact that such a post hoc verification process is invariably time-consuming
and labor intensive. Many researchers are proving hardware design tools correct and investigating
synthesis by proven transformations. For example, Martin [Mar90] uses proved correct transfor-
mations to synthesize delay insensitive circuits, Chin [Chi90] uses verified design procedures to
synthesize array multipliers, and McFarland [McF91] found several errors in the System Architect’s
Workbench [TDW+88] while proving their transformations correct. Pbs is the only work that has
used theorem proving based methods to verify the implementation of a synthesis tool.



Wing has written a survey article on software verification which provides an excellent introduction to
the area as well as a summary of important advances in the area [Win90]. The Boyer-Moore theorem
prover [BM88] has been used to verify a number of hardware and software projects, most notably
the verified stack consisting of a verified microprocessor, assembly language compiler, high level
language compiler, and operating system kernel [BM889]. The Process Verification Environment
has been used by Fischer to check a railroad type protocol [FST92]. Both in work done using
the Boyer-Moore theorem prover and using PVE, errors were found which would only occur after
a sequence of events occurred in a specific order. Both groups believe that it would have been
virtually impossible to find and correct the errors without the use of such tools.

Lafontaine [LLS90] has described the use of the B theorem prover and the Vienna Development
Method in the design and implemenation of a software program for controlling a simple robot. One
of the goals of this case study was to explore the potential for reusing results of the project. Their
efforts in improving reusability concentrated on high quality, semi-automated documentation (in the
style of literate programming) and structuring the verification effort so as to group common lemmas
and theorems. Among the conclusions reached by the study were that support environments and
tools such as theorem provers are necessary when formally developing realistic software systems and
that theorem provers are useful for verifying programs several hundred lines in length.

PVE and the Boyer-Moore and B theorem provers differ from Nuprl in that Nuprl is an interactive
proof development system using a higher order logic. PVE is based on process algebras and model
checking and both Boyer-Moore and B are first order systems. Boyer-Moore is an automated
theorem prover that uses a heuristic to direct lemma application. B may be used either interactively
or automatically. In its automated mode B uses a pattern matching mechanism to select and apply
previously proven lemmas.

At the other end of the spectrum, much attention has been payed to methodologies which attempt to
increase the productivity of programmers while reducing the amount of errors in code. Proponents
of these methodologies rarely include theorem proving based verification as one of their techniques,
because it is perceived as not being practical for significant size programs.

Mills’ Cleanroom [LMS8] is a methodology for software development and management motivated
by empirical statistics of defects in programs. Cleanroom has been used on a number of large
software projects, including COBOL/SF?, a 50,000 line upgrade to a program which automatically
transforms unstructured COBOL code into structured code. This case study demonstrated the need
to use uniform methodologies to organize and control the software development cycle. Dyer [DK90]
has analyzed the use of the Cleanroom methodology in comparison to the conventional structural
software testing process. He has concluded that the use of approaches which are directed at designing
software which meet specifications, rather than implementing programs which produce correct test
results, are more efficient and will result in higher quality software.

1.2 Overview

Section 2 contains a description of how we embedded SML in Nuprl, a brief outline of the weak
division algorithm and an overview of our implementation and verification of Pbs. Section 3 is a
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detailed description of our methodology and Section 4 illustrates our methodology with the imple-
mentation and verification of three functions in Pbs. Each of these examples illustrates a specific
technique in the methodology and builds upon the previous examples. Section 5 analyzes the results
of the verification of Pbs. More detailed descriptions of the algorithms used in Pbs can be found
elsewhere [AL91, Aag92].

2 Background |

Pbs implements the weak division algorithm, which is a global approach to Boolean simplification.
The weak division algorithm was first described in a paper by Brayton and McMullen [BM82].
It is currently used in several CAD tools, including Mis, which is part of the Berkeley Synthesis
System [BR*87]. We based our implementation and verification of Pbs on the informal definitions,
algorithms, and proof outlines presented in these articles.

Our goals were for Pbs to be a proven and usable implementation of the weak division algorithm. In
order to meet these two goals, we decided to implement Pbs in a functional subset of the Standard
ML (SML) programming language and to embed this subset of SML in a mechanical proof system.
We chose SML because it is a very high level language, is primarily functional, and has well defined
semantics. Embedding SML in a proof system allowed the code for Pbs to be reasoned about in
the proof system and compiled and run using an SML compiler. Thus there is a very high degree
of confidence that the SML implementation has the same behavior as the implementation in the
proof system.

For the proof system we chose to use Nuprl, which is based on Martin-Lof’s constructive type
theory and is a member of the LCF [GMW79] family of proof systems. With the LCF family of
systems, the user begins by entering a theorem to be proved. The theorem represents the goal of a
proof. The user applies tactics which manipulate the goal, usually by breaking it down into a set of
sub-goals. This creates a structure known as a proof tree. In order to successfully complete a proof,
the sub-goals should become increasingly simple. Eventually an individual sub-goal will be simple
enough that the system can automatically prove it with built in rules. When all of the leaves of the
proof tree have been shown to be true, the proof is completed and the theorem is proved.

In the rest of this section we present our embedding of SML in Nuprl and describe the weak division
algorithm.

2.1 Embedding SML in Nuprl

Standard ML is a very high level programming language and is based upon a formal definition which
prescribes the precise semantics of the language [RH90]. SML is primarily a higher order functional
language, but it does support some non-functional features, such as sequential operations, references,
and exception handling. SML is strongly typed and polymorphic, thus it closely resembles much of
the Nuprl type system.



Nuprl contains a set of primitive operations which are the basis for its computation system. Many
SML instructions are very similar to these primitive operations. By limiting ourselves to only
these operations, it was quite easy to embed a subset of SML in Nuprl. The primitive operations
upon which we based our subset include integer arithmetic, list recursion, integer equality, string
equality, and pairing. For these primitive operations we developed a set of constructs which have
the same behavior in SML and in Nuprl, but which have different implementations in each system.
These constructs are either part of the SML Definition, or are so simple that the correspondence
between the theorems in Nuprl and the code in SML is obvious. The principal features which we
did not include in our subset (because of the difficulty of implementing them in terms of the Nuprl
primitives) are: references, exceptions, sequentiality, primitive recursion, pattern matching, real
numbers, modules, streams, and records.

In this section we demonstrate our method for embedding SML in Nuprl by showing the definition
of our list recursion function in Nuprl and SML. Nuprl has a list recursion operation (list_ind), while
SML does primitive recursion (the name of the function appears within the body of the function).
In accordance with our plan to embed SML in Nuprl, we began by creating a function (recurse) in
Nuprl based upon the list_ind operator. We then proved several theorems describing the behavior
of recurse. Based upon these theorems we wrote recurse in SML. Because SML allows primitive
recursion, we were able to write the implementation of recurse in SML to match the Nuprl theorems
that describe its behavior. All other functions which do list recursion are built on top of recurse.

The function recurse recurses over a list, applying a function at each step. Equations 1 and 2 show
the semantics for list_ind in Nuprl by describing its behavior on an empty list and on a non-empty
list. In these equations nil represents an empty list, hd::tl is a non-empty list consisting of a first
element (hd) and a tail list (), nil_val is the value to return when the list is empty and fis the
function to apply when recursing down the list. This definition allows very general list recursion
terms to be written, while still guaranteeing that the function will terminate.

list_ind(nil; nil_val; f) = nil_val (1)
list_ind(hd::tl; nilval; f) =
f(hd) (tl) (list_ind(tl; nil_val; f)) (2)

Equation 3 shows the definition of recurse in Nuprl.

recurse f nil_val a_list =

list_ind(a_list; nil_val; f) (3)

Based upon this definition we proved Theorems 1 and 2. These theorems were trivial to prove,
because they are essentially identical to the semantics which are defined for the list_ind operator.



Theorem 1 Recurse — base case

F Vf, nil_val.

recurse f nil_val nil = nil_val

Theorem 2 Recurse - inductive case

F Vf, hd, tl, nil_val.
recurse f nil_val (hd::tl) = f{hd)(tl)(recurse f nil_val tl)

Based upon these theorems, we wrote recurse in SML as shown in Equation 4. Having defined the
function recurse, we then used it in our implementation of other functions and used Theorems 1 and
2 to prove theorems describing the behavior of functions built upon recurse. Using this methodology,
SML functions built upon this base can be verified in Nuprl and can be used in real programs that
are compiled and run using an SML compiler.

fun recurse f nil_val nil = nil_val

| recurse f nil_val (hd::tl) = f(hd) (t) (recurse f nil_val tl) (4)

The only informal link in the connection between Nuprl and SML arises because Nuprl uses lazy
evaluation and SML uses eager evaluation. In reality, this does not pose a problem for us, because
the subset of SML that we are using is purely functional and all of the functions are guaranteed to
terminate. Thus, for the subset that we are using, programs will have identical behavior in Nuprl
and in an SML compiler?.

2.2 Weak Division Algorithm

The weak division algorithm seeks to decrease circuit area by removing redundant combinational
logic. A sub-circuit contains redundant logic if it implements precisely the same function as another.
Weak division removes redundant logic by finding common subexpressions among the diviscrs of
different functions. The common subexpressions are replaced by new intermediate variables. This
results in the duplicated logic being implemented only once, thereby reducing the area of the circuit.

For example, Equation 5 contains two functions, one defining the variable p and one defining the

variable gq.

p=(aAbAc) V(aAbAd) V(aAbAe)
g=(gAc) V (gAnd) V h (5)

10ngoing research at Cornell includes work aimed at creating a type theoretic semantics for SML within Nuprl.
Once this has been done, programs will be able to be verified without relying on informal arguments to show the
correspondence between the Nuprl and SML semantics.



There is one common subexpression, (¢ V d), among the divisors of p and q. We can substitute a
new variable z into the equations in place of (¢ V d). Next, we can substitute a new variable (2)
for the term (a A b), which appears multiple times in the expression for p. This results in the set
of equations shown below.

p=zANzV zAe

g=(gNz) V h

z=c V d

z=aAbd (6)

These substitutions have reduced the size of the circuit from twelve two input gate equivalents to
seven, because the factors (¢ V d) and (a A b) are now only implemented once. The substitutions
increased the delay through the circuit from two gate delays to three, because the signals z and z
added an additional layer of logic to the circuit. We have found that as the size of circuits increase
the reduction in area increases significantly, but the additional delay converges rapidly: we achieved
reductions in area of 88% for circuits with more than three thousand gates, but yet added no more
than nine additional layers of logic.

In comparing these results to those produced by Mis [BR*87], a conventional implementation of the
weak division algorithm, we found that Pbs produces results of comparable quality to those of Mis,
but that Pbs takes longer to run [AL92]. The longer run times are primarily due to the fact that
the purpose of Pbs is to demonstrate that formally verified synthesis tools are a viable alternative
to conventional tools. Because we knew from the beginning that we were going to prove Pbs, we
aimed our implementation more towards code that was easy to verify than code which was fully
optimized. In comparison, when developing a conventional tool, such as Mis, a great deal of effort
is put into writing code which will run as fast as possible. The price that is paid for the extra speed
in a program such as Mis is that the code would be extremely difficult to verify. If we wished to
develop a more efficient implementation, we could view our current code as a low level specification,
and re-implement more efficient versions of the functions. This is similar to the technique used in
hardware verification where each level of the design hierarchy acts as an implementation of the level
above and a specification for the level below.

The goal of the weak division algorithm is to eliminate all redundant combinational logic in circuits.
This is done by substituting new variables in for common subexpressions of divisors of expressions.
There are two phases in the algorithm; each phase removes common subexpressions of a different
type of divisor. The final result of this substitution of new variables for common divisors is a system
of Boolean equations without any duplicated combinational logic. A more formal way to state this

is that the largest divisors shared by any pair of equations in the system consist solely of single
literals [BM82).

The reason for a two phase approach is to increase the efficiency of the algorithm. To remove
all duplicated combinational logic it is necessary to eliminate all common subexpressions of all
divisors. Calculating the complete set of divisors is an extremely time intensive process. The
principal advantage of the weak division algorithm is that it has the same power as removing all
subexpressions of all common divisors, but it does not enumerate all the divisors. Instead, a subset
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of the divisors, known as the kernels, are calculated in the first phase of the algorithm, which is
called distill. (The calculation of kernels is discussed in detail in Section 4.3.) In the second phase
of the algorithm, known as condense, the common cubes are calculated. Verifying a program which
implements the weak division algorithm requires first showing that the algorithm is correct: that is,
prove that removing common subexpressions of kernels followed by common cubes is equivalent to
removing all common divisors. Second, the program must be shown to be a correct implementation
of the algorithm. This requires showing that the program removes all common subexpressions of
kernels and then removes all common cubes.

3 The Methodology

In this section we outline the methodology we discovered while implementing and verifying Pbs.
Section 4 demonstrates the methdology by describing the implementation and verification of three
different functions in Pbs. The methodology can be summarized as:

® Make extensive use of modular and higher order functions
e Write short, simple functions

Describe the behavior of functions with characterization lemmas

Use characterization lemmas in proofs of abstract properties of functions

Use induction lemmas for complicated functions

The first two part of the methodology are not so much methods, but rather guidelines. In order for
it to be viable to prove properties about a program, the program itself must be well written. The
good habits which programmers must follow in order to write verifiable code include many obvious
points, such as the use of very modular code and higher order functions. This style of programming
allows each function and its corresponding lemmas to be used many times. When just writing code,
it may seem easier to simply duplicate a piece of code if it is extremely short and is only used a
few times. But, when proving code correct, not only must the code be duplicated, but the proofs
describing the code must also be duplicated.

In addition, each function should be as short and simple as possible. This will allow the behavior
of the function to be described in a few simple lemmas. It is almost always a good idea to break up
a single complex function into several smaller functions, even if the code is not used anywhere else.
Linger, in describing the use of the Cleanroom methodology, says that to make the verification more
tractable “simpler design approaches were actively sought in reviews and redesigning for simplicity
was made an explicit objective.” [LMSS§]

In our methodology, we make use of three categories of theorems. The first, called characterization
lemmas, includes theorems which describe the behavior of functions at a level which is very close to
the implementation. The second category is comprised of theorems describing abstract behavioral
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properties of functions. For complex functions, or functions for which there are a large number
of abstract properties that must be verified, induction lemmas are used to structure proofs and
capture reasoning which would otherwise be common to multiple proofs.

The purpose of characterization lemmas is to provide an implementation independent description of
the behavior of a function. Characterization lemmas describe the behavior of a function for a specific
set of inputs. For example, for functions which recurse over lists we use one characterization lemma
for the case when the list is empty and one lemma for when the list is not empty. For functions based
on if-then-else, we use one lemma for the true case and one for the false case. The proofs of abstract
properties rely upon characterization lemmas and do not make direct use of the implementation
of the function. This allows us to abstract away from implementations so that minor changes in
implementations only affect proofs of the characterization lemmas.

For functions which require complicated implementations, or for functions which have a large num-
ber of abstract properties that need to be verified, induction lemmas are used. Just as an induction
lemma for lists breaks down a proof about lists into a base case and an inductive case, an induc-
tion lemma for a function breaks down proofs about the behavior of the function into a number of
simpler cases. Similarly, just as the inductions lemma for lists is parameterized by the proposition
to be proved about lists, an induction lemma for a function is parameterized by the proposition
that is to proved about the function. Redundant reasoning is avoided because, without the use of
induction lemmas, all of the proofs about a function would most likely contain the same steps for
simplifying the proof goal.

The problem with relying solely on characterization lemmas for complex functions is that it may
take many steps to iteratively perform induction and apply characterization lemmas to simplify the
goal for each of the parameters to a function. For example, in the function f (Equation 7), there
is a nested if-then-else. This function requires three characterization lemmas, the rewrite rules of
which are shown in Equations 8 - 10.

fun fab =if a then (if b then z else y)

else g(b) (7
ftrue, true) =z (8)
f(true, false) =y 9)
[alse, b) = g(b) (10)

Theorems describing a behavioral property of f can be written as shown in Theorem 3, where P is
the property to be verified.

Theorem 3 Generic theorem for f

F Va, b. P(a, b, fa,b))
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To verify a theorem in the form of Theorem 3, we would begin by performing induction on a. This
would give us two subgoals, one for the case where a is true and one for the case where a is false. We
would then have to perform induction on b in the first subgoal, which would give us two additional
subgoals. This would leave us with a total of three subgoals; and we would have to apply one of
the characterization lemmas to each of these subgoals to simplify the instantiation of f. In all this
would take us about five steps. These five steps would most likely be repeated in every single proof
about f. Using an induction lemma for f would allow us to perform these steps just once.

We construct induction lemmas by examining the characterization lemmas, and writing one clause
for each characterization lemma. An induction lemma for f would say that for any proposition (P)
to be true about f, the proposition must be true for the cases where a and b are both true, where
a is true and b is false, and where a is false.

Lemma 1 is an induction lemma for . We have three characterization lemmas for f, so we have
three clauses on the left hand side of the implication. The first clause says that the proposition P
is true when a and b are both true, the second clause says that P is true when a is true and b is
false, and the third clause says that P is true when a is false.

Lemma 1 Induction lemma for f

FVP.
P(true, true, z) &
P(true, false, y) &
Vb . P(false, b, g(b)) =
Va, b. P(a, b, fla, b))

Now, given a theorem written in the form of Theorem 3, we can apply Lemma 1 and simplify the
goal as shown in Proof Step 1.

F Va, b. P(a, b, fla, b))
BY Lemma ‘finduction®

F P(true, true, z)
F P(true, false, y)
F Vb . P(false, b, g(b)))

Proof Step 1: Application of induction lemma

In many cases, such as the simple example here, after applying the induction lemma in a proof, the
function will no longer appear in the proof. This occurs whenever the function being described is
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not recursive. It may also occur if there is extra information about the properties which will be
verified, as is true with the function described in Section 4.3. When the function being described
does not appear in the proof after the application of the induction lemma, then the induction lemma
has captured all of the reasoning which is specific to the function.

Based upon our experiences, we believe that just as programming style becomes increasingly impor-
tant as the size of programs increases, proof style becomes increasingly important as the size of a
verification effort increases. The methodology described here is a uniform and systematic approach
that may be used to implement and verify a wide variety of software programs. The methodology
requires a proof development system which uses a higher order logic. This is because induction
lemmas are parameterized by propositions. Also, we have found the ability to write higher order
functions to be very useful in developing software that is geared towards verification.

4 Examples from the Implementation and Verification of
PBS

In this section we illustrate our methodology by describing the implementation and verification
of three functions. The first example (Section 4.1) is the membership function, which tests if an
element is a member of a list. It is a simple function and is used to introduce our style of proof
and describe how characterization lemmas are proved. In the next two sections we describe the
verification of two other functions. These functions are much more complex than the membership
function, and so entire proofs are not shown. Instead we concentrate on the interesting aspects
of the verification of each function. Section 4.2 describes a function for dividing an expression by
a cube and is an example of using characterization lemmas to verify more abstract properties of
a function. The most complex function in Pbs is described in Section 4.3 and shows the use of
induction lemmas. Throughout this section we use SML notation for pieces of code; our proof
notation is described in Appendix A.3.

4.1 The Membership Function — A Simple Example

The first functions which we wrote in Pbs were simple operations on lists, such as testing if an
element is a member of a list and deleting an element from a list. These two functions, testing for
membership and deleting, are the basis for almost every other function in Pbs. This is because in
Pbs all but one of the data types are built from lists. For example, a cube, which is a conjunction
of literals, is represented as a list of literals; and an ezpression, which is a disjunction of cubes, is
represented as a list of cubes. Dividing an expression (a list of cubes) by a cube (a list of literals)
consists primarily of testing if literals are members of cubes and deleting literals from cubes. This
division function is described in detail in Section 4.2.

Because membership in a list is such a fundamental operation in Pbs, and because it is a simple
function, we use it as the first example for describing the techniques we used. Our membership
function is parameterized by an equivalence function eq_fn. In Pbs, we have separate equivalence
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functions for literals, cubes and expressions. This allows us to use the same membership function
in many different situations.

For functions which operate on lists, it is common to define their behavior in an inductive style. To
do this for the membership function, we wrote characterization lemmas (Theorems 4 and 5) which
describe the behavior of the function for the base case (nil) and for the inductive case (hd::tl)

Theorem 4 Membership in the empty list
F Veq.fn, . ~(mem(eq.fn)(z)(nil))
Theorem 5 Membership in a non-empty list

F Veq.fn, z, hd, tl .
mem(eq.fn)(z)(hd:tl) <= eq.fn(z)(hd) V mem(eq.fn)(z)(tl)

Now that we have defined the desired behavior of our membership function, we can write the code
for it. Our function takes three parameters: an equivalence function (eg.fn), an element (z) and
a list (a_list). The function tests each element in a_list to determine if it is equal to z under the
equivalence function eq_fn. If an element is found which is equivalent to z then mem returns true,
otherwise it returns false. To test each element of a_list, we recurse over the list using a higher order
function named reduce. The function reduce is implemented in terms of recurse, which was described
in Section 2.1. The function takes three parameters: the function to apply to each element of the
list (f), the value to return when the list is empty (nil_val) and the list to recurse over. Equations 11
and 12 define the behavior of reduce for the base and inductive cases?.

reduce f nil_val nil = nil_val (11)

reduce f nil_val (hd::tl) = f(hd) (reduce f nil_val tl) (12)

Figure 1 shows our implementation of the function mem. Inside the body of the function a local
function named fis declared. The function ftakes two parameters, the current head of the list (hd)
and the result of testing for membership in the tail of the list. The function returns true if z is
equivalent to hd or if the result is true.

2As an alternative to the approach taken here, we could have defined the membership function in such a way
that Nuprl could have verified it automatically. This approach would have been similar to that of proof systems
which are capable of automatically verifying many inductively defined functions [BM88]. We could have done this
by writing the function directly in terms of Nuprl’s primitive list induction operator. For us, there were several
disadvantages to choosing this alternative. Most importantly, it would prevent our implementation of Pbs in Nuprl
from being the same as our implementation in SML. Secondly, verifying more complicated functions in this alternative
style would be more difficult than in the style which we used. By using the function recurse as the only primitive
function for recursion and implementing other functions such as reduce in terms of recurse, we were able to hide the
implementation details of recursion and thereby prevent our proofs from becoming cluttered with low level details.

13



fun mem eq_fn z a_list =

let

fun f hd result = eq_fn(z)(hd) orelse result
in

reduce f false a_list
end

Figure 1: Implementation of membership function

Now that we have implemented the membership function, we need to prove that it satisfies the
theorems that we used to described its desired behavior. The first theorem, Theorem 4, is easily
proved by direct computation and Theorem 5 can be proved using lemmas to describe the behavior
of the recursion function reduce and the Boolean disjunction function orelse. The complete proof,
which requires four steps, appears in Figure 2 and is described in the following paragraphs. In the
proof, only the conclusion and the rule for each step are shown. The hypotheses contain variable
declarations and are not modified in the proof. The rules, which appear after “BY”, are the only
text other than the initial goal that the user types in.

Theorem 5 says that an element (z) is a member of a list consisting of a head element (hd) and a
tail list (¢I) if and only if z is equal to hd or z is a member of t. The proof begins by unfolding
the definition of mem to expose that it is implemented in terms of reduce. In the second step a
rewrite rule based on Equation 12 is used to simplify the inductive call to reduce. At this point,
the right hand side of the orelse is equivalent to testing if z is a member of tI, so the definition of

mem is folded back up. The proof is completed by replacing the SML function orelse with a logical
disjunction ( V).

One of the first steps of each proof is to unfold the definition of the function being described. In
Nuprl “unfolding” means to replace an instantiation of a function with the code used to implement
the function. It is analogous to the compiler optimization of in-line expansion. The purpose of
unfolding definitions is to reveal the implementation of functions. When this has been done, rewrite
rules or lemmas describing lower level functions can be used in the proof.

As illustrated here, unfolding is really just one type of rewriting that can be performed. Nuprl has
a very powerful rewriting package, which is used to replace one term with another term, where the
two terms are related by an equivalence relation. In the proof of Theorem 5, four different rewrite
rules are used. In the first and third steps, direct computation rules are used to unfold and fold the
instantiation of mem. The rewrite rules used in steps two and four are derived from lemmas that
were proved about the functions reduce and orelse.

By adopting the proof style described here, we were able to write concise characterization lemmas
describing complex functions. The purpose of this example was to introduce our notation and proof
style and to provide a detailed illustration of a simple proof in Nuprl.
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F (mem eq_fn z (hd:tl))
=
(eg-fn z hd) V (mem eq fn z tl)

BY  RewriteConcl (UnfoldFirst ‘mem?)

b (reduce (fn hd = fn result = (eq.fn z hd) orelse result) false (hd:tl))
—
(eg-fn z hd) V (mem eq_fn z tl)

BY RewriteConcl reduce_ht_convn

F (eq-fn z hd) orelse
reduce (fn hd = fn result = (eq_fn(z))(hd) orelse result ) false tl)
= .
(eg-fn z hd) V (mem eq.fn z tl)

BY  RewriteConcl (Fold ‘mem*)

F (eq-fn z hd) orelse (mem eq.fn =z tl)
—
(eg-fn z hd) V (mem eq.fn z tl)

BY RewriteConcl orelse_z_z_convn

Figure 2: Proof of Theorem 5
4.2 The Quotient Function — A Typical Example

This section illustrates the verification of a typical function in Pbs. Section 4.1 showed how we
proved characterization lemmas for functions; this section demonstrates how we used characteriza-
tion lemmas to verify abstract properties about functions. The function chosen here calculates the
quotient produced by dividing an expression by a cube. Recall that a cube is a conjunction of literals
and an ezpression is a disjunction of cubes. (Definitions which are specific to the weak division
algorithm are given in Appendix A.1.) Dividing an expression by a cube is the first function in Pbs
which is specific to the weak division algorithm. Almost all of the lower level functions are general
purpose Boolean operations, such as calculating the conjunction of two cubes or the disjunction of
two expressions. This quotient function is crucial in Pbs, because most of the operations in the
weak division algorithm are based upon dividing an expression by a cube. Dividing one expression
by another expression, which is the function from which the weak division algorithm gets its name,
begins by dividing the dividend expression by each of the cubes in the divisor expression. Substi-
tuting an intermediate variable into an expression in place of a common cube requires dividing the
expression by the common cube. We begin by describing the algorithm for dividing an expression
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by a cube, and then present the proof of correctness for our implementation.

A cube (¢;)? is divided into an expression (e;) by finding all of the cubes in e; which are supersets
of c;. The quotient is produced by deleting the literals in ¢, from each of these cubes. Equation 13
is a pseudo code description of this division operation.

QUOT.-ec e; ¢ =

quot = ()
for each cube ¢, €¢;
if e Cey
then quot = quot U (¢ - ¢3)
return quot (13)

An example of dividing a cube into an expression is shown in Figure 3. To divide the cube (a A b)
into the expression, we test if (a A b) is a subset of each of the cubes in the expression. For the first
two cubes, (a Ab A c)and (aAbAd), (aAbd)is a subset, so we delete the literals z and b from
the cubes. This results in ¢ and d respectively. The cube (a A b) is not a subset of (a A g A e),
so the result is the empty set. In the last step the results are combined together to form the final
quotient.

QUOT.ec ((aAbAc)V(aAbAd)V(aAgAe)) (aAb) =

Initially: quot = 0

For each cube (a AbAc), (aAbDAd), (aAgAe)

(aAd) S (aAbAc) — quot=0 U{c} ={c}
(aAd)C (anbAd) — quot ={c}U {d} = {cd}
(and)Z (anghe) — quot =0 U{cd} ={cd}

Result: quot = (¢ V d)

Figure 3: Example of dividing a cube into an expression

Our implementation of QUOT-ec is shown in Figure 4. For each data type there is a function which
converts the data type into a list of the component type. The component type is the type from
which the data type is built: cubes are the component type of expressions. A corresponding function

3Throughout the rest of this section and Section 4.3 we will use the following notation: variables beginning with
l are literals, c are cubes, and e are expressions. Also, a cube which has the same subscript as an expression is a
member of the expression. These are simply notational conventions used to make it easier to understand theorems
and functions; there is no semantic meaning assigned to the names.
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fun QUOT-ec(er)(c2) =

let
fun f ¢ result =
if IN_cc(c2)(er)
then DEL_cc(c¢;)(c¢2)::result
else result
in

Cs2E(reduce f NIL_e (E2Cs(e;)))

end

Figure 4: Function for quotient of an expression and a cube

Function Purpose

NIL_e Base case (empty expression).

Cs2FE Convert list of cubes into an expression.
E2Cs Convert expression into list of cubes.
CONS_ce Concatenate a cube onto an expression.

Figure 5: Type conversion functions for expression data type.

is used to convert a list of the component type into the data type. Also, there is a special constant
which represents the base case (empty list) of the data type. Based upon these primitive functions
we wrote other functions to perform such tasks as concatenating a member of the component type
onto the data type. Figure 5 lists these functions for the data type of expressions.

In QUOT-ec, E2Cs is used to convert the expression e; to a list of cubes, so that reduce can recurse
over e;. For each of the cubes (¢;) in e;, we test if ¢; is a subset of ¢; using the function IN.cc. If
¢z (the divisor cube) is a subset of ¢; (the cube from e;), then the literals in ¢; are deleted from the
literals in ¢; using the function DEL_cc; the resultant cube is then concatenated onto the previous
result. If ¢; is not a subset of ¢, then the previous result is returned. The type of the result of
QUOT-ec should be an expression, so Cs2F is used to convert the list of cubes returned by reduce
to an expression.

Three characterization lemmas are needed for this function: one for an empty expression and two
for non-empty expressions. One of the characterization lemmas for non-empty expressions is for
the case in which ¢, is a subset of ¢; and one is for when ¢, is not a subset of ¢;. Lemma 2 states
that the quotient of an empty expression and any cube is an empty expression. Lemma 3 states
that if c; is a subset of ¢; then the quotient of CONS_ce(c1)(e1) and ¢; is equal to DEL_ce(c;)(cs)
concatenated with the quotient of e; and ¢,. For the purposes here, the behavior of DEL_cc is not
important. This is because the lemma is describing the behavior of QUOT-ec in terms of lower
level functions, such as DEL_cc. Lemma 4 states that if ¢; is not a subset of ¢; then the quotient
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of CONS_ce(c1)(e1) and ¢, is the empty expression (NIL_e).

Lemma 2 Base case of quotient

F Vey:Cube_t.
QUOT-ec(NIL_€)(c;) = NIL_e

Lemma 3 Positive inductive case of quotient

F VYe1,co:Cubet.
Vey:Ezpr_t.
IN_ce(c3)(e1) =
QUOT-ec(CONS_ce(c1)(er))(er) =
CONS_ce(DEL_cc(c1)(¢2))(QUOT-ec(€;)(¢2))

Lemma 4 Negative inductive case of quotient

F Vep,cp:Cube_t.
Ve : Ezpr_t.
~IN_cc(¢ez)(e1) =
QUOT-ec(CONS_ce(c1)(e1))(c2) = NIL_e

After completing the proofs of Lemmas 2, 3 and 4, rewrite rules based on these lemmas (Equa-
tions 14, 15 and 16) can be derived.

QUOT-ec(NIL_€)(c;) = NIL_e (14)

IN_cce(er)(a1) =
QUOT-ec(CONS_ce(c1)(e1))(c2) =
CONS_ce( DEL_cc(¢2)(a1))(QUOT-ec(e)(c2)) (15)

~IN_cc(cz)(er) =
QUOT-ec(CONS_ce(c1)(€1))(c2) = QUOT-ec(er)(cz) (16)

Having created rewrite rules describing the behavior of QUOT-ec, we can use the rewrite rules to
verify a more abstract theorem about the function. In Pbs, Theorem 6 is the primary theorem used
to describe the behavior of QUOT_ec'. The theorem describes the conditions under which a cube is
a member of the quotient produced by dividing an expression by a cube. This theorem states that
a cube (co) is a member of the quotient of an expression (e;) and another cube (¢;) if and only if
there is a cube (¢;) in ¢ such that co is equal to ¢, deleted from ¢;. An informal argument for the
correctness of the theorem is:

“In Section 4.1, quantified variables were not shown with their types for simplicity. In the rest of this paper,
we will include the types for quantified variables as they appear in Nuprl, so as to help clarify the meanings of the
theorems. Appendix A.2 lists the types used in the implementation of Pbs.
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Theorem 6 Membership in a quotient

F Ve :Ezpr.t.
Yy, co:Cube_t.
MEM_ce(co)(QUOT-ec(e1)(c2)) <+
3 ¢,:Cube_t.
MEM_ce(a1)(e) &
EQc co (DEL_cc(c1)(c2))

The quotient of an expression (€;) and a cube (c;), is produced by deleting ¢; from
each of the cubes in e; which ¢; is a subset of.

We can restate this as: each cube in the quotient of ¢; and ¢, is produced by deleting
c; from one of the cubes in e;. Therefore, if a cube (co) is a member of the quotient of
e1 and c;, then there must exist a cube (¢;), which is a member of e;, such that co is
equal to ¢, deleted from .

We want our proof to use the characterization lemmas and not be directly dependent on the imple-
mentation of the quotient function. Because of this we use the rewrite rules (Equations 14, 15 and
16), which were derived from characterization lemmas. The rule in Equation 14 says the quotient
of an empty expression and any cube is an empty expression. The rules in Equations 15 and 16
describe how the quotient of a non-empty expression and a cube is formed. There are two rules
for the case of a non-empty expression because QUOT-ec acts differently depending upon if the

cube (c;) being divided into the expression is a subset of the cube (¢;) being concatenated onto the
expression.

The structure of our proof of Theorem 6 will be to break the theorem down into a number of sub-
goals, so that we can make use of the three rewrite rules. The rules are stated as a base case and
two inductive cases, so our proof of Theorem 6 will begin by performing induction on the expression
which we wish to take the quotient of. The proof of the base case will use the rewrite rule from
Equation 14. For the inductive case, we will do a case split on whether the the cube being divided
into the expression is a subset of the cube being concatenated onto the expression. At this point,
we will be able to apply the rewrite rules from Equations 15 and 16. After applying the rewrite
rules we will use a variety of lemmas and general mathematical reasoning to finish the proof.

Figure 6 shows the proof tree for Theorem 6. The steps in the proof which are described in the
rest of this section are labeled with the number of the lemma or proof step that they correspond
to. Steps which are not described are shown as dashed triangles.
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Figure 6: Proof tree of Theorem 6
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We begin the proof of Theorem 6 by performing induction on the expression e;. This results in a
base case and an inductive case. The base case is quite simple and will not be dealt with here. For
the inductive case we can split the if-and-only-if into two implications, resulting in two subgoals
(Lemmas 5 and 6). For the rest of this section, the proof of the forward direction (Lemma 6) is
discussed in detail. The proof of the reverse direction is similar.

Lemma 5 Reverse direction of inductive case

F Ve:Ezpr.t.
Yep,co,hd: Cube_t.
(3 e1:Cube_t.
MEM_ce(e1)(e) &
EQc(co)(DEL_cc(¢1)(c)) =
MEM_ce(co)(QUOT-ec(e1)(c2))) =
(3 e1:Cubet.
MEM_ce(c,)(CONS_ce(hd) (1)) &
EQc(co)(DEL_cc(e;1)(c2)) =
MEM_ce(co)(QUOT-ec(CONS_ce(hd)(e1))(c2)))

Lemma 6 Forward direction of inductive case

F Ve :Ezpr.t.
Y¢,,co,hd: Cube_t.
(MEM_ce(co)(QUOT-ec(e)(c2)) =
3 ¢1:Cube_t.

MEM_ce(c1)(e1) &
EQc(co)(DEL_cc(c;)(c2))) =

(Mg’M_cgc:)(tQUOT_ec(CONS.ce(hd)(el))(cz)) =
MEM_ce(c;)(CONS-ce(hd)(e1)) &
EQc(co)(DEL_cc(c1)(¢2)))

The first step in almost every proof is to instantiate universally quantified variables
and bring the left hand sides of implications into the hypothesis list. This step is done
automatically; the result of performing this step to Lemma 6 is shown in Proof Step 2.

The first three hypotheses in Proof Step 2 are variable declarations. The fourth hypoth-
esis is the inductive hypothesis. In order to make use of this hypothesis, we must show
that the left hand side of the implication is true. The strategy for this proof will be
to modify the fifth hypothesis so that it matches the left hand side of the implication
in the inductive hypothesis. Currently, the left hand side of the inductive hypothesis
says that the cube co is a member of the quotient of €; and ¢, and the fifth hypoth-
esis says that co is a member of the quotient of CONS_ce(hd)(€;) and c;. In order to
21
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1. € : Ezprt

2. ¢y : Cube_t

3. co: Cube_t

4. MEM_ce(co)(QUOT-ec(e1)(c2)) =
Je; : Cube_t.

MEM_ce(c;1)(e1) &
EQc(co)(DEL_cc(er)(c2))
5. MEM_ce(co)(QUOT- ec(CONS_ce(hd)(el))( 2))

F Jep:Cube_t.
MEM_ce(c;)(CONS_ce(hd)(e1)) &
EQc(co)(DEL_cc(cy)(¢2))

Proof Step 2: Forward direction of inductive case after initial set up

transform hypothesis five to match the left hand side of hypothesis four, we must look
at the rewrite rules based on the characterization lemmas for QUOT-ec (Equations 15
and 16) and understand what it means for a cube to be a member of the quotient of

CONS_ce(hd)(e;) and c,.

4. MEM_ce(co)(QUOT-ec(e1)(c2)) =
Jey: Cube_t.
MEM_ce(c1)(e1) &
EQc(co)(DEL_cc(e¢y)(c2))
5. MEM_ce(co)(QUOT-ec(CONS_ce(hd)(e))(c2))
6. ~IN_cc(c2)(c1)
F 3ep:Cubet.
MEM_ce(c;)(CONS_ce(hd)(e;)) &
EQc(co)(DEL_cc(c1)(c2))

Proof Step 3: Negative side of first case split

Due to the if-then-else in QUOT-ec, we have two rewrite rules: one for the case when ¢,
is not a subset of ¢; and one for when c; is a subset of ¢;. To use these rules, a case split
is done on the code IN_cc(c;)(c1) (Proof Steps 3 and 4). A case split takes a Boolean
value and creates two subgoals, one in which the value is true and one in which the value
is not true. Proof Step 3 is the case where ¢, is not a subset of ¢; and Proof Step 4 is
the case where ¢, is a subset of ¢;. In the rest of this section we will not show the first
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4. MEM_ce(co)(QUOT-ec(e1)(c2)) =
3 ¢;:Cube_t.
MEM_ce(c1)(e1) &
EQc(co)(DEL_cc(¢1)(c2))
5. MEM_ce(co)(QUOT-ec(CONS_ce(hd)(e1))(c2))
6. IN_cc(c2)(c1) ‘
F Jep:Cubet.
MEM_ce(c;)(CONS_ce(hd)(e1)) &
EQc(co)(DEL_cc(c)(c2))

Proof Step 4: Positive side of first case split

three hypothesis, because they are just variable declarations and are not changed in the
rest of the proof.

At this point, the two rewrite rules (Equations 15 and 16) can be used, one for each
side of the case split. Proof Steps 5 and 6 show the affect of applying the rewrite rules
to hypothesis five for the negative case (Proof Step 3) and positive case (Proof Step 4)
respectively.

4. MEM_ce(co)(QUOT-ec(e)(c2)) =
3 ¢;:Cube_t.
MEM_ce(c;)(e;) &
EQc(co)(DEL_cc(c;)(e2))
5. MEM_ce(co)(QUOT-ec(e)(c2))
6. ~IN_cc(cz)(c1)
F Jey:Cubet.
MEM_ce(c;)(CONS_ce(hd)(e1)) &
EQc(co)(DEL_cc(c;)(ca))

Proof Step 5: Negative side of first case split after
application of rewrite rule from Equation 16

In Proof Step 5, hypothesis five matches the left hand side of hypothesis four, thus
hypothesis four can now be used in the proof. There remains some minor work involving
membership in lists to finish off this part of the proof. This work is very straightforward
and will not be described here. For the positive side (Proof Step 6), there is still some
work to be done before the inductive hypothesis may be used.
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4. MEM_ce(co)(QUOT-ec(e1)(cz)) =
3 ¢1:Cube_t.
MEM_ce(c1)(e1) &
EQc(co)(DEL_cc(c)(c2))
5. MEM_ce(co)(CONS_ce(DEL_cc(hd)(c2)) QUOT-ec(e;)(cz))
F Jep:Cube_t.
MEM_ce(c,)(CONS_ce(hd)(e;)) &
EQc(co)(DEL_cc(c1)(c2))

Proof Step 6: Positive side of first case split after
application of rewrite rule from Equation 15

Proof Step 7 shows the proof after applying the rewrite rule in Equation 17 to hypothesis
five in Proof Step 6.

MEM_ce ¢ (CONS_ce c.hd ¢) <= (EQe c c.hd) V (MEM_ce c ) (17)

This rewrite rule says that if a cube is a member of an expression consisting of a head
cube and a tail expression, then the cube is either equal to the head cube or is a member
of the tail expression. It is derived from Theorem 5, which describes membership in any
non-empty list. After applying the rewrite rule, hypothesis five consists of a disjunction:
either co is equal to DEL_cc(hd)(c;) or co is a member of QUOT-ec(e;)(c;). Because
of this disjunction, we split the proof into two subproofs: one for each side of the
disjunction. In the left subproof, hypothesis five is EQc(co)(DEL_cc(hd)(c;)) and in the
right subproof hypothesis five is MEM_ce(co)(QUOT-ec(e;)(c2)).

4. MEM ce(co)(QUOT-ec(e1)(c2)) =
3 ¢;:Cube_t.
MEM_ce(c1)(e) &
EQc(co)(DEL_cc(er)(c2))
5. EQc(co)(DEL.-cc(hd)(c2)) V MEM_ce(co)(QUOT-ec(e;)(c2))
F Jep: Cube_t.
MEM_ce(c,)(CONS_ce(hd)(e;)) &
EQc(co)(DEL_ce(cy)(c2))

Proof Step 7: Positive side after membership rewrite

The left subproof (where co is equal to DEL_cc(hd)(c;)) can be completed by instan-
tiating ¢; in the conclusion with hd. This results in Proof Step 8, which contains two
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goals. The first goal says that hdis a member of CONS_ce(hd)(e;), which is clearly true.
The second goal says that co is equal to DEL_cc(hd)(c;), which we know is true from
hypothesis five. Thus, the left subproof has been completed.

4. MEM_ce(co)(QUOT-ec(e1)(c2)) =
3 ¢;:Cube_t.
MEM_ce(c1)(e1) &
EQc(co)(DEL_cc(c1)(cr))
5. EQc(co)(DEL-cc(hd)(c;))
6. hd: Cube_t
F MEM_ce(hd)( CONS_ce(hd)(e;))

F EQc(co)(DEL-cc(hd)(cz))

Proof Step 8: Left side of second split after instantiating conclusion with Ad

In the right subproof (Proof Step 9), co is a member of QUOT-ec(e;)(c;). Here, hy-
pothesis five matches the left hand side of the induction hypothesis (hypothesis four),
so it can be completed in the same manner as Proof Step 5. This involves using hy-
pothesis four; which is now possible because hypothesis five matches the left hand side
of hypothesis four. Finally, some previously proven lemmas describing membership in
lists are used to complete the proof.

4. MEM_ce(co)(QUOT-ec(er)(c2)) =
3 ¢;: Cube_t.
MEM_ce(c;)(e1) &
EQc(co)(DEL_cc(c¢;)(cz))
5. MEM_ce(co)(QUOT-ec(e;)(c2))
F 3ep:Cubet.
MEM _ce(c;)(CONS_ce(hd)(e)) &
EQc(co)(DEL_cc(cr)(c2))

Proof Step 9: Right side of second split after membership rewrite

This completes our discussion of the proof of Lemma 6, which is used in the proof of

Theorem 6.
O

We began this section by describing Brayton and McMullen’s division algorithm and then presented
our implementation. Based upon the implementation we proved three characterization lemmas
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(Lemmas 2, 3 and 4), from which we derived three rewrite rules. We then showed the proof of
an abstract property of the quotient function. This proof illustrated many of the proof techniques
which were used throughout Pbs, and is a good example of the style of reasoning which we employed.
The proof began by analyzing the characterization lemmas for the function and then picking a
variable to perform induction on. This created a base case and an inductive case. The inductive
case was then further refined into two lemmas (Lemma 5 and 6) that were proven individually.
The proof of Lemma 6 was described in detail. This proof relied upon the use of characterization
lemmas and general mathematical reasoning. Using characterization lemmas allowed us to hide
the implementation details of lower level functions which are used in the quotient function. These
lower level functions include the function for deleting a cube from an expression, the function for
testing if a cube is a member of an expression, and the function for concatenating a cube onto an
expression.

In looking back on the quotient function, it is clear that the structure of the function is complex
enough that an induction lemma would have been useful. At the time that we were verifying the
quotient function, we had not yet discovered induction lemmas, and so proceeded without them.
The next section includes a description of the use of an induction lemma to verify a function.

4.3 The Kernels Function — A Complex Example

The most complicated function in Pbs is the function to calculate the kernels of an expression.
In this section we describe Brayton and McMullen’s algorithm for calculating the kernels of an
expression, how we implemented this algorithm in Pbs and how we verified our implementation
using an induction lemma for the kernels function.

4.3.1 Algorithm and Implementation

The goal of multi-level logic synthesis is to eliminate all divisors of two or more expressions in a
system of Boolean equations. The most important contribution of Brayton and McMullen’s work
is an algorithm for efficiently eliminating all divisors. The key to their algorithm is that it is a two
pass approach. In the first pass all common sub-expressions of kernels are eliminated, and in the
second pass all common cubes are eliminated. The proof of correctness of the overall algorithm
requires showing that eliminating all common sub-expressions of all kernels followed by all common
cubes is equivalent to eliminating all common divisors. The kernels of an expression are the set
of all cube free primary divisors of the expression. The primary divisors of an expression are all
expressions which can be produced by dividing the expression by a cube. An expression is cube
free if no cube divides the expression evenly.

The set of primary divisors of an expression can be calculated by dividing the expression by all
possible cubes which will produce non-empty quotients. One of the conditions for ensuring that the
quotient of an expression and a cube is non-empty is that all of the literals in the cube appear in
the expression. Thus the primary divisors of an expression can be calculated by creating the set of
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all literals appearing in the expression and then dividing the expression by all possible cubes that
can be created from these literals.

Dividing an expression by a cube is equivalent to dividing the expression by the first literal in the
cube, dividing the resulting quotient by the second literal in the cube, then dividing that quotient
by the third literal, and so on. To generate all of the primary divisors of an expression we can
first divide the expression by each of the literals appearing in the expression. This will result in all
primary divisors which can be produced by dividing the expression by cubes with one literal. Next,
we divide each of these primary divisors by each of the other literals in the expression. This will
result in all primary divisors which can be produced by dividing the expression by cubes with two
literals. Proceeding in this manner, we can divide the expression by all possible cubes with three
literals, then four literals, and so on. Eventually we will have divided the expression by all possible
cubes, thus we will have produced the complete set of primary divisors for the expression.

Given the primary divisors of an expression, we can find the kernels by selecting those primary
divisors which are cube free. The problem with this approach is that it is not very efficient,
because the cube free primary divisors are usually a very small subset of the primary divisors. The
algorithm proposed by Brayton and McMullen, and which was used in Pbs, generates only the cube
free primary divisors. An expression is cube free if no cube can divide the expression evenly; an
expression can be made cube free by dividing it by the largest cube which divides the expression
evenly.

In creating the implementation of the kernels function we assume that the inputs to the function
are a cube free expression and the set of all literals in the expression. The function works by
recursing over the list of literals. The general structure of the recursion is shown in Equations 18
and 19, where @ appends two lists together. Equation 18 says that the kernels of an empty list of
literals and a cube free expression include just the cube free expression. Equation 19 says that each
inductive call to Kernels generates two recursive calls. The first call generates the kernels of ¢/ and
the expression divided by hd and then made cube free; the second call generates the kernels of t/
and the expression.

Kernels nil e =[] (18)
Kernels (hd:tl) e =
(Kernels tl (mk_cube_free (QUOT-ec ¢ (CONS.lc hd nil)))) @ (Kernels tl e) (19)

We can write a preliminary implementation of this function as shown in Figure 7, where the function
mk_cube_free takes an expression and makes it cube free by dividing it by the largest cube which
divides the expression evenly.

We could have written this function more directly if we had allowed primitive recursive functions.
As discussed in Section 2.1 we chose not to do this because it would have complicated our embedding
of the subset of SML in Nuprl. In looking at the implementation of Kernels, we may begin to doubt
the wisdom of our choice. But, there are a number of reasons to justify our choice. First, Kernels
is the only function which required this rather convoluted implementation, so the small amount of
extra effort to deal with this one function was worth the benefit of having a simple embedding of
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fun Kernels Is e =

let
fun f hd tl result =
fne =
result(mk_cube_free (QUOT-ec e (CONS_lc hd NIL_c))) Q result(e)
in

(recurse f (fn e = [e]) Is)(e)

end

Figure 7: First implementation of Kernels

SML in Nuprl. Second, once we had implemented Kernels, we wrote characterization lemmas for
the function. These lemmas were easy to prove and hid the implementation of the function. Thus
we did not complicate the rest of our verification effort by choosing to implement Kernels in this
fashion.

The function works by recursing over the list of literals (Is). When this list is empty, recurse returns
it’s second parameter. In this case, that parameter is fn e = [e). This is shown in Equation 20,
which matches Equation 18. When the list of literals is non-empty, we wish the behavior of the
function to match that described in Equation 19. Equation 21 shows the evaluation of the function
from Figure 7 on a non-empty list of literals; it matches Equation 19.

Kernels nil e = (recurse f (fn e = [e]) nil)(e)
= (fne = [e])(e)
= ([e]) (20)

Kernels (hd:tl) e = (recurse f(fne = (e]) (hd:tl))(e)
= (f hd tl (recurse f (fn e = [e]) t))(e)
=(fne =
((recurse f (fn e = [e]) tI)
(mk_cube_free (QUOT-ec e (CONS_lc hd NIL_c)))) @
(recurse f (fn e = [e]) t) (e))(e)
= ((recurse f (fn e = [e]) t)
(mk_cube_free (QUOT_ec e (CONS_lc hd NIL_c)))) @
(recurse f (fn e = [e]) tl) (e)
= Kernels (mk_cube_free (QUOT_ec e (CONS_lc hd NIL_c))) @
Kernels tl e (21)

The implementation of Kernels shown in Figure 7 has the desired behavior, but is not very efficient.
The first observation is that if the literal hd is not a member of any cube in e, then dividing e by
hd will result in an empty expression. Furthermore, if hd is not a member of at least two cubes in

28



e, then making the quotient of e and hd cube free will result in an empty expression. So, if hd is
not a member of at least two cubes in e, then there will not be any kernels in the quotient of e and
hd. We can test for this, and return an empty list right away if hd is not a member of at least two
cubes in e. This is shown in an improved implementation of Kernels in Figure 8.

fun Kernels Is e =
let
fun f hd tl result =
fne =
((¢f 2 < |filter (MEM_lc hd) (E2CS )|
then result(mk_cube_free (QUOT-ec e (CONS_Ic (hd::nil))))
else nil)
Q result(e))
in
(recurse f (fn e = [e]) Is)(e)

end

Figure 8: Second implementation of Kernels

The if-then-else statement in Figure 8 tests if the head of list of literals (hd) occurs in at least
two cubes of the expression (e). If this is not the case, then f returns nil. This is reflected in the
behavior of Kernels as shown in Equations 22 and 23.

2 < |filter (MEM_Ic hd) (E2Cs e)| =
Kernels (hd::tl) e = Kernels (mk_cube_free (QUOT-ec e (CONS_lc hd NIL.c))) @
Kernels tl e (22)

2 £|filter (MEM_lc hd) (E2Cs €)| =
Kernels (hd::tl) e = Kernels tl e (23)

The second observation that we can use to make the implementation of Kernels more efficient is
that the implementation in Figure 8 generates redundant primary divisors. To see this, we can
rewrite the code in Figure 8 as shown in Figure 9. The difference is that in Figure 9, the code for
mk_cube_free has been expanded out.

The problem here is that the cube which e is divided by will not be unique in each case. This is
because the cube consists of hd and the largest cube which divides QUOT-ec e (CONS_lc hd NIL-c)
evenly. To take of this problem, we can create a variable lgst_cube (Equation 24) for the largest
cube dividing e evenly and then test if the literals in Igst_cube are in the list of literals ¢l If all of
the literals are in that list, then none of them will have been used as a head element yet, therefore
the cube will not have been used yet. This is because in order for the cube to have been used
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fun Kernels Is e =
let
fun f hd tl result =
fne =
(if 2 < |filter (MEM_lc hd) (E2Cs e)|
then
let
val lgst_cube = Lgst_cube (QUOT-ec e (CONS_lc hd NIL_c))
in
result (QUOT-ec e CONS_lc(hd::lgst_cube))
end
else nil)
Q@ result(e)
n
(recurse f (fn e = [e]) Is)(e)

end

Figure 9: Third implementation of Kernels

already, one of the literals in the cube would have to have been the head element of the cube. This
optimization will guarantee that each cube divided into e is unique. We can capture this desired
behavior by modifying Equation 22 to test if the literals in Igst_cube are in the list of literals /. This
is reflected in the behavior of Kernels as shown in Equations 26 and 25.

lgst_cube = Lgst_cube(QUOT-ec e (CONS_lc hd NIL_c)) (24)

2 < |filter (MEM_lc hd) (E2Cs e)| &
(Lgst-cube(QUOT-ec e (CONS.Ic hd NIL.c))) €tl =
Kernels (hd::tl) e = Kernels tl e (25)

2 < |filter (MEM_lc hd) (E2Cs €)| &
(Lgst_cube(QUOT-ec e (CONS.lc hd NIL.c))) Ctl =
Kernels (hd::tl) e =
Kernels (mk_cube_free (QUOT-ec e (CONS_lc hd NIL_c))) @
Kernels tl e (26)

Figure 10 shows the final implementation of Kernels, which uses this optimization to ensure that
all cubes divided into the expression are unique.

Now that we have a final implementation of Kernels, we need to write characterization lemmas for
the function. The function recurses over the list of literals Is, so we will need one characterization
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fun Kernels ls e =

let
fun f hd tl result =
fne =
let
val cs = E2Cs(e)
in
if 2 < |filter (MEM_lc hd) cs|
then
let
val lgst_cube = Lgst_cube(QUOT-ec e (CONS.lc hd nil))
in
if List_in_list( eq.lit (C2Ls( lgst-cube )) t )
then resultf{ QUOT-ec e (CONS_lc hd lgst.cube))
else nil
end
else nil
end
Qresult(e)
in

(recurse f (fn e = [e]) Is)(e)

end

Figure 10: Implementation of kernels function

lemma for the base case (an empty list of literals) and several lemmas for the inductive case.
Lemma 7, based on Equation 18 describes the behavior of Kernels when the list of literals is empty.
For the inductive case we have described the behavior of the function using Equations 23, 25 and
26. In Equations 23 and 25, Kernels (hd:tl) e evaluates to Kernels tl e. This behavior is described
in Lemma 8. The full induction step is described in Lemma 9, which contains two calls to Kernels
and is based on Equation 26.

Lemma 7 Kernels base case

b Ve:Ezpr.t. Kernels(nil)(e) = e

The implementation of Kernels as shown in Figure 10 is obviously confusing and difficult to un-
derstand. The benefit of using characterization lemmas to hide implementation details of functions
becomes very apparent when comparing Lemmas 7, 8 and 9 with the code in Figure 10. These
three lemmas clearly and accurately capture the desired behavior of the function. When writing
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Lemma 8 Kernels optimized inductive case

F Vhd:Lit_t.
Vis:Lit_t list.
Ve:Ezpr_t.
cube_free(e) =
|filter (MEM_lc hd) (E2Cs €)| < 2 V
2 < |filter (MEM_lc hd) (E2Cs e)| &
C2Ls( Lgst.cube(QUOT-ec e (CONS_lc hd nil))) Zls =
Kernels(hd::ls)(e) = Kernels(ls)(e)

Lemma 9 Kernels full inductive case

F Vhd:Lit_t.
Vis:Lit_t list.
Ve:Ezpr.t.
cube_free(e) =
2 < |filter (MEM_lc hd) (E2Cs e)| &
C2Ls(Lgst_cube(QUOT-ec(e (CONS.lc hd NIL_c)))) Cls =
Kernels(hd::ls)(e) =
Kernels (mk_cube_free (QUOT-ec e (CONS_lc hd NIL_c))) @

Kernels tl e

theorems describing properties of the function, we do not have to look at the implementation; we
just have to use these three lemmas. In this sense, the lemmas can also act as documentation for
the function, because they describe the behavior at a level which is more abstract than the actual
implementation, but more concrete than the overall specification for the function.

4.3.2 Verification of Kernels Function

The implementation of Kernels has been optimized in a number of ways which make the code
more efficient, but also more complicated. In addition Kernels is a doubly recursive function -
each call to Kernels can generate two sub-calls. By using rewrite rules based on Lemmas 7, 8
and 9 to hide the implementation of Kernels, we have removed the added complication of the
fact that Kernels is implemented in a convoluted fashion in terms of recurse, but we have not
eliminated the complications caused by the optimizations to the function. If we had not optimized
the implementation, we would have had only two lemmas, which would have resembled Equations 18
and 19. Instead, we now have three lemmas which describe four different conditions of the inputs.
The added complexity in the verification process is acceptable, because the improvement in the
efficiency of the implementation is very significant.

The generation of the kernels is the key to the weak division algorithm. At the highest level, the
proofs of the weak division algorithm and of Pbs show that removing all common subexpressions of
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kernels from a system of equations followed by removing all common cubes is equivalent to removing
all common divisors. In order to prove this theorem, we had to prove a number of theorems about
the kernels function. These theorems describe abstract behavioral properties of the function; they
are very far removed from the details of the implementation. An example of one of these theorems
is shown in Theorem 7, which says that if k is a cube free expression, and there exists a cube ¢ such
that k is equal to some expression e divided py ¢ and all of the literals in c are in the list Is then k
is a member of the kernels of the list of literals Is and e.

Theorem 7 Erample Theorem About Kernels

b Vis:Lit_t list.
Ve:Ezpr.t.
cube_free(e) =
Vk:Ezpr_t.
Jdc: Cube-t
cube_free k &
EQe k (QUOT.ec e ¢) &
(C2Ls ¢) Cls =
k € Kernels Is e

Almost all of the abstract theorems that we proved about Kernels, including Theorem 7, were
written in the form shown in Theorem 8. While proving these theorems we realized that much
of the reasoning required for these proofs was independent of the predicate P. To reduce the
duplication of work, we wrote an induction lemma to capture the reasoning which was common to
all of these proofs.

Theorem 8 Generic theorem about kernels

b Vis:Lit_t list.
Ve:Ezpr_t.
cube_free(e) =
Vk:Ezpr_t.
Pls)(e)(k) =

ke Kernels Is e

The purpose of induction lemmas is to break complex proof goals down into multiple subgoals,
each of which is simpler than the original. The kernels induction lemma was derived directly from
Lemmas 7, 8 and 9, which describe the behavior of the kernels function as a base case and two
inductive cases. The induction lemma says that if some property holds for all three cases, then it
will hold for all inputs to the function. We will describe the lemma in three steps, by writing one
clause of the induction lemma for each of the three characterization lemmas. For the base case
(Lemma 7) we can write the first clause of the induction lemma as shown in Figure 11.
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Ve:Ezpr.t.
cube_free(e) =
Vk:Ezpr_t.
P(nil)(e)(k) = EQeke

Figure 11: First clause of induction lemma for kernels function

Lemma 8 says that if there are less than two cubes in e or if there are at least two cubes in the
expression and the literals in the largest cube dividing the quotient of e and hd are not a subset
of the remaining literals in Is, then the optimizations apply and Kernels(hd::ls)(e) evaluates to
Kernels(ls)(e). This case is reflected in the second clause of the induction lemma, which is shown
in Figure 12.

Vhd:Lit_t.
Vis:Lit_t list.
Ve:Ezpr.t.
cube_free(e) =
|filter (MEM_lc hd) (E2Cs e)| <2 V
2 < |filter (MEM_lc hd) (E2Cs €)| &
C2Ls( Lgst_cube(QUOT-ec e (CONS_Ic hd NIL_c))) €ls =
Vk:Ezpr_t.
P(hd::ls)(e)(k) =
P(is)(e) (k)

Figure 12: Second clause of induction lemma for kernels

When neither of the two above conditions is true, then the evaluation of Kernels(hd::ls)(e) contains
two calls to Kernels, as was shown in Lemma 9. This case makes up the third clause of the induction
lemma and is shown in Figure 13.
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(Vhd:Lit_t.
Vis:Lit_t list.
Ve:Ezpr.t.
cube_free(e) =
2 < |filter (MEM_lc hd) (E2Cs €)| &
C2Ls( Lgst_cube( QUOT-ec e (CONS_lc hd nil))) Cls =
Vk:Ezpr_t.
P(hd:ls)(e)(k) =
P(ls)
(QUOT-ec
e

(CONS_ce hd (Lgst_cube( QUOT-ec e (CONS_lc hd NIL_c))))
)
k
\
P(ls)(e)(k)

Figure 13: Third clause of induction lemma for kernels

. The induction lemma (Lemma 10) states that if some proposition P is true in all three cases, then
it will be true for any inputs to the kernels function. The three induction clauses of Lemma 10 are
shown in the order that they were presented here (Figures 11, 12 and 13); the fourth clause states
that the predicate will hold for all possible inputs.
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Lemma 10 Kernels induction

F VP:Lit_t list— Ezxpr_t— Ezpr_t— U;.
(Ve:Ezpr_t.
cube_free(e) =
Vk:Ezpr_t.
P(nil)(e)(k) = EQe ke
) =
(Vhd:Lit_t.
Vis:Lit_t list.
Ve:Ezpr_t.
cube_free(e) =
|filter (MEM_lc hd) (E2Cs e)] <2 V
2 < |filter (MEM_lc hd) (E2Cs €)| &
C2Ls(Lgst_cube(QUOT-ec(e)((CONS_lc hd NIL_c)))) €ls =
Vk:Ezpr_t.
P(hd:ls)(e)(k) =
P(ls)(e)(k)
) =
(Vhd:Lit.t.
Vlis:Lit_t list.
Ve:Ezpr_t.
cube_free(e) =
2 < |filter (MEM_lc hd) (E2Cs €)| &
C2Ls( Lgst_cube(QUOT-ec e (CONS.lc hd nil))) Cls =
Vk:Ezpr_t.
(P(hd::ls)(e)(k) =
(P(ls)
(QUOT-ec e
(CONS_Ic hd
(Lgst_cube(QUOT-ec e (CONS_lc hd nil)))
)

(k) Vv
P(Is)(e) (k)
)
)
) =
Vis:Lit_t list.
Ve:Ezpr_t.
cube_free(e) =
Vk:Ezpr_t.
P(ls)(e)(k) = k€Kernels Is e
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F Vlis:Lit_t list.
Ve:Erpr_t.
cube_free(e) =
Vk:Ezpr_t.
P(ls)(e)(k) = keKernels Is e

Proof Step 10: Proof goal before application of kernels induction lemma

. P(nil)(e)(k)
F EQeke

. |filter (MEM_lc hd) (E2Cs e)| < 2 V
2 < |filter (MEM_lc hd) (E2Cs €) &
C2Ls(Lgst_cube(QUOT-ec(e (CONS_lc hd NIL_c)))) Zls

. P(hd:ls)(e)(k)
F P(ls)(e)(k)

. 2 < |filter (MEM_lc hd) (E2Cs ¢) &
C2Ls(Lgst_cube( QUOT_ec(e (CONS.le hd NIL_c)))) Cls

P(hd:ls)(e)(k)

F P(ls)
(QUOT-ec e
(CONS_lc hd (Lgst_cube( QUOT-ec(e (CONS.lc hd NIL_c)))) )
)
k
Vv
P(ls)(e)(k)

Proof Step 11: Proof goals after application of kernels induction lemma

Applying Lemma 10 in a proof will have the affect of breaking a goal such as shown in Proof Step 10
(which is of the same form as Theorem 8) into the three subgoals shown in Proof Step 11. The
function Kernels does not appear in any of the three subgoals: all of the reasoning in the theorem
which was dependent upon Aernels has been captured in the induction lemma. After applying the
induction lemma the majority of the proof effort is determined by the specific property P that is

being verified. We used this induction lemma in most of the proofs about the kernels function,
including Theorem 7.
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5 Discussion

In this section we analyze our methodology and provide some general thoughts on the task of formal
verification of functional programs. We conclude with some thoughts on the use of proof systems
as integral tools in the process of developing software.

5.1 Benefits of Formal Verification

There are many benefits to verifying programs. The most apparent one is that there is increased
confidence that the program works correctly. In addition, we found that there were several opti-
mizations that we were able to perform to our implementation of Pbs without sacrificing verifiability.
In fact, without formally verifying the code, we would have been reluctant to make some of these
optimizations. The general observation to make here is that verifying Pbs led to an increased under-
standing of the algorithm and our implementation, which in turn led to better a implementation.

By examining the code and algorithm in great detail as the work was being formalized, several
obscure errors in the implementation and formal description of Pbs were found. The nature of most
of the errors was such that they would most probably manifest themselves only in rare occurrences
in large systems of equations, exactly the times when they would be least likely to be detected. The
three most important errors that were found are discussed below.

We originally thought that by using only a very small subset of the kernels (the level zero kernels),
we could ensure that all intermediate variables would be substituted into at least two functions.
This meant that we would not have to check to ensure that all intermediate variables were used at
least twice. Avoiding this check produced a great speed up in Pbs and yielded results identical to
a correct algorithm in most cases. It was not until we began to develop a formal proof of Pbs that
we discovered that even if we used just the level zero kernels, we could not be sure all intermediate
variables would be substituted into at least two functions. To correct this problem we modified our
implementation so that we could guarantee that all intermediate variables were used at least twice.

In translating from our original implementation of Pbs to the final implementation which was used in
the proof, we made a mistake in a function used in calculating the quotient of two expressions. This
mistake would have been eventually caught in testing the new version of the code, because the error
would affect the calculation of the kernels of every expression. We did not catch the mistake until
we began proving a theorem about the function which calculates the kernels of an expression. We
had already proved several theorems describing these two functions before we discovered the error.
The error was caused by incorrectly understanding the original (and correctly working) function.

he final error that was found in Pbs, was not in the implementation, but in a proof that was orig-
inally done on paper. When doing the proof that the minimality property for kernels is equivalent
to the minimality property for divisors we did not state the theorem correctly and included a false
lemma as one step in the proof. When the proof of the theorem was done in Nuprl, this problem
was quickly found and easily corrected.



No errors were found in Brayton and McMullen’s work, but that does not mean that nothing was
gained by developing a formally verified implementation of the weak division algorithm. Many of
the definitions in Brayton and McMullen’s work are informal and incomplete. Their proofs are
very brief and describe the algorithm at an abstract level that is very far removed from an actual
implementation. Because their presentation of the algorithm and proofs are so brief, there is a
great disparity between the level of detail of the proofs and the implementation. It is in this process
of going from an abstract description of an algorithm to the concrete implementation, that many
errors are introduced. An informal proof that the algorithm is correct is a good first step toward a
correct implementation, but unless formal verification is done at the level of implementation, there
can not be a high level of assurance that the final implementation is correct.

In writing code and designing hardware, situations frequently arise in which an operation can be
optimized if it can be guaranteed that certain properties will hold. For example, for each of the
Boolean operations in the weak division algorithm there is a corresponding algebraic operation
which is much faster, but returns the correct result only under certain conditions.

In our original implementation of Pbs, only Boolean operations were used. This sacrificed speed for
increased assurance that the code was correct. In doing the proof in Nuprl, we discovered several
instances where we could guarantee that the correctness conditions for the algebraic operations
would hold. When these occurrences were found, we substituted the algebraic operation for the
Boolean operation. This increased the speed of the code and also simplified the proof, because the
lemmas describing the algebraic operations were simpler than those describing the Boolean ones.

In the implementation of the kernels function (Section 4.3), we performed a variety of optimizations
which made the implementation more efficient but also more difficult to understand and verify.
Through the use of characterization lemmas we were able to concisely describe the behavior of the
function in a form which was much more readable than the actual implementation. This made it
easier to understand the effect of the optimizations on the behavior of the function, so we were able
to verify the optimized function with a reasonable amount of effort.

5.2 Summary and Analysis

Good programming habits are much more important when doing verification than when just pro-
gramming. There is a complexity barrier that occurs when writing programs after which the user
is incapable of maintaining or enhancing the program without adopting proper techniques. When
doing verification this barrier is dropped so low that without good programming habits it becomes
infeasible to verify anything more than the simplest program.

As the size of a verification effort increases, the style in which the verification is done becomes very
important. Just as there is a complexity barrier beyond which it is infeasible to verify poorly written
programs, there is a similar barrier beyond which it is infeasible to complete poorly developed proofs
of programs.

After implementing each function, we proved a number of characterization lemmas. Each lemma
described the behavior of the function on a specific set of inputs. Other proofs then used the
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characterization lemmas and were not directly dependent upon the the implementation of the
function.

Induction lemmas act to structure the proof effort by breaking down a single complex goal into
multiple simpler goals. Many times, by using induction lemmas, we were able to take very general
theorems about functions and break them down into several simpler subgoals, none of which con-
tained a reference to the original function. Thus, the induction lemma captured all of the reasoning
that was specific to the original function. By writing induction lemma we had moved up a level of
abstraction; we were reasoning about the properties that we wanted to verify about the function,
not just the behavior of the function.

One technique which did not occur to us until we had completed the proof and were able to
analyze our work as a whole, was to generalize the reasoning to general mathematical principles.
The operations in Pbs can be described as an algebra. There is a large body of existing knowledge
about algebras, which we could have used. Had we shown that the operators in Pbs were an
algebra, we could have used general theorems about algebras to do the more complicated and
abstract reasoning in Pbs.

5.3 Increasing Efficiency

In the process of implementing Pbs and doing the proof in Nuprl there was a large learning curve
and several new tools were written to make the proof easier. We estimate that if we were to do it
over again, it would take approximately one month to implement the code and an additional two
months to complete a formal proof on paper. We believe that using the knowledge gained and tools
written, it would take a total of four months to do the proof in Nuprl all over again. Thus, doing
the proof in Nuprl would take approximately twice as long as doing the proof on paper.

In order to make proof systems more attractive, we must begin to reduce the disparity between
the time required to do a proof on paper and to do the proof using a proof system. One step
towards this goal would be to try to automate the generation and verification of characterization
and induction lemmas. Because there is such a close correspondence between the characterization
lemmas, the induction lemma and the implementation of a function; it should be possible to provide
mechanical support that can synthesize and verify characterization lemmas and an induction lemma
from the implementation of a function. The HOL proof system provides a number of utilities for
automatically creating certain types of definitions. The most recent of these tools takes a set of

rules and automatically generates an inductive relation and associated rewrite lemmas defined by
the rules [CM92).

In Pbs, if the process of selecting and applying rewrite rules and lemmas was automated, then a
great number of the characterization and induction lemmas could have been proven automatically
and many of the others proofs could have been done significantly faster. Bundy has had some
very promising results using the concepts of proof plans and rippling to guide the selection and
application of rewrite rules [BHHS91].
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5.4 An Overall Methodology

In a normal software development environment, the programmer begins with a notion of an al-
gorithm for solving a problem. The programmer may sketch out an informal specification and a
proof to show that the algorithm will satisfy the specification, but the process of implementing the
algorithm usually begins very soon after the algorithm is chosen. If the implementation does not
produce the desired results, it could be due to a bug in the implementation, an incorrect algorithm
or an incorrect specification. There isn’t any technique for quickly and easily determining the source
of the problem.

By using a proof system the user can write a formal specification, prove high level theorems to
verify the algorithm, and then from these theorems derive a more detailed specification for the im-
plementation, all before writing the implementation. When the specification for the implementation
is ready, the programmer may write the implementation and run it on a number of test cases to
quickly gain some confidence that the implementation is close to being correct. Once the program-
mer has confidence that the implementation works correctly for the test cases, the implementation
can be verified in the proof system. In the process of verification, errors will most likely be found.
These can be fixed while doing the verification, and then the corrected program can be used with
a great deal of confidence that it is correct. Having the ability to mix the formal verification and
testing of the implementation allows the programmer to be as efficient as possible and use the most
appropriate tool for the current task.

This method has the potential to be more efficient than the conventional method and will result
in a much better understood algorithm and implementation. Furthermore, the specification and
formal descriptions of algorithm and implementation act as documentation for the programmer’s
intentions. This type of documentation is guaranteed to be correct and unambiguous, something
which can not be said for the informal documentation written for most programs.

6 Conclusion

Proof systems are commonly thought of as being used exclusively as tools for proving theorems. In
fact they are much more powerful and much more useful than they are commonly perceived. Proof
systems are tools for organizing and understanding concepts and objects. They have the ability to
manipulate objects as well as reason about properties of objects. While a literate programming tool
has the potential to reduce the number of errors in and increase the understanding of programs,
these benefits are really just byproducts of its ability to gather, organize and present information
to the programmer. It is up to the programmer to interpret the information that the tool provides.
In comparison, when a programmer uses a proof system to prove that an implemenation satisfies a
specification, the proof system is checking that the behavior of the program matches the behavior
specified by the programmer.

In order to make theorem proving based verification more widely used, we need to enhance the
productivity of users and make mechanical proof systems less intimidating. The goal should be
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to make the process of creating a formal proof as easy as creating an informal proof. Only then
will formal proof techniques become widely accepted. One step in this process is to create a
methodology which users can follow when undertaking large verification efforts. By following a
methodology users are freed to concentrate on abstract reasoning, because the details of interacting
with the proof system are uniform, consistent, and known ahead of time.
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A Definitions

A.1 Definitions and Symbols from Weak Division Algorithm

sup(f)

f*g

flg

&(f)

dle

Support

Product

Orthogonal

Divide

Divide evenly

Cube free

Divisors

Divides

Primary Divisors

Kernels

Remainder

The set of all variables appearing in expression f.

The pairwise union of all cubes from two expres-
sions fand g.

Two expressions are orthogonal if they do not
have any common variables.

The expression fdivided by the expression g is the
largest set of cubes A such that:

h is orthogonal to g

the product of h and g is a subset of f
g divides fevenly if (f/g) xg = f.

An expression is cube free if no cube divides it
evenly.

The divisors of an expression f are all cubes or
expressions which can be produced by dividing an
expression by a cube or expression.

The expression d divides e if the quotient of e
divided by d is non-empty.

Those divisors of f which can be produced by di-
viding the expression by a cube.

The set of all cube free primary divisors of expres-
sion f.

The remainder of dividing an expression f by g is

the expression comprised of those cubes which are
members of f, but not of f/g.
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A.2 Type Definitions

Type ML name Definition Examples
variable Var_t String of characters a, wr, c.o

literal Lit_t Variable or its complement a, b

cube Cube_t Conjunction of literals aAbAc, wrA-co

expression FExpr_t
function Func_t

system Syst_t

A.3 Proof Notation

glﬁlﬂUCDm<&°

:T.P
Jz:T.P

Disjunction of cubes
Variable associated with an expression

A set of functions

- logical and

logical or

element of

intersection

union

implies

subset

logical equivalence

evaluates to

for all x of type T', P is true

aAbAcV dA—-e

a=>bAc V eAd

there exists an z of type T', such that P is true
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