
Operating System Support for Mobile Agents

Position paper for 5th IEEE Workshop on Hot Topics in Operating Systems

Dag Johansen* Robbert van Renesse** Fred B. Schneider**

1. Introduction
An agent is a process that may migrate through a computer network in order to satisfy

requests made by its clients. Agents implement a computational metaphor that is analogous
to how most people conduct business in their daily lives: visit a place, use a service (perhaps
after some negotiation), and then move on. Thus, for the computer illiterate, agents are an
attractive way to describe network-wide computations.

Agents are also useful abstractions for programmers who must implement distributed
applications. This is because in the agent metaphor, the processor or place the computation
is performed is not hidden from the programmer, but the communications channels are.
Contrast this with the traditional approach of employing a client at one site that communi-
cates with servers at other sites. Communication is not hidden and must be programmed
explicitly. Moreover, pieces of a computation performed at different sites must be coordi-
nated, placing an added burden on the programmer.

By structuring a system in terms of agents, applications can be constructed in which
communication-network bandwidth is conserved. Data may be accessed only by an agent
executing at the same site as the data resides. An agent typically will filter or otherwise
reduce the data it reads, carrying with it only the relevant information as it roams the net-
work; there is rarely a need to transmit raw data from one site to another. In contrast, when
an application is built using a client and servers, raw data may have to be sent from one site
to another if, for example, the client obtains its computing cycles from a different site than it
obtains its data.

Most current research on agents has focused on language design (e.g. [W94]) and appli-
cation issues (e.g. [R94]). The TACOMA project (Tromso/ And COrnell Moving Agents)
has, instead, focused on operating system support for agents and how agents can be used to
solve problems traditionally addressed by operating systems. We have implemented proto-
type systems to support agents using UNIX and using Tcl/Tk [O94] on top of Horus
[vRHB94].
���

*Department of Computer Science, University of Tromso/ , N-9037 Tromso/ , Norway. Johansen is support-
ed by grant No. 100413/410 from the Norwegian Science Foundation.

**Department of Computer Science, Cornell University, Ithaca, New York 14853, U.S.A. Van Renesse
is supported by ARPA/ONR grant N00014-92-J-1866. Schneider is supported by the ARPA/NSF Grant No.
CCR-9014363, NASA/ARPA grant NAG-2-893, and AFOSR grant F49620-94-1-0198.

-1-

The remainder of this paper outlines insights and questions based on that experience. In
section 2, we briefly discuss abstractions needed by an operating system to support agents.
Section 3 discusses some problems that arise in connection with electronic commerce involv-
ing agents. How to schedule agents by using other agents is the subject of section 4. Some
preliminary thoughts on implementing fault tolerance are given in section 5. Section 6
discusses the status of our implementations.

2. Abstractions and Mechanisms for Agents
An agent must be accompanied by data in order for its future actions to depend on its

past ones. For this reason, our implementations associate with each agent a briefcase, which
contains a collection of named folders. A folder is a list of elements, each of which is an
uninterpreted sequence of bits. Because it is a list, it can be treated as a stack or a queue.
This makes folders reminiscent of the familiar objects used to group documents. Unlike files
in a traditional operating system, folders must be easy to transfer from one computing system
to another, since this operation occurs frequently. Thus, elaborate index structures are not
suitable for implementing the folders that accompany agents.

It is also important that agents be able to read and write folders that are bound and local
to a site executing the agent. Site-local folders allow more efficient use of network
bandwidth. If an agent requires certain information only when it is executing at a given site,
then it is inefficient to carry along that information to every site the agent visits. A site-local
folder allows an agent to leave such information behind. In addition, site-local folders allow
communication between agents that are not simultaneously resident at a given site. For
example, consider a flooding algorithm to deliver a message at all sites in a network. One
implementation would have each agent deliver the message and then create a clone of itself
at every adjacent site. Unfortunately, here the number of agents increases without bound. If,
instead, an agent also records its visit in a site-local folder, then an agent can simply
terminate—rather than clone—when it finds itself at a site that has already been visited.

Just as an agent’s folders are grouped into briefcases, we have found it useful to group
site-local folders. We refer to such a grouping as a file cabinet. File cabinets support the
same operations as briefcases, but we expect these operations to be implemented differently.
In particular, since it is rare to move a file cabinet from site to site, file cabinets can be imple-
mented using techniques that optimize access times even if this increases the cost of moving
the file cabinet from one site to another.

One agent causes another to execute using the meet operation, where a briefcase allows
information to be exchanged between the two agents. The meet operation is thus analogous
to a procedure call, and the specified briefcase is analogous to an argument list (with each
folder containing the value of one argument). For example, an agent A executing

meet B with bc

causes agent B to be executed at the current site with briefcase bc; A continues executing
only after B terminates the meet operation. Note that after the meet terminates, B may con-
tinue executing concurrently with A.

-2-

Surprisingly, no additional abstractions are required to implement our basic computa-
tional metaphor. Services for agents—communication, synchronization, and so on—are pro-
vided directly by other agents. For example, an agent moves from one site to another by
meeting with the local rexec agent. The rexec agent expects to find two folders in the
briefcase with which it is invoked: a HOST folder names the site where execution is to be
moved and a CONTACT folder names the agent to be executed at that site. The CONTACT
folder might contain the name of an agent that is a shell or a compiler. Such an agent would
expect to find a CODE folder in the briefcase, which it would then translate and execute.
Since the contents of this CODE folder might be the source code for the agent that originally
met with rexec, it is possible for an agent to travel from one site to another. Note that this
scheme allows an agent to move to a destination site having a completely different machine
language.

Given an rexec agent, it is not difficult to program a courier agent, which transfers a
folder to a specified agent on a specified machine. This allows agents to communicate
without having to meet (on a common machine). It is also not difficult to program our diffu-
sion agent, which executes a specified agent locally and then creates a clone of itself at every
site that appears in the set difference of the site-local SITES folder and the briefcase SITES
folder.

3. Obtaining and Paying for Services
Once agents are employed for commerce—as some proponents [W94] of the metaphor

intend—support for a negotiable instrument becomes necessary. We, therefore, decided to
explore the implementation and use of electronic cash. Electronic cash is nothing more than
an unforgeable and untraceable capability that enables its owner to obtain goods and ser-
vices. By implementing an electronic analogue to a well understood concept, we hoped to
produce a system that remained understandable to the computer illiterate. We also hoped
that electronic cash would provide a mechanism for controlling run-away agents.
Specifically, charging for services would limit possible damage by a run-away agent.

Even as simple an operation as transferring electronic cash from one agent to another
turned out to be surprisingly subtle to implement. With the familiar physical form of cash,
money transfers are achieved by moving physical objects (coins or pieces of paper). This
works only because it is difficult to manufacture copies of such objects. In a computer sys-
tem, however, "copy" is a cheap operation. The usual solution to this problem would be to
employ indirection and store all electronic cash in a single trusted agent. One agent could
then transfer money to another by invoking an operation provided by this trusted agent.

We must reject solutions based on indirection because they necessarily violate our
untraceability requirement for funds transfers. Following [C92], the solution we adopted
was to implement each unit of electronic cash (ECU) as a record containing an amount and a
large random number. Only certain of these random numbers appear on the records for valid
ECUs. Each agent stores records for the ECUs it owns. An agent transfers funds by placing
these records in a briefcase that is then passed to the intended recipient of those funds.

-3-

The recipient of such a briefcase, however, has no guarantee that the sending agent has
not already spent (a copy of) the ECUs being transferred. To solve this problem, a trusted
validation agent is employed. This agent can check whether a record it is shown corresponds
to a valid ECU. If it is valid, then a record for an equivalent ECU is returned, but this record
has a new random number (effectively retiring an old bill and replacing it by a new one). An
attempt by an agent to spend retired or copied ECUs will be foiled if a validation agent is
always consulted before any service is rendered. Notice that using a validation agent sup-
ports our untraceability requirement, since the validation agent does not require knowledge
of the source or destination of a transfer.

A second problem that we encountered in supporting electronic cash concerned imple-
menting the exchange of funds for services. It must not be possible to obtain a service
without paying for it or to pay without obtaining the service. This precludes the obvious
two-step protocols, because as long as electronic cash is untraceable either party might cheat
the other. For example, the customer might claim to have paid when it has not, or the
service-provider might claim not to have been paid when it has. What would seem to be
required is support for transactions, so that we are guaranteed that both actions ("paying" and
"providing the service") occur or that neither action occurs.

We rejected adding support for transactions to our system for two reasons:

(1) Having such a mechanism would impact performance and would be effective only if
it were trusted.

(2) Such a mechanism would be alien to the computer illiterate, because such a mechan-
ism does not exist in current business practice.

Our solution was to employ the threat of audits, a scheme that is well-known in current busi-
ness practice.
� Participants document their actions so that a third party (a court, in real life) can per-

form an audit to find violations of a contract.
� An aggrieved agent requests an audit.

Documenting actions sometimes requires the presence of a third agent and the use of crypto-
graphic protocols—we omit the details here. Having to interact with such a third agent will
be familiar to computer-illiterate users (at least, to those who have purchased a house).

4. Scheduling
In our prototypes, scheduling allows the enforcement of policies that govern when and

where an agent is executed. Sites in a computer network are presumed to be autonomous, so
facilities must be provided for system administrators to control the resources comprising a
site. Agents are also presumed to be autonomous, though. Thus, implementing support for
scheduling requires mechanisms to match the needs of agents with the providers of services
while, at the same time, respecting constraints imposed by system administrators.

-4-

Scheduling is implemented by broker agents, which are ordinary agents whose names
are well known. Some broker agents maintain databases of service providers; these brokers
serve as matchmakers. An agent that requires a given service consults a broker to identify
which agents provide that service. Brokers are expected to communicate among themselves
and with the service providers, so that requests can be distributed amongst service providers
based on load and capacity. The problem of maintaining the requisite state information and
intelligently distributing service requests seems to be equivalent to that of routing in a wide-
area network. We do not yet have experience with various routing protocols to know how
they can be adapted to this new setting, but this is a topic under investigation.

Another use of broker agents is to enforce some protected agent’s policies with regard
to meeting other agents. This is accomplished by keeping the name of the protected agent
secret from all but its broker. The broker, then, provides the only way to meet with the pro-
tected agent. To do this, the broker maintains a folder for each agent that has requested a
meeting with the protected agent. This folder contains the agent that has requested the meet-
ing (along with its briefcase). Notice that this scheme is possible only because folders are
uninterpreted and typeless and, therefore, can themselves store agents and sets of folders.

5. Fault-tolerance
It is to be expected that sites in a computer network will fail. When such a failure

occurs, agents at that site are no longer able to continue executing. To deal with this prob-
lem, we have been investigating ways to ensure that a computation can proceed, even though
one or more of its agents is the victim of a site failure. The solutions we have studied
involve leaving a rear guard agent behind whenever execution moves from one site to
another. This rear guard is responsible for (i) launching a new agent should a failure cause
an agent to vanish and (ii) terminating itself when its function is no longer necessary
(because the agent it protects is itself ready to terminate). The details of implementing rear
guards efficiently are complex, because the sites traversed by an agent computation may be
cyclic and because a single agent may clone itself and fan out through a network.

6. Prototype Implementations
Our most recent version of TACOMA is based on Tcl [O94]. Each site in our system

runs a Tcl interpreter, which provides the place where agents execute. An agent is imple-
mented by a Tcl procedure; the text of the procedure is stored in the agent’s CODE folder.
Folders, briefcases, and file cabinets are Tcl data structures. File cabinets can be flushed to
disk when permanence is required.

A collection of system agents provides a variety of support functions. The most basic
of these is ag_tcl, which pops a Tcl procedure from the CODE folder and executes that pro-
cedure. Currently, two implementations exist for the rexec agent. The first uses the UNIX
rsh command to start a Tcl interpreter on the remote host. The second uses Tcl/TCP, an
extension to Tcl that allows Tcl processes to set up TCP communication channels. We are
now completing a third implementation based on Tcl/Horus, a version of Tcl that uses Horus

-5-

[vRHB94] to support group communication and fault-tolerance.

In our first prototype of TACOMA, we implemented the electronic cash of section 3.
The implementation used the security mechanisms provided by UNIX; this simplified our
implementation, but relies on UNIX for security. We are now investigating alternatives.

Our TACOMA prototype currently supports a scheduling service that assigns to proces-
sors based on load. It uses four different agents to implement a scheme like that outlined in
section 4. One of these agents is the broker, another is responsible for monitoring the status
of a site and reporting that to the brokers, one is a courier, and one issues tickets to allow
access to the service.

To evaluate the metaphor we are using our prototype to construct a variety of distri-
buted applications. First, we are reimplementing StormCast [J93], which uses a set of expert
systems to predict severe storms in the Arctic based on weather data obtained from a distri-
buted network of sensors. Second, we have started to build an interactive mail system where
messages are implemented by agents.

References
[C92] Chaum, D. Achieving Electronic Privacy. Scientific American 267,2

(Aug 1992), 96-101.

[J93] Johansen, Dag. StormCast: Yet another exercise in distributed comput-
ing. Distributed Open Systems F.M.T. Brazier and D. Johansen, eds.
IEEE Computer Society Press, California (Oct 1993), 152-174.

[O94] Ousterhout, John K. Tcl and the Tk Toolkit Addison Wesley, Reading,
Massachusetts, 1994.

[R94] Riecken, D. (guest editor). Intelligent Agents. Commun. of the ACM 37,7
(July 1994), 19-21.

[vRHB94] Van Renesse, Robbert, Takako M. Hickey, and Kenneth P. Birman.
Design and Performance of Horus: A Lightweight Group Communications
System. Technical Report TR 94-1442, Department of Computer Science,
Cornell University, Aug 1994.

[W94] White, J.E. Telescript Technology: The Foundation for the Electronic
Marketplace. General Magic White Paper, General Magic Inc., 1994.

-6-

