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Abstract

Given r numbers S1reecs8 algorithms are in-
vestigated for finding all possible combinations of these
nunbers which sum to M . This problem is a particular
instance of the 0-1 unidimensional knapsack problem.
All of the usual algorithms for this problem are investi-
gated both in terms of asymptotic computing times and
storage requirements, as well as averaqe computing times.
We develop a technique which improves all of the dynamic
programming mothoda by a aquare root factor. Using this
improvement a variety of new heuristics and improved data
structurcs are incorporated for decreasing the average
behavior of these mecthods. The resulting algorithms are
then compared on a wide set of data. It is then shown how
these improvements can be applicd to various versions of the

knapsack problem.
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Computing Partitions with Applications

to the Knapsack Problem

E. Horowitz and S. Sahni

Introduction

Given r numbers Byrecess we wish to find all

r
possible combinations of these nurbers which sum to M .
This rathcr simply stated problem {8 at the root of several
interesting problems in number thcory, operations research
and polynomial factorization. 1In the first case it is
cloacly related to the classical nunbier theory study of
determining partitions. Phrased in our terrinnlogy, dctcr;
mining partitions of M would irply that sy = i and

L M. S0 horo wo aro concerned with a mure gerncral proeblem
than partitions. 1In [3], p. 273 Hardy and Wright provice
gencrating functions but no good corputational scheme for
generating such partitions. If we restrict the 55 and M
to be integers and include an additional set of numbers Py
then we have an integer programming form of what is usuzlly
referred to as the knapsack problem. 1In {ts sirplest fcr=
one wishes to find the most desirable set of quantitics a
hikor should pack {n his knapsack given a measure of thc
donirability of ocach ftem {py or profit) aubject to §ts
weight (81’ and the maximum weight that the knapsack can
hold (M) . The partition problem is shown to be a cpecial

case of the 0-1 unidimensional knapsack problem and §t will
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be shown how a method for spceding up the partition problem
can be more generally used to speed up the knapsack problem,
In [13], Bradley shows how a class of problems can be re-
duced to knapsack problems., Thus, a more efficient method
for knapsack solving algorithms is extremely useful. An im-
plementation of this mothod has a wide variety of applica-
tions. 1In one reported case, [7] the motivation arose from
capital budqjeting problems in which investment projects are
to be selected subject to expenditure limitations in several
time periods. After solving our original partition problem
we will show how our new techniques can be incorporated into
an efficient knapsack algorithm., A survey of algorithms for .
the different variations of the knapsack problem is given in
[S]. Much of the early work in the knapsack problem was done
by Cilmore and Gomory, sece(l)] and [(2]. Finally in [4] our
original rotivation for the partition problem arose as a
subalgorithm for polynomial factorization where M is the de-
gree of the given polynomial and the s;'s are suspected de-
grees of its irreducible factors.

R At the moment all known methods for the partition
and knapsack problems take exponential time. In [9] and [(10]
it is shown that both the 0-1 knapsack problem and the problem
of findingy one partition are p-complete, i.e. if one could
find a polynomial time bounded alqgorithm for either of these
problens then one would have polynomial algorithms for a wide
variety of problems for which there is no known polynomial

algorithm. Specifically this would lead to polynomial algo-
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gorithms for the traveling salesman problem, multicommodity
networks flows, simulation of polynomial time bounded non-
deterministic Turing machines by deterministic ones, etc.
A moro complote list of p-completo problems can bo found in
(9] and [10]. In view of this thcoretical rosult, it is
clear that finding a polynomial algorithm for the 0-1 knap-
sack or partition problem would be difficult (if there exists
such an algorithm). 1t is therefore of interest to obtain
subexponential algorithms and to investigate the use of
heuristics in an effort to improve the computing times for
these problems. This is precisely the sort of development
that this paper takes, first giving methods with reduced asymp-
totic bounds and then refining these algorithms with heuristics
special data structures and testing.

In Section 2 we will precisely formulate the problem
using the convenient concept of multiscts. In Section 3
we will summarize the various algorithms that have been pro-
posed, present our own refinements and then analyze the re-
sulting computing times and storage requirements. A new
technique which substantially reduces the worst case asymptotic
computing time will be given. Also we will examine the same
algorithm using different data representations on the computer.
Then in Section 4 empirical studies will be examined so as to
determine the best overall algorithm. Finally in Section §
it will be shown how these new techniques can be easily incor-
porated into the 0-1 knapsack problem so as to maintain the
same advantages of efficiency. An appendix contains the

listings of the final programs that were developed.

>



2. Prodblem Definition

We begin with the mathematical formulation of our

prodblem.

DPefinition 1 A multiset S 13 a collection of clements

‘i' denoted by S = (31) .

Definttion 2 A sct S 13 a multiset whose elcments satisfy

s, 1 8, it 143 .

Definition 3 The cardinality of a multiset S , dcnoted

by |S| » 1s defined to be the number of elements in

S. Ir |S| =r, then S will often be written as S, .

Definition 4 An M-partition of a multiset Sr - (51""'sr)

of cardinality r is an r-tuple

§ = (61,62. veey cr) » where

& € (0,1) 1 <1<

and eee(l)
i
§,s, = M
1e1 11

fWithout loaa of generality we shall reotrict ournelveo to
the casc where the 8, arc positive integers.



g

Example
S1 = {1,9,1,5,4} 4is a multiset but not a set.
62 = {1,9,5) 4s both a set and a multisct.
Isl] = 5 anda |s2| = 3
6§ = 11010 4is a 15-partition of sl.
The 15-partitions of 61 are 11010 and 01110,

Definition S An algorithm will be said to erurmnerztie

the M-partitions of Sr 1£f it generatez zll

r-tuples 8 saticsfying (1) and rno other ¢'s .,

Lemma 1 There cxiast multiascts and an M for whizn the

number of M-partitions 1s exponential in the car-

dinality of the multiset.

Proof Consider Sr = (1,1, ..., 1), r even

and M = r/2 . Then the number of r-tuples ¢
satisfy (1) 1s
(F) = (%) = —Lf
mto R (g
FA A

Using Stirling's approximation for r! we get

r! , I (& ) p - o4l
S ENENE mw (" /T

Z e

......
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Curr. Any algoeritlm which enumerates the M-partitions of a
multiset Sr must have a worst case computing time

that 1s exponential in pr .

Lem=1 2 The maximum number of distinct sums obtainable from

a multiset Sr 15 2" . This number is in fact

cal !

achieved by come Sr .

Pront (1) @ only 2F distinct r-tuples & for which
O 6, €(0,1) ,1c1¢r

(11) 1er s = (29,21, ...,27°Y)

Each of the ¢é's in (1) 13 now the binary repre-
sentation of the sum, [6121 and 80 represents a

distinct sum from the other 4's .

3. The Algorithms

We shall now look at several clasnical algorithms
for enumerating M-partitions. Starting with the simple
enuncration and branch and bound type algorithms 1l(a) and
(b), we shall go to the dynamic programming type algorithms
25&), 3(a) and 4(a). We shall then show that by "splitting®
the mltiset S we can obtain algorithms that have a worst
case computing time a square root of that for the dynamic
programming algorithms. This is represented in the algo-
rithrms 2(b), 3(b) and 4(b). Improvements in the average

"behavior of the algorithms are obtained through the use of



hourfutics., 1In section 4 empirical rosults are given to
allow for comparing the usefulness of the heuristics used,
The empirical results will show that the new alqorithms
aro significantly botter than the ones without splitting

ovor a wide range of input data.

Definition 6 Union (U S"].ws"z is a multiset such
that x €S U S with n occurrences iff the
" r2
number of occurrences of x 1in Sr plus the nun-
1l

ber of occurrences in Sr is n .
2

Definition 7 Ordcred Union @ » Sr1® Srz is a multiset
such that x &S, (S under the same conditions
m r2

as definition 6 and in addition the elements of

-
Srlw SPZ are ordered.

Example If S, (1,2,1) ana S¢ = (1,2,2,3)

then s, (&) s, = s, = {1,2,1,1,2,2,3)

1f s, = {1,3,5} and S, = {2,3,4,4)
-
then §, Q] S¢=Sy = {1,2,3,3,4,4,5) .

Algorithm 1(a)

Here we generate all 2" possible 6's and deter-

mine which ones satisfy cauation (1)

1) (Initialize) 6, + (0, «v0y 0); Do step (P) 2 - 1 time
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2) [find new § ) 8 « &+1; (binary addition)

It § 48,3, = M then output
1<ic<r 171

$§ = (61- veey Gr)

Storage required: 0(r).

Computation time: 0(r2%).

As wec shall sec from the cmpirical studies in Section
4 this method works extremely slowly for even small values
of r . So despite the fact that its storage requirements
are lincar in the cardinality of the input set, its real
effectiveness is severly limited because of time. We note
that this algorithm could be somewhat spceded up through the
use of hcuristics as explained in [11). HNowever, we next
give a backtracking or branch and bound algorithm 1(b),
below, that s conaidorably superior to 1l(a) and so we shall
not concern ourselves further variations of 1l(a).

Now we give a recursive algorithm which maintains
the linear storage requirement and reduces the bound on the
computation time from r2° to 2% . This method is well-
known and is perhaps the one most commonly employed for
solving knapsack problems, A nonrccursive version without
heuristics can he found {n ankonhnvh,_[ﬂ), pPp.e 25-27,
In the version we give hero we have added several heuristics
in steps (1) and (2). These do not change the order of the
method, but do aid considerably in improving its overall
performance,  Similar heurfstica have boen uned by Wolngartnor

and Ness in (7).



Algorithm 1(b) PARTS(s, i, rem,8) [Backtracking or
Branch and Bound] .

The gcneration of certain §6°'s 4is aborted by
using heuristics in steps (1) and (2). It is assumed
that the clements of s: - ('1' coey l:) are initially
ordcrcé (s1 <8, €y eeee £ -:) ..(Thc choice of
ordering is somewhat arbitrary. Had we ordered the '1.'
in deccrecasing order then we would not have becen able to

use the hcuristic of step 2 below.) -
The specific heuristics used are:
1) Step 1 1If the partial sum (s) plus the total sum

left (rem) is not enough to reach M then abort;

(2) Step 2 I1f the partial sum (s) added to the next
number 8y excceds M then abort as all other
’1" arc at lcast as largc as this one (because
8 is ordered).

Let
8 = the present partial sumg
i = i{index of the next 8; to be procecsed;
rem = the remaining sum, ]
{41<i<r

& = the oct of 3§ such that ] sy=s
j€8
‘The algorithm 45 rccursive and 4s dnitially <invoked as

PARTS(0, 1, ] s;, NULL).
1<i<r



1) [Tcat houriatics]) I1f s ¢+ rom < M then roturn
If 8 + rem = M then output § U{4i,i+1,...r)}

return.

-4
~
]

*

2) (Try next ] 8; > M then roturn,

i

-
io ]
]
+

LT M then output 4 U &,

If § < r GO TO step ¢

else return.

3) [Recursion) If 4§ < r then CALL PARTS (s + )

i +1, rem - 8, { VU é); clso return.
4) [Recursion]) CALL PARTS (8, i + 1, rem = 8y 8);
S) [all done) return,

Storage required: O(r)

Corputaticn times o0(2%)

For each partition, this algorithm produces an
r-tuple 3 ., Thus an additional time of rQ 1is required
to print all the partitions, where Q is the total number
of partitions. Though this method is much better than 1l(a)
in terms of the time rcquirements, let us now look at even
faster methods.

In the next algorithm we compute the sums obtainable
from all possible sub-multisets of S . Along with each sum
is kept an encoding of the indices used to obtain that sum.

Multiple copics of sums arc rotaincd,
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Algorithm 2(a) S, = (al, ey sr)
A 48 a multinet of 2-tuplos (nl. “2) whoro

a, is a partial sum,

a, is an encoding of the J's such that

z .-.10
(313-1 € a,)
23-2

.

The encoding uscd ia a, = 2
3lsy € ap)

1) [Initialize] 4 « 0, A « {(o, 0)), 1C + 1,
Do step 2 for 1«1, ..., T .

2) A«AV (A+ (31, IC)}; IC « IC + IC;

Note: _In step 2 only those (al, az) for which a, < M

e | 1

.;,ir retained. 1f a; = M, a, 1s output.

"(Strictly speaking we shall have to output dccode
(ay)).

Storage reguired: 0(2F)
Computation time: O(m&x(zr,rq))
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To sco how algorithm 2a worka, consider finding all

the 8 partitions of Sy = {1,3,4})

valuec of i A
0 {(0,0))
1 {(0,0,(1,2%)
2 (10,0),(1,2%,(3,21),(4,2° + 21))
3

{0,0,(1,2%,(3,2Y), (4,29 + 21), (4,29,
(5,29 + 2% ,(7,21 + 2%))
and the vector (111) is output corresponding to the partition
(1 + 3+ 4).

We note that while implcementing the encoding scheme,
above, onc would use bit strings to represent the second com-
ponent of the 2-tuples of A, with the jth bit net to 1 iff ’j
was uscd in obtaining the corresponding sum. This has the

advantage that no decoding is needed at the end to obtain the .

partition,

Theorem 3.1 In the worst case the computing time for
algorithm (2a) is Oo(max{2%¥,rQ}) and its storage re-

Quirements are o(2") .

Froof Let |A] = k when 1 @ J. Then the cardinality of
A for §1 =« 3 +1 1a < k. Tho timo tuken for
atep 2 when 1 = J 48 k and for 4 =1, k = 1.
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r=1

Therefore the total time is < I 2t . 0(2%) and the
i=1

decode time per partition is 0(r).

Though algorithm 2(a) has a much worse storace require-
ment than 1(b), it actually rcmains fairly conmpetitive with
1(b) in terms of time. However, it is possible to make a
significant improvement in method 2 by splitting the irput
into 2 scts as will be done in algorithm 2(L). The proce-
dure of "splitting"™ is that rathcer than generate ail pes-
sible sums for the given multiset S, of cardinality r, we
consider two smaller multisets T and U such that the union
of the two gives Sy. Algorithm 2(a) is now apjlicd to boun
T and U . However now the multiset of obtainabie sums is
maintained {n incrconing order in terms of the first corm-
ponent of the 2-tuples. It is now possible to corLine the
results of the two applications of mcthod 2(a) to T and U
to obtain all M-partitions, and in such a way that the en-
tire process requires only a square root of the tire and
space requircd (in the worst case) if 2(a) were dircctly

used on S:.
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cithn 2(h)

>
[
ol

The nmultiset Sr is divided into two sub-multisets

T, U such thatl

It) =t = bvd 7 (s, oeny 80

|lU] s uepr =2t ,ue (0 uapye 2ove 8.)

As in 2a, A and B are multisets of 2-tuples. However

now A and B are kept ordered, i.e. if (a1 » 8y YE A
1l 2

and (ajl. an) € A then ail < aJl implies 1; < J,

and similarly for B .

1) 1«0, A« ((0, 0)}, IC « 1
Do atep 2 t times for 41 « 1, .¢o, t ;

2) A<«Ag (A¢+ (¢y, IC)); IC « IC + IC

3) 1‘ODB°((O.O)},IC*1

Do step 4 r -t times for L « ¢t ¢+1, ..., I}

8) BB (B +(u, IC)), IC = IC + IC;
5) FPick off pairs (a  , a, )€ A
1 2

(le. bjz) €B

such that (a +4 b, )=M,
L

Then output partition (a, , b, ) .
12"

1Lr/l’J = largest intcger < r/2
[r/2] = smaliest inteqgor > r/2
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As an cxamplo for 2b consider

8y = (1,2,4,8) , M= 14
then T = (1,2}

U= (4,8}

A= ((0,00,01,2),(2,21),(3,2° + 21))

B = ((0,00,(4,2%,(8,21),012,2° + 21))
A search of A and B shows that the only M-partition
of 5, is 0111,

Storage required: 0(2r¥/i])

Proof The multisets A and B cannot become larger than

this by lemma 2.

Computation time: O(max(Z[}/sl,rQ)) where Q 1s the number

of partitions.

Proof  Since in steps 2 and 4, A and B are crdered and
hence A + (ti, IC) and B + (“1' IC) are ordc}cd
the merging necessary to keep A\z/(A + (ti, IC)}
and B@(B + (ui, IC)} ordered can be done {n time
proportional to |A| and [B] respectively.
Thercfore from algorithm 2(a) the time for steps
1l -4 18

0(2% + 29 = o272,

Step 5 recquires time O(max(;"'/2

,r}) . To
see this consider the algorithm below which realizes

this step:



Theorem

.

Proof

.'.)"

-12-
UK .
Let |A] = a, Bl = b, & = {(a,, p,) lsica),
B = {(b;, q;) 1c1sb} where Py» Q, contain

encodings of all combinations of elements that

sum to ai, bll . Then
1) 1 +1; 3 «+0b;

2) DO WHILE (4 <-a and §>1);

Ir a, ¢+ bJ,< m then 1 « 1+1; go to (L)

If a, + bJ >m then J « J=-1; go to (L)
Output all combinations of Pys qJ; 1 « 141
L:END

3) end. l

Thus the time required is O(max{a, b, rQ)}) . Now
a,b <« 2[%/2] 80 the time for step 5 1is c .
O(max(zr}/é]. rQ)}) and similarly for the cntire
algorithm.

3.2 Algorithm 2(b) enumerates all the M-partitions of

S, -

Let d = (‘1| cee ‘r/z. “'/2”\1. eeey Gr) be an

M-partition of S, . T = (83, o0y 8p/2)s

6 = (8 veep 8.) ¢« Then I 8,6, <M and
r/2+1° * °r 1<1<r/2 1°1
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.

<M.

61 <

s
r/2+§;1;r 1

Since all partitions < M of gets T e (31. cooy =r/
and Yy = (’r/241' ey sr) are produced ty ste;s

2 and 4, then for any M-partition 6 cf :r there
must exint o & frem A and € from B zuzh that
8§ = Syl . Therefore we must ghow that in 2sen €
every possible combination of & € A and € Z:f = |
and &8 18 an M-partiticon, o f.ourd. by the presilz

proof, the a, and b, are ordered and sui;

5
13
o

they are distinct. Assoclated with each ay is te

set of & : a, . Sizmilerly for in

1 8,6, =
1egers2 99
It is sufficicnt to show that 1f we arc locking a*

ay, bJ then every other ¢ assoclated with 2,

k < 1 such that EtUZ 18 an VNepartiticn hzc reziy

-

o

bec¢n output. If a

es

')
e

g bJ i m then a <a, img

a, + bJ < m and hence there are no previcus VN-pzr-

k
titions. 1If a4 + bJ >m then by the atoeve algo-

rithm either for all 8,0 a, + bJ <m or
dk : a, + bJ = m . In this casc all cozmbirnztizns ¢f

Pye Qg = (8, 8) arc output. Thus all previcus

M-partitions have been found and algoriti= 2(%)

producens them all.
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The Improvement {n computing timn cxhibited by
Algorithm 2(b), naturally, leads to the question of
whethor further improvemeonts can be achieved by divide-
ing the original sct into more than two parts. If we
divide the multiset into k parts then all the partial.

sums can be computed in O(k Zr/k)

time. However,

there appears to be no way of combining the results

of the k-parts in time less than o(z'/z) to get the
partitions. For example if we chosc k = 4 then we
would obtain four lists of partial sums of maximum length
2r/‘ each. To obhtain a partition of M wo would choose
ore element from list 1l,say x,; and then determine all
partitions of M - xy from the remaining three lists,
Such a process rcquires more than 0(2{/2) time.
Alternatively we could combine pairs of lists obtaining
two lists of size 0(2r/2))but this just reduces .to method

2b.

We have previously noted that a polynomially bounded
algorithm for the partition problem would have important con-‘
sejurnces on the existence of polynomially bounded algorithms
for rany other problems. Though the splitting technique can=-
not be iterated and further with a subsequent improvement it
can be successfully applied to other p-complete problems. Thus,
O(Zr/Z) algorithms can be given for problems such as 1) finding
an exact cover of a graph; 2) finding the hitting sct of a

graph,
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Now we study an entirely different approach to this problem
which avoids the gencration of all partitions as in 2(a)

and 2(b). 1Instead it first produces r sacte

S(l). ceey s(’) oo that S(i) containas all possidble

combinations of 8)s ooy 8y o Then a retracing pro-

cedure 1s used to find thosc combinations which give M
in S(r)

Definition 8 The sumset of Sr » denoted by S(r) is

the sot of all sums I 8y where JC{l, .., ) .
J&d

-
Definition 9 Ordered Union on Sets sr(.ISr is a set such
1 2
-
that xésrlu Srz implies either ::és,,1 or

xesr and the elements are ordered.
2

Example s, = (1,1,2,2)
The sumsets arec:
s < (o)
s o (0,1)
st o (0,1,2)
s w (0,1,2,3,4)
s < (0,1,2,3,4,5,6)
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Algorithm 3(a) (Musser (4])

This works in essentially two stages

a) compute the sumsets of the sets,

5, = (sl, ceey 31} l<icr o

v) Where M appears in S(r) generate all
partitions creating M by using the sumsets

sV, L, sir-D)

Generate sumsets

1. 89 ¢ (o)

2. For § =1, ..., r s s(J‘l)Cj(s-’“lﬁsJ))
Generation of partitions, using .(32 This is a
recursive procedure G(J, n, J) 1initially

invoked as G(l, M, NULL).

3. If n= 0, output J , Return.

8. 1t n-n, €9 canl 6(3-1, neny, (HUD)

s. 1t nesY1) call 6(J-1, n, J). Exit.

This algorithm differs from 2a chiefly in the
8cheme used for obtaining the indices that sum to a particular
nurmber (binary encoding in the case of 2a and trace back
involving search in 3a). It should ba clear that the binary
cncoding schemo would be suporior whon tho numbor of parti-

tions is large.
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Theorem  Algorithm 3(a) enumerates the M-partitions of S .

Proof See [4] p. 33.

Storage requirements: O(min(zr, r¥})

Proor Is(9] <1
1r |58 @k then 15U3*1)) o ok
Thercfore the total gpace = g 21 «0(2") .
Note however that the marimum cum in ary of tre
s 45 M (or- Is; 1f no heuristics are use2).
So we get another bound on the ctorage 2.c. L(r¥;

Thus the ntorage required in O(minlzr, rv))

Computation time:
Steps 1 and 2: o(min{2", rM})

Steps 3 through 5: O(r2Q) ’ Q = nuznber of parsiticen
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Alsoedintm 3y
This 1a essontially 3(a) with S, ®plit 1into two

parts as in 2(b). The worst case storage space 1s now

r/2

O(min(2 , ™))

and the computation time 1is

r/2

O(max(2 R rZQ))

. There are two stratcqgies that can be employed for
irplementing method 3. Musser's implementation of algorithm
3(a) uscs bit strings., The scts s(i) arc bit strings in
which the jth bit is a 1 4iff j has a partition from

the first {1 elements of the multiset. Such an implementa-
tion has a space requirement of O(r M) and also an asymptotic
computing time bound of O(r M) . This implementation is good

when M is guarantecd to be small. However, the following

example illustrates tho drawbacks of this technique for large M.

Exarple: S = (1, 10%, 10%) , M =~ 10% + 10°

The storage nceded to handle this problem by the bit

6

string technique is about 3 x 10 bits (careful programming

could reduce this to around 106 bits). The computing time

5 basic operations, However the imple-

would be around 10
mentation suqgqested by 3(a) needs only 8 machine words and
about 8 units of time. Thus the dependency of the bit approach
on the magnitude of the number can seoverely cffeoct its gencral

usefulness.
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. Naturally, if wo were writing an algorithm for qener
use we would avoid bit strings. The maximum storage gain t
can bo oxpoctod, for small M , through tho use of bit stri
is only a factor of 8 whera R equala the numb;r of bits
word in the machine. Finally, it is often the case that tt
numbor of combinations which are gencrated is considerably
less than 2% . This will be reflected in our implementati
by a decrcaso in storage nceds whereas the bit approach is
still dependent upon the magnitude of the number.
Now we prasent the last pair of algorithms. Later

we shall gee that their asymptotic bounds will be at least
as good as all of the previously described methods and

actual tests indicate that they are far superior.

Algorithma U(a), U(v)

These arc the same as 2(a) and 2(b) respectively
with the exception that A and B are now sets raither :tha

.

multiocts. Eliminating multiple occurrences of the o

sum at each stage easily overcomes the extra bcokkeepins
needed. Thus, encodings of all possible vectors resul:ing
in a sum in A or B arc kept in an auxiliary array wih
only 1 pointer; a pointer to the first partition of that su
As for algorithms 2(a) and 2(b) the worst case storage and
computing timec bounds remain the same. However, in the
next section we shall examine the extent to which these

algorithms are an improvcment.

Storage requirecd: 0(?r}/é1)
Computing time: 0(max(2ri/é]. rQl)
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Table 1 summarizes the upper bounds on the computing
time and the storage requircments of algorithms 1 through 4.

Estimates of the storage constants involved are also given.
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& Brpirical pesales

Algorithms 1 through 4 were programmed and tested exten=-
sively to determine thelr average rclative performance as
opposed to the theouretically odbtauined 'worst case' computing
time and storaye requirements. The progrums were written in
PCRTRAN G and testecd on an IBM 360/65.

Tests were performed using the following data sets for
S = (81. eecey Sr) and M :

I. =1 1<1c<R

34
M = R, 2K, 3R, R(R+1)/4

1I. s, = random numbers in (1,100)
Let m = max (51)

Meanm, 2m, 3m, Zsi/3, 231/2
111, 51 s randosm numbers in (1,1000])
M=mn,2n, 3a, [s;/3, [s,/2

It should be nnoted that because of the heuristics

uced, the time to compute M-partitions for M = [ 8
1<ic<r

13 essentlally zero for algorithms 1(b), 2(a), 2(b), 4(a)

and 4(t). Tre computing times reported for the cases where

the 3, were random numbers 1s the mean of times obtained for

5 such tests.
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The computing times are reported in Tables Il (1),
(11), and (111).

Despite the simplicity of 1(a) and the fact that it re=-
qQuires only lincar storuge, this method is far too slow for
oven amall values of 1 . As the 3 tables show, an r of
15 took more than 21 seconds and higher values of r were
subsequently much worse. Method 1(b) is a considerable
improvement over 1(a), retaining the linear storage feature
while its performance is superior to 1(a) by a factor of
10 or more. The combination of the heuristics helps to
account for 1ts dramatic improvement over 1l(a). In the cases
2(a) versus 2(b), 3(a) versus3 (b) and 4(a) versus 4(b) the
(b) version with the multiscts split was always supecrior.
Thus let us compare 2(b), 3(b) and 4(b).

Eiaﬁihi;g all thr;e ;ablés we see tha; méthod 2(5) w;s
faster than 3(b) in almost all circumstances showing the
supcriority of the binary encoding scheme, However, the
ratio of improvement is not a constant but varies consider-
ably with the input data. For instance in Table II (ii)
method 2(b) is 10 times faster than 3(b) for M = max , but
both methods are about equal for M = sum/2 . 1In any case
method 2(b) is overall the more efficient, but its real dif-
ficulty is in storage. Note that in Table II (i) method
21b) runs out of storage on all the data sets whercas 3(b)
is ablo to continue. Therefore method 2(b) was modified to
produce method 4 (b) by changing the multisets into scts.

Not only did this 1mptovcmeht allow 4(b) to continue for nuch

groater r but also decrcased the computing time, so that
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4(b) is at-least as good and often better than 2(b).
The empirical results also show that 4(b) is consider-
ably better than 3(b) even in cases where there are
only a polynomial number of partitions,

Finally then we are left with algorithms 1(b) and 4(b).
Looking at the tables we see that the computing time becomes
prohibitive much earlier in 1(b) than in 4(b). 1In fact for
¥ = 60, the maximum r that was tcsted, 4(b) was able to
obtain the answers in 1.4 seconds and nceded no more than
30K words. So despite the fact that 2r/2 is an upper bound
on the number of partitions which may exist, empirical tests
indicate that this limit is often not achicved. (Note that
Lemma 1 in Scction 2 shows when this limit will be reached,)
Therefore an outright "best mothod" would probably be 4(b)
although method 1(b) has the virtue of guaranteed linear

storayo.



Table II (i)

Sequential Nusbers; Tirmes in nillisecqndg

** means > 30X words reguired
¢ means exceeded time limit
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Teble II (111)
Random Numters (1-1009)

% means > 30 K words reguired.

Times in mil;iseconds;

% means exceeded
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The Xnapsack Problem

The general knapsack problem may be statecd as the
following integer optimization problem: let Py be the pro-
fits or returns gained by including project i; si the amount
of resource required for project i; M the total amount of re-
source that can be allocated; and §; the fraction of project

i that is accepted. Then we wish to solve:

max Z Piai

1<is<r

E 8161 <M

l<i<r
where 83 is a non-negative integer. If we restrict §§ to be

subjecct to

tho inteqor 0 or 1 this is called tho 0/1 knapsack problem.

In this paper we shall be concerned only with this form of the
problem. In particular we shall consider applying the mecth-

ods of the previous sections for computing partitions to pro-

Quce more efficient knapsack methods. In terms of the knap-

sack problem we may formulate the partition problem as

max E

PEA a8y
l<i<r
subject to e
> si8y < M
l<i<r
61 - 0,1

Clearly, there is a partition of M in S ={s),...,8.) {ff

max :ZT__ 8i8j=M, If wo want all tho partitions then wo
1<i<r
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look for all § for which :E::‘x‘t attains {ts maxirum of M.
Thus we see that the partitions problem discussed earlier is
rcally a very important instancc of the 0/1 knapzack problem
Let us briefly examine the new complications pro-
duced by the knapsack. We now have a profit associated nct
only with each s , but subscquently with each partial sum
If we adopt algorithm 4(b), then at each iteraticn fcr every
multiple occurrence of a partial sum we nced cnly retain the
onec partition which yields the maximum profit. At lea=st thi
eliminates having to kecep multiple copies of either the par-
tial sums or the profits. But in algorithm 3(b) the ar:rcac
of gencrating the sumsnets and then tracing back to find ol
existing partitions now seems more attractive. Since tlere
is only onec solution in the knapsack problem we can entirsly
climinate the overhead of maintaining all po-uible partitiorn
as we generate sums (as in 4(b)) and instcad usce 3(b) wicre
wo nced only trace back once., Furthermore, §n crider to sz~
sure that the splitting procedure takes no longer than 0(2:/
we must now kecp not only the sums but their associated pre¢
in increasing order. This can clearly be done, for suppsze
that for some { we have sums a; < aa but profits p; < g,
Then we can reject the pair (n“). piol) as not yielding a
maximum profit, For,evary further porafbla corbination of =
§42<§ <r which would he added to LT aqiving a gum < M can
ag well be added to a; yiclding e greater profiz. Therclcre
the method we first suggest is an adaptation of algorith=m 3!
the dynamic proqramming approach where we fnftfally rplit o

gt of waiqghtn and profitn, This mrthod §a nrw givens
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Algoelthm Yrap (1) (aplitilng)

Step 1 Divide the multiset S, of weights, into two multisets

T and U as in 2(b). Let the associated profit sets be PT and PU

regpanctively,

Set Fo(i) = o o<i<m
and Go (i) = o o<i<M
Step 2 Compute Fy (x) = max{Fy_;(x),Fx.1(x-t,) + PT,}
12ke e/2)

Cx (x) = max{Gy_, (x) ,Gk=1(x-uy) + PUL)
1<ker-|r/2)
Step 3 [find an optirmal solution])
Search FLI/ZJ and G“\E/gj in a manncr similar to

algorithn 2(b) to find an optimal pair x,y such that x+y<M and

FE/y (x)+Gp Lf/z—l (y) is a maximum.

while actually implementing Step 2 we do not compute
P and G for all x€{0,M) but only at those points x for which
tnere is an x - partition in the weights currently considered
in Fg(x) is computed only at thosc x which can be reprcsented

as the sum of a sub-multiset of the weights t;,t2,t; and t,.
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IL follows jmmedlately from the pruvious sections that
this algorithm has a worst case computing time and storaje re-
quirement of o(min{2¥/2,rM}). We note that previous dynamic prc
gramming algorithms for the knapsack problem, see {2,5,6,and 7)
requiro O(min(2¥,rM}) time and space. Thus for large M our al-
gorithm again ropresonts a square root improvement,

For a thorough comparison we now consider the best br:
and bound proccdure that has been proposed, algorithm 1(b) as aj
plied to the knapsack problem. We include the heuristic as give
by Kolesasar in [12), who suqgests solving a simple lincar pro-
gramming problem at each stage of the branch. While he had con-
sidcrablo success comparing 1(b) with his hcuristic to method 1o
he did not compare it with any dynamic proqramming alqorithr=a.
Asymptotically KNAP (1) is superior to algorithm 1(b), but we wil
also test thesc 2 mcthods extensively to determine more precise!
their expected behavior. We now present the branch and bound al

gorithm 1(b) with Kolesasar's heuristic for the Knapsack probler
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Algorithm Knap(2) (Branch and Bound]

.

8 = the present partial sum

= profit associated with this sum
= index of next s to be processod
= sot of j such that ;E% 8y =8

= maxirmum profit abtainable

&> 9 o v U

= set of j that yield this profit
3 =
1 (Initiali=]  Order tho s; in decreasing order
of Pi/51°
Set Pyp, W,8,4,8 = 0O
and { = 1
2) [Test Heuristic) Solve the corre§ponding linear program

r
L
max:Z = v ey

T
subjoct toxg}iT skék:M
0<6k<1 1<k<r
IFP > 2+ p GO TO(S)

3) [Put in next item that fits)
Check for first k for which SK<M
If none, sct 6jseeeedy = 0, GO TO(4)
Set M = M-sy, p=p + Pgr 8 = 8 + 5.,
81e8 410000 8kal =0, & = 1
i=k+1. If4f <rgoto (2) else go to (4)

4) [Save ncw solution) i e r 4+ 1
IFP>p go to (5)
AEE P e p, A=S, Wwa, go to (5)



- 30 -

$) [Packtrack)
Find largest k<i for which Gk-l.
1f no such k we are done with optimal solution L.

ELSE M=M+8, , p=p-pk, 8=8-8,, §,=0, irk+l, g0 to (2).

The lincar program of step (2) 48 simply solved Ly sct-

L
ting 6, 6“1""6"11 €per™ (M-{ s,‘)/a‘M where t is the lar-
gest index for which } 8, < M (1b &=r then just use &;,...% =1

with .z-f Pk as the uzlutlon)
i
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We note that Algorithm KNAP(2) takes O(r2%) in computing
time and so asympitotically FNAP(1l) is certainly superidr. We will
now test theso 2 algorithms empirically on 2 variations of tha 0/1
knapsack problem: a) finding a sinqgle solution with maximum pro-
fit; and b) finding the optimal solution with maximum profit and
minimun weight. We note that a 3rd variation, namely finding all
solutions is essentially equivalent to (b).

For both variations a variety of data sots were constructed
to reflect the several degrees of freedom which are possible, i.e.
we can choone the weightn, the profitn, and the sizo of the knapsack,
Cata set I consists of random weight, sj, and random profits pj.Data
scts II (a) and II(b) consist of random weights, 8y and profits Py
guth that

10 , if 1647100 TII(a)

Py = 8y ¢+
100 , if 1<s3;<1000 II(b)

T-.us as the weights increase the profits are accordingly increased.
Tata sets III(a) and III(b) arc conntructed by choosing random pro-
fits, pj and then choosing the weiqghts s; such that

10 if l<p;<100

-i = ps 4
£ 7 Yoo 1 1<p; <1000

Thus correspondingly greater profits have greater weights. Finally
we consider 2-special types of data which serve both to exploit
¥NAP(2) to its fullest potential and to show how disastrous it can
be. Data set IV has sequential sici, M=2*max{s;} and the ratios
Pi/ti are all equal. Data get V has random wéights 8 equal ratios
pi/sj but there exists no partition.

Table I represents KNAP(l) versus KNAP(2) as tested for

finding a single solution on data scts I,IT and IIXI. For cach choice
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of M, tho sizo of tho knapsack, thc timo given {s the total
time that was needed to solve the generated knapsack problems
for sizos r=15-60 in stops of S. 1In all, 50 knapsack prob-
lems wore solved for: each teat. Table II compares these 2
methods for finding the optimal solution using the same data
eets I, II and III,
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Data Set M KNAP (1) KNAP (2)
X 2*Max 6.8 8,45
172 17.7 15,11
II(a) 2*Max 8.37 7.9
172 27.94 142,2
‘II(b) 2*Max 8.15 10.9
172 29.50 276,0
III(a) ° ‘2%Max 8.04 4.56
172 27.22 41.93
IXI(b) 2*Max 8.60 7.47
172 32,38 60.74

Times in Seconds

Table I: Single Solution
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Data Set M KNAP (1) YNAP (2)

b4 . 2*Max 6.8 10.7
172 17.7 16.8
Ila " 2%Max 8.37 10.18
172 27.94 263.94
1Ib 2*Max 8.15 11.39
172 29,50 311.09
IlXa 2*Max 8.04 6.11
172 29,22 163.49
IIIb 2*Max 8.60 G.28
172 32.38 70,77

Times in scconds

Table II: Optimal Solution
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rYor the problem of finding a sinqgle nolution, oxamine
atton of Table I shows that Loth mothods are of ten compotitive,
However, whenever there is a significant difference, as when M=
I/Z ¢ XEAP(1) is consistently faster than KNAP(2) ofton by a fac-
tor of 2 or greater. In examining Table II, we again see that
KNAP (1) remains far more stable than KNAP(2) and is faster in al=-
nost every category. Again for the case when u-[/z we sce that
KNAP(1) is often S5-10 times faster than KNAP(2). 1In order to see
what is happening more concretely, Table III expands the data of
Table I for the case: data cots I, IIIa with M=J/2,

it S KEAP (1) KNAP(2) KnAP (1) KNAP (2)
15 46.50 73.22 53.24 119.80
20 89.86 209.66 76.56 222,98
25 136.46 242,94 133,12 246,28
30 227.40 775.44 216,32 818.68
35 332,80 975.10 359.42 309.50
40 522,50 183.04 565.76 352,78
45 708.86 5973.76 778.74 4226.56
50 - 908.56 389,38 1028.36 4156.64
) 1164.80 18720.00 1381.12 858.64
60 1454.32 1865.28 1883.64 835.34

Data Sct I Data Set IIXa

Timc in milliscconds

Table III: Single Solution Expanded
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Tabla III clearly roveals how KNAP (1) remaina stable
with {ncreaning r whilo KNAP(2) experiences wide variation. For
r=45, KNAP(2) needs 5900 milliscconds but for r=50 KKNAT(2) drops
down to 389 millisoconds. Wo noto that this phenomenon occurs {
the data is such that a single solution is discovered quickly.
Then KNAP(2) abruptly terminates, but one cannot canily determin
a priori if such a situation exists. On the average KNAP(1l) doe
better than KNAP(2). Thus we conclude from Tables I, IT and III
that KNAP(1) is either as fast and sometimes much faster than
KNAP (2) ,

Let us now look at the behavior of these methods on th
data sots 1V and V in Table IV. Where the ratios are ejqual and
the data scquential as in sot IV, KNAP(2) finds a solution quick:
ly and hence works extremely well, However, to find the optiral
solution KNAP(2) must do all of the work and the heuristic is no
longer helpful. Thus we sce that the times for KNAP (2) grow pro-
hibitively large. 1In data sct V, where no partition exists, we
again sce that KNAP(2) works extremely poorly whercas KNAP(1) is
very stable. Therefore, both for the straightforward data sects
as well as for the specially concocted ones, KNAP (1) with split-
ting is almost always faster and oftcen much faster. The oempir-
ical data combined with the fact that in the worst case we know
KNAP (2) to be worse than KNAP(1l) combines to make KNAP(1l) our

first choice.
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Data Sct 4 KNAP(1) KNAP (2) KNAP (2)
- e - - - (Single (Optimal
Solution) Solution)
Iv 15 16.6 0.0 632.3
20 33.2 16.6 3394.5
25 66.5 49.8 14776.3
* 30 83.2 33.2 50302.7
3S 166.4 16.6 159760.6
40 199.6 16.6 > 400000.0
45 183.0 33.2
50 249.6 33.2
L) 316.1 49.8
60 382.7 49.8
v 15 50.0 2300.0 2912.0
20 99.8 80437.7 92834.5
25 200.0 > 600000.0 > 600000.0

Times in milliscconds

Table IV: Single and Optimal Solutions
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6. Conclusion

We have considered the problem of finding all comkin-
ations of r numbers which sum to M and shown how to re¢duce the
computing éimo and storage rcquirements for algorithms which
solve this problem by a square root factor. Then we have stu-
died additional improvemcnts such as heuristics and special ca-
ta structures. The resulting alqorithms were then extensively
tested and compared. Algorithm 4(b) turned out to be superior
in almost every case and often far supcrior than all of the
others. Also it is empirically catablished that binary crncoding
as in 4(b) is better than the conventional implicit encolding
scheme of algorithm 3(b). Only under special circumstances ef
the input will alqgorithm 1(b) cven he competitive with 4 (L) and
these cases are outlined.

Then we have presented the 0/1 knapsack problerm and
shown how the square root improvemcnt sccen before can be direct-
ly generalized to its solution. The 2 standard rethods, branch
and bound and dynamic proqgramming for the knapsack problem (with
the inclusion of the square root improvement technique and other
hcecurinsticn) were programmed and tented, The erpirical renulta
showed that the knapsack problem ran 10 times faster than the par-
tition problem. 1In comparinnn, YNAP(1l) uniformly outeporforred
its main competitor KKAP(2). Though for certain types of inpst
KNAPP (2) 4o oxtLioimoly fast tot‘
others it is disastrously slow whercas KNAP(l) remains stable

as a function of the size of the input. Purther for finding ei-
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tbor the optlmtl or cquivalontly all solutions, KNAP (1) was
far more efficient than KNAP(2). Therefore, unless one is
guaranteed that many solutions exist and that they all will
ba found early by FNaP(2), FHAP(1), with the aplitting teche
nique, is both asymptotically and empirically the botter

choulce,
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