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Abstract

A new class of nonlinear mappings 1s introduced
which contains, in the linear case, the strictly and ir-
reducibly diagonally dominant matrices as well as other
classes of natrices introduced by Duffin and Walter.
We then extend some of the properties of the above men-
tioned matrices to these weakly -diagonally dominant
functions, and point out their connection to the M- and
P- functions studied by Rheinboldt, and More' and Rhein=-
boldt, respectively. Finally, new convergence theorems for
the nonlinear Jacobi and Gauss-Seidel {terations are pre-

sented.
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- Nonlinear Generalizations of Matrix .
. Diagonal Dominance with Application
- to Gauss-Seidel Iterations

by

. Jorpe J. More'

I. Intr;duction.

For & nonlincar mepping F:DC R" - Rn, we eaei}ze
the convergence of two {terative schenmes for finding a solutica
of the system of equations Fx = 0 by ccnsidering a general-
ization of the concept-of strictly end irreducidly diaponally
doninant matricas to nonlinezr mappings.

If F has.coaponcn: functions fl.....fn. wve consider
the (underrelaxed) Gauss-Seidel fteration: Solve
(1.1) fi(x§+1....,x§ti. xi.x§+1,...,x:) -0

for Xy and set . -

(1.2) 41 o 1wy 4w oy, tem 1.0, % = 01l.,

and the (underrelaxed) Jacobi iteration: Solve
k k b3 13
(1.3) ti(xl""'xi-l'xi’xi+l""’xn) =0
for X4 and set

(1.8) x§+1 - (l-w)x: Yux, te1,.m k= 0,1,

vhere w € (0,1] is a2 piven relexaticn parazeter.
Teke, for example, tha Gauss-Seidel method. Ter
affind mappinzs ‘Px = Ax - b where A {s scme n x n patrix 2nd

b 4s a vector in R“, 1t 4s well known (Vargs [19]) that the

« .
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fellbving conditions guarantee the exist;nce of a unique solution:
x" of Px = 0 end thet the Gauss-Scid;l iterates with w € (0,1]
converge to x* for any starting vector ,xO:
‘ 1. A' is sysmetric and positive definite, _ o

2. A 1s en M-pairix. ) .

3. A 1s strictly diagonally dominant,

4. A 1is 1treduc#b1y diagonally dominant.
The first twvo of these conditions have seen extendedA:o nonlinear
systens, and appropriate convergence results have been given. To
be specific, Schechter [19] proved global convergence for the
ponlinear Gauss-Seidel method for a certain g;nazaliza:ion'of the
first conditfion, 2ad Elkin [8], using a weaker generalization,
extended Schechter's results, Concerning the second condition,
Bhefaboldt [16], following an unpublished suggestion of J. M.
Ortega, investigeted an extension of the M-matrix concept and
proved & global convergence result for the (underrelaxed)
tonlincar Jacobi and Gauss~-Seidel processes, These M-functions,
end the correspondingz pglobal convergence théorem. bdrought
together a number of apparently scparate results of Bers [2],
Ortega and Rheindbold: [13), and Porsching [i‘].

In Section 2 we present the mentioned generalizations of
the strictly and irreducidbly diagonally dominant watrices =
the weekly 2 - diagonally dominant functions « and givc.iuflicion:
conditiuns for a (Gatcaux) difrasentiadble function to beloap
to this class of mappings. At this stage we point out that
certein clesses of matrices considered by Walter [20] and Bramble
and EBubbard [3], as well es the strictly and irreducibly diap-

onelly doz=inant matricas are covered by our definitions.



Section 3 contains some of the basic proparties cf
~weakly Q.- diagonally dominant functions = and their sub-
functions - that are necessary in the next two sectioms,
As e by-product of these properties we obtain a necessary
condition for a differentiable function to be weakly -
diagonally domiﬁant. . . ‘

It 41s then shown in Section 4 hov our results are
related to the M- and P-functions studied in Rheindoldt [16]
eand More' and Rheindoldt {1l1], rgspek:ively. These results
show Ehat many of the functions arising frcm nonlinear not-
work problems and discretizations of éar:ial diffetential
equations are, in facﬁ, vggkly ! - dlagonally doninant.
Finally, Section § ceniain; convergance tgsults for the
Jacobi and Gauss-Seidel iterations and an application of
these results to findinpg ncnnegative solutioms of two-

point boundary value problenms.

2. Definitions and Preliminary Results. We denote dy

Rn

the real n - dimensional linear srace of colunn vecters
X = (x]_.....x“)'r and by L(Rn) the linear space of real
matrices A = (aij) of order n. The %_ nora [[x]]_ =

max {lxilz i1=1,...,n} in R® and the correspondiag induccd

opaerator norm in L(Rn)l

.. n . .
Hallg, = max { § Ja,,] ¢+ 1 =1,.00,0},
TR

will be used frequently. In additica, we usc the coordinate-
wise partiel orderinps on R® and L(R™); that is, 1f x.y %a ®°
then x>y (x>y) 1f and only 1if xilyi (x1>yi) fer {=1,...,n,

and similarly for L(R™).
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. A rectangle d 1a L(R") 1e éhc Carteslan p}oduce

of n 4ntervals, each of which may de either open, closed,
ar semi-open. 1In particular, eny of these 1nterva13.uay
be unbounded, and :yus, a rectangle may bde 2ll of R". The
line segoent [x,y] is the set { z € R": z = ty + (1-t)x
for some ¢t 6'[0,1] }, and the set {1,...,n} will alwvays
be denoted by N. Finally, the vector e € R" 1s defined
by &, = 1 for esch 1 € N, while e s the usual g-th -
unit vector. . ' .

We now recall the definitions of certein classes

of matrices that will play 2 role in this article.

Definftion 2.1 a) A in L(Rn) 1s (strictly) diagonaily

doninant 1f

la, 021 . leg,l ¢>)

for esch £ € X, vhere for n=1 the sum on the right 1s
defined to de zcro. )
b) A &n L(R™) 1s {rreducidly dilagonally

doninant 1f

lag 2 T lag,l
37t .
for each 1 € N, where for a2t least one £ € N strict {n~

equéiity holds, and 1f fcr every 1,] 1a N, there is a
sequence of rorn-zero elements of A of the fornm

2 a

1.,3°

y & gecey
1.4,7 it r

1

€) A in L(R™) 1s an M- matrix if

Y <0 for £ # 3 in N, and A-; >0.

1]



In. order to introduce our generalization of &
strictly diagonally dominant matrix, we will have to look
at this class of matrices from a sonmewhat different peint

of view than 1s usual. The following result will dindicace

the way.

Lemma 2.2 Let v € R"; then
a) |v, | > l]v,{ for esome ¥ € X
k 3¥x 3 ‘ .
1f and only 4f for any x € R°

n
b)

jzl vyxy " 0, x # 0, {mplies thet lxk[ < =1,

Proof. Assume that £) holds, aad that

§ vaJ -0, x ¥ 0.
=1
Then v, x, = - v,x,, aad [v.]lx. ] < fv,1 Tixll . fre=
x*x g*kjj kx;—JEkj

.

which d) follows.

If b) holds dut Ivk‘ < 2')v1l. then
. I¥x%
lvol = a ¥ |v,] vhere @ < 1. Define x € R°
)3 -
jﬁk J

by X, = sgo v, o, Xy = a sgn e 3 # % ; then

n
]I*!'. = 1= ka' and 2 v,x, = 0., This contradic:s
J=1 373

b) since x ¥ 0. Mecnce, 2) must hold.

If A€ L(R™), and for some k € u, vy -2

3 = 1,...,n, then 2) 2s equivalecnt %o 2ssucing "szrict
diagonal dooinence on the kth row". Condition b) casd

be generalized to the nonlincar casc.



Definirion 2.3 a) A functional £:D C "+ 31

is strictly
diazonally 40=1nant on D with respect to the kth variable
1f for every x ¥ y in D, - ‘

£(x) = £(y), implies that lxk-ykl < Jlx-yll, .

b) A functioan F:DC R® » gr" ;s strictly diagonally
dominant on D 1f £;r each ¥ € X, the kth component function
of T, fk’ is strictly diagénally dominant with respect to
the kth varilable.

Frca lezma 2.2 we obtain immedietely:

Theores 2.4 Let A € L(R®). Then A 48 a strictly diagonally
do=in1znt zatrix 1f anéd only if the induced mapping Fx = Ax
is a strictly diagonally dominznt function on r".
We next prove several results that give sufficiené
conditiocas for a function to be strictly diagonally dominant
{n teros of its darivative. The nction of differentiability

to be used is that of the well-~known Gateaux derivative.

Briefly: TF: DC s - R”™ 1s G-differentiable 2t an interior

point x € D Lf therc is 2n m by n matrix A such that for any heR"™,

11::-_1.__ [] F(x+t B) - F(x) - ¢ &h || = 0.
t-0 |t} -

It 4s clezr that there is only ona such A, denoted by F'(x),
nazely, the Jzcobian matrix (iji(x) ) where iji(x) H
9 fi(x) . Tor a suacary of the properties of G-differentiable

3 x
funé:lons, se2e Ortaza and Rheindbolde ([12].

Thecresm 2.5 Let T'DS 2™ = 2 be G-differentiable on the
coanvex set Dy € D, and assune that F'(x) {s a2 strictly
diazonally Zonminant matrix for each % 1in Do. Then F

4s a strictly diagcnally doainant function on Do.

arrer e,

- aw weae
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Proof. Let k € N be given, and assume that fk(x) - rk(y)
for soma x » y in Do. Then Y(t) = !k(x+:(y-x)) 1s di1fferx-
_entiadble on [0,1], and $(0) = P(1). By Rclie’s thkeoran,
there is a fo € (0,1) such thet ) :

n - _ [ :
¥rley) = j‘)_:1..3'1fk(x+:°(y-x))(y:,-xj) - 0. -

'}‘ The conclusion now foliows fronm Lecma 2.2 with

vy - ajfk(x+t°(y-x))..3 - i,...,ni .;' o _ -

Later we shell sea that this ;esult adaits a certain
‘converse. On the other hand, Theorem 2.5 does nog-accoua: for
the case where F'(x) is not strictly diagonaliy doaineant at
all points. The next result will point out how this thzorea

can be cxtended to cover this casa.

Theorem 2.6 Llet £: DS R" = R? be G-differentiable om the

——————lt

convex sct D, © D, and essune that for some fixed k € 1,

(2.1) “i: t(x) | > 3 |3J£(x)[
I¥k

for cach x € Dy, 3, f(x) doas not change sign on D., and ¢

o.
is not constant on any lina segaant [x,y] for which [xk-yk[

le—yl]“ > 0. Then f 4s strictly diagonally domineaz on Do

vith respaet to the kth varfiabdle.

Proof. 1Ii for some x ¥ y in Dy» £(x) = £(y) acnd

‘ka-ykl = |lx-yll_ + then X, = v, and without loss of
generality, we may suppose that yk-xk>0. Since akf does
not change 'sign on DO‘ assune that akf(x+t(y-x)) >0 for
each t € [0,1], Then if yY(t) = fk(x + t(y-x) ),



v'e) > jzklaj£(x+z(y-x))](lly-xll.‘l vy = %) 2 0.

Sinee 9(1) = $(0), 1t follows that ¥'(&)=0 for t € [0,1) .
vhich contradicts the fact that £ 1s not constant on the lina
seg=entz {x,y].

The preceding result extends the class of functions which

Theoren 2.5 idcntifies as stictly dlagonally dominant.

Exansle 2.7 Let F:R> + R2 be defined by

x, - sin x

1 2.

r(xl,xz) -

N W

irect computation shows that.ench component funectlon of F
satisfies the hypotheses of Theoren 2.6, and therefore, F

4s szrictly diagonally doninant on Rz. Note, however, tha;.
P'(x) is strictly diasgonally doqinent Snly 1f x, i{s not an even
nultiple of 7.

Suppose row thet A € L(R™) is irreducidly disgonally

dominant, but not strictly diasgonally dominanty them Fx = Ax
48 not a strictly diagonally dominant functlon. Since this

type of nmatrix function erises frequently in practical situations.'
it 1s interesting to consider a corresponding extansion of the

diagonal doninance concept. Ve be”in with an analog of Lemma 2.2,
lezaz 2.8 Let v € Rn; then
a) : !vkl > z lvjl for some k € U
I¥k

1f and only 4f for any x € R“,
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n . .
) 2 v1xj - 0, x # 0, 4zplies that efther lxk] < ]]x[l-.
. =1 .

ér ]xkl = {lxll, = !xj‘ vhencver vy 0.

. a
Procf. Assume that a) holds aid that }

-0
R vjxj cr

"some x £ 0, If lxkl < l]x]l_ there {s nothing to prove;

" henee,suppose that lxkl - llx]l_. Then

v,xX, = = X,
ok 3§k JER

and

R AR I U TR R A LS

Thue,

Jvgtctixlles b <o,

vhich shows that ’le = {]=xll, vhenever vy £ 0.

Conversely, 1€ b) holds, but
2.2y vl < vl
. k 39% 3’

then Jv,| = a § |v,] vhere a €< 1. Define x € 2°
k 3ie 3 '

by

xk = .sgn Yk‘ X, = = G sgn v

; p 3 Fxs e lello = 1= dxl

n
and 2 v,x, = 0. By d), [x,| = ilx[l_ vhenever v, ¢ 9, dut
' i=1 373 3 . b

since lle' a<1=]]x]l_, ve have vy® 9 for 211 j¥%,

This contradicts (2.2).
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Lenna 2.8 1s the clue to generalizing the notion of a
diagonally dominant matrix; we only need to specify the non-
linear couaterpart of the condition vJ ¢ 0 4in p). To do this,
ve will use the well-known notion of a finite directed graph
or network. For our purposes a network Q = (N,A) consists of a
set of o nodes K =-{1,...,n}, and a set AC N x N of (directed)

links which contain no loops; that 1s, (1,1) € A 1f 1 € N,

4 voce 1 fs connected to a node § i1f there is a directed path

in A froa 1 to ji; that 1s, a sequence of links of the form

(1,10, (13,1)), ooy (1.,1).

Note that since we only consider directed paths, it will

be possible for node 1 to be connected to node j without j being

coanected to 1.

Definition 2.9 A mapping F: D € R™ + R® 1s diagonally dominant
oa D with respect to the family of networks {Qx: x € D}, 1if
for every x € D, the network Qx = (N, A;) is such that

£k(y) - fk(x) for soze y#fx {n D and k in N, implies that either
Iz, = 7, < Hx=ybla o+ or Ixgoy,] = Ix=yll = Ixg=y,| vhenever
(k,J) € Ax.

In soze cases, the mapping F will be Q}agonally dominant
vith respect to a single term family of networks, For example,
it follows directly from the above definition and Lemma 2.8
that A ¢ L(R") 1s a diagonally dominant matrix if and only 1f
the induced mapping Fx=Ax is diagonally dominant on R® with
respect to the associated network QA' Here QA - (N,AA) is
defined by

A, - {(4,3) ¢ N x N: 1 ¥ 3, a, ¢ 0}.

j .
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It shéuld now be apparent hov to generalize th; noticen
of an irreduciﬁly diagonally AOninant matrix; instead we shall
generalizé a weaker concept which, in addition, Eontainc the
strictly diagonally dominant matrices and functions as a special

case.

‘Definition 2.10 The mapping F: DS R™ - R™ s weakly Q -

diagonally dominant on D 4f for each x € D there is 2 network
Qx - (N,aNi) such that

a) F 1s diagonally dominant with respect to the family
of né:works (Qx: x € D}, and

b) TFor each x € D there 4s a nonempty subset Jx of I .
such that for each { ¢ Ty fily)-fi(x) for y¥x in D implies
that ]yi-xil < Ily-xll.. and for each 1 ¢ J‘. there {s a path
ia A fron 1 to some 3 = J(4) € I~

An important special case of the above definition arises
when the networks ﬂx and the set; Jx are independent of x

ia D.

Definition 2.11 The mapping F:D & R™ + R™ is R-diagonally

doninant on D 4f there is a network Q = QN,A) such that
a) F is diagonally dominant with respect to the netvork
Q= (N,A), and '
t) 'fhcre is a nonenpty sudbset J of N su:ﬁ that for
'aach 1¢eJ, f1 i{s strictly dilagonally doninant with respcct
to the ith variadble, and for cach { & J, there is a2 path In
A £ro; 1 to some J = j(1) € J.

Definiction 2.10 and 2.11 seems to be new dn this penevality

dut for functions defined om all of R", many authors have com-



sidered special ceses. 1In perticular, for linear functiona,
Walter [20] consideréd natrices A satisfying & condition 2#
vhich Is equivalent to requiring thet I - IA! bde Q;diago-

velly doninant where |[A] = (]aijl),while Duffin - =
[7] 2ssuned that the matrix A had nonpositive off-diag-

onal elements and coﬁsidered another specfel case.of Definition

2.11. Their formulations are designatéd. in the theorem below,

by ¢) and d), respectively. Of course, A € L(R™) (weakly)

f-dizgonally doz=inant on R™ means that Fx=Ax is (weakly) Q-

diagonally dominsnt on R with Qx being the assoclated network

n
of A for each & {in R--

Theoren 2.12 Let A € L(R®) be given such that Iaiil >

2 la,,| for each 2 € N, 2nd set

PETRIR

J={tex:|a,,]l > ¥ la,6}. Then the following condftions
11 AT )

are egquivalent. .

8) A 48 weakly Q-diagonally dominant.

d) A i; fl-dlagonally dominant,

e) J 1s not eopty, and for every non-empty
subset L of N for which L N ; is empty: there is an
1 €L and 2 § @ L such that 244 ¥ 0. To.

d)- J 1s not erpty, and for each £ § J there .s a

sequence of nonzero elements of A of the form a4, 4.
. 1y

B, 37 seee, 2 vhere j €.
11 IZ' 1;3

The equivelence of the first three conditions follows

frectly frono the definitions and Lemnas 2.2 and 2.8, while

the equivalence of ¢) 2ad d) 1s a2 consequence of the next



result which 2lso shows that the connectivity assuzpticas of

’ .par! b) of Dafinitions 2.10 =nd 2.11 eould have bdeen phrased

» in somewhat different terns;

.. lemma 2.13 Llet © = (N,A) bde a netvork and J e ﬁon-eng:y

subszet of N, Thén for each £ § J'the:e is & pi:h frzon ¢

© 7 to some J = J(4)€J 1f enl only 1f for every nca-enpty sudset

L of N such that LN J is eapty, there 1s an.(i.j) iz A
wvith 4 € L and J & L. ) . -~ :

Prccf. Assume first that for cach £ § J Eher; is &
path from 1 tc scme J = 3(1) € J, andAlet L te a2 rvon-
enpty s}bset cf N such that L ﬂ‘J is eopty. Chocse 10 €1,
then 1, £ J and hence, there is a path (10'11{""'(iz-1'1r)
to scme 1€ J. Let p be the first foteger such that

1P € L, 2nd nota that 1 < » < r since 20 € 1 2ad i & 1.

. . .
CThen (1 _y.1)) € Avien & ) €L aéd 1, % L

anversely, if io ¢ J, :heg’fio} nJ is‘eapty, and
hence, 1q 1is :;nnec:ed to some j # io. ‘Thus, L -'{j:io is
connected to j} is not empty, If LN J were ezpty, thea by
hypothesis there 1s a link (1,3) with i€ i 2nd § € L. Thus
10 is not connacted to node j, But this is absuzd since io
is conngcted to L and (4,3) € A. Coasegqueatly, L N J is cec:
empty which Iis what we wanted to show.

It is now easy to prove the next result.
Theorem 2.14 Let F:D < R™ + }® pe continuously diffezeztiadle
on the convex set Do S D. If F'(x) is a QN-dfagonally do?i:z::

-mnetrix for each x € Do, then F 1s a weakly

~
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2-é1az0onally Jdominant function on Do.

Proof. Let x € Dy be siven and set 4 = F'(x), /\ -
((1 3): 443, 2, #0} B = (LAY, and J_ = {11 |a 11 >

i Iaij'}' Then for cach { § J, there s 2 path in ‘A_‘
j¥fe

froc 1 to soze J = 3(2) € Jx.v We now ghov that _ P  4s 2iago-
n2lly dcainzant with respect to the family of networks

{ nx: x € Do). Assume thus, Ehat fk(y) - fk(x) for some

y ¥ x 1o ho and k € R, and that ka-xk - Hy-x”_°

Since the di2gonal entries of F'(x) dc not vanish for any

x € Do by Theorem 2.12 ¢) , the proof cf Theoren 2.6 shows‘

that 1f Y(t) = fk (x+t (y-x)) for t € (0,1], then ¥'(t) = O
for <ach ¢t € (0 1]. 1In particular,

¥'(0) = I 3600 (yy=x,) =0

2n0d by Lemmz 2.8 {t fcllows that ij-le - lly-xll_ wvhenever
(k,1) € A g+ Tc conclude the procf note that 1if k € I,
$°(0) = 0 ioplies that lyk-xkl < [Iy-xl!. . Hence, 1f
£k(y) = tk(x) for sooe y#x in D° and k € J.» then we must
have [y -x,| < Ily=xll.. .

Under the assuzptions of Theorem 2.14 it does

not follow that 7 4s Q-diagonilly dozinant. -

Exazole 2.15 Letg': R! = R? be any continuously differentiatle -
fuactlion such thet g'(t) = 0, € < -1, g'(t) = 1, ¢ > 1, 2nd
0 <3g'(t) <1, |t| <1, snd deftne F:B2+2° by
xp - 8lxy)
?(xl.xz) - Xy *+ g(xz) - %
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Then F'(xl.xz) is Q-diagonally doninant for all (xl.x2Y

but ¥ ds not a f1-d1agonally dominant function since none
-of 1ts component functions is strictly diagonally doninant

vith respect to the apyroptiaté variadle. : -



.

3. Basic Pronerties of Weakly fNl-diagonally Dominant Funections,

In this scction we will generalize’some of the facts known about
strictly and irreducibly diagonally dominant matrices (see, for
example, Varga [19]) to functions that satisfy Definitions 2.3,
2.9 and 2.10. For this purpose, we will need the notion of a
subfunction.

m

Definition 3.1 Consider F:D € R® + R , n>m, and let L =

V(il,...,ik} be a2 non-empty subset of N, For fixed x in
D, define k

1
- : 3.5 g o
Dg {(til.....tin). E::tije + Z—ije belongs to D}.

. i=1 J¢L ‘
Then G:Dd:R R 4s a subfunction of F at x belonging to

L 1f

k 1
3 3
gz(t11|¢'0ptik) - fiz( Z :1je + Z xje ). z-1,..-,ko

=1 J8L

1f F:R" + R" 1. linear, then a subfunction of ¥ with

x = 0 4s a principel submatrix, If F is nonlinear this concept
of subfunction has been used implicitly by many autﬁors. but
Rheinboldt [16] seems to be the first one to make explicit use
0f this definition, We also remark that the subfunction G
depends on a specific value of x in ﬁ, but since it will always
be clear which x is being used, this x has not been made an '
explicit paft of the notation.
Theore= 3.2 Let F:D < R™ + &" be (weakly) fl-diagonally dominant
oa D. Then each subfunction of F is also (weakly) Q-diagonally
deninant.

Procf: We only carry out the proof for the weakly Q-dilag-

onally dominant case; the proof is analogous in the other case,
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Let L © N be a non-empty proper subset, and for ease of
notation assume that L = {1,...,k},1 € k < n, Let G:DGCRk*Rk
dbe the subfunction of F belonging to L with components
, gi(xll....xk) - fi(xl"'"xk'tk+1""’zn)'i € L.

In order to show that G is weakly fl-dfagonally dominant, we
must exhibit for each x = (xl,...,xk)T € DG a network ﬂx and
a non-empty Jx of L which satisfy Definition 2.,10. Set

R = (xl,....xk, zk_.'_l,...,zn)T and define J_ = {1t e L: (4,3)€ Ai
for some § § L } U (LN Jg)» and set Qx = (L, Ax) wvhere

A, = Ap N (L x L). We show first that J 1s not exzpty. For
thie assume that L N Jﬁ is empty; otherwise there is cothing
to prove, Then there exists an io € L such that io € Ji and
a path in Aﬁ

(3.1) <10'11)'(11'12)""’(12-1‘1r)

connecting io to some ir'€ Ji' I1f p 1s the first integer such
that 1? ¢ L, then 1 <'p < r, since 1 € L and 1 € L. There-
fore, Jx is not empty, since necessarily ip-l € Jx' Assuce
now that i, € L is any index for which 1, ¢ Jyei then 1, € Ig
and thus there is a path (3.1) in Ai connecting 10 to sone

i € Jo. If patﬁ (3.1) 4s also in Ax' then £ € L and con-
sequently, 1r € Jx. Hence, (3.1) 1s a path in A‘ connecting
1, to 1 € Jg+ Othervise, 1 < p £r wvhere p 1s defined as
above, and, since 1o_§ Jx’ we have p ¢ 1, K;nce,
(io.il),...,(ip_z,ip_l) is a path in Ax connecting ic to
. ip-l € Jx.' Clearly, G is diagcaally dominant with respect to
'(ﬂx: x € D}, and hence, we only need to show that for i_§ Jx,
8,(y) = g,(x) for some y # x in D, implies that ly == 1 <

y-x|], . If 1L € J, this is clear; hence assuze that
o R
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For the remainder of this section we will assume that F is
contiruous,” In this connection recall that 1if f: J C Rl > R1 is
coatinuous and injective on the interval J, then f is either

strictly isotone (s > t izplies f(s) > £(t) ) or strictly antitone

(s > ¢t 1=pifes £(s) < £(t) ) on J.

Theore= 3.4 Llet K.© Xh be a convex set and J C R1 an aribitrary
faterval, and assume that H: K x J =+ R1 satisfies the following
ccaditions:

a) Ppr each t € J, H(*,t) 1is continuous on K, and

b) TFor each z € K, E(z,*) 1s continuous and injective on J.

Then either H(z,*) 48 strictly isotone on J for all z in K,
or E(z,*) is strictly antitone on J for all z in K,

Proof. Since H(z,*) 1s continuous and injective on an
interval J for any fixed z € K, 1t is either strictly isotone or
strictly antitone on J. Assume E(z,*) 1s strictly isotone for
scne z € K, and define . ‘

KO = {z € K: H(z,*) 4s strictly isotone on J}.
Taen KO is a nonempty subset of K and since z € Ko 1f and .
only i1f for some t, 8 in J, t > s and H(z,t) > H(z,s), the
continuity of a) implies that Ko is open relatize to K, Similarly,
1f z € K 4s a lizit point of Ko, then for any t > s in J,
E(z,t) > E(z,s) and by the injectivity of b), H(z,t) > K(z,s).
deance, Ko is also closed relative to K, and since K is connected,
!0 = K as desired.

7o state the consequences of the previous result, we will
.need the following definition.

Definizfor 3.5 Let F:D < R™ ~ R be given, The kth diagonal sub-

function of F at x 1s the subfunction of 7 at x dbelonging to L = (k).



We can now prove the main result of this Séction whick,
for example, will help us gnalyze the Jacobd! and Gauss-Seidel

iterates.

Corolle;z 3.6 Let F:QC R® + R® ﬁc continuous and wcakly
f-dlagonally dominant on the rectangle Q. Then for amry kx ex,
the kth .diagonal subfunction wk of.F at x is either strictly
isotone for all 'x in_Q, or strictly antitone for all x in Q..
Moreover, if for some y ¥ x in Q, ka-xk[ = lly-x|]_,. then

(x =y £, (x) = £,(y)] 20 Lf ¥, 1is isotone, and
(*k'vk)[fk(x)-fk(y)l <0 1f vy, 1s antitone.

a
Proof. Since Q 46 a rectangle, Q = I Ii wvhere I‘ is
il

an interval, Now let x € Q and k € N de riven and define

n

K=1 I,,J =1, and H: XX J-= R by
1=1
14k

B(x,t) = £,(x300eeuXy 10 ) Xpogoece X )

Since the hypdothescs of Theorenm 3.4 are satisfiled, we have
provad the first part of the thecoren. For the second pare,

assume lyk-xkl = |ly-x|l, for some y # x-in Q. Without

loss of generality, we take yk'-xk > 0 and then define

K& {z¢Q:z+x, z-x =|le=x]],,

lzJ-xJ] < [lz-x||, vhenever (x.3)eA }.

J e [0,1], and H: K x J = &Y by

B(z,t) = £ (x+t(2-x)). .
It 45 now easy to verify that K &s convex and the the hy-
potheses 6: Theoren 3.4 are satisfied fcr this E. Thus,

k

1f ¢ 4s strictly fsotome, B(x+le +*) 1s strictly isotoae for
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€ - Yy ~Xy end hence, H(z,¢) ts strictly isotone tsr every
cE € x. 1t £,(y) < £,(x), then there is & $ € X such that -
. fk(9) <.fk(x); but then )
B(5.1) = £, (5) < £,(x) = B($,0)
which contradicts the fact that H(Jy,*) 1is strictly i1sotone.
An fpmediate consequence of the previous zésul: is a

partilal converse of Theorems 2,16 and 2.14.

Cerollarvy 3.7 1€ F:pc R® + p© is.continuous, d-diffazen:ia?le.

and weakly Q-diagonally dominant on the open, convex set
Dy & D, then F'(x) is a diagonally dominent matrix whose
dizgconel antries do not change sign on Do.
Prcof. Llet x € DO be given. Since F 1s tentinucus

on DO' ve can epply Corcllary 3.6 tec any“reectrnzle QC Do

containing x. Hence, for any riven k € N, the kth diagonal
sudbfuncticn *z of T et x is elther strictly isotone or .
strictly antiltone, and--tc be éefinite--:ssuue that wk

is strictly isotonc, Now let u be the vector with the
conpounents uk.- 1 and uy = -sgn ajfk(x) for J # k, and let
§ > 0 be such that x + tu € (0,6). Thea, for t € (0,6),

t « |[x+tu-x!]|_, and therefore

o?

:(fk(x+tu)-fk(x)] 20,

Divaling by :2 > 0 and passirg to the linit as t =+ 0+.

wve obtain, .
n ’ '

(3.2) fp(x)u -le ajfk(x)uj > C.

But 3, £,(x) 2 0 since 9 1s strictly isotone, and hence,(3.2)
is equivalent to

. lakfk(x)l _>_Z |31‘k("”'
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Te conclude the proof, -note that the dfarcnal entriles
ﬁ! F'(x) do not change sign in any rectanrle Q [ no vhich
con:ains'x; by applyinp this zvpuzent to a scquence of over=-
lepping rectanples lying along the line sepment [x,y}, ve
obtain the desired result.

The last result can bde improved Xf F 1s strictly

ediaronally dominant.

1 43 ecntinuous cn the

Corcllary 3.8 Assune £:DC r® - R
open, convex set Dy © D, and for scme k € K lot ¢ be

the subfunction of f a2t x belenzinp to L = {x}. Then £ 1s
strictly diepcnally deminant on Do with respect to the kth
veriable 4f and only if the followinp two conditicons hold:

8) ¥ 4s either strictlv Isotone for all x in DO'
or strictly antitone for all x im Do.

b) If [yg-xk‘ = Jly-x]l, for y # x in Dy, then
(xk-yk) [£C(x)-£(y)] > 0 1f v 1s ;sotone, and
(xy =¥y ) [£(x)-£Cy)) < 0 1f ¥ 4is 2atitcnme.

Proof. If.thc two conditions hold, them £ 1is clearly
strictly diagoneliy doainent on Do with respect to the xth
warisble. For the ccnverse, let x fy ln 50 be siven. Since
Do i1s open and convex, thera is an € > 0 such that .
x + z(y-x) + :ek belongs to Do for each z € [0,1] ‘and t € [-€,€).
If we nqi define H: [0,1] % [-€,€) = Rl by .- {- -

H(z,t) = £(x + z(y-x) +t 5

then the hypotheses cf Theoren 3.6 are satisfied arnd hence,
E(0,+) and H(1,+) ara both strictly isotonc, or beeh strictly

antitone. This proveé part 2); part b) fcllows by the scoe
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4. 'Relationsh:p between Weakly fN-diagonally Dominant Punctions

2nd other Classes of Functions. In this section we will explore

the coonection between Definition 2,10 and the M- and P- functions
introduced in [16] and [11] respectively., We will need the

following standard terminology; see Collatz [5] and Rheinboldt [16].

Definition 4.1

a) The mapping F:D © R™ + R® is isotone (antitone) on D
1f x < y, x,y € D, implies that Fx < Fy (Fx > FPy), and strictly
isotone (strictly antitone) Lf, in addition, it follows from
x <y, x, y €D, that also Fx < Fy (Fx > Fy).

b) The function F:D € R™ + R" 1s inverse isotone on D
i1f Fx < Fy, x, y € D, implies that x < y.

¢) A mapping P:D < R® « R® 1 off-difagonally antitone
on D 1f for any x € D and any £ ¢ 3J, 1, § € N, the functions

1

vij:(: € r': x + ¢ &I € p}ar? (e) = £,(x + ¢t ej)

» wij
are antitone,
d) The mapping F:D C R® » R" 1s an M- function on D

1f F {s off-diagonally antitone and inverse isotone on D.

As stated, c) 1is somewhat awkward to use, but note that
1f D is a rectangle, then P is off-diagonally antitone on D

i1f and only if for every x,y € D with x < y, LI 2% implies

that £, (x) > £, (y).
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Definition 4.2 The mapping F:D © R" + R 1s a P-function
if, for any x, y. € D, x ¥ y, there is an index k = k(x,y) € N
such that (xk - yk) [fk(x) - fk(y)] > 0.
Clearly, 1f F is either an M- or P- function, then
({11], [16]) F 1s strictly diagonally isotone, where

F:D < R® +» R" 1s (strictly) diagonally isotone on D if for

each x € D and k € N, the kth diagonal subfunction of F at
x 1s (strictly) isotone. The precise relationship between
M- and P- functions is given in the following result whose proof

can be found in [11].

Theorem 4.3 The mapping F:Q & R® - Rn'ia an M-function on
the rectangle Q 1if and only if F 41s an off-diagonally
antitone P-function.

The relationship between weakly Q-diagonally dominant

functions and P-functions is contained in the next resulet,

“
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Theorern 4.4 Let F:Q € R"™ + R” be continuous and weakly Q-
iagonal%y dominant on the rectangle Q. Then P is a P-

function 1if and only 4f F 4s diagonally isotone on Q.

Proof. If F 4s a P-function, then F 1s clearly diago-
nally isotone on Q. Conversely, if F 1s.diagonally isotone
cn Q and x ¥y are given, we must show that there 1s a k € N

such that (x -y )[f (x) - fk(y)] > 0. Let
L= {1¢ N:f, (x) = fi(y).ixi-yil = [Ix-y1l.},

and note that 4{f L 41s empty, then there 1s necessarily a
% £ N such that lxk-ykl = ||x-yl]_ and £,.(x) # £, (y).
Corollary 3.6 then implies that (x, -y, )[f, (x) - £,(y)] > O.
Otherwise, L s a non-empty subset of N such that

Ln Jx is empty. Since F 1s weakly fl-diagonally dominant,
Le=na 2.13 ylelds an (1,)) € A, vith 1 €L and J ¢ L. It
follows that [xjryJ] - Hx-y“ﬂD , and since jJ € L, we have

£,(x) ¢ £

3 J(y). Corollary 3,6 now shows that

<"J'Y5) (fj'(x) - fj(y)] >0,

We will now investigate the relationship between weﬁkly
Q-diagonally dominant functions and M-functions. The functions
to be considered will be assumed to be defined on a rectangle
of the form
(4.1) Q= I 1,
where each I1 {s an interval of the form (ai, +®) or (al +o),
In the first case, a1 = -» {s permitted; otherwise, is

. i
. 1 1
real. We set R, = {t € R7:e > 0}.
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Theorem 4,5 Let F:Q < R™ be a continuous, off-diagonally
antitone function on a rectangle Q of the form (4.1).
The following three statements are then equivalent, and in

each case F 1s an M-function.

a) F 1s a diagonally isotone, strictly diagonally
dominant function on Q.

b) PFor each x in Q, F(x + t e) {s strictly isotone
1
"y

¢) For any x £ y in Q, (xk-yk)[fk(x) - fk(y)] >0
wvhenever ]xk—ykl =~ |Ix-yll,.

as a function of t € R

2roof. If a) holds, then F 1s an M-function by

Theorems 4.3 and 4.4. Moreover, for any X, tk(x 4+ t e) is
injective as a function of t and, by Corollary 3.6,

(s - t) [fk(x + 8 e) - fk(x + te)] >0 for any s ¢ ¢

in Ri. Hence, b) holds, and we only need to show now that
b) implies c¢), since c) trivially yields a).

If F satisfies b), and for some x ¥ y in Q ve have
lxk-ykl = |lx-y||, » then X # ¥ If y, > x,., thend)
together with the gff-diagonal antitonicity of F dimplies
that tk(x) < fk(x+(yk-xk)e) < £k(y). Similarly, &f
x, >y, ve obtain that £, (y) < fk(y+(xk-yk)e) 2 5.

In either case, (xk-yk)[fk(x) - fk(y)] >0 ani c) is
satisfied.

Note that if b) holds, F {. an M-functica [16] even
if . F 1is not continuous; in fact, a weakening of the hy-
péchesis allows us to obtain a sufficient condition for

F to be a weakly Q-diagonally dominant M-function.
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Theore= 4.6 Let F:QC R + 2" be an nff-diagonally antitons

functicn cn & rectangle Q of the form (4.1), and suppose that

1

for any x € Q, F(x+te) 1s an Zsotone function for t on "R+ .

Assume further that for each x € Q,
I - {3 € %: There is a relative ncighborhcod N of x
such that £, (z+te) > ¢

3 3
is,n0t enpty, e2nd define ﬂx - (N, Ax) by

(z) f£or zc1l t>0 and’z € xx}

Ax = {(£.4): There is a relative neighdborhood Nx of x
such that fi(z+:ej) < fi(z) for all t>0 and z € Nx}.
If for any { ¢ Jx therc 1i{s 2 path in Ax fronm ‘! to sone
3 € Jx' then ¥ 1s a wveakly Q-diagenally dominant ﬁ-function
on Q.

Prcof. We prove first that F is diaponally dominant
cn Q with respect to the family of networks {Qx:x € q}.
let x # y 40 - Q te given, and suppose £,.(x) = fk(y). For
ixk-yk! < !lx-y!l. there 18 nothing to prove; thus, assume
that !xz_7k| = J[x~yll“ . Assume first that X =Yy = I[x-yll..
If (x,j) € A, but [xk-ykl > Ixj-yjl. then x -y, > x,°Yy and
X =Ty 2 XYy fer 1§ 3. Since (k,3) € Ax'

() < £ Gt (xmye) < £,
which is 2 ceantradiction. TIf however, Y% ” lly-xll.:
then fcr 0Ocecl szmall eaourl.

£,(x) < £ (x+ely, -x de) < £ (x+e(y-x) ) < £,(y).

To show that F 1is weakly f-¢izpenslly dominant on Q,
we only nced to prove that {f k € J, and fk(y) = £, (x) for
soze y ¢ x in Q, then [yl < [ly=x]l . 1t lyy =%, | =
Hy-xll, and y,>x,, then _

'fk(x) < £ (x+ (yk-xk)e) < fk(y)
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vhic& 1s again a contradiction, vhile 1f X, > yk‘ then
for 0<t<l Qufficiently close to 1,

£,49) £ £,y + tlx =y e) < £, (y + tlx-y)) < £,(x).

To conclude the proof, we must show that F is an ¥-.
function. For this note that the above argumant yicids that

T 1€ ka-xkl - ll&-xll- >0 and fk(y) ¢ fk(x) then

(x=y,) [£,(x) = £,.(y)] 0.

Ve can now proceed as in the proof of Theorem 4.4 to comnclude
thet F 1s a P-function and hence, by Theorea 4.3, za M-
function.

Note that if F 1s G-differentiable on Q, then the
above result provides a different proof of Theorem 2.14 for
convex sets of the form (4.1). On the other haad, if
Q = 8" and the networks Qx.and sets Jx are independent cof x
so that F 1is Q-diagonally dominant, then this thecorez shovs
that certain mappings considered by Duffin [7] end Rheinboldc
{16] are QN~-diegonally dominant functions. .

To conclude this section we present two results which

‘ahov that Q-diagonally dominant matrices formn am important

subclass of the diaponally dominant matrigces.

. Theorcn 4.7 Let A € L(R™), and assume that a,, <0, 1 ¢ 3,

13

n
and ) 24y 02 0 for each 1 € N, Then A 4s 2n M-zatrix if
=] *

and only 1f A is Q-dicgzonally doaminant.
Proof. If A 1s Q-diagonally dominant themn A {s an
M-oatrix by Theorems 4.3 and 4.4. TFor the conversz, note that

since A {s nonsineular thu sot

n
Je{1: } a

=1 4 >0}
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.

.

czanot de exzpty. To finish the proof, assume thet there is ’

a2 set L such that LA J 4s exmpty and 1f Bij

thea 4 € L. Por cach 1 € L we have

40 with 2 € 1,

n

RN TR R

vhile 1f 1 @ L then [ e,y £0. Thus, 1tv=Ted,avceo
jer JeL

vhich 4mplies that ¢ < 0 and gives us the desired contradiction..

The sufficlency cf the above condition was proven dy ’
Bramble and Hudbdard [3], while the nccessity 1s essentlially due
to Schafke [17]. 1In fact, Schafke considered six equivalent

fornulations of Walter's [20] condition Z the next ;esult

23
states part of hils results in our terminology with the

spactral radius c¢f a matrix C being denoted by p(Q).

Corollerv 4.8 assume 3 € L(R") satisfies |[B[]_ < 1.
Then o(|B]) < 1 1f and only 4f A = I - |B| 1s Q-diagonelly
dooinant.

Proof. It is well-known that (Varga [19]) A-I

>0 ¢
and only 1f b(lal) < 1 so that the result follows imnadintely'

from Theorem &4.7.
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5.° Convergence Theorem, We now want to show how the nonlinear

generalizations of diagonal dominance 2llow us to extend the
followin; classical result: If A ¢ L(R“) 4s a strictly or
{rreducibly diagonally dominant matrix, then for every b in
n * 0 n

R, Ax = b has a unique solution x , and for any x in R,

*
the Jacobi and Gause-Seidel sequences converge to x .

The following cdonvergence proofs are somewhat long, but
the ideas behind them are rather simple, Specifically, we will
define an iteration function H for the Jacobi and Gauss-Seidel
sequences, which will allow us to represent these implicit
iterative methods as explicit iterative schenes
k+1 k

x = Hx , k = 0,1,.,.. - The iteration function H will then

be shown to satisfy the hypotheses of the next result.

Lemma 5.1 Let H:D° c R" > R" be a mapping of the closed set

*
DO into itself, and suppose that H has a fixed point x in
Do. If for some m > 1,
* * . *
(5.1) 118" = x || < ||x=x || x € Dye x F x

*
with H® continuous on Do, then x is the only fixed point

of H 4n DO’ and for any xo € Do. the sequence xk+1-8xk con-

*
verges to Xx .
Proof. Assume for the moment thaz m = 1, Then (5.1)
*
implies that x is the only fixed pofnt of B in Do, and
k _* ‘
that Ek - le -x ll is a decreasing sequence of nonneg.tive

numbers and hence convergent. Thus (xk) i{s bounded, and If
k k

{x i} i8 any convergent subsequence such that 1lim x 1.
* * I+

y ¢ x , ‘then

*  * x  k
lim € = l‘ﬂy -x || < |ly =x |] = 11m €
i+t 74 i+4= 74



wvhich contradicts the fact that {ei} is ccnvergcni. There-~
. 3 *

fore, lin x 1. x , 2nd consequently, lim xk = x ., Ifm>1,
14w k++®

thea (5.1) 1naplies that B® and H have the same nunber of

£1ix2d points, Moreover, tha previous argument applied to ®"

k+1

.
{aplies that y - Hnyk copverges to X for any yo € D,.

o
n-lxo

Settinz 70 succeksively equal to xo....,B » we obtain the

desired resule.
]

If 2 = 1, then the previous thcorem is & special éasel
of 2 result of Diaz and Metcalf [6]. On the other hand, the
next result wzs proved by Browder end Petryshyn [4] in the

ccatext of uanifornly convex Banach spaces.

Lesce 5.2 Let H: Dy € R"

6 into 1tself, 2nd suppose that

+ R" be a napping of the closed,

convex s2t .D

{ax-2yl] < [1x-yl] x, ¥y € Dy.
Then E thas 2 fixel pcint 4n DO 1f and only 1f for some
z° € Do the seguence xk+1 - ka' is bounded.

The procf cf this result will be onitted; see, for
exz=ple, Ortaza and Rheinboldt [12] for a2 proocf 1im our se:ting;

Ve ncw show that uander suitedle hypctheses, the Jacobij
aad Gauss-Scidel scquznces (1.1) - (1.4) are well-defined

and 2rc¢ given by an fteration functicn which sacisfies (5.1).

Thecres 5.3 Let F:QC R® - 2" ve veakly Q-dtlagonally dcuinant
on the cectanrle Q, and suppcse that fcr cach x in Q and
1 € N, the cne~-dinensionzl equation
(572) ‘t(xl""'xi-l' T, x1+1,....xn) -0
bas a (necessarily unique) solution :i* with
* . T
(xl,.... X 10 t1 N x1+l,....xn) in Q.
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Then the Jacobi and Gauss-Seidel sequences (1.1) = (1.4) wizh
o€ (0,1], X = 0,1,... are vell-defincd for any x° e Q and

for either method there 1s an iteration functicn R: ¢ C g - &%

.

such that ’ .

a) The method is equivalent with =t . g xk.

k=0, 1,...,

N .

b) B(Q) € Q

¢) |lux-uy|l_ < llx-yl‘. _for every x,y in Q.
Moreover, i1f Fx = 0 has a (necessarily unique) solution x.
in Q, then

d) Il H“_2+1x - x. [l- < llx—x*ll_ frr every x § x‘
in Q where £ dcnotes the numder of elements in Jx*'

- Proof. We will first present the proof for the Gauss-

Seidel method. .

Let x € Q be given, and define the {teration functicon
B:Q C Rn + g% of the Gauss-Seidel method as fcllows: By
assunption there is :I -= which by Theorem 3.3 is unigque --
such that

tl(ti, xz.;...xn) -0
and (ti,xz.'...,xu)'r € Q. Set hl(x) - (l-w)xl + uti. end
note that since Q 4s convex, ('hl(x).xz.....xn)r e Q.
Assune thgt hj(x) for J = 1,...,1=1 have been de(inad such that

(hy(x),.iahy (), xi.....xn)T € Q. Once apair, thare is

a unique t; such that

-!i(hl(x)""‘hi-l(x)' :;.xi+l....,xa) -0,
and ve sat hi(x) - (l-w)xi + wtd: Io this way, we hava

defined %:Q € R™ = R™ such that H(Q) € Q, and that for any °
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x° € Q, the Gauss-So2dal mathod is welledefined and wquivalent

with x&+1 - ka.

To show that H satisfiles ¢) and 3), we first prove
that for every x ¥y in Q and L € N, efither
(5.3 In(x)-n (] < J=-yllg

or

In, x-h (] = Hx-yll,, 2ne,

Al

(5.6) Ih (-h (] = [h,Ga-hy ()] 1€ (1,3) € At > 3,
lhi(x)-hi(y)l - [xj-yj‘ 1f (1,3) ¢ A2 < 3. .
The proof is dy induction. Set R = (tl*(x),xz,....xn)T

vhere fl(i) = 0, 2nd similarly for §. Since

(5.5) In, 00 (0] 2 (10) [xp-yy |+ wl;-9, 1,

21 - ?i ioplics that lhi(i)-hl(y)] < le-yl]w and (5.3)

epplles. 1If §1 ¥ ?1. then X ¢ ¥, and, since £1<;) - £1(;)

and F 18 veakly Q-diacouelly Zcrinant, e¢ither ]il-Yil <

11g-5l1, < [lx-y]l_ 2nd (5.5) implies that (5.3) occurs;

or lil-fll - |i%x-5ll_ = Ixj—yjl for 3 > l,and the second

part of (5.4) holds. Since ]]R-illu - lxj-yJ! < llx-yl!..

(5.5) yielés that lhl(x)-hl(y)l < |x-yll, as desitgd. _
Assume now that (5.3) and (5.4) hold for 1 = 1yeeerk=1,
" T

and set x = (hl(x)"°"hk-l(x)’t£ .xk+1.....xn) wvhere

fk(°) = 0, and sinilarly for §. If & = ik’ the result

follows from

(5.6) [n (m-b (] < Q- Ixoy, |+ ol -5l
and 1f % é i+ then % 4 §. since £.(%) = £,(§) and P is

veakly Q-diazonally Zeminant, elither lik'ikl < |1%-7llo 2 Lx-yll,
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and (5.6) implies that (5.3) holds, or [%,-7, 1 = [[2-F]F. =
l§3'9;' for any (k,3) € Ax' If ¥ < 3§ the third part cf (5.4}
takes place, while 1f k > j, the second part holds. 1Ir elther
case, Iikfikl : l[x—y]l,, and (5.6) ylelds lhk(x)-hk(y)[ <
Hx-yll..

Note that (5.3) and (S5.4) topether 1{=mply that
[1ex-#y]] "< llx-yll,, 2nd thus, we only need to verify that
d) holds. TFor the proof we Qill use the notation hik(x) =
hi(Hk°1(x)) where X > 1 and 1 € N, and equatlons (5.3) 2nd

*
(5.4) with x = x ; 4t will also be important to note that
(5.3) applies vhenever & ¢ Jx*.
Assume for the moment that 2=1, and let x ¢ x. ia
- * * *
Q be given. 1If H° 1y = x", then [[u™x-x || < llx-x |13
- ' ]

othervise X" 1x ¢ x* and we gzroceed to prove that lhin(x)-x‘ | <«

" * a-1 *
Jlx-x"|], for each t & ¥. 1f lhia(x)-x1 | < 11" z-x 1]
there 1s nothing tc prove; otherwise 1 ] Jx* and there s a
path
(5.7) (1.11),(11.12). ....(ir_l.it)
ia A %, with 1 = jeJ*and v g n-1. EHenca, by (5.8)
vith y = 11y,

a * - L] - * .

Ih’_ (x) = x, | lh11 (x)-x, | 1£2>1,,
or '

W * a-l, v . * .

Ih P (x) = =y I o= 10,7 ) -xy | 122 <2,

n * '3
Repeat this procedure uatil lh1 (x)-x, P < Ilx-x 11, .

‘a * 3 * . - .
or lhi (x)-xg | = lhir (x) - =, | for some % with
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1 <p-r <k <n. Since 1, =Je Jx*..
'3 * k- * *
A A B ] L e R S A P
Eeace, lhin(x)-xlhl < I[x-x*ll. for each 1 ¢ N, and thus,
* *
HE®x-x" {1, < [x-x"|],.
If 1 <2 <o, and Hn'lx - x*. there 1s nothing to prove;

- *
" 1z ¥'x , and the prcoof proceeds as before by

othervise,
noting that each { ¢ Jx* cen be joined to an ir € Jx* by =a
path (5.7) with r < n-2.

The proof for the Jacobi methnd is very similar, but
now full use 1s mede of the assunmption that Q 1s a rectanple.
The distinction occurs in the definition of the iteration
functicn E for the Jacobl method. The first component
functicn ¢f B 4s defined by hl(x) - (1-u)x1 + th vhere

£ -
.l(z*. xz,....xn) 0

and (ti, xz,...,xn)" € Q. Assume that h,(x) for § = 1,...,4=1

3

bave becn defined such that (xl,.:.,xj_l,hj(x).xj+1,...,xn)T e Q

fcr § = 1,...,1-1. 1If we sect hi(x) - (l—u)xi + u:; wvhere
* -
fi(xl"'"xt-l'ti'xi+1""'xn) 0
T
and (xl,....xi_l.hi(x),x1+1.....xu) € Q, then
T
(zl....,x‘_z.hi(x).xi+1....,xn) € Q since Q is convex,
2cd, since Q 18 a rectangle,
. T * .
(hl(x),...,hi(x),x1+1,...,xn) € Q. 1In this way the iteration
functica for the Jacobl method is defined, and it satisfics b).

The rest of the proof prcceeds alonp steps similar to those

for the Gauss-Seidel saequenc2. This complates the proof.
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1f F:R™ + R" 2s linear and Lrtcdﬁcibly diagonaiiy -
dqmiatnt; Ma;fk'and Ptak [10) have proved a result related
t; d) of THeo;em 5;3 in the sense that their theoram caa bde
used to prove tha:t for the fteration matrix H of the Jacoddi
method, llsa—z+1||. < 1l. .A :onsequencé of the next exazple’
;s that o - i is the largeﬁt nunber ; such that ilsk[l- - 1.

Example 5.4 " Consider the matrix qf order n > 1l:

- ) e

1l =1 .
0 1 =1 O
A 1A L lel <,
1o s
.1.-5
) - 0 T 4 e e 4w .0 1

vhere there 2re £ alphas. Then J has £ eleaents and
_if H denotes :h; iteration matrix of the Jacobi method then,
by direct com?uc;ti;n. [IZk||- = 1 for 0-5 ¥ <a-2, dut
.Ilﬂn-z+1[]- = |a] < 1. Note that {f @ = 0 A is Q-dfagonally

dominaat dut not irreducibly,diagonally doninant.
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We can now prove our first convergence result,

'Corollarz 5.5 Let F:QC " » »" satisfy the hypotheses
¢f Thecren 5.3 on the closed rectgngle Q.. Then Fx = 0
hes a (neccessarily unique) sclution x* in Q 1f end only
if for soce x° €.Q the Jacobi or Gauss-Seidel {terates
(1.1) - (1.4) with we (0,1) are bounded. In particular,
this occurs 1f Q 4s dounded; in any case, the iterates
will con#e:ge to x. for any z° € Q.

Prcof. We only carry outi:he proof for the Jacobl
method; the prcof for the Causs-Scidel method is similer,

By Theoren 5.3, the Jacodl method has a well-defined
iteratton functicn H:QC R" which satisfies the hypotheses
of Lemna 5.2 on the closed set DO = Q. The first part of
the theorezm now follows from the fact. that

fi(xl"°"xi-1’(1 - % )xi + % hi(x). x1+1.....xn) -0

for each 1 € N, while the convergence of the Jacobl iterates
to x* is & consequence of Lemma 5.1 and Theoren 35.3.

An important case of Corcllary 5.% occurs when Q
4s unbounded; in this case the next exanple shows that Fx=0

does not nacessarfly heve a solution.

Exazaole 5.6 Define F:R2 - Rz by

x -3, + g(xl)
r(xl.xz) -

x, = % + 3(32)
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vhere g(t) = arctan t = m/2. By Theore= 4.5, F 18 & strictly
dlagonally dominant M-function. HRowever, Fx = 0 does not have
.a solutién._tor otherwise, there wculd bde en x = (xl,xz)t such
that F(t,t) < 0 = F(xl.xz) and, since P 1is 4inverse isotcze,
t < Xy» € < %, for every t € Rl. Tpis is clearly Zmpossidble.
Note that in this exanple the one-dinensional equations

(5.2) are not only solvable, but the first and second dizponel

N *
"subfunctions are surjective for each x ¢ %, oOn the other haad,

the next result shows, i{n partfcular, thet if F:R" < B°

is
eontinuous and weakly 0-diagonally dcmiaeat on 211 cf RY,
and Fx=0 has a solution, then the cne-¢imensional equations

(5.2) ere solvabdle.

Theorem 5.7 Llet 7:DC R".+ ®™ be continuous on the set - D,
*
and assume that Fx = 0 has a solution_ x in D, and that
’ *
for some r > 0, Q = {x ¢ R%:]lx-x"||, £t} D. 1f F is vesxly
. ) :
i-diagonally dozminant on Q, them x {s unique In Q, 2ad
for any xo in Q the Jacobl 2nd Gauss-Seldel seaguances
(1.1) - (1.4) with w e (0,1], are well-defined and conveszge
« .
to x .

Proof. The result will follow frcm-Corollery 5.5 1f
we prove that for eszch x 1in Q &and 1 € N, the egquacticn
(5.2) has a unique solution t# with

T
(xl""’xi-l't;'xi+l""'xn) € Q. To shov this, let x ¢ Q
and 4 € N be given, and define v:Rl - Rl by

() = fi(xl'""xi-l’t'x;+1""'xn)'

Clearly, - ¥ s defined for lt-x;l & r, end by Corsllary 5.6,

v 18 either strictly fsotone or strictly aztitcnz. 1Ia eltter
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case, ¥(t) = 0 has 2t most one ;oluticn. We now éroceed
to sh;w that such & soiution exists 1f ¢ 41s strictly )
iso:one{ for the strictly antitone case the proof is analogous.
Since x £ Q, [lX'x*ll- ZSp<r, and 1f p = 0 there 1s nothing
to prove; hence assume that p > 0 and let :I - xi +p.

. + - + »
If v = (xl"'"xi-l’ti'xi+1""’xn)r’ then [ti-le « |]vex s

and by Corollary 3.6,

(:I-XI)tfi(v)’fi(”*)] = p¥CeD 2 0,

or (t]) > 0. Siatlerly, 'if t; = x} - p, then y(r]) < O.

The continuity of ¢ yiclds a t} € [t:,tI] with W(ti) -0,

and since [t}-x3| < r, 1t follows that

(xl....,xi_l.:z.xi+l....,xn)1 € Q. This coapletes the proof.
1f F:R™ » 3" 1s linear and Q1-dlagonally dorminant on

R® then F is necessarily surjective; and 1in the particular

case where w = 1, the previous theorem is due to Walter [20].

If ¥ 4s not defired on all of Rn. then, in peneral, it 4s

very difficult to find a set Q which satisfies the hypo:hese;

of the last two results; however, if F is off-dlazonally

antitoce a2ad for some u,v, Fu < 0 < Fv, thegn Q can be taken

tc b2 the set <u,v> = {z ¢ R":u < 2z < v}.

Theore= S.8 Llet T:Dc R"

- " bve continuous, off-diaronally
antitoae, 2ad weekly Q-diz2ponally dooinzat on the set D.

If :Se:c are u,v in D such that <u,v>C D with FQ <0< }v
aad u < v, then Fx = 0 has 2 sclution x* in <u,v> which s
unique n’ D, 2ad for eany xo in <uy,v>, the Jaccd!l and Causs-

Seldel sequences (1.1) - (1.4) with we (0,1] are wall=deficaed

*
2ad ccavérge to x .
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Proof. By Corollary 5.5 we only nced to verify that
"for each x € <u,v>, Y(t) = fi(xl.....xi_l.:.x‘+1.....x‘) -0
has a unique solution ti e [“i'vil' Note that ¢ 4s defined
on [“i’vi]' Moreover, since T 18 off-diagonally satitone,

fi(vl"’"v1~1't’v1+1""'vh) < u(e) <
11(“1'""“1-1"’“1+1""’“n)'
. A
and hence, w(ui) <0< w<v1)ﬂ The continuity of ¢ on
t“i'"£] then implies that there is avt; € [“1;v1) with
viep) = o, ’

It 1s of interest to note that the conclusions
of Theorem 5.8 hold 1f F is ; continucus M-functien
on D. In this form the ‘theorem is implicit fn the work
of Rheinboldet [16). Note, hewever, that unler the hypotheses
of Theéren 5.8, F 1s nct necessarily an M-functica.

To coécluda, we present "an application of our con-
vergence results te finding nonncpative sclutions of two-
point boundary-value prodlems.

Consider ' .

(5.8) u"(t) = g(c,u(t),u'(t)) for a < t ¢ b; ula) = a, u(d) =
vhere 2z 1s cén:lnucusly diffarentieble on

(5.9) s = {(t,u,u") ¢ R3:a 2t <d, 0 < u<+m, —m <y’ < o),
and '

- (5.10) su(:,u.u') >0, Ig“-(:.u,u')l <M <+,

for all (t,u,u") € §. .

Then, as shown, for instance, by Bailley, Shampine, and

" Waltman [1968] it is known that (5.8) = (5.10) has a uaique,
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twice-continuously differeritiable, non-negative solution’
providaed that «,B 2 0, and g(t,0,0) < 0 for t € [a,b].

To obtain a numerical soluticn of this prodblem, we introduce

. b- I
the pertition tj =24+ 3h, § =-0,...,0+1, h = ;:%, of [a,b], :

and use the standard finite differcnce approximation of (5.8)

(5.11) . ) Ax + ¢(x) - ¢ =0
wvhere
poe 1
. . .0
-1 2 -1 -
(5.12) A = .. s e = (2,0,...,0,8)
-1 2 -1
@) a2

end QsRn - R® is defined by

x X4l
(5.13) 4,(x) "= hzg(ti.xi. ‘*{2h‘ Yy 2 = 1,...,n.

We want to £ind a solution of (5.11) in RI - {x e R":x > 0}).

Theorea 5:9 Cénsider the mapping Fx = 2x + ¢6(x) = ¢ defined

by (5.11) - (5.13) vhere g 438 contin?ously ¢ifferentieble

cn the set S of (5.9) and satisfias (5.30). 1If «,8>0,

g(t,0,0) < 0 for = € [a,b), and h-kig— € (O,%). then the equation

n

*
(5.11) has 2 unique ncnnegative soluticn «x € R+.

and for
2ay xo € R:. the Jacobl and Gauss-Seidal {terates (1l.1) -
(1.4) with Fx = Ax + ¢(x) - ¢ and o E_(O.I]

* -
are vell-defined =nd converge to x ., Moreover, i1f g(t,0,0)S 0
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. P
in [a,%], x € <0, £ € where % satisfle
ao-d S-so

2 2
8q * hig(ty,8q, —55) 2 &, =8, + Wig(r .84, —p

) 2 8.
In particular, s, can be chosen to de max(2,8).

Proof. Since h < 2/M and (5.10) holds, F'(x) 1is a
Q-diagonally dominant matrix with nonpositive off-diagonal
entries for each x € R:. It follows from Theorem 2,14 that
F 18 weakly fl-diagonally dominant on R:. On the other
hand, Theorem 4.7 applied to A ylelds that A is an M-matrix
and thus, that A-l > 0. It follows that if u = A-le, then
F(su) > 0 for s > 0 large enough, and since, in addition,

F 18 off-diagonally antitone and F(0) = ¢(C) - ¢ < 0, the
first part of the heorem follows directly from Theorem 5.8.
If now g(t,0,0) = 0, F(se) > 0 for s > L3 and the result
again follows from Theorem 5.8,

Although the previous result used Theorem 2,14 to assert
that F 1s veakiy Qi-diagonally dominant, we could have also
used Theorem 4.6 to prove a somewhat stronger result where
instead of (5.10) we would make the corresponding assumptions
about the difference quotients,

The use of the approximation (5.11) 4s of course standard,
but it {s usually assumed that (5,10) or the corresponding
difference quotients hold for all (t, u,u') € [a,b] x r! x Rl.
Under :hese'assumptions, many authors have treated (5.8); in
particular, Rheinboldt [16] showed that the correspondirng F
was a surﬁective M- functions., Similarly, discrete analogues

of mildly nonlinear elliptic boundary value problems of the
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form Au = g(t,u) with g(t,0) = 0 and g(t,u) > 0 for u > 0,
have been considered, for example, by Greenspan and Parter
{91, and these authors obtain an existence result similar ’

to ours. However, they do not . tveat either the (nomlinear)

Jacobi or Causs-Seidel method,

Ac¥nowledpnent. This paper 1s an extension of a portion of
=y Pan.D. dissertation at the Department of Mathematics, University
of Maryland, 1970. I would like to thank Professor Werner C.

Rheinboldt for his advise and encouragement during its research
and wvriting.
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