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Developing applications for ad-hoc and sensor networks poses significant challenges. Many 

interesting applications in these domains entail collaboration between components distributed 

throughout an ad-hoc network. Defining these components, optimally placing them on nodes in 

the ad-hoc network and relocating them in response to changes is a fundamental problem faced by 

such applications. Manual approaches to code and data migration are not only platform-dependent 

and error-prone, but also needlessly complicate application development. Further, locally optimal 

decisions made by applications that share the same network can lead to globally unstable and 

energy inefficient behavior. 

In this paper we describe the design and implementation of a distributed operating system for ad-

hoc and sensor networks whose goal is to enable power-aware, adaptive, and easy-to-develop ad-

hoc networking applications. Our system achieves this goal by providing a single system image of 

a unified Java virtual machine to applications over an ad-hoc collection of heterogeneous nodes. It 

automatically and transparently partitions applications into components and dynamically finds a 

placement of these components on nodes within the ad-hoc network to reduce energy consumption 

and increase system longevity. This paper outlines the design of our system and evaluates two 

practical, power-aware, online algorithms for object placement that form the core of our system. 

We demonstrate that our algorithms can increase system longevity by a factor of four to five by 

effectively distributing energy consumption, and are suitable for use in an energy efficient 

operating system in which applications are distributed automatically and transparently. 

 

Supported in part by ONR Grant N00014-01-1-0968.  The views and conclusions contained herein 
are those of the authors and should not be interpreted as necessarily representing the official 
policies or endorsements, either expressed or implied, of these organizations or the U.S. 
Government. 
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1 Introduction 

Ad-hoc networks, formed through the collaboration of intelligent mobile nodes over wireless links, 

simultaneously promise a radically new class of applications and pose significant challenges for 

application development. Recent advances in low-power, high-performance processors and medium to 

high-speed wireless networking have enabled new applications for ad-hoc and sensor networks, ranging 

from large-scale environmental data collection to coordinated battlefront and disaster-relief operations. 

Many interesting applications, however, entail collaboration between components distributed throughout 

an ad-hoc network. For example, sensor networks are often composed of three types of components: 

sensors acting as data sources, information consumers operating as data sinks, and numerous filters in-

between for performing application-specific data processing. While the data sources and sinks may be 

coupled tightly to the nodes to which they are attached, there is often a high degree of freedom in the 

placement of the data processing components. This freedom, coupled with the dynamic environment 

posed by ad-hoc networks, both enables adaptive applications and makes it difficult to find the optimal 

distribution of application components among nodes. 

Adapting to dynamically changing conditions by changing the distribution of functionality across a 

network is critical for many distributed ad-hoc networking applications [Satyanarayanan 96]. For 

example, the resources available to components at each ad-hoc node, in particular the available power and 

bandwidth, may change over time and necessitate the relocation of application components. Further, event 

sources that are being sensed in the external environment, such as tracked objects or chemical 

concentrations, may move rapidly, thereby shift network loads and require applications to adapt by 

migrating components. Finally, an application's behavior might change, as in the transition from 

defensive to offensive mode in a battlefront application, modifying its communication pattern and 

necessitating a reorganization of its deployed components within the network. Currently, ad-hoc 

networking applications either rely on a static assignment of components to nodes or use ad-hoc, manual 

policies and mechanisms for migrating code and data in response to change. A static assignment of 

functionality to nodes simplifies application design by obviating code migration and reduces meta-traffic 

in the network by eliminating component mobility, but it also leads to non-adaptive, fragile and energy-

inefficient systems. The overall application will stall as soon as the critical nodes on the dataflow path run 

out of power or move out of transmission range. Manual approaches to code and data mobility suffer from 

being hard-to-develop, error-prone and platform-dependent. Each application using this approach needs to 

reimplement the same migration, monitoring and communication mechanisms, correctly, on every 

platform. Further, locally optimal policies pursued by applications may lead to globally unstable  and 

energy-inefficient behavior when multiple applications share and interact on the same ad-hoc network. In 
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essence, this approach suffers from building on an abstraction-level that is too low. A high-level operating 

system that provides the requisite mechanisms and policies for code mobility would not only simplify 

application development, but also ensure the integrity of system-wide goals in the face of multiple 

applications competing for resources. 

In this paper, we outline the design of a single system image operating system for ad-hoc networks. 

The goals of our system are to enable the construction of applications with the following properties: 

• Adaptive: Applications should, with minimal effort, be able to respond to changes in their 

environment, their communication pattern, and the availability of resources in the network. 

• General purpose: Applications should be able to run on both ad-hoc and fixed networks. Porting an 

existing monolithic application to execute efficiently on an ad-hoc network should require little effort. 

• Platform independent: Applications should be able to execute on ad-hoc networks of heterogeneous 

nodes. 

• Efficient: Policies and mechanisms used for adaptation in the systems layer should not require 

excessive communication or power consumption. The default policies and mechanisms should yield 

good power utilization and maximize total system lifetime. 

Our operating system meets these goals by 

providing the illusion of a single, unified Java virtual 

machine over an ad-hoc network of heterogeneous, 

physically separate, mobile hosts. Our system 

consists of a static application partitioning service 

that resides on border hosts capable of injecting new 

code into the network, and a runtime on each node 

that performs dynamic monitoring and component 

migration. The static partitioning service takes 

regular Java applications and converts them into distributed components that communicate via RMI by 

rewriting them at the bytecode level  [Figure 1]. The code injector then finds a suitable initial layout of 

these components and starts the execution of the application. The runtime monitors the performance of 

the application and migrates application components when doing so would benefit the system. 

The algorithms used to decide when and where to move application components form the core of our 

system. While our system is designed such that these algorithms can be transparently replaced to optimize 

for differing goals, such as minimizing application latency, response time, or bandwidth consumption, in 

this paper we tackle what we believe to be the most important goal in energy-constrained ad-hoc networks 

of mobile hosts. Namely, we examine how to maximize total application lifetime by utilizing power more 

Monolithic application 

Static partitioning 

Distributed application  
 

Figure 1: A static partitioning service converts 

monolithic Java applications into distributed 

applications that can run on an ad-hoc network 

and transparently communicate via RMI. 
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efficiently. We present two practical, online algorithms, named 

NetPull and NetCenter, for finding a distribution of application 

components on nodes in an ad-hoc network that increases total 

system lifetime by increasing energy utilization [Figure 2]. We 

evaluate these algorithms in the context of a generic sensing 

application and examine their impact on system longevity, which 

we define as the length of time that a generic sensing application 

can maintain sensor coverage above a given threshold area. 

Both algorithms operate by dividing time into epochs, 

monitoring the communication pattern of the application 

components within each epoch, and migrating components at 

the end of the epoch when doing so would result in more 

efficient power utilization. We show that NetCenter or NetPull 

achieve a factor of four to five improvement in system longevity 

over naive or static partitioning techniques. 

This paper makes three contributions. It outlines the design and implementation of a single system 

image operating system for ad-hoc networks, where the entire network appears to be a large Java virtual 

machine to applications, whose components are partitioned among the nodes automatically and migrated 

transparently. Secondly, we propose two practical, adaptive, online algorithms for deciding when and 

where to move application components. Finally, we demonstrate that these algorithms achieve high-

energy utilization, extract low overhead, and improve system longevity, and are thus suitable for use in an 

operating system for transparent, automatic object migration. 

In the next section, we describe related work on operating system support for ad-hoc networks and 

their applications. Section 3 outlines our system implementation, including the code partitioning and 

distribution technique. Section 4 presents our network and application model, describes our simulation 

framework and evaluates NetPull and NetCenter within this environment. Section 5 describes our plans 

for future work. We summarize our contributions and the results of our simulations in Section 6. 

 

2 Related Work 

Prior research on ad-hoc networks has concentrated on ad-hoc routing algorithms such as DSR 

[Broch et al. 98b], AODV [Perkins 97], ZRP [Haas & Pearlman 98], TORA [Park & Corson 98], 

GeoTORA [Ko & Vaidya 00], PARO [Gomez et al. 01], OLSR [Jacquet et al. 98], LANMAR [Pei et al. 

node 

data source  

application component  

network packet 

 

Figure 2: Migrating components 

closer to their data sources in a 

sensor network increases system 

longevity and decreases power 

consumption by reducing total 

network communication cost. 
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00], AMRIS [Wu & Tay 99] and others [MANET 01, Broch et al. 98a]. These routing algorithms move 

data from a source to a given destination(s) as efficiently as possible. They assume that the application 

was structured a priori by the programmer to operate optimally in an ad-hoc environment and that the 

communication pattern of the application is fixed. Our system complements routing algorithms to move 

application code, as well as data, around the network, radically altering the communication pattern of the 

overall application by bringing application components closer to the data sources and thereby providing 

increased system and application longevity. 

Others have experimented with single system image (SSI) operating systems for wired networks of 

workstations. Sprite [Ousterhout 88], V [Cheriton 88], Ameoba [Steketee 95], Accent [Zayas 87], and 

LOCUS [Popek & Walker 85] implement native operating system facilities for migrating processes 

between nodes on a tightly coupled cluster. Most recently, the cJVM [Aridor et al. 99] and JESSICA [Ma 

et al. 99] projects provide a similar Java virtual machine-based, single system image to their applications. 

Others, including Condor [Litzkow et al. 97], libckpt [Plank et al. 95] and CoCheck [Stellner 96], provide 

user-level mechanisms for process migration without operating system support. These projects target 

high-performance, well-connected clusters, and face an entirely different set of challenges; the main goals 

of these SSI systems were load balancing and performance in a local area network for interactive desktop 

programs or compute-intensive batch jobs. In contrast, our system targets wireless multi-hop networks, 

where utilizing power effectively and maximizing system longevity is more important than traditional 

application performance. 

Some recent systems have examined how to spatially partition applications (distribute application 

components) within a wired network. The Coign system [Hunt & Scott 99] has examined how to partition 

COM applications between two tightly interconnected hosts within a local-area network. Coign performs 

static spatial partitioning of office applications via a two-way minimum cut based on summary 

application profiles collected on previous runs. Extending this work, the ABACUS system [Amiri 00] has 

shown that incorporating dynamic information into component placement decisions can further improve 

application performance. Our work shares the same insight as Coign, in that we are also interested in the 

automatic partitioning and relocation of application components, but differs in that it dynamically moves 

application components in response to changes in the network, instead of computing a static partitioning 

from a profile. We differ from both these systems with our focus on power conservation and system 

longevity through dynamic adaptation. 

Various mobile computing projects have looked at how to structure mobile applications. They differ 

fundamentally from our system in that they do not provide an encompassing operating system platform, 

require explicit programmer control to trigger code migration, do not support an ad-hoc network model 
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and target traditional applications. The Emerald system [Jul et al. 88] provides transparent code migration 

for code components written in the Emerald language, where code migration is directed by source-level 

programmer annotations in Emerald. The xDU project [Gehani 97] provides a similar framework for 

explicitly partitioning applications into distributable  units using code annotations in Java. Legion [Lewis 

& Grimshaw 95] is a language independent, scalable, object-oriented operating system for wide-area 

infrastructure networks.  

Other mobile computing projects have focused on creating mobility toolkits. The Rover toolkit 

[Joseph et al. 95] provides relocation and messaging services to facilitate the construction of mobile 

applications. More recent work includes the creation of toolkits specifically for ad hoc environments and 

applications. The Mobiware toolkit [Campbell 98] provides an adaptive-QoS programming interface, 

which assists in the management of object flows. XMIDDLE [Mascolo 01] assists with data management 

and synchronization. Our research takes a systems approach instead of a programmer driven toolkit and 

automatically manages the shared network and energy resources among ad hoc sensor applications. A 

benefit of this approach is that it obviates the need for applications to be recoded against a specific toolkit 

interface; applications are executed without modification atop our operating system. Furthermore, this 

approach ensures that applications, regardless of which toolkits they use, to behave in a cooperative 

manner. 

Active networks [Tennenhouse & Wetherall 96] are a related technique for distributing computation 

within a network on a per-packet or per-flow basis. Our system differs from active networking efforts in 

that it offers higher-level, encompassing operating system services for ad-hoc applications. Its resource 

accounting is based on computational nodes and application components instead of packets or flows. It is, 

however, complementary to active networks, in that it may use an active network as a low-level 

mechanism for code distribution. 

Some mobile applications can naturally be structured as reductions to distributed leader election. 

Much prior work has investigated the problem of selecting a leader node among a set of replicas [Chang 

and Roberts 79], [Garcia -Molina 82], [Awerbuch 87], [Ostrovsky 94], [Sayeed et al. 95], [Brunekreef et 

al. 96], [Singh 96], [Russell et al. 99], including recent work in an ad hoc network setting [Malpani et al. 

00]. However, these algorithms do not account for the cost of keeping the state of replicas consistent, nor 

the effect of the messages exchanged for leader election on power consumption and system longevity. For 

applications with stateful components these costs and effects can be substantial. 

Lastly, prior work has examined how to minimize power consumption within an independent host by 

manipulating the processor clock speed [Grunwald et al. 00, Weiser et al. 94]. Our system is 
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complementary to this work and opens up further opportunities for minimizing power consumption by 

shipping computation out of hosts limited in power to less critical nodes. 

3 System Implementation and Distribution Model 

In this section, we briefly outline the design of our system, present our application partitioning and 

migration model, and discuss two algorithms for automatic, transparent object migration. A full 

discussion of the details of our single system image operating system and its implementation are beyond 

the scope of this paper. We will instead focus on the core of our operating system as it relates to object 

mobility, and will propose and evaluate two alternative algorithms for deciding when and where to move 

application components in ad-hoc networks.  

3.1 Application Partitioning 

Our code partitioning service operates by dividing Java applications into components that can migrate 

and execute over a network. This division is performed statically along object interfaces at class 

granularity1. Thus, the transformation preserves class interfaces, retains type safety, and works at the 

bytecode level without requiring source access.  

Partitioning applications involves two separate modifications for object creation and invocation, 

respectively. Object creation instructions are replaced by calls to the local runtime, which is responsible 

for selecting an appropriate node and creating a new instance of the object on that node. This operation 

returns a handle to the remote object, which can then be used for subsequent object invocations. Object 

invocations are modified to go through an RPC mechanism [Birrell & Nelson 84] to invoke remote 

objects. We use the Java RMI interface for remote object invocation [Harold 00]. 

Our approach to partitioning applications statically is patterned after the Distributed Virtual Machine 

paradigm [Sirer et al. 99], and provides three advantages. First, the complex partitioning services need 

only be supported at code-injection points, and can even be performed offline. Second, since the system 

operation and integrity do not depend on the partitioning technique, users can partition their applications 

into arbitrary components if they so choose. Finally, this technique provides a convenient, default 

mechanism for transitioning legacy, monolithic applications to execute over ad-hoc networks.  

                                                 
1 Consequently, application components correspond to Java objects in our system, and we use the two terms 

interchangeably in the rest of this paper. 
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3.2 Runtime Mechanisms for Object Migration 

The runtime provides the dynamic services to facilitate communication between application 

components. It is invoked in response to three events: object creation, invocation, and migration. In 

addition, it transparently monitors application behavior to enable intelligent migration decisions.  

In order to create a new instance of an object, an application contacts the local runtime and provides 

the type of the object to create. The runtime then has the option of placing the newly created object at a 

suitable location with little cost. It may choose to locate the object on the local node, at a well-known 

node or at its best guess of an optimal location within the network. In our current implementation, all new 

objects are created at the central node that connects the ad-hoc hosts to the wired network. We chose this 

approach for its simplicity, and rely on our dynamic object migration algorithms to find the optimal 

placement of objects over time. The application binaries, containing all of the object constructors, are 

distributed to all nodes at the time that the application is introduced into the network. Once created, the 

runtime simply initializes the object by calling its constructor and returns a remote handle to the object. 

The runtime handles object invocations by locating the appropriate stubs, marshaling arguments, and 

performing the right RPC invocation via RMI. Our runtime independently keeps track of object locations 

in the OS layer. But we assume the presence of a standard ad-hoc routing protocol, like AODV or DSR, 

below our runtime to provide message routing. When an object migrates, it sends a multicast message to 

all of the components that have outstanding handles for itself and informs them of its new IP address. 

This multicast is tightly integrated with the underlying routing protocol to inform remote stubs of the new 

location of the object while simultaneously establishing a live route. In the case of AODV, the multicast 

packet contains a piggybacked RouteReply and causes intermediate nodes to acquire a distance metric 

and route for the new destination node. [Note to reviewers: Our runtime implementation does not 

currently perform this optimization; however, we simulate its effects in the evaluation section]. 

Finally, the runtime has a background thread that listens to incoming migration requests, receives new 

objects over the network and instantiates them. 

3.3 NetPull and NetCenter 

In the preceding sections, we described how our system provides object mobility. In this section, we 

describe two algorithms, named NetPull and NetCenter, which use these mechanisms to increase system 

longevity.  
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Both NetPull and NetCenter share the same basic 

approach. They shorten the mean path length of data 

packets by automatically moving communicating 

objects closer together. They perform this by 

profiling the communication pattern of each 

application in discrete time units, called epochs. In 

each epoch, every runtime keeps track of the number 

of incoming and outgoing packets for every object. 

At the end of each epoch, the migration algorithm 

decides whether to move that object, based on its 

recent pattern of behavior. Under both algorithms, 

the decision is made locally, based on information collected during recent epochs at that node. NetPull 

and NetCenter differ in the type of information they collect and how they pick the destination host. 

Depending on the environment, one may be easier to implement. 

NetPull collects information about the communication pattern of the application at the physical link 

level, and migrates components over physical links one hop at a time. This requires very little support 

from the network; namely, the runtime needs to be able to examine the link level packet headers to 

determine the last or next hop for incoming and outgoing packets, respectively. For every object, we keep 

a count of the messages sent to and from each neighboring node. Each packet from a neighboring host is 

assigned a net force of one unit in the direction of that host. At the end of an epoch, the runtime examines 

all of the forces on the object and moves it one hop in the direction of net pull.  

NetCenter operates at the network level, and migrates components multiple hops at a time. In each 

epoch, NetCenter examines the network source addresses of all incoming RMI invocations, and the 

destination addresses of outgoing RMI invocations for each object. The network source and destination 

addresses are often part of the packets sent during the RMI operation. For instance, they are often part of 

the IP source and destination fields, and thus can be collected without placing an extra burden on the 

network. At the end of an epoch, NetCenter finds the host with which a given object communicates the 

most and migrates the object directly to that host, skipping over any intermediate nodes. 

Both of these algorithms improve system longevity by using the available power within the network 

more effectively. By migrating communicating components closer to each other, they reduce the total 

distance packets travel, and thereby reduce the overall power consumption. Further, moving application 

components from node to node helps avoid hot spots and balance out the load on the network. As a result, 

node 

data source 

application component  

network packet  

1 - NetPull 
2 - NetCenter 

1  2 

 
Figure 3: NetPull moves one hop towards the 

source of data whereas NetCenter moves 

directly to the source of most packets 
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both algorithms significantly improve the total system longevity for an energy-constrained ad-hoc 

network.  

4 Evaluation 

In this section, we evaluate NetPull and NetCenter, and show that they achieve good energy 

utilization, improve system longevity, and are thus suitable for use in a general-purpose, automatic, 

transparent object migration system. Below, we briefly describe our networking model, benchmark 

application, and simulation framework, and then discuss the results in detail. 

4.1 Network Model and Benchmark Application 

Our system targets general-purpose ad-hoc networks. These networks consist of geographically 

distributed nodes communicating over wireless links. In our simulations, all nodes have the same 

communication radius and they are connected to the fixed networking infrastructure via a single, centrally 

placed node. Each node initially stores a fixed, finite amount of energy. Sending a packet between any 

neighboring nodes exacts a constant communication cost, and the cost of local computation on a host is 

negligible in comparison. 

We examine a generic, reconfigurable sensing benchmark we developed named SenseNet. This 

application consists of sensors, condensers and displays. Sensors are fixed at particular ad-hoc nodes, 

where they monitor events within their sensing radius and send a packet to a condenser in response to an 

event. Condensers can reside on any node, where they process and aggregate sensor events and filter 

noise. The display runs on the central node, extracts high-level data out of the sensor network and sends it 

to the wired network. 

4.2 Simulation Framework 

We developed a fast, packet-level, statically parameterizable ad-hoc networking simulator in order to 

simulate large networks. In the style of ns2 [McCanne & Floyd 01], the simulator accounts for all 

communication costs, including AODV routing and route repair overhead. The simulator models the 

movement of every unicast and multicast packet and properly incurs the cost of moving a condenser and 

notifying all its sensors of the new location. We initialize the simulator with a uniform distribution of 

nodes on a plane, and vary parameters such as noise levels, field size, density, battery power, and 

communication and sensing radii.  Sensing events are generated at random locations on the field, and with 

random durations and velocity vectors. Sensors that are in range detect these signals and generate 

application events. They can also, with small probability, generate fictitious events due to sensor noise. 
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4.3 Algorithms 

We compare four different algorithms for transparent object migration: 

• Static corresponds to a static, fixed assignment of objects to nodes within the network. Our 

components remain at the home node for the entire duration of the simulation. 

• Random  is designed to overcome a fundamental shortcoming of static placement, namely that the 

entire system can no longer function once key nodes are unreachable, by moving components around 

at random. 

• NetPull looks at link-level data from its neighbors and moves to the most active neighbor. 

• NetCenter keeps tracks of message sources and moves directly to the node with greatest activity. 

4.4 Simulation Parameters 

A simulation of a complex system such as this requires many parameters. We summarize them here. 

In the following experiments, we examine a simulated network on a field of 300 by 300 distance units. 

Total number of nodes is 3600, corresponding to a density of 0.04. Node sensing radius is 20 units; 

communication radius is 10. Sensors generate spurious messages due to noise with probability 1% in each 

epoch. Sending a packet incurs unit energy cost per hop, and the initial battery capacity is arbitrarily 

chosen to be 1000. We examined, but do not present results from, simulations with the following 

parameters: density={0.02, 0.03, 0.04, 0.05, 0.06}, noise level={0.01,0.05,0.10}, initial battery 

power={1000, 2000}. The choice of a particular density, noise level, or initial battery power does not 

materially impact our results. The choice of epoch duration is arbitrary and application-dependent from 

the point of view of the system and should be made in consultation with applications. Each epoch 

contains at least one event in our simulations. An event may span up to 10 epochs and move through the 

field with a uniformly chosen velocity between 0.0 and 2.0 distance units/epoch. We assume that nodes 

are stationary after the initial deployment, though none of the nodes make any assumptions about 

geographical location of other nodes. Every data point represents an average of five runs.  

4.5 Results and Discussion 

Figure 4 illustrates the impact of our algorithms on system longevity. In this simulation, we have 

arbitrarily defined system failure as the point when half of the field is no longer being sensed, that is, only 

half of the field area is within the sensing radius of at least one live sensor which can communicate along 

some functioning route with the home node. NetPull and NetCenter lengthen the operational lifetime of 

the system by a factor of four to five. 
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Figure 4: System longevity improvement Figure 5: Sensor coverage degradation over time 

Figure 5 shows how quickly the field coverage degrades when components are assigned to nodes in a 

manner that is oblivious to the underlying application communication pattern. In contrast, NetPull and 

NetCenter migrate components close to the source of events, thus preserving energy and shedding load 

from the critical nodes in the network. 

The slopes of the curves in Figure 6 demonstrate that actively migrating components in the network 

drains fewer nodes than a static placement. This is because active migration algorithms avoid creating 

hotspots around critical nodes. In addition, both Static and Random reach system failure with far fewer 

drained nodes, indicating that these algorithms distribute load unevenly and lead to hotspots. 

  

Figure 6: Sensor drainage over time Figure 7: Field energy used over time 

Figure 7 shows that NetPull and NetCenter lie between Static  and Random in terms of energy 

consumption per epoch. The low slope for Static shows that this algorithm uses less energy per epoch 

because it does not expend any power on active object migration. Most of this power usage is 

concentrated in a ring around critical nodes, however, and the application terminates early, leaving more 

than 95% of the total energy on the field unutilized. NetPull and NetCenter consume more energy than 
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Static , because they need to move components, but consume less energy than Random, because they take 

application behavior into account. Overall, they outlast both random and static despite lying between 

them. 

  

Figure 8: Sensors disconnected over time Figure 9: Energy used at breakdown vs field size 

The graph of disconnected nodes over time, shown in Figure 8, indicates that the number of 

disconnected nodes increases more gradually for NetPull and NetCenter because they distribute load more 

evenly across the network. In the case of Static and Random, even though only a small number of nodes 

are drained, they are all located around the home node and thus quickly disconnect the entire field from 

the wired network. 

Finally, Figure 9 shows that all algorithms, except for the static placement of components, are 

unaffected by variations of field size, and will scale to large networks. Static does not scale, because the 

number of critical nodes is a constant function of the application data flow graph, and is not proportional 

to the size of the field. 

Overall, NetPull and NetCenter achieve good energy utilization and improved system longevity. 

Their simplicity makes them strong candidates for use in automated object migration systems. 

5 Issues 

In order to gain acceptance, any automatic scheme for code migration should be at least as 

good as any manual scheme for migrating components. To ensure that our system is no worse 

than any manual scheme, we provide an explicit interface by which application writers can 

identify code components, including both class and object instances, and establish affinities 

between components and ad-hoc nodes. We provide two levels of affinity. Specifying a “strong” 

affinity between a component and a node effectively anchors the code to that node. This is 
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intended for attaching components like device drivers to the nodes with the installed device in 

them. Specifying a “weak” affinity immediately migrates the component to the named node, and  

allows the automated code placement techniques described herein to adapt to the application’s 

communication pattern from the new starting point. Note that today’s manually constructed 

applications correspond to the use of strong affinity in our system – unless explicitly moved, 

components are bound to nodes. The result of overusing strong affinity is a fragile system, where 

unforeseen communication and mobility patterns can leave an application stranded. While we 

provide these primitives, we do not advocate their use and believe that automated techniques can 

outperform manual efforts to place components. 

A second issue with deploying Java virtual machines has to do with the ability of cheap, 

small sensors to support the requisite services required by a Java VM. Java virtual machines on 

the desktop can indeed have excessive resource requirements, necessitating a fast processor for 

just- in-time compilation, RAM for expanded object storage, and persistent storage for the system 

libraries. Previous work [Sirer et al. 99] has directly addressed these issues and proposed a new 

system architecture for virtual machines that can drastically reduce these resource requirements. 

Indeed, there are Java Card virtual machines in existence today that are based on a similar, 

partitioned service architecture that fit on a flexible credit card and cost a few dollars. We 

assume that running a Java interpreter, or equivalent functionality, on sensors is a solvable 

problem and concentrate on the distributed coordination of applications. 

6 Future Work 

In the near future, we plan to extend this work in three directions. First, we have focused on highly 

dynamic versions of NetCenter and NetPull, which aggressively move components as soon as they 

identify an opportunity to save power. In some applications, where the communication patterns form a 

time-varying graph, such an aggressive approach can lead to inefficient, cyclic behavior. We intend to 

study variants of these algorithms with differing amounts of hysteresis to dampen feedback loops. 

Second, we plan to extend our simulations to include node mobility. Our current results indicate that 

NetCenter and NetPull will adapt well to changes in network topology. We plan to add node mobility to 

our simulator and examine the results firsthand. Finally, we plan to investigate the use of our single 

system image Java operating system with more diverse access patterns and memory allocation. We 

currently perform local garbage collection on each node, but do not perform distributed garbage 

collection. We intend to integrate a standard distributed garbage collection algorithm into our system. 
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7 Conclusion 

In this paper, we present the design of a single system image operating system for ad-hoc networks. 

Our system implements the Java Virtual Machine interface on top of a collection of ad-hoc nodes. An 

application partitioning tool takes monolithic Java application and converts them into distributed, 

componentized applications. A small runtime on each node is responsible for object creation, invocation 

and migration. We rely on a transparent RPC for node-independent communication between components. 

Two algorithms, NetPull and NetCenter, for automatically migrating application components in the 

network form the core of our operating system. These algorithms are practical, entail low overhead and 

are easy to implement because they rely only on local information that is easily available from the 

network. We have demonstrated that they can achieve a factor of four to five improvement in system 

longevity. 

Ad-hoc networking is a rapidly emerging area with few established mechanisms, policies and 

benchmarks. We hope that high-level abstractions, such as single system image operating systems 

combined with automatic object migration algorithms, will create a familiar and efficient programming 

environment, thereby enabling rapid development of platform-independent, power-adaptive applications 

for ad-hoc networks. 
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