
Compiling Imperfectly-nested Sparse Matrix Codes
with Dependences

Nawaaz Ahmed, Nikolay Mateev, Keshav Pingali, and Paul Stodghill

Department of Computer Science,
Cornell University, Ithaca, NY 14853

Abstract. We present compiler technology for generating sparse matrix code
from (i) dense matrix code and (ii) a description of the indexing structure of
the sparse matrices. This technology embeds statement instances into a Carte-
sian product of statement iteration and data spaces, and produces efficient sparse
code by identifying common enumerations for multiple references to sparse ma-
trices. This approach works for imperfectly-nested codes with dependences, and
produces sparse code competitive with hand-written library code.

1 Introduction

Sparse matrices are usually stored in compressed formats in which zeros are not stored
explicitly [9]. This reduces storage requirements, and in many codes, also eliminates the
need to compute with zeros. Figure 1 shows a sparse matrix and a number of commonly
used compressed formats that we will use as running examples in this paper.

The simplest format is Co-ordinate storage (COO) in which three arrays are used
to store non-zero elements and their row and column positions. The non-zeros may be
ordered arbitrarily. Compressed Sparse Row storage (CSR) is a commonly used format
that permits indexed access to rows but not columns. Array values is used to store
the non-zeros of the matrix row by row, while another array colind of the same size
is used to store the column positions of these entries. A third array rowptr has one
entry for each row of the matrix, and it stores the position in values of the first non-
zero element of each row of the matrix. Compressed Sparse Column storage (CSC, not
shown) is the transpose of CSR in which the non-zeros are stored column-by-column,
and it offers indexed access to columns.

A more complex format is the Jagged Diagonal (JAD) format. This format organizes
the non-zeros of a sparse matrix into a small number of very long “diagonals”. An
instance of a JAD matrix is constructed by (i) “compressing” the rows of the matrix so
that zero elements are eliminated (introducing an auxiliary array, colind, to maintain
the original column indices); (ii) sorting the compressed rows by the number of non-
zeros within each row in decreasing order (introducing a permutation vector, iperm);
and (iii) storing the columns of the compressed and sorted matrix, which are called
the “diagonals”, in two vectors, colind and values. Finally, Figure 2 illustrates
the Diagonal (DIA) storage format which is appropriate for banded matrices. Only the
diagonals containing non-zero elements are stored, elements are addressed by diagonal
and offset.

hg

1 3 42

1
2
3
4

a
b c

d e
f

A

3

4
2

1

A.rowptr

CSR

3 42 3
b h

A.iperm A.dptr

f d a g c e
1 1 3 4

JAD

h g
4 2 1 3 3 4 2
4 2 3 1 3 3 41

4
f b a d e cCOO

a b c d e f g h
3 43 2 4 1 3 1

A.values
A.colind

A.values
A.colind

A.values
A.rowind
A.colind

Fig. 1. Sparse Storage Formats

a b

c d e

f g h

i k

c

r

b e h

a d g k

c f i

o

d

Fig. 2. DIA Storage Format

for j = 1,N
S1: b[j] = b[j]/L[j,j];

for i = j+1,N
S2: b[i] = b[i] - L[i,j]*b[j];

Fig. 3. Column Triangular Solve

For dense matrices, highly efficient implementations of the Basic Linear Algebra
Subroutines (BLAS) [3] are usually provided by hardware vendors. For sparse matrices,
the problem of developing BLAS libraries is complicated by the fact that some forty or
fifty compressed formats are used widely, and each format requires customized code.
Many attempts at writing sparse BLAS libraries have been confounded by the code
explosion problem [11, 4].

Bik and Wijshoff [2] proposed using restructuring compiler technology to synthe-
size sparse matrix programs from dense matrix programs. Their compiler restructured
input codes to match a Compressed Hyperplane Storage (CHS) format (CSR and CSC
are special cases of this format) whenever possible. However, their system is not ex-
tensible in the sense that the programmer cannot specify a new format, and modern
sparse formats such as JAD format cannot be supported. Pugh and Shpeisman [10]
propose an intermediate program representation for sparse codes that allows them to
predict asymptotic program efficiency and make decisions about chosing sparse matrix
formats.

In our previous work [7], we argued that (i) sparse matrices should be viewed as
sequential-access data structures [13], and (ii) efficient sparse codes should be orga-
nized if possible as data-centric computations that enumerate non-zero elements of
sparse matrices and perform computations with these elements as they are enumerated.
This view is in contrast to the conventional view of arrays as random-access data struc-
tures, a view that is useful only when the array is dense. An important refinement to
the sequential-access view is that some sparse formats have an indexing structure and
should therefore be viewed as indexed-sequential-access structures [13]. For example,
the CSR format permits indexing to rows (but not to columns), and this indexing struc-
ture must be exploited in some codes such as matrix multiplication.

To avoid having to write different data-centric programs for each sparse format, we
exploit the idea of generic programming [8]. The algorithm is programmed abstractly
just once in a data-structure-neutral fashion, and concrete programs are obtained by
instantiating this abstract code with different data structure implementations. The most
well-known example of this approach is the Standard Template Library (STL) in C++.
The MTL [12] is a generic library of matrix computations.

���
Idx � ���

map ���
	 in �
�� out
�������

perm ���
	 in �
�� out
�������������������������

Idx
�

attribute
���

attribute "!#!"!" attribute $ � 	 attribute %'&"&"&(% attribute �
Fig. 4. Sparse Matrix Abstraction

In our system, generic programs are dense matrix programs, and they are “instan-
tiated” into efficient sparse matrix programs by our restructuring compiler when it is
supplied with specifications of sparse formats. Of course, this instantiation mechanism
is considerably more complex than the C++ template instantiation mechanism since it
is necessary to restructure the dense code at a deep level to make it data-centric for the
desired sparse format. Previously, we showed how this restructuring could be done if
the program is a perfectly-nested loop nest in which iterations can be executed in any
order [6]. However, many codes of interest, such as the triangular solve in Figure 3
and matrix factorizations, are not perfectly-nested and data dependences do not allow
executing statements in arbitrary order. We address this problem in this paper.

The rest of the paper is organized as follows. In Section 2, we sketch how the user
can specify sparse matrix formats in our generic programming system. In Section 3,
we give an outline of a restructuring framework that we developed for imperfectly-
nested loops computing with dense matrices [1]. In Section 4, we discuss how this
framework can be used for synthesizing sparse matrix code from dense matrix code
and sparse format descriptions. The key ingredients in our solution are a search space
of sparse programs, a cost metric for evaluating the quality of a sparse program, and
heuristics to restrict the search space. In Section 5, we present experimental results
demonstrating that our approach produces code competitive with hand-optimized sparse
matrix libraries. Finally, we summarize the paper in Section 6.

2 Generic Programming and Matrix Abstraction

For the purpose of this paper, the most important aspect of a sparse format is its index
structure. For lack of space, we will focus on how this is specified in our system, and
omit other details of the generic programming system which can be found in a previous
technical report [7].

To appreciate the importance of exploiting the index structure in code restructuring,
consider the triangular solve code of Figure 3. Vector b is dense and the lower triangular
matrix L is sparse. The code is imperfectly-nested because statement S1 is not nested in
the i loop. Since matrix L is traversed by columns and CSC permits random access to
columns, it is relatively straight-forward to generate data-centric sparse code for CSC
from this dense code. For CSR storage however, it is necessary to restructure the code
first so that it walks over rows of L, since CSR storage provides random access only
to rows of a matrix and not to its columns. Therefore, we need a way of describing the
index structure of sparse formats, and we need technology to restructure code to match
this index structure.

The grammar in Figure 4 is used to describe the index structure of a sparse matrix to
our system [7]. The most important rule for specifying index structure is the Idx)+*
production rule. For example, a CSR matrix is described as ,-)/.0)21 , indicating

that rows must be accessed first, and within each row, elements within columns can be
enumerated. The map 35476 in 8:9) out ;<*>= and perm 35?76 in 8:9) out ;@*>= rules are used
to describe linear and permutation transformations on the matrix indices. A matrix in
DIA storage format can be described as map 35ACBED�9)F,�GHD>9)I.J;@AK)+DL)F1<= , while
the perm operator is useful for describing formats like JAD. The *7M�NO*JM M (perspective)
rule means that the matrix can be accessed in different ways, using either of the index
structures *PM or *JM M . As we will see, JAD is an example of such a format. The *>MRQK*JM M
(aggregation) rule is used to describe a matrix that is a collection of two formats, such
as a format in which the diagonal elements are stored separately from the off-diagonal
ones. Enumerating the elements of such matrix requires enumerating both *7M and *PM M .

The S attribute G�TUT�TVG attribute W notation describes an index obtained from multiple
co-ordinates enumerated together, as in the COO format (SX,�G#.�WY)Z1). On the other
hand, 6 attribute [E\U\�\
[attribute 8 denotes independent indices, as in a dense matrix
(6X,�[].�8^)_1).

Each term * is optionally annotated with the following enumeration properties.

– Enumeration order: a description of the order in which coordinate values could be
enumerated efficiently. For the CSR format above, , is random-access, and within
each row, . can be enumerated efficiently in increasing order.

– Enumeration bounds: a description of the coordinate values that actually occur in
the enumeration. A lower triangular matrix, for example, could be annotated `'a.baE,�a N.

In addition to specifying this index structure, the sparse format designer must write
the actual code to perform these enumerations. We omit details of this since it is not
relevant to the rest of the paper.

In the running example of Figure 3, we will assume that the sparse lower triangular
matrix L is stored in JAD format. Even though JAD is designed for fast enumeration
along the long “diagonals”, it is also possible to access the matrix rows through the
indirection iperm. In our notation, this structure can be described by the expression
perm 3 iperm c ,�Medf9)g,];�6X,�M^)h.L)g1i8jNk6HSX,�MlGH.�Wb)g1m8"= . Enumeration properties are
used to tell the compiler that ,�Gn,RM:op. and that when the ,qMr)s.K)t1 perspective is
used, ,�M is random-access and . can be enumerated in increasing order. Since L can be
efficiently accessed either by “diagonal” or by row and the code in Figure 3 accesses it
by column, it is necessary to restructure this code to make it match JAD storage. The
technology described in the rest of this paper accomplishes this.

3 Framework for Data-centric Restructuring

In this section, we summarize a data-centric framework for restructuring imperfectly-
nested dense matrix codes with dependences; details can be found in an associated
technical report [1]. In Section 4, we adapt this framework for sparse matrices.

Our framework makes the usual assumptions about programs: (i) programs are se-
quences of statements nested within loops, (ii) all memory accesses are through array
references, and there is no array aliasing, and (iii) all loop bounds and array indices are
affine functions of surrounding loop indices and symbolic constants.

We will use S1, S2, . . . , Sn to name the statements in the program in syntactic
order. An instance unv of a statement Sk is the execution of statement Sk at iterationuwv of the surrounding loops. We say that there exists a data dependence from instanceuwx of statement Ss (the source of the dependence) to instance u#y of statement Sd (the
destination) if (i) both instances lie within corresponding loop bounds; (ii) they refer-
ence the same memory location; (iii) at least one of them writes to that location; and
(iv) instance unx of statement Ss occurs before instance uHy of statement Sd in program
execution order. Dependence constraints can be represented as a matrix inequality of
the form z�6{u x GHu y 8n|OB}A~o�� . Such an inequality obviously represents a polyhedron.
Each such matrix inequality will be called a dependence class, and will be denoted by�

with some subscript.
For our running example in Figure 3, it is easy to show that there are two dependence

classes.1 The first dependence class
����� 3(`Ka�� � a N G�`�a��5���kuw�Ka N Gl� �P� �5�q=

arises because statement S1 writes to a location b[j] which is then read by statement
S2; similarly, the second dependence class

� � � 3(`ba-� � a N GU`Ca�� � �Eu � a N G�� � �u � = arises because statement S2writes to location b[i]which is then read by reference
b[j] in statement S1.

3.1 Modeling Program Transformations

We model program transformations as follows. We map dynamic instances of state-
ments to points in a Cartesian space � . We then enumerate the points in � in lexico-
graphic order, and execute all statements mapped to a point when we enumerate that
point. If there are more than one statement instances mapped to a point, we execute
these statement instances in original program order. Intuitively, the Cartesian space �
models a perfectly-nested loop, and the maps model transformations that embed in-
dividual statements into this perfectly nested loop. It should be understood that this
perfectly-nested loop is merely a logical device—the code generation phase produces
an imperfectly-nested loop from the space and the maps.

Clearly, not all spaces and maps correspond to legal transformations. However, if
the execution order of the transformed program respects all dependences (i.e. for each
dependence, the source statement instance is enumerated and executed before the desti-
nation statement instance), then the resulting program is semantically equivalent to the
original program. We must therefore address three problems.

What is the Cartesian space � for the transformed program? Each statement has
an iteration space and a data space. The iteration space is a Cartesian space whose
dimension is equal to the number of loops surrounding that statement. The data space
is a Cartesian space whose dimensions are the dimensions of all references to arrays
on which we might want to be data-centric. In our context, these are the references in
the statement to sparse arrays. The statement space of a statement is the product of its
iteration space and data space. We denote the statement space of statement Sk by �fv ,
and the coordinates of instance uHv in ��v by 6Xu�viG#A(vq8 . A product space � for a program
is the Cartesian product of its individual statement iteration spaces. For the purposes

1 There are other dependences, but they are redundant.

of this paper, the order in which individual dimensions appear in this product is left
unspecified, and each order corresponds to a different product space.

How do we determine maps 4�� to obtain a legal program? We embed statement
spaces into a product space using affine embedding functions 4 v ;(� v)F� . Let 4 v5� �
denote the dimensions of 4 v corresponding to dimensions derived from statement Sm,
i.e. 4 v5� � ;�� v)�� � . To keeps matters simple, we only consider embedding functions
for which 4 v5� v is identity mapping. As dependence classes are described by systems of
linear inequalities, we can use Farkas’ Lemma to compute the set of all legal embedding
functions. Details are available in [1].

How do we evaluate the efficiency of each transformed program? In the context of
sparse matrix code generation, we answer this question in Section 4.2.

For the example of Figure 3, L is sparse, so the data space for S2 will have two
dimensions corresponding to the row and column of L. The statement spaces for the
two statements are � � � � � [J�{�� [J�l�� and � � � � � [Cu � [J�{�� [J���� , where the name of each
dimension has been chosen to reflect its pedigree. A product space has � dimensions,
and there are a total of �i� product spaces. Among the legal embedding functions are4 � 6e� � G#�{�� G#���� 8 � 6e� � G#�{�� GH���� G�� � Gl� � GH�{�� GH���� 8n| , 4��(6e�5��Gnuw��GH���� G#���� 8 � 6��5�RG#�{�� G#���� Gl�5�RGnuw�qG#�{�� G#���� 8�| ,
which embed S1 and S2 in � � � � []�{�� []���� [>�5�C[Yuw�
[Y���� [Y�l�� .

4 Accounting for Sparse Matrices

Data-centric code for sparse matrices must enumerate the co-ordinates appropriate to
the sparse matrix format (e.g., the diagonal A and offset D for the DIA storage format
in Figure 2) rather than the dimensions of the enveloping dense matrix. Therefore, we
define the sparse data space of a statement, and use that instead of the (dense) data
space described in Section 3 to define statement and product spaces.

The sparse data space of a statement is defined by starting with its dense data space
and recursing over the index structure of sparse matrices referenced in that statement.
Whenever a production rule map 35476 in 8�9) out ;�*7= is encountered, we remove out
from the data space and add in to it. The perm 35?76 in 8^9) out ;R*>= rule does not change
the dimensions of the data space.2 If no sparse matrix in the program contains a pro-
duction * M N~* M M or * M Q�* M M , this defines the statement sparse data space uniquely.

The aggregation and perspective structures modify the product spaces of a program.
Intuitively, if statement Sk references a matrix described by *>M
QE*JM M or *PM�N�*JM M
rule, we split Sk into two copies: Sk’ accessing the matrix through structures *7M ,
and Sk" accessing it through *�M M . The aggregation rule requires the statement to be
executed for both structures *LM and *JM M , so the resulting product spaces have dimensions� � � � []\�\U\�[L��M v [���M M v [Y\U\�\q[��
� . On the other hand, the perspective rule presents
a choice of access structure, which gives rise to two groups of product spaces, the first
group with dimensions � M � � � [~\�\U\�[0� M v [E\�\U\�[O�
� , and the second group with
dimensions �LM M � � � [�\�\U\@['��M M�vL[�\�\�\�['� � .

In our running example, the perspective *�M�N�*JM M production rule in the structure
of the sparse matrix L tells the compiler that L can be accessed either by row, using

2 Permutations however change the order of enumeration of a dimension, that order may be
important for legality and is handled by the code generation phase.

 K¡
¢�£
¢w¤ � ¤¥¦¦¦
§
� ¨r�� ¨r�� ��¨� ��¨� ��¨� ��¨� ¨r�

©«ªªª
¬
­«® £­«®¤­e¯£­e¯¤¢ £¢�¤� ¤

Fig. 5. Redundant Dimensions

for r = enum(iterator_r) (increasing) do
for c = enum(iterator_c) (increasing) do
v = currently enumerated value of L
if (r=c) then b[c] = b[c]/v;
if (r>c) then b[r] = b[r] - v*b[c];

Fig. 6. Data-centric Triangular Solve

*JM � 6{,�M
)2.])/1i8 , or along “diagonals”, using *�M M � 6nS{,�M�G#.�WK)°1m8 . Since both
statements S1 and S2 reference L, and there are two choices for each reference, the
code in Figure 3 has four groups (of �i� each) of product spaces. All product spaces have
the same set of dimensions 3±� � GH���� GH�l�� Gl� � GHu � GH���� GH�l�� = although the order of dimensions
and enumeration properties are different for different product spaces.

4.1 Generating Data-centric Code

We can think of a product space and embeddings as representing a perfectly-nested
loop nest with guarded statements where we enumerate the values of all dimensions,
and execute statement Sk when the values being enumerated match the embedding4 v 6{u v GHA v 8 . However, this code will have very poor performance. To improve perfor-
mance, it is necessary to (i) identify and eliminate redundant dimensions, and (ii) use
common enumerations for related dimensions. We illustrate these points with the em-
bedding functions 4 � 6�� � G#� �� G#� �� 8 � 6{� �� G#� �� G#� �� GH� �� Gl� � G�� � Gl� � 8 | and 4���6��U��Gnuw��G#� �� GH� �� 8 �6{�{�� GH�{�� GH�l�� G#���� G�� � Gl� � Gnu � 8n| , which embed statements S1 and S2 into product space � ��{�� []�{�� [Y�l�� [Y�l�� [7� � [>� � [Yu � .

All embedding functions are affine, and for each statement instance 6Xu v GHA v 8 , the
data coordinates A v are affine functions of the loop indices u v , so we can represent
the embedding functions as 4 v 6Xu v G#A v 8 �³² v u v Bµ´ v , where the matrix

² v defines
the linear part of 4 v , and the vector ´ v is the affine part. We can use the matrix

²¶�
c ² � ² � T�TUT ² � d to identify redundant dimensions in the product space. We use

² v to
refer to the ·m¸{¹ row of the matrix

²
. For our example, this matrix is shown in Figure 5.

If a row of the
²

matrix is a linear combination of preceding rows, the correspond-
ing dimension of the product space is said to be redundant. In our example, only dimen-
sions ���� and ���� are not redundant. It is not necessary to enumerate redundant dimensions
since code is executed only for a single value in that dimension, and that value is de-
termined by values of preceding dimensions, so we generate code to search for this
value.

Some dimensions must be enumerated in a particular direction in order to ensure
legality. If the · ¸{¹ dimension of the difference 4^y(6Xu�yqG#A(y�8�º�4�x�6{uwx�GHAix±8 for some depen-
dence class

�
is the first dimension with non-zero (i.e. positive) value, then dimension· of the product space must be enumerated in increasing order to satisfy dependence

class
�

. In our example, in order to not violate dependence class
� �

, the enumeration
of dimension �l�� must be in increasing order. Similarly, dimension ���� must be enumer-
ated in increasing order because of dependence class

� � . All other dimensions of the
product space can be enumerated in arbitrary order.

Perspective Order of
Dimensions

Embeddings

Code

Implementation
Common Enumeration

Fig. 7. Search Space

An important optimization is recognizing groups of dimensions that could be enu-
merated together. In previous work [6], we developed technology for common enumer-
ation of dimensions which are related through a single parametric variable (we called
these joinable dimensions). We use common enumerations for groups of dimensions
consisting of a non-redundant dimension, and redundant dimensions that immediately
follow it and are linearly dependent on it. There are a number of ways of performing
common enumerations which are closely related to join strategies in database systems
such as merge-join and hash-join [6].

In the example, dimensions �l�� and ���� are enumerated together, as are dimensions���� and ���� . These common enumerations are trivial because they enumerate the same
dimension of the same matrix. All iteration space dimensions are redundant and do not
even need searches, as their values could be accessed directly. The resulting code is
shown in Figure 6.

4.2 Search Space and Cost Estimation

We can enumerate all legal enumeration-based codes as illustrated in Figure 7. The
syntax of the code is described by the following grammar. The guard conditionals arise
because of loop bounds.» �

for ¼
½ enum 	 iterator � do »�
for ¼
½ enum 	 itr ¾± itr ¿±� do »�
if 	�¼
½ search 	 iterator �w� then »�
if 	 guard � then ÀPÁ�Â� » ¾"Ã » ¿

�
EnumCost 	 iterator ��Ä Cost 	 » ��
CommonEnumCost 	 itr ¾" itr ¿±��Ä Cost 	 » ��
SearchCost 	 iterator �<Å Cost 	 » ��iÆ�
Cost 	 » ¾H�<Å Cost 	 » ¿±�

Each syntax rule is annotated with its associated cost. EnumCost depends on whether
we are enumerating the dimension in a direction supported by the format, or whether
dependences force us to enumerate in a different direction. SearchCost depends on the
type of enumeration method available for that dimension (e.g., whether it is an inter-
val, or whether the values are sorted). CommonEnumCost depends on what common
enumeration implementations are available for the corresponding data dimensions.

4.3 Heuristics to Limit the Search Space

Searching the full space of enumeration-based codes is impractical, but the following
heuristics make the search space manageable.

0

10

20

30

40

50

60

70

CSR CSC JAD

M
FL

O
P

S

NIST C NIST Fortran Our Code

Fig. 8. TS on SGI R12K

0

5

10

15

20

25

30

CSR CSC JAD

M
FL

O
P

S

NIST C NIST Fortran Our Code

Fig. 9. TS on Intel PII

Data-centric Execution Order: We only consider data-centric orders of dimensions
of the product space (i.e., orders in which all data dimensions come before any iteration
space dimensions). The indexing structure of sparse matrices puts further restrictions
on the dimensions orderings we need to consider. For example, if L is accessed through
the abstract structure ,qMr)Ç.K)t1 , our compiler does not consider product spaces in
which . is enumerated before , .

Common Enumerations: Efficient sparse code enumerates the data as few times as
possible, so our goal is to use a single enumeration of a sparse matrix, and execute all
statements which reference that matrix. That restricts our choice of embedding func-
tions to just three per dimension: a common enumeration with a matching dimension
of another statement, or, if that is not legal, embedding the statement before or after the
enumeration of the matching dimension.

5 Experimental Results

We have implemented the algorithm presented in this paper in the Bernoulli Sparse
Compiler. Here we present performance measurements on an SGI Octane3 and an In-
tel Pentium II4 machines. We compared the code produced by our algorithm with the
NIST Sparse BLAS [4] implementations of triangular solve for the CSR, CSC, and
JAD sparse formats. Sparse BLAS supports 13 compressed formats. A complete For-
tran implementation, as well as a better optimized but incomplete implementation in
C, are available. The more complicated formats such as JAD are not supported in the
optimized C implementation.

Figure 8 presents the performance of the hand-written NIST C (grey bars) and For-
tran (black bars) codes, and the code produced by our algorithm (striped bars). As in-
put we used the matrix can 1072 from the Harwell-Boeing collection5. These results
clearly show that the generic programming approach can successfully compete with
hand-written library code. Indeed, the performance of our code ranges between 90%
and 133% of NIST’s C implementation and between 110% and 178% of NIST’s For-
tran implementation on the R12K. On the Pentium II, our code’s performance is prac-

3 300MHz R12K processor, 2MB L2 cache, MIPSpro v.7.2 compiler, flags: -O3 -n32 -mips4.
4 300MHz, 512KB L2 cache, 256MB RAM, egcs-2.91.66 compiler, flags: -O3 -funroll-loops.
5 http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/

tically identical with NIST’s C implementation and outperforms the NIST’s Fortran
implementation by about 50%.

6 Conclusions

We have presented a general framework that can be used for modeling execution and
restructuring of both sparse and dense imperfectly-nested matrix codes with depen-
dences. We have used this framework to develop an algorithm for synthesizing sparse
matrix code from dense matrix code and a specification of sparse matrix formats. The
specification language is general enough to capture all sparse formats that we are aware
of, and supports user-defined data structures. However, this generality does not come at
the expense of performance. Our algorithm is able to exploit the indexing structure of
sparse matrix formats and generate code competitive with hand-written library codes.

In this paper we only discussed sequential sparse matrix code generation. In [5]
we have investigated the generation of parallel sparse matrix code for perfectly-nested
loops with no dependences, and we are working on combining the two techniques.

References
1. Nawaaz Ahmed, Nikolay Mateev, and Keshav Pingali. Tiling imperfectly-nested loops.

Technical Report TR2000-1782, Cornell University, Computer Science, January 2000.
2. Aart Bik and Harry A.G. Wijshoff. Compilation techniques for sparse matrix computations.

In Proceedings of the 1993 International Conference on Supercomputing, pages 416–424,
Tokyo, Japan, July 20–22, 1993.

3. Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of Level 3 Basic
Linear Algebra Subprograms. ACM Transactions on Mathematical Software, 16(1):1–17,
March 1990.

4. BLAS Technical Forum. Sparse BLAS library: Lite and toolkit level specifications, January
1997. Editted by Roldan Pozo and Micheal A. Heroux and Karin A. Remington.

5. Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. Compiling parallel code for sparse
matrix applications. In Supercomputing ’97, San Jose, November 15–21, 1997.

6. Vladimir Kotlyar, Keshav Pingali, and Paul Stodghill. A relational approach to the compila-
tion of sparse matrix programs. In Proceedings of EUROPAR, 1997.

7. Nikolay Mateev, Keshav Pingali, Paul Stodghill, and Vladimir Kotlyar. A generic program-
ming system for sparse matrix computations. Technical Report TR99-1761, Cornell Univer-
sity, Computer Science, August 1999.

8. David R. Musser and Alexander A. Stepanov. Generic programming. In First International
Joint Conference of ISSAC-88 and AAECC-6, Rome, Italy, July 4-8, 1988. Appears in LNCS
358.

9. Sergio Pissanetsky. Sparse Matrix Technology. Academic Press, London, 1984.
10. William Pugh and Tatiana Shpeisman. Generation of efficient code for sparse matrix compu-

tations. In The Eleventh International Workshop on Languages and Compilers for Parallel
Computing, LNCS, Springer-Verlag, Chapel Hill, NC, August 1998.

11. Yousef Saad. SPARSKIT version 2.0.
12. Jeremy G. Siek and Andrew Lumsdaine. The Matrix Template Library: A generic program-

ming approach to high performance numerical linear algebra. In ISCOPE ’98, 1998.
13. Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1 and 2.

Computer Science Press, Rockville, MD, 1988.

