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Abstract

Reliable multicast is a powerful primitive, useful for data
replication, event notification (publish-subscribe), fault-
tolerance and other purposes. Yet many of the most inter-
esting applications give rise to huge numbers of heavily
overlapping groups, some of which may be large. Exist-
ing multicast systems scale scale poorly in one or both
respects. We propose theQuickSilver Scalable Multicast
protocol (QSM), a novel solution that delivers perfor-
mance almost independent of the number of groups and
introduces new mechanisms that scale well in the number
of nodes with minimal performance and delay penalties
when loss occurs. Key to the solution is a level of indi-
rection: a mapping of groups to regions of group overlap
in which communication associated with different proto-
cols can be merged. The core of QSM is a new regional
multicast protocol that offers scalability and performance
benefits over a wide range of region sizes.

1 Introduction

1.1 Motivation

In this paper we report on a new multicast substrate,
QSM, targeting very large deployments of client comput-
ers that communicate using publish-subscribe or event
notification architectures. Were assuming that there may
be thousands of users, many running Windows, and dis-
tributed over a WAN. For the present paper, our goal is
simply to support the highest possible throughput1 and
”best effort” reliability. In future work, we’ll extend
QSM with a stackable protocol extension architecture
supporting protocols that customize reliability or other
properties on a per-group (e.g. per-topic) basis.

Existing reliable multicast support for multiple groups

1In other work (the Tempest system and its Ricochet multicastpro-
tocol), our group is looking at clustered applications withtime-critical
behavior; the architecture is completely different.
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Figure 1: Scalability of multicast rate with the number
of groups. All groups completely overlap on the same
25 members. A single source sends messages in all the
different groups in a round-robin fashion.

falls into two categories: ”lightweight group” solutions
that map application groups into broadcasts in an under-
lying group spanning all receivers, then filter at the re-
ceivers to drop unwanted messages, and those that run
separate protocols for each group independently.

Lightweight groups work best in smaller systems; with
scale, data rates in the underlying group become ex-
cessive, receivers are presented with huge numbers of
undesired packets that waste resources and fill up re-
ceive buffers, and the overload triggers increased packet
loss. The Spread system [1] works around this us-
ing lightweight groups in combination with an agent ar-
chitecture: clients relay multicasts to a small group of
agents; these broadcast each message, filter them on re-
ception, and then relay matching messages back to the
client, but the approach introduces two extra message
hops, and the agents experience load linear in the system
size and multicast rate.

Running a separate protocol for every group brings
different issues. Such an approach incurs overhead lin-
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ear in the number of groups for ACKs, NAKs and other
control traffic. Moreover, contention between groups for
communication resources, both within individual nodes
and on the wire, emerges as an issue. To quantify such
effects, we measured the performance of JGroups [2], a
popular communication package that supports multiple
groups. We configured JGroups to provide only weak re-
liability guarantees. Nonetheless, as shown in Figure 1,
the overhead associated with running multiple protocols
in JGroups decreases the achievable aggregated through-
put by 6% with 2 groups, 20% with 32 groups and almost
60% with 256 groups.

Here, we explore a third option. QSM runs per-group
protocols over a lower layer implementing protocols on
a per-region basis. Regions are designed to have a fairly
regular structure, and this lets us innovate in the regional
protocols. The performance so obtained is strong across
the board, even with very large numbers of groups. As
seen in Figure 1 and explored further below, we also
achieve low latency and excellent scalability in group
size.

1.2 Group Overlap and its Implications

Our goals emerge from communication patterns seen in
demanding real-world multicast systems. One of us de-
veloped the multicast technology used in the current New
York and Swiss Stock Exchange systems, the French Air
Traffic Control System, and the US Navy AEGIS war-
ship [4], and we are in dialog with developers of very
large data centers, such as Amazon, Google, Yahoo! and
Lockheed Martin. If developers of such systems are
forced to work over an unreliable event notification or
publish-subscribe architecture, they typically implement
stronger properties by hand, a difficult, error-prone and
inefficient approach. In contrast, by treating these in
terms of multicast to large numbers of groups, we take
a major step towards offering customizable communica-
tion properties and protocol stacks on a per-group basis.
This opens the door to a whole class of applications that
previously could not be supported.

We assume a system with a large number of nodes,
each belonging to a number of potentially overlapping
groups (left side of Figure 2). Nodes multicast asyn-
chronously (without waiting for replies) and may do so
at a high rate; a single node may multicast to multiple
groups concurrently. We want to optimize for the high-
est possible throughput while keeping latency reasonably
low, and achieving a simple reliability property similar to
that in systems such as SRM or RMTP. Specifically, the
system should attempt to deliver every pending message
still buffered at the sender or another node, to all nodes
that have not crashed or left the group to which the mes-
sage was addressed.
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Figure 2: Left: a pattern of overlapping groups. Right:
regions of overlap.� � � � �  � ! "

� � � � �  � ! # $ � % &
� � � � �  � ! '

( & ) * � +
* + � & � , � & ) * � +- � � � �  � !* + � � . , � & ) * � +- � � � �  � !

Figure 3: Left: In a typical system, nodes that belong to
multiple groups participate in multiple protocols. Right:
Our system splits protocols into two levels: a single “bot-
tom half per region, and a per-group “upper half.

If we rule out lightweight group approaches as funda-
mentally non-scalable, the scenario depicted in Figure 2
poses real problems for existing technologies. Since each
group is operated independently, the sending node will
multicast data separately in a large number of groups,
perhaps using a separate IP multicast group in each. Each
group will implement its own flow control and reliability
protocol, hence a node that participates in many groups
independently exchanges ACKs, NAKs and other con-
trol messages with its counterparts. Not only does traffic
rise linearly in the number of groups, but the commu-
nication pattern sabotages efforts to prevent ACK and
NAK implosion, typically using aggregation on trees.
For example, in Figure 3 (left) we’ve drawn multiple su-
perimposed acknowledgement trees of the sort used in
RMTP [10] and SRM [6]. Unless tree creation is coor-
dinated across groups, each node will communicate with
far more neighbors than in a single-group configuration.

1.3 Our Approach

Key to our approach is the recognition that a system
with large numbers of overlapping groups typically has
a much smaller number ofregions of overlap. In the ex-
ample on Figure 2 (right), 18 nodes have subscribed to
300 groups but these overlap in just 7 regions. Regions
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of overlap have a few important properties that we refer
to asfate and interest sharing, and exploit in our system.

Interest sharing arises when nodes in a region receive
the same multicast messages, which makes it natural to
consider message batching and similar tactics. If regions
are large scalability becomes an issue, and it makes sense
to create IP multicast groups and attempt loss recovery
at a regional granularity. In the example in Figure 2, the
transmitting node, instead of multicasting in 200 groups,
might do so in 6, and can pack small messages targeted to
a given region in larger packets, increasing network uti-
lization and reducing the frequency with which receiver
overheads. Latency suffers, but as noted earlier, QSM
isnt optimized to minimize latency.

Fate sharing captures a related observation: nodes in
a region experience the same workload, suffer from the
same bursts of traffic, miss the same packets dropped at
the sender, which makes it desirable to implement flow
control and certain parts of the loss recovery mechanisms
at this level. If we multicast at the granularity of regions,
nodes will acknowledge the same messages and can re-
cover missing data on a peer-to-peer basis.

Suppose that all members of a region drop some
packet. Rather than having the nodes individually seek
a retransmission from the sender, it makes sense to re-
port their aggregated loss in a manner similar to recovery
in RMTP. Similarly, it makes sense to coordinate control
traffic relating to flow control on a regional basis.

Jointly, such considerations argue that if we view
nodes as members of regions rather than of groups, and
design regions to achieve high levels of interest and fate
sharing, we can gain efficiencies not available at the
group level. We can also avoid the inefficiency that
limits lightweight group schemes: in our terminology,
lightweight group schemes map large numbers of groups
to a single enclosing region, but often end up with map-
pings in which there is little interest and fate sharing.

The efficiency of this approach depends on the number
and sizes of regions, which in turn is a function of system
structure. With lots of small regions, we end up with
large numbers of small IP multicast groups and senders
may have to issue a great many IP multicasts to send a
single group multicast; this is clearly not desirable. In
the extreme case a node would need to send a separate
packet for each destination. Yet at the other extreme,
where all nodes are members of the same groups and the
whole system is covered by a single region, performance
can be virtually independent of the number of groups.
The greater the degree of group overlap, the easier it will
be to find regions that work well.

We see the selection of regions as a machine assisted
task in which the system designer plays a significant role.
Automating this task may ultimately be possible, but is
not a current goal of our work.

Designer-assisted region discovery seems entirely
practical. Consider, for example, publish-subscribe sys-
tems in which subjects are mapped to groups. Each in-
stance of a given application, operated by a similar kind
of user, is likely to result in similar patterns of subscrip-
tions and hence extensive overlap. Equities traders who
trade high-tech stocks share interest in similar sets of eq-
uities; traders focused on the services sector also share
interests, yet the two categories of traders have little over-
lap. One can easily visualize the corresponding regions.

Operators of e-commerce datacenters implement
farms consisting of very large numbers of scalable ser-
vices by cloning the service and using multicast (or
publish-subscribe) to replicate updates [5]. Since a sin-
gle server may be involved in replicating many objects,
sets of servers end up subscribing to large numbers of
heavily overlapping groups. In effect, regularity of the
datacenter architecture makes it easy to identify regions
that can be exploited by our protocols.

1.4 Technical Challenges

We’ve suggested that revisiting lightweight group multi-
cast in an architecture based on multiple regions, rather
than a single underlying multicast group, could be the
key to a major advance in scalability. What makes the
problem hard? Several practical challenges stand out:

• Avoiding inbound traffic implosion.The risk of
ACK or NAK implosions associated with increased
group size was recognized long ago and motivated
protocols such as SRM and RMTP, but weve identi-
fied a secondary risk associated with node member-
ship in large numbers of groups. Prior work hasn’t
explored this issue.

• Maintaining efficient runtime structure.Much of
the benefit of the concept revolves around the po-
tential to amortize communication costs and over-
heads over nodes that share interests and fates. Im-
plementing protocols that exploit these shared char-
acteristics is hard.

• Scalable multicast. Regions aren’t necessarily
small, and most existing reliable multicast protocols
scale poorly. In the past we’ve worked on this prob-
lem, but the protocol we proposed (Bimodal Multi-
cast) turns out to be a poor choice in systems with
large numbers of groups: latency of recovery from
packet loss was too high. Moreover, if a region hap-
pens to be small, gossip communication of the sort
used in Bimodal Multicast makes no sense.

• Choosing the right software architecture.Software
architectures for systems dealing with large num-
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bers of concurrently active protocol stacks are sur-
prisingly difficult to implement, debug and tune.
For example, in an early stage of our work, we im-
plemented a modestly multithreaded solution. Per-
formance was terrible; ultimately we realized this
was due to scheduling anomalies. Elimination of
threading helped eliminate the issue but made our
code more complex (and this is just one example
among many).

• Limiting resource usage.With large numbers of
groups and potentially large regions, there are a
great many ways resource consumption can spike
and cause a performance collapse. There has been
little attention to the design of protocols that are pre-
dictably sparing of resources.

• Efficient management of membership information.
Throughout our system, we need to track member-
ship: of groups, of regions, of the underlying set of
nodes. A single event (notably a failure) can trig-
ger huge numbers of updates unless the associated
event handling logic is designed for scalability.

Our contributions thus range from new protocols that
can deliver a multicast reliably in a region whether it hap-
pens to be small or large to new data structures that let
us efficiently update membership when a process joins or
leaves thousands of groups.

The bottom line is that investment in this mixture of
pragmatic and fundamental problems has a huge payoff.
As will be seen below, our system achieves three times
the performance of JGroups even at small scales, scales
independently of the number of groups and incurs con-
trol overhead at the sender actuallydecreasingwith the
number of nodes, resulting in excellent scalability in this
dimension. A primary reason for this is that in QSM,
control overhead is not a major factor limiting scalabil-
ity.

2 Protocol Overview

Our scalable multicast protocol is structured around a se-
ries of key ideas. Several are familiar from prior work,
but the combination is new.

• Leave strong reliability properties to higher-level
protocols.Our ultimate plan is to support complex
reliability properties through protocol stacks in the
manner of the Horus and Ensemble systems. QRM
would be a low-level protocol in such a stack, and
we limited ourselves to a best-effort guarantee of
the sort used in SRM and RMTP. Our reasoning
is basically end-to-endian: sophisticated reliability

protocols often involve running non-trivial end-to-
end protocols, for example when a failure occurs.
Given that these are needed in any case, and that
they often have reliability needs peculiar to their
own reliability goals, these higher level layers might
as well also overcome infrequent packet loss not ad-
dressed by QRM itself.

• Rate based admission control.In keeping with a
philosophy that avoids burdening the sender with
unnecessary incoming traffic, we use a rate-based
flow control scheme that dynamically estimates the
rate at which each sender can transmit. In con-
junction with the mechanisms described below, this
leaves the sender largely decoupled from the re-
ceivers, greatly improving scalability.

• Group and regional membership service.Many
group communication systems employ a service to
detect failures and recoveries. We go further, and
employ a GMS that tracks membership in groups,
regions, and the system as a whole, and handles
such tasks as assigning IP multicast addresses to
regions. Reporting is consistent (all nodes see the
same information), and this greatly simplifies the
design of protocols used in the nodes themselves.

• Regular tiling with regions.After struggling to de-
velop solutions for arbitrary group overlap, we set-
tled on an approach in which a human developer is
expected to assist us by designing the system in a
way that facilitates a regular tiling, with regions of
relatively uniform size. If a region is very large, we
partition it into smaller subregions that share a sin-
gle IP multicast address but handle error recovery
independent from one-another.

• Token passing.To avoid unpredictable bursts of
ACK and NAK packets, we circulate tokens in each
region to gather this and other control information.
Tokens circulate rapidly, but on a predictable sched-
ule, an innovation that works extremely well for us.

• Local repair. We pick some nodes in each region
as loggers and are usually able to recover lost pack-
ets without involving the sender. The sender buffers
packets until the loggers acknowledge them, but
doesn’t worry about delivery in the remainder of the
region.

The subsections that follow provide additional details
on these mechanisms.

2.1 Membership

As noted, we introduce a specialized 2-level group mem-
bership service (GMS). The GMS maintains not only in-
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Figure 4: Group and region views in 2-level membership.

formation about groups, but also regions. Regions, like
groups, experience membership change as nodes join and
leave or crash, hence associated with every region is a se-
quence of what we callregion views, each listing mem-
bership at some point in time. The different types of
structures and their relationships are shown on Figure 4.
A group has a sequence of associated group views (one
of them being current), each of which maps to a set of
region views, which in turn map to sets of nodes. Group
and region views are immutable, while for every group
and region, new group and region views will be often
created and marked as current. The GMS listens to client
requests as well as messages from a failure detector, up-
dates the whole structure and sends every node affected
by the change an appropriate piece of information, incre-
mental whenever possible (containing only the updates
relevant to that node). The GMS does not process every
crash or client request separately; it groups requests in
batches and performs changes at a predefined maximum
rate. This reduces the number of view changes and the
number of messages sent to nodes.

When a region has more than one recipient node, we
use IP multicast to send messages, and the GMS is also
responsible for assigning multicast IP addresses. If a re-
gion is very large, we break it into multiple smaller par-
titions that share a single IP multicast address. We adopt
this approach for several reasons. First, the pool of ad-
dresses is limited. Second, we experimented with net-
work adapters and determined that the mapping of Eth-
ernet multicast to IP multicast is such that if IP multicast
groups are assigned profligately, a node will receive in-
terrupts and waste CPU resources even if it is not a mem-
ber of any of these groups, the level of CPU consumption
being proportional to the number of groups. Third, IP
multicast membership changes are expensive and time
consuming. Finally, since new requests are always sent
to the most recent views and old messages are eventually
delivered, the overhead of this approach (data delivered
where it should not be, for example when a node leaves
a group and time elapses before it drops out of the IP
multicast address) is negligible.

Having the GMS maintain information about regions
and assign version numbers (views) to their subsequent
incarnations allows nodes to rely on this information as

a form of common knowledge. In particular, nodes in
our system can construct trees, rings and other structures
spanning regions and connecting the various regions
based directly from membership information, without
running additional consensus protocols. Our current
GMS is centralized; in the future we will replicate it to
eliminate the resulting single point of failure[3].

2.2 Reliability Protocol

As noted earlier, our emphasis has been on achieving
a scalable but best-effort form of reliability over which
stronger models can be layered in the future.

Accordingly, before transmission every message to a
group is assigned a sequence number within a particular
group view. Every group view maps to some fixed set of
region views, hence we now know the set of receivers.
The system will try to deliver the message to this set. We
do so by creating, for each request to send a message in
a group (group request), a set of subrequests (regional
requests), one for each region, and processing them sep-
arately (when a very large region is partitioned we still
send just one IP multicast).

Recovery from packet loss associated with regional re-
quests occurs on a region-by-region basis. In the rare
case of sender failure, receivers in each region recover
the message only among themselves, and it may happen
that some regions deliver a message but others do not.
Consistent with an end-to-end perspective, higher level
protocols can and should deal with this failure case. Our
mechanism thus provides a strong but not absolute form
of best-effort reliability.

Regional requests are handled similarly to the group
level: we assign sequence numbers within the relevant
regional views, and the system keeps trying to deliver a
message until every member of the relevant view either
has acknowledged it or is dead (reported by the GMS as
faulty).

2.3 Multicasting in Regions

The regional multicast protocol proceeds as follows. We
transmit packets into the whole region using a single IP
multicast group. Nodes in the region recover from packet
losses from peers within the region, using the token ring
protocol described in section 2.3.2 to ACK stable data
and to NAK dropped packets. Receivers also provide
feedback that the sender uses to adjust its multicast rate
for maximum throughput. The sender participates in re-
covery only if an entire region drops a packet.

As a consequence of the reduced feedback, the sender
will experience a greater latency in receiving acknowl-
edgements and thus pay a greater overhead of buffer-
ing. To offload the sender, for every message we des-
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ignateR nodes ascaching serversthat will buffer the
received data for the purpose of peer-to-peer loss recov-
ery, described in detail in section 2.3.3, until all nodes
in the region have acknowledged it.R is a smallrepli-
cation factor, typically 5 or less in the experiments re-
ported here. The sender considers a message to have
been delivered (and stops buffering it) once it has been
acknowledged by all caching replicas. This mechanism
reflects the pragmatic observation that with a few nodes
caching each message it is extremely unlikely that all of
them will crash before the message is delivered. As long
as at least a single receiver in the region has the mes-
sage cached, our peer-to-peer loss recovery protocol will
guarantee that it ultimately is delivered to every node that
missed it in that region.

In order to provide a structure for the token passing,
loss recovery and caching mechanisms mentioned above,
we split every region into multiple small partitions, as de-
scribed in section 2.3.1. This partitioning simplifies our
design and provides additional benefits that will be dis-
cussed further. As noted before, we construct partitions
and the structures built on top of them based solely on
the membership information, and every node does it in-
dependently. The GMS eliminates the need for elections,
consensus or other similar methods, and guarantees con-
sistency among the views on which decisions are based.

2.3.1 Partitioning

A region of sizen is divided intop partitions of size no
smaller thanR, p = ⌊n/R⌋, by assigning nodes to parti-
tions in a round robin fashion, i.e.k-th node in the region
becomes a member of the(k mod p)-th partition. Each
partition serves as a set of caching replicas for1/p of the
received packets: a packet with a sequence numberi is
cached by all nodes the(i mod p)-th partition.

Nodes in each partition cooperate in recovering from
losses of the packets they cache and may forward (push)
or request (pull) data from each other. This is achieved
by our token protocol. They are also responsible for
sending NAKs to the sender to request retransmission of
data missed by the whole partition. Packets missed by
receivers in other partitions can only be requested from
nodes in the partition caching these packets. This of-
floads the sender by reducing the control traffic. In fact,
in our experiments, with replication factorR = 5 the
sender rarely receives NAKs and never retransmits any-
thing after a timeout, all losses can be efficiently repaired
among the receivers.

2.3.2 Token Passing

The token passing protocol on which our loss recovery
scheme is based is built on a structure that resembles
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Figure 5: The torus protocol for loss recovery in regions.
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Figure 6: Non-token control traffic in loss recovery. Re-
gion leader generate ACKs, partition leaders send NAKs,
nodes performpushandpull inside or across partitions.

a torus, depicted on Figure 5. Nodes in every parti-
tion form a smallintra-partition token ring. All parti-
tions within a region, in turn, form a single globalinter-
partition token ring. A node with the smallest address in
each partition is apartition leader, and the leader of the
first partition in the region is also aregion leader.

At constant intervals the region leader generates a to-
ken to travel across the region. First, it circulates the
token around its own partition as anintra-partition to-
ken. Once the token is received by the leader, it passes
it to the leader of the next partition as aninter-partition
token. The token then circulates around the second par-
tition as an intra-partition token, then again it is passed
to a yet another partition leader. This continues until the
leader of the last partition passes the token back to the re-
gion leader. Tokens are passed using a simple TCP-like
reliable unicast protocol. While generated at constant in-
tervals, once released, the token progresses throughout
the region at maximum possible speed (generally, a few
milliseconds per partition).

Tokens serve the following purposes:

• Determine which were the latest packets received
throughout the whole region, so that process can
learn which packets they may have missed.

• Report losses to other nodes in the region and ex-
change packets. We use both thepushmodel (node
forwards packets without request from the other
node as it learns that the other node is missing pack-
ets) and thepull model (a node may request for-
warding of packets if it learns that other node has
them).
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• Find out which packets have been received by all
nodes throughout the region and report them to the
sender as a collective regional ACK.

• Find out which packets were missed by all nodes
responsible for caching and are not recoverable and
report them to the sender as a collective NAK.

• Distribute information about packets that can be
purged from cache.

There is a single token per region for all the senders. Data
relative to each sender actively multicasting into the re-
gion simply occupies a part of the token. This ensures
scalability in the number of senders: when more senders
multicast into the region, the token size grows, but the
rate at which control packets circulate stays the same.
Information for a given sender starts being included in
the token when it multicasts data into the region and
stops being included when all packets known to have
been transmitted are acknowledged by all region mem-
bers, up until some new data is received. For brevity, in
the discussion below we refer astokenonly to the portion
occupied by a specific sender.

Note that the leadership might change as the GMS no-
tifies the receivers about changes in membership. Nodes
update their status and assume leadership in a distributed
manner. Since updates from GMS may arrive at different
times, there might occasionally be two self-elected lead-
ers. This does not affect the correctness of our protocol.
The only information we rely on is that the GMS pro-
vides eventually consistent information about failures. A
node that the GMS considers as dead in the region will
be excluded by others from the protocol; if that node is
actually not dead, it would need to rejoin the system.

2.3.3 Loss Recovery

In order to determine which packets have been transmit-
ted, nodes use the token to calculate, in each round, the
largest sequence number among packets received in the
region, which is then distributed in the subsequent round
as acutoff point for loss recovery: in a given round nodes
in the region consider as missing all packets with this
or lower sequence numbers that they have not yet re-
ceived. By introducing a full round of delay we account
for the fact that recently transmitted packets might still be
buffered by some nodes in their receive queues. Without
this delay, our recovery protocol tends to unnecessarily
generate duplicated packets.

Every time a node generates or receives a token, it cre-
ates a compressed NAK set representing the ranges of
packets with numbers up tocutoff cached in the local
partition and missed at this node and, if the token was re-
ceived from another node in the same partition, the node
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Figure 7: The loss recovery protocol at work.

compares its NAK set with a similar NAK set placed in
the token by its predecessor. All NAKs reported by the
predecessor, but not reported by the successor are to be
forwarded (push) by the successor to the predecessor. All
NAKs reported by the successor, but not the predeces-
sor are to be requested (pull) from the predecessor (in
the latter case the successor sends only a singlepull re-
quest with a list of NAK ranges). Finally, if the token
is to be passed to another node in the same partition, the
node stores its NAK set in it. There is always only one
such NAK set in the token, thepushandpull requests
mentioned above can be issued only between neighbors
on the ring. As will be explained further, this decision
was driven by the need to reduce the size of the token.
Note that in this scheme it is possible for a node to pull
a packet from a predecessor, and at the same time have it
forwarded by a successor on the ring. Other schemes, in-
cluding the node making its own decision as to whether
it would pull or push the packet, are possible, but gen-
erally require putting more information into the token.
Our experiments with such schemes show that space in
the token is a scarce resource that must be used sparingly
and such optimizations are generally not worthwhile.

This protocol ensures recovery of the cached packets
among nodes within a single partition provided that the
packet was delivered to at least one of the caching repli-
cas. To recover from cached packets missed by the whole
partition, nodes in the partition use the token to calculate
the intersection of their NAK sets, which is then included
in the collective NAK forwarded to the sender by the par-
tition leader. Every partition reports its own losses inde-
pendently (see Figure 6).

While processing the token, a node also creates NAKs
for packets cached in other partitions and sendspull re-
quests to the leaders of other partitions (one request per
partition containing a compressed list). These requests
are satisfied as soon as data is available. We contact only
partition leaders, as the leaders usually contain the most
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up to date packets (note that whilepushinvolves simply
transferring data between neighbors,pull requires that it
be requested first, hence forwarding towards the parti-
tion leader is generally faster). Other schemes, including
choosing a random node in every partition, are possible.

Finally, the token is used to calculate the maximum
value such that all packets with numbers up to this value
are stable within the region. This single number is sent
by the region leader as the only form of ACK to the
sender (as well as passed around in the subsequent round
to purge messages from cache). We experimented with
adding more feedback for the sender, such as isolated
ACKs, but found that it generally increased the amount
of details about the different partitions that need to be
passed in the token all around the region, which no-
ticeably increases the token size without a clear bene-
fit. Even with this minimal feedback, in our experiments
messages are typically reported to the sender as acknowl-
edged by the region within a few token rounds, the re-
transmission mechanism on the sender essentially never
kicks in and NAKs sent to recover from partition-wide
losses are rare. We favor simplicity and consider this a
strength of our protocol. Offloading the sender in any
way possible turned out to be good for performance.

Our description omitted some details for brevity.
Among these, the more important issues were:

• We found it essential to bound resource utilization
throughout the system, hence nodes are only al-
lowed to report a limited number of NAK ranges,
which requires additional handling when calculat-
ing NAKs, pull andpushrequests.

• We settled on a solution where requests for a given
packet by nodes outside its caching partition is de-
layed until it is stable on all of its caching replicas.
This reduced the amount of state maintained, en-
sured thatpull requests can be satisfied immediately
and simplified handling of the case where the same
packet is requested twice in different token rounds.
We found delaying ofpull requests to be good for
throughput, especially in case of massive losses.

In our experiments we generate a token once per second.
This proved sufficient across a variety of configurations.

All control traffic is handled by a reliable TCP-like
unicast protocol and rate-controlled. The rate is set to
a fixed small value to minimize the impact it might have
on multicast traffic. Multicast is controlled by a separate,
adaptive rate control scheme described in section 2.4.

2.4 Rate Control

We managed to achieve effective rate control with mini-
mal feedback, where the sender adjusts its multicast rate

µsnd based solely on a single valueµrec received from
nodes in the region and representing the lower bound on
the rate at which all nodes in the region can receive the
data multicast by this sender.

The rateµrec is calculated as follows. Each nodei in
the region maintains a smoothed estimateµ

(i)
rec represent-

ing the rate at which it is currently receiving new, previ-
ously unseen packets (we use ak-sample moving average
of the node’s rate history calculated in fixed intervals∆,
typically k = 10 and∆ = 1s). The region leader, via
the token protocol, periodically calculates a minimum of
these rates and divides it bym, the number of senders
currently multicasting into the region, according to the
following formula:

µrec =
mini µi

rec

m
(1)

This value, piggybacked on the ACKs sent to all them
senders, represents a lower bound on a fair share of the
currently available bandwidth. Each sender then sets its
multicast rate according to the following formula:

µsnd = max(µmin, (1 + λ)µrec), (2)

whereλ is a growth coefficientthat provides a trade-
off between the latency at which the controller tunes up
to the maximum available rate and losses resulting from
tuning it too high, andµmin is some minimum rate, nec-
essary to kick the system out of stagnation after long pe-
riod of nonactivity or a series of massive losses.

This formula makes the senders multicast at a rate just
slightly higher than that declared by the slowest receiver,
which makes it possible for the rate to grow over time.
At the same time, by keepingλ low we avoid overload-
ing the system. Note that since different nodes process
at different speeds in different intervals of time, the aver-
age rate among receivers will generally be considerably
higher than the minimum in the region. This is precisely
the subtle property that ensures the stability of our sys-
tem: the actual capacity of the region is higher than the
mµrec communicated to the senders and therefore we
will not experience loss rates comparable toλ, as one
might initially think.

In order to tune the sender to precisely the desired rate
µsnd, we use a simple rate control scheme enhanced with
an adaptive adjustment mechanism. Specifically, we use
a component that, given a parameterα, tunes the system
to a sending rate off(α) wheref is monotonically in-
creasing, and adjust parameterα in fixed intervals (typi-
cally at most once per second) according to the following
formula, loosely inspired by the Newton’s method:

α← α + ρ(
µsnd

µ′

snd

− 1), (3)
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where µ′

snd is the measuredactual sending rate, cal-
culated by the sender in a way similar to the manner
whereby receivers calculateµi

rec. The parameterρ con-
trols the inertia of our mechanism (typically 0.5).

As the controlled component, we enhance sender with
a simple credit system. Sending a message consumes a
credit out of a fixed pool of sizeC, sender can send only
if credit level is positive. Credits are recreated over time.
Specifically, when credit goes below thresholdClow , we
setup a timer for intervalτ to recover at a levelChigh

using the following formula:

τ =
min(Chigh − c, ∆max)

µsnd

, (4)

wherec is the current credit level and∆max is the max-
imum number of credits to recover, added to reduce
burstiness of the system. When the timer expires, we
increase the number of credits by∆Tµsnd, where∆T is
the actual amount of time that has elapsed. If the credit is
still belowChigh, we keep setting a timer using the above
formula until we reach that level. We found this scheme
to work well in practice, in particular on one 3.8GHz ma-
chine with a gigabit connection this scheme was able to
achieve the rates as high as 20,000 packets/s exactly as
requested without the adaptive adjustment component.
On the other hand, on slower 1GHz 100Mbit platforms,
neither this nor any of several other sender rate control
schemes we tried was able to match the desired rates
without adaptive adjustment and without leading to high
burstiness, the reason being that all the mechanisms we
tested proved easily disturbed by scheduling.

Distributed rate limitation represents a significant re-
search issue for us, and this preliminary solution is only a
first step. In the future, we hope to explore other options,
such as schemes allowing senders to lease bandwidth
from the region. We believe the token passing scheme
is flexible enough to support a wide range of algorithms.

2.5 Architecture

Our system is implemented in 99% in C#2 for the man-
aged .NET framework, currently only for the Win32 plat-
form, as a library with a single-threaded core, optimized
for fast event processing and implementing its own sim-
ple event scheduling. The relationship between the core
and the rest of the system is shown on Figure 8. A single
I/O completion port (I/O queue) is created to handle all
I/O events, including confirmation of packets received,
completed transmissions and errors, for unicast and mul-
ticast traffic, for all sockets created by our system. The

2We only use a small portion of C++ code to access I/O completion
port APIs unavailable through the .NET interfaces or P/Invoke in C#.
Because neither I/O completion ports nor a similar efficientmechanism
are currently available on Linux, we only support the Win32 platform.
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Figure 8: The overall architecture of our system: a single
thread in the core managing its own scheduling policy.

core threadis continuously processing events from the
I/O queue as well as from its ownalarm queue(a priority
queue implemented as a splay tree) where it stores timer-
based events. The two types of events are processed in
a round-robin fashion, in batches to minimize overhead
(typically with a quantum of 100ms for any batch of I/O
events and 50ms for batches of timer events). Addition-
ally, in order to minimize losses, when a data is found on
a socket, that socket is drained of all the received packets
queued on it before any other processing takes place. In
the rare case where there are no events to process, core
is waiting for I/O in a blocking system call. All our pro-
tocols are based on UDP. We use a single socket for all
incoming unicast traffic.

In order to reduce buffering inside our system, stream-
line flow control between the various components and
the OS, and optimize management of resources such as
buffer space, number of sockets etc., we employ apull
scheme. A component that intends to send data creates
anoutput channelby registering adata feed, essentially
a callback that returns objects to be transmitted. Data is
pulled from the feed asynchronously, as rate control and
resource limitations permit. When no more data is avail-
able, the feed is internally deactivated to eliminate use-
less polling. The component must then signal the feed
when new data is available in order to reactivate it.

This pull model is used throughout our protocol stack
and exposed to the applications using our library. We
also provide wrappers that allow the application to use a
more standardpushinterface, i.e. the familiarSendMes-
sagecall. Similarly, our system includes convenience
features such as buffering components, message batch-
ing components etc. However, performance with thepull
interface is superior, and the experiments reported here
used it.

We support multithreaded applications. Calls made
by an application to the core (downcalls), e.g. to sig-
nal a channel, are implemented via posting special re-
quests to the I/O queue and/or inserting them into non-
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blocking queues3, implemented withcompare-and-swap
(CAS) operations (available on most of today’s architec-
tures). Calls made by the core to applications (upcalls),
e.g. to pull data from a feed, are made directly, it is up
to the user to protect data structures, possibly in a non-
blocking manner (nonblocking queues are one option).

We also provide a serialization mechanism, through
which the user can send arbitrary types of objects that im-
plement our simple serialization interface. The interface
requires a class to have a uniquely assigned number, and
objects to be able to store their contents by appending
data to a header or buffers to a scatter-gather pool, and to
load its contents from a given header and buffer. This is
necessary to avoid the enormous overheads of serializa-
tion in the managed framework, where names, signatures
and other bulky information on the order of 150 bytes or
more are typically appended even to the tiniest amounts
of data sent in binary mode, and to enable scatter-gather
mode of operation without an extra copies. A wrapper
capable of transmitting arbitrary objects is available for
developers who favor simplicity over efficiency.

The structure of our protocol stack reflects the struc-
ture of our protocols. Accordingly, we have components
responsible for maintaining local view of membership,
message sinkssending in groups, region views or to in-
dividual nodes as well as modules that manage resources
or control concurrency. We omit details for brevity.

3 Evaluation

3.1 Setting

We evaluate performance on two sets of nodes4, first
a 71-node set of Pentium III 1.3GHz 512MB machines,
and a the second a 25-node set of Pentium III 1GHz 2GB
machines, both on a switched 100 Mbps network, run-
ning Microsoft Windows Server 2003 Enterprise Edition.

For JGroups evaluation we use JGroups version 2.2.8
running on Sun JDK 1.5.0.03 runtime configured with
the same JVM flags as used by the author of this pack-
age. We used afc-fast-minimalthreadsprotocol stack as
recommended by JGroups developer, with ACK/NAK-
based loss recovery and flow control on UDP, but with
batching and higher-level protocols, including virtual
synchrony, disabled5. Results of our own performance
tests at small scales were similar to results obtained from

3A restricted version that allows applications to enqueue one ele-
ment, but to dequeue only all elements at once is fast, it requires only
two CAS operations.

4Power and cooling problems prevented us from being able to run
all tests on the same hardware before the submission deadline. For the
same reason, some data points are missing. We are in the process of
deploying our code on a 250-node cluster that will enable us to run
experiments at a large scale long before the camera ready copy is due.

5However, we left message batching enabled for all control traffic.
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Figure 9: Multicast rate as a function of the number of
nodes in a single group spanning the whole system.

a test written by the JGroups developer and run on our
hardware. QSM was evaluated on the Microsoft Visual
Studio 2005 Release Candidate.

In all our tests senders (usually one sender, with the
exception of section 3.7) multicast small packets con-
sisting of a few integers. Including TCP/IP headers
as well as any headers specific to JGroups or QSM,
JGroups packets are 124-bytes and QSM packets 90-
bytes in length. With one exception, both the senders
and all the receivers subscribe to the same set of groups,
spanning the whole system. Each sender multicasts in all
groups, round robin. The reported throughput rates refer
to the combined rate for all groups, ignoring warmup and
cooldown periods.

JGroups throughput is stable, we use runs typically a
few minutes long. QSM throghput varies over time, the
runs used for the results reported here last 10-40 minutes.

3.2 Throughput

As shown in Figure 1, performance in our system does
not directly dependend on the number of groups, the only
way the presence of multiple groups directly manifests is
at the sender, where the amount of state involved grows
linearly and consumes memory (the growth is slow and
not noticeable in our experiments). Indirectly, as dis-
cussed in section 3.5, performance drops as the regions
that the groups consists of become smaller, which is in-
deed more likely with a large number of irregularly over-
lapping groups unless care is taken to prevent that. In
comparison, while scaling from 1 to 256 groups, JGroups
performance degrades by almost 60%.

Our system also scales very well with the number of
nodes. As shown in Figure 9, scaling up from 1 to 71
nodes results in a drop of performance by 1/3, from 9850
to 6500 packets/s. As explained in section 3.8, we be-
lieve that this drop in throughput is in large part due to
the difficulty in estimating the rate at which the group
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Figure 11: Overhead in QSM as a function of the number
of nodes, for a single group and 1 sender.

can receive packets rather than just the capacity of the
network and limitations of our loss recovery mechanism.

At the same time, even with just 2 nodes in a single
group JGroups achieves a multicast rate of 3333 pack-
ets/s, half that of QSM with 71 nodes; with 40 members
JGroups degrades to 1441 packets/s, more than 6 times
lower than that of QSM with the same group size.

3.3 Overhead

We measured overhead at the sender in both JGroups and
QSM by capturing packets in Ethereal and calculating
the percentage of those carrying control messages, and
then further decomposing these into subclasses based on
message type. Because JGroups batches its control mes-
sages, we also looked at the sizes of its messages. For
brevity, we do not discuss overhead at the receivers.

The network overhead in QSM is independent on the
number of groups. Also, as shown on Figure 10, it de-
creases as more nodes are added to the system because
the burden of packet forwarding is being distributed
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Figure 12: Throughput in QSM as a function of the num-
ber of nodes for different partition sizes.
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Figure 13: Throughput in QSM in a single 25-node group
as a function of partition size.

across a larger set. Indeed, as shown on Figure 11, at
smaller scales forwarded packets (push) account for over
90% of all QSM traffic and the ratio decreases with scale,
giving place to tokens and ordinary unicast ACKs (ack).

In JGroups, as Figure 10 suggests6, the fraction of
data transmitted in control packets grows at least linearly
with the number of nodes. Thanks to message batching,
at smaller scales the resulting overhead is actually quite
low.

Our experiments suggest that JGroups control over-
head grows relatively slowly as a function of the numebr
of groups. When scaling from 1 to 128 nodes, the over-
head grows by the factor of 2.

Note that in both scalability scenarios, the increase in
overhead in JGroups is present despite the radical drop
in throughput. This is not the case for QSM.

3.4 Partitioning

The choice of partition size has a noticeable impact
on performance. Because information about losses in

6We did not analyze JGroups source code and therefore JGroups
overhead results discussed here, based entirely on an analysis of cap-
tured packets, may not be 100% accurate.
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packets (see section 3.9) as a function of the rate at which
tokens are generated by the region leader.

caching partitions is exchanged only between neighbors,
loss recovery occurs on a hop by hop basis, i.e. a packet
missed by a chain of nodes on the ring will be recov-
ered in time linear to the distance between these nodes.
This effect gains in significance when partitions become
more than a few nodes in size. On the other hand, having
too many small partitions increases the number of po-
tential NAK sources, and the smaller number of caching
replicas increases the likelihood that packets cannot be
recovered just among the receivers.

As shown in Figure 12, while with partition size 5
throughput degrades very slowly, much larger partition
sizes lead to a fast decrease in performance. Through-
put in a 25-node region sliced into 5 partitions is almost
20% higher than when the whole region forms a single
25-node partition.

The inherent tradeoff between the number of caching
replicas and the size of token rings for a 25-node region is
illustrated on Figure 13. Increasing the number of repli-
cas beyond 5 is not worthwhile.
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Figure 16: Scaling with the number of senders in our fair
sharing scheme in a single 25-node group.
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3.5 Region Size

As mentioned earlier, performance of our scheme de-
creases with the number of regions: since every region
forms a separate multicast group, multicasting at a rateµ
in a group consisting ofk regions requires the sender to
generatekµ packets per second. This quickly becomes
a bottleneck. As Figure 14 shows, throughput degrades
slightly less than inversely proportionally to the number
of regions. With more packets the rate at which they are
sent is actually increasing, asymptotically approaching
the maximum rate at which the system is able to trans-
mit.

Since it is only the number and sizes of regions that
bear any significance, we omit discussion of performance
with different overlap patterns.

3.6 Token Rates

The token generation rate is a crucial internal parameter
with broad impact on the performance of QSM. Other
important parameters include rate controller settings, re-
transmission timeouts, scheduling quanta, and the vari-
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IP multicasting (recovery latency) and the percentage of
packets that needed to be repaired (recovery rate).

ous bounds on resource utilization, but token rate domi-
nates.

Token rate should be high enough to ensure timely re-
pair: the QSM token is the only means of communicat-
ing losses among partition members and the amount of
information that we allow in the token is limited, hence
limiting the token rate may cause a bottleneck. Limiting
token rates also increases latency, buffering overheads
and reduces feedback for the rate control purposes. On
the other hand, if the token rate is set too high, delivery
latency drops but we incur excessive control overhead.
This dependency is shown7 on Figure 15.

3.7 Multiple Senders

On Figure 16 we present throughput for a test with mul-
tiple senders using fair sharing; all senders belong to the
same group and receive each-other’s messages. The re-
ported throughput represents the total across all senders.
As we can see, two senders can actually multicast faster,

7We haven’t had time to investigate the drop in performance for
rates between 1 and 5.
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Figure 20: Acknowledgement latency as a function of
the number of nodes.

because the fluctuations in sending rate partially cancel
out, leading to smoother throughput, and the presence of
two uncorrelated sources reduces burstiness of the traffic.
As the number of senders increases, throughput drops,
but with 10 senders it is still at 80% of its original value.

3.8 Rate control

Our rate control scheme generally requires between tens
of seconds and several minutes to achieve maximum
throughput, depending on the initial and minimum rates
it is configured with. In our experiments we used the
lowest settings to maximally stress the system by allow-
ing it to almost stop. The rate generally grows slower
in larger systems, where minimum rate among receivers
will generally be considerably lower than average, and
takes more time to recover, leading to more variability
and lower throughput. We believe this to be the major
reason for decrease in performance with larger systems
mentioned earlier.

Figure 17 shows how sending rate in one larger and
one smaller system changes over time. In the smaller
system, the rate changes smoothly, slightly increasing
and falling by a few percent in cycles spanning tens of
seconds. In the larger system, the rate fluctuates between
3000 and 9000 packets/s in cycles that span several min-
utes. This effect has been quantified on Figure 18. This
observation makes it clear that more work on rate control
in large configurations will be needed.

With a more sophisticated heuristic and more aggres-
sive rate control, or by manually bounding the rate to
keep it from dropping too much, it should be possible to
sustain higher throughputs. However, our results already
show that even with a minimal feedback once per second,
a 70-node system can achieve high performance.
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3.9 Recovery Latency

As mentioned earlier, our loss recovery scheme repairs
most lost packets within a few rounds. Figure 19 shows
the length of time measured at one receiver between the
moment when a delayed packet should have arrived (as
calculated by looking at neighboring packets) and the
time when it actually is received. On average, recovery
takes 2.5 token rounds, independent of system size. Re-
covery latency multiplied by the percentage of packets
delayed (also shown on Figure 19) represents the contri-
bution of packet loss to end-to-end latency. In our ex-
periments, this typically averaged a few milliseconds. It
may be reduced by increasing token rate (see Figure 15).

3.10 Acknowledgement Latency

Figure 20 shows the average time between sending a
message and full-group acknowledgement. In larger sys-
tems, this takes up to 3.5 token rounds, while in smaller
systems it takes slightly over 1 round, much less than the
time to recover packets. The latter is possible because
packets are considered by the sender delivered as soon
as they are stable at all the caching replicas.

4 Related Work

Our ideas build upon a rich body of work in best-effort
scalable reliable multicasting based on the exchange of
ACKs and NAKs, including RMTP [10], SRM [6] and
LBRM [7]. A survey of these and other techniques can
be found in [8], [12] and [13]. Our work differs from
those systems in the explicit support and optimizations
targeted at multiple groups, hence we confront our de-
sign with that of JGroups [2] and Spread [1], which of-
fer similar support. We also differ from other best-effort
approaches in the novel way in which we perform flow
control and loss recovery.

Our work was inspired in part by the idea of sharing
ACK trees among multiple senders, proposed in [9]. We
extend this idea by merging protocols not just among
senders, but also among groups, a technique that required
developing new ways to view at group membership and
novel loss recovery and flow control techniques that sup-
ported this framework.

The idea of using token rings in the context of mul-
ticast communication has been proposed e.g. in [11].
While much earlier work used token rings for total order-
ing, we use them simply as the lowest-overhead mecha-
nism for aggregating state among multiple nodes. Our
sets of caching replicas resemble other log-based ap-
proaches [7], but our partitioned torus-like structure for
loss recovery differs significantly from prior work.

Rate admission approach to multicast flow control has
been explored e.g. in [14]. Our work differs from this
and similar techniques, mostly using some form of loss-
based feedback, in that we adjust rates exclusively based
on perceived rates and estimates of system capacity, and
with minimal feedback.
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