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Abstract 10000

Reliable multicast is a powerful primitive, useful for data
replication, event notification (publish-subscribe),lfau
tolerance and other purposes. Yet many of the mostinter-2
esting applications give rise to huge numbers of heavily Ez 4000
overlapping groups, some of which may be large. Exist-
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ing multicast systems scale scale poorly in one or bothg 2000 F e SR i
respects. We propose tkiickSilver Scalable Multicast 0 A
protocol (QSM), a novel solution that delivers perfor- 1 2 4 8 16 32 64 128 256 512
mance almost independent of the number of groups and Number of groups

introduces new mechanisms that scale well in the number QSM Throughput —+— JGroups Throughput -~

of nodes with minimal performance and delay penalties

when loss occurs. Key to the solution is a level of indi- _ B ) )

rection: a mapping of groups to regions of group overIapF'gure 1: Scalability of multicast rate with the number
in which communication associated with different proto- ©f 9roups. All groups completely overlap on the same
cols can be merged. The core of QSM is a new regiona 5 members. A_smgle source _sends_messages in all the
multicast protocol that offers scalability and performanc differentgroups in a round-robin fashion.

benefits over a wide range of region sizes.

falls into two categories: "lightweight group” solutions

1 Introduction that map application groups into broadcasts in an under-
lying group spanning all receivers, then filter at the re-
1.1 Motivation ceivers to drop unwanted messages, and those that run

separate protocols for each group independently.

In this paper we report on a new multicast substrate, | jghtweight groups work bestin smaller systems; with
QSM, targeting very large deployments of client comput-scale, data rates in the underlying group become ex-
ers that communicate using publish-subscribe or evengessive, receivers are presented with huge numbers of
notification architectures. Were aSSUming that there mayindesired packets that waste resources and fill up re-
be thousands of users, many running Windows, and disceijve buffers, and the overload triggers increased packet
tributed over a WAN. For the present paper, our goal iSgss. The Spread system [1] works around this us-
simply to support the highest possible throughmand  ing lightweight groups in combination with an agent ar-
"best effort” reliability. In future work, we'll extend chitecture: clients relay multicasts to a small group of
QSM with a stackable protocol extension architectureagents; these broadcast each message, filter them on re-
supporting protocols that customize reliability or other ception, and then relay matching messages back to the
properties on a per-group (e.g. per-topic) basis. client, but the approach introduces two extra message

Existing reliable multicast support for multiple groups hops, and the agents experience load linear in the system

T - , size and multicast rate.

In other work (the Tempest system and its Ricochet multipest . .
tocol), our group is looking at clustered applications viithe-critical _ Runnlng a separate protocol for every group b“ng_s
behavior; the architecture is completely different. different issues. Such an approach incurs overhead lin-




ear in the number of groups for ACKs, NAKs and other
control traffic. Moreover, contention between groups for
communication resources, both within individual nodes
and on the wire, emerges as an issue. To quantify suct
effects, we measured the performance of JGroups [2], ;
popular communication package that supports multipl ::s“:;’;is
groups. We configured JGroups to provide only weak re inmuitile
liability guarantees. Nonetheless, as shown in Figure 1 grotke
the overhead associated with running multiple protocols Groups B1..Broo
in JGroups decreases the achievable aggregated through-
put by 6% with 2 groups, 20% with 32 groups and almost
60% with 256 groups.

Here, we explore a third option. QSM runs per-group
protocols over a lower layer implementing protocols on

. . . . . Protocol 1 Protocol 2 inter-region
a per-region basis. Regions are designed to have a fairly | protgcol @

Figure 2: Left: a pattern of overlapping groups. Right:
regions of overlap.

regular structure, and this lets us innovate in the regional intra-region
protocols. The performance so obtained is strong across |
the board, even with very large numbers of groups. As
seen in Figure 1 and explored further below, we also

protocol b
—~Node— ' -
achieve low latency and excellent scalability in group *\Region

size.

Figure 3: Left: In a typical system, nodes that belong to
multiple groups participate in multiple protocols. Right:
Our goals emerge from communication patterns seen iur system splits protocols into two levels: a single “bot-
demanding real-world multicast systems. One of us detom half per region, and a per-group “upper half.
veloped the multicast technology used in the current New
York and Swiss Stock Exchange systems, the French Air ) )
Traffic Control System, and the US Navy AEGIS war- |f we rule out lightweight group approaches as funda-
ship [4], and we are in dialog with developers of very mentally non-scalable, the_ scenario dep|c_ted |n_F|gure 2
large data centers, such as Amazon, Google, Yahoo! angPSes _real problem_s for existing technolog|e_s. Since eaf:h
Lockheed Martin. If developers of such systems aredroup is operated independently, the sending node will
forced to work over an unreliable event notification or Multicast data separately in a large number of groups,
publish-subscribe architecture, they typically implemen Perhaps using a separate IP multicast group in each. Each
stronger properties by hand, a difficult, error-prone andd"oup will implement its own flow_c_ontrol a_md reliability
inefficient approach. In contrast, by treating these inProtocol, hence a node that participates in many groups
terms of multicast to large numbers of groups, we takdndependently exchanges ACKs, NAKs and other con-
a major step towards offering customizable communicalf‘)' messages with its counterparts. Not only does traffic
tion properties and protocol stacks on a per-group basidise linearly in the number of groups, but the commu-
This opens the door to a whole class of applications thaflication pattern sabotages efforts to prevent ACK and
previously could not be supported. NAK |mpIOS|o_n, t_yplcally using aggregation on trees.
We assume a system with a large number of nodei:or_example, in Figure 3 (left) we've drawn multiple su--
each belonging to a number of potentially overlappingpe“mposed acknowledgement trees of the. sor.t used in
groups (left side of Figure 2). Nodes multicast asyn-RMTP [10] and SRM [6]. Unless tree creation is coor-
chronously (without waiting for replies) and may do so dinated across groups, e_ach n_ode will commur_ncate_wnh
at a high rate; a single node may multicast to muItipIefar more neighbors than in a single-group configuration.

groups concurrently. We want to optimize for the high-

est possible throughput while keeping latency reasonably 3 or Approach

low, and achieving a simple reliability property similar to

that in systems such as SRM or RMTP. Specifically, theKey to our approach is the recognition that a system
system should attempt to deliver every pending messageith large numbers of overlapping groups typically has
still buffered at the sender or another node, to all nodes much smaller number oégions of overlapIn the ex-
that have not crashed or left the group to which the mesample on Figure 2 (right), 18 nodes have subscribed to
sage was addressed. 300 groups but these overlap in just 7 regions. Regions

1.2 Group Overlap and itsImplications



of overlap have a few important properties that we refer Designer-assisted region discovery seems entirely
to asfate and interest sharin@nd exploit in our system. practical. Consider, for example, publish-subscribe sys-

Interest sharing arises when nodes in a region receivéems in which subjects are mapped to groups. Each in-
the same multicast messages, which makes it natural tetance of a given application, operated by a similar kind
consider message batching and similar tactics. If regionsf user, is likely to result in similar patterns of subscrip-
are large scalability becomes an issue, and it makes sengiens and hence extensive overlap. Equities traders who
to create IP multicast groups and attempt loss recoverfrade high-tech stocks share interest in similar sets of eg-
at a regional granularity. In the example in Figure 2, theuities; traders focused on the services sector also share
transmitting node, instead of multicasting in 200 groups,interests, yet the two categories of traders have little-ove
might do soin 6, and can pack small messages targeted tap. One can easily visualize the corresponding regions.
a given region in larger packets, increasing network uti- Operators of e-commerce datacenters implement
lization and reducing the frequency with which receiverfarms consisting of very large numbers of scalable ser-
overheads. Latency suffers, but as noted earlier, QSMices by cloning the service and using multicast (or
isnt optimized to minimize latency. publish-subscribe) to replicate updates [5]. Since a sin-

Fate sharing captures a related observation: nodes i@le server may be involved in replicating many objects,
a region experience the same workload, suffer from thesets of servers end up subscribing to large numbers of
same bursts of traffic, miss the same packets dropped &eavily overlapping groups. In effect, regularity of the
the sender, which makes it desirable to implement flondatacenter architecture makes it easy to identify regions
control and certain parts of the loss recovery mechanismiat can be exploited by our protocols.
at this level. If we multicast at the granularity of regions,
nodes will gcknowledge the same messages and can '$-4 Technical Challenges
cover missing data on a peer-to-peer basis.

Suppose that all members of a region drop someNe've suggested that revisiting lightweight group multi-
packet. Rather than having the nodes individually seelcast in an architecture based on multiple regions, rather
a retransmission from the sender, it makes sense to r¢han a single underlying multicast group, could be the
port their aggregated loss in a manner similar to recoverkey to a major advance in scalability. What makes the
in RMTP. Similarly, it makes sense to coordinate controlproblem hard? Several practical challenges stand out:
traffic relating to flow control on a regional basis.

Jointly, such considerations argue that if we view ¢ Avoiding inbound traffic implosion.The risk of
nodes as members of regions rather than of groups, and ACK or NAK implosions associated with increased
design regions to achieve high levels of interest and fate ~ group size was recognized long ago and motivated
sharing, we can gain efficiencies not available at the  protocols such as SRM and RMTP, but weve identi-
group level. We can also avoid the inefficiency that fied a secondary risk associated with node member-
limits lightweight group schemes: in our terminology, ship in large numbers of groups. Prior work hasn’t
lightweight group schemes map large numbers of groups ~ €xplored this issue.
to a single enclosing region, but often end up with map-
pings in which there is little interest and fate sharing.

The efficiency of this approach depends on the number
and sizes of regions, which in turn is a function of system
structure. With lots of small regions, we end up with
large numbers of small IP multicast groups and senders
may have to issue a great many IP multicasts to send a
single group multicast; this is clearly not desirable. In ¢ gcalable multicast. Regions aren’t necessarily
the extreme case a node would need to send a separate  gmg||, and most existing reliable multicast protocols
packet for each destination. Yet at the other extreme,  g.g)e poorly. In the past we've worked on this prob-
where all node_s are members qf the same groups and the lem, but the protocol we proposed (Bimodal Multi-
whole sygtem is (_:overed by a single region, performance cast) turns out to be a poor choice in systems with
can be virtually independent of the number of groups. large numbers of groups: latency of recovery from
The greater the degree of group overlap, the easier it will packet loss was too high. Moreover, if a region hap-

be to find regions that work well. _ . pens to be small, gossip communication of the sort
We see the selection of regions as a machine assisted |;sed in Bimodal Multicast makes no sense.

task in which the system designer plays a significant role.
Automating this task may ultimately be possible, butis e Choosing the right software architectur8oftware
not a current goal of our work. architectures for systems dealing with large num-

e Maintaining efficient runtime structureMuch of
the benefit of the concept revolves around the po-
tential to amortize communication costs and over-
heads over nodes that share interests and fates. Im-
plementing protocols that exploit these shared char-
acteristics is hard.



bers of concurrently active protocol stacks are sur-
prisingly difficult to implement, debug and tune.
For example, in an early stage of our work, we im-
plemented a modestly multithreaded solution. Per-
formance was terrible; ultimately we realized this
was due to scheduling anomalies. Elimination of
threading helped eliminate the issue but made our
code more complex (and this is just one example
among many).

Limiting resource usage.With large numbers of
groups and potentially large regions, there are a
great many ways resource consumption can spike
and cause a performance collapse. There has been
little attention to the design of protocols that are pre-
dictably sparing of resources.

Efficient management of membership information.
Throughout our system, we need to track member-
ship: of groups, of regions, of the underlying set of
nodes. A single event (notably a failure) can trig-
ger huge numbers of updates unless the associated
event handling logic is designed for scalability.

Our contributions thus range from new protocols that

can deliver a multicast reliably in a region whether it hap-

pens to be small or large to new data structures that let e

us efficiently update membership when a process joins or
leaves thousands of groups.

The bottom line is that investment in this mixture of
pragmatic and fundamental problems has a huge payoff.
As will be seen below, our system achieves three times
the performance of JGroups even at small scales, scales
independently of the number of groups and incurs con-
trol overhead at the sender actuallgcreasingwith the
number of nodes, resulting in excellent scalability in this
dimension. A primary reason for this is that in QSM,
control overhead is not a major factor limiting scalabil-

ity.

2 Protocol Overview

Our scalable multicast protocol is structured around a se-
ries of key ideas. Several are familiar from prior work,
but the combination is new.

e Leave strong reliability properties to higher-level

protocols. Our ultimate plan is to support complex

protocols often involve running non-trivial end-to-
end protocols, for example when a failure occurs.
Given that these are needed in any case, and that
they often have reliability needs peculiar to their
own reliability goals, these higher level layers might
as well also overcome infrequent packet loss not ad-
dressed by QRM itself.

Rate based admission controln keeping with a
philosophy that avoids burdening the sender with
unnecessary incoming traffic, we use a rate-based
flow control scheme that dynamically estimates the
rate at which each sender can transmit. In con-
junction with the mechanisms described below, this
leaves the sender largely decoupled from the re-
ceivers, greatly improving scalability.

e Group and regional membership serviceMany

group communication systems employ a service to
detect failures and recoveries. We go further, and
employ a GMS that tracks membership in groups,
regions, and the system as a whole, and handles
such tasks as assigning IP multicast addresses to
regions. Reporting is consistent (all nodes see the
same information), and this greatly simplifies the
design of protocols used in the nodes themselves.

Regular tiling with regionsAfter struggling to de-
velop solutions for arbitrary group overlap, we set-
tled on an approach in which a human developer is
expected to assist us by designing the system in a
way that facilitates a regular tiling, with regions of
relatively uniform size. If a region is very large, we
partition it into smaller subregions that share a sin-
gle IP multicast address but handle error recovery
independent from one-another.

e Token passing.To avoid unpredictable bursts of

ACK and NAK packets, we circulate tokens in each
region to gather this and other control information.
Tokens circulate rapidly, but on a predictable sched-
ule, an innovation that works extremely well for us.

Local repair. We pick some nodes in each region
as loggers and are usually able to recover lost pack-
ets without involving the sender. The sender buffers
packets until the loggers acknowledge them, but
doesn’'t worry about delivery in the remainder of the
region.

The subsections that follow provide additional details

reliability properties through protocol stacks in the on these mechanisms.

manner of the Horus and Ensemble systems. QRM
would be a low-level protocol in such a stack, and
we limited ourselves to a best-effort guarantee of

2.1 Membership

the sort used in SRM and RMTP. Our reasoningAs noted, we introduce a specialized 2-level group mem-
is basically end-to-endian: sophisticated reliability bership service (GMS). The GMS maintains not only in-



a form of common knowledge. In particular, nodes in
our system can construct trees, rings and other structures
spanning regions and connecting the various regions
based directly from membership information, without
running additional consensus protocols. Our current
nodes 0o ooe ée00 6 GMS ig centralized; in the futurg we will replicate it to
eliminate the resulting single point of failure[3].

groups
group views

regions

region views

Figure 4: Group and region views in 2-level membership. o
2.2 Reéliability Protocol

formation about groups, but also regions. Regions, likeAs noted earlier, our emphasis has been on achieving
groups, experience membership Change as nodesjoin a|QdSCEl|ab|e but best-effort form of rellablllty over which
leave or crash, hence associated with every region is a séfronger models can be layered in the future.
quence of what we catkegion views each listing mem- Accordingly, before transmission every message to a
bership at some point in time. The different types ofgroup is assigned a sequence number within a particular
structures and their relationships are shown on Figure 4roup view. Every group view maps to some fixed set of
A group has a sequence of associated group views (orf@gion views, hence we now know the set of receivers.
of them being current), each of which maps to a set ofThe system will try to deliver the message to this set. We
region views, which in turn map to sets of nodes. Groupdo so by creating, for each request to send a message in
and region views are immutable, while for every groupa group group request a set of subrequestgegional
and region, new group and region views will be oftenrequesty one for each region, and processing them sep-
created and marked as current. The GMS listens to clier@rately (when a very large region is partitioned we still
requests as well as messages from a failure detector, ugend just one IP multicast).
dates the whole structure and sends every node affected Recovery from packet loss associated with regional re-
by the change an appropriate piece of information, increquests occurs on a region-by-region basis. In the rare
mental whenever possible (containing only the updatesase of sender failure, receivers in each region recover
relevant to that node). The GMS does not process everthe message only among themselves, and it may happen
crash or client request separately; it groups requests ifhat some regions deliver a message but others do not.
batches and performs changes at a predefined maximuonsistent with an end-to-end perspective, higher level
rate. This reduces the number of view changes and thgrotocols can and should deal with this failure case. Our
number of messages sent to nodes. mechanism thus provides a strong but not absolute form
When a region has more than one recipient node, wéf best-effort reliability.
use IP multicast to send messages, and the GMS is also Regional requests are handled similarly to the group
responsible for assigning multicast IP addresses. If a rdevel: we assign sequence numbers within the relevant
gion is very large, we break it into multiple smaller par- regional views, and the system keeps trying to deliver a
titions that share a single IP multicast address. We adoghessage until every member of the relevant view either
this approach for several reasons. First, the pool of adhas acknowledged it or is dead (reported by the GMS as
dresses is limited. Second, we experimented with netfaulty).
work adapters and determined that the mapping of Eth-
ernet multicast fto P multic_ast is such that if_IP mul_tica_st2_3 Multicasting in Regions
groups are assigned profligately, a node will receive in-
terrupts and waste CPU resources even if it is not a memFhe regional multicast protocol proceeds as follows. We
ber of any of these groups, the level of CPU consumptiortransmit packets into the whole region using a single IP
being proportional to the number of groups. Third, IP multicast group. Nodes in the region recover from packet
multicast membership changes are expensive and timesses from peers within the region, using the token ring
consuming. Finally, since new requests are always sergrotocol described in section 2.3.2 to ACK stable data
to the most recent views and old messages are eventualgnd to NAK dropped packets. Receivers also provide
delivered, the overhead of this approach (data deliverefeedback that the sender uses to adjust its multicast rate
where it should not be, for example when a node leave$or maximum throughput. The sender participates in re-
a group and time elapses before it drops out of the IRzovery only if an entire region drops a packet.
multicast address) is negligible. As a consequence of the reduced feedback, the sender
Having the GMS maintain information about regions will experience a greater latency in receiving acknowl-
and assign version numbers (views) to their subsequer@dgements and thus pay a greater overhead of buffer-
incarnations allows nodes to rely on this information asing. To offload the sender, for every message we des-



ignate R nodes ascaching serverghat will buffer the region leader  partition leader  inter-partition token

received data for the purpose of peer-to-peer loss recov- intra-
ery, described in detail in section 2.3.3, until all nodes pag'ﬂgﬂ
in the region have acknowledged iR is a smallrepli-

cation factor typically 5 or less in the experiments re-

ported here. The sender considers a message to have patition

been delivered (and stops buffering it) once it has been
acknowledged by all caching replicas. This mechanism ) )
reflects the pragmatic observation that with a few node&i9ure 5: The torus protocol for loss recovery in regions.

caching each message it is extremely unlikely that all of

f . . region
them will crash before the message is delivered. As long 9 _
as at least a single receiver in the region has the mes- p:‘ig:_'l
sage cached, our peer-to-peer loss recovery protocol willeg
guarantee that it ultimately is delivered to every node that |  multicast
missed it in that region.

sender inter-partition push/ pull local push/ pull

In order to provide a structure for the token passing,
loss recovery and caching mechanisms mentioned above,

we split every region into multiple small partitions, as de—F. 6: Non-tok trol traffic in | R
scribed in section 2.3.1. This partitioning simplifies our gure 6. Non-loken control raflic in loss recovery. Ke-

design and provides additional benefits that will be dis—g'oc? Ieadefr generﬁte 'S‘CK”S pz?\(;tmon leaders setr_lq NAKs,
cussed further. As noted before, we construct partiti0n£IO €s pertornpushandpull InSide or across partitions.

and the structures built on top of them based solely on
the membership information, and every node does it inq torus, depicted on Figure 5. Nodes in every parti-
dependently. The GMS eliminates the need for electionsiion form a smallintra-partition token ring All parti-
consensus or other similar methods, and guarantees cofions within a region, in turn, form a single glokiater-
sistency among the views on which decisions are basedpartition token ring A node with the smallest address in
each partition is gartition leader and the leader of the
231 Partitioning first partition in. the region is aIspragion leader
At constant intervals the region leader generates a to-

A region of sizen is divided intop partitions of size no  ken to travel across the region. First, it circulates the
smaller thanR, p = |n/R|, by assigning nodes to parti- token around its own partition as amtra-partition to-
tions in a round robin fashion, i.&-th node in the region ken Once the token is received by the leader, it passes
becomes a member of tli¢ mod p)-th partition. Each it to the leader of the next partition as amer-partition
partition serves as a set of caching replicaslfgrof the  token The token then circulates around the second par-
received packets: a packet with a sequence numlser tition as an intra-partition token, then again it is passed
cached by all nodes thg mod p)-th partition. to a yet another partition leader. This continues until the

Nodes in each partition cooperate in recovering fromleader of the last partition passes the token back to the re-
losses of the packets they cache and may forwaudlj ~ gion leader. Tokens are passed using a simple TCP-like
or requestull) data from each other. This is achieved reliable unicast protocol. While generated at constant in-
by our token protocol. They are also responsible fortervals, once released, the token progresses throughout
sending NAKSs to the sender to request retransmission dhe region at maximum possible speed (generally, a few
data missed by the whole partition. Packets missed bynilliseconds per partition).
receivers in other partitions can only be requested fronTokens serve the following purposes:
nodes in the partition caching these packets. This of-
floads the sender by reducing the control traffic. In fact,
in our experiments, with replication factdt = 5 the
sender rarely receives NAKs and never retransmits any-
thing after a timeout, all losses can be efficiently repaired o Report losses to other nodes in the region and ex-

e Determine which were the latest packets received
throughout the whole region, so that process can
learn which packets they may have missed.

among the receivers. change packets. We use both theshmodel (node
forwards packets without request from the other
232 Token Passing node as it learns that the other node is missing pack-

ets) and thepull model (a node may request for-
The token passing protocol on which our loss recovery  warding of packets if it learns that other node has
scheme is based is built on a structure that resembles them).



e Find out which packets have been received by all 600000
nodes throughout the region and report them to the
sender as a collective regional ACK.

580000

- - - 560000
o Find out which packets were missed by all nodes

responsible for caching and are not recoverable and

540000

packet number

T
\
\
K \
\ i\
\ \
\ \
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report them to the sender as a collective NAK. 520000 T L
o ) ) 159 160 161 162 163 164 165 166 167
e Distribute information about packets that can be time (s)
purged from cache. cutoff received multicast -
received forwarded — + cleanup -
sentnak O max contiguous ack -------

Thereis a single token per region for all the senders. Data
relative to each sender actively multicasting into the re-
gion simply occupies a part of the token. This ensures
scalability in the number of senders: when more senders
multicast into the region, the token size grows, but the

rate at which control packets circulate stays the same. ] ) o ]
Information for a given sender starts being included incompares its NAK set with a similar NAK set placed in

the token when it multicasts data into the region andn€ token by its predecessor. All NAKs reported by the
stops being included when all packets known to havdredecessor, but not reported by the successor are to be
been transmitted are acknowledged by all region memiorwarded push by the successor to the predecessor. All
bers, up until some new data is received. For brevity, ifNAKS reported by the successor, but not the predeces-
the discussion below we refer tkenonly to the portion ~ SOT are to be requestedyl) from the predecessor (in
occupied by a specific sender. the latter case the successor sends only a smglee-

Note that the leadership might change as the GMS noduest with a list of NAK ranges). Finally, if the token
tifies the receivers about changes in membership. Nodd$ t© Pé passed to another node in the same partition, the
update their status and assume leadership in a distributdPde Stores its NAK set in it. There is always only one
manner. Since updates from GMS may arrive at differenfUCh NAK set in the token, thpushand pull requests
times, there might occasionally be two self-elected leagMentioned above can be issued only between neighbors
ers. This does not affect the correctness of our protocoP the ring. As will be explained further, this decision
The only information we rely on is that the GMS pro- Was drlverj by_the need tp .reduce.the size of the token.
vides eventually consistent information about failures. ANOte that in this scheme it is possible for a node to pull
node that the GMS considers as dead in the region wilP Packet from a predecessor, and at the same time have it
be excluded by others from the protocol; if that node isforwarded by a successor on the ring. Other schemes, in-

actually not dead, it would need to rejoin the system. cluding the node making its own decision as to whether
it would pull or push the packet, are possible, but gen-

erally require putting more information into the token.
Our experiments with such schemes show that space in
In order to determine which packets have been transmitth® token is a scarce resource that must be used sparingly
ted, nodes use the token to calculate, in each round, tH&"d such optimizations are generally not worthwhile.
largest sequence number among packets received in the This protocol ensures recovery of the cached packets
region, which is then distributed in the subsequent round@mong nodes within a single partition provided that the
as acutoff point for loss recovery: in a given round nodes packet was delivered to at least one of the caching repli-
in the region consider as missing all packets with thiscas. To recover from cached packets missed by the whole
or lower sequence numbers that they have not yet rePartition, nodes in the partition use the token to calculate
ceived. By introducing a full round of delay we account the intersection of their NAK sets, which is then included
for the fact that recently transmitted packets might séll b in the collective NAK forwarded to the sender by the par-
buffered by some nodes in their receive queues. Withoutition leader. Every partition reports its own losses inde-
this delay, our recovery protocol tends to unnecessarilypendently (see Figure 6).
generate duplicated packets. While processing the token, a node also creates NAKs
Every time a node generates or receives a token, it crefor packets cached in other partitions and semalsre-
ates a compressed NAK set representing the ranges ofuests to the leaders of other partitions (one request per
packets with numbers up toutoff cached in the local partition containing a compressed list). These requests
partition and missed at this node and, if the token was reare satisfied as soon as data is available. We contact only
ceived from another node in the same partition, the nodgartition leaders, as the leaders usually contain the most

Figure 7: The loss recovery protocol at work.

2.3.3 LossRecovery



up to date packets (note that whpeashinvolves simply  u,,4 based solely on a single valyg.. received from

transferring data between neighbgrall requires thatit nodes in the region and representing the lower bound on

be requested first, hence forwarding towards the partithe rate at which all nodes in the region can receive the

tion leader is generally faster). Other schemes, includinglata multicast by this sender.

choosing a random node in every partition, are possible. The ratey,... is calculated as follows. Each node
Finally, the token is used to calculate the maximumthe region maintains a smoothed estimﬁéfé represent-

value such that all packets with numbers up to this valugng the rate at which it is currently receiving new, previ-

are stable within the region. This single number is senbusly unseen packets (we usk-aample moving average

by the region leader as the only form of ACK to the of the node’s rate history calculated in fixed intervals

sender (as well as passed around in the subsequent rougigically £ = 10 and A = 1s). The region leader, via

to purge messages from cache). We experimented witkhe token protocol, periodically calculates a minimum of

adding more feedback for the sender, such as isolateghese rates and divides it by, the number of senders

ACKs, but found that it generally increased the amountcurrently multicasting into the region, according to the

of details about the different partitions that need to befollowing formula:

passed in the token all around the region, which no-

ticeably increases the token size without a clear bene- ming il

fit. Even with this minimal feedback, in our experiments Prec = — @)

messages are typically reported to the sender as acknowl- __ )
edged by the region within a few token rounds, the re- This value, piggybacked on the ACKs sent to all the

transmission mechanism on the sender essentially nevefnders, represents a Iower bound on a fair share of t.he
kicks in and NAKs sent to recover from partition-wide curr(_ently available bapdmdth. Each .sender then sets its
losses are rare. We favor simplicity and consider this dnulticast rate according to the following formula:
strength of our protocol. Offloading the sender in any
way possible turned out to be good for performance. Psnd = MaX(Umin, (1 + A)trec), (2

Our description omitted some details for brevity.

Among these, the more important issues were: where\ is agrowth coefficienthat provides a trade-

off between the latency at which the controller tunes up
e We found it essential to bound resource utilizationto the maximum available rate and losses resulting from
throughout the system, hence nodes are only altuning it too high, angi,,, is some minimum rate, nec-
lowed to report a limited number of NAK ranges, €ssary to kick the system out of stagnation after long pe-
which requires additional handling when calculat- riod of nonactivity or a series of massive losses.
ing NAKs, pull andpushrequests. This formula makes the senders multicast at a rate just
slightly higher than that declared by the slowest receiver,
» \We settled on a solution where requests for a giverwhich makes it possible for the rate to grow over time.
packet by nodes outside its caching partition is de-At the same time, by keeping low we avoid overload-
layed until it is stable on all of its caching replicas. ing the system. Note that since different nodes process
This reduced the amount of state maintained, enat different speeds in different intervals of time, the aver
sured thapull requests can be satisfied immediately age rate among receivers will generally be considerably
and simplified handling of the case where the samehigher than the minimum in the region. This is precisely
packet is requested twice in different token rounds.the subtle property that ensures the stability of our sys-
We found delaying opull requests to be good for tem: the actual capacity of the region is higher than the
throughput, especially in case of massive losses. ;... communicated to the senders and therefore we
ill not experience loss rates comparableXoas one
ight initially think.
In order to tune the sender to precisely the desired rate
snd, We Uuse a simple rate control scheme enhanced with
an adaptive adjustment mechanism. Specifically, we use
a component that, given a parametetunes the system
'to a sending rate of («) where f is monotonically in-
creasing, and adjust parametein fixed intervals (typi-
cally at most once per second) according to the following

In our experiments we generate a token once per secon%
This proved sufficient across a variety of configurations.
All control traffic is handled by a reliable TCP-like
unicast protocol and rate-controlled. The rate is set t
a fixed small value to minimize the impact it might have
on multicast traffic. Multicast is controlled by a separate
adaptive rate control scheme described in section 2.4.

2.4 RateControl formula, loosely inspired by the Newton’s method:
We managed to achieve effective rate control with mini- Psnd 4 3
mal feedback, where the sender adjusts its multicast rate a—a+p( T ), ®)



where i/, . is the measuredctual sending rate, cal- _lapull from feed] | (nonblocking
K L Applications Core Thread dequeue
culated by the sender in a way similar to the manner &—other upcall— onqueue *
whereby receivers calculatg.... The parametep con- | | (blocking timed) dequeuﬂ ‘
trols the inertia of our mechanism (typically 0.5). other register . . Alarm
..;downcall feed begin begin e
As the controlled component, we enhance sender with send receive

a simple credit system. Sending a message consumes

credit out of a fixed pool of siz€, sender can send only - P ' Sockets |send Pl NIC

if credit level is positive. Credits are recreated over time |KERNEL ™~ received] & -sent

Specifically, when credit goes below threshoéld,,, we

setup a timer for intervat to recover at a leveCy, g,

using the following formula: Figure 8: The overall architecture of our system: a single
thread in the core managing its own scheduling policy.

L min(Chign — ¢, Ama%)7 @)
Msnd

wherec is the current credit level and,,., is the max-  core threadis continuously processing events from the
imum number of credits to recover, added to reducq/O gueue as well as from its owalarm queuda priority
burstiness of the system. When the timer expires, wWejueue implemented as a splay tree) where it stores timer-
increase the number of credits WI'jis,a, WhereAT'is  based events. The two types of events are processed in
the actual amount of time that has elapsed. If the creditig round-robin fashion, in batches to minimize overhead
still below Cjign, We keep setting a timer using the above (typically with a quantum of 100ms for any batch of I/0
formula until we reach that level. We found this schemeevents and 50ms for batches of timer events). Addition-
to work well in practice, in particular on one 3.8GHz ma- ally, in order to minimize losses, when a data is found on
chine with a gigabit connection this scheme was able ta socket, that socket is drained of all the received packets
achieve the rates as high as 20,000 packets/s exactly gsieued on it before any other processing takes place. In
requested without the adaptive adjustment componenthe rare case where there are no events to process, core
On the other hand, on slower 1GHz 100Mbit platforms, s waiting for 1/O in a blocking system call. All our pro-
neither this nor any of several other sender rate controfocols are based on UDP. We use a single socket for all
schemes we tried was able to match the desired ratgacoming unicast traffic.
without adaptive adjustment and without leading to high
burstiness, the reason being that all the mechanisms Ve,

teségoi pgo;/edd e?snly q'tSttl.”bed by sch?dulm_g. ificant the OS, and optimize management of resources such as
istributed rate limitation represents a significant re- ¢ space, number of sockets etc., we emplquti

search issue for us, and this preliminary solution is only & cheme. A component that intends to send data creates

flrsthstep. Inhthefuturﬁ,w_e hopeté)exptlorle otheLop'gorE noutput channeby registering alata feed essentially
such as schemes aflowing Senders 10 1ease Dandwiti o4 ck that returns objects to be transmitted. Data is

from t.he region. We believe the_ token passing Sf:hem?)ulled from the feed asynchronously, as rate control and
is flexible enough to support a wide range of algor'thms'resource limitations permit. When no more data is avail-

able, the feed is internally deactivated to eliminate use-
2.5 Architecture less polling. The component must then signal the feed
when new data is available in order to reactivate it.

In order to reduce buffering inside our system, stream-
e flow control between the various components and

Our system is implemented in 99% in T#br the man- _ _
aged .NET framework, currently only for the Win32 plat- 1 "isPull model is used throughout our protocol stack
form, as a library with a single-threaded core, optimized®"d €xposed to the applications using our library. We

for fast event processing and implementing its own sim-2lso provide wrappers that allow the application to use a

ple event scheduling. The relationship between the cord0"€ standa_ro_ushinterface, i.e. the familiaSendMgs—
and the rest of the system is shown on Figure 8. A sing|esagecall. Similarly, our system includes convenience
/O completion port (O queug is created to handle all features such as buffering components, message batch-

/0 events, including confirmation of packets received, "9 cOmponents etc. However, performance withihi

completed transmissions and errors, for unicast and mufhterface is superior, and the experiments reported here
ticast traffic, for all sockets created by our system. The!Sed it

> : T onof § 10 complet We support multithreaded applications. Calls made
We only use a small portion of C++ code to access I/O completio PR .
port APIs unavailable through the .NET interfaces or P/kevin C#. by an application to the corel¢wncally, e.g. to sig

Because neither I/O completion ports nor a similar efficiesthanism ~ nal @ channel, are |mplementeq via postlng speual re-
are currently available on Linux, we only support the Win&gform. quests to the 1/O queue and/or inserting them into non-



blocking queuel implemented wittcompare-and-swap 10000
(CAS) operations (available on most of today’s architec-
L 8000 |- .
tures). Calls made by the core to applicationgdallg,
e.g. to pull data from a feed, are made directly, it is up 6000 |-
to the user to protect data structures, possibly in a non- L
blocking manner (nonblocking queues are one option).
We also provide a serialization mechanism, through
which the user can send arbitrary types of objects that im- 0 : ' ' '
. .. . . . 0 15 30 45 60 75
plement our simple serialization interface. The interface Number of nodes
requires a class to have a uniquely assigned number, and QSM Throughput 3Groups Throughput ——<—
objects to be able to store their contents by appending
data to a header or buffers to a scatter-gather pool, and to

load its contents from a given header and buffer. This isjgre 9: Multicast rate as a function of the number of

necessary to avoid the enormous overheads of serializg;, qes in a single group spanning the whole system
tion in the managed framework, where names, signatures

and other bulky information on the order of 150 bytes or
more are typically appended even to the tiniest amounta test written by the JGroups developer and run on our
of data sent in binary mode, and to enable scatter-gathérardware. QSM was evaluated on the Microsoft Visual
mode of operation without an extra copies. A wrapperStudio 2005 Release Candidate.
capable of transmitting arbitrary objects is available for In all our tests senders (usually one sender, with the
developers who favor simplicity over efficiency. exception of section 3.7) multicast small packets con-
The structure of our protocol stack reflects the struc-sisting of a few integers. Including TCP/IP headers
ture of our protocols. Accordingly, we have componentsas well as any headers specific to JGroups or QSM,
responsible for maintaining local view of membership, JGroups packets are 124-bytes and QSM packets 90-
message sinksending in groups, region views or to in- bytes in length. With one exception, both the senders
dividual nodes as well as modules that manage resourcesmd all the receivers subscribe to the same set of groups,
or control concurrency. We omit details for brevity. spanning the whole system. Each sender multicasts in all
groups, round robin. The reported throughput rates refer
to the combined rate for all groups, ignoring warmup and
cooldown periods.
. JGroups throughput is stable, we use runs typically a
31 Setting few minutes long. QSM throghput varies over time, the
runs used for the results reported here last 10-40 minutes.

4000
X

2000 | oo Koo 1

Throughput (packets/s)

3 Evaluation

We evaluate performance on two sets of notlefirst

a 71-node set of Pentium Ill 1.3GHz 512MB machines,

and a the second a 25-node set of Pentium Il 1IGHz 2GB3 2 Throughput

machines, both on a switched 100 Mbps network, run-

ning Microsoft Windows Server 2003 Enterprise Edition. As shown in Figure 1, performance in our system does
For JGroups evaluation we use JGroups version 2.2.80t directly dependend on the number of groups, the only

running on Sun JDK 1.5.0.03 runtime configured with Way the presence of multiple groups directly manifests is

the same JVM flags as used by the author of this packat the sender, where the amount of state involved grows

age. We used f&-fast-minimalthreadprotocol stack as linearly and consumes memory (the growth is slow and

recommended by JGroups developer, with ACK/NAK- not noticeable in our experiments). Indirectly, as dis-

based loss recovery and flow control on UDP, but withcussed in section 3.5, performance drops as the regions

batching and higher-level protocols, including virtual that the groups consists of become smaller, which is in-

synchrony, disabléd Results of our own performance deed more likely with a large number of irregularly over-

tests at small scales were similar to results obtained fronf@PPing groups unless care is taken to prevent that. In
comparison, while scaling from 1 to 256 groups, JGroups

3 - - . i
A restricted version that allows appl|cat|ons_ to enqueve ele performance degrades by almost 60%.
ment, but to dequeue only all elements at once is fast, itiresonly

two CAS operations. Our system also_scqles very WeII_ with the number of
4power and cooling problems prevented us from being ablerto ru hodes. As shown in Figure 9, scaling up from 1 to 71
all tests on the same hardware before the submission deaéfan the nodes resultsin a dI’Op of performance by 1/3, from 9850

same reason, some data points are missing. We are in thesprote . . - _
deploying our code on a 250-node cluster that will enableousit to 6500 packets/s. AS eXplamed in section 3.8, we be

experiments at a large scale long before the camera reagyicdpe. lieve T[h_at this_ drop_ in thrOUghpUt is in Iarge part due to
SHowever, we left message batching enabled for all contadfi¢r the difficulty in estimating the rate at which the group

10
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Figure 10: Overhead as a function of the number of _ ) . .
nodes (1 group, 1 sender). QSM overhead shown as Eigure 12: Throughputin QSM as a function of the num-

fraction of control packets. JGroups overhead, due t er of nodes for different partition sizes.
message batching, shown as a fraction of bytes in those

8400
packets. — ' ' ' ' '
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push EXX=  unicast_ack
pull other =22

token m— Figure 13: Throughputin QSM in a single 25-node group
as a function of partition size.

Figure 11: Overhead in QSM as a function of the number i
of nodes, for a single group and 1 sender. across a larger set. Indeed, as shown on Figure 11, at

smaller scales forwarded packegtsi§h) account for over
90% of all QSM traffic and the ratio decreases with scale,
can receive packets rather than just the capacity of thgiving place to tokens and ordinary unicast ACIskK).
network and limitations of our loss recovery mechanism. In JGroups, as Figure 10 suggéstthe fraction of
At the same time, even with just 2 nodes in a singledata transmitted in control packets grows at least linearly
group JGroups achieves a multicast rate of 3333 packwith the number of nodes. Thanks to message batching,
ets/s, half that of QSM with 71 nodes; with 40 membersat smaller scales the resulting overhead is actually quite
JGroups degrades to 1441 packets/s, more than 6 timéaw.

lower than that of QSM with the same group size. Our experiments suggest that JGroups control over-
head grows relatively slowly as a function of the numebr
33 Overhead of groups. When scaling from 1 to 128 nodes, the over-

head grows by the factor of 2.

We measured overhead at the sender in both JGroups andNote that in both scalability scenarios, the increase in
QSM by capturing packets in Ethereal and calculatingoverhead in JGroups is present despite the radical drop
the percentage of those carrying control messages, arid throughput. This is not the case for QSM.
then further decomposing these into subclasses based on
message type. Because JGroups batches its control mesg-4 Partitioning
sages, we also looked at the sizes of its messages. For
brevity, we do not discuss overhead at the receivers.  The choice of partition size has a noticeable impact

The network overhead in QSM is independent on theon performance. Because information about losses in
number of groups. Also, as shown on Figure 10, it de- SWe did not analyze JGroups source code and therefore JGroups
creases as more nodes are added to the system becay§&head results discussed here, based entirely on arsanafycap-
the burden of packet forwarding is being distributed tured packets, may not be 100% accurate.
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Figure 15: Throughput and average time to recover losmoothed by a 20-sample moving average for clarity.
packets (see section 3.9) as a function of the rate at which
tokens are generated by the region leader. 35 Region Size

As mentioned earlier, performance of our scheme de-
caching partitions is exchanged only between neighborssreases with the number of regions: since every region
loss recovery occurs on a hop by hop basis, i.e. a packdbrms a separate multicast group, multicasting at agate
missed by a chain of nodes on the ring will be recov-in a group consisting of regions requires the sender to
ered in time linear to the distance between these nodegeneraté: ;. packets per second. This quickly becomes
This effect gains in significance when partitions becomea bottleneck. As Figure 14 shows, throughput degrades
more than a few nodes in size. On the other hand, havinglightly less than inversely proportionally to the number
too many small partitions increases the number of poof regions. With more packets the rate at which they are
tential NAK sources, and the smaller number of cachingsent is actually increasing, asymptotically approaching
replicas increases the likelihood that packets cannot bghe maximum rate at which the system is able to trans-
recovered just among the receivers. mit.

As shown in Figure 12, while with partition size 5  Since it is only the number and sizes of regions that
throughput degrades very slowly, much larger partitionbear any significance, we omit discussion of performance
sizes lead to a fast decrease in performance. Througlwith different overlap patterns.
put in a 25-node region sliced into 5 partitions is almost
20% higher than when the whole region forms a single
25-node partition. 3.6 Token Rates

The inherent tradeoff between the number of cachingrhe token generation rate is a crucial internal parameter
replicas and the size of tokenrings for a 25-node region isvith broad impact on the performance of QSM. Other
illustrated on Figure 13. Increasing the number of repli-important parameters include rate controller settings, re
cas beyond 5 is not worthwhile. transmission timeouts, scheduling quanta, and the vari-
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Figure 19: The average time to repair packets lost during?ur rate control scheme generally requires between tens
IP mu|ticasting (ecovery |atencyand the percentage of of seconds and several minutes to achieve maximum

packets that needed to be repairetovery ratg. throughput, depending on the initial and minimum rates
it is configured with. In our experiments we used the

lowest settings to maximally stress the system by allow-
ous bounds on resource utilization, but token rate domiing it to almost stop. The rate generally grows slower
nates. in larger systems, where minimum rate among receivers
Token rate should be high enough to ensure timely rewill generally be considerably lower than average, and
pair: the QSM token is the only means of communicat-takes more time to recover, leading to more variability
ing losses among partition members and the amount odind lower throughput. We believe this to be the major
information that we allow in the token is limited, hence reason for decrease in performance with larger systems
limiting the token rate may cause a bottleneck. Limiting mentioned earlier.

token rates also increases latency, buffering overheads Figure 17 shows how sending rate in one larger and
and reduces feedback for the rate control purposes. OBne smaller system changes over time. In the smaller

the other hand, if the token rate is set too high, de""erysystem, the rate changes smoothly, slightly increasing

Iat_ency drops but_we incur ex_cessive control overheadand falling by a few percent in cycles spanning tens of
This dependency is showon Figure 15.

seconds. In the larger system, the rate fluctuates between

3000 and 9000 packets/s in cycles that span several min-

3.7 Multiple Senders utes. This effect has been quantified on Figure 18. This
observation makes it clear that more work on rate control

On Figure 16 we present throughput for a test with mul-in large configurations will be needed.

tiple senders using fair sharing; all senders belong to the

same group and receive each-other's messages. The 'Sive rate control, or by manually bounding the rate to
ported throughput represents the total across all senderﬁeep it from dropping too much, it should be possible to

As we can see, two senders can actually multicast faStegustain higher throughputs. However, our results already

We haven't had time to investigate the drop in performance fo SNOW that even with a minimal fee_dbaCk once per second,
rates between 1 and 5. a 70-node system can achieve high performance.

With a more sophisticated heuristic and more aggres-
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3.9 Recovery Latency Rate admission approach to multicast flow control has

) _ ~been explored e.g. in [14]. Our work differs from this
As mentioned earhe_r, our loss recovery _scheme repairgng similar techniques, mostly using some form of loss-
most lost packets within a few rounds. Figure 19 shows)ased feedback, in that we adjust rates exclusively based

the length of time measured at one receiver between thg, herceived rates and estimates of system capacity, and
moment when a delayed packet should have arrived (agith minimal feedback.

calculated by looking at neighboring packets) and the
time when it actually is received. On average, recovery
takes 2.5 token rounds, independent of system size. RS Acknowledgments
covery latency multiplied by the percentage of packets

delayed (also shown on Figure 19) represents the contri-l-—his work was supported by DARPA/IPTO under the

bution of packet loss to end-to-end latency. In our ex—SRS program and by the Rome Air Force Research Lab-

periments, this typically averaged a few milliseconds. toratory, AFRL/IF. Additional support was provided by
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may be reduced by increasing token rate (see Figure 15).

y y g ( g S We want to thank our colleagues Robbert van Renesse,
Mahesh Balakrishnan, Tudor Marian and Maya Hari-
dasan for the invaluable feedback they provided, and to

3.10 Acknowledgement L atency _ ; _
Bela Ban for helpful hints during our JGroups evaluation.

Figure 20 shows the average time between sending a

message and full-group acknowledgement. In larger sysRefer ences

tems, this takes up to 3.5 token rounds, while in smaller
systems it takes slightly over 1 round, much less than thel]
time to recover packets. The latter is possible because
packets are considered by the sender delivered as soon

as they are stable at all the caching replicas. 2]
(3]
4 Related Work
[4]

Our ideas build upon a rich body of work in best-effort
scalable reliable multicasting based on the exchange off5]
ACKs and NAKs, including RMTP [10], SRM [6] and
LBRM [7]. A survey of these and other techniques can
be found in [8], [12] and [13]. Our work differs from
those systems in the explicit support and optimizations
targeted at multiple groups, hence we confront our de-
sign with that of JGroups [2] and Spread [1], which of- [7]
fer similar support. We also differ from other best-effort
approaches in the novel way in which we perform flow
control and loss recovery. (8

Our work was inspired in part by the idea of sharing
ACK trees among multiple senders, proposed in [9]. We
extend this idea by merging protocols not just among [9]
senders, but also among groups, a technique that required
developing new ways to view at group membership and
novel loss recovery and flow control techniques that supllo]
ported this framework.

The idea of using token rings in the context of mul- [11]
ticast communication has been proposed e.g. in [11].
While much earlier work used token rings for total order-
ing, we use them simply as the lowest-overhead mecha-
nism for aggregating state among multiple nodes. Ou 12]
sets of caching replicas resemble other log-based a‘ﬁs]
proaches [7], but our partitioned torus-like structure for
loss recovery differs significantly from prior work.

(6]
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