
QuickSilver Scalable Multicast1 
 

                                                 
1 Our work was supported by grants from AFRL, AFOSR, DARPA, Intel and NSF.   Contacts: {krzys,ken,amar}@cs.cornell.edu 

Krzysztof Ostrowski 
Cornell University 

Ken Birman 
Cornell University 

Amar Phanishayee 
Cornell University

 
Abstract 

 
Reliable multicast is useful for replication and in support of publish-subscribe notification. However, many of the 
most interesting applications give rise to huge numbers of multicast groups with heavily overlapping sets of receiv-
ers, large groups, or high rates of dynamism. Existing multicast systems scale poorly in one or more of these re-
spects.  This paper describes QuickSilver Scalable Multicast (QSM), a platform exhibiting significantly improved 
scalability. Key advances involve new ways of handling time and scheduling, adaptive response to observed traffic 
patterns, and better handling of disturbances.  

1. Introduction 

In this paper we report on QSM, a new multicast sub-
strate targeting large deployments of computers that 
communicate using publish-subscribe or event notifica-
tion architectures. The work described here focuses on 
configurations that might include thousands of nodes, 
each belonging to many multicast groups; in aggregate, 
there might be tens or hundreds of thousands of groups. 
Groups can be large, although our protocols work best 
if large groups either have a small set of senders or low 
data rates. A single node may be a sender and/or a re-
ceiver in multiple groups. Groups thus exhibit exten-
sive overlap. Figure 1 illustrates this, although overlap 
will rarely be so regular.  

 
Figure 1. Left: A large number of heavily overlapping 
groups. Right: their “regions of overlap”. 
 
Our goal is to offer the highest possible throughput 
while keeping latency reasonably low. QSM’s reliabil-
ity property is similar to that of SRM [3] or RMTP [4]: 
the system should deliver each pending message to all 
live members of the target group, despite disruptions 
such as packet loss, load surges, or node failures. 

QSM responds to the communication patterns seen in 
demanding real-world multicast systems. One of us 
developed the multicast technology used in the current 

New York and Swiss Stock Exchange systems, the 
French Air Traffic Control System, and the US Navy 
AEGIS warship [2]. These are older systems, but we 
are also in dialog with developers of very large data 
centers, such as Amazon, Google, Yahoo!, Lockheed 
Martin and Microsoft. Developers uniformly express 
frustration with the lack of a communications substrate 
having the mixture of properties targeted by our effort. 

A robust and scalable mechanism for efficient, reliable, 
group multicast opens powerful new design options for 
developers.  If groups can be used casually, separate 
groups could be created for individual events, or indi-
vidual data items being tracked by the system. In a 
stock exchange, a separate group could exist for each 
stock being traded. In a data center, a separate group 
could exist per a category of products or for each indi-
vidual service etc. We believe that the ability to declare 
and use multicast groups as cheaply as one declares and 
uses files or other objects will lead to entirely new 
ways of building distributed systems. Contributions 
include a new region-based multicast protocol, its 
evaluation, and a number of insights gained in “evolv-
ing” the system.  

Although we have been working on it for almost two 
years, QSM is still a work in progress.  The initial re-
lease runs on Windows .NET and comprises some 
75,000 lines of code (in C#), plus debugging and in-
strumentation support.  QSM requires IP multicast, 
although [1] discusses an extension to WAN settings 
supporting other dissemination frameworks. In future 
work, we hope to port QSM to other operating systems, 
strengthen fault-tolerance and security and to integrate 
QSM with strongly-typed interface features of popular 
service oriented architectures. This paper limits itself to 
features of the system that are complete and have been 
fully evaluated. 



2 

How do existing systems perform? To set context for 
our work, we evaluate JGroups [8], a popular group 
communication package available as part of the JBoss 
platform. JGroups is generally considered to be a solid 
platform and a good performer within the space. This 
said, our evaluation is not intended as a comprehensive 
side-by-side comparison with QSM, but rather as an 
illustration of challenges we faced. Much research has 
been done on scalable reliable multicast (e.g. [3], [4]), 
and JGroups may not be the most scalable of protocols.  
Even so, we believe that the observations and conclu-
sions that follow are common to a wide range of con-
temporary systems. 

In all experiments reported here we use a cluster of 110 
nodes, with Pentium III 1.3 GHz CPUs, 512 MB mem-
ory, on 100 Mbps LAN, running Windows 2003 Server 
Enterprise Edition. Our experiments on JGroups use a 
performance test and JVM settings recommended by 
the author, version 2.2.8 on Sun JDK 1.5.0.03. JGroups 
lacks a good rate control mechanism, hence we experi-
mented with several sending patterns (in burst, batches 
etc.), and report the best-performing scenarios.    

Our graphs show averages from hundreds of samples 
taken in a steady state lasting 5-20 minutes. Error bars 
are included, but very small, and therefore might not be 
visible. In many cases, short term rates or individual 
latencies exhibit high degrees of variance; indeed, this 
is a topic discussed in Sections 2 and 3 of the paper. 

Our experiments on QSM run on .NET Framework 2.0. 
For clarity, we limit ourselves to 1000-byte messages 
and disable “batching”: small packets are not band-
width efficient, but batching would obscure the core 
communications behavior. Nonetheless, we allow 
JGroups to batch control messages. We do not pre-
allocate objects, and left garbage collection running. 
Consequently, both JGroups and QSM spend much of 
their time in JVM or CLR, respectively, mostly on 
memory allocation and garbage collection. In light of 
the contemporary preference for managed runtime envi-
ronments, we believe these results to be realistic and 
that the comparison is a fair, apples-to-apples story.  

In Figure 2 a single sender multicasts in a single group 
of varying size at the maximum sustainable rate. 
JGroups does not scale well with group size. Through-
put with 110 nodes is 1/7th of throughput with 2, and 
less than 3.5% of the nominal 100Mbps fabric speed. 

In Figure 3 a single sender multicasts in several groups 
concurrently in a round-robin fashion, i.e. message k is 
published in group k mod g, where g is the total num-

ber of groups. In this scenario, we want to measure the 
impact that the number of groups alone has on system 
performance; consequently, we make all groups com-
pletely overlap on the same set of members (we explore 
other patterns of overlap in section 2). JGroups scales 
poorly in the number of groups. Even with 2 nodes, 
performance is roughly halved as we shift from 2 to 
256 groups. Although performance degrades more 
slowly with larger groups, the effect does not appear to 
be significant. 

th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

)
 

Figure 2. Scaling in group size (with a single group). 
 

th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

)

m
em

or
y 

us
ag

e 
(m

eg
ab

yt
es

)

 
Figure 3. Scaling in the number of groups.  For this 
experiments, each group has identical membership. 
 
Can we do better? What factors limit performance? 
These questions inspired our work on QSM. As shown 
on Figure 2 and Figure 3, the answer to the first ques-
tion will turn out to be positive. Within the range of 
group sizes tested, QSM scales almost perfectly with 
the number of nodes, achieving throughput of 8000 
packets/s with one sender or 9500 packets/s with two 
senders, supports thousands of groups with minimal 
performance penalty (only 4% with 6000 groups), 
mostly resulting from the increased memory consump-
tion2. We believe that with enough nodes, QSM per-
formance would eventually deteriorate, but our cluster 
simply isn’t large enough to expose its limits. 

                                                 
2 In the same test on a cluster of nodes with 2GB mem-
ory, throughput does not degrade with 8192 groups. 



3 

QSM is a complex system, and brevity prevents us 
from describing it in detail here.   Like JGroups, QSM 
is coded in a managed language (Java in their case, C# 
in ours).  The first versions of QSM performed very 
much like JGroups, too. Only by simultaneously ad-
dressing a number of seemingly independent issues was 
it possible to achieve dramatically better scalability and 
performance. In the remainder of this paper, we de-
scribe our story by focusing on three major aspects: 
how to design a protocol that scales in multiple dimen-
sions, how to get the system to work at the highest 
speeds and how to maintain good performance despite 
disturbances such as crashes, loss, garbage collection, 
or scheduling.  

2. Scalability  

2.1. Dissemination 

Scalability has long been an issue for multicast proto-
cols, but typically in just a single dimension at a time.  
For example, one can point to work on multicasting to 
“lightweight” groups by multicasting in some kind of a 
covering group and then filtering to discard undesired 
messages [9]. There has been work on protocols that 
scale with the number of nodes, avoiding ACK/NAK 
implosion through hierarchy (as in RMTP), support 
shared recovery mechanisms (as in SRM), share work-
load to improve scalability in the number of senders 
[6], or even weaken the reliability property (as in our 
own Bimodal Multicast).  But no existing system scales 
well in several dimensions at once. 

Let’s begin by considering systems that support large 
numbers of multicast groups. Solutions to this problem 
fall roughly into two categories: (1) lightweight groups, 
and (2) solutions that simply run separate protocols for 
each group independently.    

Lightweight groups were introduced in the Isis Toolkit, 
but Spread [5] was the first platform optimized for this 
model.  Spread clients relay multicasts to a small group 
of agents; these broadcast each message, filter them on 
reception, and then relay matching messages to the cli-
ents.  The approach introduces two extra message hops, 
to and from the agents.  Agents experience load at least 
linear in the system size and multicast rate, and can also 
suffer from contention if each must support a really 
huge number of clients.  Thus while Spread can support 
huge numbers of groups, it works well only if they 
overlap cleanly and if the number of processes using 
the system is reasonably small.  Many commercial pub-
lish-subscribe systems also fall into this category (“top-

ics” play the role of “groups”).  Typically, they work 
much like Spread.  We believe that the scalability limits 
just summarized are fundamental. 

If we rule out lightweight group approaches, the sce-
nario explored in Figure 1 poses real problems for the 
other existing technologies. If each group is operated 
independently, the sending node will multicast data 
separately in a large number of groups, often using a 
separate IP multicast group in each. Each group imple-
ments its own flow control and loss recovery protocol; 
hence a node that participates in many groups inde-
pendently exchanges large numbers of ACKs, NAKs, 
and other control messages with its neighbors. Not only 
does traffic rise linearly in the number of groups, but 
the communication pattern sabotages efforts to prevent 
ACK/NAK implosion. For example, in Figure 4 (left) 
we have drawn multiple superimposed acknowledge-
ment trees of the sort used in RMTP.  RMTP uses hier-
archy to avoid such problems, but unless all groups 
share a single tree, a node will have neighbors in multi-
ple trees, and the benefit might be lost.  Such effects 
can be reduced by clever engineering (for example, 
JGroups, batches control messages to amortize over-
head), but the problem is basic and suggests that cross-
group optimization and coordination is needed.  

 Protocol 1

Protocol 3

Node

Protocol 2

Region

inter-region
protocol

intra-region
protocol

 
Figure 4. Left: Separate protocols running in different 
groups overlapping on a set of subscribers. Right: two-
level protocol architecture used in QSM. 
 
Systems that run multiple side-by-side copies of a pro-
tocol stack also miss opportunities for batching mes-
sages sent to groups that overlap on a set of receivers. 
In systems where each group is unaware of the others,  
separate sockets, IP multicast addresses, and receive 
buffers will be used for each group, hence memory 
consumption grows linearly, and less buffering space is 
available per socket, resulting in more dropped packets. 
We’ve performed experiments that revealed high over-
heads when a node subscribes to a very large number of 
IP multicast groups.  Such a node will be disturbed 
even by traffic in IP multicast groups to which it isn’t 
subscribed because filtering in network adapters is ap-
proximate. If an interface is asked to join too many 



4 

groups, most incoming packets must be received, then 
filtered in the device driver.  

In developing QSM, we started with an awareness of 
these kinds of pitfalls and tried to develop an architec-
ture that can scale in multiple dimensions simultane-
ously, without the kinds of limitations just discussed.  

A first decision was to exploit IP multicast channels to 
promote buffering, reduce resource usage and the need 
for the OS to filter undesired packets, and allow sockets 
to be better provisioned.  But this raises an obvious 
question: Is there a way for groups to define and 
share IP multicast channels that completely avoids 
filtering?  

In QSM, we partition the system into regions.  Con-
sider G(n), the set of groups to which node n belongs.  
We will say that nodes n and m belong to the same re-
gion if G(n)=G(m). Each region is assigned a separate 
IP multicast address. Every group maps precisely to a 
set of regions3 (see Figure 1, right), hence no filtering is 
necessary: at the sender, packets for a given group are 
transmitted via separate IP multicasts to each of the 
regions spanned by the group.  

This regional mapping could give rise to a situation 
where each node belongs to a unique set of groups, and 
ends up isolated in a region to which no other node 
belongs. In practice, degenerate regions are rare (the 
intuition is that cloned applications exhibit high degrees 
of regularity). In settings where this issue is a concern, 
one work-around would be to redefine the notion of 
region by assigning nodes with “similar” group mem-
berships to the same region, and then having each node 
check for and discard unwanted messages.  This reverts 
towards lightweight groups. Instead, QSM employs a 
“hybrid” mechanism, described later.   

A regional mapping has system-wide implications.  
Batching, serialization, and rate control must done per-
region, rather than on a per-group basis. This intro-
duces complexity, but also opportunities for sharing 
workload, buffering and rate control. The actual work 
of determining the region boundaries is handled by the 
Global Membership Service (GMS). 

Shifting attention to the receiver side, notice that under 
our definitions, a given node will be a member of a 

                                                 
3 Specifically, each group view maps precisely to a set 
of region views (we use a 2-level membership scheme). 

single region4, and can use a single socket for all in-
coming multicasts (a second socket is also needed, for 
unicast messages). This allows us to assign a generous 
amount of buffering space (in experiments we use 4 
MB of kernel space, and post 100 simultaneous asyn-
chronous receives with a 64K buffer each). Doing so 
helps avoid dropped packets when QSM is disturbed by 
the garbage collector or other processes. Buffering 
turned out to be critical for performance, and general-
izes into a design principle: data loss avoidance should 
always come first, followed by local recovery; a sender 
retransmission should be viewed as the last resort.   
When combined with a scalable loss recovery mecha-
nism described later, this technique allowed us to scale 
almost independently of the number of groups in the 
experiment on Figure 3.  

What about irregularly overlapping groups? Does 
this technique have limitations? As mentioned earlier, 
mapping to regions can backfire: a message sent to a 
group spanning over k regions will be physically trans-
mitted k times, in the k different multicast groups as-
signed to the regions.  Thus if an application lacks 
regularity, k might become large and a single multicast 
would require many separate send operations. 

Consider the scenario presented in Figure 5. A single 
sender is multicasting in a group of 110 nodes artifi-
cially divided into a varying number of regions, to 
quantify the performance impact. Since the network is 
limited to 100 Mbps, QSM becomes network-bound.  
Moreover, notice that this can happen long before we 
reach the extreme scenario alluded to earlier, where one 
could imagine having each process belong to a single 
region of which it is the only member. 

 1000

 3000

 5000

 7000

 9000

 11000

 1  2  3  4  5  6  7  8  9  10

th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

)

number of regions

QSM throughput 
rate of IP multicasts

 
Figure 5. Throughput and IP multicast rate in QSM for 
the default setting (per-region multicast), in a 110-node 
group on a 100 Mbps network. 

                                                 
4 More precisely, of only one region view, except for 
brief periods when membership is changing. A node 
may then temporarily be a member of multiple old 
views and of the new region view. 



5 

To address this class of concerns, QSM offers a special 
hybrid mode of multicasting.  The application can des-
ignate that for certain groups, a message should be mul-
ticast to a per-group IP-multicast address, but accom-
panied by a list of per-region control headers for all 
regions spanned by the group. In effect the single per-
group multicast substitutes for a series of regional ones. 
Recovery/retransmissions are then handled on a per-
region basis. This multicast eliminates redundant sends 
and avoids the bottleneck visible in Figure 5.  On the 
other hand, it can only be used for a limited number of 
groups, since a node might otherwise need to join many 
IP-multicast addresses, triggering driver-level filtering, 
and would also lose the aggregation opportunities asso-
ciated with regions.  

At present, we believe that large applications will fit 
with the regional mapping approach.  In typical large 
deployments, a process will belong to a single region 
and at most a few additional multicast channels, hence 
most messages will be transported using IP multicast 
with a reasonably large fanout.  Of course we could be 
proved wrong.  But until we encounter important appli-
cations for which the present mixture of options is in-
adequate, it seems wiser to opt for simplicity. 

2.2. Reliability 

What other use can be made of regions?  Notice that 
the nodes belonging to a region exhibit what we shall 
refer to as interest sharing. By definition, all nodes in a 
region are receivers of exactly the same messages. This 
allowed us to use a single IP multicast address and per-
form batching, rate control and other dissemination-
related tasks per region. But note that interest sharing is 
also a good opportunity to perform local recovery. Fate 
sharing captures a related observation. Nodes in a re-
gion experience the same workload, suffer from the 
same bursts of traffic, miss the same packets dropped at 
the sender.  Thus it makes sense to plan for cases in 
which some members of a region have received a 
packet that others missed, and to implement local loss 
recovery mechanisms at this level.  

Similarly, suppose that all members of a region miss a 
packet. Rather than having all nodes individually seek a 
retransmission from the sender, it makes sense to report 
their aggregated loss in a manner similar to recovery in 
RMTP, and have the sender retransmit with per-region 
IP multicast. It also makes sense to coordinate rate con-
trol protocol on a regional basis. 

This leads to the structure we showed earlier, in Figure 
4 (right), where each region runs its own local recovery 
protocol. ACK/NAK information for regions, aggre-
gated by their local protocols, is then used by a higher-
level protocol that runs across regions and includes the 
sender. At that higher level, regions can be viewed as 
black boxes: information concerning individual region 
members is hidden from the protocol running across 
regions. 

Can regional recovery benefit scalability? Note that 
since all members of a region are members of the same 
groups, a single protocol can perform loss recovery 
inside a region, for all groups simultaneously. In fact, 
in QSM senders number all packets they send to re-
gions on a per-region rather on a per-group basis. In-
formation about the group to which a packet was ad-
dressed is required for delivery, but for the purpose of 
identifying the individual messages, region members 
can view all packets multicast by a given sender to their 
region as a single, contiguous sequence. Likewise, their 
aggregate ACK/NAK information can be calculated, 
and communicated to the sender, in terms of this se-
quence, rather than on a per-group basis. This way, a 
regional recovery protocol, by design, performs inde-
pendently of the number of groups. 

Another benefit is that since, as we noted, every packet 
sent to a region is destined for all its nodes, all can co-
operate in repair of every packet, irrespective of its 
source. It is therefore reasonable to run a single recov-
ery protocol covering all senders. Note that this could 
not be the case had region members received different 
sets of packets, for in such case some of the nodes 
would be asked to participate in repairs for packets that 
they were never meant to see, an inefficiency of the sort 
that led to our concerns about lightweight groups. Ac-
cordingly, the QSM loss recovery control packets carry 
a list of recovery records, one for each sender actively 
multicasting into the given region. If the number S of 
senders is small, the size of control packets grows with 
S, but the number of packets does not. 

Could we run other protocols inside a region? In 
fact, every level in the hierarchy could use a different 
recovery protocol, an idea explored in [1]. Recognizing 
that what looks good in theory may not work well in 
practice; we implemented this mechanism and experi-
mented with two different recovery protocols for re-
gional recovery: one based on a token ring, and one 
using a range of tree-like structures, including balanced 
and DHT-like trees with different fan-outs. In both 
cases, we performed local repair among neighbors, and 
aggregated the regional ACK/NAK information at a 



6 

single region leader. Our ring protocol was based on a 
circulating token. The tree protocol resembled RMTP. 
We represented ACK/NAK information exchanged by 
our nodes in a compressed manner, as a list of intervals. 
We experimented with push, pull, and hybrid schemes.   

To our surprise, the main problems we encountered had 
little to do with a specific protocol; they turned out to 
be manifestations of the entropy inherent in the system.  
The subsections that follow amplify on this. 

Relative asynchrony. We use the term relative asyn-
chrony5 to refer to the fact that nodes run at different 
speeds, might receive the same packets at different 
times or, if using asynchronous I/O, in different orders. 
This forces receivers to be conservative when classify-
ing packets as missing and forwarding (push) or re-
questing (pull) them; if not, unnecessary forwarding 
destabilizes the system. Relative asynchrony can be an 
important phenomenon: QSM is preempted or disrupted 
by garbage collection and other events, and these 
events may persist for hundreds of milliseconds. Nodes 
must wait at least this long before deciding that a 
packet seen at one node but not another was lost.  

Bounding state representations. Receiving packets at 
different speeds and in different order means not just 
that representing the ACK/NAK information for a sin-
gle node will be difficult (our encoding as a list of in-
tervals is expensive if packets do not arrive as an unin-
terrupted sequence), but also implies that aggregations 
of information over an entire region require more 
space. As we struggled with this issue in QSM, our 
control packets grew; with massive losses, packets tens 
of kilobytes in size arose. The insight is that any com-
plete local state representation will be expensive during 
periods of instability.   Scalable protocols must limit the 
amount of state exchanged per message. Consequently, 
QSM limits the information that may be stored in a 
single control packet by bounding the number of 
ACK/NAK intervals that a single message may carry. 
Beyond the limit, recovery is postponed. In situations 
where only a partial state can be efficiently exchanged, 
we may have to cope with delays in exchanging state 
related to loss recovery. 

Inherent need for locality. Detailed information about 
a given node, such as ACK/NAKs, cannot be dragged 
around the entire region, for control traffic would grow 
linearly with region size. We found this to be especially 

                                                 
5 Section 3 will revisit relative asynchrony from a dif-
ferent perspective. 

disruptive to token ring protocols. Also, carrying state 
information more than a few hops makes it less valu-
able, for it becomes stale, e.g. upon receiving a stale 
NAK, it may not make sense to perform a push, since 
the node that issued this NAK could have already re-
trieved the missing packet from elsewhere.   

To summarize, a consequence of relative asynchrony is 
that in larger regions, state is more complex, and more 
costly to exchange, especially over more than a few 
hops. Furthermore, in larger regions packet losses occur 
proportionally more frequently and hence it takes more 
time to acknowledge packets. As a result, buffering 
overhead grows at receivers in larger regions.  

Dealing with the overhead of increasing buffering. 
To address this issue, QSM splits a region of size m 
into k partitions, k ≈ m / r, where r (typically 5) is a 
replication coefficient. Nodes in each partition cache, 
for the purpose of loss recovery, 1/k of the incoming 
messages. This reduces buffering overhead linearly 
with the region size. The smaller the value of r, the 
higher the risk that a packet is missed by all caching 
nodes, and that the recovery involves the sender. Larger 
values of r require more buffering overhead. 

Since exchanging state over multiple hops is expensive, 
nodes in the same partition should be clustered close to 
one another, and since they cache the same packets, it 
makes sense for them to cooperate on recovery. The 
same thinking suggests that state exchanged by nodes 
in different partitions should be aggregated. Since parti-
tions are small, the natural choice for a protocol to run 
among nodes in the same partition is token ring. We 
favor simplicity; hence we also use a token ring proto-
col across partitions. The resulting design is shown in 
Figure 6 and Figure 7. In essence, QSM’s hierarchy of 
groups and regions has gained a level.  

In QSM, a region leader generates the token at a fixed 
rate. The token goes around the region in loops, return-
ing to partition leader before moving to the next parti-
tion. While circulating around a partition, the token 
contains ACK/NAK information only for the messages 
cached in this partition. Partition members use this in-
formation for local repair via both push and pull. If 
node failures or recoveries occur, the entire region and 
partition membership is updated (a separate service 
provides consistent membership updates: QSM Global 
Membership Service (GMS)). 

The token can also accumulate aggregated ACK/NAK 
information for this partition (for the sub-sequence of 
packets cached in it). When the token returns to the 



7 

partition leader, this aggregate ACK/NAK information 
is used to issue NAKs, sent by the partition leaders 
directly to the sender. While circulating, the token also 
accumulates information such as the maximum se-
quence number seen in the region, maximum contigu-
ous packet number cached by all nodes in each partition 
etc. 

 
Figure 6. QSM’s partitioned token ring protocol. 
 

 
Figure 7. Loss recovery in QSM. If possible, lost data 
is recovered locally (within a partition); otherwise, a 
NAK solicits retransmission by the sender. 
 
After the token returns to the region leader, it creates an 
ACK and sends it directly to the sender. The sender 
reacts to ACKs by cleaning up messages and to NAKs 
by retransmitting. The token is also used for garbage 
collection. Finally, if a node is missing packets cached 
in partitions different than its own, it sends pull re-
quests to nodes in those partitions. Nodes respond to 
pulls with forwarding when the requested packets be-
come available.  

In the interest of brevity, the above summary omits 
many details of the actual protocol. The mile-high 
summary, however, is that the token ring protocol 
forms the core of the QSM recovery and cleanup proto-
col. As tokens circulate, a variety of status structures 
associated with each partition and each region are first 
created, and then subsequently updated.   

Figure 8 is a timeline illustrating some of these events 
at a typical receiver node in the middle of a multicast 
experiment. We see data arrival times (multicast), dis-
covery of losses (nak), recovery of lost packets (for-
warded), a point up to which messages may be consid-
ered as missing (cutoff), an estimate of the oldest live 
packet in the system, and a garbage collection frontier. 

pa
ck

et
 n

um
be

r

 
Figure 8: QSM timeline at a receiver. 
 
The temporal dynamics of the scheme are further ex-
plored in Figure 9 and Figure 10. Figure 9 illustrates 
the latencies measured when the system is sending mul-
ticasts at varying data rates, and the delay until cleanup 
occurs. At higher data rates QSM works more smoothly 
and avoids scheduling delays and blocking system calls 
due to pipelining effects, thus latencies are lower. With 
larger packets, however, the CPU load becomes a bot-
tleneck and latencies rise again. The reader will recog-
nize this effect in the latency distributions on Figure 10. 

 0

 10

 20

 30

 40

 50

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K
 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6

se
nd

-re
ce

iv
e 

la
te

nc
y 

(m
s)

se
nd

-c
le

an
up

 la
te

nc
y 

(s
)

rate (packets/s)
send-receive (1000 B)
send-cleanup (1000 B)

send-receive (16 B)

  
Figure 9. Send-receive and send-cleanup latencies as a 
function of the sending rate (1 sender, 110 nodes). 
 

P
(s

m
al

le
r t

ha
n 

th
is

)

 
Figure 10. Cumulative distribution of send-to-receive 
latency for different sending rates. 
 
3. Performance 

We now shift attention to the question of peak perform-
ance. Returning to Figure 2 and Figure 3, recall that 



8 

JGroups actually didn’t perform well even at small 
scales. Neither, in fact, did earlier versions of QSM.  

What factors limit multicast performance, and how 
can they be eliminated? With large numbers of 
groups, it turns out that both JGroups and the earliest 
versions of QSM were CPU-bound, caused in large part 
by frequent context switching. In QSM, the early ver-
sions of the system were multi-threaded, and the re-
gional mapping protocol required a fairly complex syn-
chronization when the associated data structures were 
accessed.  Fine grained locking resulted in additional 
overheads, yet reducing lock granularity only triggered 
high levels of lock contention. Furthermore, our system 
suffered from stalls and various subtle deadlock condi-
tions, resulting from a combination of locking and flow 
control. Our observations about relative asynchrony 
make it clear that a high level of concurrency is neces-
sary for high performance, yet pre-emptive scheduling 
is disruptive, particularly because with the exception of 
garbage collection, most tasks performed by QSM are 
short, predictable and terminating.  

Is multithreading really the best way to achieve a 
high level of concurrency? Is preemptive scheduling 
needed for an event-driven system such as our reli-
able multicast protocol stack? QSM’s performance 
was so poor in our original multi-threaded implementa-
tion that we decided to re-implement it using the single-
threaded model shown in Figure 11. We bind all send 
and receive sockets to a single I/O completion port, a 
queue-like structure that the Windows kernel employs 
to report the success or error for asynchronous I/O op-
erations, such as transmission, or a received packet.  An 
I/O completion port can be polled in either a blocking 
or a timed non-blocking manner. An alarm queue, im-
plemented in C# as a splay tree, holds timer events.  

A single core thread switches between processing 
events in the alarm and I/O queues, in a round-robin 
fashion, in batches, up to the time limit (quantum) as-
signed to the given queue (in the experiments, we use 
50ms quantum for I/O, and 5ms for timer events). Ap-
plication threads issue their requests to the core thread 
either by placing completion events on the I/O queue, 
or via a non-blocking queue of downcalls. In particular, 
applications can register with the core thread their in-
tent to send data using a construct we term a feed (a 
form of pull interface). A feed can produce packets to 
send on demand up to the specified limits. Our core 
thread polls the registered feeds when it is ready to 
send a new portion of data. When a feed reports that it 
has no more packets to send, it is deactivated, and it 
must be explicitly reactivated by the application. This 

reduces polling overhead. The decision of when the 
core thread can transmit data is driven by resource lim-
its and simple concurrency and rate control schemes, 
built into that layer for efficiency. 

The decision to use the pull model with feeds was a 
matter of efficiency, permitting us to send multiple 
packets at once and minimize buffering between QSM 
and the kernel.  A further advantage, discussed below, 
is that pulled data is always fresh.  

 
Figure 11. The architecture of QSM. A single thread 
processing all events using our own scheduling policy. 
 

C
P

U
 u

til
iz

at
io

n 
(%

)

 
Figure 12. Processor utilization in QSM. The highest 
rates (beyond 8000 packets/s) use 2 senders.  
 

th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

)

ne
t/c

pu
 u

til
iz

at
io

n 
(%

)

 
Figure 13. Throughput and CPU loads as a function of 
message size. 
 
Moving to a single-threaded model made a big differ-
ence. As shown on Figure 12, our current system can 
send and receive thousands of kilobyte-sized packets/s 
while utilizing a fraction of a 1.3 GHz CPU.  In con-



9 

trast, the multi-threaded version exhausted the CPU at 
1/3rd of this data rate.  

Figure 13 and Figure 14 explore the impact of message 
size on various metrics.  As messages grow, throughput 
can be maintained until the interconnect reaches its full 
capacity. Processor utilization at the sender grows up to 
some point as messages become larger, partly due to 
memory allocation and zeroing overheads, and partly 
reflecting the costs of a managed framework. These 
costs are also visible if we focus on the latency from 
when a message is sent to when an average receiver 
hands it off to the application in a test running at the 
peak sustainable throughput rates. Of course, the figure 
illustrates the worst case: latencies are much lower for a 
single multicast sent when the system is idle.  

la
te

nc
y 

(m
s)

 
Figure 14. Average send-to-receive latency in a 110-
node group as a function of message size. 
 
Where does the single-threaded system spend CPU 
time? Profiling reveals that in a typical scenario, on the 
platform we tested, QSM spends about 30% of CPU 
time in our code, 60% in CLR and in Win32 DLLs (the 
remaining 10% is unclear). Functionally, the sender 
spends 80% of its time sending (including allocating 
messages in the application, going down the protocols 
stack, concurrency and rate control, and finally, socket 
operations), and 10% processing incoming messages: 
tokens, ACKs, NAKs, performing cleanup etc. A more 
detailed analysis of major overhead components reveals 
that 20% of the CPU time is spent on allocating mes-
sages in the application, about 10-15% initiating the  
transmissions, roughly the same for software loopback 
and updating sender structures, only 8-9% on serializa-
tion (we use scatter-gather), and the same on processing 
ACK/NAKs by the sender. Scheduling code, including 
interacting with the I/O completion port, and using our 
alarm queue etc., amount to less than 10%. Most of the 
overhead appears to come from data structures, such as 
the .NET dictionaries, which we use quite extensively. 
It is likely that an intensive optimization effort could 
reduce many of these costs. 

Is a round-robin, FCFS policy the ideal way to proc-
ess events within QSM? How does processing order 
affect performance?   The single-threaded architecture 

forces the system  to decide which events to process 
first and how much time to assign for each category of 
event. Our intuition was to prioritize I/O, under the 
assumption that each dropped packet represents a sig-
nificant cost, and most of the tens to hundreds of thou-
sands of timer events that typically reside on the alarm 
queue are either not time-critical, or will eventually be 
cancelled. With this in mind, we experimentally gave 
I/O unconditional priority over timer events, but per-
formance plummeted: our data structure cleanup code -
was suffering from starvation. The solution we settled 
upon was discovered almost accidentally, during de-
bugging.  

Recall that QSM’s recovery and cleanup protocols are 
based on per-region tokens.  We discovered that QSM 
relies far more heavily on the regularity of token circu-
lation than intuition suggested. In particular, in large 
systems, particularly with multiple senders, the time to 
circulate a token around the region would occasionally 
grow high. This triggered a costly form of priority in-
version. Nodes transmitting or receiving lots of data 
would have large numbers of I/O operations queued, 
with incoming or outgoing tokens or other control 
packets being just a few in a long sequence. Processing 
those operations sequentially in each node led to an 
increased latency for control packets, to which tokens 
are particularly sensitive, as the latencies on nodes in 
this case would add up. Increased latency for control 
packets, in turn, would occasionally trigger retransmis-
sions and other actions that would further increase the 
load, thus closing the positive feedback loop, until the 
moment when sliding windows on senders are full, and 
the entire system quiesces for a period of time required 
to repair and issue ACKs.  At high data rates, our sys-
tem was prone to unstable, explosive behavior.  

The upshot of this rather complex picture is that we 
observed runs with long bursts at a rate of 8000/s fol-
lowed by equally long periods where no new packets 
were sent by any of the senders and the entire system 
focused on recovering from losses (we’ll see similar 
behavior, although triggered by a different phenome-
non, in Figure 22). This led us to the realization that in 
a reliable multicast system, there are two distinct layers, 
the control layer and data layer, which must be treated 
differently. Specifically, it is essential to provide the 
control layer with a high quality of service. 

Why not just prioritize the processing of control 
packets? We tried a very simple technique, where all 
incoming I/O is pre-processed just to recognize the type 
of operation and assigned to one of several priority 
queues.  The actual processing of events in the queues 



10 

is deferred to the time where no new I/O completion 
events are available. Processing then continues in the 
order of decreasing priority. This idea was inspired by 
the manner of handling interrupts in operating systems. 
We assigned priorities using a few simple rules: first 
we process all the unicast traffic, which represents the 
control layer, followed by the multicast, and we process 
received data before initiating any new transmissions to 
minimize packet loss.   

Starvation and priority inversion can occur on the 
“sender” side too.  We gained a further insight when 
experiments revealed that QSM would occasionally 
enter a loop of endless and mostly unnecessary for-
warding, where the forwarding itself would destabilize 
the platform even further. The problem turned out to be 
triggered when a long sequence of forwarded data 
packets for local repair was placed in an outgoing 
buffer ahead of a token or other control packet, often 
unnecessarily, in a situation where (due to some delay, 
or packets arriving out of sequence) a node would de-
cide that it was “missing” packets that were in fact al-
ready in transit. The resulting duplicate messages de-
layed the token, yet swift exchange of the token is the 
key to bringing QSM’s nodes back into synchroniza-
tion. Furthermore, control packets delayed this way 
would occasionally contain stale, old information, re-
sulting in wasteful overheads and occasionally leading 
to inconsistencies if packets are processed out of order.  

Besides reinforcing the view that control traffic needs 
priority handling and QoS, this made us realize the im-
portance of freshness and what we might call a relative 
synchrony. It is critical for nodes to maintain an up to 
date view of the state of their peers (relative syn-
chrony), in order to avoid costly mistakes such as un-
necessary forwarding. Notice that the goal of relative 
synchrony is in tension with the reality of relative asyn-
chrony.  Striking the right balance is key to achieving 
high throughput rates. 

Ensuring that information about peer states is fresh. 
In the situation just summarized, the problem arises 
from buffering delays. Accordingly, we eliminated 
most buffering from our protocol stack, extending the 
pull interface exposed by our socket layer to the rest of 
the system. In the resulting structure, at every send 
socket, rooted is a tree of data feeds. Each feed repre-
sents an element of a protocol stack; child nodes in the 
tree register their intent to send with parent nodes and 
parent nodes poll child nodes to pull data. At the root, 
polling is driven by socket concurrency and rate control 
policies. At intermediate nodes, multiplexing among 
many attached feeds is done in a round-robin fashion. 

When an element of our protocol stack responsible for 
peer-to-peer forwarding decides to forward data to a 
node, it simply registers its intent to send with the 
lower layers. Only when its turn to send comes, would 
a forwarding packet actually be created, registered and 
serialized; the same applies to most messages. In the 
resulting scheme, all packets we send are fresh, because 
they are created just in time for transmission. We still 
use buffering, but to a limited extent, to reduce the call 
stack overheads. 

A simple scheme, analogous to our scheduling quanta, 
ensures fairness and prevents starvation. The registered 
feeds, polled in a round-robin fashion, are each given 
an opportunity to send up to the limits permitted by the 
concurrency/rate controllers, and subsequently moved 
to the end of the queue.  

Can we generalize from this experience? We’ve dis-
cussed a series of issues more or less in the order we 
encountered them.  However, our experience fits into a 
general pattern.  Whether the cause was priority inver-
sion, scheduling, or buffering, poor performance in 
QSM was typically manifest by convoys: long se-
quences of packets or requests waiting in a buffer or 
queue for delayed, sequential processing. We can sum-
marize the code changes discussed earlier by recogniz-
ing that on the send side, we eliminated convoys by 
creating requests lazily just-in-time, and on the receiver 
by moving I/O completion events them to a non-
sequential data structure, and deferred processing.  

Seen this way, the process of maximizing throughput in 
QSM evokes a phenomenon familiar to any reader: that 
of driving in heavy traffic on a crowded highway. 
Highway speeds are highest when vehicles are least 
dense.  But as the numbers of vehicles rises, drivers 
have more difficulty maintaining safe distances from 
one-another and this eventually triggers oscillations in 
the sustainable speeds. Small obstructions, like a pot-
hole in the pavement, can be enough to slow a car 
down, and this will ripple through the traffic stream and 
may trigger a jam.  QSM faces a similarly delicate bal-
ance when moving high volumes of data at high speeds. 

QSM, at its highest throughput rates, functions like a 
highway down which packets race with some small 
separation.  When this stream is delayed by garbage 
collection, scheduling, data loss,  etc., bursts of packets 
tend to pile up, and once such a problem occurs, the 
original smooth separations may be hard to restore. Our 
changes were of several kinds.  Some fill in the pot-
holes by eliminating obvious sources of slow-down.  A 
second group lets QSM’s emergency vehicles (tokens 



11 

and control packets) get through faster and more 
smoothly, correcting problems so that congestion eases 
and the backlogged packets can clear.  With luck, this 
prevents an insurmountable slowdown from arising. 

With these changes, QSM is ultimately CPU limited, by 
the sender (which does more work than the receivers).  
We can see this in Figure 15, which shows that as the 
message rate reaches the maximum, QSM alarms begin 
to trigger late in the sender, and the token round-trip 
times climb sharply.  Recall from Figure 12 that this is 
precisely when CPU loads on the sender approach 
100% at very high data rates.  QSM uses several 
mechanisms to tolerate late alarms. For example, the 
rate controller overshoots target rates to “catch up”. 

al
ar

m
 fi

rin
g 

de
la

y 
(m

s)

to
ke

n 
ro

un
dt

rip
 ti

m
e 

(s
)

 
Figure 15:  Late alarms and slow tokens in a sender. 
 
4. Stability 

So far we’ve focused on optimal conditions, where 
senders are undisturbed by messages from other send-
ers, maximum achievable sending rates were found by 
trial and error, no crashes occur etc. But real systems 
aren’t always so lucky. What if QSM is misconfig-
ured or disturbed? Will performance degrade 
smoothly? Or will the system collapse?  

The most common disturbance is data loss. In real sys-
tems, losses occur in batches. How does QSM respond 
to a batch of losses? To find out, we let a single node 
send at the maximum speed to a single group of varying 
sizes. After the first half of the experiment, we start to 
periodically disturb a single receiver. The choice of 
receiver matters, but brevity limits us to discussion of a 
single experiment, in which receiver is in a partition 
“close” to the sender. Every 10s, the disturbed receiver 
drops all incoming packets (data and control) for a pe-
riod of 1s, and then resumes normal operation. We 
measure throughput, send-to-receive and loss-to-repair 
latencies (Figure 16).  It should be noted that this pat-
tern of bursty loss is easily provoked on our experimen-
tal platform and that episodes of bursty loss are also 
common in routed LANs, because routers drop packets 
to signal congestion to the TCP windowing algorithm.  

The disturbance decreases throughput by 10-15%, close 
to the amount of time “wasted” by dropping packets, 
peaking in the largest group where throughput de-
creased by 25%. There is an increasing trend: in QSM, 
larger groups are clearly more sensitive to disturbance. 
Send-to-receive latency, normally ~25ms (not shown), 
is now between 660ms in small and 1.7s in the largest 
groups, and the increasing trend is evident. Notice that 
although one might have assumed that having smaller 
numbers of nodes would usually be fastest, the loss-to-
repair (recovery) latency for the smallest groups (of 
fewer than 30 nodes) is larger than for mid-sized 
groups, reflecting the advantages of parallel recovery. 
As shown on Figure 17, shorter sequences of loss have 
a proportionally smaller impact on QSM.  

la
te

nc
y 

(s
)

th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

)

 
Figure 16. A single sender multicasts at the maximum 
rate. Every 10s, a selected node simulates a burst of 
losses by dropping all incoming packets for 1s.  
 

la
te

nc
y 

(s
)

th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

)

 
Figure 17. Like above, but the duration of the sequence 
of losses varies. Group size 110, maximum send rate.  
 
These findings suggest to us that while QSM is much 
more scalable than JGroups (and, we believe, than any-
thing else reported in the literature), the costs associ-
ated with loss recovery grow moderately with the group 
size, and hence QSM would also encounter scalability 
limits in large real deployments where disturbances and 
“flakey” hardware are not uncommon.  

Although node failures are relatively rare, it is natural 
to ask: How does QSM react to a node crash? To 



12 

find out we modified one receiver to terminate abruptly 
in the middle of the experiment. On Figure 18, we illus-
trate the QSM behavior by drawing the total number of 
packets: sent, received at a selected correct node, and 
completed (acknowledged by all nodes and cleaned up 
at the sender). 

The failure breaks the token ring, and consequently, the 
sender cannot receive aggregate ACKs and cleanup the 
successfully delivered requests, hence the cleanup line 
stops progressing immediately following the crash, 
while new multicasts continue uninterrupted until the 
send-side limit on the number of pending multicasts is 
reached. In this scenario, we setup our failure detector 
to consider nodes as faulty after 10 seconds of unre-
sponsiveness. With a more aggressive failure detector 
setting, QSM can reconfigure itself faster.  

After the node is recognized as faulty, a membership 
change occurs. The sender briefly pauses to allow re-
ceivers to recreate their structures, and resumes. The 
old token ring structure will now be bypassed, and a 
new structure established. While the new token starts 
circulating, the old token resumes for a few rounds un-
til all nodes are in sync, then quiesces. Within a few 
seconds after detecting the failure, the sender is back at 
full speed, and all old multicasts have been acknowl-
edged. Send-receive latency stays undisturbed in this 
scenario. Obviously, the degree of disruption depends 
on how promptly the failure detector can recognize the 
failure and how much the sender slows down. With 
sufficient buffering space, or if the failure is detected 
rapidly, multicast can proceed almost undisturbed. 

 900000

 1e+006

 1.1e+006

 1.2e+006

 325  335  345  355  365

nu
m

be
r o

f p
ac

ke
ts

time (s)

sent
received
cleanup

node 
crashes

sender
pauses

sender
resumes

failure detected after 10 seconds

 
Figure 18. Node crash in a 110-node group, recognized 
by the failure detector after 10s. Multicasting at 8000/s.  
 
This behavior turns out to be independent of group size, 
which may seem surprising. Shouldn’t crashes be in-
herently more disruptive to larger groups? Indeed 
they are, although for a less obvious reason. In QSM, 

distributing a membership change takes a few seconds. 
While the mechanism we used is simple and slow and 
might be improved, in a busy system it will never be 
instantaneous. Nodes process the membership updates 
and adjust their structures at different times. It often 
happens that the sender processes the change early and 
starts multicasting in the new view before receivers 
have a chance to learn about the change, and create the 
appropriate structures, hence they would drop the in-
coming packets as unrecognized. To remedy this, we let 
the sender wait for 3s before any transmission to a 
newly created IP multicast address (the reader can see 
this in Figure 18), and have the receivers buffer a lim-
ited number of unrecognized packets and retry process-
ing them after a short timeout. This was sufficient for 
the scenarios we tested, but in a larger group, either the 
timeouts or the limit on buffering would certainly need 
to be higher. And conversely, in small groups neither 
the buffering, nor suspending multicast is necessary. 

What about nodes joining groups? A single node join 
in the middle of the experiment, in the same scenario as 
on Figure 18, is even cheaper, for there is no disruption 
to the circulation of the token. Our GMS processes the 
membership changes in batches, typically every 10-20s, 
hence churn is not a big issue. We omit a detailed dis-
cussion of joins and churn for brevity. 

While a crash is an important scenario, in reality nodes 
are much more likely to be slow, or simply overloaded, 
e.g. as a result of contention with other applications, 
paging, system upgrades, or even flakey hardware. If an 
unresponsive node is assumed by the failure detector to 
be faulty, QSM behaves as in the case of crash. What if 
a node is slow and unresponsive, but isn’t recog-
nized as “faulty” by the failure detector? To find out, 
we disable the failure detector, and we make a single 
receiving node freeze for 10 seconds in the middle of 
the experiment, then resume (Figure 19). Immediately 
after resuming, the process retrieves a few requests 
from the network buffers, but most data is lost and is 
forwarded by other receivers. Many requests are unac-
knowledged, thus causing the sender to fill its upper 
threshold of 100,000 pending multicasts and pause. 
This allows the disturbed receiver to catch up, the num-
ber of pending requests falls below the low watermark, 
and the sender resumes multicasting. The entire period 
of disturbance is more than twice as long as for crashes.  

Notice that in contrast with an outright crash, a freeze 
ultimately triggers an extended data recovery episode. 
Is a freeze more disturbing to larger groups?  



13 

To quantify the degree of disturbance, we use a metric 
that we shall call cumulative delay, and that represents 
the additional time it takes to multicast a fixed number 
of messages in a disturbed run, as compared to an un-
disturbed run (see Figure 20). Surprisingly, in very 
small groups the disturbance is up to three times more 
pronounced, perhaps because of the opportunity for 
parallelism in the recovery code. This figure recalls 
Figure 16, where the recovery latency for a small dis-
turbed group was larger than for one of moderate size.  

nu
m

be
r o

f p
ac

ke
ts

 
Figure 19. One receiver in a 100-node group becomes 
unresponsive for 10 seconds without triggering a mem-
bership change. Multicasting at 7500/s. 
 

 0
 10
 20
 30
 40
 50
 60

 20  30  40  50  60  70  80  90  100 110

cu
m

ul
at

iv
e 

de
la

y 
(s

)

number of nodes

crash

10-second freeze

 
Figure 20. Cumulative delay, extra time needed to send 
after various disturbances as a function of group size. 
 
Figure 21 examines traffic at the disturbed node. As the 
episode lengthens, protocol overhead (everything ex-
cept original delivery of data by IP multicast) sent and 
received by the node grows steadily.  The curve is simi-
lar whether we measure packets or bytes. Within the 
overhead, the fraction attributable to data recovered 
from unperturbed peers also grows steadily. (We also 
instrumented unperturbed nodes but didn’t include this 
data on the graph: even during disturbances, if the re-
gion size is moderately large, 99% or more packets are 
received by IP multicast and overheads of all forms are 
below 1 %.) 

Recall that thanks to partitioning, the larger the regions 
in QSM, the smaller fraction of packets cached at every 
single node. Conversely, if we consider a sequence of 

lost packets, in larger regions packets in this sequence 
will be cached by a larger number of partitions. Conse-
quently, with larger regions QSM runs a more parallel 
recovery.   A worst-case recovery scenario would thus 
involve a very small region in which one node has lost 
many messages and there are very few other local 
nodes from which they can be recovered. 

pe
rc

en
ta

ge
 (%

)

 
Figure 21. Breakdown of network traffic at a recover-
ing node after a 10s “freeze”. The fraction of overhead 
in the traffic present on the link, and the contribution of 
forwarding to the overheads are shown. The remaining 
overhead comes mostly from tokens and ACK/NAKs. 
 

What happens if we overload QSM?  As was dis-
cussed earlier, QSM fetches data by doing up-calls to 
the application, and hence there are many configura-
tions in which the system simply cannot exceed certain 
data rates.  However, with two senders that run at the 
maximum rate, QSM can exhibit load surges exceeding 
the capacity of our network interfaces.  

 0

 2000

 4000

 6000

 8000

 10000

 12000

 250  350  450  550  650  750  850

th
ro

ug
hp

ut
 (p

ac
ke

ts
/s

)

time (s)  
Figure 22. Oscillating combined throughput with two 
senders exceeding the maximum sustainable combined 
rate of 9300 packets/s by a small margin (110 nodes).  
 
This is illustrated in Figure 22, where we see a fluctua-
tion in receive rates as the system sends a burst, over-
whelms receiver interfaces and experiences a brief epi-
sode of very high data loss.  The problem seems to be 
that our network interfaces are unable to handle ex-
tended sequences of back-to-back IP multicast packets, 
which this pattern of bursty sending can trigger (a form 



14 

of what are called “multicast storms” in the literature).  
Thus a high but random loss rate occurs, system-wide.  
Eventually, the sender runs out of buffering space and 
pauses.  Meanwhile, nodes detect loss and recover the 
data locally.  When the sender finally manages to clean 
its buffers, it resumes and the pattern repeats. 

If we pull back the covers, most recovery is occurring 
through point-to-point local recovery, because most 
packets were received by at least one node in each par-
tition of each region.  Had the entire partition missed 
the data, an IP multicast from the sender would have 
recovered it in a single action, and the impact on 
throughput would have been far less pronounced.  

5. Conclusion 

We believe that QSM is the first multicast platform 
designed specifically to maximize steady-state through-
put while scaling in both numbers of overlapping mul-
ticast groups and numbers of members.  The system is 
intended for use in very large data centers, and we have 
little doubt that surprises await as real applications be-
gin to use the software.  However, early results are very 
encouraging. 

As mentioned early in the paper, work on QSM is on-
going. Although the current version of the system is 
available for download, we are now extending the plat-
form with a tool to assist applications in responding, 
RPC style, to incoming multicasts (a single reply is 
easy, but all-to-one reply patterns require some form of 
aggregation), a virtual synchrony fault-tolerance layer 
(optionally selectable on a per-group basis), integration 
with the .NET type system, and support for a publish-
subscribe API as well as other end-user presentation 
options.  We also hope to support a group-key security 
architecture.  Results will be reported elsewhere. 

Even at this “early” stage, the development of QSM has 
not been a simple linear process.  As described in this 
paper, we repeatedly confronted situations that sur-
prised us, confounded intuition, or forced us to balance 
between competing tensions.  Much of the code has 
been re-implemented at least once. Early versions 
didn’t perform very differently than prior platforms, 
and as we worked around the bottlenecks, suffered 
from fragility and were prone to convoy phenomena 
that triggered oscillatory behaviors and throughput col-
lapse.  Indeed, as was seen in Figure 22, the current 
system can still be pushed into degraded behavior, al-
though we believe that this figure represents a worst-
case scenario that is especially hard to provoke.  

QSM scales quite well, although we have also seen that 
it has its own limits.  But while improved scalability is 
important, the more interesting contributions of our 
effort may actually be the systematic study of scalabil-
ity, and the lessons learned by repeatedly hitting limits, 
tracing them to their sources, and then finding ways to 
work around them.  We hope that this methodology 
may prove useful even to developers facing scalability 
challenges in domains remote from reliable multicast. 

The initial version of QSM is available to the public 
from our web site [7].   

6. Acknowledgements 

Our work reflects a great many suggestions, comments 
and ideas from colleagues here at Cornell.  We are par-
ticularly grateful to Mahesh Balakrishnan, Danny 
Dolev, Maya Haridasan, Tudor Marian, Robbert van 
Renesse, and Einar Vollset. 

7. References 

[1] K. Ostrowski and K. Birman. Extensible Web Services 
Architecture for Notification in Large-Scale Systems. To 
appear in IEEE ICWS 2006. 
http://www.cs.cornell.edu/projects/quicksilver/pubs.html 

[2] K. Birman. A review of experiences with reliable multi-
cast. Software Practice and Experience, 1999. 

[3] S. Floyd, V. Jacobson, C. Liu, S. McCanne, and L. 
Zhang. A reliable multicast framework for light-weight 
sessions and application level framing. IEEE/ACM 
Transactions on Networking, 1997. 

[4] J. C. Lin and S. Paul. RMTP: A Reliable Multicast 
Transport Protocol. INFOCOM, 1996. 

[5] Y. Amir, C. Danilov, M. Miskin-Amir, J. Schultz, and J. 
Stanton. The Spread Toolkit: Architecture and Perform-
ance. 2004. 

[6] B. Levine, D. Lavo, and J. Garcia-Luna-Aceves. The 
Case for Reliable Concurrent Multicasting Using Shared 
Ack Trees. ACM Multimedia, 1996. 

[7] www.cs.cornell.edu/projects/quicksilver/ 

[8] B. Ban. Design and Implementation of a Reliable Group 
Communication Toolkit for Java. (1998). 

[9] B. Glade, K. Birman, R. Cooper, and R. van Renesse. 
Light-Weight Process Groups in the ISIS System (1993). 


