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Abstract the discovery of the medical records of the Governor of
Massachusetts from an easily accessible and supposedly
Recent work has shown the necessity of considering ananonymized dataset. All that was needed was to link it to
attacker’'s background knowledge when reasoning aboutvoter registration records [30]. To defend against such at-
privacy in data publishing. However, in practice, the data tacks, Samarati and Sweeney [27] introduced a privacy cri-
publisher does not know what background knowledge theterion calledk-anonymity. The idea behink-anonymity
attacker possesses. Thus, it is important to consider theis to make each individual indistinguishable (with respect
worst-case. In this paper, we initiate a formal study of to the non-sensitive attributes) from at least- 1 others.
worst-case background knowledge. We propose a languagerhis is done by grouping individuals intoucketsof size
that can express any background knowledge about the dataat leastk, and then permuting the sensitive values in each
We provide a polynomial time algorithm to measure the bucket and sufficiently masking their externally obsergabl
amount of disclosure of sensitive information in the worst non-sensitive attributes. Figure 2 depicts a table that is a
case, given that the attacker has at mbgiieces of infor-  5-anonymous version of the table in Figure 1. Figure 3 de-
mation in this language. We also provide a method to effi- picts the permutation of sensitive values that was used to
ciently sanitize the data so that the amount of disclosure in construct this table.
the worst case is less than a specified threshold. However, k-anonymity does not adequately protect the
privacy of an individuak; clearly, when all individuals in a
bucket have the same disease, the disease of the individu-
1. Introduction als in that bucket is disclosed regardless of the bucket size
Even when there are multiple diseases in the same bucket,
the frequencies of the diseases in the bucket still matter
(such as a hospital) has collected a useful informationtabou when an attac_ker. has some background knowledge about
the particular individuals in the table. Suppose the data

a group of individuals (such as patient records that would i . .
help medical researchers) and would like to publish thia dat _pubhsher has published tieanonymous table as depicted

; ) ) Lo . in Figure 2. Consider an attacker Alice, a rather nosy per-
while preserving the privacy of the individuals involved. . . :
: L . .~ _." son who would like to learn the ailments of all her friends
The information is stored as a table (as depicted in Fig-

ure 1), where each record corresponds to a unique indi-and neighbors. One of her neighbors is Ed, a 27 year-old

vidual and contains a sensitive attribute (e.g., disease) a male living in Ithaca (zip code 14850). Alice knows that

some non-sensitive attributes (e.g., address, gendey, ageEd is in the hospital that published the anonymized dataset

that might be learned using data available externally (e.g. In Figure 3, and she wants to find out Ed's disease. Using

phone books, birth records). The data publisher would like her k_nowledge of E.d s age, gend_er, and zip-code, Alice can
to limit the disclosure of the sensitive values of the indi- identify the bucket in the anonymized table that Ed belongs

viduals in order to defend against an attacker who possi-tO (namely, the first bucket). Alice does not know which

bly already knows some facts about the table. Our goal indlsease listed within that bucket is Ed’s disease since the

; . : . sensitive values were permuted. Therefore, without addi-
this paper is to quantify the precise effect of background . o . o
knowledge possessed by an attacker on the amount of OIiSyonal knowledge, Alice’s estimate of the probability that

Ed has lung cancer /5. But suppose Alice knows that

closure and to provide algorithms to check and ensure thatEd recently had a flu shot and so hence extremely unlikely
the amount of disclosure is less than a specified threshold.

The prObIem We. solve is of real and praCtical im- lindeed, the definition of-anonymity does not even mention the sen-
portance; an egregious example of a privacy breach wassitive attribute!

We consider the following situation. A data publisher




non-sensitive sensitive non-sensitive sensitive non-sensitive sensitive

Name | Zip |[Age|Sex| Disease Name| Zip |Age|SexX Disease Name | Zip |Age|Sex Disease
Bob |14850] 23 | M Flu =m Bob |14850] 23 | M Flu
Charlie| 14850 24 | M Flu Lung Cancer| |Charlie| 14850/ 24 | M Lung Cancer
Dave {14850 25 | M | Lung Cancer * 11485*| 2* | M | Heart Diseasd Dave |14850( 25 | M Heart Disease
Ed |14850] 27 | M | Lung Cancer Flu Ed |14850| 27 | M Flu
Frank [ 14853] 29 | M | Heart Disease] Lung Cancer Frank | 14853) 29 | M Lung Cancer
Gloria | 14850 21 | F Flu Flu Gloria | 14850 21 | F Flu
Hannah 14850] 22 | F Flu Breast Cancef |Hannaf 14850 22 | F & Breast Cancel|
irma | 14853] 24 | F | Breast Cancel x| 1485%| 2% | F Flu Irma | 14853) 24 | F Flu
Jane |14853| 26 | F | Ovarian Cancer Heart Disease Jane 14853 26 | F > Heart Disease
Karen 114853 28 | E | Heart Diseasa Ovarian Cancelr Karen | 14853| 28 | F Ovarian Cancey
Figure 1. Original table Figure 2. 5-anonymous table Figure 3. Bucketized table

to have succumbed to the flu. After ruling out this possi- the sensitive values in a table. This language enables us to
bility, the probability that Ed has lung cancer increases to decompose background knowledge into basic units of in-
2/3. Now, if Alice also somehow discovers that Ed does formation. Then, given an anonymized version of the table,
not have heart disease, then the fact that he has lung canceave can quantify the worst-case disclosure risk posed by an
becomes certain. Here two pieces of knowledge of the formattacker withk such units of informationt can be thought
“Ed does not have X" were enough to fully disclose Ed’s of as a bound on the power of an attacker. In Section 3,
disease. To guard against this, Machanavajjhala et al. [24]we show how to efficiently preserve privacy by ensuring
proposed a new privacy criterion callédliversity that en-  that theworst-case(i.e., maximum) disclosure foany k
sures that it takes at leaét- 1 such pieces of information  pieces of information is less than a specified threshold. Fur
to sufficiently disclose the sensitive value of any indivatlu ~ thermore, we show to integrate our techniques into existing
The main idea is to require that, for each bucket,&hgost frameworks to find a “minimally sanitized” table for which
frequent sensitive values are roughly equi-probable. the maximum disclosure is less than a specified threshold.
¢-diversity focuses on one type of background knowl- We present experiments in Section 4, related work in Sec-
edge: knowledge of the form “individual X does not have tion 5, and we conclude in Section 6.
sensitive value Y”. But an attacker might well have other ~ To the best of our knowledge, this is the first such formal
types of background know|edge_ For examp|e' suppose A|-analysis of the effect of unknown background knOWIedge
ice lives across the street from a married couple, Chartie an ©n the disclosure of sensitive information.
Hannah, who were both taken to the hospital. Charlie is a
24 year-old male, Hannah is a 22 year-old female, and they2. Framework
both live together in Ithaca (zip code 14850). Once again,

using her knowledge of their genders, ages and zip-codes, e begin by modeling the data publishing situation for-
Alice can identify the buckets Charlie and Hannah belong mally. Let P be a (finite) set of people. For eaphe P,
to. Without additional background knowledge, Alice thinks we associate a tup[@_ tp has one or more non-sensitive

that Charlie has the flu with probabili/5. But Alice is  attributes, and one sensitive attributee.qg., disease) with
clever and she knows that Hannah and Charlie live tOgetherﬁnite domain. We overload notation and us¢o represent
and that the flu is highly contagious. She deduces that if hoth the sensitive attribute and its domain. The data pub-
both Hannah and Charlie are sick, and if Hannah has thejisher has a tablé’, which is a set of tuples corresponding
flu, then Charlie also has the flu. Using this knowledge, sheto a subset of?. The publisher would like publisii in a
can update her probability that Charlie has the flu@g19.  form that protects the sensitive information of any individ
(We show how these probabilities are computed in Sectionyal from an attacker with background knowledge that can
3.) Note that/-diversity does not guard against the type of pe expressed in a language(We propose such a language
background knowledge in this example. to express background knowledge in Sectidh)

It is thus clear that we need a more general-purpose
framework that can capture knowledgeaofy property of ~ 2.1. Bucketization
the underlying table that an attacker might know. More-
over, unlike in the two examples above where we knew Al-  We first need to carefully describe how the published
ice’s background knowledge, we will not assume that we data is constructed from the underlying table if we are cor-
know exactly what the attacker knows. We therefore take rectly interpret this published data. Thatis, we need taspe
the following approach. In Section 2, we propose a lan- ify a sanitization method. We briefly describe two popular
guage that is expressive enough to capture any property ofanitization methods.



e The first, which we ternbucketization32), is to par- way of obtaining identification information in practice @ t
tition the tuples inT" into buckets and then, within  link quasi-identifying non-sensitive attributes pubkshin
each bucket, randomly permute the sensitive attributethe bucketization (e.g., address, gender, age) with dublic
among the tuples in that bucket. The sanitized data available data (e.g., phone directories, birth recordd)) [3
then consists of the buckets with permuted sensitive  We make the standard random worlds assumption [6]: in
values. the absence of any further knowledge, we consider all ta-
The second sanitization techniquefid-domain gen- bles consistent with this bucketization to be equally kkel
eralization [30], where we coarsen the non-sensitive That is, the probability of, € b havings for its sensitive
attribute domains. The sanitized data consists of theattribute isn;(s)/n; since each assignment of sensitive at-
coarsened table along with generalization used. Notetributes to tuples within a bucket is equally likely.

that, unlike bucketization, the exact values of the non-  We now need to express any knowledge beyond the iden-
sensitive attributes are not released; only the coarsenedification information that an attacker might possess. We
values are released. will do this using the notion of &asic unitof knowledge,

_ ) and we propose a language which consists of finite conjunc-
Note that if the attacker knows the set of people in the table 4,,¢ of 5yich basic units. Given full identification informa

and their non-sensitive values, then full-domain geneaali
tion and bucketization are equivalent. In this paper, we use
bucketization as the method of constructing the published
data from the original tabl&, although all our results hold
for full-domain generalization as well. We plan to extend Definition 1 (Atoms) An atomis a formula of the form
our algorithms to work for other sanitization techniques, t,[S] = s, for some value € S and persorp € P with
such as data swapping [10] and suppression [27], in the fu-tuplet, € T'. We say that atort,[S] = s involvespersonp

tion, any property of the underlying table is expressible us
ing a conjunction of the basic units that we propose. We
employ a very simple propositional syntax.

ture.

We now specify our notion of bucketization more for-
mally. Given a tabld’, we partition the tuples into buckets
(i.e., horizontally partition the tabl& according to some

scheme), and within each bucket, we apply an independen

random permutation to the column containiSgvalues.
The resulting set of buckets, denoted By is then pub-
lished. For example, if the underlying tabléis as de-
picted in Figurel, then the publisher might publish buck-
etization B as depicted in Figur8. Of course, for added
privacy, the publisher can completely mask the identifying
attribute (Name) and may partially mask some of the other
non-sensitive attributes (Age, Sex, Zip).

For a buckeb € B, we use the following notation.

P, set of people € P with tuplest, € b
np number of tuples i
np(s) frequency of sensitive valuec S in b
s9,st,... sensitive values in decreasing order
of frequency inb

2.2. Background Knowledge

and values.

The interpretation of atoms is obviousg; .k [Diseasé = flu
says that the Jack’s tuple has the valwefor the sensitive
f’:\ttribute Disease.

The basic units of knowledge in our language basic
implications defined below.

Definition 2 (Basic implications) A basic implications a
formula of the form

(Niem)Ai) = (Viem Bj)

for somem > 1,n > 1 and atoms4;, B;, i € [m], j € [n]
(note that we use the standard notatiefto denote the set

{0,...,n—1}).

The fact that basic implications are a sufficiently expressi
“basic unit” of knowledge is made precise by the following
theoren?

Theorem 3 (Completeness)Given full identification in-
formation, any further property of the underlying table can
be expressed using a finite conjunction of basic implica-
tions.

We pessimistically assume that the attacker has man-Hence we can model arbitrarily powerful attackér€on-

aged to obtain complete information about which individ-
uals have records in the table, what their non-sensitive dat
is, and which buckets in the bucketization these recordls fal
into. That is, we assume that the attacker kndiwysthe
set of people in bucket, for eachb € B, and knows, [ X]

for every persorp in the table and every non-sensitive at-
tribute X. We call thisfull identification information One

sider an attacker who knows the disease of every person in

2See appendix for proofs.

3A major shortcoming of thé-diversity definition was that its choice of
“basic unit” of knowledge was essentially negated atones, (it, [S] = s)
which cannot capture all properties of the underlying tabler example,
basic implications can express negated atoms, but notveis=. In gen-
eral, we can representt[S] = s by (¢[S] = s) — (t[S] = s’), where
s" # s.



the table except for Bob. Then publishing any bucketiza- Definition 5 (Disclosure risk) Thedisclosure rislof buck-
tion will reveal Bob’s disease. To avoid pathological and etization B with respect to background knowledge repre-
unrealistic cases like this, we need to assume a bound orsented by some formuiain languageC?, ;. is

the power of an attacker. We model attackers with bounded

power by limiting the number of basic implications that the . érilrafeSPr(tp[S] =s|BAy)

attacker knows. That s, the attacker knows a single formula e

from languagect, ;. defined below. That is, disclosure risk is the likelihood of the most highly
Definition 4 L} .. is the language consisting of conjunc- predicted sensitive attribute assignment.

tions of & basic implications. That 'SﬁbaS.iC consists of Definition 6 (Maximum disclosure) The maximum dis-
formulas of the form\;c(;; where eachy; is a basic im-

L closureof bucketizatior3 with respect to languagg€r .
plication. : asic
that expresses background knowledge is

k can thus be viewed as a bound on the attacker’s power and
can be increased to provide more conservative guarantees of s opmax Pr(tp[S] = s| BA )
the privacy. PETSETEE  baste

Note that our choice of basic implications for the “ba- Our goals are now to
sic unit” of our language has important consequences on
our assumptions about the attacker's power. In particu- 1. efficiently calculate the maximum disclosure for a
lar, some properties of the underlying table might require given bucketization, and
a large number of basic implications to express. We discuss
this issue further in Section 6. Nevertheless, basic implic
tions can be used to succinctly express many natural types
of background knowledge. For example, the Alice’s knowl-
edge that “Ed does not have ovarian cancer” can be written e will make precise the notion of “minimally sani-

as a basic implication as follows tized” in Section3.4; we want “minimal sanitization” in
order to preserve the utility of the data.

2. efficiently find a “minimally sanitized” bucketization
for which the maximum disclosure is below a specified
threshold (if such a bucketization exists).

tpa[Disease] = ovarian cancer — tgq[Disease] = flu

In general, we can represent[S] = s by ({[S] = s) — 3, Checking And Enforcing Privacy
(t[S] = ¢'), wheres’ # s.

Alice’s knowledge that “if Hannah and Charlie are both
sick and if Hannah has the flu, then Charlie also has the flu”

is simply the basic implication

In Section2.2, we defined basic implications as the “unit
of knowledge” and showed that this was a completely ex-
pressive (in the presence of full identification informadio

tHannah [Disease] = flu — tcparie[Disease] = flu and sufficiently natural choice. In this section, we show

how to efficiently calculate and limit maximum disclosure

Note that maintaining privacy when there is dependence be-against an attacker who has full identification information
tween sensitive values, especiaigross bucketds a prob-  and has up t@ additional pieces of background knowledge
lem that has not been previously addressed in the privacy(j.e., up tok basic implications). In order to do this, we
literature. The assignments of individuals to sensitivie va will show in Theorem 9 that there is a set bfbasic im-
ues in different buckets are not necessarily independent. A plications that maximizes disclosure with respectfg,;..
we saw in the example with Hannah and Charlie, fixing a Furthermore, each such implication tway one atom in the

particular assignment in one bucket could affect what as-antecedent and one atom in the conseqLi€his motivates
signments are possible in another. One of the contributionsthe following definition.

of this paper is that we provide a polynomial time algorithm o _ S _ S
for computing the maximum disclosure even when the at- Définition 7 (Simple implications) A simple implication

tacker has knowledge of such dependencies. is a formula of the formd — B for some atomst, B.
2.3. Disclosure 3.1. Hardness of computing disclosure risk
Having specified how the bucketizatishis constructed Unfortunately, naive methods for computing the maxi-

from the underlying tabld” and how an attacker’s knowl- mum disclosure will not work — in fact, we can show that
edge about sensitive information can be expressed in lancomputing the disclosure risk of a given bucketization with
guagelr, .., we are now in a position to define our notion respect to a given set éfsimple implications is#P-hard.

of disclosure precisely. Note thatk simple implications can be written i2+CNF,



for which satisfiability is easily checkable. Complexity is
introduced in trying tsimultaneouslgatisfy thek implica-
tionsandthe given bucketization. In fact, deciding whether
a given bucketization is consistent with a setko§imple
implications isNP-complete.

Theorem 8 Given as input bucketizatiofi and a conjunc-
tion of simple implications, the problem of deciding 8
and are both satisfiable by some talifeis NP-complete.
Moreover, given an ator@ as further input, the problem of
computingPr(C' | B A Aiepipi) is #P-complete.

3.2. A special form for maximum disclosure

It turns out that, despite the hardness results above, com
puting themaximumdisclosure with respect to language
LF . can be done in polynomial time. The key insight

is summarized in Theorem 9.

Theorem 9 For any bucketization, there is a set bfsim-
ple implications, all sharing the same consequsunth that
the conjunction of thesg simple implications maximizes
disclosure with respect t6f ;...

This insight is tremendously useful in devising a
polynomial-time dynamic programming algorithm for com-
puting the maximum disclosure with respectdp, ;. as it
allows us to restrict our attention to setskosimple impli-
cations of the fornit,,, [S] = s:) — (¢,[S] = s) for people
p,p; € P, and valuess,s; € S, i € [k]. The proof of
Theorem 9 follows from the following two lemmas.

Lemma 10 For any formulasy, ¢, 0;, ¢;,

Pr(o |9 A (Nigix) (0 — ¢i)))
< Pr(p v A (Niew (0 — ¢)))

Starting with any set ok basic implications that maxi-
mize disclosuré,Lemmal0 enables us to replace the con-
sequent in all the basic implications by a single common
atom (namely the atom corresponding to the highest pre-
dicted assignment of sensitive value to an individual) Jevhi
still maintaining maximum disclosure.

Lemma 11 For any formulas), B, ;, whereB is an atom
andg; is a conjunction of atoms, there exist atorssuch
that

Pr(B |9 A (Nepw(0: — B)))
< Pr(B|v A (New(Ai — B))).

4There always exists some set/obasic implications that maximize
disclosure since there are only finitely many atoms and thmasﬁasic is
finite.

| Miep(Ai—=Bi) || || Nem@i—0) |
[Ao A1 Bo Bi C] Ao A1 By Bi C]
a| O 0 * * 0| = 0 0 * * 0| a
b| O 0 * * 1| = 0 0 * * 11|0b
c| O 1 * 1 0
d| 0 1 * 1 1§¢C 0 1 * * 1 |d
e| 1 0 1 * 0
1 0 1 * 1]c1 0 * ~* 1]|7
g 1 1 1 1 0
hi| 1 1 1 1 1) C 1 1 * * 1 |n
Figure 4. Truth tables

Next, Lemmall allows us to replace the antecedent of
each of the resulting implications by an atom (possibly with
a different atom for each implication), while still mairtai

ing maximum disclosure.

In both Lemmad0 and11, we usey to represent the at-
tacker’s knowledge about the bucketizatiBn However, it
is worthwhile pointing out that neither lemma places any re-
striction one or on the underlying probability distribution.
This makes the results presented here extremely general and
powerful becausthey characterize the form of background
knowledge that maximizes disclosure risk for any form of
anonymization and for any additional background knowl-
edge

The main idea behind the proof of Lemma 10 (and also
Lemma 11) can be illustrated as follows. Consider a buck-
etization B. Let (t,[S] = si) — (tx[S] = s7), for
i € {0, 1}, be two simple implications which maximize the
disclosure ofB3 with respect toCZ, ;.. For convenience,
we let A; denote the atom,, [S] = s; and B; the atom
tp[S] = si. Let C be the atomt,[S] = s such that
Pr(C'[BA (Niepz)(Ai — By))) is the maximum disclosure.

Now let us restrict our attention to the set of tables con-
sistent with3. Let7; be the set of tables satisfying the sim-
ple implications4, — By andA; — By, and letZ; be the
set of tables satisfyind, — C andA4; — C. Figure 4is a
diagrammatic representation 8f and7;. Each row in the
the truth table on the left (resp., right) in Figure 4 represe
asubset of; (resp.,73). The variableg, b, ¢, d, e, f, g, hin
the left-most (respg, b,d’, f/, k' in the right-most) column
represents the size of the corresponding set. For example,
the set of tables represented by the second row is the set of
tables that satisfy the ato@i but do not satisfy4d, and A,
and the number of such of tablegis

It is now clear from Figure 4 that the implicatiods —
C andA; — C also produce the maximum disclosure as

, . N bt+d+f+h
follows. Pr(C | Nigdi — Bi) = oprerartiath
_ . _btd +f
and Pr(C | Niggdi — O) atorar e Also
b+d+f+h b+d+f+h btd +f 1 gince
atbtetdtetf+h — atbtd+f+h — atbt+d'+f/+h

d<d,f < f,andh < h'. ThusPr(C | A Ai —



3.3. Computing maximum disclosure efficiently

Algorithm 1 : MINIMIZE 1(b, i, k;, k)
Input:

b is the bucket under consideration

Having reduced our search space from sets of basic im-/nput: i is the index of the next persegn for whichk; (i.e., the number

plications that could lead to maximum disclosure to sets of

of atoms involving persop;) is to be determined (initiallp)
Input:  k; is the the upper bound fdr; (initially k)

simple implications with the same consequent, we are NOWinput: % is the number of atoms for which the people involved haveyet t

in a position to create an efficient algorithm to compute the
maximum disclosure. We want tmaximizePr(A | B A
Niepk) (A; — A)) over all atomsA, A;, i € [k]. According

to the following lemma, it suffices to construct an efficient
algorithm tominimize over all atomsA, A;, ¢ € [k],

Pr(=AA(Nie(n)—4i)|1B)
Pr(A[B)

1)
Lemma 12 For any atomsA, A;, i € [k],

Pr(A | B A (/\ie[kl] A, — A))

Pr(=AA (A (k] ~A:)1B)
Pr(A|B)

+1

In Section 3.3.1, we show how to minimize(A; ¢k —A; |

B) over atomsA; involving individuals in the same bucket.
We use this in Section 3.3.2 to provide a dynamic pro-
gramming algorithm MNIMIZE 1 that minimizes Formula
(1) over atomsA, A;, i € [k] involving individuals

in the same bucket. Finally, in Section 3.3.3, we use
MINIMIZE 1 to construct another dynamic programming al-
gorithm MINIMIZE 2 to minimize Formula (1) jointly over
the entire bucketization.

3.3.1 Minimizing Pr(A;er—A; | B) for one bucket

Consider all sets of atoms involving people whose tuples
are in a singlé € 5. Each set of atoms is associated with
atuple(l, ko, . .., ki—1), wherel is the number of people in-
volved in thek atoms, and; is the number of atoms involv-
ing thei-th person. We label theatomsA,; ; for i € [{] and

j € k; such that atom; ; is thej-th atom (out of; atoms)
involving thei-th person. Lemma 13 provides a closed form
for the minimum value oPr(A;cpx—A; | B) over all sets of

k atoms associated with a particul@rko, . . ., ki—1).

Lemma 13 Letb € B be any bucket. Let, [, andkg, k1,
..., ki—1 be such thatt = X,c;yk; and k; > k;yq for
all i € [l —1]. Lets},s;,s?,... be the sensitive val-
ues arranged in descending order of frequency.infhen
Pr(Aiep,jek,~As,j | B) is minimized over all atomd; ;
when,A; ; ist,,[S] = s], foralli € [ and all j € [k;],
wherepg, p1,...,p—1 € P are distinct people with tuples
tp, in bucketb. Consequently, the minimum probability is
given by:

"b*i*Zje[ki] "b(si)
nbfi

Hie[l]

(2)

be been determined (initially)
. pmhl*_l SR
: for k; =1,2,..., min(k;, k) do
p — MINIMIZE (b, 7 + 1, ki k — ki)
po T e meh)

Pmin < min(pmim p)
: end for

ny—1

1
2
3
4.
5
6
7

L return prin

Note that! < k andk = Ziem k; since each atom in-
volves at exactly one person. So the question of minimizing
Pr(Aiepr—As|B) over all atomsA; that mention only tuples

. e ny—i—3 e i (s?)
in b becomes one of minimizinp[, , ’ %:_““;] dS

overalll < k and allkg, . .., k_1 such thagiem k; = k.

This can easily be done using AlgorithHmThus, calling
MINIMIZE 1(b, 0, k, k) minimizesPr(A;c;—Aq | ¢5) over
all atomsA; that involve people with tuples in buckietlt is
easy to modify the algorithm to remember the minimizing
values ofky, . .., k;_1, and thus we can even reconstruct the
set of minimizing atoms according to Lemma

Algorithm complexity.  Note that the parameters of
MiINIMIZE 1 are bounded. That is, for every recursive call
MINIMIZE 1(b, ¢, k;, l%) that occurs inside the initial call to
MiNIMIZE 1(b, 0, k, k), parameteb does not change, and
parameters, k;, k are all bounded by (i.e., the number of
implications we allow the attacker to know). So we can eas-
ily turn this into anO(k3) time and space algorithm using
dynamic programming.

3.3.2 Minimizing Formula (1) within one bucket

s Pr(m AN (A A4) |1B)
Let us now minimize Br(ATE) overallk +1

atomsA and A;, for i € [k], that only mention tuples in
bucketb. Clearly anyA, A; that simultaneously minimizes
the numerator and maximizes the denominator will work.
Now we know that MNIMIZE 1(b, 0,k + 1, k+ 1) will min-
imize the numerator. According to Lemma 13, at least one
of these minimak+1 atoms mention the most frequent sen-
sitive value. So, taking this atom to bt we maximize the
denominator as well. Thus, we can compute the minimum
value as

MINIMIZE 1(b,0,k + 1,k + 1) x



Algorithm 2 : MINIMIZE 2(, h;, a) number of buckets, parametgy is bounded by the total

Input: 4 is the current buckel; (initially 0) number of implicationsk, anda is either true or false.
Input:  h; is number of atomsl;, j € [k] that we have yet to determine  Thus, assuming that we first memoize (i.e., precompute
(initially k) . _ _ all possible calls to) MIMIZE1 (which we can do in

Input: a is a flag representing whether atorh involves a person in an . 3 .
earlier bucket;, j < i (initially false) time O(|B| x k7)), we can modify the MNIMIZE 2 algo-
1 Typin < 00 rithm using dynamic programming to take an additional
2: if i = |B| then O(|B| x k)time and space. So the whole algorithm can be
i ﬁg?:ﬂi‘i:" buckets made to run irO(|B| x k3)time and space.
5 endif Incidentally, if one had two bucketizatiofsand3* that
6: for h;y1 =0,1,2,...,h; do differed only in thatB* was the result of removing some
7w MINIMIZEL(D;, 0, hiti, hit1) buckets fromB and addingr new buckets td3, then, after
> i:;:::M}(:ll;hgltzhiﬁ(l 1R = higy, frue) we run the algorithm fol3, we memoize NNIMIZE 1 for
10: I Atom A does not involve an earlier buckif, j < i the z new buckets; so the incremental cost of running the
11: /I So eitherA involvesb; ... algorithm forB* is O(|B*| x k + = x k*)-time. Moreover,
12: v MINIMIZE3(bs, 0, R 1 + 1, At +1) if one knew in advance which buckets were going to be re-
13 Timin — M(Tmin, v X @ X T0) moved, one could order the buckégsb,, . .. appropriately
14: /I ... or elseA involves a later buckel;, j > i to reuse much of the memoization ofiMMIZE 2 as well.
15: Prin < MIiN(Tmin, w X MINIMIZE 2(i+ 1, h; —h;41, false))
ig elS/P} Atom A involves an earlier bucket;, j < i 3.4. Finding a safe bucketization
18: Prin < MIN(Tmin, ¥ X )
19:  endif Armed with a method to compute the maximum disclo-
20: end for sure, we now show how to efficiently find a “minimally san-
21 return rmin itized” bucketization for which maximum disclosure is be-
low a given threshold. Intuitively, we would like a minimal
o sanitization in order to preserve the utility of the pubdidh
3.3.3 Minimizing Formula (1) over all buckets data. Let us be more concrete about the notion of minimal
t(~AA(A sk~ A) | B) sanitization. Given a table, consider the set of bucketiza-

We look again at minimizingP Br(AIB) , except
this time, we allowA and A, for i € [k] to mention tuples

in possibly different buckets. To do this, we make use of
the independence between buckets. Suppose that-the
minimizing atoms (includingd) are such thak; of them
mention tuples in bucket;, for eachi € [I] for somel <

tions of this table. We impose a partial orderiggon this

set of bucketizations wherB =< B’ if and only if every
bucket inB’ is the union of one of more bucketsfh Thus

the bucketizatioB+ that has all the tuples in one bucket is
the unique top element of this partial order, and the bueketi
- - zation3, that has one tuple per bucket is the unique bottom
k + 1. Letb; be the bucket containing the tuple mentioned oo ment of this partial order. Our notion of a “minimally
by A. Then, since the permutation of sensitive values for o itizeq” hucketization is one that is as low as possible in
each bucket was picked independently, we can compute thgpg hartial order (i.e., as closefa ) while still having max-

minimum as imum disclosure lower than a specified threshold.

Ljo x H MINIMIZE 1(b;, 0, ki, k;). Definition 14 ((c, k)-safety) Given a threshold: € [0, 1],
N, (Sbj) il we say that3 is a (¢, k)-safe bucketizatioif the maximum
disclosure of3 with respect toZf, . is less thare.

So we need to minimize the above for all choiced of
k+1, 7, andkg, k1, ...,k —1 (which we can assume with-
out loss of generality to be in descending order). Assuming
buckets in5 are labeled a&, b1, b, . . ., this is done by the
MINIMIZE 2.

So MINIMIZE 2(0, k, true) minimizes

Pr(ﬁAAF(,rA(f‘““B];A”'B) over all atomsA, A;, i € [k]. It

is easy to modify the algorithm to remember the and

h;'s, and hence reconstruct the minimizing atoms.
Algorithm complexity.  Note that the parameters of

MINIMIZE 2 are bounded. That is, for every recursive call

to MINIMIZE 2(i, h;, a) that occurs inside the initial call If it is necessary to find akll <-minimal (¢, k)-safe buck-

to MINIMIZE 2(0, k, true), parametet is bounded by the etizations, then we can make use of existing algorithms

If the maximum disclosure isnonotonicwith respect to
the partial orderings, then finding a<-minimal (¢, k)-safe
bucketization can be in time polynomial in the height of the
bucketization lattice (by doing a binary search betwBen
and, ). The following theorem says that this is indeed the
case.

Theorem 15 (Monotonicity) Let B and B’ be bucketiza-
tions such thaf3 < B’. Then the maximum disclosure of
B is at least as high as the maximum disclosurébfvith
respect talf, ;..



for efficient itemset mining [4]k-anonymity [7, 22] and  be anonymized much further to defend againsinplica-
(-diversity [24]° For example, we can take any existing al- tions.

gorithm for finding all the<-minimal k-anonymous buck- Intuitively, if all the buckets in a table have a nearly uni-
etizations such as Incognito [22], and simply replace the form distribution, then the maximum disclosure should be
check fork-anonymity with the polynomial time check for lower, but the exact relationship is not obvious. To get a

(¢, k)-safety that we developed in Section 3.3. better picture, we performed the following experiment. We
fixed a valuek for the number of pieces of information.
4. Experiments For every entropy valué, we looked at all table§ (h)

for which the minimum entropy of the sensitive attribute
over all buckets was equal ta Amongst7 (k) we found
the tableT’ (k) with the least maximum disclosure fbim-
plications. Let the worst case disclosure fofh) given k

In this section, we present a case-study of our frame-
work for worst-case disclosure using the Adult Database
from the UCI Machine Learning Repository [26]. We only .
consider the projection of the Adult Database onto five at- pieces of knowledge be denoted ®yT'(h), k). We plotted

s Age,aral Sats,Race, Genderand Occupa Y% 1) 110 L3 10 e e
tion. The dataset has 45,222 tuples after removing tuples ' ghs

: o : .. the disclosure risk monotonically decreases with incre@ase
with missing values. We treat Occupation as the sensitive L : : )
. - . : h. This is because increasihgmeans that we are looking
attribute; its domain consists of fourteen values. We use : . )
. o . : o at tables with more and more entropy in their buckets (and,
pre-defined generalization hierarchies for the attribsites
: : . ._consequently, less skew). We plotted an analogous graph
ilar to the ones used in [22]. Age can be generalized to six , . .
> . ; (which we do not show here) for negation statements and
levels (unsuppressed, generalized to intervals of siz€5, 1

20, 40, or completely suppressed), Marital Status can beobserved very similar behaviour.
generalized to three levels, and Race and Gender can each
either be left as is or be completely suppressed. We con-5. Related Work
sider all the possible anonymized tables using those gen-
eralizations, ignoring those anonymizations that comigin Publishing anonymous data involves trading off utility
a bucket where all tuples had the same sensitive attributefor privacy. Many metrics have been proposed to quantify
because such anonymizations lead to full disclosure with-the privacy guaranteed. ‘Perfect privacy’ [12, 25] guaran-
out any additional background knowledge. All experiments tees that published data does not disclose any information
were run under Linux (Ubuntu) on a machine with a 2.6GHz about the sensitive data. However, checking whether a con-
Intel Pentium 4 processor and 512MB of RAM. junctive query discloses any information about the answer
We computed the maximum disclosure for background to another conjunctive query is shown to be very harg-(
knowledge ranging from zero pieces of knowledge (i.e., complete [25]). Subsequent work showed that checking
no background knowledge) to twelve pieces of knowl- for perfect privacy can be done efficiently for many sub-
edge for various bucketizations. Figubeplots, for one  classes of conjunctive queries [23]. Perfect privacy ace
anonymized table, the number of pieces of knowledge avail-extremely strong restrictions on the types of queries that
able to an adversary against the maximum disclosure forcan be answered [25] (in particular, aggregate statiséios ¢
both negated atomg/-fliversity) and basic implications. not be published). Less restrictive privacy definitionsduhas
In the anonymized table used, all the attributes other thanon asymptotic conditional probabilities [11] and certain a
Age were suppressed and the Age attribute was generalswers [28] have been proposed. Statistical databases allow
ized to intervals of siz0. The solid line corresponds to  answering aggregates over sensitive values without disclo
implication statements and the dotted line corresponds toing the exact value [1]. Work on de-identification, like
negated atoms. This graph agrees with our earlier observaanonymity [30] and “blending in a crowd” [8], ensures that
tion that implication-type background knowledge subsumes an individual cannot be associated with a unique tuple in
negation; the maximum disclosure fbrnegated atoms is  an anonymized table. However, under both of those defini-
always smaller than the maximum disclosure koimpli- tions, sensitive information can be disclosed if groups are
cations. However, note that, for a givénthe difference  homogeneous.
between the maximum disclosure for negated atoms and for Background knowledge can lead to unwanted disclosure
basic implications is not too large. One favorable outcome of sensitive information. Su et al. [29] and Yang et al. [33]
of this observation is that an anonymized table which toler- limit disclosure in the presence of dependencies in the data
ates maximum disclosure due kimnegated atoms need not  known to the data publisher. The notionféliversity [24]
SWhile these algorithms typically have worst-case expdaeninning guards against limited amounts of background knOWI.edge
time in the height of the bucketization lattice, they haverbshown to run unknown to the data publisher. Farkas et al. [16] provide a
fast in practice. survey of indirect data disclosure via inference channels.
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There are several approaches to anonymizing a dataseaffected by the curse of dimensionality [2]; large portions
to ensure privacy. These include generalizations [7, 2R, 27 of the data are required to be suppressed to ensure privacy.
cell and tuple suppression [9, 27], adding noise [1, 5, 8, 15] Subsequent work [21] shows how to publish several tables
publishing marginals that satisfy a safety range [14], and instead of a single one to combat this curse.
data swapping [10] - a technique where attributes are
swapped between tuples in such a way that certain margina
totals are preserved. Queries can also be posed online an
the answers audited [20] or perturbed [13]. Not all ap-
proaches guarantee privacy. For example, adding uncorre- In this paper, we initiate a formal study of the worst-
lated random noise to the attributes in a tuple is not suffi- case disclosure risk with background knowledge. Critycall
cient to ensure privacy. Spectral techniques can be used t@ur analysis does not assume that we are aware of the exact

separate much of the noise from the data [17, 19]. background knowledge possessed by the attacker. We only
assume bounds on the the attacker’s background knowledge

in terms of the number of basic units of knowledge that
the attacker possesses. We propose basic implications as
an expressive and natural choice for these basic units of
knowledge. Although computing the probability of disclo-
sure associated with a specific setkobasic implications

is intractable, we show how to efficiently determine the
worst-case over all sets éfbasic implications. In addition

to assessing maximum disclosure, we show how to search
for a bucketization that is robust (to a desired threshold)

the prec;(se values Ic')flihe non-slfns:;tlale at_t;butgs_w?vgél against anyt: units of knowledge by incorporating the check
an attacker to use linking attacks [30] to identify individu 5. 1y safety into existing lattice-search algorithms. Fi-

als In the '.;tno_n_ym|ze_d _table. In many cases, the fact t_h_at %ally, we demonstrate that, in practidediversity has sim-
particular individual is in the table is considered sewsiti ;- 1. aximum disclosure risk to our notion of, k)-safety

information [8]. Furthermore, certainty that an individisa which guards against a richer class of background knowl-
in the table leads to more precise inference about sensitiveedge

values than uncertainty about the presence of the inditidua In this paper we choose basic implications as our units of

The utility of data that has been altered to preserve pri- knowledge so that we can express any background knowl-
vacy has often been studied in contexts where the future useedge. It is clear that our algorithms yield extremely conser
of the data is known. Examples of such work are methods tovative bucketizations if we try to protect against an atéck
reconstruct association rules [15], distributions of amunt who knows information that can only be expressed using
ous variables [3, 5] from noisy data; methods to perturb the a large number of basic implications. Since basic implica-
values of continuous numeric attributes so that data alsiste tions are essentially CNF clauses with at least one negative
can be reconstructed [8]; and methods to anonymize dateaatom, our language suffers from an exponential blowup in
while trying to maximize decision tree accuracy [18, 31]. the number of basic units required to express arbitrary DNF
There have also been some negative results for utility. Pub-formulas. Other choices of basic units may lead to equally
lishing a singlek-anonymous table has been shown to be expressive languages while at the same time requiring fewer

g. Conclusions

Anatomy [32] is a recently proposed technique for
anonymizing a dataset. It corresponds to exactly to the
notion of bucketization that we use in this paper. When
the attacker knows full identification information, themge
eralization provides no more privacy than bucketization.
In practice, however, we recommend generalizing the at-
tributes in the buckets before publishing the data for the
following reasons. It is very rare for an attacker to actu-
ally have full identification information. Thus disclosing



basic units to express certain natural properties. One ap{14] A. Dobra. Statistical tools for disclosure limitation in multi-

proach to reducing the number of basic units required to
express a property is to add more powerful atoms to our ex-

isting language. For example, an interesting class of DNF[15]
formulas are those of the form

Vees(tp[S] = s Aty [S] = s)

[16]

Such formulas express equality between the sensitive at{17]
tributes of two tuples and can be expressed usffjgoa-
sic implications. Finding the right choice of basic units of [1g]
knowledge is an important direction of future work.

Other directions for future work include extending our [19]
framework to allow for probabilistic background knowl-

edge, studying cost-based disclosure (since it was olxerve

in [24] that not all disclosures are equally bad), and fi-
nally extending our results to other forms of anonymiza-

tion beyond bucketization and generalization, such as data

swapping and collections of anonymized margirals.
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A Completeness containing two tuples, named andt-.,, and two sensitive
values,T andF'. For each claus€ of the formX vY v Z
Proof of Theorem 3 Since the attacker is assumed to have inthe3-CNF formula (whereX, Y, Z are either variables or
full identification information, the values of,[X] and their negations), we construct a bucket containing five tu-
which buckett, falls into are assumed to be common Ples, named$, ¢, 15, 1,y tiummy2» @nd five sensi-
knowledge. The only remaining information that it takes tive valuesT', T, T, F, F'. The background knowledge then
to completely define a particular table is the mapping be- consists of the following set of statements:
tween people and sensitive values within each bucket. Thus
we need to show that a finite conjunction of basic implica-
tions can express any set of mappings between people in
the table and sensitive values. Note that, since the domain e t$[S] = T — t,[S] = T, for every variabler and
of S and the table size are finite, there are only finitely many every claus&’ containing literalX = «,
mappings between people in the table and sensitive values.
Any particular such mapping between people and sensitive
values can clearly be represented by a finite conjunctions of o )
atoms of the form, = s. Thus any set of mappings be- ~ ® X [S] = T — t-4[S] = T, for every variabler and
tween people and sensitive values can be represented by a  €Very claus€’ containing literalX' = —z, and

o t,[S] = T — t§[S] = T, for every variabler and
every claus€’ containing literalX = «x,

o t,[S] =T — t§[S] = T, for every variabler and
every claus&€ containing literalX = —uz,

finite disjunction of finite conjunctions of atoms. We show e ¢, \[S] = T — t3,,..,0[S] = T, for every
that, in fact, a finite conjunction of basic implications can clauseC.

represenanyfinite boolean combination of atoms.
Consider any finite boolean combination of atoms. With- Let k& be the number of implications that we added above.
out loss of generality, assume that the formulais in conjunc Note thatk is linear in the size of tha-CNF formula. It is
tion normal form. It thus remains to show that any disjunc- fairly clear that if there is a mapping of tuples to valued tha
tion of literals (i.e., atoms or their negations) can be eepr i consistent with the bucketization and background knowl-
sentated by a finite conjunction of basic implications. We €dge, then assigning each variabléo the value,,[S] sat-
break this into two cases dependeing on whether or not theisfies the3-CNF formula (since, in each bucket correspond-
given disjunction contains at least one negative literal. | ingto a clause, at least one tuple representing a literat mus
the first case, if the disjunction contains at least one egjat have sensitive valu€). So we can decide if th&:CNF for-
literal, then the disjunction is equivalent to a single aibas Mula is satisfiable, given an oracle for our problem. Thus
implicationy — 6 wherey is the conjunction of the atoms  the decision problem iSP-complete.
appearing in the negative literals atidis the conjunction
of the atoms appearing in the positive literals. In the sec-
ond case, if the disjunction contains no negative litetals,
disjunction is equivalent to the following conjunction af-b
sic implications:Ascs(t, = s — ¢), whereyp is the given
disjunction itself ang is any person in the table]

It should therefore not come as a surprise that computing
the probability ofPr(C' | B A (Ajer)(Ai — By))) is #P-
complete since computing the probability and counting sat-
isfying assignments are intimately related. We reduce the
problem of counting the satisfying assignments 8f@GNF
formula, which is##P-complete P, to an instance of com-
putingPr(A | B A (Aer (Ai — Ajf))). Consider &2-CNF
B Hardness formulayp, with variablesro, . . ., z,_1. We can find a satis-

fying assignment op in polynomial time sincep is 2-CNF.

Proof of Theorem 8 Consider the problem of deciding if LetA;c,,) X; represent the satisfying assignment, whte
B andy are both satisfiable by some tafilegiven as input  is eitherz; or —z;, depending on the value af in the sat-

a bucketization and a conjunction of simple implicationts. | isfying assignment. Consider a complete binary tree with
is clear that the problem is iNP, because given a map- leaf nodes, where thé" leaf is associated with the literal
ping of tuples to sensitive values (which has a description X;. For every non-leaf node, we introduce a new varigble
that is linear in bucketization size), we can verify thasiti and a constant number 8fCNF clauses that are equivalent
indeed consistent with the bucketization and that it sasfi toy < U A V, whereU andV are the literals at the left

Nielk) (Ai — B;) in polynomial time. and right children of the non-leaf node. Let be the con-

To show that the problem id/P-hard, we reduce the junction of all the newly-introduce8-CNF clauses. Then
problem of deciding3-CNF satisfiability, which isNP- the conjunction of all the newly-introduc@dCNF clauses
complete, to this problem as follows. Consider 8/gNF implies thaty < A;e[,) X;. Note thaty' is polynomialin the

formula. We construct a bucketization and set of basic im- size of p since the complete binary tree withleaves has
plications from this formula as follows. For each variable at mostO(n) nodes, and we introduced a constant number
2 mentioned in the-CNF formula, we construct a bucket of clauses for each internal node A ¢’ is 3-CNF formula.



And ¢ A ¢ Ay is a3-CNF formula with exactly one sat-
isfying assignment (namely, setting each variableiac-

cording toA;¢[,) X, and each newly-introduced variable to
true). So, applying the construction from the proof of The-

orems to getA andA; fromp A ¢/, it is easy to check that
is exactly the number of satisfying as-

Pr(ty[S]= TlsaB/\wAsa)
signments ofp. [

Itis prudent at this point to mention that we have a notion
of independence between buckets for the general language. =

C Special Form for Maximum Disclosure

Proof of Lemma 10 For convenience of notation,

o letd be—(A;cpy—0i),

o letx be (A (0: — ¢i)),

o letu =Pr(0 ApA),

o letv =Pr(=0 Ay A p),

o letw = Pr(—0 A ),

o letz =Pr(0 Ax A A ), and
o lety =Pr(6 A x N).

Then, for ally)’ € L, Niepwy(8i — ) A ¢ is logically
equivalenttad A ¢ Ay') V (=0 A '), Hence,

Pr(o | (Mg (0s — @) A1)
Pr((Nigr] (0i—=9))APA)
Pr((Aigr) (0i—9))AY)
Pr((0A@A@AY)V (20N pAP))
Pr((0A@AY)V(20AY))
Pr(0A@AY)+Pr(=0AYAp)
lj’rr(e/\ga/\w)-i-Pr(ﬁO/\w)

utw '’

Similarly, using that fact that, for alk)/ € L,
Niek)(0i — i) A 4" is logically equivalent tof A x A
PV (=0 AY'), we get:

Pr(e | (Niew) (0: — ¢i)) AY)

_ Pr(0AXAYAQ)+Pr(=0AYAp)

- IJFEJ’F((’/\X/\TZ’)JFPF(ﬂG/\iP)
ytw’

However, sinced A x A ¥ A ¢ logically implies both
ONpAY andd Ax Ay, we havey > z andy > x. Similarly,
since—6 A ¢ A ¢ logically implies—6 A ¢, we havey < w.
So, sinceym,w,x,y >0, we getir > It > ;%j
thus proving the required resulil

Proof of Lemma 11 Since each of the implicatior($; —

B) is basic,f; is a conjunction of positive atoms. Hence,

from each of thed; pick one of the atomsi; (the atoms
need not be distinct). Clearl§; — A;. Hence, the required
result follows from Lemma 16.]

Lemma 16 For all 6y, ...,0,_1,6p,...,
thatd;, — ¢/, forall i € [k], we have

Pr(o |9 A (Nieik (i — ©)))
< Pr(e | A (Mg (0 — ©)))-

05._1,%,p, such

Proof

Pr(¢ [ (Nigi (0: — ) A1)
Pr((Niem)(0i—=9))APA)
Pr((Aiem) (0i—9))AY)
Pr(pAy)

ek (0iN—p)V)*

So itis enough if we show that

) ).

We know thatd; — 6.. Hence, any model that satisfies
0; also satisfieg,. This implies that any model that satisfies
(View (0i Amp) V1) also satisfiesVcx (0; A—p) V).
Hence, the required resulil

1-Pr(Vv;

Pr(Viep (0 A —p) V < Pr(View (0 A—p) v

Proof of Lemma 12

max Pr(A|BA (A

efr]Ai — A))
atomsA,A;
Pr(A A (Nie (4i — A)) | B)
Pr((Aiepw (Ai — A)) | B)
e Pr(A|B)
atomsA, A; Pr(ﬂA A (/\ie[k]ﬁAi) VA | B)
Pr(A| B)
max
atomsA, A; Pr(=A A (Aep—Ai) | B) +Pr(A | B)
1

max
atomsA, A; Pr(CAA(N ek 744 IB)
Pr(A|B)

max
atomsA,A;

+1

Hence the required resulil

Proof of Lemma 13 When 4, ; is t,, = s forall i € []
and ally € [k;], then it is easy to see that

II 3 etk ™ (53) .

ny — 1
iell] b

nb—i—

Pr(Aiep),jek)~Aij | B) =

We now show, by induction oh(i.e., the number of people
involved in thek atoms), that for alb € B and all atoms
A, ; (not necessarily;[S] = s;) such that4, ; and 4; ;
mention the same tuple miff i = i/, we have

[ Zje[ki] ”b(sg)

nb—i

ny
Pr(Aicp e —Aig | B) > [
i€(l]

In the base case (i.4.= 1, kg = k), all the atoms mention
the same person, say. So takingA, ; to bet,,[S] =

s] for j € [k] clearly minimizesPr(A jek Ao, | B), and
actually achieves a probability M

Suppose that the induction hypotheS|s holds foriall
Consider the case fés-1. Considerp,, the person involved



in the most (i.e.ko) atoms (namely4, ;, for j € [ko]). Let
S’ be the set of values i not involved in these atoms.
Thatis,S" = {s € S :Vj € [ko] . Ao,; # tp,[S] = s}. For
eachs € 5,

o letk? = ki1, foreachi € 1],

o let A7 be A, ; for eachi € [I] and eacly € [k]],

e letb® and3® be the bucket and bucketization, respec-

tively, obtained fromb and3 by removingt,,, [X] and
one occurrence of from b.

Then it is easy to see that

® Nps =Ny — 1,. .
* Zg‘e[kf] M (835 ) < Zje[kiﬂ] np(s3)

So, using these facts and the induction hypothesis, we get:

Pr(Nigpiy1),jek) ~Aij | B)
= Yses (PriNiepay et ~Aij [ B Aty [S] = s)
<Prltp[)=51B)
D ses Pr(Aie[l],je[{cngij | B?jn%zbs
Nbs =12 e f]nbs Sps
Ses (Mien e
> e&(H'e[l] nbiiilizje'[kilﬂlnb(%)
s 2 np—t—1
ny—i—=1=3", . ymn(s))
(Hie[l] nbiei[—k1+l] -
(Hie[l]

nbiiilisz[ki+1]nb(si)
Hie[l-H]

nb—i—l
This completes the inductiofl

)nb(S)

ny

Y

Y

ny(s)
) s
DI

)"bfzjg[ko]nb(si)

Ny

Y

== 8 e )™ (53)
nbfi

D Monotonicity

Proof of Theorem 15 Letb; andb, be two buckets of sizes
m andn respectively in bucketizatioB. Letb be the bucket
formed by merging; andb, and let’3’ be the new bucketi-
zation.

To show monotonicity, it is enough to show that the min-
imumPr(A;err —As | B) is at least as much as the minimum
Pr(Aepr—Aq | B') whereA; range over atoms that involve
only people inb in both cases.

According to Lemma 13, let,,[S] = sb be the atoms
that minimize the second probability (fd#'), for i € [I]
andj € [k;] (wherepy,...,p; are the people involved in

ko, ..., k; atoms, respectively). Then, as in Lemma 13, the
minimum probability is given by:

H a; +b; —1

e Mt :
where a; = np, — Y, (s)) and b = mpy, —

Zje[i] by (Sz)
For eachi, we inductively defineP; , ¢;, andd; as fol-
lows:

1. P0:1,00:0,d0:0.

2. If a=e < bimds “ then Py = P,%=% andce; 1y =
C; + 1 anddhq =d;.

3. If et > bizdi thenpy = Pt < andeigy = ¢

anddzﬂ = d + 1.

Think of this as choosing atong = s)fori e [l],j € [ki]
wherep!, is a new person in bucket or b depending on
whether&=¢i=1 < biz dl L or not. It is easy to see that

m—ci_1 — n—d;_
P < P(/\ie[l],je[ki]_'tpg = sb | B). Note that, by def-

inition, ¢; + d; = i for all i. So we have%f;lZ =
a;—c;+b;—d; m—c; a; —c; n; —d; b; —d; >
m—c;+n—d; ~ m—c;+n—d; m—c; m—c;+n—d; n—d; —
: i=¢Ci bi
-min(fH=, r) So at each stef we getP;,; by mul-
tiplying P, by a factor that is no more thaﬁM So
itbi—
P 2 [Tiep 5550i=) ThusP(Aiep jerwa—ty, = i, | B) =
a; +b1 1
[Licy 5= and so we are donél

E Maximum Disclosure and/-diversity

We now use our framework to analyze a different restric-
tion on background knowledge and relate this with a privacy
condition recently proposed 24, called/-diversity. This
exercise provides further insight into our techniquesJevhi
at the same time contributing an essential piece of formal
analysis that was missing {24], namely, proving that re-
cursive(c, £)-diversity is equivalent td 7, ¢ — 2)-safety
with respect to a simple language expressing sensitivevalu
elimination. This is an important contribution to our under
standing of{c, £)-diversity because it shows thét, ¢) di-
versity protects againgt— 2 pieces of information involv-
ing possibly several different peopleather than the earlier
belief that it protects againgt— 2 pieces of information
involving only one person

Before we begin, however, let us quickly recall the defi-
nition of recursivec, £)-diversity.

Definition 17 (Recursive(c, ¢)-diversity) A bucketization
B is said to berecursive(c, ¢)-diverseif for all bucketsb €

£—2

my(sh) < e x (np —np(sp) = > m(sh))

i=1

Intuitively, this definition states that a bucketization is
(¢, 2)-diverse if for every bucket, the most frequent attribute
value of the sensitive attribute appears at nadishes as fre-
guently as all the remaining attribute values of the saresiti
attribute combined. As argued in [24], it then follows that
if an adversary is able to eliminate— 2 values of the sen-
sitive attribute ofone particular individuain some bucket,




We now show that eliminating the sensitive values for
one particular individualmaximizes disclosure over back-
ground knowledge from languagé,., (defined below),
which allows for sensitive value elimination faossibly

several different individuals Once again the disclosure p be the person involved id. Now Ay, . .

maximizing background knowledge has a special structure,

namely, that all statements mentioned the same tuple. Ouf generality,Ag, . .

proof uses the techniques from Sectin

Definition 18 Let £, be the set of the formulas of the

form—-A whereA is an atom.

Recall that an atom is a formula of the fotpiS] = s. £,
thus captures knowledge of the form “Ed does not have the
flu”.

Theorem 19 For any bucketizatio8, we have
maXatomsA,A; PT(A | BA (/\ie[k] —4;))

ny(sy) _
nb—zz’e[k] "b(S;,Jrl)

maXpeB

Proof This follows immediately from independence be-
tween the permutations in separate buckets and Leftma
below.

Lemma 20 Consider a bucket € B, and letp be any per-
son with a tuplet, in b. ThenPr(A | B A (Ajep—A4i))
is maximized over all atomd, Ay, ..., A,_1 that involve
only people fromb when

1. Aist,[S] = s, and
2. A;ist,[S] = st fori € [k].
Moreover, the maximum probability is given by

np(sp)

- Zie[k] np( )

Proof First note that wher is the statement,[S]

np slzfl

= Sg’

and eachd; is the statement,,[S] = s;™', then it is easy
to see that
m(sp)
Pr(A|B A (Niepw—Ai)) = ; ®3)
. Ny — Zie[k] "b(sbﬂ)
since this is the relative frequency ef afters},...,sF

have been eliminated. We now show that no other choice of
atomsA, A; (involving only people with tuples ih) gives a
higher probability. We proceed by induction on the number
of people involved in the atom4g, . . ., Ax_; to show that

ny(sp)
Pr(A|BA (N —Ai)) < i
. nb = Yiepy mo(sy )
In the base case, where all the atorhsAy, ..., A,_1 in-

volve exactly one person, it is easy to see that the worst

case is given by Equatiah Now, using the induction hy-
pothesis, assume that the Lemma is true when the atoms
involve at mostn — 1 distinct people. We will consider the
case whered, Ay, ..., Ax_1 involve m > 2 people. Let
., Ai_1 involve
some other persop’ # p, sincem > 2. Without loss
., Ay _1 be the atoms not involving’
and letAy, ..., Ax_1 be the atoms involving’, for some
k' < k. For ease of notation, we abbreviatg ) —A; by x
andA; (i)~ A; by ', Thus our original background know!-
edgex is split into two parts. The first park/, is the part
of our background knowledge not involving, the second
part, Ajci\ (]~ As, is the part of our background knowl-
edge involving onlyy’. Sincek’ < k, we can apply our
induction hypothesis to the statement

Let S, be the set of sensitive values that appear in bucket
b(i.e.,Sy, = {seS:n(s)>0}). Foreachs € S, letdb®
and B* be the bucket and bucketization, respectively, that
are obtained by removing the non-sensitive attributes’ of
and an occurrence affrom bucket. Then it is not hard to
show that:

® Nps = Np — 1,
o np:(s)) < myp(s)), and
o 1+ Yiepy e (s571) < Py molsy™)

So, using the induction hypothesis (in the first inequality
below) and the above facts (in the second inequality), we
get

Pr(A|BAK)
> ses, Pr(AAty[S] = s|BAK)
Pr(A|BAKAty[S] =)
x Pr(ty[S]=s|BAK)
> ses, Pr(A| B A K" Pr(ty[S] = s | BAK)

seSy

an(Sgs) , _
< Dses, o= ie rps (3171 Pr(ty[S] =s|BAK)
nb(sb) _ , —
S Zsesb "b_zie[k] nb(sz+1_) Pr(tp [S] S | BA Ii)
_ "b(sb) , _
ST SRy > ses, Prty [S] = s | BAk)
< nb(sg)

nb—zz’e[k] "b(serl)

This completes the inductionl



