
Worst-Case Background Knowledge in Privacy

David Martin Daniel Kifer Ashwin Machanavajjhala JohannesGehrke
Joseph Halpern

Cornell University
{djm, dkifer, mvnak, johannes, halpern}@cs.cornell.edu

Abstract

Recent work has shown the necessity of considering an
attacker’s background knowledge when reasoning about
privacy in data publishing. However, in practice, the data
publisher does not know what background knowledge the
attacker possesses. Thus, it is important to consider the
worst-case. In this paper, we initiate a formal study of
worst-case background knowledge. We propose a language
that can express any background knowledge about the data.
We provide a polynomial time algorithm to measure the
amount of disclosure of sensitive information in the worst
case, given that the attacker has at mostk pieces of infor-
mation in this language. We also provide a method to effi-
ciently sanitize the data so that the amount of disclosure in
the worst case is less than a specified threshold.

1. Introduction

We consider the following situation. A data publisher
(such as a hospital) has collected a useful information about
a group of individuals (such as patient records that would
help medical researchers) and would like to publish this data
while preserving the privacy of the individuals involved.
The information is stored as a table (as depicted in Fig-
ure 1), where each record corresponds to a unique indi-
vidual and contains a sensitive attribute (e.g., disease) and
some non-sensitive attributes (e.g., address, gender, age)
that might be learned using data available externally (e.g.,
phone books, birth records). The data publisher would like
to limit the disclosure of the sensitive values of the indi-
viduals in order to defend against an attacker who possi-
bly already knows some facts about the table. Our goal in
this paper is to quantify the precise effect of background
knowledge possessed by an attacker on the amount of dis-
closure and to provide algorithms to check and ensure that
the amount of disclosure is less than a specified threshold.

The problem we solve is of real and practical im-
portance; an egregious example of a privacy breach was

the discovery of the medical records of the Governor of
Massachusetts from an easily accessible and supposedly
anonymized dataset. All that was needed was to link it to
voter registration records [30]. To defend against such at-
tacks, Samarati and Sweeney [27] introduced a privacy cri-
terion calledk-anonymity. The idea behindk-anonymity
is to make each individual indistinguishable (with respect
to the non-sensitive attributes) from at leastk − 1 others.
This is done by grouping individuals intobucketsof size
at leastk, and then permuting the sensitive values in each
bucket and sufficiently masking their externally observable
non-sensitive attributes. Figure 2 depicts a table that is a
5-anonymous version of the table in Figure 1. Figure 3 de-
picts the permutation of sensitive values that was used to
construct this table.

However,k-anonymity does not adequately protect the
privacy of an individual;1 clearly, when all individuals in a
bucket have the same disease, the disease of the individu-
als in that bucket is disclosed regardless of the bucket size.
Even when there are multiple diseases in the same bucket,
the frequencies of the diseases in the bucket still matter
when an attacker has some background knowledge about
the particular individuals in the table. Suppose the data
publisher has published the5-anonymous table as depicted
in Figure 2. Consider an attacker Alice, a rather nosy per-
son who would like to learn the ailments of all her friends
and neighbors. One of her neighbors is Ed, a 27 year-old
male living in Ithaca (zip code 14850). Alice knows that
Ed is in the hospital that published the anonymized dataset
in Figure 3, and she wants to find out Ed’s disease. Using
her knowledge of Ed’s age, gender, and zip-code, Alice can
identify the bucket in the anonymized table that Ed belongs
to (namely, the first bucket). Alice does not know which
disease listed within that bucket is Ed’s disease since the
sensitive values were permuted. Therefore, without addi-
tional knowledge, Alice’s estimate of the probability that
Ed has lung cancer is2/5. But suppose Alice knows that
Ed recently had a flu shot and so hence extremely unlikely

1Indeed, the definition ofk-anonymity does not even mention the sen-
sitive attribute!

non-sensitive sensitive
Name Zip Age Sex Disease
Bob 14850 23 M Flu

Charlie 14850 24 M Flu
Dave 14850 25 M Lung Cancer
Ed 14850 27 M Lung Cancer

Frank 14853 29 M Heart Disease
Gloria 14850 21 F Flu
Hannah 14850 22 F Flu

Irma 14853 24 F Breast Cancer
Jane 14853 26 F Ovarian Cancer

Karen 14853 28 F Heart Disease

Figure 1. Original table

non-sensitive sensitive
Name Zip Age Sex Disease

Flu
Lung Cancer

* 1485* 2* M Heart Disease
Flu

Lung Cancer
Flu

Breast Cancer
* 1485* 2* F Flu

Heart Disease
Ovarian Cancer

Figure 2. 5-anonymous table

non-sensitive sensitive
Name Zip Age Sex Disease
Bob 14850 23 M Flu

Charlie 14850 24 M Lung Cancer
Dave 14850 25 M Heart Disease
Ed 14850 27 M Flu

Frank 14853 29 M Lung Cancer
Gloria 14850 21 F Flu
Hannah 14850 22 F Breast Cancer

Irma 14853 24 F Flu
Jane 14853 26 F Heart Disease

Karen 14853 28 F Ovarian Cancer

Figure 3. Bucketized table

to have succumbed to the flu. After ruling out this possi-
bility, the probability that Ed has lung cancer increases to
2/3. Now, if Alice also somehow discovers that Ed does
not have heart disease, then the fact that he has lung cancer
becomes certain. Here two pieces of knowledge of the form
“Ed does not have X” were enough to fully disclose Ed’s
disease. To guard against this, Machanavajjhala et al. [24]
proposed a new privacy criterion calledℓ-diversity that en-
sures that it takes at leastℓ − 1 such pieces of information
to sufficiently disclose the sensitive value of any individual.
The main idea is to require that, for each bucket, theℓ most
frequent sensitive values are roughly equi-probable.

ℓ-diversity focuses on one type of background knowl-
edge: knowledge of the form “individual X does not have
sensitive value Y”. But an attacker might well have other
types of background knowledge. For example, suppose Al-
ice lives across the street from a married couple, Charlie and
Hannah, who were both taken to the hospital. Charlie is a
24 year-old male, Hannah is a 22 year-old female, and they
both live together in Ithaca (zip code 14850). Once again,
using her knowledge of their genders, ages and zip-codes,
Alice can identify the buckets Charlie and Hannah belong
to. Without additional background knowledge, Alice thinks
that Charlie has the flu with probability2/5. But Alice is
clever and she knows that Hannah and Charlie live together
and that the flu is highly contagious. She deduces that if
both Hannah and Charlie are sick, and if Hannah has the
flu, then Charlie also has the flu. Using this knowledge, she
can update her probability that Charlie has the flu to10/19.
(We show how these probabilities are computed in Section
3.) Note thatℓ-diversity does not guard against the type of
background knowledge in this example.

It is thus clear that we need a more general-purpose
framework that can capture knowledge ofany property of
the underlying table that an attacker might know. More-
over, unlike in the two examples above where we knew Al-
ice’s background knowledge, we will not assume that we
know exactly what the attacker knows. We therefore take
the following approach. In Section 2, we propose a lan-
guage that is expressive enough to capture any property of

the sensitive values in a table. This language enables us to
decompose background knowledge into basic units of in-
formation. Then, given an anonymized version of the table,
we can quantify the worst-case disclosure risk posed by an
attacker withk such units of information;k can be thought
of as a bound on the power of an attacker. In Section 3,
we show how to efficiently preserve privacy by ensuring
that theworst-case(i.e., maximum) disclosure forany k
pieces of information is less than a specified threshold. Fur-
thermore, we show to integrate our techniques into existing
frameworks to find a “minimally sanitized” table for which
the maximum disclosure is less than a specified threshold.
We present experiments in Section 4, related work in Sec-
tion 5, and we conclude in Section 6.

To the best of our knowledge, this is the first such formal
analysis of the effect of unknown background knowledge
on the disclosure of sensitive information.

2. Framework

We begin by modeling the data publishing situation for-
mally. LetP be a (finite) set of people. For eachp ∈ P ,
we associate a tupletp. tp has one or more non-sensitive
attributes, and one sensitive attributeS (e.g., disease) with
finite domain. We overload notation and useS to represent
both the sensitive attribute and its domain. The data pub-
lisher has a tableT , which is a set of tuples corresponding
to a subset ofP . The publisher would like publishT in a
form that protects the sensitive information of any individ-
ual from an attacker with background knowledge that can
be expressed in a languageL. (We propose such a language
to express background knowledge in Section2.2.)

2.1. Bucketization

We first need to carefully describe how the published
data is constructed from the underlying table if we are cor-
rectly interpret this published data. That is, we need to spec-
ify a sanitization method. We briefly describe two popular
sanitization methods.

• The first, which we termbucketization[32], is to par-
tition the tuples inT into buckets, and then, within
each bucket, randomly permute the sensitive attribute
among the tuples in that bucket. The sanitized data
then consists of the buckets with permuted sensitive
values.

• The second sanitization technique isfull-domain gen-
eralization [30], where we coarsen the non-sensitive
attribute domains. The sanitized data consists of the
coarsened table along with generalization used. Note
that, unlike bucketization, the exact values of the non-
sensitive attributes are not released; only the coarsened
values are released.

Note that if the attacker knows the set of people in the table
and their non-sensitive values, then full-domain generaliza-
tion and bucketization are equivalent. In this paper, we use
bucketization as the method of constructing the published
data from the original tableT , although all our results hold
for full-domain generalization as well. We plan to extend
our algorithms to work for other sanitization techniques,
such as data swapping [10] and suppression [27], in the fu-
ture.

We now specify our notion of bucketization more for-
mally. Given a tableT , we partition the tuples into buckets
(i.e., horizontally partition the tableT according to some
scheme), and within each bucket, we apply an independent
random permutation to the column containingS-values.
The resulting set of buckets, denoted byB, is then pub-
lished. For example, if the underlying tableT is as de-
picted in Figure1, then the publisher might publish buck-
etizationB as depicted in Figure3. Of course, for added
privacy, the publisher can completely mask the identifying
attribute (Name) and may partially mask some of the other
non-sensitive attributes (Age, Sex, Zip).

For a bucketb ∈ B, we use the following notation.

Pb set of peoplep ∈ P with tuplestp ∈ b
nb number of tuples inb
nb(s) frequency of sensitive values ∈ S in b

s0b , s
1
b , . . . sensitive values in decreasing order

of frequency inb

2.2. Background Knowledge

We pessimistically assume that the attacker has man-
aged to obtain complete information about which individ-
uals have records in the table, what their non-sensitive data
is, and which buckets in the bucketization these records fall
into. That is, we assume that the attacker knowsPb, the
set of people in bucketb, for eachb ∈ B, and knowstp[X]
for every personp in the table and every non-sensitive at-
tributeX . We call thisfull identification information. One

way of obtaining identification information in practice is to
link quasi-identifying non-sensitive attributes published in
the bucketization (e.g., address, gender, age) with publicly
available data (e.g., phone directories, birth records) [30].

We make the standard random worlds assumption [6]: in
the absence of any further knowledge, we consider all ta-
bles consistent with this bucketization to be equally likely.
That is, the probability oftp ∈ b havings for its sensitive
attribute isnb(s)/nb since each assignment of sensitive at-
tributes to tuples within a bucket is equally likely.

We now need to express any knowledge beyond the iden-
tification information that an attacker might possess. We
will do this using the notion of abasic unitof knowledge,
and we propose a language which consists of finite conjunc-
tions of such basic units. Given full identification informa-
tion, any property of the underlying table is expressible us-
ing a conjunction of the basic units that we propose. We
employ a very simple propositional syntax.

Definition 1 (Atoms) An atom is a formula of the form
tp[S] = s, for some values ∈ S and personp ∈ P with
tupletp ∈ T . We say that atomtp[S] = s involvespersonp
and values.

The interpretation of atoms is obvious:tJack[Disease] = flu
says that the Jack’s tuple has the valueflu for the sensitive
attribute Disease.

The basic units of knowledge in our language arebasic
implications, defined below.

Definition 2 (Basic implications) A basic implicationis a
formula of the form

(∧i∈[m]Ai) → (∨j∈[n]Bj)

for somem ≥ 1, n ≥ 1 and atomsAi, Bj , i ∈ [m], j ∈ [n]
(note that we use the standard notation[n] to denote the set
{0, . . . , n− 1}).

The fact that basic implications are a sufficiently expressive
“basic unit” of knowledge is made precise by the following
theorem.2

Theorem 3 (Completeness)Given full identification in-
formation, any further property of the underlying table can
be expressed using a finite conjunction of basic implica-
tions.

Hence we can model arbitrarily powerful attackers.3 Con-
sider an attacker who knows the disease of every person in

2See appendix for proofs.
3A major shortcoming of theℓ-diversity definition was that its choice of

“basic unit” of knowledge was essentially negated atoms (i.e.,¬tp[S] = s)
which cannot capture all properties of the underlying table. For example,
basic implications can express negated atoms, but not vice-versa. In gen-
eral, we can represent¬t[S] = s by (t[S] = s) → (t[S] = s′), where
s′ 6= s.

the table except for Bob. Then publishing any bucketiza-
tion will reveal Bob’s disease. To avoid pathological and
unrealistic cases like this, we need to assume a bound on
the power of an attacker. We model attackers with bounded
power by limiting the number of basic implications that the
attacker knows. That is, the attacker knows a single formula
from languageLkbasic defined below.

Definition 4 Lkbasic is the language consisting of conjunc-
tions of k basic implications. That is,Lkbasic consists of
formulas of the form∧i∈[k]ϕi where eachϕi is a basic im-
plication.

k can thus be viewed as a bound on the attacker’s power and
can be increased to provide more conservative guarantees of
the privacy.

Note that our choice of basic implications for the “ba-
sic unit” of our language has important consequences on
our assumptions about the attacker’s power. In particu-
lar, some properties of the underlying table might require
a large number of basic implications to express. We discuss
this issue further in Section 6. Nevertheless, basic implica-
tions can be used to succinctly express many natural types
of background knowledge. For example, the Alice’s knowl-
edge that “Ed does not have ovarian cancer” can be written
as a basic implication as follows

tEd[Disease] = ovarian cancer → tEd[Disease] = flu

In general, we can represent¬t[S] = s by (t[S] = s) →
(t[S] = s′), wheres′ 6= s.

Alice’s knowledge that “if Hannah and Charlie are both
sick and if Hannah has the flu, then Charlie also has the flu”
is simply the basic implication

tHannah[Disease] = flu → tCharlie[Disease] = flu

Note that maintaining privacy when there is dependence be-
tween sensitive values, especiallyacross buckets, is a prob-
lem that has not been previously addressed in the privacy
literature. The assignments of individuals to sensitive val-
ues in different buckets are not necessarily independent. As
we saw in the example with Hannah and Charlie, fixing a
particular assignment in one bucket could affect what as-
signments are possible in another. One of the contributions
of this paper is that we provide a polynomial time algorithm
for computing the maximum disclosure even when the at-
tacker has knowledge of such dependencies.

2.3. Disclosure

Having specified how the bucketizationB is constructed
from the underlying tableT and how an attacker’s knowl-
edge about sensitive information can be expressed in lan-
guageLkbasic, we are now in a position to define our notion
of disclosure precisely.

Definition 5 (Disclosure risk) Thedisclosure riskof buck-
etizationB with respect to background knowledge repre-
sented by some formulaϕ in languageLkbasic is

max
tp∈T,s∈S

Pr(tp[S] = s | B ∧ ϕ)

That is, disclosure risk is the likelihood of the most highly
predicted sensitive attribute assignment.

Definition 6 (Maximum disclosure) The maximum dis-
closureof bucketizationB with respect to languageLkbasic

that expresses background knowledge is

max
tp∈T,s∈S,ϕ∈Lk

basic

Pr(tp[S] = s | B ∧ ϕ)

Our goals are now to

1. efficiently calculate the maximum disclosure for a
given bucketization, and

2. efficiently find a “minimally sanitized” bucketization
for which the maximum disclosure is below a specified
threshold (if such a bucketization exists).

We will make precise the notion of “minimally sani-
tized” in Section3.4; we want “minimal sanitization” in
order to preserve the utility of the data.

3. Checking And Enforcing Privacy

In Section2.2, we defined basic implications as the “unit
of knowledge” and showed that this was a completely ex-
pressive (in the presence of full identification information)
and sufficiently natural choice. In this section, we show
how to efficiently calculate and limit maximum disclosure
against an attacker who has full identification information
and has up tok additional pieces of background knowledge
(i.e., up tok basic implications). In order to do this, we
will show in Theorem 9 that there is a set ofk basic im-
plications that maximizes disclosure with respect toLkbasic.
Furthermore, each such implication hasonly one atom in the
antecedent and one atom in the consequent. This motivates
the following definition.

Definition 7 (Simple implications) A simple implication
is a formula of the formA→ B for some atomsA,B.

3.1. Hardness of computing disclosure risk

Unfortunately, naive methods for computing the maxi-
mum disclosure will not work – in fact, we can show that
computing the disclosure risk of a given bucketization with
respect to a given set ofk simple implications is#P-hard.
Note thatk simple implications can be written in2-CNF,

for which satisfiability is easily checkable. Complexity is
introduced in trying tosimultaneouslysatisfy thek implica-
tionsand the given bucketization. In fact, deciding whether
a given bucketization is consistent with a set ofk simple
implications isNP-complete.

Theorem 8 Given as input bucketizationB and a conjunc-
tion of simple implicationsϕ, the problem of deciding ifB
andϕ are both satisfiable by some tableT is NP-complete.
Moreover, given an atomC as further input, the problem of
computingPr(C | B ∧ ∧i∈[k]ϕi) is #P-complete.

3.2. A special form for maximum disclosure

It turns out that, despite the hardness results above, com-
puting themaximumdisclosure with respect to language
Lkbasic can be done in polynomial time. The key insight
is summarized in Theorem 9.

Theorem 9 For any bucketization, there is a set ofk sim-
ple implications, all sharing the same consequent,such that
the conjunction of thesek simple implications maximizes
disclosure with respect toLkbasic.

This insight is tremendously useful in devising a
polynomial-time dynamic programming algorithm for com-
puting the maximum disclosure with respect toLkbasic as it
allows us to restrict our attention to sets ofk simple impli-
cations of the form(tpi

[S] = si) → (tp[S] = s) for people
p, pi ∈ P , and valuess, si ∈ S, i ∈ [k]. The proof of
Theorem 9 follows from the following two lemmas.

Lemma 10 For any formulasψ, ϕ, θi, ϕi,

Pr(ϕ | ψ ∧ (∧i∈[k](θi → ϕi)))
≤ Pr(ϕ | ψ ∧ (∧i∈[k](θi → ϕ)))

Starting with any set ofk basic implications that maxi-
mize disclosure,4 Lemma10 enables us to replace the con-
sequent in all the basic implications by a single common
atom (namely the atom corresponding to the highest pre-
dicted assignment of sensitive value to an individual), while
still maintaining maximum disclosure.

Lemma 11 For any formulasψ,B, θi, whereB is an atom
andθi is a conjunction of atoms, there exist atomsAi such
that

Pr(B | ψ ∧ (∧i∈[k](θi → B)))
≤ Pr(B | ψ ∧ (∧i∈[k](Ai → B))).

4There always exists some set ofk basic implications that maximize
disclosure since there are only finitely many atoms and thereforeLk

basic is
finite.

∧i∈[2](Ai → Bi) ∧i∈[2](Ai → C)

A0 A1 B0 B1 C A0 A1 B0 B1 C

a 0 0 * * 0 = 0 0 * * 0 a

b 0 0 * * 1 = 0 0 * * 1 b

c 0 1 * 1 0
d 0 1 * 1 1 ⊆ 0 1 * * 1 d′

e 1 0 1 * 0
f 1 0 1 * 1 ⊆ 1 0 * * 1 f ′

g 1 1 1 1 0
h 1 1 1 1 1 ⊆ 1 1 * * 1 h′

Figure 4. Truth tables

Next, Lemma11 allows us to replace the antecedent of
each of the resulting implications by an atom (possibly with
a different atom for each implication), while still maintain-
ing maximum disclosure.

In both Lemmas10 and11, we useψ to represent the at-
tacker’s knowledge about the bucketizationB. However, it
is worthwhile pointing out that neither lemma places any re-
striction onψ or on the underlying probability distribution.
This makes the results presented here extremely general and
powerful becausethey characterize the form of background
knowledge that maximizes disclosure risk for any form of
anonymization and for any additional background knowl-
edge.

The main idea behind the proof of Lemma 10 (and also
Lemma 11) can be illustrated as follows. Consider a buck-
etizationB. Let (tpi

[S] = si) → (tp′i [S] = s′i), for
i ∈ {0, 1}, be two simple implications which maximize the
disclosure ofB with respect toL2

basic. For convenience,
we letAi denote the atomtpi

[S] = si andBi the atom
tp′

i
[S] = s′i. Let C be the atomtp[S] = s such that

Pr(C | B ∧ (∧i∈[2](Ai → Bi))) is the maximum disclosure.

Now let us restrict our attention to the set of tables con-
sistent withB. LetT1 be the set of tables satisfying the sim-
ple implicationsA0 → B0 andA1 → B1, and letT2 be the
set of tables satisfyingA0 → C andA1 → C. Figure 4 is a
diagrammatic representation ofT1 andT2. Each row in the
the truth table on the left (resp., right) in Figure 4 represents
a subset ofT1 (resp.,T2). The variablesa, b, c, d, e, f, g, h in
the left-most (resp.,a, b, d′, f ′, h′ in the right-most) column
represents the size of the corresponding set. For example,
the set of tables represented by the second row is the set of
tables that satisfy the atomC but do not satisfyA0 andA1,
and the number of such of tables isb.

It is now clear from Figure 4 that the implicationsA0 →
C andA1 → C also produce the maximum disclosure as
follows. Pr(C | ∧i∈[2]Ai → Bi) = b+d+f+h

a+b+c+d+e+f+g+h

and Pr(C | ∧i∈[2]Ai → C) = b+d′+f ′+h′

a+b+d′+f ′+h′ . Also
b+d+f+h

a+b+c+d+e+f+h ≤ b+d+f+h
a+b+d+f+h ≤ b+d′+f ′+h′

a+b+d′+f ′+h′ since
d ≤ d′, f ≤ f ′, andh ≤ h′. ThusPr(C | ∧i∈[2]Ai →
Bi) ≤ Pr(C | ∧i∈[2]Ai → C).

3.3. Computing maximum disclosure efficiently

Having reduced our search space from sets of basic im-
plications that could lead to maximum disclosure to sets of
simple implications with the same consequent, we are now
in a position to create an efficient algorithm to compute the
maximum disclosure. We want tomaximizePr(A | B ∧
∧i∈[k](Ai → A)) over all atomsA,Ai, i ∈ [k]. According
to the following lemma, it suffices to construct an efficient
algorithm tominimize, over all atomsA,Ai, i ∈ [k],

Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B) . (1)

Lemma 12 For any atomsA,Ai, i ∈ [k],

Pr(A | B ∧ (∧i∈[k]Ai → A))
= 1

Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B)
+1

In Section 3.3.1, we show how to minimizePr(∧i∈[k]¬Ai |
B) over atomsAi involving individuals in the same bucket.
We use this in Section 3.3.2 to provide a dynamic pro-
gramming algorithm MINIMIZE 1 that minimizes Formula
(1) over atomsA,Ai, i ∈ [k] involving individuals
in the same bucket. Finally, in Section 3.3.3, we use
M INIMIZE 1 to construct another dynamic programming al-
gorithm MINIMIZE 2 to minimize Formula (1) jointly over
the entire bucketization.

3.3.1 Minimizing Pr(∧i∈[k]¬Ai | B) for one bucket

Consider all sets ofk atoms involving people whose tuples
are in a singleb ∈ B. Each set ofk atoms is associated with
a tuple(l, k0, . . . , kl−1), wherel is the number of people in-
volved in thek atoms, andki is the number of atoms involv-
ing thei-th person. We label thek atomsAi,j for i ∈ [l] and
j ∈ ki such that atomAi,j is thej-th atom (out ofki atoms)
involving thei-th person. Lemma 13 provides a closed form
for the minimum value ofPr(∧i∈[k]¬Ai | B) over all sets of
k atoms associated with a particular(l, k0, . . . , kl−1).

Lemma 13 Let b ∈ B be any bucket. Letk, l, andk0, k1,
. . . , kl−1 be such thatk = Σi∈[l]ki and ki ≥ ki+1 for
all i ∈ [l − 1]. Let s0b , s

1
b , s

2
b , . . . be the sensitive val-

ues arranged in descending order of frequency inb. Then
Pr(∧i∈[l],j∈[ki]¬Ai,j | B) is minimized over all atomsAi,j
when,Ai,j is tpi

[S] = sjb, for all i ∈ [l] and all j ∈ [ki],
wherep0, p1, . . . , pl−1 ∈ P are distinct people with tuples
tpi

in bucketb. Consequently, the minimum probability is
given by:

∏
i∈[l]

nb−i−
P

j∈[ki]
nb(s

j

b
)

nb−i
(2)

Algorithm 1 : M INIMIZE 1(b, i, k̂i, k̂)
Input: b is the bucket under consideration
Input: i is the index of the next personpi for whichki (i.e., the number

of atoms involving personpi) is to be determined (initially0)
Input: k̂i is the the upper bound forki (initially k)
Input: k̂ is the number of atoms for which the people involved have yet to

be been determined (initiallyk)
1: pmin← 1
2: for ki = 1, 2, . . . , min(k̂i, k̂) do
3: p← M INIMIZE 1(b, i + 1, ki, k̂ − ki)

4: p←
nb−i−

P

j∈[ki] nb(s
j
b
)

nb−i
× p

5: pmin←min(pmin, p)
6: end for

7: return pmin

Note thatl ≤ k andk =
∑

i∈[l] ki since each atom in-
volves at exactly one person. So the question of minimizing
Pr(∧i∈[k]¬Ai|B) over all atomsAi that mention only tuples

in b becomes one of minimizing
∏
i∈[l]

nb−i−
P

j∈[ki] nb(s
j

b
)

nb−i

over alll ≤ k and allk0, . . . , kl−1 such that
∑

i∈[l] ki = k.

This can easily be done using Algorithm1. Thus, calling
M INIMIZE 1(b, 0, k, k) minimizesPr(∧i∈[k]¬Ai | ϕB) over
all atomsAi that involve people with tuples in bucketb. It is
easy to modify the algorithm to remember the minimizing
values ofk0, . . . , kl−1, and thus we can even reconstruct the
set of minimizing atoms according to Lemma13.

Algorithm complexity. Note that the parameters of
M INIMIZE 1 are bounded. That is, for every recursive call
M INIMIZE 1(b, i, ki, k̂) that occurs inside the initial call to
M INIMIZE 1(b, 0, k, k), parameterb does not change, and
parametersi, k̂i, k̂ are all bounded byk (i.e., the number of
implications we allow the attacker to know). So we can eas-
ily turn this into anO(k3) time and space algorithm using
dynamic programming.

3.3.2 Minimizing Formula (1) within one bucket

Let us now minimize
Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B) over all k + 1

atomsA andAi, for i ∈ [k], that only mention tuples in
bucketb. Clearly anyA,Ai that simultaneously minimizes
the numerator and maximizes the denominator will work.
Now we know that MINIMIZE 1(b, 0, k+1, k+1) will min-
imize the numerator. According to Lemma 13, at least one
of these minimalk+1 atoms mention the most frequent sen-
sitive value. So, taking this atom to beA, we maximize the
denominator as well. Thus, we can compute the minimum
value as

M INIMIZE 1(b, 0, k + 1, k + 1) ×
nb

nb(s0b)
.

Algorithm 2 : M INIMIZE 2(i, hi, a)
Input: i is the current bucketbi (initially 0)
Input: hi is number of atomsAj , j ∈ [k] that we have yet to determine

(initially k)
Input: a is a flag representing whether atomA involves a person in an

earlier bucketbj , j < i (initially false)
1: rmin←∞
2: if i = |B| then
3: // Finished all buckets
4: return rmin

5: end if
6: for hi+1 = 0, 1, 2, . . . , hi do
7: u← M INIMIZE 1(bi, 0, hi+1, hi+1)
8: x← M INIMIZE 2(i + 1, hi − hi+1, true)
9: if a = false then

10: // AtomA does not involve an earlier bucketbj , j < i

11: // So eitherA involvesbi...
12: v← M INIMIZE 1(bi, 0, hi+1 + 1, hi+1 + 1)

13: rmin←min(rmin, v × x×
nbi

nbi
(s0

bi
)
)

14: // ... or elseA involves a later bucketbj , j > i

15: rmin←min(rmin, u×M INIMIZE 2(i+1, hi−hi+1, false))
16: else
17: // AtomA involves an earlier bucketbj , j < i

18: rmin←min(rmin, u× x)
19: end if
20: end for

21: return rmin

3.3.3 Minimizing Formula (1) over all buckets

We look again at minimizing
Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B) , except
this time, we allowA andAi for i ∈ [k] to mention tuples
in possibly different buckets. To do this, we make use of
the independence between buckets. Suppose that thek + 1
minimizing atoms (includingA) are such thatki of them
mention tuples in bucketbi, for eachi ∈ [l] for somel ≤
k + 1. Let bj be the bucket containing the tuple mentioned
by A. Then, since the permutation of sensitive values for
each bucket was picked independently, we can compute the
minimum as

nbj

nbj
(s0bj

)
×

∏

i∈[l]

M INIMIZE 1(bi, 0, ki, ki).

So we need to minimize the above for all choices ofl ≤
k + 1, j, andk0, k1, . . . , kl−1 (which we can assume with-
out loss of generality to be in descending order). Assuming
buckets inB are labeled asb0, b1, b2, . . . , this is done by the
M INIMIZE 2.

So MINIMIZE 2(0, k, true) minimizes
Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B) over all atomsA,Ai, i ∈ [k]. It
is easy to modify the algorithm to remember thei’s and
hi’s, and hence reconstruct the minimizing atoms.

Algorithm complexity. Note that the parameters of
M INIMIZE 2 are bounded. That is, for every recursive call
to MINIMIZE 2(i, hi, a) that occurs inside the initial call
to MINIMIZE 2(0, k, true), parameteri is bounded by the

number of buckets, parameterki is bounded by the total
number of implicationsk, anda is either true or false .
Thus, assuming that we first memoize (i.e., precompute
all possible calls to) MINIMIZE 1 (which we can do in
time O(|B| × k3)), we can modify the MINIMIZE 2 algo-
rithm using dynamic programming to take an additional
O(|B| × k)time and space. So the whole algorithm can be
made to run inO(|B| × k3)time and space.

Incidentally, if one had two bucketizationsB andB∗ that
differed only in thatB∗ was the result of removing some
buckets fromB and addingx new buckets toB, then, after
we run the algorithm forB, we memoize MINIMIZE 1 for
thex new buckets; so the incremental cost of running the
algorithm forB∗ isO(|B∗| × k + x× k3)-time. Moreover,
if one knew in advance which buckets were going to be re-
moved, one could order the bucketsb0, b1, . . . appropriately
to reuse much of the memoization of MINIMIZE 2 as well.

3.4. Finding a safe bucketization

Armed with a method to compute the maximum disclo-
sure, we now show how to efficiently find a “minimally san-
itized” bucketization for which maximum disclosure is be-
low a given threshold. Intuitively, we would like a minimal
sanitization in order to preserve the utility of the published
data. Let us be more concrete about the notion of minimal
sanitization. Given a table, consider the set of bucketiza-
tions of this table. We impose a partial ordering� on this
set of bucketizations whereB � B′ if and only if every
bucket inB′ is the union of one of more buckets inB. Thus
the bucketizationB⊤ that has all the tuples in one bucket is
the unique top element of this partial order, and the bucketi-
zationB⊥ that has one tuple per bucket is the unique bottom
element of this partial order. Our notion of a “minimally
sanitized” bucketization is one that is as low as possible in
the partial order (i.e., as close toB⊥) while still having max-
imum disclosure lower than a specified threshold.

Definition 14 ((c, k)-safety) Given a thresholdc ∈ [0, 1],
we say thatB is a (c, k)-safe bucketizationif the maximum
disclosure ofB with respect toLkbasic is less thanc.

If the maximum disclosure ismonotonicwith respect to
the partial ordering�, then finding a�-minimal(c, k)-safe
bucketization can be in time polynomial in the height of the
bucketization lattice (by doing a binary search betweenB⊤

andB⊥). The following theorem says that this is indeed the
case.

Theorem 15 (Monotonicity) Let B and B′ be bucketiza-
tions such thatB � B′. Then the maximum disclosure of
B is at least as high as the maximum disclosure ofB′ with
respect toLkbasic.

If it is necessary to find allall �-minimal (c, k)-safe buck-
etizations, then we can make use of existing algorithms

for efficient itemset mining [4],k-anonymity [7, 22] and
ℓ-diversity [24].5 For example, we can take any existing al-
gorithm for finding all the�-minimal k-anonymous buck-
etizations such as Incognito [22], and simply replace the
check fork-anonymity with the polynomial time check for
(c, k)-safety that we developed in Section 3.3.

4. Experiments

In this section, we present a case-study of our frame-
work for worst-case disclosure using the Adult Database
from the UCI Machine Learning Repository [26]. We only
consider the projection of the Adult Database onto five at-
tributes – Age, Marital Status, Race, Gender and Occupa-
tion. The dataset has 45,222 tuples after removing tuples
with missing values. We treat Occupation as the sensitive
attribute; its domain consists of fourteen values. We use
pre-defined generalization hierarchies for the attributessim-
ilar to the ones used in [22]. Age can be generalized to six
levels (unsuppressed, generalized to intervals of size 5, 10,
20, 40, or completely suppressed), Marital Status can be
generalized to three levels, and Race and Gender can each
either be left as is or be completely suppressed. We con-
sider all the possible anonymized tables using those gen-
eralizations, ignoring those anonymizations that contained
a bucket where all tuples had the same sensitive attribute,
because such anonymizations lead to full disclosure with-
out any additional background knowledge. All experiments
were run under Linux (Ubuntu) on a machine with a 2.6GHz
Intel Pentium 4 processor and 512MB of RAM.

We computed the maximum disclosure for background
knowledge ranging from zero pieces of knowledge (i.e.,
no background knowledge) to twelve pieces of knowl-
edge for various bucketizations. Figure5 plots, for one
anonymized table, the number of pieces of knowledge avail-
able to an adversary against the maximum disclosure for
both negated atoms (ℓ-diversity) and basic implications.
In the anonymized table used, all the attributes other than
Age were suppressed and the Age attribute was general-
ized to intervals of size20. The solid line corresponds to
implication statements and the dotted line corresponds to
negated atoms. This graph agrees with our earlier observa-
tion that implication-type background knowledge subsumes
negation; the maximum disclosure fork negated atoms is
always smaller than the maximum disclosure fork impli-
cations. However, note that, for a givenk, the difference
between the maximum disclosure for negated atoms and for
basic implications is not too large. One favorable outcome
of this observation is that an anonymized table which toler-
ates maximum disclosure due tok negated atoms need not

5While these algorithms typically have worst-case exponential running
time in the height of the bucketization lattice, they have been shown to run
fast in practice.

be anonymized much further to defend againstk implica-
tions.

Intuitively, if all the buckets in a table have a nearly uni-
form distribution, then the maximum disclosure should be
lower, but the exact relationship is not obvious. To get a
better picture, we performed the following experiment. We
fixed a valuek for the number of pieces of information.
For every entropy valueh, we looked at all tablesT (h)
for which the minimum entropy of the sensitive attribute
over all buckets was equal toh. AmongstT (h) we found
the tableT (h) with the least maximum disclosure fork im-
plications. Let the worst case disclosure forT (h) givenk
pieces of knowledge be denoted byw(T (h), k). We plotted
h versusw(T (h), k) for k = 1, 3, 5, 7, 9, 11 in Figure 6. We
see a behaviour which matches our intuition. For a givenk,
the disclosure risk monotonically decreases with increasein
h. This is because increasingh means that we are looking
at tables with more and more entropy in their buckets (and,
consequently, less skew). We plotted an analogous graph
(which we do not show here) for negation statements and
observed very similar behaviour.

5. Related Work

Publishing anonymous data involves trading off utility
for privacy. Many metrics have been proposed to quantify
the privacy guaranteed. ‘Perfect privacy’ [12, 25] guaran-
tees that published data does not disclose any information
about the sensitive data. However, checking whether a con-
junctive query discloses any information about the answer
to another conjunctive query is shown to be very hard (Πp

2-
complete [25]). Subsequent work showed that checking
for perfect privacy can be done efficiently for many sub-
classes of conjunctive queries [23]. Perfect privacy places
extremely strong restrictions on the types of queries that
can be answered [25] (in particular, aggregate statistics can-
not be published). Less restrictive privacy definitions based
on asymptotic conditional probabilities [11] and certain an-
swers [28] have been proposed. Statistical databases allow
answering aggregates over sensitive values without disclos-
ing the exact value [1]. Work on de-identification, likek-
anonymity [30] and “blending in a crowd” [8], ensures that
an individual cannot be associated with a unique tuple in
an anonymized table. However, under both of those defini-
tions, sensitive information can be disclosed if groups are
homogeneous.

Background knowledge can lead to unwanted disclosure
of sensitive information. Su et al. [29] and Yang et al. [33]
limit disclosure in the presence of dependencies in the data
known to the data publisher. The notion ofℓ-diversity [24]
guards against limited amounts of background knowledge
unknown to the data publisher. Farkas et al. [16] provide a
survey of indirect data disclosure via inference channels.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12

m
ax

 d
is

cl
os

ur
e

number of conjuncts

implication
negation

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

m
in

 w
or

st
 c

as
e

di
sc

lo
su

re

min entropy

number of implications = 1
number of implications = 3
number of implications = 5
number of implications = 7
number of implications = 9

number of implications = 11

Figure 5. Disclosure vs # pieces of background knowledge Figure 6. Entropy vs Maximum Disclosure Risk

There are several approaches to anonymizing a dataset
to ensure privacy. These include generalizations [7, 22, 27],
cell and tuple suppression [9, 27], adding noise [1, 5, 8, 15],
publishing marginals that satisfy a safety range [14], and
data swapping [10] - a technique where attributes are
swapped between tuples in such a way that certain marginal
totals are preserved. Queries can also be posed online and
the answers audited [20] or perturbed [13]. Not all ap-
proaches guarantee privacy. For example, adding uncorre-
lated random noise to the attributes in a tuple is not suffi-
cient to ensure privacy. Spectral techniques can be used to
separate much of the noise from the data [17, 19].

Anatomy [32] is a recently proposed technique for
anonymizing a dataset. It corresponds to exactly to the
notion of bucketization that we use in this paper. When
the attacker knows full identification information, then gen-
eralization provides no more privacy than bucketization.
In practice, however, we recommend generalizing the at-
tributes in the buckets before publishing the data for the
following reasons. It is very rare for an attacker to actu-
ally have full identification information. Thus disclosing
the precise values of the non-sensitive attributes will allow
an attacker to use linking attacks [30] to identify individu-
als in the anonymized table. In many cases, the fact that a
particular individual is in the table is considered sensitive
information [8]. Furthermore, certainty that an individual is
in the table leads to more precise inference about sensitive
values than uncertainty about the presence of the individual.

The utility of data that has been altered to preserve pri-
vacy has often been studied in contexts where the future use
of the data is known. Examples of such work are methods to
reconstruct association rules [15], distributions of continu-
ous variables [3, 5] from noisy data; methods to perturb the
values of continuous numeric attributes so that data clusters
can be reconstructed [8]; and methods to anonymize data
while trying to maximize decision tree accuracy [18, 31].
There have also been some negative results for utility. Pub-
lishing a singlek-anonymous table has been shown to be

affected by the curse of dimensionality [2]; large portions
of the data are required to be suppressed to ensure privacy.
Subsequent work [21] shows how to publish several tables
instead of a single one to combat this curse.

6. Conclusions

In this paper, we initiate a formal study of the worst-
case disclosure risk with background knowledge. Critically,
our analysis does not assume that we are aware of the exact
background knowledge possessed by the attacker. We only
assume bounds on the the attacker’s background knowledge
in terms of the number of basic units of knowledge that
the attacker possesses. We propose basic implications as
an expressive and natural choice for these basic units of
knowledge. Although computing the probability of disclo-
sure associated with a specific set ofk basic implications
is intractable, we show how to efficiently determine the
worst-case over all sets ofk basic implications. In addition
to assessing maximum disclosure, we show how to search
for a bucketization that is robust (to a desired threshold)
against anyk units of knowledge by incorporating the check
for (c, k)-safety into existing lattice-search algorithms. Fi-
nally, we demonstrate that, in practice,ℓ-diversity has sim-
ilar maximum disclosure risk to our notion of(c, k)-safety,
which guards against a richer class of background knowl-
edge.

In this paper we choose basic implications as our units of
knowledge so that we can express any background knowl-
edge. It is clear that our algorithms yield extremely conser-
vative bucketizations if we try to protect against an attacker
who knows information that can only be expressed using
a large number of basic implications. Since basic implica-
tions are essentially CNF clauses with at least one negative
atom, our language suffers from an exponential blowup in
the number of basic units required to express arbitrary DNF
formulas. Other choices of basic units may lead to equally
expressive languages while at the same time requiring fewer

basic units to express certain natural properties. One ap-
proach to reducing the number of basic units required to
express a property is to add more powerful atoms to our ex-
isting language. For example, an interesting class of DNF
formulas are those of the form

∨s∈S(tp[S] = s ∧ tp′ [S] = s)

Such formulas express equality between the sensitive at-
tributes of two tuples and can be expressed using|S| ba-
sic implications. Finding the right choice of basic units of
knowledge is an important direction of future work.

Other directions for future work include extending our
framework to allow for probabilistic background knowl-
edge, studying cost-based disclosure (since it was observed
in [24] that not all disclosures are equally bad), and fi-
nally extending our results to other forms of anonymiza-
tion beyond bucketization and generalization, such as data-
swapping and collections of anonymized marginals[21].

References

[1] N. R. Adam and J. C. Wortmann. Security-control methods
for statistical databases: a comparative study.ACM Comput.
Surv., 21(4):515–556, 1989.

[2] Charu C. Aggarwal. On k-anonymity and the curse of di-
mensionality. InVLDB, pages 901–909, 2005.

[3] D. Agrawal and C. C. Aggarwal. On the design and quan-
tification of privacy preserving data mining algorithms. In
PODS, 2001.

[4] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules in large databases. InVLDB, 1994.

[5] R. Agrawal and R. Srikant. Privacy preserving data mining.
In SIGMOD, 2000.

[6] F. Bacchus, A. J. Grove, J. Y. Halpern, and D. Koller. From
statistical knowledge bases to degrees of belief.A.I., 87(1-2),
1996.

[7] R. J. Bayardo and R. Agrawal. Data privacy through pptimal
k-anonymization. InICDE, 2005.

[8] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee.
Toward privacy in public databases. InTCC, 2005.

[9] L. H. Cox. Suppression, methodology and statistical disclo-
sure control.Journal of the American Statistical Association,
75, 1980.

[10] T. Dalenius and S. Reiss. Data swapping: a technique for
disclosure control.Journal of Statistical Planning and Infer-
ence, 6, 1982.

[11] N. Dalvi, G. Miklau, and D. Suciu. Asymptotic conditional
probabilities for conjunctive queries. InICDT, 2005.

[12] A. Deutsch and Y. Papakonstantinou. Privacy in database
publishing. InICDT, 2005.

[13] I. Dinur and K. Nissim. Revealing information while pre-
serving privacy. InPODS, pages 202–210, 2003.

[14] A. Dobra. Statistical tools for disclosure limitation in multi-
way contingency tables. PhD thesis, Carnegie Mellon Uni-
versity, 2002.

[15] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy
breaches in privacy preserving data mining. InPODS, 2003.

[16] C. Farkas and S. Jajodia. The inference problem: a survey.
SIGKDD Explor. Newsl., 4(2), 2002.

[17] Z. Huang, W. Du, and B. Chen. Deriving private information
from randomized data. InSIGMOD, 2004.

[18] Vijay S. Iyengar. Transforming data to satisfy privacycon-
straints. InKDD, pages 279–288, 2002.

[19] H. Kargupta, S. Datta, Q. Wang, and K. Sivakumar. On
the privacy preserving properties of random data perturba-
tion techniques. InICDM, pages 99–106, 2003.

[20] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable au-
diting. In PODS, 2005.

[21] Daniel Kifer and Johannes Gehrke. Injecting utility into
anonymized datasets. InSIGMOD, 2006.

[22] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Incognito:
Efficient fulldomain k-anonymity. InSIGMOD, 2005.

[23] A. Machanavajjhala and J. Gehrke. On the efficiency of
checking perfect privacy. InPODS, 2006.

[24] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-
subramaniam.ℓ-diversity: Privacy beyondk-anonymity. In
ICDE, 2006.

[25] G. Miklau and D. Suciu. A formal analysis of information
disclosure in data exchange. InSIGMOD, 2004.

[26] U.C. Irvine Machine Learning Repository.
http://www.ics.uci.edu/ mlearn/mlrepository.html.

[27] P. Samarati and L. Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforcement
through generalization and suppression. Technical report,
CMU, SRI, 1998.

[28] K. Stoffel and M. Studer. Provable data privacy. InDEXA,
2005.

[29] T. Su and G. Ozsoyoglu. Controlling fd and mvd inferences
in multilevel relational database systems.IEEE TKDE, 3(4),
1991.

[30] L. Sweeney. k-anonymity: a model for protecting pri-
vacy. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[31] K. Wang, B. C. M. Fung, and P. S. Yu. Template-based
privacy preservation in classification problems. InICDM,
November 2005.

[32] X. Xiao and Y. Tao. Anatomy: Simple and effective privacy
preservation. InTo appear in VLDB, 2006.

[33] X. Yang and C. Li. Secure xml publishing without infor-
mation leakage in the presence of data inference. InVLDB,
pages 96–107, 2004.

A Completeness

Proof of Theorem 3 Since the attacker is assumed to have
full identification information, the values oftp[X] and
which bucket tp falls into are assumed to be common
knowledge. The only remaining information that it takes
to completely define a particular table is the mapping be-
tween people and sensitive values within each bucket. Thus
we need to show that a finite conjunction of basic implica-
tions can express any set of mappings between people in
the table and sensitive values. Note that, since the domain
of S and the table size are finite, there are only finitely many
mappings between people in the table and sensitive values.
Any particular such mapping between people and sensitive
values can clearly be represented by a finite conjunctions of
atoms of the formtp = s. Thus any set of mappings be-
tween people and sensitive values can be represented by a
finite disjunction of finite conjunctions of atoms. We show
that, in fact, a finite conjunction of basic implications can
representanyfinite boolean combination of atoms.

Consider any finite boolean combination of atoms. With-
out loss of generality, assume that the formula is in conjunc-
tion normal form. It thus remains to show that any disjunc-
tion of literals (i.e., atoms or their negations) can be repre-
sentated by a finite conjunction of basic implications. We
break this into two cases dependeing on whether or not the
given disjunction contains at least one negative literal. In
the first case, if the disjunction contains at least one negative
literal, then the disjunction is equivalent to a single a basic
implicationϕ→ θ whereϕ is the conjunction of the atoms
appearing in the negative literals andψ is the conjunction
of the atoms appearing in the positive literals. In the sec-
ond case, if the disjunction contains no negative literals,the
disjunction is equivalent to the following conjunction of ba-
sic implications:∧s∈S(tp = s → ϕ), whereϕ is the given
disjunction itself andp is any person in the table.�

B Hardness

Proof of Theorem 8 Consider the problem of deciding if
B andϕ are both satisfiable by some tableT , given as input
a bucketization and a conjunction of simple implications. It
is clear that the problem is inNP, because given a map-
ping of tuples to sensitive values (which has a description
that is linear in bucketization size), we can verify that it is
indeed consistent with the bucketization and that it satisfies
∧i∈[k](Ai → Bi) in polynomial time.

To show that the problem isNP-hard, we reduce the
problem of deciding3-CNF satisfiability, which isNP-
complete, to this problem as follows. Consider any3-CNF
formula. We construct a bucketization and set of basic im-
plications from this formula as follows. For each variable
x mentioned in the3-CNF formula, we construct a bucket

containing two tuples, namedtx andt¬x, and two sensitive
values,T andF . For each clauseC of the formX ∨ Y ∨Z
in the3-CNF formula (whereX,Y, Z are either variables or
their negations), we construct a bucket containing five tu-
ples, namedtCX , t

C
Y , t

C
Z , t

C
dummy1, t

C
dummy2, and five sensi-

tive values,T, T, T, F, F . The background knowledge then
consists of the following set of statements:

• tx[S] = T → tCX [S] = T , for every variablex and
every clauseC containing literalX ≡ x,

• tCX [S] = T → tx[S] = T , for every variablex and
every clauseC containing literalX ≡ x,

• t¬x[S] = T → tCX [S] = T , for every variablex and
every clauseC containing literalX ≡ ¬x,

• tCX [S] = T → t¬x[S] = T , for every variablex and
every clauseC containing literalX ≡ ¬x, and

• tCdummy1[S] = T → tCdummy2[S] = T , for every
clauseC.

Let k be the number of implications that we added above.
Note thatk is linear in the size of the3-CNF formula. It is
fairly clear that if there is a mapping of tuples to values that
is consistent with the bucketization and background knowl-
edge, then assigning each variablex to the valuetx[S] sat-
isfies the3-CNF formula (since, in each bucket correspond-
ing to a clause, at least one tuple representing a literal must
have sensitive valueT). So we can decide if the3-CNF for-
mula is satisfiable, given an oracle for our problem. Thus
the decision problem isNP-complete.

It should therefore not come as a surprise that computing
the probability ofPr(C | B ∧ (∧i∈[k](Ai → Bi))) is #P-
complete since computing the probability and counting sat-
isfying assignments are intimately related. We reduce the
problem of counting the satisfying assignments of a2-CNF
formula, which is#P-complete [?], to an instance of com-
putingPr(A | B ∧ (∧i∈[k](Ai → A′

i))). Consider a2-CNF
formulaϕ, with variablesx0, . . . , xn−1. We can find a satis-
fying assignment ofϕ in polynomial time sinceϕ is 2-CNF.
Let∧i∈[n]Xi represent the satisfying assignment, whereXi

is eitherxi or ¬xi, depending on the value ofxi in the sat-
isfying assignment. Consider a complete binary tree withn
leaf nodes, where theith leaf is associated with the literal
Xi. For every non-leaf node, we introduce a new variabley
and a constant number of3-CNF clauses that are equivalent
to y ↔ U ∧ V , whereU andV are the literals at the left
and right children of the non-leaf node. Letϕ′ be the con-
junction of all the newly-introduced3-CNF clauses. Then
the conjunction of all the newly-introduced3-CNF clauses
implies thaty↔∧i∈[n]Xi. Note thatϕ′ is polynomial in the
size ofϕ since the complete binary tree withn leaves has
at mostO(n) nodes, and we introduced a constant number
of clauses for each internal node.ϕ ∧ϕ′ is 3-CNF formula.

And ϕ ∧ ϕ ∧ y is a 3-CNF formula with exactly one sat-
isfying assignment (namely, setting each variable inϕ ac-
cording to∧i∈[n]Xi, and each newly-introduced variable to
true). So, applying the construction from the proof of The-
orem8 to getA andAi fromϕ ∧ ϕ′, it is easy to check that

1
Pr(ty [S]=T |ϕB∧ϕ∧ϕ′) is exactly the number of satisfying as-
signments ofϕ. �

It is prudent at this point to mention that we have a notion
of independence between buckets for the general language.

C Special Form for Maximum Disclosure

Proof of Lemma 10 For convenience of notation,

• let θ be¬(∧i∈[k]¬θi),

• letχ be(∧i∈[k](θi → ϕi)),

• let u = Pr(θ ∧ ϕ ∧ ψ),

• let v = Pr(¬θ ∧ ψ ∧ ϕ),

• letw = Pr(¬θ ∧ ψ),

• let x = Pr(θ ∧ χ ∧ ψ ∧ ϕ), and

• let y = Pr(θ ∧ χ ∧ ψ).

Then, for allψ′ ∈ L, ∧i∈[k](θi → ϕ) ∧ ψ′ is logically
equivalent to(θ ∧ ϕ ∧ ψ′) ∨ (¬θ ∧ ψ′). Hence,

Pr(ϕ | (∧i∈[k](θi → ϕ)) ∧ ψ)

=
Pr((∧i∈[k](θi→ϕ))∧ψ∧ϕ)

Pr((∧i∈[k](θi→ϕ))∧ψ)

= Pr((θ∧ϕ∧ϕ∧ψ)∨(¬θ∧ψ∧ϕ))
Pr((θ∧ϕ∧ψ)∨(¬θ∧ψ))

= Pr(θ∧ϕ∧ψ)+Pr(¬θ∧ψ∧ϕ)
Pr(θ∧ϕ∧ψ)+Pr(¬θ∧ψ)

= u+v
u+w .

Similarly, using that fact that, for allψ′ ∈ L,
∧i∈[k](θi → ϕi) ∧ ψ′ is logically equivalent to(θ ∧ χ ∧
ψ′) ∨ (¬θ ∧ ψ′), we get:

Pr(ϕ | (∧i∈[k](θi → ϕi)) ∧ ψ)

= Pr(θ∧χ∧ψ∧ϕ)+Pr(¬θ∧ψ∧ϕ)
Pr(θ∧χ∧ψ)+Pr(¬θ∧ψ)

= x+v
y+w .

However, sinceθ ∧ χ ∧ ψ ∧ ϕ logically implies both
θ∧ϕ∧ψ andθ∧χ∧ψ, we haveu ≥ x andy ≥ x. Similarly,
since¬θ ∧ψ ∧ϕ logically implies¬θ ∧ψ, we havev ≤ w.
So, sinceu, v, w, x, y ≥ 0, we get u+v

u+w ≥ x+v
x+w ≥ x+v

y+w ,
thus proving the required result.�

Proof of Lemma 11 Since each of the implications(θi →
B) is basic,θi is a conjunction of positive atoms. Hence,
from each of theθi pick one of the atomsAi (the atoms
need not be distinct). Clearly,θi → Ai. Hence, the required
result follows from Lemma 16.�

Lemma 16 For all θ0, . . . , θk−1, θ
′
0, . . . , θ

′
k−1, ψ, ϕ, such

thatθi → θ′i, for all i ∈ [k], we have

Pr(ϕ | ψ ∧ (∧i∈[k](θi → ϕ)))
≤ Pr(ϕ | ψ ∧ (∧i∈[k](θ

′
i → ϕ))).

Proof
Pr(ϕ | (∧i∈[k](θi → ϕ)) ∧ ψ)

=
Pr((∧i∈[k](θi→ϕ))∧ψ∧ϕ)

Pr((∧i∈[k](θi→ϕ))∧ψ)

= Pr(ϕ∧ψ)
1−Pr(∨i∈[k](θi∧¬ϕ)∨¬ψ) .

So it is enough if we show that

Pr(∨i∈[k](θi ∧ ¬ϕ) ∨ ¬ψ) ≤ Pr(∨i∈[k](θ
′
i ∧ ¬ϕ) ∨ ¬ψ).

We know thatθi → θ′i. Hence, any model that satisfies
θi also satisfiesθ′i. This implies that any model that satisfies
(∨i∈[k](θi∧¬ϕ)∨¬ψ) also satisfies(∨i∈[k](θ

′
i∧¬ϕ)∨¬ψ).

Hence, the required result.�

Proof of Lemma 12

max
atomsA,Ai

Pr(A | B ∧ (∧i∈[k]Ai → A))

= max
atomsA,Ai

Pr(A ∧ (∧i∈[k](Ai → A)) | B)

Pr((∧i∈[k](Ai → A)) | B)

= max
atomsA,Ai

Pr(A | B)

Pr(¬A ∧ (∧i∈[k]¬Ai) ∨ A | B)

= max
atomsA,Ai

Pr(A | B)

Pr(¬A ∧ (∧i∈[k]¬Ai) | B) + Pr(A | B)

= max
atomsA,Ai

1
Pr(¬A∧(∧i∈[k]¬Ai)|B)

Pr(A|B)
+ 1

Hence the required result.�

Proof of Lemma 13 WhenAi,j is tpi
= sjb for all i ∈ [l]

and allj ∈ [ki], then it is easy to see that

Pr(∧i∈[l],j∈[ki]¬Ai,j | B) =
∏

i∈[l]

nb − i−
∑
j∈[ki]

nb(s
j
b)

nb − i
.

We now show, by induction onl (i.e., the number of people
involved in thek atoms), that for allb ∈ B and all atoms
Ai,j (not necessarilyti[S] = si) such thatAi,j andAi,j′
mention the same tuple inb iff i = i′, we have

Pr(∧i∈[l],j∈[ki]¬Ai,j | B) ≥
∏

i∈[l]

nb − i−
∑

j∈[ki]
nb(s

j
b)

nb − i
.

In the base case (i.e.,l = 1, k0 = k), all the atoms mention
the same person, sayp0. So takingA0,j to be tp0 [S] =

sjb for j ∈ [k] clearly minimizesPr(∧j∈[k]¬A0,j | B), and

actually achieves a probability of
nb−Σj∈[k]nb(s

j

b
)

nb
.

Suppose that the induction hypothesis holds for alll.
Consider the case forl+1. Considerp0, the person involved

in the most (i.e.,k0) atoms (namely,A0,j , for j ∈ [k0]). Let
S′ be the set of values inS not involved in these atoms.
That is,S′ = {s ∈ S : ∀j ∈ [k0] . A0,j 6≡ tp0 [S] = s}. For
eachs ∈ S′,

• let ksi = ki+1, for eachi ∈ [l],
• letAsi,j beAi+1,j for eachi ∈ [l] and eachj ∈ [ksi],
• let bs andBs be the bucket and bucketization, respec-

tively, obtained fromb andB by removingtp0 [X] and
one occurrence ofs from b.

Then it is easy to see that

• nbs = nb − 1,
•

∑
j∈[ks

i] nbs(sjbs) ≤
∑
j∈[ki+1] nb(s

j
b)

So, using these facts and the induction hypothesis, we get:

Pr(∧i∈[l+1],j∈[ki]¬Ai,j | B)
=

∑
s∈S′(Pr(∧i∈[l+1],j∈[ki]¬Ai,j | B ∧ tp0 [S] = s)

×Pr(tp0 [S] = s | B))

=
∑

s∈S′ Pr(∧i∈[l],j∈[ks
i]¬A

s
i,j | B

s)nb(s)
nb

≥
∑

s∈S′(
∏
i∈[l]

nbs−i−
P

j∈[ks
i
]nbs (sj

bs)

nbs−i)nb(s)
nb

≥
∑

s∈S′(
∏
i∈[l]

nb−i−1−
P

j∈[ki+1]nb(s
j

b
)

nb−i−1)nb(s)
nb

= (
∏
i∈[l]

nb−i−1−
P

j∈[ki+1]nb(s
j

b
)

nb−i−1)
∑
s∈S′

nb(s)
nb

≥ (
∏
i∈[l]

nb−i−1−
P

j∈[ki+1]nb(s
j

b
)

nb−i−1)
nb−

P

j∈[k0]nb(s
j

b
)

nb

=
∏
i∈[l+1]

nb−i−
P

j∈[ki]nb(s
j

b
)

nb−i

This completes the induction.�

D Monotonicity

Proof of Theorem 15 Let b1 andb2 be two buckets of sizes
m andn respectively in bucketizationB. Letb be the bucket
formed by mergingb1 andb2 and letB′ be the new bucketi-
zation.

To show monotonicity, it is enough to show that the min-
imumPr(∧i∈[k]¬Ai |B) is at least as much as the minimum
Pr(∧i∈[k]¬Ai | B

′) whereAi range over atoms that involve
only people inb in both cases.

According to Lemma 13, lettpi
[S] = sjb be the atoms

that minimize the second probability (forB′), for i ∈ [l]
andj ∈ [ki] (wherep0, . . . , pl are the people involved in
k0, . . . , kl atoms, respectively). Then, as in Lemma 13, the
minimum probability is given by:

∏

i∈[l]

ai + bi − i

m+ n− i

where ai := nb1 −
∑
j∈[i] nb1(s

j
b) and bi = nb2 −

∑
j∈[i] nb2(s

j
b).

For eachi, we inductively definePi , ci, anddi as fol-
lows:

1. P0 = 1, c0 = 0, d0 = 0.

2. If ai−ci

m−ci
≤ bi−di

n−di
thenPi+1 = Pi

ai−ci

m−ci
andci+1 =

ci + 1 anddi+1 = di.

3. If ai−ci

m−ci
> bi−di

n−di
thenPi+1 = Pi

bi−di

n−di
andci+1 = ci

anddi+1 = di + 1.

Think of this as choosing atomstp′
i
= sjb for i ∈ [l], j ∈ [ki]

wherep′i is a new person in bucketb1 or b2 depending on
whetherai−ci−1

m−ci−1
≤ bi−di−1

n−di−1
or not. It is easy to see that

Pl ≤ P (∧i∈[l],j∈[ki]¬tp′i = sjb | B). Note that, by def-

inition, ci + di = i for all i. So we haveai+bi−i
m+n−i =

ai−ci+bi−di

m−ci+n−di
= m−ci

m−ci+n−di

ai−ci

m−ci
+ ni−di

m−ci+n−di

bi−di

n−di
≥

min(ai−ci

m−ci
, bi−di

n−di
). So at each stepi, we getPi+1 by mul-

tiplying Pi by a factor that is no more thanai+bi−i
m+n−i . So

Pl ≥
∏
i∈[l]

ai+bi−i
m+n−i ThusP (∧i∈[l],j∈[ki]¬tp′i = sjb | B) ≥

∏
i∈[l]

ai+bi−i
m+n−i and so we are done.�

E Maximum Disclosure andℓ-diversity

We now use our framework to analyze a different restric-
tion on background knowledge and relate this with a privacy
condition recently proposed in[24], calledℓ-diversity. This
exercise provides further insight into our techniques, while
at the same time contributing an essential piece of formal
analysis that was missing in[24], namely, proving that re-
cursive(c, ℓ)-diversity is equivalent to(c

c+1 , ℓ − 2)-safety
with respect to a simple language expressing sensitive value
elimination. This is an important contribution to our under-
standing of(c, ℓ)-diversity because it shows that(c, ℓ) di-
versity protects againstℓ− 2 pieces of information involv-
ing possibly several different people, rather than the earlier
belief that it protects againstℓ − 2 pieces of information
involving only one person.

Before we begin, however, let us quickly recall the defi-
nition of recursive(c, ℓ)-diversity.

Definition 17 (Recursive(c, ℓ)-diversity) A bucketization
B is said to berecursive(c, ℓ)-diverseif for all bucketsb ∈
B,

nb(s
0
b) ≤ c× (nb − nb(s

0
b) −

ℓ−2∑

i=1

nb(s
i
b))

Intuitively, this definition states that a bucketization is
(c, 2)-diverse if for every bucket, the most frequent attribute
value of the sensitive attribute appears at mostc times as fre-
quently as all the remaining attribute values of the sensitive
attribute combined. As argued in [24], it then follows that
if an adversary is able to eliminatek − 2 values of the sen-
sitive attribute ofone particular individualin some bucket,
the disclosure riskfor that individualis at most c

c+1 .

We now show that eliminating the sensitive values for
one particular individualmaximizes disclosure over back-
ground knowledge from languageLneg (defined below),
which allows for sensitive value elimination forpossibly
several different individuals. Once again the disclosure
maximizing background knowledge has a special structure,
namely, that all statements mentioned the same tuple. Our
proof uses the techniques from Section3.

Definition 18 Let Lneg be the set of the formulas of the
form¬A whereA is an atom.

Recall that an atom is a formula of the formtp[S] = s. Lneg

thus captures knowledge of the form “Ed does not have the
flu”.

Theorem 19 For any bucketizationB, we have

maxatomsA,Ai
Pr(A | B ∧ (∧i∈[k]¬Ai))

= maxb∈B
nb(s

0
b)

nb−
P

i∈[k] nb(s
i+1
b

)

Proof This follows immediately from independence be-
tween the permutations in separate buckets and Lemma20
below.�

Lemma 20 Consider a bucketb ∈ B, and letp be any per-
son with a tupletp in b. ThenPr(A | B ∧ (∧i∈[k]¬Ai))
is maximized over all atomsA,A0, . . . , Ak−1 that involve
only people fromb when

1. A is tp[S] = s0b , and

2. Ai is tp[S] = si+1
b , for i ∈ [k].

Moreover, the maximum probability is given by

nb(s
0
b)

nb −
∑

i∈[k] nb(s
i+1
b)

Proof First note that whenA is the statementtp[S] = s0b ,
and eachAi is the statementtpi

[S] = si+1
b , then it is easy

to see that

Pr(A | B ∧ (∧i∈[k]¬Ai)) =
nb(s

0
b)

nb −
∑
i∈[k] nb(s

i+1
b)

(3)

since this is the relative frequency ofs0b after s1b , . . . , s
k
b

have been eliminated. We now show that no other choice of
atomsA,Ai (involving only people with tuples inb) gives a
higher probability. We proceed by induction on the number
of people involved in the atomsA0, . . . , Ak−1 to show that

Pr(A | B ∧ (∧i∈[k]¬Ai)) ≤
nb(s

0
b)

nb −
∑

i∈[k] nb(s
i+1
b)

In the base case, where all the atomsA,A0, . . . , Ak−1 in-
volve exactly one person, it is easy to see that the worst

case is given by Equation3. Now, using the induction hy-
pothesis, assume that the Lemma is true when the atoms
involve at mostm− 1 distinct people. We will consider the
case whereA,A0, . . . , Ak−1 involvem ≥ 2 people. Let
p be the person involved inA. NowA0, . . . , Ak−1 involve
some other personp′ 6= p, sincem ≥ 2. Without loss
of generality,A0, . . . , Ak′−1 be the atoms not involvingp′

and letAk′ , . . . , Ak−1 be the atoms involvingp′, for some
k′ < k. For ease of notation, we abbreviate∧i∈[k]¬Ai by κ
and∧i∈[k′]¬Ai byκ′. Thus our original background knowl-
edgeκ is split into two parts. The first part,κ′, is the part
of our background knowledge not involvingp′; the second
part,∧i∈[k]\[k′]¬Ai, is the part of our background knowl-
edge involving onlyp′. Sincek′ < k, we can apply our
induction hypothesis to the statementκ′.

LetSb be the set of sensitive values that appear in bucket
b (i.e.,Sb = {s ∈ S : nb(s) > 0}). For eachs ∈ Sb, let bs

andBs be the bucket and bucketization, respectively, that
are obtained by removing the non-sensitive attributes ofp′

and an occurrence ofs from bucketb. Then it is not hard to
show that:

• nbs = nb − 1,

• nbs(s0bs) ≤ nb(s
0
b), and

• 1 +
∑

i∈[k′] nbs(si+1
bs) ≤

∑
i∈[k] nb(s

i+1
b)

So, using the induction hypothesis (in the first inequality
below) and the above facts (in the second inequality), we
get

Pr(A | B ∧ κ)
=

∑
s∈Sb

Pr(A ∧ tp′ [S] = s | B ∧ κ)
=

∑
s∈Sb

Pr(A | B ∧ κ ∧ tp′ [S] = s)

×Pr(tp′ [S] = s | B ∧ κ)
=

∑
s∈Sb

Pr(A | Bs ∧ κ′) Pr(tp′ [S] = s | B ∧ κ)

≤
∑

s∈Sb

nbs (s0bs)

nbs−
P

i∈[k′] nbs (si+1
bs)

Pr(tp′ [S] = s | B ∧ κ)

≤
∑

s∈Sb

nb(s
0
b)

nb−
P

i∈[k] nb(s
i+1
b

)
Pr(tp′ [S] = s | B ∧ κ)

=
nb(s

0
b)

nb−
P

i∈[k] nb(s
i+1
b

)

∑
s∈Sb

Pr(tp′ [S] = s | B ∧ κ)

≤
nb(s

0
b)

nb−
P

i∈[k] nb(s
i+1
b

)

This completes the induction.�

