Characterization of XML Functional Dependencies
and their Interaction with DTDs

Lucja Kot and Walker White

Department of Computer Science
Cornell University
{lucja,wnwhite}@cs.cornell.edu

Abstract. With the rise of XML as a standard model of data exchange, XML
functional dependencies (XFDs) have become important to areas such as key
analysis, document normalization, and data integrity. XFDs are more compli-
cated than relational functional dependencies because the set of XFDs satisfied
by an XML document depends not only on the document values, but also the tree
structure and corresponding DTD. In particular, constraints imposed by DTDs
may alter the implications from a base set of XFDs, and may even be inconsistent
with a set of XFDs. In this paper we examine the interaction between XFDs and
DTDs. We present a sound and complete axiomatization for XFDs, both alone
and in the presence of certain classes of DTDs. We show that these DTD classes
form an axiomatic hierarchy, with the axioms at each level a proper superset of
the previous. Furthermore, we show that consistency checking with respect to a
set of XFDs is feasible for these same classes.

1 Introduction

Functional dependencies have proved to be a very useful class of integrity constraints
for traditional database systems. They are integral to key analysis, normalization, and
query optimization [1]. As XML is increasingly becoming the standard model of data
exchange, there is much interest in formulating a definition of XML functional depen-
dency. In addition to the benefits found in relational databases, a proper XFD definition
would also aid in many new areas, such as verifying data consistency, preserving se-
mantics during data exchange, and XML-SQL translation [10].

Several different XFD definitions have been suggested [2, 20, 14, 19, 15, 13]. The
major XFD definitions are similar to the relational definition except that, instead of
attributes and table rows, they use path identifiers and subtrees. Informally, these def-
initions say that an XFD A — B is satisfied in a document if, for any two subtrees,
whenever they agree on the paths in A, they also agree on the paths in B. The def-
initions differ primarily in how they choose subtrees, specify path identifiers, or test
equality between XML nodes.

XFDs differ from their relational counterparts in that they must take into account
the tree structure of XML documents. For example, a language for defining XFDs must
allow us to specify when one path is a prefix of another. Another issue is the definition
of equality: nodes can be compared by identity or value equality. In the relational model,
no duplicate tuples are allowed, and so value equality is sufficient in FDs. However, in

an XML document, we can have two different subtrees that are isomorphic and have
exactly the same values. This is a clear instance of data duplication, but one allowed
by the data model. Therefore, if XFDs are to be used for keys or normalization, they
must be able to detect identity (in)equality between nodes. Finally, as XML represents
semi-structured data that is often incomplete, XFDs must properly handle null values.

The implication problem is fundamental to all of the applications above [1]; hence
this has been the focus of much of the work on XFDs. There are two important ap-
proaches to the implication problem. One approach is that of efficient decision algo-
rithms, which allow us to determine whether an XFD is implied by a set of XFDs; some
feasible decision algorithms have been discovered already [2]. The other approach is
axiomatization, which often gives us slower decision algorithms, but which is impor-
tant for understanding the underlying theory of XFDs [1]. For example, every child
XML node has a unique parent node. Thus for any two path identifiers ¢ and p, where
p is an identifier for the parent of ¢, every XML document satisfies the XFD ¢ — p.
A decision algorithm would allow us to check for each specific instance of parent-child
p, q that ¢ — p holds. However, an axiomatization would allow us to prove this entire
general class of XFDs.

The implication problem becomes more complicated in the presence of a DTD.
Consider the XML document illustrated in Figure 1. This document represents admis-
sions at a special charity hospital and has the following DTD.

<!DOCTYPE admissions [
<!ELEMENT admissions
<!ELEMENT patient name, DOB, insurance?,doctor, doctor) >
<!ELEMENT insurance company, policy) >

(patient«*)>
(
(
<!ELEMENT name (#CDATA) >
(
(
(

<!ELEMENT DOB #CDATA) >
<!ELEMENT company #CDATA) >
<!ELEMENT policy #CDATA) >

<!ELEMENT doctor (#CDATA) >
<!ATTLIST doctor license CDATA #REQUIRED>
1>

In particular, each patient must have a recommendation from exactly two doctors (who
are unordered), and may or may not have insurance. Note that in this DTD, every patient
has exactly one name node. So every document conforming to this DTD must satisfy
the XFD p — ¢, where p is a path identifier for a patient node, and q is a path identi-
fier for the name node of that patient. This suggests that we should be able to use the
structure of a DTD to make deductions about classes of XFDs satisfied by conforming
documents. Again, while there are several decision algorithms for XFDs conforming
to certain classes of DTDs, to our knowledge there is no existing sound and complete
axiomatization for XFDs with identity equality in the presence of a DTD.

As we show in this paper, in order to axiomatize XFDs, we must also address the
problem of consistency. In the example in Figure 1, every patient must have two recom-
mending doctors. We give no preference to either doctor, and we may want to assert an
XFD from the 1icense number of a doctor to its text content, so we do not wish
to give the doctors different tags. However, consider the XFD p — ¢, where p is a path
identifier for a patient, and ¢ is a path identifier for a recommending doctor; this XFD

admissions

patient patient

name DOB name DOB

“Fred Jones” “9/23/62” doctor doctor “Alice Brady” “3/14/72”

insurance . . doctor doctor
@license @license
“#18764531” “#71234897” . .
compan olic @license @license
pany - poiicy “John Smith” “Greg Wiles” “#18764531" “4#432474158"
“John Smith” “Janice Weber”

“Aetna” “#234-4-34689"
Fig. 1. XML Document for Medical Admissions

is inconsistent with our DTD. While consistency has been studied for key constraints
[11], these types of constraints are properly weaker than XFDs and are not sufficient for
many of the applications mentioned above. To the best of our knowledge, the problem
of the consistency of XFDs with a DTD has not been studied before.

1.1 Contributions

This paper is a thorough study of the theory of XFDs and their interaction with various
classes of DTDs, focusing on the implication and consistency problems. In this paper,
we make the following contributions.

We adapt the definition of XFDs presented in [2] to include documents without a
DTD so that we can identify the base theory of XFDs.

— We make explicit the natural mapping between XFDs and relational FDs implicit
in [2], and use it to leverage existing relational FD theory to reason about XFDs.
We adapt the chase algorithm to XFDs, and use it to improve existing bounds on
the implication problem for XFDs, in some cases to linear time.

We use the chase to formulate the first sound and complete axiomatization for XFD
implication (using identity equality), in the absence of a DTD.

We show that derivations produced from these axioms can be encoded as logical
inferences with Horn clauses.

We expand these techniques to explore the interactions between XFDs and several
classes of DTDs (refer to the matrix at the end of the paper for a summary).

e We present both the chase and a consistency checking algorithm (where appli-
cable) for each of the various classes of DTDs, showing that deciding implica-
tion and consistency is feasible for these classes.

e We present a sound and complete axiomatization for each class of DTDs. We
show that these classes form a natural hierarchy, each class adding a new set of
axioms to those of the previous class.

e We show that our Horn clause encoding of the derivations generalizes to these
axioms.

— We present intractability results for the remaining classes of DTDs, giving a com-
plete characterization of where consistency and implication are feasible.

2 Preliminaries

2.1 The document model

Throughout this paper, our notation is similar to that in the literature [2], though with
some noticeable differences. These differences are necessary because this existing no-
tation requires that an XML document have a corresponding DTD. In order to study the
theory of XFDs, we need to decouple the definition of an XFD from a DTD.

Our model for an XML document is a tree representing the underlying DOM struc-
ture. We associate each part of the document, including text and attribute data, with
a labeled node in the model. For these labels, we have two disjoint sets EL and VAL.
The set EL is the label alphabet for XML nodes and attribute names, while VAL is
the alphabet of attribute values. The two sets EL and VAL are countably infinite, as
we are not restricting ourself to a single DTD. We define a special null symbol null ¢
EL U VAL.Furthermore, so that we can encode document ordering of the nodes, we
assume that NN EL = NN VAL = null.

Our model is the same in as Arenas and Libkin [2] with only two minor modifica-
tions. First, our alphabet EL contains two distinguished elements p and «, for identi-
fying special nodes in the tree. The label p is used to identify the unique root element
of each XML tree. This corresponds to the <?xml1> tag in an XML document and is
necessary because documents without a DTD are not constrainted with respect to root
label. The label «, on the other hand, is intended for attribute values and character data;
the second set VAL represents these data values.

Formally, we model an XML document 7" as the tuple (V, v;001, child, lab, attval, num).
The initial triple (V, voor, child) represents an unranked (i.e. not n-ary for any finite n)
finite tree with no sibling ordering on the nodes. The set V' is the set of nodes in 7', which
we often refer to as nodes(7"), while ;o0 is the root node. The function child : V' — 2V
takes a node and returns the children of that node; the definition of child is restricted so
that it does encode a proper tree.

The remaining elements of the XML document are labeling functions to encode the
data and document order. The function lab : V' — EL labels all of the XML attributes
and entities. It is subject to the following restrictions for the special elements of EL:

— lab(v) = pif and only if v is the root of T
— lab(v) = « implies v is a leaf of T with no siblings in T’

Those special elements labeled with « are data elements; for them we have the labeling
function attval : { v € V' |lab(v) = o } — VAL which assigns attribute values to those
leaf nodes of T'. The function num : V' — N orders the nodes in T" in some arbitrary
order, which we can assume to be the document order.

To illustrate this model, consider the XML document from Figure 1. Our model
would represented this document by the labeled tree in Figure 2.

A path identifier is a finite list of labels in EL. For clarity, we separate the elements
in a path identifier by periods, such as p.admissions.patient. We say that a path identifier
p occurs in a tree T if there is a path vy, vs, - - - v, in T such that the labels for the v;
form a string equal to p. For the rest of the paper, we will abuse terminology slightly by
using the term paths both for path identifiers and actual paths, with the understanding

P

admissions

("» name () DOB

() insurance

@policy C19 @license V13 #text (*2) @license (") #text

ar“John Smith”
a“#18764531”

a>#234-4-34689”

ar“Greg Wiles”
a“4#71234897”

ar-+9/23/62” (19 #text
ar>“Fred Jones”

ar*“Aetna”

Fig. 2. Encoding of Medical XML Document

that a single path identifier may represent more than one actual path in the tree. We use
the letters p, q, s, t, u to denote path identifiers, and x, y, z, w for symbols in EL.

We say that a path is rooted if its first identifier is p. We denote the set of all rooted
paths that occur in T as paths(T"); note that this is a prefix-closed set. For any paths p
and ¢, by p < ¢ we mean that p is a prefix of ¢; we use p < ¢ we denote that p is a
proper prefix of g.

Observe that for all T', paths(7") must be a subset of the set of all possible allowed
rooted paths over EL. Those can be described using the regular expression

PATHS = p (EL\{p, a})* a?

Because we are often be concerned with regular expressions, given an alphabet A, we
write rexp(A) to denote the set of all regular expressions over A.

As with the definition in Arenas and Libkin [2], we work with two kinds of equality
on the nodes of 7. We compare internal tree nodes by identity; on the other hand, we
compare « leaf nodes by their value in VAL. Identity equality is denoted =;4. Given two
nodes v,w € V, v =;4 w iff num(v) = num(w). Similarly, value equality is denoted
=,q; and defined only on attribute nodes. That is, for v,w € V, v and w both leaf
nodes, v =,q; w iff if lab(v) = lab(w) = « and attval(v) = attval(w).

Finally, we find it useful to talk about embeddings and structural embeddings be-
tween trees. A structural embedding from a tree T to a tree T is a structure-preserving
and label-preserving one-to-one map f from the nodes of T to the nodes of 7”. Two
trees are structurally isomorphic if they structurally embed into each other. An em-
bedding is a structural embedding which also respects equality on attribute values;
formally, we require that for every two nodes vy, v in 1" whose label is «, we have
f(v1) =par f(b2) if and only if v1 =4q; V2.

2.2 DTDs

Our definition of an XFD does not depend on any features of sibling order in documents.
However, DTDs do impose a sibling order. Therefore, in order to study the interaction
between XFDs and DTDs, we need to define an equivalence relation on DTDs which
allows us to disregard sibling ordering constraints.

A DTD is defined as D = (FE, P), where E is a finite subset of EL and P is a
mapping from the elements £ to element type definitions where

P CE x (rexp(E\ {a, p}) U {a})

It is standard notation, when working with DTDs, to use arrows in the notation for
productions (i.e. a — bc*). In this paper, we need to avoid a notational conflict with
another sense of —, which is used for XFDs. Therefore, we use ~ instead for DTD
productions.

A document T satisfies D, written 7' E D, if for every node v € nodes(7") whose
children are vy, - - - v, the string lab(v)lab(vs) - - - 1ab(v,,) is in the language of P. We
assume that all DTDs considered from now on are consistent, in that there is at least
one finite tree satisfying the DTD. Furthermore, we denote by paths(D) all the possible
rooted paths that may occur in any 7" such that T' E D.

We now define the equivalence relation on DTDs, 2, which we use to ignore sibling
order. Let D and D’ be two DTDs. Let 7p = {T |TF D }and 7, ={T |TE D' }.
Then D = D’ if and only if the following two conditions are satisfied.

— There is a bijection f : Tp — T},.

— Whenever f(T) = T’ for some 1", then T” can be obtained from T by perfoming
a finite number of sibling subtree swaps in T'. That is, 7" and T are structurally
isomorphic.

We assume that all DTDs considered from now on are consistent (i.e. there is at
least one finite tree satisfying the DTD). Furthermore, we denote by paths(D) all the
possible rooted paths that may occur in any 7" such that 7' F D.

We now define several classes of DTDs, according to the complexity of the reg-
ular expressions present in the productions. Bear in mind that we disregard order in
defining these classes. Our DTD classes form a hierarchy according to the following
containment: DTD

#-
Simple DTD C C Arbitrary DTD
V-DTD

Given a DTD, deciding which class it belongs to may be nontrivial in the worst case.
However, we do not expect this to be an issue in practice, as humans do not typically
write DTDs with complex nested regular expressions.

Simple DTDs Our definition for a simple DTD is closely related to that given in Arenas
and Libkin [2]. Given an alphabet A, a regular expression over A is called trivial if it
is of the form s - - - s,,, where for each s; there is a letter a; € A such that s; is either
ai,a;?,a; ora},and fori # j, a; # a;. A simple DTD is any DTD equivalent (under
=) to some DTD where all the regular expressions appearing on the right-hand side of
the productions are trivial. Note that every basic DTD is simple, but not vice versa. An

example of a simple DTD is
p~sab*, a~sc*, b~ dte

#-DTDs #-DTDs are a proper extension of simple DTDs. This extension allows produc-
tions having more than one occurrence of the same alphabet symbol (the # is intended
to represent the concept of number or counting). In other words, a #-DTD is an arbitrary
DTD which does not require the use of disjunction. Formally, #-DTDs are exactly all
DTDs equivalent (under =) to some DTD where all the the regular expressions appear-
ing on the right-hand side of the productions contain no disjunctions. An example of a
non-simple #-DTD is

p ~ aaab®, a~ c*, b~ ddeee”

V-DTDs V-DTDs allow disjunction, but are otherwise a minor extension of sim-
ple DTDs. Our V-DTDs are exactly those called “disjunctive DTDs” in Arenas and
Libkin [2]. We define a regular expression over an alphabet A to be a simple disjunction
ifs=c¢,s=a,a € A,ors = sy | sy, where s; and s9 are simple disjunctions over A;
and A, respectively, with Ay, A, C A and A; N Ay = (. A V-DTD is one equivalent
(under =) to one where every production is of the form p — s1ss - - - si, where every
sy is either a simple regular expression or a simple disjunction over a subalphabet Ay,
and all the Ay, are disjoint. V-DTDs do not allow multiple occurrences of a symbol in a
production, nor do they allow nested disjunction. An example of a non-simple V-DTD
is
p o~ (cld)b®, e~ a”, b~ (el flg)(hli)

Arbitrary DTDs Arbitrary DTDs represent the most general class of DTDs. They
allow all features, including arbitrary disjunction.

2.3 Mapping an XML tree to a nested relation

Many existing definitions of XFDs implicitly rely on the nested relational structure of
XML documents. In order to use the existing theory of relational functional depen-
dencies, in this section we make this connection explicit. To each tree 7', we associate a
nested relation R(7T'), which we unnest to a flat relation U (R(T")). First we give an intu-
itive, high-level illustration of U (R(T')), and then we give a more formal construction.
Our illustration makes use of the example in Figure 3. In this illustration, we have sep-
arated the tree elements v; from their labels in EL to make clear the difference between
nodes and their labels.

p | pa | pac |paca

v | Y V3 u
vr VO V4 v
p | pa | pab | pabe | pabf | pabea| pabfa
Vil Vo V1 Vs V6 X y
Vr VO Vz V7 NULL 4 NULL
ax ay daz a
(Normalized) XML Tree Unnested Relation

Fig. 3. Mapping an XML Document to an Unnested Relation

We start with a tree T for an XML document. First, we must normalize the tree to
make it suitably homogeneous. For each path p that occurs in 7', we take each prefix
q of p. For each occurrence of ¢ in T', we guarantee that ¢ can be extended to a path
matching p by adding special null nodes as necessary. In Figure 3, p.a.b. f.a matches a
path in the tree, so we have to extend the second path matching p.a.b with null nodes to
extend it to p.a.b.f.c.

After normalizing the tree, we take each maximal rooted path p occurring in the
tree. We make a table with an attribute for each non-empty prefix of p. For each match
to p in the normalized tree, we construct a row in this table. In this case, each attribute
corresponds to a unique node v and we assign this attribute v if v is not an attribute (i.e.
the label is not o) or is null; otherwise we assign it the attribute value for o in VAL. The
top table on the right hand side of Figure 3 represents the table for the path p.a.c.a.

We then join all of these tables together. For each pair of tables, we use the common
prefix of the pair as our join key. The bottom table on the right hand side of Figure 3 is
the result of joining the tables for p.a.b.e.ac and p.a.b. f.cu.

When T E D, the resulting relation is essentially identical to tuplesp(T') from
Arenas and Libkin [2]. The only difference is that we have an additional root node in
the tree and each XML attribute corresponds to two columns: one for its node address
and the other for its value.

Nested Relations For the formal correspondence, we first need to introduce nested
relations. Our definition of nested relations is very close to the standard one found in
the literature [1, 12]. We assume that we have a countable set C of constants and a finite
set B of attribute names. Complex values are any values of type 7, where 7 is defined
recursively, using tuple and set constructors, as

7=C|(By:71, By :7g) | Set(r)

where k£ > 0 and By, - - - By, are finite strings formed over the alphabet B. Note here that
our use of strings for attribute names is our only departure from the standard definition
of nested relations. As with paths, we separate the elements of B with periods.

Next we define the notion of a complex value. Given 7 € 7T the set of values of type
7, denoted [7], is defined by

1. [C]=C
2. [Set(7)] = {{v1, - vk} |vi € [7],1 <i <k}
3. (By:7i, - Bg i) = {(v1, o) | v €[], 1 <@ <k}

A complex value of type (By : 71, By : 7) is called a tuple, whereas a complex
value of type Set(7) is called a set or a nested relation. A flat relation is a nested

lation of type
relaon ot yp Set((By: C,--- By : C))

for some By, - - - By, meaning that it has no further complex types. For flat tuples, we
often use the shorthand (B; : C), B; € B, where B is a finite set of strings over B. If
B = {By, Bs, - - B;}, then this represents the [-tuple type (B; : C,--- B; : C).

Finally, we define a function attnames that extracts the attribute names from a flat
relation. Given 7 = Set({(B; : C, - By : C)), attnames(7) = {Bj, - Bi}. We also
define attnames(C) = {e}, where ¢ is the empty string.

Normalization The normalization described above is performed so a well-typed nested
relation can be produced. Formally, it involves repeating the following procedure until
no more new nodes can be added.

— Find a node v in T such that the path from the root to v is p, and 3x € EL U VAL
such that p.z occurs in T, but v itself has no children labeled x

— Add to v a child node v’ with label z.

We now extend the function num7 to a function numi[to account for the nodes we
added in the normalization process. Given a tree 7" produced from 7' by normalization
and anode v € T,)
num () — num(v) ifve T,
null otherwise
We also extend attval to attval’ such that for any new nodes v added through normaliza-

tion with label a, attval(v) = null.

Producing the nested relation From the normalized 7" we produce a nested relation
R(T) by inductively performing the following steps, starting at the leaves.

Base case: T consists of a single node v. Then, R(T) is a single-tuple relation where

— R(T) has type Set({lab(v) : NU {null})) and contains num’(v) if lab(v) # «
— R(T) has type Set((lab(v): VAL U {null})) and contains attval’(v) if lab(v) = «

Inductive case: 1" has a root node v,,,; and various subtrees, with the labels on subtrees
forming a set {l1, - - - I, } C EL. We partition the subtrees into k sets S1, - - - Sy based on
the root labels. By induction, we know that for a set \S,,, all subtrees T},,1, - - - Ty, in the
set can be represented as nested relations R(T;,1), - - - R(Tyn1)- Due to the normalization
process, all these relations have the same type; we call this type 7, .
R(T) itself is then a single-tuple relation of type
Set((I(v) : NU {null},e: 7, - ,e:7%))

where ¢ is the empty string. The value in the first element is num’(v), and the value in
element 7,2 < j < k+1,is Uleesj R(Tj;).

Unnesting Our unnesting operation U on a relation R is also very close to the standard
one, and is defined inductively. We define F' : 7 — 7 to be the unnesting map on
types, such that

- F(C)=C

- F(<Bl P T1, 0 By : Tk>) = <B : C>, Be {BiBZ] |BZJ € attnames(F(Ti)) }

- F(Set(r)) = Set(F(1))

Inductively, a complex value v : 7, U(v) has type F'(7) and the following value

- U(c), where ¢ € C, is a unary, single-element relation with element c, attribute
name ¢ and type C.

— For (v, - - - vg) of type (By : 1, - - - By : 73,), wedefine U ((v1, - - - vg)) = [, U(vs).
(The product operator used is the ordinary cross product).

— For {vy,--- vy} of type Set(7), we define U ({vy,---vi}) = U, U(vs).

Note that U is the identity on flat relations, as might be expected.
The following proposition is clear from our construction.

Proposition 1. The three steps of the above mapping take a tree T to a flat relation
U(R(T)) such that
— The schema of U(R(T)) is exactly paths(T'), and
— Ifpisanypathin T, and we do a projection on U(R(T)) to retain only prefixes of p,
each tuple in the projected relation corresponds to exactly one specific occurrence
ofpinT.

10
3 XML Functional Dependencies

Given the basic notation, we can now define XFDs, and describe the implication and
consistency problems. As we mentioned before, our definition of XFDs must account
explicitly for the possibility of null values. Several means of handling null values have
been suggested for the relational model [3, 16]. We adopt the definition in [3], which is
also the one used in Arenas and Libkin [2]: given a relation R over a set of attributes U
and A, B C U, A — B holds if for any two tuples ¢1,t2 € R that agree and are nonnull
on all of A, the ¢; are equal (though possibly both null) for each attribute in B.

3.1 Tree patterns and functional dependencies

Relational functional dependencies are defined on tuples in the relation. The corre-
sponding notion for an XML tree is a match for a free pattern. Syntactically, a tree
pattern ¢ is a document in which none of the attribute nodes (i.e. nodes labeled) are
yet mapped to a value in VAL. A simple pattern is a tree pattern where no node has two
children with the same label [€ EL. In a simple pattern, every rooted path occurs at
most once; from now, we assume that all patterns are simple.

In order to use tree patterns to define XML functional dependencies, we must first
define what it means to match a pattern in a document 7. Intuitively, we want to match
the pattern in the document “as far as possible”, allowing incomplete matches only
when the document does not allow a full match. Formally, given a tree 7" and a pattern
¢, a match for ¢ in T is a function p : nodes(yp) — nodes(7T") U {null} where

1 maps the root of ¢ to the root of T'.

For all nodes v, u(v) is either null, or it preserves the label of v.

If v’ is a child of v and p(v") is not null, then p(v) is also not null and p(v') is a
child of u(v).

If v’ is a child of v and p(v’) is null while p(v) is not, then p(v) could not have had
any child with the same label as v’ (i.e. no “premature” null values are allowed).

For any path p € ¢, we use pu(p) to represent the image under p for the node at the end
of this path. We let M, » = { pv | i is a match for ¢ in T" }.

Matches for g(p.a.b.e.a — p.a.b.f) || Matches for ¢(p.a.b — p.a.c)

oL oL Ce OL
a a a a
)b)b e (e b Cye

\\
e‘ f e oL f

@6 te Bp Oy

Fig. 4. Sample Tree Pattern Matches

11

Definition 1. A functional dependency 0 = A — B consists of two subsets A, B C
PATHS. We let p(o) be the smallest tree pattern (with respect to number of nodes) in
which all paths in A and B occur. Furthermore, we let =4 be an equality relation
that compares nodes by identity equality if they are not attribute nodes (i.e. labeled
by), and by value equality otherwise. The dependency holds if, for any two matches
P, ph2 € Mooy, whenever we have i1(p), po(p) # null and py(p) =yaq po(p) for
allp € A, then forall g € B, (11(q) =ya t2(q).

We illustrate this definition in Figure 4. Recall that our patterns are simple, and so
each path in the pattern must occur exactly once. This means that there are only two
matches for the pattern ¢(p.a.b.e.a — p.a.b.f) within this tree; no match for a simple
pattern can contain both v; and vg. If £ # z then the corresponding XFD is satisfied,
otherwise it is not, as the f node is null in one match and non-null in another. Similarly,
there are four matches for the pattern ¢(p.a.b — p.a.c) in Figure 4; this XFD can never
be satisfied in this tree.

Theorem 1.
1. A tree pattern XFD A — B holds on T if and only if the relational FD A — B
holds on U(R(T)).
2. Tree tuple XFDs [2] are expressible as tree pattern XFDs. For any DTD D and tree
tuple A — B, there is a tree pattern A’ — B’ such that for any document T E D,
A — B holds on T if and only if A’ — B’ does.

Proof. For the first claim, we assume that all of the paths in A, B have at least one
non-null match in a document 7. Otherwise A — B trivially holds in both 7" and
U(R(T)). Then we need only show that each match of a simple tree pattern in T is
the prefix-preserving projection of a single row in U(R(T')), and vice versa. Consider
first a match to a simple tree pattern in 7. The range of this match is a subtree of
the normalized version of T'. Each path in this tree is a row in one of the pre-joined
components of U(R(T')). As the pattern is simple, each path occurs exactly once, and
so these components join to form a single row in U (R(T")).

Now consider a row in U(R(T")), and project out attributes in such a way that pre-
fixes are preserved. This row was the result of a join from the individual path tables.
As the projection is prefix-preserving, we can construct this projection as the join of
prefix-preserving projections on the component tables. Take the maximal path for each
table and construct the simple tree pattern from these tables. The row is the subtree in
the normalized version of 7" isomorphic to this pattern, and hence the range of a match.

For the second claim, take any tree-tuple XFD [2] A — B. Construct A’ by taking
each path in A and prefixing it by p, and suffixing those paths that end in an attribute
with . Construct B’ similarly. Now take any document T'F D. A — B holds in T if
and only if it holds as a relational functional dependency on tuplesp(T'). tuplesp(T)
differs from U (R(T")) only in that

— it lacks an attribute for p and an attribute representing the node (not just the value)
for each XML attribute, and

— it has attributes for all paths enforced by D, even if they do not occur in T' (e.g.
p ~ ab* isin D and T has no b nodes).

12

Our construction of A’, B’ ensures that the first set of attributes do not appear in A’,
B’. We can remove any paths from A and B that do not occur in 7', as any match must
be (null) (and thus equivalent) on those values. Thus the restriction of tuplesp(T') to
AU B is identical to the restriction of U(R(T")) to A’ U B’ and our proof follows from
the first claim.

3.2 The Implication Problem

Our primary area of focus is the implication problem. Given an XFD ¢ and document
T, we write T' F o to mean o holds in 7. Given a set X, we write T' F X' if every
7 € X holds in T'. Finally, we write ' F o to mean that, forall T F X, T F o.
Similarly, for a DTD D, X' Ep o means that, for any 7' F Y and T' E D, we have
T E 0. Given (X, o) [or in the case of a DTD, (X, o, D)], the implication problem is
to decide whether X' = o) [respectively, X Fp o].

Obviously in the practical case we are most interested in finite implication. How-
ever, in standard database theory, most reasoning is done with unrestricted implication,
as the results are often cleaner and much simpler. The propositions below outline the
relationship between finite and unrestricted implication.

Proposition 2. In the absence of a DTD, finite and unrestricted implication for XFDs
coincide.

Proof. Tt suffices to show that if X £“"" ¢ for some 0 = A — B then there is a finite
document 7" such that T' E X, T' ¥ o. Given that 2 """ g, there must exist some
(potentially infinite) tree T’ such that 7" F X, T' ¥ o.

Let m be the maximum length of any path in any ¢(¢’), o’ € YU{c}. We obtain T"”
from T” by removing all nodes whose distance from the root is more than m. Clearly we
stillhave 7" F X and T” ¥ o. Obtain U (R(T")). It must contain two tuples witnessing
T" ¥ o; retain only the nodes of T" directly involved in those tuples. It is clear that we
have obtained a finite tree with the property desired.

Proposition 3. In the presence of a nonrecursive DTD, finite and unrestricted implica-
tion for FDs coincide.

Proof. This is immediate, as any tree satisfying a nonrecursive DTD must be finite.

However, we have the following negative result for recursive DTDs.

Proposition 4. In the presence of an arbitrary DTD, finite and unrestricted implication
for FDs do not coincide.

Proof. Consider the DTD with the single production p ~» ¢*, ¢ ~» ¢, and the depen-
dency 0 = p — p.c. The only finite tree satisfying D is the tree consisting just of the
root; thus l=£m 0. On the other hand, clearly ¥ o.

Thus, the mathematics behind our techniques and algorithms generally assume that
trees are unrestricted (i.e. potentially infinite). Infinite branching in a tree can be han-
dled in the relational model - it produces infinite numbers of tuples, and such infinite
relations are known in the theoretical literature. The existence of infinite length paths,

13

however, is more difficult to deal with. Our relational mapping requires/induces a rela-
tional schema of finite arity, and is therefore not directly suited for working with trees
that have infinite paths.

Nevertheless, we observe that for any given instance of an implication or closure
problem with a corresponding set of XFDs X, there is a finite cutoff to the depth at
which the tree need ever be considered. If we let k be the maximal depth of any tree
pattern for any o € X, it is clear that no dependency in X can affect any part of the tree
which is more than k edges from the root (DTDs, of course, can and do affect nodes at
arbitrary depth, but XFDs cannot).

We can use this fact to our advantage. Our reasoning usually occurs in the relational
model, using our mapping method. As a first step to solving any problem instance,
we build a separate mapping with a separate relational schema R for every problem
instance; this mapping is a function of the set X’ of all XFDs appearing in the instance.
When reasoning in the absence of a DTD, the attributes of R are exactly the subset of
PATHS of length & or less, which we write as PATHS [k. With a DTD D, R need only
contain all the attributes in paths(D) | k.

A similar restriction is possible with regards to our alphabet. Recall that EL is count-
able, but need not be finite. In the presence of a DTD, the label alphabet becomes finite
automatically. However, in the absence of a DTD,we still only need a finite subset of
EL as label alphabet. Again this is because any alphabet symbols which are not on any
paths mentioned in the problem instance can be ignored; in the absence of a DTD, no
dependency a set ' can have any effect on dependencies whose paths contain label
symbols not used in .

It follows from our axiomatization in Section 4.2 that we can assume that each in-
stance (X, o) is given so that o has the form A — b, with b a single path, and all
C — d € X have a single path on the right-hand side as well. For our chase algorithm,
we assume that the dependencies are in this form; that allows us to give a clearer presen-
tation and properly compare our complexity results with existing work, which makes
the same assumption [2]. If our input is not in this form, conversion is polynomial, so
tractability is not affected.

3.3 The Consistency Problem

As we saw in Section 1, it is possible to define sets of XFDs which are inconsistent with
certain DTDs. Formally, given a set of XFDs X' and a DTD D, we say that (X, D) is
consistent if and only if there exists at least one finite document 7" such that 7' F D and
T E X. Given (X, D), the consistency problem is to decide whether it is consistent. As
with the implication problem, our algorithm descriptions assume that X' is given such
that all XFDs have exactly one path on the right-hand side.

4 Implication without a DTD

Before we understand how DTDs affect the XFDs satisfied by a document, we must
first understand the theory of XFDs alone. In this case, consistency is a non-issue and
so we only concern ourselves with the implication problem.

14

4.1 Chase algorithm for FD implication

This section presents a fast algorithm for deciding XFD implication. This algorithm
is essentially the standard chase algorithm adapted to XML documents. Suppose o =
A — b. We set up a tableau 7 as follows: there are two rows, and one column for every
path (and prefix of a path) in A and b. In the p column and in each column corresponding
to a path in A itself, we insert two identical variables from some indexed set {v; }ier;
however, no variables are repeated between columns. For all other entries in the tableau,
we assign unique variables.

Consider, as an example, the dependency {p.a.b, p.a.c} — p.a.d.e. This corre-
sponds to the following tableau.

p |p.alp.a.blp.a.cip.a.d|p.a.d.e
V1| V2| V3 | U4 Us U7
V1| Vg | V3 V4 Ve v

Next, we define the set 5 of functional dependencies that are used to chase on 7. We
let X be the set of attributes of 7 (equal to paths(p(o))); 2 consists exactly of X plus
the following additional dependencies:

— p.d — pforevery p.x € X, x € EL (non-attribute parents are unique).
— p — p.aforevery p.a € X (attributes have unique values).

The algorithm now involves chasing with 5. At each step of the chase we have a
dependency C' — d and attempt to unify the two variables in the d column. This is a
legal move if either (or both) the following hold:

1. All C column values of both rows are equal.
2. Let g be the longest prefix of d on which the two rows agree. The rows agree on all
paths in C of the form q.z.t, € EL, where q.z is a prefix of d.

The correctness of the first chase rule is clear, as it is the standard one. To understand the
second rule, consider the tableau 7 represented by the first two rows in Figure 5, and
suppose we are chasing with the dependency {p.a.b, p.a.c} — p.a.c.f. This tableau
corresponds to the tree on the right hand side of Figure 5. However, when we convert
this tree T back to its relation U (R(T)), the tree structure gives us two additional rows
to the tableau. And from these two new rows we see that we need to unify vg and vg to
satisfy our dependency.

p | pa | pab | pac |pabd

T Vr VO Vl V3 V4
V), VO V2 V3 V6

G R T T A T

0 S B S
v, Vil

T uway

Fig. 5. Chasing with {p.a.b, p.a.c} — p.a.c.f

One way to solve this problem is to construct our tableau so that it is closed under
transformation to a tree and back to U(R(T')). However, the size of this tableau could
be exponential in the size of our XFD o. Fortunately, the regularity of the tree structure

15

makes this unnecessary. We see that the two rows in the tableau for Figure 5 have the
same value of p.a.c. As p.a.bis a branch independent of p.a.c, the tree structure ensures
that the equality between the values for p.a.c is enough to unify p.a.c.f. The second
chase rule generalizes this idea, allowing us to restrict our chase to just two rows.

Correctness of the Chase When the chase terminates (as it clearly must), we can
construct a tree 1., from the tableau.

Lemma 1. After the chase terminates, T corresponds to U(R(T¢pase)) for some doc-
ument T.pqse; moreover, Topgse E 2.

Proof. We can obtain T, by the following process.

— For the subset of paths in 7 that does not end in an attribute node, generate a unique
node for each variable v; in 7. Connect and label these nodes as suggested by the
structure of 7.

— For those paths in 7 ending in attribute nodes, generate nodes as appropriate. If
the two variables in the appropriate columns of 7 are equal, add to the nodes equal
values from VAL. Otherwise add different values, which should be unique in the
entire tree.

It is clear from the description of the chase algorithm that 7, . is be a valid tree, as
we put the tree “bookkeeping” constraints in as explicit XFDs. To see that T¢j,q5e F X,
suppose not; let (C' — d) € X not hold for T,pqsc. Then we have a witness pair i1, 12
of matches for this fact. Consequently the two tableau rows for d cannot be equal,
because T,pqse contains at most two occurrences of d paths, and we need both of them
for the witness pair.

If the tableau rows agree on all the C' columns, clearly the algorithm terminated
too early, as the first rule for unification should have fired. If the two rows don’t agree
on all of C, they must agree on at least some prefix g of d, in the worst case the root
itself. Letting the next character in d after p to be x, we split C' into two parts — those
attributes that are extensions of ¢.x and those that are not. If for any g.x.t € C, we have
the two columns not equal, C' — d holds after all, as any matches that pick up the two
different d branches cannot agree on C. And if all the g.z.t columns are equal, again
the algorithm terminated too soon, because we should have applied the second rule to
unify the d values.

By the following theorem, the values in the two columns for this tableau d are equal
if and only if X' F 0. Hence our chase is correct.

Theorem 2. After the chase terminates, Tepqase F o if and only if X F o.

Proof. Clearly if T.pqse does not satisfy o = (A — b), we have that X ¥ o, as
Tehase F 2 by the previous lemma. On the other hand, suppose T pqse F 0. Consider
any tree 7" such that 77 E X. Suppose for a contradiction that 7’ ¥ o. Then there are
witnesses (1, o for this fact. These witnesses must agree and be non-null on all the
path identifiers in A. Furthermore, one of the matches must be non-null on b and thus
on all of ¢(c). Without loss of generality suppose p1(b) # null.

As the pattern ¢(o) is simple, it is clear from the proof of Theorem 1 that each
match corresponds to a row in U(R(T")). Let U(R(T"), p1, u2) be the table with just

16

those two rows. Also, let 7, be our tableau at the start of the chase. We show that at
each stage of the chase, U(R(T"), pi1, pt2) must be at least as unified as the tableau so
far (though it may have more unifications). As the b column is unified at the end of the
chase, this gives us our contradiction.

To formalize this idea, we say that a relation R covers a relation R’ if they have
the same schema and there is a one-to-one mapping from tuples in R’ to tuples in R
such that if two tuples have the same value for a column in R, then they have the same
value for that column in R’. As the initial tableau 7 only unifies those paths in A, it
clearly covers U(R(T"), u1, p2). We need to show that U(R(T”), p1, t2) is covered by
the tableau at each step of the chase. Suppose we are stage n of the chase, and that 7,,
covers U(R(T"), p1, 12). We attempt to unify with some C' — d € X. If we cannot
unify or if d is already unified, we are done. If we do unify, we either unify with rule 1
or rule 2. Suppose first that we unify with rule 1. Then all of the columns corresponding
to C' must be the same in both rows. As 7,, covers U(R(T"), u1, p2) and p is not-null,
these columns must be the same and not null in U(R(T"), i1, pi2). As T £ X, T' = £
(our additional XFDs hold because of the tree structure of T7”). Hence 1, j1o must agree
on d if it exists, so when we unify the d column 7,1 still covers U(R(T"), pi1, pi2).

Suppose we are stage n of the chase, and that 7,, covers U(R(T"), p1, pi2). At this
stage we attempt to unify with some C' — d € 5. If we cannot unify, or if d is already
unified, we are done. If we do unify, we either unify with either the first or second chase
rule. Suppose that we unify with the first row. Then all of the columns corresponding to
C must be the same in both rows. As 7,, covers U(R(T"), 1, p2) and p; is non-null,
these columns must be the same and not null in U(R(T"), 11, u2). Recall that L is
just X plus some additional XFDs representing the tree structure of a document. Hence
T’ £ X. Thus uq, po must agree on d if it exists, so when we unify the d column 7,11
still covers U(R(T"), p1, p12)-

Now suppose that we unify with respect to the second chase rule. Expand 7,, of
7, by converting it to a tree and then back to U(R(T)) as demonstrated in Figure 5.
Expand U(R(T"), p1, p2) to U(R(T"), p1, p2) in the same way. The rows in these ex-
pansions are determined entirely by the tree structure of the attribute columns, and so
7,, must cover U(R(T"), ji1, j12), and this covering can be constructed to extend the
initial covering.

Let r; € 7, be the row which corresponds to y in covering. We see from the
description of the second rule in Figure 5 that there must be some row in 7,, that agrees
with 71 on all the values in C but not d. As 7,, covers U(R(T"), ji1, j12) the second
row corresponds to some row in U (R(T"), u1, t2) which agrees with the p; row on C.
As these values are completely non-null and 77 £ C' — d, these two rows agree on d.
There are only two different values for d in 7,, and these are different in these two rows.
Thus as 7,, covers U(R(T"), j11, p12) we have i1(d) = pa(d). Hence when we unify
the d column 7,1 still covers U(R(T"), 1, p2)-

Complexity of the Chase Computing the chase naively is O(|X||o|). We have at most
|o| iterations of the outer loop, and finding a dependency that satsifies either rule 1 or
rule 2 requires a scan of Y. There is the issue that we are chasing with 5 and not X.
However, the functional dependencies in X' \ X' depend on a single column and can be
attached to that column for constant time evaluation.

17

It is easy to create a data structure that tracks, for each C' — d € X, the greatest
prefix of d unified in the chase so far. This allows us to adapt rule 2 to the linear time
chase presented in Beeri and Bernstein [4]. Our algorithm consists of several parts.

Step 1: Construct a reference tree for ¢ (o). We introduce a data structure which we
call ReferenceTreeNode with the following fields.

struct ReferenceTreeNode {
int column;
ReferenceTreeNode* internalParent;
ReferenceTreeNodex attributeChild;
Hashtable<Label, ReferenceTreeNodex> children

}

By constructing a tree of these nodes, we use this data structure to represent ¢ (o). Each
node correponds to a path prefix in (o). The field column represents the column of
the tableau for that prefix. The hashtable children links this prefix to its extensions
according to the value of the next label. As a result, once this structure is built, given
a path p, it requires |p| time to find the corresponding ReferenceTreeNode and
hence the correct tableau column.

The two additional fields in ReferenceTreeNode model the additional XFDs
of Y. If the ReferenceTreeNode represents a path ending in an internal node,
internalParent is a reference to a parent of this node; otherwise it is null. This
corresponds to the additional XFD p.d — p for every p.x € X of the chase. Similarly,
the ReferenceTreeNode represents a path ending in a node with an attribute child,
we let attributeChild refer to that child. For all others, this value is null.

To construct this tree, we allocate an array Tree [0 :n], where n is the number of
nodes in (o). We initialize this array with Algorithm 1. In this algorithm, the function
INITIALIZE_NODE(node, k) initializes a ReferenceTreeNode with column £,
assigns internalParent and attributeChild to null, and creates an empty
hashtable. It is clear that this algorithm is simply a single scan of o and hence runs in
O(|o|) time. Similarly, it is clear that it produces a tree with the properties stated above.

Step 2: Construct the data structures for 2. To represent our XFDs C' — d, we need
three different types of data structures. The first is a summary structure for the XFD.

struct Summary {
PrefixNode[1l:k] prefixes;
int dColumn;
int unifiedDepth;
int leftToUnify;

}

The field prefixes is an array of special data structures for the prefixes of d; k
is the depth of d from the root. The value dColumn represents the position of d in the
array Tree. The field unifiedDepth keeps track of the depth from the root of the
greatest prefix of d that is unified so far in the chase; as the elements of prefixes are
ordered by depth, it acts as an index into this array. Finally, the counter Left ToUnify
keeps track of the remaining paths left to unify in C' before we must unify d.

18

Algorithm 1 INITTALIZE_TREE(A — b)

Require: A — bis an XFD.

Ensure: Tree represents the tree pattern ¢(o)
1: free =1
2: INITIALIZE_NODE(s&Tree[0], 0)
3: for each path pin A — bdo

4 let p.p1.p2. ... pi be the labels of p.

5 label =1

6: current = &Tree[0], previous = null

7 while 1abel < k do

8 previous = current

9: if P1ape1 isin current .children then

10: current = current.children.get (Piape1)
11: else

12: current = INITIALIZE.NODE(&Tree[free], free)
13: free = free+l

14: previous.children.put (pPiapel, current)
15: if p1.pe1 1s an internal node then

16: current.internalParent = previous
17: end if

18: if p1.per1 1s an attribute node then

19: previous.attributeChild = current
20: end if
21: end if
22: label = label+1
23: end while
24: end for

For each XFD C' — d, a PrefixNode represents the prefixes of the path d.

struct PrefixNode {
Summary* summary;
int column;
int depth;
int cNodeToUnify;
}

Each PrefixNode corresponds to a single XFD and so has a single Summary struc-
ture. The value column represents the position of this element in the array Tree, while
depth is its depth from the root, and thus is its index in summary.prefixes. Fi-
nally, the value cNodesToUnify counts the number of ¢ € C' which are not yet
unified, and for which this node is the greatest common prefix between ¢ and d. This
node does not keep track of those elements of C' for which it is a prefix, but not the

greatest common prefix.
Similarly, for each XFD C' — d, a CNode represents a path ¢ € C'.
struct CNode {
PrefixNodex prefix;

int column;
bi

19

The value column is the same as for PrefixNode, while prefix refers to the
greatest common prefix of ¢ and d. Note therefore that any ¢ € C' which is a prefix of d
is represented by both a CNode and a PrefixNode.

We let n be as in step 1, and allocate AttList [1:n] and PrefList[1l:n].
The elements of the first array are sets of CNode objects, while the elements of the
second array are of type PrefixNode. As in Beeri and Bernstein [4], each element of
AttList is the set of CNode objects that represent this attribute in the tableau. The
array PrefixNode is what we use to integrate the second chase rule. These arrays start
out with all sets empty; we initialize them by running Algorithm 2 foreachC' — d € X
The subroutine for INITIALIZE_SUMMARY is shown in Algorithm 3.

Algorithm 2 INITIALIZE XFD(C — d)

Require: C' — dis an XFD.
Ensure: AttList contains the set of CNodex in C' — d that depend on each attribute
Ensure: PrefList contains the set of PrefixNode* in C' — d that depend on each attribute

1: summary = INITIALIZE,SUMMARY(b)

2: if summary == null then

3: return

4: end if

5: allocated = new List<CNode>

6: for each c € C do

7. let p.ci.ca....cm be the labels of c.

8: label = 1, position = 0, agree = 0

9: while 1abel < mdo

10: if diope1 isin Tree [position] .children then

11: tableau = Tree[position].children.get (Ciape1)
12: agree = (Ciaber == diaper ? agree+l : agree)
13: label = label+l, position = tableau.column
14: else

15: return

16: end if

17: end while

18: node = new CNode, node.column = position

19: node.prefix = &summary.prefixes[agree]

20: node.prefix.cNodeToUnify++, summary.leftToUnify++
21: Add node to allocated

22: end for

23: for index = Otokdo

24: Add summary.prefixes[index] toPrefList [prefixes[index].column]
25: end for

26: for each node in allocated do

27: Add node to AttList [node.column]

28: end for

The return statements at lines 3 and 15 represent the fact that part of C' — d lies
outside the tableau and so we can safely ignore this functional dependency. Hence we
do not update AttList until we are sure that C' — d lies in the tableau. Again, it is

20

clear that using this algorithm to initialize AttList is a single scan of Y, and hence
time O(|X)).

Algorithm 3 INITIALIZE_SUMMARY (d)

Ensure: Returns a Summary structure for d.
1: let p.di.d2. . .. dy be the labels of d.

2: summary = new Summary, summary.prefixes = new PrefixNode[l:k]
3: label = 1, position = 0

4: while 1abel < kdo

5: ifdiaper isin Tree [position] .children then

6: tableau = Tree[tableauPos].children.get (digpe1)
7. prefixes[label] = new PrefixNode

8: prefixes[label].summary = &summary

9: prefixes[label].column = tableau.column

10: prefixes[label].depth = label

11: prefixes[label].cNodeToUnify = 0

12: label = label+l, position = tableau.column
13: else

14: return null

15: end if

16: end while

17: summary.dColumn = summary.prefixes[k].column
18: summary.unifiedDepth = 0

19: return summary

Step 3: The Main Algorithm. Now that we have the structures Tree and AttList,
we are ready to perform the chase. The chase is shown in Algorithm 5. It has two sub-
routines: POSITION_OF and RESET_DEPTH. The first is a simple scan of a path p to
find the location of it in Tree, similar to lines 7-17 of Algorithm 2. The second subrou-
tine is illustrated in Algorithm 4. This algorithm crawls down the list of PrefixNode
objects to compute the number of attributes left to unify.

Algorithm 4 RESET DEPTH(prefix,summary)

Require: prefix.depth < summary.unifiedNode
Ensure: summary.unifiedDepth = prefix.depth
Ensure: summary.leftToUnify = # of remaining ¢ € C for which it is a prefix
: for depth = summary.unifiedDepthtoprefix.depth-1 do
current = summary.prefixes[summary.unifiedDepth]
summary.leftToUnify -= current.cNodeToUnify

1
2
3
4: end for
5
6

: summary.unifiedDepth = prefix.depth
: return summary

First, we claim that this algorithm runs in O(|o| 4 |X|) time. Using hashtables, the
set lookups are constant time. Thus the subroutine subroutine POSITION_OF(p,&Tree[0])
takes |p| time, and so lines 1 to 9 take O(|o|) time. Next, note that we never examine a

21

Algorithm 5 CHASE(A — b, X))

Require: Tree and AttList are initialized
Ensure: The chase is successful if and only if we return true.
1: bPosition = POSITION_OF(b,&sTree[0])

2: pending = new Queue<int>
3: visited = new Set<int>
4: for eacha € A do
5: position = POSITION_OF(a,&Tree[0]);
6: ifpositionisnotinvisited then
7 Addpositiontovisitedand pending
8 endif
9: end for
10: while pending is not empty do
11: next = pending.removeFromFront ()
12: ifbPosition == next then
13: return true
14: endif
15: foreach cnode in AttList [next] do
16: node.prefix.cNodeToUnify—-
17: if node.prefix.summary.unifiedDepth > node.prefix.depth then
18: node.prefix.summary.leftToUnify——
19: if node.prefix.summary.leftToUnify == O then
20: if node.prefix.summary.dColumn is notin visited then
21: Add node.prefix.summary.dColumnto visited and pending
22: end if
23: end if
24: end if
25: end for
26: for ecach PrefixNode prefixinAttList [next] do
27: if prefix.depth > prefix.summary.unifiedDepth then
28: RESET_DEPTH(prefix, summary)
29: ifprefix.summary.leftToUnify == 0 then
30: if prefix.summary.dColumn is notin visited then
31: Add prefix.summary.dColumn to visited and pending
32: end if
33: end if
34: end if
35: end for
36: if Tree[next].internalParent isnotnull and notin visited then
37: Add Tree[next] .internalParent to visited and pending
38: endif
39: if Tree[next].attributeChildisnotnull andnotin visited then
40: Add Tree[next] .attributeChildto visited and pending
41: endif

42: end while
43: return false

22

set AttList [¢] or PrefList [¢] more than once. The total number of elements of
all of the sets in AttList is O(|X|) and similarly for Pre fList. Therefore, the only
thing that we need be concerned with is the cost of RESET_DEPTH. However, RE-
SET_DEPTH can only move down a linked list of PrefixNode objects. Therefore,
the total cost of all the RESET_DEPTH calls in lines 10 to 42 is O(]X).

Next we show that Algorithm 5 implements the chase correctly. Note that, because
the root is always unified, the second chase rule is a proper generalization of the sec-
ond, and so we can ignore the first chase rule. We can treat each addition to the queue
pending as a unification of an attribute. We need only show that at the start of each
loop on line 10, every PrefixNode and Summary object is correct. That is, for every
PrefixNode object corresponding to C' — d

— cNodeToUnify is the number of ¢ € C for which this is the greatest common
prefix with d, and for which cnode . column is notin visited.

Similarly, for the corresponding Summary object summary

— summary.prefixes[summary.unifiedDepth] is the PrefixNode of
the greatest prefix of d that has the above property.

— summary.prefixes[summary.unifiedDepth].columnisinvisited,
but not in pending.

— summary.leftToUnify is the number of ¢ € C that are extensions of the node
corresponding to summary .prefix, and for which cnode.column is not in
visited.

Algorithm 2 ensures that this is all true initially, so our claim follows by simple in-
duction. We need only observe that the inductive hypothesis ensures that Algorithm 4
correctly computes summary . leftToUnify by subtracting off those ¢ € C that are
no longer extensions of summary .unifiedNode, and have not been unified (i.e. are
not in visited). Therefore, we have the following result.

Theorem 3. Given (X, o), implication can be decided in O(|X| + |o|) time.
4.2 Axiomatization

Nonnull constraints and fictitious functional dependencies Given the chase algo-
rithm, we can now extract an axiomatization using traditional techniques [1]. Our ax-
iomatization requires that our axiom language be able to express two additional types
of constraints on XML documents.

The first are nonnull constraints; intuitively, certain nodes in a tree may not be null if
we know that certain other nodes are not null. For example, the root may never be null,
and every nonnull node must have a nonnull parent. Formally, for A, B C PATHS, we
say that nn(A, B) if for all matches of the smallest tree pattern for A and B, whenever
the matches are not null on the paths in A, they are also not null on the paths in B.

The second constraint is a variation on the FD concept. Following Atzeni and Mor-
funi [3], we refer to these constraints as fictitious functional dependencies (FFDs).

Definition 2. A fictitious functional dependency o = A S, B consists of three subsets
A, B,C C PATHS. We let p(0) be the smallest tree pattern in which all paths in A, B,
and C occur, and let = ¢4 be as in a normal XFD. The dependency holds if, for any two
matches iy, pla € Moy 1, Whenever we have 11(p) =ya po(p) for all p € A, and
pi(s) # null for all s € C, then for all ¢ € B, j11(q) =fa p2(q).

23

It is absolutely essential to note that the condition 1 (p) and 2 (p) # null forall p €
A, present for ordinary XFDs, is missing from the above definition. Thus the matches
are now no longer required to be nonnull on A, only equal. For example, suppose we
add an additional node v;3 to the tree in Figure 3; we add this node as a child of vy and
label it e (the label of v7). Then this tree satisfies the XFD p.a.b.f — p.a.e because
there is a unique occurrence of each path below v, but it does not satisfy the FFD

p.a.b.f Py p.a.e.

The Axiomatization To axiomatize XFDs, we start with the axioms that Atzeni and
Morfuni [3] introduced for relational FDs in the presence of null values. Welet X, Y, Z, W C
PATHS. The following set of 12 axioms are sound and complete for relational FDs in
the presence of nulls.

IfY C X, then nn(X,Y).

If nn(X,Y) then nn(XZ,Y Z).

If nn(X,Y) and nn(Y, Z) then nn(X, Z)

IfY CX,then X - Y

fX —-Y,thenXZ —-YZ

fX —->Yand X — Z,then X - YZ

IfX —-YZ thenX -Yand X — 7

IfY C X C Zthen X 5 Y (reflexivity for FFDs)

IfXxX Z, Yand W C Z, then XW A YW (augmentation for FFDs)
FXXYandY X Zthen x % 2 (transitivity for FFDs)

. IfX — Yand X C Z then X 2 Y (FDs to FFDs)

12. If X % pand nn(Xp, Z) then X — p (FFDs to FDs)

In addition to these axioms, we add a new one one to change the intermediate set of an
FFD.

13. f X 2 Y and nn(W, Z) then X X v

Furthemore, we need several axioms to capture the tree structure of an XML document.
We let p,q € PATHS,q < p,z,y € EL,z # «.

[y

A e R

—_ =
—_ O

14. nn(p) (root is never null)

15. X — p (root is unique)

16. nn(p, q) (if a node is not null, neither are any of its ancestors).
17. p.x — p (every non-attribute child has a unique parent).

18. p — p.a (unique attribute child)

Finally, we need one axiom to capture the ability to “splice” paths together as we saw

with the second chase rule illustrated in Figure 5. For this axiom, if s € PATHS, let s.Y’

denote a set of paths all having s as a prefix.

19. If X,q.Y EA q.y.s, q not a prefix of any path in X, where X,q¢.Y C Z and
q.y.-W C q.Y includes all paths in ¢q.Y with q.y as a prefix, then ¢, ¢.y. W 2, q.y.S.

Theorem 4. In the absence of a DTD, axioms 1-19 are sound and complete for XFD
implication.

24

Proof. We treat each direction separately.

Soundness: Soundess for Axioms 1-13 largely follows from the correctness of our map-
ping in Theorem 1 and from Atzeni and Morfuni [3]. However, unlike their definition

for FFDs, we do not require that A C C' whenever A S B holds. However, this as-
sumption is part of the axiom for Axioms 8 and 11, so we need only check Axioms 9,
10, 12, and 13 from the first two sets of axioms.

For Axiom 9, suppose X 2z Yand W C ZholdinT. As W C Z, both X Z Y

and XW 2 YW have the same tree pattern ¢ (o). Let pu1, 2 € M, (5,7 and suppose
that /1 (p) =¢q p2(p) forallp € XW, and p11(s) # null forall s € Z. Then 11 (p) =44
p2(p) forall p € X and so p1(q) =yq p1(q) forall g € Y. As p1(p) =ya p2(p) # null
for all p € W by assumption, X W Z YW holds in T.

For Axiom 10, suppose X YyandY ¥ Zholdin T. Let (o) be the tree pattern

for X % Z, and let py, 1o € M (o), 7. We know from the proof of Theorem 1 that p1
and p each correspond to arow in U (R(T)). Let), u5 and pf, pfy be the matches that

correspond to these two rows for the tree patterns for X w Y,Y Wz , respectively.
As they are the same row in U(R(T')), we know that 1;, u}, 17 agree on all paths that
they have in common. Suppose that (11 (p) =yq p2(p) forall p € X, and p;(s) # null
for all s € W. Then p; (p) =yq p5(p) for all p € X, and py(s) # null for all s € W,
and so u}(q) =fq p5(g) for all p € Y. That means pf(q) =yq p5(¢) forallp € Y. As
i (s) = p1(s) # null for all s € W, we have py(r) = uf (r) = uf(r) = uo(r) for all
r € Z.Hence X % Z holds in T.

To check Axiom 12, suppose X Z p and nn(Xp, Z) holds in T'. Let py, uy €
M (o)1, Where 11(q), u2(q) # null and p1(q) =ga p2(q) for all ¢ € X. To show
X — pholds in T', we need only show that /1 (p) =¢q p12(p). If p1(p) = pa(p) = null,
we are done. So suppose without loss of generality that 11 (p) # null. Therefore, as

nn(Xp, Z), p1(s) Znull forall s € Z. As X Z. p holds, we are done.
Finally, for Axiom 13, suppose X ™'Y and nn(W, Z) hold in T. Let ¢(c) be
the tree pattern for X 2y, and let p1, 2 € M), r. Similarly, let ¢(o”) be the tree

pattern for X W'Y and let ©(c"") be the tree pattern for the paths in X Z. We know from
the proof of Theorem 1 that yi; and p» each correspond to arow in U (R(T)). Let i, 114
and pf, pf be the matches that correspond to these two rows for ¢(o’) and ¢(c”’),
respectively. As they are the same row in U(R(T')), we know that p;, u}, pi agree on
all paths that they have in common. Suppose that 11 (p) =4 pe(p) for all p € X, and
pi(s) = pa(s) # null for all s € W. As nn(W, Z) holds in T, p5(r) = p5(r) # null
for all 7 € Z. Therefore, since X *%> Y holds and fu; (p) = wi(p) for all p € X,
11(q) = pi(q) =ra p5(q) = p2(q) forallg € Y.

Of the remaining axioms, Axioms 14-18 follow from the tree structure of XML
documents; this only leaves Axiom 19. Suppose for a contradiction we have a witness

against ¢, q.y. W Z q.y.s, but the premise of the last axiom holds. Then we have two
matches p1, o for ZU{q.y.s}, agreeing on g and ¢.y.W but disagreeing on q.y.s. Fur-
thermore, at least one of them — say ;1 — is completely nonnull. However, consider
the following match us. Forall t € Z \ (q.y.W U {q.y.s}) and prefixes of such paths,

25

u3(t) = pi(t) (and is consequently nonnull). For all other paths ¢, u3(t) = ps(t). We

need only show that 1, p3 is a witness pair against X, ¢.Y EA q.y.S.

By our selection p; is completely nonnull on Z. Furthermore, ;11 and p3 agree on
X, since p3 took its values on X directly from . Furthermore, they agree on ¢.Y,
because any match for a path in ¢.Y in pg is either taken from i, or from o on a
section where 141 and po are known to be equal. Finally, p1; and w3 disagree on q.y.s,
so we do indeed have the required witness.

Completeness: For completeness, suppose 2 = o, where 0 = X — Y, X|Y C
PATHS. We show how to build a derivation for) - X — p foreach p € Y, and
then a series of applications of Axiom 6 completes the derivation to obtain a proof for
X =Y.

We fix one of the dependencies X — p which are of interest. Observe that, by Ax-

ioms 11 and 12, we have that X Xp pand X — p are equivalent, it suffices therefore to

provide a derivation for X Xy p. For any set Y C PATHS, let pref(Y) denote the set of
all prefixes of paths in Y (with Y C pref(Y'), so that we include non-proper prefixes).

Clearly we have nn(Y, pref(Y)), so by Axiom 13 a derivation for X pref () pisall

that is required. For notational clarity, we use U to denote pref (X, p).

We now show how to obtain a derivation for ¥ F X & q. We know from the
correctness of our chase algorithm that if ' F X — p, there is a chase run on a
tableau whose columns are exactly U and that terminates with the values in the p column
unified. Fix this run; we make use of it to obtain our derivation.

Define the U-closure of X, XU, as the set of all columns in the tableau that were
unified by this chase run (so that p € XV in particular). First we show that ¥ - X LA
XU by induction on the steps of the chase run. Having established that, we complete
the derivation as follows.

-x Y% xv (derivation obtained in previous step)
-xvY p (as p € XY by definition of XU, and using Axiom 8)
- X % p (Axiom 10).

We now construct a derivation for ¥ F X % XU, We define a chase step as the
application of a single FD that results in column unification, and assume for simplicity
that all dependencies in X’ have been decomposed into XFDs with a unique path on the
right-hand side (as complexity is not an issue here, this assumption is completely legal).
Denote as C';(X) all the columns of the tableau that have been unified after step ; thus
Clo(X) = X U{p}.

We now show by induction that for every i, X' - X Y Cl;(X).If i = 0 we have
x & p by Axioms 15 and 11, and an application of Axiom 9 allows us to derive
x % xu{p.

Now consider the inductive case of step i, where the one new unification was due
to the application of some XFD C' — d € X. By our inductive hypothesis, we have
a derivation for X 2 Cl;—1(X), and we know that Cl;(X) = Cl;_1(X) U {d}. The
dependency C' — d was applied either using the first or the second chase rule.

26

If the dependency was applied using the first chase rule, we use the following stan-
dard procedure to build our derivation.

Cli—1(X) Y. € (definition of C1;_, (X)), the fact that we used rule 1 for the chase,
so we must have C' C Cl;_1(X), and Axiogl 8)

C — d (by assumption, this comes from Y, so it is either in X' or an instance of
Axiom 17 or 18)

- Y d(Axiom 11)

Cli1(X) 2 d (Axiom 10)

Cli1(X) % ClL(X) (Axiom 9)

x & Cl;—1(X) (we have a derivation of this by inductive hypothesis)

X % c1,(X) (Axiom 10)

If the dependency was applied using the second rule, we build the derivation as
follows. Let ¢ be the prefix involved in the unification, as per the second chase rule. We
let D be C' except for all paths having ¢ as a prefix, thus C' = D U ¢.Y for some ¢.Y.
We know d is q.z.s for some = € EL and some s, perhaps empty. Let g.x.W be the
subset of paths in ¢.Y that have q.x as prefix. We build the derivation as follows.

- Cl;1(X) Y. ¢, q.z.W (definition of Cl;—1(X), the fact that we used the second
chase rule, so we must have ({¢} U ¢.z.W) C Cl;_1(X), and Axiom 8)

C — d (by assumption, this comes from Y/, so it is either in X' or an instance of
Axiom 17 or 18)

- Y d(Axiom 11)

- D,qY Yd (another way of writing the above)

- q,qxz.W Y (Axiom 19)

~ Cli_1(X) % d (Axiom 10)

- Clioy(X) B Cl;(X) (Axiom 9)

-x%c l;—1(X) (we have a derivation of this by inductive hypothesis)

- x Y ¢1;(X) (Axiom 10)

This completes the inductive case of the proof that gives the construction of the

o U .
derivation for ¥ - X — XY, and also the entire completeness proof.

4.3 Reasoning about XFD implication with Horn clauses

One of the unsettling features of our axiomatization is that we had to add several new
constraints to our language, making our axioms quite complicated. However, it turns out
that derivations produced from these axioms can be encoded as logical inferences with
Horn clauses. Thus they are closed under resolution, and so automated theorem provers
can process them efficiently. Furthermore, we show that any interaction between the
theory of trees and XFDs in this language is limited to the universal Horn fragment.

Our main theorem states that the XFD implication problem in the absence of a DTD
is equivalent to an implication problem involving only Horn clauses in an appropriate
signature. We observe that the electronic appendix to [2] also contains a use of Horn
clauses to encode part of the XFD implication problem. However, our work differs from
that encoding in the following ways.

27

— We do not deal with the complexity of inference; indeed, the full set of Horn clauses
we generate has exponential size.

— We show how the entire XFD implication problem can be considered as an im-
plication problem for a set of Horn clauses; in [2], only a computationally crucial
subsection of the problem is encoded, and the relevant Horn clause problem used
is not implication (the reduction given is to satisfiability of a set of Horn clauses).

We begin by introducing our coding of XFDs and nonnull constraints as Horn
clauses. Here, we reason entirely within a flat relation R, using our standard mapping
from XML FDs to relational ones. Consequently, we must begin by defining the schema
for R. As observed in Section 3.2, we can define such a finite R easily from the instance
of the implication problem we are given.

Having fixed R, we can express a (relational) functional dependency X — Y over
R with a formula of the form

VieroTi Ui % | RELTL) AR@ 2, 7))\ H#AnIATG =T | - =T
j=1,2

Note that we are using Z;, U;, 2; to indicate that XFDs may involve arbitrary finite tuples,
not just single variables. Also observe that writing R(Z7, U1, Z1) is notational shorthand;
attributes within R are identified by their position, and the variables in the three tuples
71, Y1, 21 may be arbitrarily “intermingled”. Also, a statement such as y; = ¥5 is really
shorthand for a conjunction of single-variable equality atoms, so the above technically
represents a finite set of Horn clauses.

Observe that the formula above is almost a Horn clause. In fact, we can turn it into a
real Horn clause by introducing a new unary relation symbol N, such that N(z) <=
x # null. The above now becomes

V12T 0% | N\ (R@ 5. 5) AN@)) ATi =1 | > =T
j=1,2

We fix the signature { R, N} for the remainder of the paper and do not mention it ex-
plicitly from now on.

This signature also lets us express nonnull constraints as Horn clauses. Relative
constraints have the form

vzya (R(7,y,a) A N(T)) — N(7)
For absolute constraints, such as “the root is never null”, this becomes
Vz,7 R(z,7) — N(z)

FFDs are also easy to encode. For an FFD X Z,Y we have the encoding

VieoTi % |\ R(@9.5) AT =T ANE) | 2 7i=1
j=1,2
Note that the above is an example where all of X, Y, Z are disjoint,, and it is also clear
that the encoding still works when this does not hold.
Given an XFD, FFD or nonnull constraint o, we denote its Horn clause encoding
over the signature { R, N} as H (o). This gives us the following result.

28

Theorem 5. Given an instance of an implication problem ¥ F 0 = A — B, B =
{b1,b2, - bn}, we define a set Iy of Horn clauses over { R, N'} to contain exactly the
following.

— The Horn clause encodings of all dependencies in X,

- Vzy R(z,y) — N(x) (i.e. the root is never null)

— Vic12%: Ti (/\j:L2 (R(zj,77) AN (@) A1 = E/\N(a:l)) — 1 = a9 (ie
the root is unique)

For all attributes p, q of R such that ¢ = p.x for some © € EL, H(nn(q, p)).

For all attributes p, q of R such that ¢ = p.x for some x € EL,x # «, H(q — p)
Vp.« attributes of R, H(p — p.«)

For all p.x € paths(D) and in R, x € EL, we add an extra constraint. Suppose for
notational clarity that the attribute order of R is such that p is the first attribute,
all the attributes that are extensions of p.x are next, and all other attributes come
last. Letting px1 and pxa be tuples of variables of arity equal to the number of
extensions of p.x in R, we have

Vie12pi T T | /\ R(pj,PT5,75) Apr = p2 | — R(p1, P72, 71)
j=1,2

ThenI' - H(A Abs b;) for allb; € B ifand only if ¥ F A — B.

Observe that there is a slight technicality in the theorem statement above. Namely,

reasoning with Horn clauses alone cannot get us all the way to A — B in general,

only to A Abs b; for all b; € B. However, by the soundness of our Axioms 11 and

12, these two sets of statements are logically equivalent, but our result is not enough to
prove this equivalence using Horn clauses alone. Nevertheless, all the essential part of
the reasoning can be performed with Horn clauses.

Proof. First, we must explain the last type of constraint we placed in [,; we call those
splicing constraints. Intuitively, those constraints capture the fact that R is a flat relation
produced by the unnesting of a tree. Suppose we have a node v that is a match for the
path p and has two different matches below it for p.x. There are two different subtrees,
rooted at p.x, below those matches. The splicing constraint tells us that there are two
tuples involving v in R that are exactly the same except that one tuple contains the first
match for p.x and its corresponding subtree, and the other tuple contains the second
match.

The forward direction is now clear, as all the clauses in I, are true in any tree in

which X holds, and by Axioms 11 and 12 from our axiomatization, { A Abs b; |b; € B }

and A — B are equivalent.

For the backward direction, we make use of our completeness proof for the axiom-
atization. We know that if X F o, then there is a proof of that fact using Axioms 1-19.
Ideally, we would show that each of the axioms represents an inference that can be
made using logic from premises that are only Horn clauses in I'; in this case, any proof
using the axioms would simply be “shorthand” for a Horn clause proof.

Indeed, it is not difficult to see that the above proposition holds for Axioms 1-10 and
13-18; we do not give the proofs for those axioms. The remaining Axioms are Axiom

29

11, 12 and 19. Our discussion must necessarily remain somewhat informal to maintain
readability.

We first show Axiom 11 can be made as an inference with Horn clauses. Recall this
axiom states that if X — Y and X C Z then X A Y. Suppose we have z;, y;, 25,

1 = 1,2, such that
N\ R@5,55,%) A71 =72 AN(21)
j=1,2
(i.e. the left-hand side of H (X EA Y')). Then from the Horn clause encoding of Axiom
1, we have N(T7). As we have the premise T1 = Tz we must have N (T3). However,
we now have everything on the left-hand size of H(X — Y'), so we can infer J1 = ¥,
which is the right-hand size we wanted.

We now show the same for Axiom 19. Recall this states that if X, q.Y Z q.Y.5, q
does not occur in X, we have X, q.Y C Z, and all paths in ¢.y. W C ¢.Y end in «

then ¢, q.y. W EA q.y.s. There are two cases for applying this axiom; the first case is
when ¢.y.s is itself in ¢.Y’, and the second is when it is not. For a particular derivation,
we always know which case we are dealing with, so we can convert our applications
separately. In the first case, the inference is an application of reflexivity and very simple.
So we show only the second case.

Again, we start with an encoding of the left-hand side of what we are trying to
derive. For clarity, we omit the attributes of R not involved in X, q.Y, Z or q.y.s as they
are not relevant to our reasoning here. We reorder the remaining attributes of R so that
they come in six categories of variables. In order these are as follows.

: The attributes of X

q

q.y.W

Attributes that are prefixes of a path in ¢, extensions of ¢.y, and not already in ¢
All attributes of ¢.Y not in € or d, and also all the prefixes of such paths not men-
tioned in the previous categories

q.y.s itself,

Any prefixes of ¢.y.s not mentioned in the previous categories

Any paths in Z not mentioned in the previous categories

o gl o 8l

Tlal

Observe that the attributes represented by ¢ and € are a superset of those in q.Y .
Suppose now we have a;, b;, ¢;, d;, €;, fi, i, h; for i = 1,2, such that

/\.] = 1,2R(&7]7b1,a,@,a,f1,%,h7])

Also suppose that N (a1), N(b1), N(¢1), N(dy), N(e7), and N (hy). Furthermore, sup-
pose that N (f1) and N (g7) if and only if Z contains any of the f or g attributes. Finally,
suppose that by = by and €1 = ¢3. Given all this, we can apply an appropriate splicing
constraint to conclude that

R(le bl;@; d727 57 f?vﬁahil)

as the ¢, d, f and g variables represent exactly those attributes having p.y as an exten-
sion, and those are the ones we are splicing.
Now, since we also know

R(TM bl) a7 dila a7 flgT7 h71)

30

and the latter tuple satisfies the nonnull condition on all of Z, we are in a position to
use our last premise, ¢; = ¢3. Observe that the a, c and e variables give us a superset of
the paths in X and ¢.Y’, so we can cover the left-hand side of the Horn encoding of the

dependency X, q.Y Z q.y.s. As the variables f represent q.y.s, fi = fo as required.

We now come to the last axiom we have left, which is Axiom 12. This axiom states
that if X 2 p and nn(Xp, Z) then X — p. However, it turns out that this inference
requires a premise that is not in I, and — what is worse — cannot be expressed as a
Horn clause, namely —=(N(z)V N (y)) — = = y (note that this holds for single variables
only, and is false for tuples in general).

To see this in detail, we begin our reasoning the usual way. The left-hand side of the
conclusion states that we have T;, p;, z; ¢ = 1, 2 such that

/\ R(.p;. %) NT1 =T AN(T1) A N(20)
j=1,2
We are seeking to derive p; = ps. We know N (p1) V —(N(p1)) and the same for ps. If
we were allowed to use the premise —(N(x) V N(y)) — = = y we could conclude that
we must have either p; = po, in which case we are done, or we have either N (p;) or
N (p2). We know N (77) and T1 = T3, so N (Tz). We can now use the Horn encoding of

. 4 . .
the nonnull constraint nn(Xp, Z) and (X = p) to obtain p; = py. However, if we are
not allowed to use that one extra premise, we cannot make the inference. In particular,

observe that we cannot conclude that X ¥ pand X — p are equivalent, only that the
latter implies the former.

However, this is not as serious a problem as one may think. We started out with the
assumption that 3 E A — B, and from the completeness of our axioms we are free
to work with the specific derivation that was produced in the completeness proof. In
that particular style of derivation, observe that Axiom 12 is actually only used for one

purpose, and this purpose is making the final transitions from A Abs b;to A — b; for
each b; € B. The rest of the derivation makes no use of Axiom 12. Therefore it follows
that our inability to express Axiom 12 with Horn clause inferences does not affect our
ability to reason about everything else with Horn premises only.

Interaction of XFDs with the general theory of trees We now formalize the interac-
tion between FDs and the theory of trees in this signature. Let ¥; denote all first-order
formulae that hold on all trees (finite or infinite), H the set of all universally quanti-
fied Horn clauses, and F the set of all functional dependencies definable over the same
signature. Finally, let f(o) be the set of FFDs that is directly equivalent to o; in other

words, if o = A — B then f(0) = {A Abs b; |b; € B } In this case above theorem
has an immediate corollary.

Corollary 1. Forany ¥ C F,o € F, X UW b o ifand only if XU (¥ N'H) - f(o)

Intuitively, if we only wish to reason about implication of formulae in F, we need
not consider the entire first-order theory of trees, only its universal Horn fragment.
Everything in ¥; which is not deducible from the Horn fragment alone is completely
independent of the functional dependencies which may or may not hold on a tree.

31

Observe that the statement above can be read as a result about how the theory of
trees and the theory of XFDs interact in a well-behaved way: any interaction relevant
to XFDs can be guaranteed to occur within a small fragment of the theory of trees.
Indeed, this fragment is as small as we could hope for, because we need our language
to be able to express the XFDs themselves. We will see that we will be able to make
corresponding statments in the presence of various classes of DTDs.

5 XFDs and Simple DTDs

5.1 Consistency

Simple DTDs are capable of introducing new XFDs into a document; however, they are
not strong enough to assert that an XFD cannot hold. Thus there is no way way to write
down a set of XFDs that would be inconsistent with a simple DTD.

Theorem 6. If D is a simple DTD, then (X, D) is consistent for all X.

Proof. Let T be the smallest tree (with respect to the number of nodes) such that 7" = D,
with a value assignment for the o nodes such that all values are unique in the entire tree.
Observe that the minimality of 7" implies that 7 is finite, even if D is recursive; if we
have a recursive D and no finite 7 satisfying it, D is inconsistent, and we ruled out
inconsistent DTDs early on. We show that 7' F ¢ for any XFD o. The result follows
immediately, as 7" is a witness for consistency with any set 3.

Observe that as D is simple, no path in 7" occurs more than once. The result we want
follows immediately from the definition of XFDs and matchings; the existence of two
different matchings for a path that could be a witness for T’ ¥ ¢ requires two different
occurrences of a prefix of that path.

5.2 Trivial XFD implication

While it is the case that no set of XFDs can be inconsistent with a simple DTD, a DTD
does exclude certain paths, and therefore can make certain XFDs hold vacuously. For,
suppose we are given an implication problem instance (X, o, D), and some path in (o)
is not in paths(D). In this case X' Ep o trivially, because there is no tree satisfying D
in which we can ever find a witness against o, whether the tree satisfies 2’ or not. We
call such XFD implication instances trivial.

These cases of XFD implication are so pathological that we really want to remove
them from consideration early. This allows us to produce a fairly concise set of axioms
that is sound and complete for implication, on the assumption that reasoning is restricted
to paths(D) and no trivial XFD implications occur.

Our decision to ignore these types of XFD implication is further bolstered by the
fact that we can detect that X F ¢ via a trivial implication in O(|o|+|D|) time. Given a
DTD, we construct a Hashtable<Label, Set <Label>> that encodes paths(D) in
Algorithm 6. This algorithm clearly takes O(| D|) time. The data structure Labe1Path
maps each label to the set of labels which are an allowable descendant. Given this data
structure, the function IS_D_PATH in Algorithm 7 can determine whether p € paths(D)
in O(|p|) time. As a result, we ignore trivial XFDs for the rest of this section.

32

Algorithm 6 INITIALIZE_TABLE(D)

Require: D is a simple DTD
Ensure: LabelTree encodes paths(D)

1: LabelTable = new Hashtable<Label, Set<Label>>

2: Allocate a new Set<Label> and add it to LabelTable for key p.

3: foreach/ ~» E € D do

4 if £ is not in LabelTable then

5 Allocate a new Set<Label> and add it to LabelTable for key .
6: endif
7.
8

1Set = LabelTable.get (£)
: for each alphabet symbol a € E (i.e. a,a?,a*, or a* € E) do
9: Add ato 1set

10: end for
11: end for

Algorithm 7 IS_D_PATH(p)

Require: LabelTable is initialized
Ensure: p € paths(D) if and only if we return true.
1: let p.p1.p2. ... pg be the labels of p.
: label = 1,set = LabelTable.get (p)
. while 1abel < kdo
if P1ape1 isnotin set then
return false
end if
set = LabelTable.get (Piabe1)
label = label+l
: end while
: return true

SO XN AR

s

5.3 The chase algorithm

It is possible to modify our chase algorithm from Section 4.1 to include the presence of
a simple DTD. For a problem instance (X, o), we set up the tableau exactly as before,
with a column for every path and prefix of a path in (o). However, in addition, we add
a column for every path p € paths(X) such that D enforces nn (¢ (o), p).

For example, suppose o = {p.a, p.b.c} — p.b.dand ¥ = {p.b.c.e — p.b.d.f}.
Also, suppose D contains the productions ¢ — e and d — f. Then 7 is as follows.

p|p-a|p.b|p.b.c|p.b.c.e|p.b.d|p.b.d.f
V1| V2 | V3| V4 Vs Vg Ug
V1| V2 |V10| V4 V11 U7 Vg

As before, we define the extension S of X. However, we also add XFDs of the form
p.dy — p.dy.ds for every column p.d; .ds such that D contains a production of the form
dy ~> day or dy ~ da?7, d2 ¢ ~. These additional XFDs represent the unique child
constraints specified by D.

With this new tableau and X’ we run the chase as before. Once again, the values in
the b column are equal if and only if X Fp o.

33

Correctness of the Chase As before, when the chase terminates, we construct a tree
Tehase from the tableau. Note that this tree may not satisfy the DTD D; however, we
can extend T ;s to a document (Tepqse) p that does.

Lemma 2. After the chase terminates, T corresponds to U(R(T pase)) for some doc-
ument T pqse. Furthermore, the tree Tepqse can be extended to a (potentially infinite)
tree (Tehase) p which must satisfy both D and X. Furthermore, (Tchase)p E o if and
Ol’lly ichhase Fo.

Proof. We start by obtaining T,pqs. from 7 as in the case with no DTD. Then, we
produce (T hase) b, the Skolem hull of Tep,qse under D. That s, (Tepase) p is @ minimal
tree T’ = D such that T, structurally embeds in 7'; note that as attributes require
value assignments, this may not be unique. However, in general, we build the Skolem
hull so that on any new attribute path, a fresh and unique attribute value is assigned.

Observe that we can always build the Skolem hull without violating D, because
if T,.pqse should contain two occurrences of some path, they must be allowed by D.
In particular, we included all relevant unique child dependencies in 3. And if Tehase
contains only single occurrences of all its paths, then there is no other source of possible
collision with D.

Recall that D is simple, and as such it cannot require more than one occurrence of a
given path. Therefore, any nodes we added in creating (T¢pqse) p must lie on paths that
do not belong to 3/ or o, otherwise we would have added them to 7 earlier. Thus the
addition of the new nodes does not have any impact on the satisfaction of X' or .

This immediately gives us one direction of the correctness of our chase.
Theorem 7. After the chase terminates, (Tepase)p E 0 if and only if X Ep o.

Proof. Clearly if (T¢pqse) p does not satisfy o, we have that X ¥ o, as (Tepase)p F X
by Lemma 2. For the other direction, the argument is similar to the case with no DTD.
Suppose (Tenase)p F o. If in fact X ¥ p o, then there is some tree 7" (infinite or finite)
where X' holds but o does not. Find and extract any witness pair p1, o for this. Again,
we know at least one of the matches is completely nonnull; suppose 11 is the nonnull
match.

We now continue as for the proof of Theorem 2. We let U(R(T"), u1, pi2) be as
before, except that we project out all columns that are not in the tableau. That is, the u;
may be nonnull on some paths not in paths(X'). By construction, none of these paths are
references in X, and so they can be safely ignored throughout the chase. As before, we
let 7y be the tableau at the start of the chase. We know that 7y covers U (R(T"), p1, p2)-
We just need to show that at every step of the chase, 7,, covers U(R(T"), p1, pi2)-

Suppose we are stage n of the chase, and that 7,, covers U (R(T"), pi1, pi2). At this
stage we attempt to unify with some C' — d € 2.1f C — d was not introduced by
D, we argue as before. So suppose we are chasing with an XFD p.d; — p.d;.d2 given
by D, where p.d;, p.dy.dy are columns in our tableau. As we are unifying with this
XFD, p1(p.di) =fq p2(p.d2) # null; in fact we know that they are the same node
since p.d; is an internal node. The DTD must have a production of the form d; ~» dy7y
or dy ~ do?v, dy ¢ + for us to have this XFD. Thus as 77 £ D, p;(p.d;.da) and
2 (p.dy.ds) are the same node. Hence when we unify the p.d;.do column, 7, still
covers U(R(T"), pi1, p2)-

34

Complexity of the chase The only additional cost for running this chase comes from
the additional number of columns and the additional XFDs for the DTD D. Each of
these is bounded by |X|. Thus we have the following result.

Theorem 8. . Given (X, 0, D) with D a simple DTD, implication can be decided in
O(|Z| + |o| + |D|) time.

Proof. The primary difference between this theorem and Theorem 3 is that we have to
add new columns and XFDs for the DTD D. The columns are the elements of Tree
constructed in Algorithm 1. Instead of an array, which we allocate at the start, we use
a growable array such as is typically used in hashtables. Note that adding a single new
element is worst case O(n), as we may need to increase the array capacity. However,
as with hashtables, it is amortized O(1) across the entire algorithm when we take into
account the number of additions that were necessary to exceed the capacity of the array.

We initialize Tree as before. However, each ReferenceTreeNode has the ad-
ditional field uniqueChildren, whichis of type Set <int>. If the object represents
a path p, then uniqueChildren is the set of integers for the paths p.d such that the
DTD added the XFD p — p.d to X. These sets will be empty by the end of Algorithm 6.

To initialize these sets, we need to keep track of the set of unique children for each
production. We do that with the data structure XFDTable constructed by Algorithm 8.
In addition construct a data structure LabelTree as in Algorithm 6, except that we
restrict line 8 to only consider those a such that ¢ or a™ € E. Note that for this modified
version of LabelTree, Algorithm 7 returns t rue if and only if the DTD forces this
path to be nonnull.

Algorithm 8 INITIALIZE D_XFDS(D)
Require: D is a simple DTD
Ensure: XFDTable encodes 3 \ X
1: XFDTable = new Hashtable<Label, Set<Label>>
2: VisitedTable = new Hashtable<Label, Set<Label>>
3: Allocate a Set<Label> and add it to both XFDTable, VisitedTable for key p.
4: foreach ¢/ ~~ E € D do
5 if £ is not in XFDTable then
6: Allocate a Set<Label> and add it to both XFDTable, VisitedTable for key /.
7.
8

end if
: 1XFDSet = XFDTable.get (£)
9: 1Visited = VisitedTable.get (£)
10: for eachaora™ € E do

11: if a isin 1Visited then

12: Remove a from 1XFDSet {We have seen a already; it cannot be a unique child}
13: else

14: Add a to 1XFDSet and 1Visited

15: end if

16: end for

17: end for

35

We integrate our modified IS_D_PATH into the loop starting at line 9 in Algorithm 2,
and the loop starting at line 4 in Algorithm 3 (i.e. they both have the same loop structure,
so we combine the interiors). Suppose the checks at line 10 of Algorithm 2 or line 5 of
Algorithm 3 fail, indicating that the path is not in the tableau. In this case, the modified
LabelTree allows us to check in constant time whether the DTD forces the path to
be not null. If so, we add a representative for this node to Tree as in Algorithm 1 and
act as if the check did not fail.

Furthermore, just before the end of the loops at line 17 in Algorithm 2 and 16 in
Algorithm 3, we check if p1.pe1 1 (for label # 1) is in XFDTable. If so, we check
whether p;.pe; 18 in the set XFDTable.get(prape1—1)- A positive result means that
Plaber 1S a unique child of p;pe1—1, S0 we add the column for this path to the set
uniqueChildren in the ReferenceTreeNode for p;ape1—1. This corresponds
to adding an XFD of type p.d; — p.d;.ds generated by the DTD.

When we are done with our modified version of Algorithm 2, Tree will contain all
the columns necessary for our modified chase. Furthermore, the fields uniqueChildren
will encode all of the extra XFDs that were added by D. Finally, it is clear from our
modifications that this algorithm still takes O(|X|) time.

We now run Algorithm 5 as before with only one modification. After line 41, we
loop through all of the elements of Tree [next] .uniqueChildren. For each one
that is not in visited, we add it to visited and pending; this corresponds to
a unification for that unique child XFD. It is clear that this correctly implements the
chase. As each of these elements corresponds to a unique column in our tableau, the
uniqueChildren sets have a total of O(|o| + |X|) elements for all of the vari-
ous ReferenceTreeNode objects combined. Therefore, this algorithm still runs in
O(|o| + |X) time.

5.4 Axiomatization

To axiomatize XFD implication for simple DTDs, we need only account for the addi-
tional XFDs that we added to X' in the chase. However, instead of an additional axiom,
we add an axiom schema. That is, the actual axioms depend on our DTD D, but we
have a single schema for specifying these axioms from the DTD.

Theorem 9. In the presence of a simple DTD D, a sound and complete set of axioms
for (unrestricted) XFD implication includes exactly Axioms 1-19 from Section 4.2 with

20. nn(p.x, p.x.y), for each production © ~ yy, x ~> yTvy € D
(i.e. the DTD does not allow certain children to be null).

21. p.x — p.x.y, for each production x ~ y~, x ~ y?y € D, where v € (EL—{y})*
(i.e. XFDs enforced by the DTD).

Proof. Soundness of the new axioms is clear, and the completeness proof is almost
identical to that in the case with no DTD. The only difference is that the chase now

proves A Z b, where Z is the closure under all the nonnull constraints of all the paths
in A, b and their prefixes. Z is also exactly the set of the paths that have designated
columns in the chase tableau.

36

5.5 Reasoning about XFD implication with Horn clauses

In this section, we show again that our axioms can be encoded as Horn clauses, and
that the interaction of simple DTDs with XFDs is very well-behaved, according to our
formalization of that concept. More precisely, in the presence of a simple DTD, we
still do not have to step outside the language of universal Horn clauses to carry out our
reasoning.

Theorem 10. Given a simple DTD D and an instance of an implication problem X Fp
o, suppose we define a set I, p of Horn clauses over {R, N} to contain exactly the
following.
— All of I'; as defined in Section 4.3.
- H(nn(p.xz,p.x.y)), for all p.x in paths(D), x € EL such that D contains a pro-
duction x ~ yy or x — y*y, v € EL*, and both p.x and p.x.y are attributes of R
(i.e. the DTD requires the children to be nonnull).
- H(p.x — p.x.y), for all p.x € paths(D) such that D contains a production x ~
yy or x — y?v, v € EL", and both p.x and p.x.y are attributes of R (i.e. unique
child constraints imposed by the DTD).

Then I'p - H(A Ads b;) forall b; € Bifand only if ¥ Ep A — B.

Proof. The proof is exactly the same as in the Section 4.3, as the only new constraints
induced by the DTD are new XFDs and nonnull constraints. Furthermore, the new ax-
ioms are only sets of those FDs and nonnull constraints, rather than new inference rules.

Interaction of XFDs with the general theory of trees We can formulate the appro-
priate analogue of Corollary 1 for the theorem above. Given a simple DTD D, let ¥p
denote all first-order formulae that hold on all trees (finite or infinite) satisfying D, and
let H and F be as before. Then, we have the following result.

Corollary 2. Forany ¥ C F,o € F, YUW¥p Foifandonlyif XU (WUpNH) o

Intuitively, the only part of the theory of simple DTDs that interacts in any way
with FDs is the universal Horn fragment. This explains why simple DTDs have proven
a relatively tractable class to work with. Indeed, we conjecture that they are the largest
class of DTDs for which we are able to encode our axioms with universal Horn theory
alone.

6 XFDs and #-DTDs

6.1 Consistency

In contrast to simple DTDs, it is possible to give a X' and an #-DTD D such that (X, D)
is inconsistent. An example is the DTD consisting of the productions p ~~ abb,a ~~
a,b ~ a, and the set of XFDs {p.b.ac — p.b, p.a.cc — p.b.a}. The tree has two paths
p.b.a.. The first XFD forces the two attribute values on those paths to be different, but
the second forces them to be the same.

Fortunately, consistency for a set of XFDs X' and an #-DTD D can be decided in
polynomial time. For the sake of clarity, we start by giving a naive exponential algo-
rithm, and then show how to bring down the complexity. We first start with the following
lemma.

37

Lemma 3. Let Tp be the smallest tree such that Tp E D. (X, D) is consistent if and
only if there is a way of assigning attribute values to any a-nodes in T'p such that

Tp E X.

The lemma essentially states that issues of consistency can be decided on the small-
est tree satisfying D. Our naive algorithm involves constructing this tree and assign-
ment of values to a-nodes; our polynomial algorithm demonstrates that the entire tree
T'p need not be constructed explicitly. The proof of the lemma requires us to introduce
a useful technical concept — uniformly matched trees.

Definition 3. A uniformly matched tree is any tree T such that for every rooted path p
inT, either:

— Yu which are matches of paths(T), u(p) = null, or

— Y which are matches of paths(T), (p) # null

Uniformly matched trees have several interesting properties.
Lemma 4. If a tree T is uniformly matched, then U(R(T)) contains no null values.

Proof. This is clear from the definition. If for some p, U(R(T")) contains a null value,
then 7" contains a null match for p. Thus 7" contains no nonnull matches for p at all, and
the p column should never have been included in the schema for U(R(T')) when the
relation was constructed.

Lemma 5. If T is uniformly matched, 0 = A — B, and T ¥ o, it is not possible to
extend T by adding a finite number of nodes to obtain a tree T' such that T' F o.

Proof. InT above, we have at least two matches that witness 7" # o. These correspond
to two tuples in U(R(T))). By Lemma 4, these tuples contain no null values. Thus
these witness tuples cannot be destroyed by adding extra nodes.

Lemma 6. Given any #-DTD, the minimal tree T satisfying D is uniformly matched.

Proof. Suppose not; then some path p, has a nonnull match and a null match in 7". But
this contradicts minimality, as a minimal tree for D would contain only nodes that are
constrained to exist by the existence of their parents. In our case, the node which is the
nonnull match for p can be removed to create a smaller 77, T" = D.

We can now return to the proof of the main lemma.

Proof (Lemma 3). One direction of the lemma is clearly trivial: if Tp, with an appro-
priate set of attribute values if applicable, satisfies X, then (X, D) is consistent. We
argue the other direction. Suppose that there is no way to assign attribute values to
Tp such that Tp F Y. However, observe that 7o must embed structurally into every
other T” such that T’ = D. As Tp is uniformly matched, no further addition of nodes
makes X satisfied. Thus X' is not satisfied by any 7" allowed by D, so (X, D) is indeed
inconsistent.

In model theoretic terms, the T, is the “prime model” of D, in that it embeds in all
other documents satisfying D. We now state our naive consistency checking algorithm
that runs on T'p.

38

Naive algorithm

1. Construct the minimal 7p from D. Initialize all the attribute nodes to different
values from VAL, and convert T to the flat relation U(R(Tp)).

2. Partition X into },, which contains all the XFDs with an attribute node on the
right-hand side, and X; = X'\ X,.

3. Treat U(R(Tp)) as a very large chase tableau, and perform a standard relational
chase (no use of the second rule) on it with Y. Any unification from Y, is allowed
to proceed normally, but any attempt at a unification from X; causes the algorithm
to return “no”.

4. If the chase completes successfully, return “yes”.

Theorem 11. There is an assignment of attribute values to attribute nodes of Tp under
which Tp E X if and only if the algorithm returns “yes”.

Proof. One direction is clear: if the algorithm returns “yes”, our chase on U(R(1p))
terminated with a tableau satisfying all of 3. The chase performed no unifications on
non-attribute columns, so it did not change the structure of the tree represented by the
tableau. Thus the tableau can be transformed back to T'p with an attribute value assign-
ment that satisfies 2.

On the other hand, suppose the algorithm returns “no”. Suppose for a contradiction
that there is an assignment of attribute values to attribute nodes of Tp such that Tp F .
Thus there is an assignment of attribute values to the attribute columns of U(R(7Tp))
such that U(R(Tp)) satisfies 2. However, the algorithm attempted some unification
with o; € X;, 0y = A; — b;, and returned “no”. Focus on the two tuples t1, to where
this happened. There are two possible cases.

Case 1: t1 and t5 correspond to two matches for (o) that agree by identity on all the
nodes in A; but reach different b; nodes. It is clear that no value assignment to attribute
nodes can make such a o; satisfied, so we have our contradiction.

Case 2: t1 and t, correspond to two matches that agree on some a; € A; by value only
(not by identity). This means that the two a; values of ¢; and ¢, have been unified by
the chase (as they started out distinct). However, it is easily shown by induction on the
order in which the chase performs unifications, and using the fact that the initial attribute
values are all distinct, that every unification performed by the chase is necessary to the
satisfaction of some o, € X,. Intuitively, this is true because every unification destroys
some witness to o, not holding; if the unification is never performed, the witness is
retained. Since each unification was necessary for the satisfiaction of some o,, any
assignment satisfying our o; on t; and ¢, would violate that o, (possibly on some
different tuples). We have a contradiction again.

This algorithm is possibly exponential because of the duplicate paths that may ap-
pear in T, resulting in a large U (R(Tp)). However, using special encoding techniques
to compress duplicate paths, we can implement this algorithm in polynomial time.

To present our efficient algorithm, we begin by introducing a slightly different ver-
sion of the naive algorithm, which is completely equivalent to the previous one but
easier to reason about. This version artificially divides the chase on U(R(Tp)) into
three phases.

39

Three-phase naive algorithm

1. Construct the minimal 7’p from D. Initialize all the attribute nodes to different
values from VAL, and convert T to the flat relation U(R(7Tp)).

2. Partition X' into /,, which contains all the XFDs with an attribute node on the
right-hand side, and X; = X'\ X,.

3. Treat U(R(Tp)) as a very large chase tableau, and perform a standard relational
chase (no use of the second rule) on it with . The chase proceeds in three phases,
as follows.

(a) Check whether each dependency in J; is satisfied. If not, return “no”, other-
wise continue.

(b) Chase in the standard manner only with Y/, performing normal unifications.

(c) Again check whether each dependency in Y; is satisfied. If not, return “no”,
otherwise return “yes”.

As the following lemma shows, these algorithms are the same.

Lemma 7. Given the same input, the three-phase version of the naive algorithm returns
“ves” if and only if the one-phase version did. Moreover, if both algorithms succeed,
the final tableau produced by both algorithms is the same.

Proof. As the chase is Church-Rosser, this is intuitively clear; we are free to reorder the
chase steps as long as we allow all dependencies to fire as many times as needed. That
is, if firing some o can affect the satisfaction of some o’ that fired previously, o’ must
have a chance to fire again. We also give a more formal proof.

Suppose the three-phase version returns “no”. Then some dependency o; = A; —
b;, o; € X; was violated in Phase 1 or 3. If it was violated in Phase 1, we have a sit-
uation where the two witnesses to the violation agree by identity on A; but not on b;;
no unifications of attribute nodes can make this o; satisfied. Thus, when the one-phase
algorithm checks the satisfaction of o; — which it must do at some point — it will re-
turn “no” as well. On the other hand, if o; was violated in Phase 3, we have a situation
where some number of unifications with X', produced two witnesses against o;. How-
ever, all unifications performed in Phase 2 will be performed by the one-phase algorithm
eventually, unless the one-phase algorithm returns “no” before this has a chance to hap-
pen. Thus the same witnesses against o; must come into existence at some point in the
one-phase algorithm. Because such witnesses can never be destroyed (i.e. unification of
internal node values is not allowed), the one-phase algorithm will return “no” when it
checks this o; and finds the same witness.

On the other hand suppose the one-phase version returns “no” due to the existence
of a pair of tuples 1, to, which witness that o; = A; — b; does not hold. If the tuples
agree by identity on all of A;, the one-phase algorithm would have found this witness
in Phase 1. If they do not agree by identity, the witness was created by some number
of unifications with ;. Those same unifications will be performed in Phase 2 of the
three-phase algorithm, and the same witness will be produced, leading to a “no” answer
in Phase 3 when o, is checked.

To see that the algorithms produce the same tableau when they succed, note that
success means the same thing for both algorithms: during a chase with X', nothing in

40

Y); ever fired and all of X, fired until it was satisfied. Thus the chase that was actu-
ally performed was really a chase with Y/, in both cases. The fact that both resulting
tableaux are the same is now immediate.

Efficient algorithm The intuition behind turning the three-phase naive algorithm into
an efficient one is to note that we do not need to keep track of the value assignment in
the entire tree; in fact, the crux of the satisfiability problem for X' occurs in Phase 2, and
has to do with the classes of attribute nodes whose values are unified by the application
of dependencies in X/,. It turns out this is really all the information we need.

The data structure used in the algorithm is an annotated tree, with several (directed)
back edges exiting certain attribute nodes. We begin by setting up an ordinary tree which
has one occurrence of every path that satisfies the two following conditions.

1. It occurs in some o € X.
2. Itis required to be nonnull by the DTD.

Annotate each edge of this tree with an integer corresponding to the appropriate pro-
duction in the DTD. If there is an edge from parent a to child b, and the DTD requires
a minimum of n b-children for every a-node, annotate the edge with n. For example, if
the relevant DTD production is a ~» bbbbc*, then n = 4. In addition, we insert several
directed back edges. For every p a path that is the right-hand side of some XFD in Y,
let v be the match for p; add a back edge from v to itself. We note that the target of the
back edge will change throughout the algorithm.

This initial annotated tree T4 is a concise encoding of the minimal tree T, featured
in the previous algorithm, or more precisely the part of the tree that is affected by 2.
Our efficient algorithm is a fairly direct encoding of our three-phase naive algorithm,
where the encoding allows the work to be carried out on 7'4.

a:x a:x a z a:z au a:v

Minimal Tree T Encoding 7,
Fig. 6. A Uniformly Matched Tp F D and its Annotated Encoding 7’4

Initially, T'4 is to be understood as a tree where all the attribute nodes have different
values. Later, some of the values will be unified, and the back edges will be used to
keep track of this. Every attribute path p where some values have been unified will
have, in the encoded tree, a back edge pointing to some ancestor of the match for p.
That ancestor represents the scope of the unification. That is, if the target of the back

41

edge is itself a match for some path g, then the values of p are understood to be the
same only within every subtree rooted at q. Note however, that they will differ between
different subtrees rooted at g. An example of a uniformly matched Tp part way through
the run of our algorithm, as well as its annotated encoding 7 4, is illustrated in Figure 6.

The construction of this tree takes O(|D| + |X|) time. We modify Algorithm 8
so that XFDTable keeps track of not just of the unique children, but those children
that must have a nonzero occurrence. Furthermore, instead of a set of labels, each
XFDTable.get(p) is a hashtable mapping labels to integers, representing the number
of occurrences of that label. For example, suppose we have the production a ~~ bbbbc*d.
Then XFDTable.get(a) maps bto 4 and d to 1, but ¢ is not present in this hashtable
at all. From this new construction of XFDTable, we can construct 7'y by starting out
with a Tree containing only a single ReferenceTreeNode for the root and using
the modified version of Algorithm 2 for Theorem 8.

We now give the encoding of the chase Phases 1, 2, and 3 in our naive algorithm.

Phase 1. This is where we check for each o; € X; whether Tp F o;. We proceed as
follows. Given o; = A — b, check whether there is a match for all of ¢(o;) in the
annotated tree T'4. If not, we know Tp F o; trivially. Otherwise, identify p, the longest
common prefix of b and any path in A. If ¢ = b — p is null, that is b = p, o; is satisfied,
because all extensions of b in A are either internal nodes or have unique attribute values
at this point. So suppose ¢ is not null. Calculate the product of all the annotations along
q: if this is equal to 1, answer “yes”, otherwise answer “no”.

Lemma 8. T’y with the initial value assignment satisfies o; if and only if the above
encoding returns “yes”.

Proof. Observe that, due to the way T'4 is constructed, the product of the labels along ¢
indicates the exact number of distinct matches for b that correspond to the same match
for A. Thus, if that number is not equal to 1, we see immediately that T, ¥ o, and oth-
erwise Tp F o; as all attribute values are distinct, and so we cannot have two matches
for ¢(o;) agreeing on A by value but not by identity.

The complexity of this step is O(|X;]).

Phase 2. This is where we unify certain classes of attribute nodes, and our correspond-
ing action on T4 is to raise certain back edges. We start by removing from considera-
tion all dependencies o, € X, such that T4 does not contain a full match for ¢ (o,), as
those are satisfied. Now, iterate the following process until no more changes in 7’4 can
be made.

Choose a dependency o, € X,,0, = A — b. Identify a split of b into p and g as
before; by assumption b ends in an attribute node, so ¢ is certainly not null unless b € A
and the dependency is trivial. Now, we may or may not raise the back edge exiting b
further towards the root, according to the following procedure.

— (Type 1 raising) If the back edge exiting b is a self-loop, and the product of the
annotations along ¢ is greater than 1, raise the back edge to p. Whether or not a
change was made here, continue to step 2.

42

— (Type 2 raising) Let v be the node currently reached by the back edge that exits b,
and let be the path from the root to v. Identify ¢, the shortest rooted path that is a
prefix of r and such that all the paths in A having ¢ as a prefix end in attribute nodes
and have back edges that hit either ancestors of ¢, or ¢ itself. If there is no such ¢
or t = r, do nothing. Otherwise, check whether the product of the annotations on
the subpath between the relevant matches for ¢ and 7 is strictly greater than 1. If so,
raise the back edge exiting b to ¢, otherwise raise no edges.

Lemma 9. The above process terminates in polynomial time; when it does terminate,
the tree T obtained from expanding the encoding in Ty is such that Tp E X,. More-
over, every single back edge raising is necessary — no tree with a back edge pointing
lower than those in T s at the end of the above process satisfies X,,.

Proof. With regards to termination, observe that there are at most |Y,| back edges.
Every back edge can only be raised to the root, and the process must terminate at that
time. For the complexity, first notice that product of the edges between any two nodes
remains the same for the whole algorithm. For each node v and ¢, we can store the
product of these edge annotations in the ReferenceTreeNode for v. We just add
a field edgeProduct which is a Hashtable<int, int> mapping the column of
a prefix of v to the product of the annotations from the end of this prefix to v. Note
that this addition increases the complexity of initializing Tree from O(|D| + | X,|) to
O(|D| + |%,|?) time. However, it does keep us from having to compute the value at
each edge raising, which would be even more expensive.

For the edge raising, note that a Type 1 raising can happen at most once for each
XFD in Y,. So we need only keep track of the possible Type 2 raisings. To do this, for
each A — b € X, we build a data structure like we did in Algorithm 2 in the proof of
Theorem 3. We start with a new summary structure.

struct Summary {
PrefixNode[1l:k] prefixes;
int bColumn;
int backEdge;
int pDepth;
int tDepth;
}
The fields prefixes and bColumn are just as in the proof of Theorem 3. This sum-
mary structure corresponds to an XFD A — b where b is an attribute path. Therefore
b has a back edge; the field backEdge is the depth of the node to which this back
edge points. The value pDepth is the depth of the prefix p < b in the algorithm above.
Similarly, tDepth keeps track of the depth of the shortest prefix ¢ < b such that

— All paths a € A extending ¢ are attribute paths.
— All of these paths have back edges above or equal to ¢.

Notice that this is similar to our value of ¢ in the Type 2 raising, though we do not
require that it is a prefix of v. This allows us to quickly perform a Type 2 raising when
necessary.

As before, for each XFD A — b, a PrefixNode represents a prefix of b.

43

Algorithm 9 INITIALIZE_XFD_EDGES(A — b)

Require: A — bis an XFD.
Ensure: AttList contains the set of ANode in A — b that depend on each attribute.

1:
: if summary == null then

2

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:

30:
31:
32:
33:
34.
35:
36:
37:
38:
39:
40:
41:
42:
43:

e AN A Sl

summary = INITIALIZE_EDGE_SUMMARY (b)

return

: end if
: Add summary to XFDMap.get (summary.bColumn)

allocated = new List<ANode>, maxagree = 0

: foreacha € Ado

let p.ai.az. ... am be the labels of a.
label = 1, position = 0, agree = 0
while 1abel < mdo
if @1.0c1 iSin Tree [position] .children then
tableau = Tree[position].children.get (Qiape1)
agree = (G1aper == biaper ? agree+l : agree)
maxagree = MAX (agree,maxagree)
label = label+l, position = tableau.column
else
return
end if
end while
if a,, = o then
node = new ANode
node.prefix = &summary.prefixes[agree]
node.column = position
node.backEdge = m
end if{Let all the prefixes know they have a back edge}
for position = agree to 0 do
if a,,, = o then
summary.prefixes[position] .backBelow++,
summary.prefixes[position].attribOnly = true
else
summary.prefixes[position].attribOnly = false
end if
end for
{This element of A forces our ¢ node to be lower}
if summary.tDepth < node.prefix.depth then
summary.tDepth = node.prefix.depth+l
end if
Add node to allocated
end for
summary.pDepth = maxagree {p is maximal common prefix with some path}
for each node in allocated do

Add node to AttList [node.column]
end for

44

Algorithm 10 INITIALIZE_EDGE_SUMMARY (b)

Ensure: Returns a Summary structure for b.
1: let p.bi.ba. ... by be the labels of b.

2: summary = new Summary, summary.prefixes = new PrefixNode[1l:k]
3: label = 1, position = 0

4: while 1abel < kdo

5: if diapc1 iSin Tree [position] .children then

6: tableau = Tree[tableauPos].children.get (biape1)
7: prefixes[label] = new PrefixNode

8: prefixes[label].summary = &summary

9: prefixes[label].column = tableau.column

10: prefixes[label].depth = label

11: prefixes[label].attribOnly = true

12: prefixes[label] .backBelow = 0

13: label = label+l, position = tableau.column
14: else

15: return null

16: end if

17: end while

18: summary.backEdge = k, summary.tDepth = 0
19: summary.bColumn = position

20: return summary

struct PrefixNode ({
Summaryx summary;
int column;
int depth;
int backBelow;
boolean attribOnly;
}

Again each PrefixNode corresponds to a single XFD and so has a single Summary
structure. The values column and depth are also as before. The value attribOnly
indicates that there only attribute paths in A beneath this prefix, and backBe1ow keeps
track of how many of them still have back edges beneath this node.

Finally, for each XFD A — b, an ANode represents an attribute path a € A.

struct ANode {
PrefixNodex prefix;
int column;
int backEdge;
}i
The values prefix and column are the same as in CNode in Algorithm 2. As this
ANode represents an attribute path, it has a back edge; the field backEdge is the depth
of the node to which this back edge points.

As in the proof of Theorem 3, we let n be the size of Tree, and allocate an ar-
ray AttList [1:n]. Each element of AttList is the set the set of ANode objects
that represent this attribute in the tableau. In addition, we have a XFDMap, which is
a Hashtable<int, Set<Summary>>. For each path b, if 7 is the column for b in

45

Tree, then XFDMap maps 7 to the set of XFDs A — b € X, that have b on the right-
hand side. All of these sets start out empty; we initialize them in Algorithm 9. The
subroutine INITIALIZE_EDGE_SUMMARY is shown in Algorithm 10.

As usual, it is clear that Algorithm 9 intializes our structures properly. It also runs
in O(|X,|) time. Foreach A — b € X, and a € A, it performs a linear scan down a
once to find its position in Tree and is greatest common prefix with b. It then performs
another linear scan back up a to set the backBelow and att ribOnly fields properly
in each PrefixNode.

Given these initialized data structures, Algorithm 11 represents out edge-raising
algorithm in the following way. For each XFD A — b € X, we have an asso-
ciated Summary structure. The candidate t value is the prefix of b whose depth is
summary .tDepth. Whenever we raise an edge, either by a Type 1 or a Type 2 rais-
ing, we have to recompute these candidate ¢ value for all of the XFDs C' — d such that
b € C. If the candidate ¢ value moves, then the XFD C' — d is a candidate for a new
Type 2 raising; in this case we add it to the queue, provided that it is not there already.
It is clear that, after the first round of Type 1 raisings guaranteed by our initialization at
line 2, the only way that we would raise the back edge of an XFD a second time is if
the value of the candidate ¢ changed. Therefore Algorithm 11 correctly implements our
edge-raising algorithm.

Like the previous two algorithms, Algorithm 11 is O(|X,|?). Consider each XFD
A — b for which we raise the back edge. If we raise raise the back edge k steps up, then
for each XFD C' — d with b € C, we take O(k) steps to decrement the backBelow
counters, and possibly decrement tDepth in the Summary structure. However, we
can do this at most |b| for every such XFD, and as b € C' — d, this is at most O(|X,|)
for all of the edge raising that we do for A — b. As we have to do this for each XFD in
X, this gives us our total cost of O(|X,|?). However, note that there may be times that
an XFD appears in pending, but we perform no edge raising at all when we remove
it from the queue. Fortunately, we only add an XFD to pending if the field tDepth
changes; this can happen at most |b| times for the XFD, and it is constant time to process
the XFD if we do not raise anything. So the sum of all our algorithms are O(|X,|?),
giving us our polynomial time complexity.

We now prove that the edge-raisings performed by the algorithm are sufficient. Sup-
pose for a contradiction that we have some 0, = A — b, 0, is not satisfied when the
above step has finished. This means we have two matches p; and po that witness this
fact. We know furthermore that the two matches need to agree by identity on all paths
in A that are internal nodes. Consider now the values they may take on b. Define r to
be the longest path reached from a back edge exiting b. The matches for b must fork
somewhere properly above 7, otherwise they couldn’t take different values. Identify the
longest prefix of r that the two matches agree on, and call it s.

Now, there are two cases. Either there are paths in A having s as a proper prefix,
or there are not. If there are not, we see that the two matches agree on p (i.e. longest
common prefix of A and b). Thus there are two b nodes reachable from a single p
branch, and the algorithm terminated too early, as a type 1 edge-raising should have
been performed to raise the edge to p, which is no longer than s.

46

Algorithm 11 RAISE_EDGES()

Require: AttList and XFDMap are initialized.
Ensure: All back edges are raised that can be raised.

1: pending = new Queue<int>, inqueue = new Set<int>
2: for each key index in XFDMap do
3: Add index to pending and inqueue
4: end for
5: while pending is not empty do
6: index = pending.removeFromFront (), remove index from inqueue
7. for each summary in XFDMap.get (index) do
8: if summary.backEdge > summary.pDepth then
9: summary.backEdge = summary.gDepth {Type 1 Raising}
10: end if
11: if summary.backEdge > summary.tDepth then
12: backColumn = summary.prefixes[summary.backEdge] .column
13: product = Tree[backColumn]edgeProduct.get (summary.tDepth)
14: if product > 1 then
15: summary.backEdge = summary.tDepth {Type 2 Raising}
16: end if
17: end if
18: {Recompute the ¢ values for the other XFDS}
19: for each anode in AttList [summary.bColumn] do
20: {Edge raising has no effect if it does not go above RHS}
21: if summary.backEdge > anode.prefix.depth then
22: aSummary =anode.prefix.summary
23: depth=aSummary.tDepth
24 start = MAX(anode.backEdge, anode.prefix.depth)
25: for i =start to summary.backEdge do
26: current =aSummary.prefixes[i]
27: current.backBelow—-
28: if current .backBelow==0, !current.attribOnly then
29: aSummary.tDepth = current.depth
30: end if
31: anode.backEdge = summary.backEdge
32: end for
33: {Load it in the queue if the candidate ¢ value changed }
34: if aSummary.tDepth < depth, aSummary.bColumn ¢ inqueue then
35: Add aSummary.bColumn to pending and inqueue
36: end if
37: end if
38: end for
39: end for

40: end while

47

On the other hand, suppose there are paths in A having s as a proper prefix. If our
matches are to take equal values on those paths, then they must all be attribute paths,
and their edges must hit at or above s. Now, consider b. We know that its back edge
currently hits properly below s, namely r. Since the two matches for b are different, we
know that there exist at least two subtrees rooted at r below s. This, however, means
that the product of the annotations between s and r must be strictly greater than 1. We
see that we have just assembled all the conditions that should have caused our algorithm
to perform a type 2 edge-raising, so we have a contradiction in this case as well.

Finally we argue that both types of edge raising above are necessary. The necessity
of the first type is clear. For the second type, suppose we are in a situation where we
should perform a particular type 2 raising, but we choose not to. In this case, we can
build a witness against A — b as follows. Take the same nodes by identity for the part
of the match for A that does not have ¢ as a prefix and for ¢ itself. Fork at any one
allowed fork point between ¢ and p. Note that least one fork is always allowed as the
product of the annotations on that section of the tree is strictly greater than 1; also, two
full matches for A are always found because T is uniformly matched. Complete the
matches for the rest of A and for b on either side of the fork, in any arbitrary manner.
Since all the A paths we just added end in attribute nodes and their back edges hit at
or above t, the two matches are equal on A. Since the back edge from b does not reach
t, the two b values we encounter are always different; recall our encoding specifies that
the values are different except within each of the unified subtrees. Thus we have the
required witness pair.

It now remains to show how to re-check the satisfaction of 3/;.

Phase 3. Work through X; as in Phase 3(a) of the naive algorithm. For every o; = A —
b, if all nodes in ¢ (o) are internal nodes, attribute nodes with no back edges or attribute
nodes with self-loop back edges, proceed to the next dependency; o; is still satisfied.
Otherwise, let p be the longest common prefix of A and b as before; note that we may
have b = p.

We know that o; is not satisfied when exactly the following conditions hold: All
the paths in A having p as a prefix end in attribute nodes and have back edges that hit
proper ancestors of p. Also, the product of the annotations between p and t, where t is
the longest prefix of p hit by such a back edge, is strictly greater than 1.

Lemma 10. The above correctly identifies the situation where Tp with the value as-
signment obtained in Phase 2 does not satisfy some o;.

Proof. We first argue that the condition given is necessary for the existence of witnesses
to o; not holding; then, we argue it is sufficient.

Suppose o; was satisfied before Phase 2 was carried out, but is not satisfied now.
Observe that we know that p — b from the way we tested dependency satisfaction in
Phase 1. If p = b, this is a trivial statement, and if p # b but p — b is not true then o;
would have been broken in Phase 1 as well.

We now note that in any tree 7', under the assumption that p — b, the two depen-
dencies A — b and A — p must either both be satisfied or both be broken. If A — p,
given that p — b and nn(b,p), we get A — b. On the other hand if A — b,b — p s

48

trivial as b is an internal node and nn(p,b), so A — p. So we can reduce the problem
of looking for witnesses against o; to that of looking for witnesses against A — p.

Consider what a witness against A — p looks like. p is by definition a prefix of
some set of paths in A; call this set A’. If p itself is in A, A — p always holds, so all
the paths in A’ must be proper extensions of p. If any path in A’ ends in an internal
node, A — p holds, so they must all end in attribute nodes. It must be possible to pick
up in T' two matches for A’ which agree on all the leaves but have a different match for
p itself. Thus all these (attribute) paths must have back edges that go strictly above p
itself. Finally, we argue the necessity of the cardinality condition between ¢ and p. But
observe that if the cardinality condition does not hold, our encoded tree is equivalent to
one that has the back edge into ¢ pulled back down to p itself. As we have just shown
we need the edges to hit proper ancestors of p, we are done.

The sufficiency argument is very similar to the necessity part of the proof of the
previous lemma. Suppose we have a dependency and a tree where the condition above
holds. Then we can obtain a witness for o; not holding as follows. Let p” be the longest
common prefix of p and A — A’, that is those paths in A that are not extensions of p.
Take a single match for A up to and including p”. Then build two different matches for
all of A by forking somewhere between ¢ and p, where ¢t is as defined in the algorithm
description. We can always fork because the product of the annotations is greater than
1, and two full matches for A exist because 7' is uniformly matched. We thus have
two different matches for p, but since all the back edges hit p’s proper ancestor ¢ or
higher, our two matches for A are equal (i.e. we are comparing attribute paths by value
equality). Pick up the appropriate matches for b; it is clear they are different as b is an
internal node. We have our required witness pair.

The complexity of this step is no more than O(|3;|?). Thus the total running time
of our algorithm is quadratic in | ¥|, plus an initial scan of D.

Theorem 12. Given a pair (X, D) where D is a #-DTD, checking consistency requires
O(|D| + |X|?) time.

6.2 Trivial XFD implications

As with simple DTDs, it is possible for a #-DTD to have trivial XFD implications —
those that have a path not in paths(D). Again, we ignore trivial XFD implications for
the same reasons we gave before. The linear-time Algorithm given in Algorithms 6 and
7 work for #-DTDs as well. The only difference with a #-DTD is that the scan of E in
line 8 Algorithm 6 may read the same symbol twice.

6.3 The chase algorithm

As we have seen, for a #-DTD D, it is possible that a given set of dependencies is
inconsistent with D. Thus, an important step when we are given an implication problem
instance (X, o, D) must be to check whether (X, D) is consistent. If not, clearly X' Fp
o, because there is no tree satisfying both D and X' (and not satisfying o).

A second pathological situation that can arise is that, while X’ is consistent with D,
we cannot have a tree T such that 7' = D, T' £ Y and T contains even one nonnull
match for all of ¢ (o). This can arise, for instance, in the case where D has productions

49

p ~ a*bya ~ cc, ¥ = {p.a — p.a.c} and 0 = p.b — p.a. Clearly there is only one
tree satisfying D and X: the tree consisting of the root and one b child. On this one tree,
o also holds, precisely because there is no nonnull match for all of (o). In cases like
this one also, ' Fp o vacuously. We want to check for both these cases at the start.
This can be done efficiently, as explained below.
Let U denote the set of all paths that are either

- in (o), or

— in paths(X) and required to be nonnull by D if (o) is not null, or

— prefixes of paths in the above two categories

We now explain how to check for both the above pathological situations.

Theorem 13. The following are equivalent.

1. Thereisno treeT suchthatT E D, T = X and T contains even one nonnull match
Sor all of (o)

U ;
2. Y Fp p.x — p.x.y for some z,y € EL, p.x,p.x.y € U, and D contains a produc-
tion x ~» yy~y for some arbitrary y. Moreover, we can obtain a derivation to show

that X Fp p.x LA p.x.y, using Axioms 1-11 and 13-21 in our axiomatizations.

3. Let T’ be the smallest uniformly matched tree that satisfies D and contains at least
one nonnull occurrence of (o). T' ¥ X for any attribute value assignment to the
a nodes of T'.

A few important observations concerning the statement of Theorem 13 are in order.
First of all, it is easy to check the Axioms 1-21 are still sound in the presence of #-
DTDs. Second of all, we know that there is a uniformly matched tree satisfying D and
containing at least one nonnull occurrence of (o) because of our assumption that every
path in ¢ (o) is in paths(D). Since D makes no use of disjunction, this implies that we
are free to match each path in (o) such that a match for the entire pattern is produced
(this need not hold if the DTD contains disjunction). Observe also that checking that
there is an assignment making 7" F X' is a check for both the pathological situations
described above. In particular, the inconsistency of (X, D) implies statement 3 in the
theorem (but not vice versa).

Theorem 13 is significant because statement 3 can be checked in quadratic time
using a variant of our efficient consistency checking algorithm. To do this, we build 74
for the efficient algorithm, but instead of starting with Tree containing only the root
node, we initialize Tree to start with (o), exactly as we do in Algorithm 1. Thus the
initialization now takes O(|o| + |¥| + |D|) time, while the consistency algorithm itself
is still O(|X|). Hence we can check statement 3 in O(|o| + | 2| + |D|) time.

Proof (Theorem 13). The implication from statement 1 to statement 3 is trivial as T” is
a tree satisfying the first and third conditions mentioned in statement 1, so it cannot ever
satisfy the second condition without falsifying statement 1. Statement 2 gives statement

1 almost immediately, as in the presence of D, p.x LA p.z.y (and consequently ') can
clearly only hold in trees where there are no total matches for U at all. As nn(¢(c),U)
by assumption, there are no nonnull matches for (o) either.

It remains to show the implication from statement 3 to statement 2. The proof makes
use of the following lemma about 7.

50

Lemma 11. Let p be any path that occurs twice or more in T’ and that ends in an
internal node. Let (11 and i3 be two matches for p and its proper prefixes, such that
they do not agree on p; note that both 1 (p) and ps(p) are nonnull, as T' is uniformly
matched. Let q be the longest prefix of p on which the two matches agree, let x be the last
character of q, and y the next character in p after x. Then D must contain a production

T ~> Yy~ for some 7.

Proof. We start by observing that the fork at ¢ must certainly be allowed by the DTD,
so D must contain a production of the form z ~ y*+, ~ y*v (in both cases y &),
or x ~» yy~vy. So we only need to show the first two cases cannot happen.

Suppose D does indeed contain & ~ y* or x ~~ y*v (in both cases y ¢ 7).
Consider T, a tree obtained from 7’ by removing either one of the subtrees rooted at
11(q.y) or u2(q.y); the choice can be arbitrary. Clearly 7 still satisfies D.

We can show T is still uniformly matched. Consider any match for a path q.y.r
that was previously found within the removed subtree. If this subtree was the only place
in T" where nonnull matches for ¢.y.r were found, T* contains no matches for ¢.y.r
and is uniformly matched with respect to g.y.r. On the other hand, if there were other
nonnull matches for ¢.y.r outside the removed subtree, they are all preserved in 7. If
T* is not uniformly matched with respect to q.y.r, neither was T".

We can also show that 7T must contain at least one nonnull match for all of (o).
We know T” contained a nonnull match for all of ¢(c). The only way T would not do
so is if the removed subtree contained the only nonnull match for some path in (o)
having q.y as a prefix. However 7" was uniformly matched, so any path found in the
removed subtree was also found in the one that was retained, so this cannot happen.

Observe that we have just produced a tree 7™ satisfying three of the four conditions
that define T”. The fourth condition on 7" is minimality; but 7™ has properly fewer
nodes, so we have contradicted 7”’s minimality. By the definition of p and ¢, p is s.z.y.t
for some ¢ and ¢ = s.xz. Consequently, the relevant production at the fork must indeed
be x ~~ yy~, and we are done.

We now return to the proof of the implication from statement 3 to statement 2. So
suppose that 77 ¥ Y. Now, the efficient algorithm that we ran on 7" returned “no”
either in the encoding of Phase 1 or Phase 3.

Case I: the algorithm returned a negative answer the encoding of Phase 1, because some
o = A — b, b an internal node, was checked and found not to be satisfied. We now
need the following result.

Lemma 12. In this case, b must be of the form q.x.y.r for x,y € EL, where

1. D contains a production x ~~ yy-y for some vy, and
2. q.x.y is not a prefix of any path in A.

Intuitively, b must have a DTD-induced fork somewhere outside of A.

Proof. From the algorithm description, we see that in this case 7" must contain a single
match for A that can “pick up” two different matches for b; before phase 2 is carried
out, all attribute values in T" are different, so the match for A must truly include all the
same nodes, comparing by identity. This immediately means b cannot be a prefix of any
path in A. Let p denote the longest common prefix of A and b.

51

Fix a witness pair of matches against A — b; call them p; and po. Observe that
both are completely nonnull, as 7" is uniformly matched. Also note that they must both
agree on p. Now let p.s be the longest prefix of b on which y; and po agree; note that
s may be null. Thus b must be of the form p.s.t, where ¢ is not null, and the two b
branches fork exactly at the end of s. Let « be the last character of p.s. By Lemma 11,
D must contain a production z ~ yyy.

From the lemma we just proved, we can now argue as follows. We know that }/
contains A — q.x.y.r, with g.z.y not a prefix of any path in A. Divide A into those
paths that do not contain ¢.x as a prefix, which we call A’, and those that do, which we
call A”. Note either of these parts may be empty. We thus have A’, A” — q.x.y.r. Con-

sequently A, A” A g.x.y.r. Now by our axiom 19, since nothing in A” has ¢.z.y as a
prefix, we can deduce that q.x 4} q.z.y.r, which gives by axiom 13 q.x LA q.x.y.r. As
b is an internal node, we have ¢.z.y.r — q.z.y, so q.z.y.r LA q.z.y, and by transitivity
q.x LA q.z.y as required. This gives us the required derivation for X' p q.x LA q.r.y,

and so by the soundness of the axioms we have X' Fp q.x LA q.x.y as well.

Case 2: the algorithm returned a negative answer in Phase 3, because some 0 = A — b,
b an internal node, was checked and found not to be satisfied. In this case, we need the
following lemma.

Lemma 13. In this case, b must be of the form q.x.y.r for x,y € EL, where

1. D contains a production x ~~ yy-y for some v, and
2. q.x.y may be a prefix of any path in A (the fork may now occur inside A)

Moreover, denote by q.x.y.A be those paths in A having q.x.y as a prefix. If q.x.y.A

is not empty, we must have X --p q.x LA q.z.y.A, via a derivation using Axioms 1-11
and 13-21.

Proof. The argument that b must contain a DTD-induced fork follows, as in the previ-

ous case, from Lemma 11. We now show that if ¢.z.y.A is not empty, X' Fp q.x LA
q.x.y.A. Observe that all paths in g.z.y.A must end in attribute nodes, and Phase 2 must
have raised all their back edges to or above ¢.x, otherwise the algorithm could not have
found our two witness matches and returned a negative answer.

Define ¢q.z.y.Z to be the set of all paths s in U having ¢.z.y as a prefix, ending in
an attribute node, and such that the algorithm that we ran on 7" terminated in Phase 2
with a back edge from s that reaches to or above g.z. We show that X' p q.z Y s for
all s € g.x.y.Z. From this it follows that X' -p q.x LA qr.y.Aas qr.y.ACqryZ.
The proof uses induction on the order in which the algorithm raised the appropriate
back edges from the g.x.y.Z’s to or above g.z in Phase 2.

Consider the particular s € g.x.y.Z whose back edge was the first to be raised to or
above q.x. We see this raising must have been a type 1 raising due to some XFD from
C — s € X, with ¢q.z.y not a prefix of any path in C'; otherwise neither raising rule
could have fired yet. In this case C' — s gives us C LA s, and from there, by a simple

application of Axiom 19, we have q.x Y sas required.

52

For the inductive case, suppose our s is not the first path in the set to have its back
edge raised to or above q.x. If this raising happened for the same reason as in the base
case (i.e. there was some C' — s with no path in C having ¢.z.y as a prefix), then the
same argument as in the base case applies. In the other case, the raising must have been
a type 2 raising due to some XFD C' — s. Moreover, at least one of the back edges
involved must have come from an s’, also having q.z.y as a prefix. The back edge of
that s’ must have been raised to or above ¢.z in a previous step. Denote the set of all
such s’ € C' by C".

However, by our inductive hypothesis we already have ¢q.x Y ¢ for all appropriate

s'. Thus .z 2 C", since FFDs compose normally on the right-hand side, using their
own transitivity and augmentation axioms. But by Axiom 19 applied to C' — s, we have

q.z,C’ Y. Augmentation and transitivity (for FFDs) give us q.x Y sas required.
From the lemma just proved, we can now reason as follows. As in the previous case,
we know We know that A — g.x.y.r. As before, we deduce A’, A” A} q.x.y.r. Now
by our Axiom 19, we deduce that ¢q.x, q.x.y. A 40 q.xz.y.r, which by Axiom 13 gives
q.r,q.r.y.A LA q.x.y.r. If q.z.y. A is empty this is the same as ¢.z LA q.x.y.r. If it is
not empty, we know from Lemma 13 that q.x LA q.x.y.A. Hence q.x LA q.r,q.r.y.A
by augmentation, q.x LA q.z.y.r once again by transitivity. Finally, as b must again be
an internal node in this case, by transitivity q.z LA q.z.y as required.
This completes the proof of Theorem 13.

Having ruled out all above pathological cases, it turns out that we can now use
exactly the same algorithm as in the case of simple DTDs to complete our decision pro-
cedure. As a result, the complexity of implication falls out immediately from Theorem 8
and our discussion above.

Theorem 14. Given (X, 0, D) where D is a #-DTD, implication can be decided in
O(| X% + |o| + | D]) time.

The proof of correctness, of course, is different for this case.

Proof of correctness As was the case with simple DTDs, we still wish to prove the
following result.

Theorem 15. After the chase terminates, the resulting tableau Tab corresponds to
U(R(Tchase)) for some document Teopose. Furthermore, Tepase can be extended to a
(potentially infinite) tree T"' which must satisfy both D and X, and Tab ¥ o implies
T'E o

Proof. This proof covers several pages and has many parts. For clarity, each part of the
proof is prefaced by a section number prefixed by P, with the heading in small caps.
For example, our first part of the proof is to construct 7.

P.1 CONSTRUCTION OF T”
Observe that T.j,4se, the tree derived from the tableau as in the previous construc-
tions, is a tree that consists of two nonnull occurrences of all the paths in U. Some of

53

these occurrences may share initial prefixes, but there will in general be forks — unless
the chase terminated with all columns unified. Define a fork point as the maximal prefix
of some path p € U on which the two occurrences of p in T¢p4s. agree. Identify the
set of all fork points in Tip4se, denoting the set as { q1,q2,---qx } C U. Each ¢; has
a corresponding set of paths in U, { p;1, pi2, - - - pir }» such that each pi; is of the form
q;.x for some r € EL —we only consider single-character extensions of g; — and the
two occurrences of p;; in T4 fork exactly at g;. Of course, the set of fork points may
be empty.

We say that a particular g; is a fork point with respect to a path s if s = g;.x.t for
some ¢, and ¢;.x is one of the p;;s for that ¢;. Thus g; is a fork point with respect to s if
and only if 7T}, contains two occurrences of s that agree on ¢; and fork immediately
after g;. Observe that if ¢; is a fork point with respect to s, then it is also a fork point
with respect to all ¢ such that ¢; <t < s.

The first stage of the construction of T builds the structure of the tree, the second
stage deals with assigning attribute values to any attribute nodes.

P.1.1 BUILDING THE STRUCTURE OF T”
For the structural construction, start with 7" as featured in Theorem 13; ignore the
attribute value assignments at this point. If the set of fork points identified above is
empty, there is nothing to add to 77 — proceed to attribute value assignment. Otherwise,
we may or may not add extra subtrees to 7”, according to the following procedure.
Observe 1" contains at least one nonnull occurrence of U, when U is considered
as a tree pattern in the obvious way. Designate this occurrence by coloring it red. Our
aim is to add nodes to 7" to build a tree 7" which contains two designated occurrences
of U, the red one and another one. The two occurrences will fork exactly at the ¢;’s
identified above, so that the structure of T}, Will isomorphically embed into T,
We construct 7" by iterating through all g;. For each g;, iterate through all p;;. For
each p;;, consider the T’ we started the construction with. We know 7" contains at least
one occurrence of p;; - within the red occurrence of U. It may also contain a second
occurrence of p;; that is a direct sibling of the red occurrence. This second occurrence
will exist if and only if the DTD required two children with the same (appropriate)
label immediately below ¢;. The operation we perform depends on whether the second
occurrence is present or not.

1. If 7" does contain a second occurrence of p;; as a sibling of the red one, make no
modifications at all and move to the next p;;.

2. Otherwise, identify the subtree within T rooted at the red occurrence of pij- Call
that entire subtree S. Make a structurally isomorphic copy of .S, and paste the copy
into the big tree as a sibling of .S.

Observe here that our operations for each p;; are completely independent, in the
sense that any two p;; operations always involve disjoint sets of nodes. Thus earlier
modifications do not affect later ones. In particular, this means that whenever we do
insert an extra copy of a subtree, we are always inserting a copy of a subtree already
present in 7" itself.

This completes the construction of the structure of T”. All that remains is to show
how we assign attribute values to any attribute nodes. Before we do this, however, we
can already observe several things.

54

Lemma 14. T is uniformly matched.

Proof. This is clear because the only operation we perform is adding subtrees which
are structurally identical to subtrees in the uniformly matched 7.

Lemma 15. 7" E D.

Proof. T’ £ D, so any violations must have come from the added subtrees. However,
the DTD allowed a fork at ¢; for each p;; (or the tableau chase terminated too early).
Thus, we cannot have violated D by the addition of an extra occurrence of p;; itself. As
for the rest of the subtree we added below the new occurrence of p;;, it is structurally
identical to a subtree S that existed in 7", so again the addition cannot have caused a
violation of D.

Lemma 16. T contains two occurrences of U, forking exactly as required by the
tableau. That is, the structure of Teps. embeds into the structure of T" as required.

Proof. For any p;; of interest, let U;; denote the subset of U having p;; as a prefix.
For each U;;, we need to show we have a second occurrence of U;; as a sibling of
the red one that was found in 7”. There are two cases according to our construction
above. If the second case fired in the construction of this U; ; we added the appropriate
occurrence explicitly when we copied the subtree containing the red occurrence. On the
other hand if the first case fired, using the fact that 7” is uniformly matched, we see
that the other (non-red) sibling subtree we found at the appropriate place must already
have contained a full nonnull occurrence of U;;. So we are done in all cases. Designate
these two occurrences of U as special for the remainder of the proof by extending the
red coloring to the other occurrence.

P.1.2 CHASING TO ASSIGN ATTRIBUTE VALUES TO 1"

We are now ready to assign attribute values. Start by working on our two designated
occurrences of U, i.e. focus on all the red-colored attribute nodes. Assign to them any
values, as long as the assignment is consistent with T'ab. That is, the two occurrences
of any red path ¢ receive identical attribute values if, and only if, the tableau unified the
t column. For the remainder of nodes in T, whether they themselves belong to other
occurrences of U or not, assign fresh and unique values everywhere.

The remainder of the attribute value assignment is done by running a three-phase
chase on U(R(T")), exactly as we did in our naive consistency checking algorithm.
Observe that our two red matches for U are present as two tuples in U(R(T")) - we
refer to these as the red tuples. Again we chase on U(R(T')) with X partitioned into
XY); and Y, and we return “yes” if and only if no dependency in Y; ever attempts to
fire, either in Phase 1 or in Phase 3. After the chase terminates successfully, as we shall
prove it always does, convert U (R(T")) back to a tree. As its structure has not changed,
this tree still satisfies D. It also satisfies X, as we have just chased with X' successfully.

This completes the description of the attribute value assignment algorithm. It re-
mains to prove that this is correct.

P.2 CORRECTNESS OF THE CONSTRUCTION
To prove correctness, we need to prove the following two propositions.

55
Proposition 5. The three-phase chase on U(R(T")) always returns “yes”

Proposition 6. T}, still embeds into the final tree T" after Phase 2 of the chase
We prove Proposition 5 by splitting it further into the following two propositions.

Proposition 7. Phase 1 of the chase on U(R(T"")) never returns “no”

Proposition 8. Phase 3 of the chase on U(R(T")) never returns “no”

The above Propositions are sufficient for the proof of the whole theorem. In this
case we will have found a 7" that satisfies D and X and embeds a copy of Topase-
Finally, the statement T'ab ¥ o = T" ¥ o will be clear, because T, 45. embeds into
T", and thus T" will still contain the two witnesses against o that were present in the
tableau.

We need only present the proofs of Propositions 6, 7 and 8. In all three proofs, we
use the fact that the chase on the small tableau T'ab succeeded, and that the three-phase
chase on 7" succeeded. Since three chases are involved, it is useful and avoids confusion
to summarize their most important similarities and differences.

— All three chases are done with the same set of XFDs /.

— The chase on the small tableau uses the second chase rule as well as the first. The
other two do not, because they work on tableaux that are closed under a transfor-
mation to a tree and back.

— The chases on 77 and T" are three-phase algorithms, the chase on the small tableau
is one-phase.

— The chase on the small tableau and the T’ chase are at this point known to have
succeeded.

— The chase on the small tableau allows unification of internal node columns, the
other two do not (i.e. they throw an error if this is attempted). Because the chase
in T” succeeded, in particular, we know no unification of internal node columns on
U(R(T")) was ever attempted.

P.2.1 PROOF OF PROPOSITION 7
Suppose for a contradiction the chase throws an error in this phase, because the large
tableau does not satisfy some A — b € XY, b ends in an internal node (from the
definition of X;). As usual, we have two matches p1, o for A and b that witness this
fact and caused the algorithm to return “no”. Since 7" is uniformly matched, both
matches are completely nonnull.

Consider the matches on A. Clearly, for every a in A, we must have that either

- p1(a) and po(a) agree by identity, or

- a is an attribute path. Moreover, p1(a) and po(a) pick up exactly the two red
matches for a - that is the only way to find two equal attribute values for a in
our current 7.

Now, let g be the longest prefix of b on which 4 (b) and () agree; this always exists
as the root will do in the worst case. Suppose b is ¢q.x.t for some x € EL. t may be null
but = must exist, otherwise the matches agree on b after all.

56

If any a € A has g.x as a prefix, we can obtain a contradiction easily. Let A’ be the
set of all such a. Observe that all of them must end in attribute nodes, so they must be
colored red in the tree. So we have two red matches for each a € A’ which agree on
q but disagree on g.x. Consequently, we see that ¢ must be a fork point in 7,45, With
respect to g.x. This tells us the small tableau did not unify the q.x column (from the
definition of fork points). We also see that the two rows in the small tableau must have
agreed on A’, and also on ¢. This sets up all the conditions necessary for an application
of the second chase rule on the small tableau to use A — b and unify the b column.
This unification in turn must have led to the unification of ¢.x in the small tableau. The
{1, Ho Witness that this unification did not happen, as 11 (¢.2) and po(q.z) are different
by assumption, but both red. In this case, we have a contradiction — the chase on the
small tableau terminated too early.

Therefore, we can assume that at most ¢ is a prefix of any path in A. This tells us
that A and b have a longest common prefix p that is strictly shorter than b, and that p
is a prefix of our ¢. Consequently, we have found in our tree 7" a situation where a
single match for p extends to two matches for b. We know, however, that this situation
did not arise in our T”, because Phase 1 of the chase on 7" would have caught just such
a situation. So consider how this problem could have been created in moving from 7"
to T".

First, it is posible that 1 (p) = pe(p) itself was not in 7. This means it was added
as part of some new subtree, together with both of its b matches. However, we know
that we only add subtrees structurally identical to ones already in 7", so 7" must have
contained another subtree with a single occurrence of p branching out to two b’s. Then,
however, we had the same problem in 7" and the chase in 7" should have failed.

So it must be that p1(p) = p2(p) was in 77, but one or both of 4 (b) and p2(b)
were not. If both were not, they were both added within the same new subtree, where
the new subtree was rooted at some p;;, where p < p;; = q. However, in this case there
must have been in 7" another occurrence of p;; sitting below y1(p), with its own two
occurrences of b. Once again, we would have had the same problem in 7”.

The only remaining possibility is that one of 11 (b) and uo(b) was in T” and the other
was not. In this case, one of these b matches came from a new subtree and the other did
not. This means that ¢ is a red fork point with respect to g.z. Thus p1(q) = p2(q) is
a red node and the small tableau did not unify the ¢.x column. Now, transporting our
thinking back to the small tableau and recalling that no path in A has ¢.x as prefix, we
see that once again, the second chase rule should have fired to unify the b columns in
the tableau. By transitivity, as ¢q.x is an ancestor of the non-attribute node b, the chase
would have continued upwards, eventually disallowing the red fork at g.x. We have a
contradiction in this case as well, so we are done.

P.2.2 PROOF OF PROPOSITION 6

This proposition is an immediate corollary to Lemma 17 below. For this lemma, let U’
be the subset of U consisting of attribute paths whose columns were not unified by the
chase on the small tableau. That is, for any v € U’, the red matches for u in our 7"
before the chase do not agree. For a given u € U’, let p,, be the longest prefix of u on
which the two tableau rows do agree, which may be the root in the worst case. Suppose
u = py,.x.t for some x € EL, where = and ¢ are both nonnull as u is an attribute path.

57

Lemma 17. Consider T" after Phase 2 of the chase has been completed. Suppose i1,
o are two matches in this T" such that py(u) = pe(u) for some v € U'. Then

1 (pu-x) = pi2(pu-).

Informally, this lemma states that if some attribute © was not unified in the small
tableau, then any unifications in the second stage of the final chase will be limited to
“local” unifications — within the same subtree rooted at p,,.x. No unifications will be
propagated wider in the tree.

Proof. Suppose not. Observe that the property in the lemma holds at the start, before
Phase 2 of the chase. So, if it is broken afterwards, there must have been a first uni-
fication where it was violated. Identify the u € U’ that was the first to have its value
propagated “illegally” (i.e. beyond its p,,.z subtree). Identify the tuples in U(R(T"))
where this happened, and identify the tuples with two matches p1, po. We therefore
know g1 (py.2) # p2(py.x). The unification of pq (u) with po(u) that caused the ille-
gal propagation was due to some XFD C' — u.

Suppose p,,.x was not a prefix of any path in C. Then, however, the chase on the
small tableau should have unified the two « columns when considering C' — u (recall
the small tableau rows agree on p,,). So we must have p,.x a prefix of some paths in
C. Of course, all these paths must be attribute paths, otherwise the two tuples zi1, o
would not agree on C'. Call these paths cy, - - - ck.

Now, suppose all of the ¢;’s had their values unified in the small tableau. In this
case, again the chase on the small tableau should have unified « by the second chase
rule. So some specific ¢; was not unified in the small tableau. However, this gives us a
contradiction too. To allow a unification with C' — w on p1, 112, we see that the ¢; value
must have been unified between both tuples (and between both p,,.x subtrees) earlier.
However, we assumed that our v was the first one to have its value propagated outside
of its own p,,.x subtree, so we are done.

Lemma 17 gives us Proposition 6 as a corollary. Phase 2 does not change the struc-
ture of the tree, s0 T.pqse Still embeds structurally into the red tree present in T”. Any
attribute values unified in 7,45 stay unified in the red tree. The only problem could
arise if for some u € U’, the two variables in the two red tuples were unified by the
chase with X,. However, the two red tuples still would not agree on p,,.x after Phase 2,
giving us a counterexample to Lemma 17 — a contradiction.

P.2.3 PROOF OF PROPOSITION 8§
As usual, we argue by contradiction, and suppose we have some dependency A — b
not satisfied in Phase 3 of the chase on T, with b an internal node, and p1, o are
matches for U in the tree (and rows in U(R(T"))) witnessing the non-satisfaction. No
null values are involved anywhere, because 7" is uniformly matched.

Let p be the longest common prefix of A and b, as usual, where we allow p = b.
If u1(p) = p2(p), we already have a contradiction: either p = b and the two matches
actually agree on b, or p # b and we are back in the case where some single match
for p extends to two matches for b. We would have caught this in phase 1 of the chase
on T”. Thus the matches must fork somewhere properly above p; call the last prefix
of p on which they agree g,,; the m here stands for “matches”. Let b = ¢,,.z.t for

58

some x € EL; if there is no such x, ¢,, = b and the matches agree on b, which is a
contradiction. Since we have just argued that g, is not the longest common prefix of
A and b, there must be a set of paths in A having ¢,,.z as a prefix. Call that set A’.
As usual, we know that all paths in A’ must be attribute paths. It is clear from this
discussion that p < g, < p =X b.

On the other hand, the small tableau may or may not have had the b column unified,
but the two rows must have a longest prefix of b on which they agree, the root in the
worst case. Call that prefix g;; the ¢ here stands for “tableau”. In this case must have
p = q: = b. We now prove a useful lemma.

Lemma 18. Below the node 11(qm) = p2(qm) there is at most one red b node. Also,
the same property must hold for every s such that q,, < s < b.

Proof. The proof is by cases on the possible relationship between ¢; and q,,. First,
suppose q; is a proper prefix of g,,,. We have the following ordering of paths,

P2q <qm=<p=b

In this case, suppose ¢,, = ¢:.y.s for some y € EL; s may be null. Observe that ¢; is a
fork point with respect to g;.y. Thus the two red occurrences of b in T" do not agree on
q¢-y. Now, pu1 and puo must agree on ¢;.y by our assumption that ¢; < ¢y, so the most
they can do is take one of the two red ¢;.y nodes, not both. As q;.y = ¢, it is clear
that once we reach 11 (g,), we no longer have access to both red b branches in the tree.
The red tree is uniformly matched, as it was generated from the small tableau, which
contains no null values. Therefore, there can only be one red ¢,,.s below i1 (g,), where
Gm < Gm.s = b; if f there were two red g,,,.s nodes below p1 (g,) but not two b nodes,
we would have contradicted the uniform matching of the red tree.

The second case is when ¢,,, < ¢;. We show that in this case we must have ¢; = b. In
other words, there is only one red occurrence of b, and consequently each of its proper
prefixes, in 7”. Lemma 18 follows immediately — if there is only one red b in the entire
tree, it is also unique below a specific ¢,, match.

Suppose for a contradiction ¢; = b is not true. Then b = ¢;.z.s for some x € EL
and potentially null s. Consider any paths a € A having ¢;.x as a prefix; call this set
A,. First observe that all paths in Ay, if they exist at all, must be attribute paths; u; and
1o fork at or above ¢, but they were able to pick up equal values for all the a € A;.

First, suppose A; is empty or that the small tableau unified all A;. In this case the
second chase rule would have fired on the small tableau to unify the two b instances
and ¢; = b after all. On the other hand, suppose the tableau did not unify some a € A;.
But then by Lemma 17, even after the chase with X, on 7", two matches disagreeing
on ¢;.x cannot pick up two equal values for this a, and p1 and pe certainly disagree on
g¢-x. So we have a contradiction. This tells us that there is exactly one red b in 7" as
required.

Corollary 3. Let s be any path such that q,, = s = b. No occurrence of s below
11 (qm) is a red fork point with respect to b.

Proof. If ¢; < g, the fork point affecting b occurs properly before ¢y, is reached, so s
is too late for it to happen. On the other hand if ¢,,, = ¢, there is no red fork point with
respect to b branch at all, at s or anywhere else.

59

The remainder of of the proof of Proposition 8 is to show that a violation of A — b

would have been detected in Phase 3 of the chase on 7”. This proof has the following
outline.

P.2.

We identify a subtree within 7", coloring it green. Within U (R(T"")), the coloring
will produce some rows that are completely green, and some rows that are partially
green. We refer to the rows which are completely green as the green subtableau.
We identify a blue subtree within 7" which is structurally isomorphic to the green
one. We show that before Phase 2 of each respective chase on 7" and T" occurs,
the green and blue subtrees actually embed in each other, and consequently the
corresponding green and blue subtableaux also embed into each other.

We show that for any two green occurrences of a path p in 7" whose values are
unified during Phase 2 of the chase on 7", the same unification could also have
been performed at the same point in the chase using two tuples in U(R(T"")) that
contained only green nodes.

It follows that it is possible to reorder the steps of the chase with X, on 7" so that
all unifications involving pairs of green nodes happen first, and all other unifica-
tions later. Thus we split Phase 2 of the chase on 7" into two subphases. First, a
green subphase involving only the green subtableau that terminates exactly when
the green subtableau satisfies Y/, and second, a non-green subphase performing all
other unifications that do not affect the green subtableau. As the chase is Church-
Rosser, this splitting into subphases is perfectly legal.

It then follows that it is also possible to reorder the steps of Phase 2 of the chase on
T’ so that we start with a corresponding blue subphase. By following exactly the
same chase order in the blue subphase as we did in the green subphase, we will be
guaranteed to produce a blue subtableau satisfying 3/, that embeds to and from the
green one.

Finally, we show that the green subtableau must contain a witness against A — b at
the end of the green subphase of the chase. It follows that the blue subtableau also
contains such a witness after the blue subphase. As the non-colored subphases of
the chase with X, do not affect the colored subtableaux, it follows that 7" contains
a witness against A — b after phase 2 of the chase. Thus Phase 3 would have found
that witness and returned “no”.

3.1 DEFINITION OF THE GREEN TREE WITHIN 7. We begin by describing our

green subtree within 7", For nodes at the end of paths p not having g,,.x as a prefix,
color green either one of w1 (p) or s (p); make the choice arbitrarily but consistently
for all p. Any further green coloring occurs only below our one designated ¢,,, which is
already green. Below this ¢,,, color green all paths p having q,,.z as a prefix, except if

the

following are both true.

The green ¢, is also red.

There is some path of the form g,,.x.s for possibly null s which is a red fork point,
so that below our green q,, there are two red occurrences of some ¢,,.z.s.y for
some y € EL.

If this is true, color green only one of the two subtrees rooted at the red occurrences

of ¢,,.z.s.y. This coloring below g, is equivalent to removing from consideration all

60

subtrees that were added during the construction of 7" at fork points g,,.z.s, and also
those that were not added, but found in the tree and marked as second red occurrences.
We now note several properties of the green tree we have just produced.

Lemma 19. The green tree contains at most one red occurrence of any path t.

Proof. For paths not having ¢,,,.x as a prefix, the green tree contains a unique occur-
rence of such paths, red or not. For paths having g,,.x as a prefix, suppose that there
are indeed two occurrences of some such ¢. By Lemma 18, there is at most one red
occurrence of g,,.z below the green ¢,,, so the two matches for ¢ must agree on g,,.z.
In fact, they must agree on the longest common prefix of b and ¢, by the same argument.
Thus they were generated by a red fork occurring at that longest common prefix, which
was of the form g,,.x.s. However, in our coloring above, we explicitly retain only one
side of all such forks, so we cannot have retained both red occurrences of ¢ after all.

Corollary 4. Before T" is chased with X, all the attribute values at the end of green
paths are distinct in the green tree.

Proof. As we have seen, the only way to pick up two equal attribute values before the
chase with Y, is to take two occurrences of a red path, but the last lemma states this
cannot happen.

Lemma 20. Both 1 (b) and us(b) are green.

Proof. Suppose not, then one or both of the b’s were in a subtree that was not colored
green because it was on one side of a red fork and rooted at some ¢,,.z.s.y. This means
qm-x.s.y is a prefix of b and consequently ¢,,.z.s is a fork point with respect to b, given
our definition of what it means to be a “fork point with respect to” some path. However,
this contradicts Corollary 3.

P.2.3.3 DEFINITION OF THE BLUE TREE WITHIN 7”. We now need to show how to
find a blue tree within 7" structurally isomorphic to the green one we found in T”. We
choose any arbitrary occurrence of g,, in 77 and color it blue. For any path ¢ not having
Gm-x as prefix, choose any one occurrence of ¢ in 7" that is consistent with our blue ¢,,
(in the sense that our blue matches for ¢, and ¢t must agree by identity on the longest
common prefix of these paths). Such an occurrence can always be found for each ¢
because 7" is uniformly matched.

For paths having ¢,,,.z as a prefix, color blue all the nodes required to produce a
structural isomorphism between the blue and green trees. We need to show this can
always be done. We know that in the construction of 7", there was no addition of a
sibling subtree rooted at g,,,.« (by Lemma 18 g,,, was not a red fork point with respect
to ¢p,.x). Thus any z children below the green q,, were required to exist by the DTD
and the uniform matching constraint with respect to ¢ (o), and we can expect to find the
same number of = children below our blue ¢,,. Now, since at most one green ¢, .x is
red, all but one of the subtrees rooted at green g,,,.x nodes were entirely generated by
the DTD and the uniform matching requirement with respect to ¢(a), so the subtrees
we find below our blue ¢,,,.x nodes are structurally isomorphic to each other and all but
one of the green subtrees. It remains to argue about the one green ¢,,,.z which might

61

also have been red. However, we have explicitly removed from the green coloring any
subtrees below that g,,.z that might have been added in the construction of 7" (and
we may indeed have removed nodes that actually were in 7" too). So a structurally
isomorphic copy of this last green subtree can be found in any ¢y, .z subtree in 7. Thus
we can always extend the blue coloring appropriately.

It is clear from the description of the blue coloring that the blue and green trees are
structurally isomorphic. Now, observe that before 7" is chased with X, all the attribute
values in the entire T are distinct. Thus they are distinct in the blue subtree. From
this observation, the structural isomorphism of the blue and green trees, and the last
corollary in the section on the green tree, we see that before 77 and T" are chased with
Y., the blue and green trees actually embed into each other. As the blue and green
subtableaux are exactly the relational representations of the blue and green subtrees, it
follows that the blue and green subtableaux also embed into each other.

P.2.3.3 GREEN UNIFICATIONS CAN BE PERFORMED USING GREEN TUPLES ONLY.
At this step of the proof, we focus on the following lemma.

Lemma 21. Suppose Phase 2 of the chase on T" (with X)) unifies the values at the end
of two green occurrences of an attribute path t using some dependency C' — t. Then, at
that same point in the chase, it is possible to make the same unification with C — t, but
instead make it using two tuples found in the green subtableau. If intermediate chase
steps are required to make this fully green unification possible, the intermediate steps
themselves also occur entirely within the green subtableau.

Proof. The proof is by induction on the green unifications. That is, we start with the first
two green occurrences of some path ¢ that have their values unified by the chase, and
then proceed in the order in which subsequent green unifications — not necessarily for
the same ¢ — proceeded. Our inductive hypothesis assumes that all previous unifications
between pairs of green paths were performed entirely on the green subtableau.

We now focus on the two green ¢ values that were unified due to some dependency
C — t € X,, via two matches u1 and ps for C U {¢ }. If all the nodes in pq and o
were green, we are done. So suppose not all are green. The inductive hypothesis enables
us to reuse the green parts of p1 and po in producing our new, fully green matches that
will cause the same unification. To see why this is the case, suppose p1(p) and ua(p)
agree on some attribute p and both are green. Then either they agree on p by identity or
the occurrences of p they pick up were unified in a previous chase step. Thus we can
assume we have a fully green chase sequence unifying those p’s, and so we can reuse
the green parts of p; and po freely. We now consider which nodes within p; and po
might not be green.

Clearly p1(t) and po(t) are both green, by assumption. This tells us they both have
qm-x as a prefix, as this is the only way to find two different green occurrences of the
same path. We also know that 11 (g,) = u2(¢m) and this node is the one green ¢,,,. We
now argue by cases on what else may not be green.

First, suppose that all non-green nodes in p; and ps are matches for paths that do
not have q,,,.x as a prefix. In this case we can build matches u3, (14 that both pick up the
unique green occurrence of each of these paths, and take u3(s) = p1(s), pa(s) = pa(s)
for all paths s that do have g,,,.x as prefix. These new matches are available to us at this

62

point in the chase and they are completely green, so they correspond to tuples found in
the green subtableau. Moreover they agree on C' because they are unchanged from g3
and pg respectively on any ¢ € C having g¢,,.x as a prefix, and they agree by identity
on all ¢ € C that do have ¢,,,.x as a prefix. Thus they also force a unification of the two
occurrences of ¢.

So suppose we have some nongreen nodes in either p; or s or both that are in C'
and have ¢,,, .« as a prefix. Call these problematic paths C” C C'. This means at least one
of our matches took its values on C” from a subtree that did not receive green coloring,
as it was rooted at one of two red children of a red fork point. We may in general have
multiple such problems, involving multiple subtrees that did not receive green coloring,
so in fact it may be possible to partition C”’ into several subsets, one per problematic
subtree. However, the subtrees are all independent. For ease of presentation, we prove
the case for when there is only one problematic subtree; in this case all ¢/ € C" have
a common prefix ¢,,.z.s.y, which had a red fork point at g,,.x.s. If there are multiple
problematic subtrees, the argument can easily be repeated for each one.

We consider the subcases. First suppose both 11 (C"") and po(C"') are not green. But
w1 (t) and po(t) are green, so ¢y,.z.s.y cannot be a prefix of ¢. Thus we are free to find
a green match for C” in the sibling subtree thad did receive the green coloring, because
it was rooted at the other red occurrence of g,,.z.s.y. Find such a match for C" that is
green, and call it 1,(C""). Now build p3 and p4 to agree with yi; and po respectively on
everything that is not in C”. On C”, both pick up p4(C") instead. These matches are
completely green and agree on all of C; note that on C'\ C”’ they are unchanged and on
C" they agree by identity. They are also valid matches, because neither ¢ nor anything
in C'\ C"” can have g,,.x.s.y as prefix, otherwise p; and p2 could not have been green
on those paths either. Thus we can splice in the match for C” from the sibling subtree,
and produce valid matches. Again, those matches are available for us to use at this point
in the chase, and we can use them to unify y4 (t) with po(t) instead.

The only remaining subcase is when 1 (C") is green but po(C”) is not (note that
the choice of which match is not green is arbitrary). We claim that we can go into
p2(C")’s sibling subtree as in the previous case and pick up a 11,(C") that we can swap
for po(C"). However, we must show that we can find such a p,(C”') with the property
that 114(c”") = p1(c¢”) for each ¢ € C”, which is not obvious. Fist we deal with the
case where p1 and o actually agree by identity on g, .x.s, the red fork point, and fork
only at ¢,,.7.s.y; in this case we can make f1, agree with y; by identity. In the other
remaining case, 11 (C”) is somewhere else in the tree. This is the most complicated
subcase and requires the help of a separate sublemma.

Sublemma 1 We know that py and |14 agree on qy,.x.s; call this path u for short. We
also know i1 and ps fork properly above u, say at some u' which is an ancestor of u.
So we have ¢, < u' <u <" forall ' € C". If for some c € C" chasing with X, on
T" unifies p1(c") and po ("), then there are further unifications that can immediately
be performed on the green subtableau to unify p1(c”) and p4(c”).

Proof. This argument is also by induction on the order in which the p;(¢’’) and pa(c”)
were unified by the chase on T”. Each ¢”” was at some point unified using some de-
pendency D — ¢’. Some of the D’s involved in the unifications may themselves have

63

contained attribute paths d that had u as a prefix. If this was the case, for these D — ¢”
to fire, there must also have been earlier unifications between the values at the end of
two specific occurrences of d, one consistent with 1 (c”) and the other with pa(c”).
Identify all such d, and extend p; and ps to include them. p; and po are now matches
not just for C”, but also for some extra d paths also having u as a prefix. Let) be the
set containing all of C” and the relevant d’s. We show the lemma statement holds for
any ¢ € (Q — as often happens, we find we need to prove a stronger statement for a
stronger inductive hypothesis.

This new proof is by induction on the order in which the chase on T" unifies the
values in (). We assume the statement is true for all previous unifications, if any, and
follow on the next g € Q. Suppose we unify p;(¢q) and p2(g) viaan XFD E — q. This
unification occurred via two matches 3 and py that agree on E, and where ps3(q) =
11(q), pa(q) = p2(q) by identity. If v’ is not a prefix of any path in E, our task is easy.
Build p5 and 5, matches for £ U { ¢ }, such that p5(q) = 14(q), t6(q) = pi(g) by
identity. For F, take a completely green match that is consistent with pg(u’) = pg(u’),
and make ps and pg pick up this £ match; this match exists because the green tree
is uniformly matched. We see that s and pg are valid matches, they are completely
green, and they can serve to unify 4 (g) with po(q) using E — gq.

The second possibility is that some £/ C F has v’ as a prefix, but nothing has u
as prefix. Here we build our two matches as follows. We set 115(q) = 114(q), 6(q) =
11(q) by identity as before, and for all ¢’ € E’ we take us(e’) = pa(e’) and pg(e’) =
w3 (e’) by identity. For the remaining e € F \ E’, we take a green match as before.
Again these are two valid fully green matches that allows to unify p,(q) with 14 (g)
using £ — q.

The third case is when some E” C E’ has u as a prefix. If any of these paths
in ¢’ are internal nodes, the unification of u3(q) and p4(g) could not have happened.
On the other hand, if they are attribute paths, we see that they are all in (). Note that
us(e”) = pqa(e’) for all e” € E”, but that these two values were different initially, as
we showed in Lemma 19 that they were not both red. Therefore, we know that we must
have had p3(e”’) unified with 14 (e”) at some earlier stage of the chase. So we can apply
our inner inductive hypothesis to assume we have a fully green chase sequence to unify
all of pug(E") with p11 (E"); perform this chase sequence,

At this point build i5 and pig in the obvious manner. Proceed as in the previous case
except for E”, where we take (5(E") = pq(E”) and pe(E") = p1(E") by identity.
Again these are valid fully green matches which allow to unify p,(q) with 11 (q) using
E — q. This completes the proof of our sublemma.

We can now use Sublemma 1 to complete the last case of Lemma 21. Take p, to
be any match for C” in the sibling subtree. Via the procedure in Sublemma 1, produce
a green subtableau chase to ensure that 14(c”’) and p; (¢”') are unified for all ¢/ € C”.
We can now splice in 14(C") instead of our non-green 12(C") to produce two green
matches that trigger a unification of our two crucial occurrences of ¢, and we are done.

P.2.3.4 THE CHASES CAN BE REORDERED. The fourth and fifth parts of our proof
outline in P.2.3 follow from a corollary of Lemma 21.

Corollary 5. We can reorder the chase on T" with X, as follows.

64

— Start by performing a green subphase of the chase on the green subtableau. That is,
perform all unifications affecting pairs of green attribute nodes, by redirecting the
original chase as suggested in the last lemma. Continue until the completely green
tuples all satisfy X,,.

— Finish by making any further unifications still required by 3, between pairs of
nodes which are not both green. The green subtableaux before and after this second
pass must embed into each other.

P.2.3.4 WITNESSES EXIST IN THE GREEN SUBTABLEAU. There is one last lemma to
prove in order to finish the proof of Proposition 8.

Lemma 22. If the chase on T" threw an error in phase 3 as originally stipulated due
to some A — b, then there were witnesses against A — b within the green subtableau.

Proof. Consider the original witnesses p; and po. We showed earlier, in Lemma 20,
that both 1 (b) and 2 () are green. If for any a € A either or both of the matches are
not green, we can produce a green pair of matches — exactly as we did in the proof of
Lemma 21 — that still witness A — b does not hold.

This lemma tells us that identical witnesses must exist in the blue tree in 7. There-
fore, Phase 3 on T’ would have found the blue witnesses against A — b, and returned
“no”. This gives us the required contradiction and completes the proof of Proposition 8.
This also completes the proof of Theorem 15.

Theorem 15 gives us one direction of our correctness result in Theorem 16. The
other direction is exactly the same proof given for simple DTDs.

Theorem 16. After the chase terminates, T" as defined above satisfies o if and only if
Y Fo.

6.4 Axiomatization

To axiomatize implication for #-DTDs, we need to account for the two pathological
cases described above. Formally, the pathological cases arise because the DTD prevents
certain XFDs from holding unless all matches for the left-hand side are null. Again, this
requires the introduction of an axiom schema.

Theorem 17. In the presence of a simple DTD D, a sound and complete set of axioms
for (unrestricted) XFD implication includes exactly Axioms 1-21 from Section 5.4 with

22. Ifp.x X p.x.y, then for W XB® Z, forall W, Z and all © ~ yyy € D.

Proof. We first show soundness of the new axiom. Because of the DTD production z ~~
yyy, we know that any document 7" satisfying D containing at least one occurrence of
p.x contains two occurrences of p.z.y below it. Consequently, if U(R(T)) contains
some tuple ¢ such that ¢ is nonnull on X and on p.z, then U(R(T")) must contain some
other tuple ¢ which agrees with ¢ on p.z but not on p.z.y (' need not itself be nonnull
on all of X, but this is not necessary for our agrument). Thus, if there is any such

t € U(R(T)), then p.x X p.z.y does not hold on U(R(T)) (t and ¢’ are witnesses

65

to that fact). Consequently if we know that p.x X p.x.y holds on some 7', we know

U(R(T)) contains no tuple that is nonnull on both X And p.z. Thus, W BT 7 i

vacuously true on U(R(T')), because it is a statement about an empty subset of tuples
of that relation.

For completeness, assume 0 = A — B, for A, B C paths(D), B = {by,---by }.
We give only the derivation for A — b, for arbitrary b; € B, which is sufficient. As
discussed in the proof of the chase for #-DTDs, there are two possibilities: either there is
no tree satisfying X' and D and containing a single nonnull occurrence of o(A — b;),
or there is such a tree. To build a derivation to show X Fp A — b; using axioms
1 — 22, we start by deciding which of the above is true; we can do so effectively and
indeed reasonably quickly, as explained in Theorem 13.

If the first case is true, we obtain the derivation for X' Fp g.x LA q.z.y from the
proof of Theorem 13. Here U is the subset of paths(D) such that nn(A U {b;},U). We
now complete the derivation as follows.

- qx LA q.x.y (from the proof of Theorem 10)

-AY b; (Axiom 22 and the fact that g.z € U)
nn(AU{b;},U) (by definition of U above)

— Ay, (Axiom 13)
- A — b; (Axiom 12)

On the other hand if the second case is true, we obtain the derivation for A — b; by
induction on the steps of a chase algorithm, exactly as in the case for simple DTDs in
Theorem 9. That derivation does not use Axiom 22, so the proof genuinely carries over
verbatim.

6.5 Reasoning about FD implication with first-order hereditary Harrop clauses

Unfortunately for #-DTDs, our previous encoding of axioms into Horn clauses no
longer works. However, a generalization of Horn clauses that is known in the proof
theory community, and which is still useful for automated theorem provers: first-order
hereditary Harrop clauses [9]. We can extend our language fragment to these new
clauses to obtain an analogous encoding.

Theorem 18. Given a simple DTD D and an instance of an implication problem X Fp
o, suppose we define a set Iy p of first-order formulae over { R, N'} to contain exactly
the following.

— All of I'; p as used in the encoding for simple DTDs.
— The following clause for all p.x € paths(D) such that D contains a production
x ~ yyv, v € EL* and every X that is a subset of U:

H(px S pay) — (Vo1 T151R(p1, 71, 57) A N(@D) A N(pr) — 1)

where p1 is the variable for p.x, T1 are the variables for X, and L is the constant
FALSE.

Then Iy p - H(A Abs b;) forallb; € Bifandonlyif ¥ E A — B.

66

The second type of sentence is a nested Horn clause of the type known as first order
hereditary Harrop formulas. Our formulation assumes that p.x ¢ X. However, if it is,
an alternate encoding is easy to give, so we do not concern ourselves with this issue.

Proof. The forward direction is again clear from the soundness argument we gave for
Axiom 22 and our previous proofs with Horn clauses. For the backward direction, we
show how to encode the inference in Axiom 22.

For readability, we give the argument on the assumption that W, X and Z are all
disjoint and none of these sets includes p.x. We also assume that there are no other
attributes in R. It is easy to see how to modify our argument in case any of the above
are not true.

The left-hand side of the conclusion of Axiom 22 gives us an W;, Z;, T, Pa,i» Pay,i
or ¢ = 1,2 such that

/\ R(@v?v ijpx,japmy,j A N(Tl) A N(pa:,l) AN Wi = wg
j=1,2

One of the premises of Axiom 22 is H (p.x X p.x.y). This premise allows us to use the
last type of clause we added into [, p to infer

VPa,1,T1, ST R(P2,1,T1,51) A N(T1) A N(pep) — L
But we have a N(p,1) and a N(Z7) above, so we can infer L directly. From this we
are free to infer anything, including the statement most relevant to us, namely z7 = z3,
and we are done.

Interaction of XFDs with the general theory of trees We can formulate the appro-
priate analogue of Corollary 1 for the theorem above. Given a #-DTD D, let ¥, denote
all first-order formulae that hold on all trees (finite or infinite) satisfying D. We let F
be as before, and let .4 be all first-order hereditary Harrop formulae that are true on
all trees satisfying D. Then we have the following result.

Corollary 6. Forany ¥ C F,o0 € F, X U¥p Foifandonly if XU (p NHA) F o

Interestingly enough, we can indeed exhibit many formulae that belong to the the-
ory of trees satisfying a particular #-DTDs that are truly irrelevant to functional de-
pendency implication. For instance, given a DTD D containing a production a ~~ bbbb,
it is part of the theory of all trees satisfying D that “all a nodes have exactly four b
children”. However, as we see from our implication algorithms and axiomatization, the
number four is irrelevant; for the purposes of implication of FDs, a DTD identical to
D but with a ~~ bbbb replaced by a ~~ bbbbb would behave exactly the same way. We
conjecture that in fact, formulae such as the one just presented cannot be expressed as
first-order hereditary Harrop clauses, and consequently that our result above explains
formally why they are not relevant.

7 XFDs with V-DTDs and Arbitrary DTDs

As we shall see, the presence of disjunction in a DTD results in very substantial com-
plications to all the problems we investigate in this paper. In what follows, we present
the results that we have, but we also try to give some intuition as to why the extra
complications ensue.

67

7.1 Consistency
Like simple DTDs, it is not possible for a V-DTD to be inconsistent with a set of XFDs.
Theorem 19. If D is a \V/-DTD, then (X, D) is consistent for all X.

Proof. The argument for this is the same as for simple DTDs. A V-DTD cannot force
two occurrences of the same path, so the minimal tree satisfying D contains only one
occurrence of each path. Therefore, by the definition of a witness, it cannot contain a
witness against some dependency.

On the other hand, for arbitrary DTDs, the consistency problem unfortunately be-
comes NP-hard. This can be shown by adapting the reduction given in Section 7.3 of
Arenas and Libkin [2].

Theorem 20. Deciding the consistency of (X, D), for arbitrary D, is NP-hard.

Proof. We give a reduction of SAT-CNF to consistency. Given a CNF formula ¢ of the
form C; A Cy A - - - Cf, where each C; is a clause. Assume that ¢ uses the variables
X1, - Ty Build the following D and Y.

For D, the label alphabet involved is p,C' and { C;; | C; mentions literal z; } U
{ Ci; | C; mentions literal Z; }. For every C;, define f(C;) as

f(Ci) = Cijil-+1Ci5, |Ci,] -+ |Cik,
where the set of literals in clause Cj is exactly x;,, -+ ,¥j,,Tk;, " , Tk, Given this
definition, our DTD has the single production p ~» f(Cy)f(Cs)--- f(Cr)CC

For our set X, we define it to contain exactly the dependencies {p.C;;, p.Ck;} —
p.C, where each C;;, Cy,; are in our language. We claim that (X, D) is consistent if and
only if ¢ is satisfiable.

First, suppose (X, D) is consistent. Then there is a tree T satisfying X' and D.
Define a truth assignment to the x; variables as follows. If in T" the root has a child with
label C;; for some i, then set x; to true, otherwise set it to false. We show that each
clause C; is be satisfied.

For a given C}, the ith child of the root in T is either some C;; or some m In
the former case, by definition x; received the value true. As we know that x, occurs
positively in C;, C; is satisfied by this . On the other hand, suppose the child is Cjy.
Suppose for a contradiction that x, received the value true in the assignment. In this
case, there is some j such that in 7', the root has a child C'j¢. On the other hand, we now
have in 1" a nonnull match for C}¢, Cye. This match extends to two different matches
for p.C, so the dependency Cjy, Cyy — p.C € X, does not hold, a contradiction. So x,
must have received the value false in the assignment. Therefore, as x, occurs negated
in C;, C; is satisfied in this case too.

Now suppose ¢ is satisfiable. Then we build a tree T" as follows. The root of T is
p and has the two required C' children. For every clause C;, we add the ith child to
the root. We choose a literal x; or Ty in C; such that the truth assignment that satisfies
¢ makes the literal true. If the literal is of the form x,, add a child C;y, otherwise
add Cjp. It is clear that T satisfiesD. To see it satisfies X, observe that we can never
add two children C}; and Clo¢ for any /¢ in the construction of 7', because that would
mean the truth assignment makes both x, and 7y true in two different clauses. Thus no
dependency in X finds in 7" a nonnull match for its left-hand side, and consequently all
of X is satisfied.

68

Theorem 20 is slightly disappointing because it is only a lower bound. It is still open
whether consistency checking is even decidable. Naively, it would seem that we could
decompose an arbitrary DTD into a disjunction of #-DTDs and check the prime models
for each component DTD. However, the #-DTD algorithm does not work unadapted
in this case. While it is still true that there must be a finite set of minimal trees such
that every T in the set satisfies D and every T" satisfying D structurally embeds one
such T, it is no longer the case that all such minimal 7" are uniformly matched. As
a consequence, it is perfectly possible to have a DTD D such that none of the prime
models has an assignment that satisfies X, but another, bigger tree that embeds one
of the prime models does have such an assignment. For example, consider the DTD
D containing the productions p ~~ cc,c ~ af|bf*, f ~ «, and the set of XFDs
Y ={p—pcap— pcdbp— pc.f.a} Onetree T that satisfies both D and X is
shown in Figure 7. Note that the prime model that structurally embeds in this tree is not
uniformly matched and has no assignment satisfying X, as there is no f branch for the
second copy of c; however, there is an extension of this prime model which does have a
satisfying value assignment. Moreover, the other two prime models cannot be extended
to any tree satisfying 2.

“Prime Model” for T Tree T Satistying 3, D

Fig.7. A Minimal Tree for X/, D and its Uniformly Matched Extension

7.2 Implication complexity

Arenas and Libkin [2] have already shown that implication is infeasible once the DTD
contains disjunction. In particular, implication for V-DTDs is co-NP-complete. Impli-
cation for arbitrary DTDs remains open, though it is obviously co-NP-hard. Because ar-
bitrary DTDs include #-DTDs, the implication problem for arbitrary DTDs must includ
consistency checking as well. However, we have already demonstrated that extending
our consistency checking techniques to arbitrary DTDs is difficult.

7.3 Axiomatization

We have strong reason to believe that, in the presence of disjunction, the question of
axiomatization becomes substantially harder. Arenas and Libkin [2] have in some sense
shown that no finite axiomatization is possible. But this result is limited to their axiom
language, which is less rich than ours; this result need not carry over to all possible
axiom languages.

69

8 Related work

In the relational model, functional dependencies [1] and chase algorithms [1, 4] have
been studied extensively. Our axiomatization draws on the theory developed for rela-
tional FDs in the presence of null values [3, 16]. Functional dependencies have also
been studied for nested relations [12].

In XML, functional dependencies have attracted much research attention [2, 20, 14,
19, 15, 13]; see [21] for a survey. Our work uses a definition of XFD that is equivalent to
the one in [2]; we have highlighted throughout the paper how our results extend these.
The other FD definitions in the literature differ from ours in several ways, such as taking
a stronger semantics for XFD satisfaction in the presence of null values [20], the use of
different equality relations for node comparison, and the language used to identify the
nodes involved in functional dependencies. The literature also makes varying assump-
tions about the documents on which the FDs are to hold: some work assumes that there
is a DTD present in all cases [2], while other definitions do not require one [20, 14].

However, we believe that our definitions allow us to strike a good balance between
generality of the framework and the ability to obtain strong tractability and axiomati-
zation results. It is worth noting that much of the framework we developed can also be
reused if a different definition of XFDs is desired: for instance, to reason about XFDs
with a stronger null value semantics, we can retain our equivalence of XFDs to rela-
tional FDs on U(R(T')) and use relational work on these other null value semantics
[16] to assist with the development of axiomatizations and algorithms.

Finally, there has been much work on other constraints in XML documents, notably
keys [6], foreign keys [11], path constraints [7] and XICs [8]. For a recent, general
survey on XML constraints, see [10]. DTDs are known to interact in a complex fashion
with keys [11] and to affect the satisfiability and containment of XPath queries [18, 5].
However, we are not aware of any study of the interaction between DTDs and FDs.

9 Future directions

l HConsistency\ Implication \Axioms\ Language Fragment
No DTD N/A Linear 1-19 Universal Horn theory
Simple DTD Trivial Linear 1-21 Universal Horn theory
#-DTD Quadratic Quadratic 1-22 |FO Hereditary Harrop theory
V-DTD Trivial co-NP-complete ([2])
Arbitrary DTD|| NP-hard co-NP-hard ([2])

Fig. 8. Summary of our results

Several areas emerge as obvious directions for future work at this point. The first,
of course, is filling in the missing entries in our summary matrix, such as the upper
bounds for both consistency and implication with an arbitrary DTD. We conjecture
that both problems are decidable. Furthermore, the language used in the definition of
XFDs can be made richer, for instance by adding wildcard descendant navigation to
our tree patterns, as in [17]. Also, our investigation of XFD interaction with DTDs can
be broadened to include other popular XML constraint specifications, such as XML
Schema.

70

10 Acknowledgments

We would like to thank Al Demers, Johannes Gehrke, Dexter Kozen and David Martin
for valuable discussions and comments.

References

1

2.

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

M. Arenas and L. Libkin. A normal form for XML documents. ACM TODS, 29(1):195-232,
2004.

P. Atzeni and N. Morfuni. Functional dependencies and constraints on null values in database
relations. Information and Control, 70(1):1-31, 1986.

C. Beeri and P. Bernstein. Computational problems related to the design of normal form
relational schemas. ACM TODS, 4(1):pp. 30 — 59, 1979.

. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs. In Proc.

PODS, pages 25-36, 2005.

. P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Reasoning about keys for XML.

Inf. Syst., 28(8):1037-1063, 2003.

. P. Buneman, W. Fan, and S. Weinstein. Path constraints in semistructured and structured

databases. In Proc. PODS, pages 129-138, 1998.

. A.Deutsch and V. Tannen. Containment and integrity constraints for XPath. In KRDB, 2001.
. D.Miller. Sequent calculus and the specification of computation.

http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/scsc.pdf.

W. Fan. XML constraints: Specification, analysis, and applications. In Proc. DEXA, pages
805-809, 2005.

W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs. In Proc.
PODS, 2001.

C. Hara and S. Davidson. Reasoning about nested functional dependencies. In Proc. PODS,
pages 91-100, 1999.

S. Hartmann and S. Link. More functional dependencies for XML. In ADBIS, pages 355—
369, 2003.

S. Hartmann and S. Link. On functional dependencies in advanced data models. In Electronic
Notes in Theoretical Computer Science, volume 84. Elsevier Science B. V., 2003.

M. Lee, T. Ling, and W. Low. Designing functional dependencies for XML. In Proc. EDBT,
pages 124-141, 2002.

M. Levene and G. Loizou. Axiomatisation of functional dependencies in incomplete rela-
tions. Theor. Comput. Sci., 206(1-2):283-300, 1998.

G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment. In Proc.
PODS, pages 65-76, 2002.

F. Neven and T. Schwentick. XPath containment in the presence of disjunction, DTDs, and
variables. In Proc. ICDT, pages 315-329, 2003.

K. Schewe. Redundancy, dependencies and normal forms for XML databases. In ADC,
pages 7-16, 2005.

M. Vincent, J. Liu, and C. Liu. Strong functional dependencies and their application to
normal forms in XML. ACM TODS, 29(3):445-462, 2004.

J. Wang. A comparative study of functional dependencies for XML. In APWeb, pages 308—
319, 2005.

