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ABSTRACT
We present a new algorithm for large scale unsupervised text clas-
sification. Our method views each document as a sample of fixed
size from a mixture model, and uses a novel L1-norm based theo-
retical approach due to Kleinberg and Sandler [14]. We show that
our algorithm performs extremely well on data sets of105 docu-
ments and more, and in particular out-performs Latent Semantic
Indexing by a large margin. Furthermore, on some tests its predic-
tion accuracy approaches that ofsupervisedlearning with training
set of 5,000 or more documents. Unlike LSI, our algorithm pro-
duces a “well-behaved” projection in general, that in many cases
does not require additional clustering algorithm to separate topics.
We experiment with the arXiv- a collection of scientific abstracts
and the 20 Newsgroup dataset - a small snapshot of 20 specific
newsgroups.

1. INTRODUCTION
With growing availability of huge text collections, with documents
on about every possible topic, the following natural question arises:
is it possible to sort them into different categories without (or with
minimal) human intervention? While a significant understanding of
supervised learning- the setting where the algorithm has some pre-
classified data as a part of the input, has achieved in the past years
with a plethora of very fast and accurate methods[?]. However, the
problem of unsupervised text classification, remained pretty much
unsolved. To the best of our knowledge all existing clustering al-
gorithms suffer from at least one of the following problems. Inef-
ficiency - can not operate on collections larger than few hundred
documents, and/or can not deliver reasonable classification accu-
racy.

With the present paper we believe that we make an important con-
tribution toward practical and accurate algorithm for unsupervised
text classification. We present a new technique for unsupervised
text classification based on the joint work of the author with Klein-
berg [14]. The approach that we use is based on the same idea that
underlies LSI. Consider a term space, where each document can be
represented as a single vector of term frequencies. Following the
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LSI approach, we find a good dimensional subspace and project
each documents into it. The difference however, is that we build a
different projection operator which is based on minimizingL1 error
and we show that it works much better than SVD projection. Fur-
thermore as opposed to LSI, the basis of the topical space in many
cases corresponds to underlying topics and no further clustering is
needed.

One important feature of our method is that it givesprovable guar-
antees of performancewithin the model. In other words, under
the assumption that the model adequately describes collection of
documents and if particular conditions are satisfied we areguaran-
teedto recover almost accurate underlying term distributions with
high probability. Such type of guarantees is not new: for exam-
ple LSI does enjoy the same guarantees, and a lot of remarkable
analysis have been done in the past years [1, 20, 19]. However the
choice of model whereL2-norm of the error is minimized is not
necessarily justified [10] and furthermore, recent work [11, 17, 6],
suggest, that spectral analysis techniques might be not well suited
for text classification and other problems where Zipf’s law distrib-
utions are involved. Our approach is based onL1 norm that seem
to addresses this problem. It has also been observed by Ng [18]
and Kanade [13] about preferability ofL1 overL2-norm for partic-
ular learning problems. Our explanation is thatL2 norm puts too
much weight on heavy components that in overall constitute only
a small part of the system. For example in text classification prob-
lem, stop-words have much higher frequency of appearance than
topic-specific terms, and yet in most cases they possess almost no
information about topic structure.

The model we use for text collection is simply a generative mixture
model, where each document is a sample generated from a mixture
of overlapping distributions (topics). In contrast to latent Dirich-
let allocation [4], we don’t require our topic distributions to be of
any specific shape, but our bounds depends on specific measure of
independence which we define below.

Algorithm overview.
The algorithm starts by building an alternative ‘mixture model’,
that would be equivalent to the underlying model. Term ‘mixture
model’ is put in quotes because we relax definition to allow nega-
tive mixture coefficients (but resulting mixture must remain a prob-
ability distribution). Then it learns approximate coefficients using
linear programming, and we use learned model to compute under-
lying term distribution. Found term distribution is useful on its
own, as independent term-smoothing pre-processing step, and/or as
a query enhancement mechanism that would automatically include
synonymy search. However in this paper we will concentrate on



the found mixture model, and each document mixture coefficients.
Namely we use them for clustering documents into topics. Experi-
mentally we have shown that when there are only “few” topics ( e.g.
5 or less), classification according to the highest mixture coefficient
is very effective. In this case our algorithm has closely approached
the performance of supervised Support Vector Machines withlarge
training dataset! To the best of our knowledge this is the first unsu-
pervised algorithm which is capable of operating on large datasets,
and to achieve such performance. All of our experiments were con-
ducted on the collection of scientific abstracts - arXiv1 and the 20
Newsgroup2 dataset.

We also mention that accurate clustering isprovable in the case
of 2-topic classification (again, within the model): the basis we
build is so closely related to the underlying mixture model, that
it is sufficient to do classification. For multi-topic problem, our
empirical evaluation suggest that it might be true. However larger
datasets and/or additional analysis are needed to confirm or reject
this statement in its full generality.

For problems with more than 6 topics, we evaluate performance of
our algorithm as an intermediate dimensionality reduction step. We
show that accuracy loss due our method is much smaller then the
one of LSI, which is the only method known to us which would al-
low to do fully3 unsupervised large scale dimensionality reduction.

The rest of the paper is organized as follows. In the next section
we describe standard generative mixture model and introduce all
necessary definitions and notation. In the section 3 we describe the
algorithm along with intuition behind it. The forth section contains
experimental results, and finally we conclude the paper with open
problems and further directions.

Remark 1. Linear Programming has been used for clustering be-
fore. Particularly, correlation clustering introduced by Bansal,
Blum and Chawla [3], uses linear and semidefinite programs to
produce approximations for a specific graph clustering problem
[23, 5]. However their application is very different from ours in
a sense that programs were obtained as relaxations of integer pro-
gram. Whereas for our method, as we show below, it is a natural
(and optimal) setting.

2. GENERATIVE TEXT MODEL
We useMultiple Cause Mixture Model[14, 4, 20, 21, 22, 15, 9,
10] to describe the process of generating corpus. Each document is
modeled as a sample of fixed size from a mixture of possibly over-
lapping distributions over set of all possible terms. The coefficients
for the mixture are different for every document, but the underlying
distributions are the same for the whole collection.

More formally, there is a collection of documentsC of the size
m = |C|. All words used in the collection form a dictionaryD
of the sizen = |D|. Finally there arek topics and each topicc
induces a probability distributionWc over D. Each documentd
is simply a sample of a fixed size from a distributionDd, defined
by the mixture with coefficientsPd1, . . . Pdk. E.g. Dd = WPd.
VectorPd of hidden mixing coefficients is calledrelevance vector,

1Seehttp://www.arxiv.org,
2See http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/
www/data/news20.html,
3There are methods which perform dimensionality reduction after
seeing some labelled data, for example [2]

andDd is calledterm distributionvector. Naturally we require that
‖Pd‖1 = ‖Dd‖1 = 1. Normalized vectorD̃d of term frequen-
cies as they occur ind is called a signature vector, and is the only
information available about the document4.

Few more words on notation: We consistently use Latin lettersc, w
andd to denote arbitrary topics (clusters), topics(words) and docu-
ments respectively. We will also use these letters to denote matrix
indices and unless specifically stated otherwise, they will “type-
check” with the semantic meaning of the index. For exampleWcw

would denote the probability, topicc puts on the wordw.

For a particular documentd, we will used and d̃ to denote its
term distribution and signature vector respectively andp for its rel-
evance vector. E.g.p corresponds to a columnPd, andd is equal
to Wp.

By slightly abusing notation we will be using̃x, to denote both
random variable with distributionx, and a particular observation
drawn fromx.

3. ALGORITHM AND ANALYSIS
In this section we present our algorithm. While being very similar
to the algorithm presented in [14], it is different in a number of
key points. Therefore for the sake of completeness we describe our
algorithm in full and present some basic intuition behind it. For a
more formal exposure we refer to the original work. At the end of
the section we present additional results about binary classification
problem.

The algorithm runs in two stages. First it finds some “suitable” mix-
ture model for a given collectionC. This defines our topical sub-
space. We do this via analyzing a matrix of word co-occurrences.
Second, for each document it recovers mixture coefficients in the
built mixture model. Here we use Linear Programming to build
optimal projection operator.

In order to maintain clarity, these steps are presented in the reverse
order, as the second part can be viewed as independent learning
technique, while the first relies on the ideas used in the second step.

3.1 Analyzing Mixture Model
Suppose we know mixture model, how one would find mixture co-
efficients? A traditional approach would be to use EM-based meth-
ods [16], which in general might converge to a suboptimal solu-
tion. Out method based on generalized pseudoinverses [14], and
it provably recovers coefficients (within a small error) with high
probability.

We begin with a simple definition.

DEFINITION 1 (GENERAL PSEUDOINVERSE[14]). For ar-
bitrary rectangularn× k (n ≥ k) matrixW , matrixW ∗ is called
a generalized pseudoinverse ofW if W ∗W = I.

If n > k and if W ∗ exists, then it is not unique. For example one
possible generalized pseudoinverse matrix is obtained from singu-
lar value decomposition[7]. However for our needs we will use a
pseudoinverse which minimizes its maximal element.
4We are ignoring the order and word correlations here, but that’s
the property of “bag of words” formulation in general.



The reason why we need pseudoinverse and why we need this prop-
erty is as follows. Consider an arbitrary documentd of lengths
with term distribution and relevance vectorsd andp respectively.
Obviouslyd = Wp, and thus

W ∗d = W ∗Wp = p, (1)

This implies if we knewd we could findp and thus solve the clas-
sification problem.

However instead ofd we have a signature vector̃d, and while
E
�
d̃
�

= d, the vector̃d is sparse and thus is a bad approximation
for d. However in the (1), we only use elements ofd as a weighted
sum and therefore one can apply tail inequalities to bound an er-
ror of the sum of random variable This fact is formulated in the
following lemma.

LEMMA 3.1 ([14]). Let d̃ be a document signature with at
leasts words in it, and letV be an arbitraryk × n matrix, with
maximal element bounded byB, then ifs ≥ B2k

ε2δ
,

Pr[‖V d̃− V d‖∞ ≥ ε] ≤ δ.

PROOF. Note thatd̃ can be represented as a sum
Ps

i=1 d̃(i),
of independent vectors, whereith term representsi-th word selec-
tion. The rest is a simple corollary of Chebyshev inequality and the
union bound

This lemma implies that if a pseudoinverse with bounded maximal
element exists, then it immediately gives us an algorithm to find
a document relevance vector: multiply pseudoinverseW ∗ by sig-
nature vector̃d and this gives a good approximation to relevance
vector. Obviously the smaller we can get a maximal element ofW ∗

the better error bounds we obtain.

Now we again use the result of [14] which states that there is always
a pseudoinverse such that its maximal element is bounded by1

Γ
whereΓ is a quantity defined as

Γ(W ) = min
y 6=0

‖Wy‖1
‖y‖1

and calledindependence coefficient. Note that ifΓ = 0, thenW
has linearly dependent columns and no generalized pseudoinverse
exists. Conversely ifΓ = 1, then distributions in the mixture are
disjoint, and corresponding pseudoinverse is simply a “diagonal”
matrix.

THEOREM 3.2 (GENERALIZED PSEUDOINVERSE[14]).
For anyn×k matrixW = {Wwc} such thatΓ = min

y 6=0

‖Wy‖1
‖y‖1 > 0,

there exists a generalized pseudoinverseW ∗ = {xcw} such that
max |b′cw| < 1

Γ
. This pseudoinverse can be found in polynomial

time.

PROOF. Desired generalized pseudoinverse (if it exists) can be
found by solving the following linear program,
8
><
>:

X
w

xc′wWwc′′ = δc′c′′ for 1 ≤ c′, c′′ ≤ k

−γ ≤ xcw ≤ γ for 1 ≤ c ≤ k, 1 ≤ w ≤ n
min γ

,

for the existential part of the proof we refer to [14]

This theorem gives us the following way to do supervised learning.
Use training data to learn topic distributions̃W (by simply observ-
ing the term histogram for each topic). Then compute pseudoin-
verseW̃ ∗, using linear program above. Finally, learn mixture co-
efficients of unseen documentd by applying pseudoinversẽW ∗ to
the document signatured.

ALGORITHM 1 (SUPERVISED LEARNING).
Input: Collection of documentsC, with a prelabeled subsetC0 ⊆ C
Output: Classificationcd for each documentd
Description:

1. For each topicc, computeW̄c as a word distribution in doc-
uments labeled with topicc.

2. Compute pseudoinversēW ∗ using linear program from the-
orem 3.2

3. For each unlabeled documentd, computep̄ = W ∗d̃ and
assign it to the topicc such that̄pc = ‖p̄‖∞

We would like to emphasize here that the number of words in docu-
ment needed to learn mixture coefficient isindependentof the size
of the dictionary. It only depends on desired confidence parameters
and independence coefficientΓ.

Remark 1. It is also possible to use for projection a pseudoinverse
obtained from Singular Value Decomposition (or any other). How-
ever the value of maximal element will be dependent onn in gen-
eral case thus making tail inequalities not immediately inapplica-
ble.

3.2 Finding “mixture model”
Note that equation (1) holds not only for matrixW , but essentially
for arbitrary matrixV as long as for each documentd, d can be
represented in the formV q. Indeed then:

V ∗d = V ∗V q = q.

Also theorem 3.1 applies to an arbitrary matrix with bounded max-
imal element. Thus in order to find term distribution it suffices to
find matrix V which would satisfy the following: Columns ofV
are linear combinations of trueW , andV hasΓ(V ) bounded.

One source of vectors which are linear combinations ofW , is a
co-occurrence matrixR.

DEFINITION 2 (COOCURENCE MATRIX). Let R̃wv denotes
the number of times wordsw andv have occurred together in the
same document. Then× n matrixR = {E�Rwv

�} is then called

co-occurrence matrix and the matrix̃R = {Rwv} is called ob-
served co-occurrence matrix.

Note that as number of documents|C| grows comparatively to the
size of the word dictionary|D| , the observed co-occurrence matrix
uniformly approaches to its expectation. In [14] authors argued that
an algorithm, that tries to maintain large independence coefficient,
by greedily choosing columns of normalized̃R, will result in V
such thatΓ(V ) ≥ f(Γ(W ), k). However their algorithm while
being feasible to run, still would take prohibitively long time (order
of weeks on a desktop) on a large dataset.



We use heuristics to both speed up the algorithm and reduce the
required sample complexity. First, we don’t compute the full co-
occurrence matrix, but only columns corresponding to the words
which have occurred at leastt times and are not in the stoplist.t is
the parameter of the system and is set to approximately 1/10 of the
dictionary size. This serves as both a speeding up and an error re-
duction measure: don’t analyze words, if there is no enough statis-
tics about them. Resulting matrix is calledtruncatedco-occurrence
matrix5 Second, our independence coefficient is heuristically ap-
proximated as a minimalL1 distance between columns.

Now we are ready to present the algorithm which finds the model.

ALGORITHM 2 (FINDING “ MIXTURE MODEL”).
Input: Observed co-occurrence matrix̃R, number of topicsk ≥ 2,
parametert.
Output: Topical spaceV .
Description:

1. Remove columns fromR corresponding to stoplist words, or
havingL1 norm less thant. Normalize (w.r.tL1 norm) re-
maining columns.

2. Let (w1, w2) = argmax ‖Rw1 −Rw2‖1, setH1 to Rw1

andH2 toRw2 .

3. For eachc in between 3 andk:

(a) Find word w, such that columnRw would maximize
min

1≤i≤c
‖Hi −Rw‖1

(b) SetVc = Rw and iterate.

Our algorithm creates matrixV , which (in the limit) spans the same
subspace asW , and that is sufficient for our LP algorithm to learn
coefficients.

While due to heuristics used, our algorithm potentially might fail
to findk sufficiently independent vectors. If it succeeds (and this is
checked during the final pseudoinverse lookup step), it still enjoys
the same type of guarantees as original algorithm. In our practice
we have never encountered the case when independence coefficient
Γ would be below1/3.

3.3 Joining parts together
We start with presenting an algorithm, and then show simple iter-
ative modification which allows to significantly decrease required
sample complexity.

ALGORITHM 3 (UNSUPERVISED CLASSIFICATION).
Input: DocumentsC, parametert.
Output: Topical subspaceH. Dd andPd -estimated term distribu-
tion vectors and mixing coefficients.
Description:

1. Compute the matrix̃D of documents signatures̃D.

2. Compute the observed co-occurrence matrixR̃(D̃)

5Note that we still keep full set of rows, including stopwords.

3. Find the matrixH - our alternative mixture model, using
algorithm 2. ReportH as our approximate topical subspace.

4. LetH∗, be matrix found via LP from theorem 3.2

5. For each documentd, with signature vector̃d:

(a) Computēp = H∗d̃, andd̄ = V p̄, and report those as
mixture coefficients and term distributions respectively.

(b) Classification: Assignd to the distribution with the
highest mixture coefficient.

Because of the choice ofH, has a pseudoinverse with bounded
maximal element, then following the analysis of [14] this algo-
rithm will provably recover term distributions as the number of
documents goes to infinity. We refer reader to [14] for the proof
details.

Furthermore, for binary classification problem as we show later the
algorithm, even with the heuristics used, the algorith succeeds in
actual classification(and not only recovering term distribution vec-
tors) with high probability. For the general classification problem,
while our algorithm certainly succeeds in many experiments, it is
still an open problem to prove related result.

A simple modification of the algorithm which allows to signifi-
cantly reduce sample complexity. Namely, we observe that our
algorithm uses only few columns of co-occurrence matrix to build
topical subspace, which, effectively means that we use only small
fraction of documents to construct probability distributions, and
hence significantly increase our sampling error.

To address this problem we use iterative modification of the al-
gorithm. Classification results of the first iteration, are used as a
pre-classified data, to train oursupervised learningalgorithm.

ALGORITHM 4 (ITERATIVE CLASSIFICATION).
Input: Collection of documentsC.
Output: Classificationcd for every documentd.
Description:

1. Using unsupervised algorithm compute intermediate classi-
fication.

2. Run supervised algorithm as if intermediate classification is
our training data and obtain new intermediate classification
on the full collection.

3. Iterate previous step 4 more times6.

4. Report current intermediate classification as the final.

Remark 1. This procedure allows significantly reduce sample com-
plexity for a given accuracy. However it becomes insignificant as
the amount of available data grows, and the sampling error of the
co-occurrence matrix decreases.

6Our choice of constant 4 was somewhat arbitrary. However ex-
periments show that effect of further iterations is negligible.



3.4 Binary classification
In what follows for simplicity we assume that all documents have
the same sizes, each document is relevant to only one topic
and each topic is has the same number of documents relevant
to it7. We show that if two topic distributions are far apart e.g.
‖W1 −W2‖1 ≥ γ. Then it is possible to do fully unsupervised
classification of the collection, with an error approaching zero as
the number of documents grows.

THEOREM 3.3 (BINARY CLASSIFICATION). SupposeW is a
mixtureW of two topics, such that‖W1 −W2‖1 ≥ Γ0, andε, δ
are two constants, If|C| ≥ f(Γ0, ε, δ)|D| and the sizes of each
document is at leastg(Γ0, ε, δ) for some appropriate polynomial
functionsf and g, then algorithm 3 with probability1 − δ will
correctly classify at least1− ε fraction of all the documents.

PROOF. First, sinceR̃ uniformly approachesR as number of
documents grows and since number of documents can be a func-
tion of the size of the dictionary, we can assume without loss of
generality thatR = R̃.

Now, condition‖W1 −W2‖1 ≥ Γ0 implies that there are two
wordsw1 andw2, such thatW1w1 − W2w1 ≥ Γ0

2n
andW2w2 −

W1w2 ≥ Γ0
2n

. This gives an obvious lower bound on a distance
between columns of the co-occurrence matrix chosen by the algo-
rithm 2, and that in turn lower boundsΓ(H). Now recall that all
documents have underlying vectors eitherW1 or W2 and thus their
representation in the spaceH would be of the form(α1, α2), where
one of the components is nonpositive and another at least 1. The
rest is a simple corollary of the lemma 3.1.

While we believe that similar approach of considering convex hull
for co-occurrence matrix might help to do classification in multi-
topic problem, and empirical evaluation supports it, even with the
use of heuristic. It is an open problem if such a theorem could be
proved fork > 2.

3.5 Multiple word occurrences
One obvious discrepancy between the model and the textual data
lies in the way words occur in the document. Namely, if particular
word w has appeared in a document, then it is somewhat likely
to appear again, then some other word also relevant to the same
topic. In the mixture model all consequent appearances have the
same probability as the first one. Especially this is noticeable in the
small documents, like paper abstracts. To accommodate this in our
algorithm, we ignore second and all consequent appearances of the
same word in the single document8.

4. EXPERIMENTS
For our experiments we have used two datasets. The first one is
arXiv collection of approximately 250.000 scientific abstracts on
12 different categories, which we used as our primary dataset. Our
second collection is 20 Newsgroup, which contains 20,000 posts to
one of the 20 groups.

7Neither of these conditions are crucial but they are helpful to
maintain clarity.
8We also did experiments where all words were counted accord-
ingly to their actual frequencies or tf.idf [8] measures, those pro-
duced very comparable, yet slightly worse results. We don’t pre-
sented this comparison in the current paper.

With the first dataset our algorithm was tested as both unsupervised
learning algorithm and dimensionality reduction step. In both cases
it has shown outstanding results. Particularly on 4 topic classifca-
tion problem, algorithm outperform LSI by far, and performed bet-
ter than SVM with 400 (100x4) training documents. More details
on this dataset below.

In the second dataset (20 Newsgroup), we do binary classification
and compare it with results of [24]. While due the scarcity of data
(recall that we need to build huge co-occurence matrix), we weren’t
ablt to run our algorithm on 5-topic classification problems, we did
experiments with those sets in a setting where for each topic our al-
gorithm was given “a hint”- a descriptive keyword, as an additional
noise reduction measure.

For our tests we have usedSVMstruct implementation of sup-
port vector machines due Joachims [12].Our algorithm was imple-
mented using MatLab9 and Python10.

To build dictionary we have used words which have occurred at
least 5 times and we used neither stemming nor stopword removal.

4.1 arXiv
Due to large amount of computer resources required to perform LSI
on the full arXiv, we randomly selected 1/10th of documents from
each category and used that to do comparison with LSI. For the
next few experiments our thresholdt is set tot = 500.

As our first experiment we classify 3780 documents on hep-ph
(high energy physics - phenomenology) against 4370 documents
on astro-ph (astrophysics). For each document we produce 2-
dimensional vector of document relevancies to semantic dimen-
sions. Illustrative representation of both algorithms outcome is pre-
sented on the figure 1. ForLSI 2-nd and 3-rd singular vectors were
used for a projection11 While both sets are approximately linearly
separable, as one can see clusters are very distinct for our method,
whereas in LSI they are barely distinguishable and additional clus-
tering is needed.

Second we do four topic classification between astro-ph, hep-ph,
cond-mat (condensed matter, 4690 documents) and math (mathe-
matics, 2300 documents). Our algorithm fully successes in recov-
ering topics, and performs almost as good as trained SVM! For LSI
further classification is needed. In order to minimize additional
error, by introducing extra unsupervised method, we have trained
SVM to do final discrimination between topics. Comparison results
are presented in the table 1, we also included classification results
for trained on a full dictionary SVM as a reference. Note that our
method performs almost as good as SVM with 300 training docu-
ments per topic (e.g. 1200 total)!

Now we switch to the full arXiv. For all experiments to followt is
set to 5000. In the first experiment we do unsupervised clustering
for 4 largest categories, and compare performance gain from iter-
ation step. Quite expectedly effect for full arXiv is nearly not as
dramatic as for 16.000 document subset. This supports our claim
that iterations are helpful to reduce required amount of data, but
they don’t give any structural improvements .

9http://www.mathworks.com.
10http://www.python.org.
11Recall that first singular vector corresponds to stopwords
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Figure 1: Binary classification between hep-ph (4370 docs) and astro-ph (3780 docs). Points represent documents after projection to
topical subspace. Each line approximately separate documents of different categories. Note that for I-LP this line is alwaysx = y,
for LSI one have to do additional clustering to locate it.

# LSI + SVM I-LP+ SVM SVM I-LP
0 N/A N/A N/A 90.2%
1 56.0% 86.5% 49.8% -

10 63.8% 90.0% 67.8% -
30 60.5% 90.4% 82.0% -

100 61.0% 90.6% 87.7% -
300 68.5% 90.8% 91.2% -

1000 67.9% 90.8% 93.3% -

Table 1: SVM vs. LSI+SVM vs I-LP. accuracy of 4-way clas-
sification on a subset of arXiv of≈ 15.000 documents. First
column contains number of labeled samples per topic, supplied
to SVM step. The last column is performance of our method,
which does not need any training data. Rows 2-4 contain aver-
aged over 10 runs accuracy.

Next we do classification in the datasets with 5 and 6 topics, for
that we add category gr-qc (general relativity - quantum cosmol-
ogy) and nucl-th (nuclear theory) to the test set. While accuracy
has declined it is still remained very high. Particularly, considering
unsupervised nature of the method and closely related categories
(e.g. quantum cosmology vs. astro-physics). Detailed classifica-
tion results are presented in the table 3

Our last experiment on arXiv is a test of I-LPas a dimensionality
reduction step. To measure quality of our projections we compare
performance of supervised method (SVM) on a full feature set with
SVM trainied on projection subspace. For that we try 4-, 6- and
10- categories test cases. The 4-category dataset contains the same
categories as above. For the 6-category we add: gr-qc, nucl-th. For
the last one we add four more: quant-ph, nlin, physics and hep-th.
The largest dataset contains≈ 232.000 documents. Results are
presented in the table 4.

Remark 1. Unsupervised classification of 6 and more topics
proved to be difficult for our algorithm, the classification had less
than50% accuracy on one or more topics. One such example is
presented in the table 3. While we suspect insufficient amount of
data to be the major reason, it might also be the point where our
heuristic algorithm starts to break, and/or mixture model becomes
less accurate description of textual data. Future exploration of those
reasons is a very interesting next step.
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Figure 2: LSI vs I-LP+ SVM vs. SVM, 4-way classification on a
subset of arXiv of≈ 15.000 documents.X-axis contains num-
ber of labeled examples per category supplied to SVM (note
that there is no SVM step for I-LP, so its performance is a con-
stant).

iter # 16.000 docs 160.000 docs
0 72.1% 87.5%
1 83.8% 90.9%
2 87.5% 91.3%
5 90.2% 91.3%
10 90.7% 91.3%

Table 2: Effect of iterations as amount of available data grows.
In both cases classification is done on the same topics (hep-ph,
cond-mat, math, astro-ph).



astro-ph cond-mat hep-ph math Precision
Cluster 1 38529 486 407 52 97.61%
Cluster 2 3056 45531 3274 803 86.46%
Cluster 3 2755 444 33710 96 91.10%
Cluster 4 362 1075 534 22416 91.92%
Recall: 86.19% 95.78 % 88.89 % 95.93 % 91.3 %

astro-ph cond-mat gr-qc hep-ph math Precision
Cluster 1 28197 166 63 122 22 98.69%
Cluster 2 813 41368 316 1926 413 92.27%
Cluster 3 15177 5130 9716 9844 1565 36.63%
Cluster 4 472 234 89 25748 83 96.70%
Cluster 5 43 638 809 286 21284 92.30%
Recall: 63.08% 87.02 % 88.38 % 67.89 % 91.09 % 76.77 %

astro-ph cond-mat gr-qc hep-ph math nucl-th Precision
Cluster 1 28610 182 84 92 31 28 98.56%
Cluster 2 2339 24422 1655 3945 2431 1902 66.56%
Cluster 3 9289 1549 8504 11767 1031 512 26.04%
Cluster 4 366 212 45 20584 74 4440 80.03%
Cluster 5 30 235 502 98 19666 24 95.68%
Cluster 6 4068 20936 203 1440 134 1561 5.5%
Recall: 64.00 % 51.38 % 77.36 % 54.27 % 84.16 % 18.41% 59.7%

Table 3: Confusion and precision/recall tables for 4-, 5-, and 6-ways (bottom) classifications. The rightmost bottom number is the
total accuracy (e.g. fraction of documents classified correctly.) Datasets are of the sizes≈ 154, 000 and≈ 165, 000 and≈ 173, 000
abstracts respectively. Order of clusters in the table has changed to maintain a ‘diagonal shape’ of the table, as our algorithm by
itself has no knowledge of true cluster order.

4 topics (≈ 153, 500 documents)
# I-LP+SVM SVM
5 89.6% 65.6%
10 90.9% 71.9%
30 91.0% 82.1%
100 91.7% 88.2%
300 91.8% 91.4%
1000 92.2% 93.7%
3000 92.3% 95.3%

6 topics (≈ 173, 000 documents)
I-LP+SVM SVM

68.8% 51.3%
74.7% 61.0%
74.9% 71.7%
78.7% 81.2%
80.2% 84.9%
80.5% 87.9%
79.6% 90.5%

10 topics (≈ 232, 300 documents)
I-LP+SVM SVM

50.4% 39.7%
55.6% 47.2%
58.1% 59.8%
60.7% 66.6%
65.7% 70.1%
66.7% 75.4%
67.6% -

Table 4: LP-algorithm as a dimensionality reduction step. SVM algorithm trained on the full dictionary is compared against SVM
algorithm trained on the topical subspace. The test cases contain 4, 6 and 10 underlying topics. The number in the first column is
number of labeled documentsper categorysupplied to SVM. Accuracy for the first 3 rows is averaged over 10 runs. Each number
represent accuracy for corresponding test. For the last case SVM has running time has exceeded 20 hours, there no data were
collected

.



4.2 20 Newsgroup
20 Newsgroup collection consists of 20 groups, each containing
approximately 1000 messages. Below is the list of groups, where
we have used the same numbering as in [24]

NG1: alt.atheism, NG2:comp.graphics,
NG3: comp.os.ms-windows.misc,
NG4: comp.sys.ibm.pc.hardware,
NG5: comp.sys.mac.hardware,
NG6: comp.windows.x,
NG7: misc.forsale, NG8:rec.autos,
NG9: rec.motorcycles,
NG10: rec.sport.baseball,
NG11: rec.sport.hockey,
NG12: sci.crypt, NG13: sci.electronics,
NG14: sci.med, NG15: sci.space,
NG16: soc.religion.christian,
NG17: talk.politics.guns,
NG18: talk.politics.mideast,
NG19: talk.politics.misc,
NG20: talk.religion.misc

While 1,000 per group might seem like a lot of documents, it is
not quite enough to buildn×n co-occurrence matrix, especially if
more than two topics are involved. Therefore we only compare our
algorithm on binary classification with results of [24] for p-QR, p-
k-means and k-means. We also note that in [24] experiments were
run on 100 messages subsets, which render them to be not directly
comparable with ours.

In our experiments we have removed all headers from all messages,
and all words that have occurred less than 5 times.

For non-related groups (NG1/NG2 and NG1/NG15) our algorithm
gives96% and93% accuracy respectively (best in [24] is 89% and
73% respectively). For related groups accuracy has dropped. For
NG2/NG3 and NG8/NG9 we have 75.5% and 87% (vs. 62.3 and
75.9), and for the final two examples our classification is close to
meaningless12. Whereas there might be multiple reasons for this
drop, we suspect the primary one to be insufficient amount of data
- with high probability noise influence our choice of columns in
co-occurrence matrix. To support this claim, we do the following
experiment. For each group asingle descriptive word is picked,
and these words are given as a part of the input. The algorithm then
chooses corresponding to these words columns of co-occurrence
matrix as a first approximation to the topic subspace (instead of
greedy search). After that it runs iteration in usual mode. Here is
the list of words we have used as hints:

NG1: ATHEISM, NG2:GRAPHICS, NG3: WINDOWS
NG4: IBM, NG5: MAC, NG6: SUN
NG8:CAR, NG9: BIKE, NG10: BASEBALL,
NG11: HOCKEY, NG15: SPACE, NG18: ISRAEL
NG19: FBI

Classification results for this experiment are given in the last col-
umn of the table 5. Quite expectedly, all problematic (NG10/NG11
and NG18/NG19) binary cases were resolved, and the rest observed

12Note that random classification gives 50% accuracy.

only a slight increase in accuracy. For hinted-I-LP, we also ran 5-
way classification tests. The algorithm certainly succeeds on the
first test (unrelated topics, 88% accuracy). For the second test,
while it outperforms all other algorithms - the results are not as
impressive (computer related topics, 54% accuracy). This again
confirms our statement that for closely related topics our algorithm
needs more statistical data in order to discriminate between them.

5. CONCLUSION AND FURTHER DIREC-
TIONS

We presented a new technique for large scale unsupervised text
classification, which to the best of our knowledge outperforms all
unsupervised methods. While this is very applicable result by it-
self, this suggests that there is a lot of structure still hidden in the
high-dimensional textual data. And we believe that our algorithm is
important first step towards exploring understanding such structure.

Another distinctive feature of our algorithm and analysis of [14] is
that they allow guarantees about underlying term distributions and
possibly about classification accuracy within the model and thus
potentially could be used tomeasuresuitability of the model for a
given task. Particularly, success of our method shows that MCMM
is indeed a good approximation for natural textual data.

Our approach poses a lot of new questions of both technical and
theoretical nature. First, we used heuristic to build a mixture model.
While it has worked surprisingly well for classification, it would be
very interesting to see if our mixture is indeed related to the un-
derlying in general case. Alternatively, can one find in some sense
“the best” mixture model in feasible time? It is our belief that for
single-label classification problem, there is a suitable definition of
the “best” model, where it could be proven to be close to under-
lying model. However perhaps, additional assumptions about the
model might be needed.

Another interesting question is to see if one can apply our method
to linearly dependent topics, such as simultaneous clustering by
authors and content, and/or hierarchical clustering.

From the theoretical point of view, improving actual bounds on
the sample complexity presented is [14] and particularly matching
them with our experimental results, is a very important open ques-
tion. One approach here is to assume that distributions have partic-
ular shape - for example power-law. Finally, as it was mentioned in
[14] Γ is similar to the smallest singular value. Can one construct
analogues of other singular values and build something similar to
SVD, but with respect toL1 norm? Would it describe textual data
better than traditional approach? What one could say about data
partitioning when similarity is measured usingL1 norm, in general
case?
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