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Abstract

The statistical estimates of BLAST and PSI-BLAST are of extreme importance to determine the
biological relevance of sequence matches. While being very effective in evaluating most matches, these
estimates usually overestimate the significance of matches in the presence of low complexity segments. In
this paper we present a model, based on divergence measures and statistics of the alignment structure,
that corrects BLAST e-values for low complexity sequences without filtering or excluding them. We
evaluate our method and compare it to other known methods using the Gene Ontology (GO) knowl-
edge resource as a benchmark. Various performance measures, including ROC analysis, indicate that
the new model improves over the state of the art. The program is available at biozon.org/ftp/ and
www.cs.technion.ac.il/~itaish/lowcomp/.

1 Introduction

Low complexity sequences, also known as ‘simple sequences’, are abundant in proteins. These composition-
ally biased sequences are commonly seen in homopolypeptides and short-period tandem repeats, and are
frequent in structural proteins such as Collagens and cell-wall proteins. A study by Wootton and Feder-
hen [Wootton & Federhen 1993] shows that about half of the proteins in SwissProt contain at least one
such region. Another study [Golding 1999] also shows that low complexity sequences are the most fre-
quent segments in Saccharomyces Cerevisiae proteins. Many studies analyzed the amino acid distribution
in low complexity sequences, concluding that amino acids such as Alanine (A), Serine (S), Proline (P) and
Glycine (G) are very frequent within these sequences while Cysteine (C) and Tryptophan (W) are very rare
[Promponas et al. 2000, Romero et al. 2001, Alba et al. 2002] (the complete statistics is given in Table 1).
However, not much is known about the potential function of these sequences.

A major problem with low-complexity sequences arises in sequence homology searches. Because of the
repetitive nature of these sequences, one might detect many high-scoring similarities that are biologically
meaningless. The statistical theory that was developed to estimate the significance of sequence matches
[Karlin & Altschul 1990, Dembo et al. 1994a] fails to provide accurate estimates in this case. This theory
assumes that the compositions of the compared sequences are similar to the overall composition of amino
acids in the database [Karlin & Altschul 1990], which is not true for sequences of low-complexity. As a
result, the statistical estimates (as in BLAST p-value and e-value) tend to overestimate the significance of
matches to proteins with unusual amino acid composition, reporting meaningless similarities as significant.
Moreover, even for related sequences, these repetitive residues might cause misalignments.

To improve sequence similarity searches, several algorithms have been developed to handle low com-
plexity sequences. The first algorithms to study these segments were XNU [Claverie et al. 1993] and SEG
[Wootton & Federhen 1993]. These algorithms consist of two basic steps: detecting low complexity segments
and masking them before sequences are actually aligned. XNU measures whether the maximal segment pair
(MSP) score of self-alignment reaches a certain threshold. If the score is above the threshold, the region is
defined as a low complexity segment and is masked. Unlike XNU, SEG uses entropy to measure sequence
complexity. It first scans through the sequences using a fixed sized sliding window to detect raw low complex-
ity segments (low entropy). Then it refines the low complexity segments through an optimization routine.
SEG has become well known since BLAST started applying SEG by default to filter out low complexity
regions in protein sequences. However, not all low-complexity segments are filtered with this method, and



Amino acid Frequency Ratio
Low complexity Overall
A 0.119 0.076 1.57
S 0.104 0.073 1.42
P 0.072 0.051 1.41
G 0.092 0.070 1.31
L 0.119 0.096 1.24
E 0.067 0.062 1.08
T 0.054 0.057 0.95
Q 0.038 0.040 0.95
R 0.050 0.053 0.94
K 0.048 0.056 0.86
\% 0.055 0.065 0.85
| 0.040 0.057 0.70
D 0.035 0.050 0.70
N 0.029 0.043 0.67
F 0.024 0.041 0.59
H 0.012 0.023 0.52
C 0.008 0.017 0.47
M 0.011 0.024 0.46
Y 0.013 0.031 0.42
W 0.004 0.014 0.29

Table 1: Amino acid composition in low-complexity segments. For each amino acid we report its frequency in low-
complexity segments, its overall frequency in protein sequences and the ratio between the two. Amino acids are sorted based on the
ratio. The segments were determined using SEG with the default options. More than 1,200,000 segments were analyzed varying in
length between 3 and 4339 residues.

the method is somewhat sensitive to the choice of the parameters such as the window size and the low-
entropy threshold (see examples in Section 3.1.1). On the other hand, potentially useful information is lost
due to this masking process. These low complexity fragments may play an important role in determining
the structure and function of proteins [Wootton 1994], and many relationships of biological significance can
be missed if only sequences that pass the filter are to be considered [Yona & Levitt 2000a].

Approaches that attempt to reduce information loss were recently introduced. For example, CAST
masks only one type of the biased residues in low complexity segments. The type of the residues to be
masked is determined by aligning the query amino acid sequence against the 20 different homopolypeptides
[Promponas et al. 2000]. The SIMPLE algorithm [Alba et al. 2002] uses the ratio of the average simplicity
score of the sequence against that of its shuffled sequences to determine whether it is a low complexity
sequence. If the ratio is above 1, the sequence is considered to be of low complexity. Karplus et al.
[Karplus et al. 2003] introduced a method that computes the significance of a match by subtracting from
the BLAST score the similarity score of a match with the reversed sequence. This preserves higher order
correlations that are missed when using methods such as SEG. A related permutation approach is the zscore
based method. Given an alignment between a query sequence and a database sequence, a background
population of “random” alignments is generated by permuting the database sequence and aligning the query
sequence with each one of the permuted sequences'. The significance is estimated from the mean 1 and the
standard deviation o of the background distribution in terms of the zscore % Permutation methods have
the advantage that they preserve the context without making any assumptions on the source. Specifically,
the sample space is sampled without replacements (i.e., finite source). However, they are very slow as they
require tens of samples to generate the background distribution from which a zscore can be estimated.

The most recent and effective method to handle low-complexity segments is the one implemented in the
recent versions of BLAST [Schaffer et al. 2001]. The method (called ‘composition-based statistics’) re-scales
the statistical parameters based on the compositions of the sequences compared. This method proved to
be quite effective in eliminating many chance similarities that are due to unusual sequence compositions
[Schaffer et al. 2001]. However, the method does not work well in all cases and low-complexity segments
might still cause a problem. Furthermore, the composition-based statistics introduces some unnatural ar-
tifacts; most notably is the ranking of the query sequence in cases when the query sequence is also part of
the database searched. Since the different parameters result in different statistical estimates that are not
monotonic in the raw scores, the query sequence might not be the first hit reported, ranked sometimes below
many other matches with less similar sequences, or totally missed in other cases (see Section 2.2).

1 Alternatively, one can shuffle just the aligned residues and re-score the alignment. However, statistical estimates based on
this method tend to overestimate the significance since the alignments with the random sequences are not optimized.



Here we present a new approach for reducing BLAST false positive hits caused by low complexity se-
quences in a database search. Instead of focusing on detecting and masking low complexity segments, we
keep the sequences intact and try to validate sequence alignments based on the statistics of the alignment
structure. Our method uses prealigned sequences as input and re-estimates the probability of observing the
alignment based on the amino acid composition of the protein sequences compared. We also introduce two
filters based on statistical divergence measures.

This paper is organized as follows. We start with a brief overview of issues related to statistical significance
of sequence alignments (Section 2). We then present the main components of our method (Section 3). We
test our method and compare it to other methods using the GO database as a reference in Section 4, and
finish with concluding remarks (Section 5).

2 Background and definitions

2.1 The statistical significance of ungapped sequence alignments

The statistics of ungapped similarity scores has been studied extensively since the early 90’s. One of the
most important results in this field is the characterization of the distribution of local similarity scores with-
out gaps. This distribution was shown to follow the extreme value distribution [Karlin & Altschul 1990,
Dembo & Karlin 1991, Dembo et al. 1994b]. Specifically, S, the local similarity score of two random se-
quences of lengths n and m, is distributed as an extreme value distribution with

p = Prob(S > z) ~ 1 —exp(—e M%), (1)
where u = M%, and A\ and K are parameters that are estimated from the background distribution of
amino acids and the scoring matrix [Karlin & Altschul 1990].

The probability p is computed in the context of comparing two random sequences. It should be adjusted
when multiple comparisons are performed (e.g. when searching a database with D sequences). Denote by
p-match a match between two sequences that has a pvalue < p (i.e., its score > §). The expectation
value (e-value) is the expected number of distinct p-matches (segment pairs) that would obtain a score > S
by chance in a database search

E = E(number of pmatches) = Dp. (2)

Since not all database sequences have the same probability of sharing a similar region with the query
sequence, D should be replaced with the effective size of the database. If the query sequence is of length n,
the (pairwise) alignment of interest involves a database segment of length m, and the database has a total
of N amino acids, then D should be replaced with N/m.

It should be noted that the theory of sequence alignment was established rigorously only for ungapped
sequence alignments. However, several studies suggested that the score of local gapped alignments are
also distributed according to the extreme value distribution [Smith et al. 1985, Arratia & Waterman 1994,
Waterman & Vingron 1994], though some correction factors may be required [Altschul & Gish 1996].

2.2 BLAST parameters, re-scaling and composition based statistics

The parameters A and K determine the exact characteristic of the extreme-value distribution for a given pop-
ulation of amino acid sequences. Specifically, given the distribution Py (the overall background distribution
of amino acids in the database), A is obtained by solving the equation

S pappe @) = 1, 3)
a,b

where s(a,b) is the similarity score of amino acids a,b and p, is the probability of amino acid x. The
equation is solvable using numerical methods such as Newton’s method. The second parameter K is given
by a geometrically convergent series which depends only on p, and s(a,b) [Karlin & Altschul 1990].

These results (equations 1 and 3) hold for a specific class of scoring matrices (negative mean) and subject
to the restriction that the amino acid composition of the two sequences that are compared are not too



dissimilar. Assuming that both sequences are drawn from the background distribution, the amino acid
composition of both should resemble the background distribution of amino acids. Without this restriction
this equation overestimates the probability of similarity scores, and indeed, this is observed in protein
sequences with unusual compositions.

In theory, one way to correct the e-value in the presence of low-complexity sequences would be to re-
compute the parameters based on the composition of the specific database sequence. However this simple
solution cannot be applied in practice because of several reasons. First, a more elaborate correction for
multiple tests needs to be introduced as the individual comparisons are no longer identically distributed.
More importantly, the analytical solutions for A and K were established only for ungapped alignments, while
BLAST in its current format generates gapped alignments.

To overcome this problem, gapped-BLAST uses pre-computed parameters. The parameters are pre-
computed based on simulations with a variety of scoring matrices and gap penalties, but for fixed sequence
composition (the background distribution of amino acids in the database) [Altschul & Gish 1996]. However,
this might lead to substantially inaccurate estimates when the query or library sequence have unusual
sequence compositions (i.e., A differs markedly from the pre-computed one). Because of the exponential
dependency on A in Equation (1), a change in the value of that parameter might result in many orders of
magnitudes change in the significance of a given similarity score. Recomputing the parameters for each pair
of sequences using simulations is impractical, since this is a costly and slow process.

The solution employed by the newer versions of BLAST is to re-scale the parameters for gapped align-
ments based on a factor that is computed from parameters for ungapped alignments (the method is called
composition based statistics). Specifically, given a query sequence and a database sequence, the program
computes the parameters A, (for ungapped alignments with the background distribution) and A/, (for un-
gapped alignments with the specific compositions of the query and database sequences, solving analytically
Equation (3)), to derive the factor r = X, /A,,. The parameter A, (for gapped alignments with the back-
ground distribution) is then multiplied by r to derive A} that is used to estimate the significance of the
similarity score. To save time, the new e-values are computed only for matches that pass the threshold in
the first iteration.

Query:

>swissprot: (P40273) Histone H1.M6.1.
MSDAAVPPKKASPKKAAAKKASPKKSAARKTAAKKTAKKPAVRKPAAKKRAAPKKKPAAA
KKPAAKKAPKKAVKKAPKKK

Top match (composition-based statistics):

>trembl: (Q9RUO1) Glucose-6-phosphate 1-dehydrogenase (EC 1.1.1.49) (G6PD).
Length = 590

Score = 39.7 bits (91), Expect = 0.008
Identities = 31/74 (41%), Positives = 41/74 (54%,), Gaps = 3/74 (4%)

Query: 8 PKKASPKKAAAKKASPKKSAARKTAAKKTAKKPAVRKPAAKKRAAPKKKPAAAKKPAAK- 66
PKK+SPKK+ +KA K+SAA+ AAK T + +AK A PA ++K A K
Sbjct: 7 PKKSSPKKSGPEKALAKESAAQGEAAKATRQATQQTEAAKKVGVAQPGAPAQSRKAARKS 66

Query: 67 --KAPKKAVKKAPK 78
+ PK A APK
Sbjct: 67 RQRVPKHAGDNAPK 80

Figure 1: Effect of SEG and composition-based statistics on a BLAST search. We compared the following SwissProt
entry (P40273 Histone H1) against a large non-redundant sequence database that contains more than 900,000 sequence entries
(including the query sequence). When composition-based statistics was disabled, about 450 matches were detected with evalue
< 0.001 of which more than half were Histons or Histon-like proteins. We repeated the search with the SEG flag on, and the
search reported 0 matches. When the composition-based statistics was enabled, no matches were detected with evalue < 0.001
and only 2 were detected with evalue < 0.1 (the top scoring match is displayed above). The query sequence was missing from
the list and only one Histon was reported (with evalue 1.4).



While being quite effective in eliminating spurious meaningless hits, this method can also affect the
sensitivity of the algorithm, and in many cases significant matches are eliminated. Moreover, it can create
situations in which the query sequence is no longer the most significant match or it is eliminated altogether
from the match list (see Figure 1). This behavior is due to the fact that the re-scaling method essentially
uses different parameters for each pair, resulting in a nonmonotonic transformation. In other words, different
scales are used to estimate the significance of the different matches. Since the probability to observe a type
(a specific distribution of amino acids) is the highest according to a source with that type, the significance of
the query sequence is deprecated (as the probability to obtain this sequence by chance is highest according to
that type). This problem is especially pronounced when the iterative PSI-BLAST algorithm is used (where
the query sequence might be eliminated from the list after a few iterations). This counter-intuitive behavior
poses a serious problem in large scale analysis of the protein universe.

3 Methods

Here we present a new approach for computing the significance of alignments in the presence of low-
complexity sequences, through post-normalization. Our method does not change the alignment. Rather,
it re-evaluates its significance based on the alignment structure. I.e., the method re-estimates the probability
that a specific match between two proteins can occur by chance, given their alignment.

This approach requires prealigned protein sequences from BLAST (without the application of filters or
composition-based statistics). Our algorithm starts by evaluating whether the alignment is composed mostly
of low-complexity segments and whether the sequences have diverged from their common source to the extent
that their alignment is deemed suspicious. To this end we use information theoretic measures as described
in Section 3.1. If the alignment is marked “suspicious” we invoke our post-normalization procedure.

The post-normalization procedure works in two steps. First, we apply the factor method. This method
eliminates almost all alignments that are due to low-complexity sequences and are biologically insignificant
(Section 3.2.1). Next, we apply the segment-profile method in an attempt to rescue matches that are
based on low-complexity segments and were eliminated by our factor method, but are still biologically
meaningful. The overall procedure can be summarized as follows:

e For each BLAST alignment with evalue < T', determine whether the alignment is suspicious. If it is

— Apply the factor method to compute a new e-value evalue ¢4cior
— Based on the segment profile, compute evaluep,,tiie
— Let the final e-value to be the minimum over {evaluesqctor, evaluep, o fie }-

The threshold T is set to 0.1 in our experiments. We now turn to describe each element in detail.

3.1 Detection of suspicious alignments
3.1.1 Fast detection of low-complexity segments

BLAST e-values are quite reliable if the aligned sequences are of high complexity. Therefore, there is no
need to automatically correct the statistical estimates even if the sequences compared have low-complexity
segments. Only if the aligned subsequences are of low-complexity then a correction should be introduced.
We start by deciding if an aligned segment is of low complexity. If it is, the alignment is deemed suspicious,
and we invoke our post normalization method.

To decide if the sequences are of low-complexity one can use SEG [Wootton & Federhen 1993]. While
SEG is quite effective in determining low-complexity segments, it is sensitive to the choice of parameters. SEG
uses four parameters, including the window size and the low (trigger) complexity. However, if the average
entropy does not fall below the threshold value, the filter is not triggered and the segment is considered of
high-complexity. Two such examples are given in Figure 2.

Here we propose a different method for detecting low-complexity segments. Given a (sub)sequence a,
our method first computes the composition of a to generate the distribution P, of amino acid in a. We then
compute the Jensen-Shannon (JS) divergence [Lin 1991] between P, and Py, the background distribution of
amino acids. If this divergence (distance) exceeds a certain threshold, Dy, then we say that the sequence is



>gb: (AF007575) ES/130-related protein [Homo sapiens]
VPMVVVPPVGAKGNTPATGTTQGKKAEGTQNQSKKAEGAPNQGRKAEGTPNQGKKTEGTP
NQGKKAEGTPNQGKKAEGTPNQGKKAEGAQNQGKKVDTTPNQGKKVEGAPTQGRKAEGAQ
NQAKKVEGAQNQGKKAEGAQNQGKKAEGAQNQGKKAEGAQNQGKKAEGGQNQGKKTEEAQ
KQGKKAEGAQIQGKKNEGAQTQGKKAEGAQNQGKKNEGAQTQGKKAEGAQTQGKKADGAQ
NQGKKAEGAQNQGKKAEGAQNQGKKAEGAQNQGKKADGAQNQGKKAEGAQNQGKKAEGAQ
NQGTKAEGAQNQGKKAEGAQNQGKKAEGAQNQGKKAEGAQNQGKKAEGAQNQGKKAEGAQ
NQGKKAEGAQNQGKKAEGAQNQGKKAEGAQNQGKKAEGAQNQGKKAEGAQNQGKKAEGAQ
NQGKKVEGAQNQGKKAEGAQNQGKKAEGAQNQGKKAEGAQNQGQKGEGAQNQGKKTEGAQ
GKKAERSPNQGKKGEGAPIQGKKADSVANQGTKVEGITNQGKKAEGSPSEGKKAEGSPNQ
GKKADAAANQGKKTESASVQ

>gb: AF247172\_1 (AF247172) RP4-alkaline phosphatase hybrid protein
PVTKARTPEMPLQSKTSTNNFGGMMPGGDESTKISKTSTNNFGGMMPGGDESTKISKTST
NNFGGMMPGGDESTKISKTSTNNFGGMMPGGDESTKISKTSTNNFGGMMPGGDESTKISK
TSTNNFGGMMPGGDESTKISKTSTNNFGGMMPGGDESTKISKTSTNNFGGMMPGGDESTK
ISKTSTNNFGGMMPGGDESTKISKTSTNNFGGMMPGGDESTKISKTSTNNFGGMMPGGDE
STKISKTSLEVLENR

Figure 2: Low complexity sequences that are missed by SEG. The entropy of the first is 3.06 while the entropy of the
background distribution is 4.2. The entropy of the second is 3.47. When running SEG with the default options the sequences
are left intact.

of low-complexity. Formally, given two (empirical) probability distributions p and q, their a-JS divergence
is defined as
D;%Iplla) = aD*[p|lr] + (1 — a) D [qlr],

where DEL[p||q] = ¥, p; log, 2 is the Kullback-Leibler (KL) divergence [Kullback 1959] and r = ap +
(1 — a)q can be interpreted as the most likely common source distribution of both distributions p and q
[El-Yaniv et al. 1997]. The parameter « is the prior weight (0 < a < 1), set here to 1/2. This measure is
symmetric and bounded (unlike the KL divergence) and ranges between 0 and 1. It has been shown recently
that +/DJS[]|-] is a metric [Fuglede & Topse 2004].

To set the threshold D; we computed the JS-distances of low complexity and of high-complexity segments
(as assigned by SEG) from the background distribution. A total of more than 1,200,000 low-complexity
segments and 2,100,000 high-complexity segments were analyzed. The distributions of distances are shown
in Figure 3. Note that the distributions are well separated and suggest a natural threshold of about 0.3.
However, since the segments were defined by SEG and since SEG may miss some low-complexity segments
we also considered other thresholds in our experiments.

Distribution of JS distances

01 high complexity ——
0.09 | low complexity - 1
0.08
0.07
0.06
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0.03 |
0.02
0.01

O L L \ L L 1 1
0O 01 02 03 04 05 06 07

JS distance

Frequency

08 09 1

Figure 3: Distribution of Jensen-Shannon (JS) distances for low-complexity and high-complexity segments



The proposed method allows for fast detection of low-complexity segments. Given an alignment, we
compute the distribution of amino acids in the alignment, for both the query and the database sequence,
and their JS-distances from the background distribution. If the distance (of one or both) is above the
threshold, we trigger the correction using our post-normalization method described in Section 3.2.

3.1.2 Divergence from the common source

Even if the segments compared are of low-complexity, the alignment might still be a biologically meaningful
alignment. We apply a second filter to determine if an alignment is suspicious or not. For each alignment we
collect the set of identities and similar amino acids. These are the anchor residues of the alignment. The
distribution of anchor residues can be considered as the distribution of the common source of the sequences
compared. If the JS-distance between the query sequence and the library sequence (using the distribution
of anchor residues as the the common source) is small, then we can infer that the two sequences are likely
to emerge from the same common ancestor. The common source induces a probability distribution on all
possible types over the 20 amino acids. If the type is not preserved in the compared sequences and the
distance from the common source exceeds a threshold Do, then it is postulated that the similarity is either
a chance similarity or a similarity that is due to low-complexity sequences.

When deriving the distribution of the common source from the anchor residues, each identity of amino
acid a adds one to the counts of a, while similarity between a and b adds 0.5 to the counts of a and b each.
For example, the common source of the following alignment is estimated from the anchor residues M, L and
V' with counts 1, 1.5 and 0.5 respectively.

Query — M K L L
M + L
Subject — M Y V L A

T

Due to under-sampling, the empirical distributions might assign zero probability to some amino acids (as
in the example above). To circumvent that, we augment the real counts with pseudo-counts, following the
method that was introduced in [Henikoff & Henikoff 1996] and the final probabilities are adjusted accordingly.

3.2 Correcting e-values by post-normalization

Given a suspicious alignment our post-normalization procedure starts by applying the factor method. This
method re-computes the probability that a given alignment was generated by chance, based on the alignment
structure, as defined in Section 3.2.1. To determine if a match (that is based on low-complexity segments)
was unjustifiably eliminated we apply a second procedure as described in Section 3.3.

3.2.1 The factor method

Consider a hypothetical alignment between a query sequence and a subject (database) sequence, such as the
short alignment displayed above. We divide the matching sequence between the two aligned sequences (the
middle line) into four match-types: exact, similar (conservative substitution), neutral (neutral substitution)
and dissimilar (mismatch). The definitions of the match-types rely on the BLOSUMG62 scoring matrix
[Henikoff & Henikoff 1992]. Let s(z,y) be the BLOSUMG62 similarity score of amino acids z and y. Then,
the match-type is defined as

e Exactifz =y (denoted by =)
e Similar if x # y and s(z,y) >0 (denoted by +)
e Neutral if x # y and s(z,y) =0 (denoted by x*)

e Dissimilar if z # y and s(z,y) <0 (denoted by —)



For example, Leucine (L) and Valine (V) are assigned positive similarity score according to BLOSUM62 and
are generally considered similar biochemically. Under that representation, the alignment above is expressed

as follows:
Query — M K L L T

:—+:>{<
Subject — M Y V L A

We denote the match-type by m (where m € {=,+, —, *}). A match is simply the pair (x, m) where x is the
amino acid (in the query sequence), and m is the match-type (with the amino acid of the database sequence
at that position). For example, the second match in the alignment displayed above is the pair (K, —). The
set of matches in a given alignment A is referred to as the alignment structure. lLe.,

STRUCT(A) = {(z1,m1), (x2,m2),..., (xn, my)}

where n is the length of the alignment (ignoring gaps). Note that here we ignore the order of matches
(extensions of this model account also for the order, see subsequent sections). Finally, we define the binary
relation R between amino acids z, y, such that R(x,y) = m, where m is determined based on the BLOSUM62
similarity score s(z,y). The equivalence set S, ., is the set of all amino acids y such that R(z,y) = m.

The BLAST e-value is computed assuming that the sequence is drawn from a fixed background distri-
bution. Our assumption is that the actual distribution of amino acids in the database (subject) sequence
affects the likelihood of observing a given alignment. If the alignment is more likely to happen by chance
when the subject distribution is used, then the e-value should be increased, as the similarity is less significant
than reported. Similarly, if the alignment is less likely to happen by chance when considering the subject
distribution, then the e-value should be reduced, as the similarity is more significant than reported (although
that hardly ever happens).

To compute the likelihood of a specific alignment A, given a distribution Q of amino acids, we assume
that the amino acids are sampled at random with replacements from that distribution and compute the
probability (as induced by Q) to observe the exact, similar, neutral and dissimilar matches in the alignment
(gaps are ignored). Le., if a position 7 in the alignment is of match-type m and the query residue at that
position is a, then

Prob(Ai|Q) = Prob(Sam|Q = Y Q)

b s.t. R(a,b)=m

where R is the binary relation defined above. For example, Prob(S, +|Q) is the probability (according to
Q) to generate an amino acid that is similar to a. Assuming independence, the probability of the entire
alignment structure is simply the product of the probabilities of all the positions along the alignment

Prob(A|Q) £ Prob(STRUCT(A)|Q) = HProb(Ai|Q).

In the example above, with Q being the subject distribution of MMY VLA,

Prob(A|Q) Prob(Sy,=|Q)Prob(Sk,—|Q)Prob(Sy, +|Q)Prob(Sy, =|Q)Prob(Srt,«|Q)

= 1/5x4/5x2/5x1/5x1/5=256-10"".

The proposed correction factor F', for the BLAST pvalue, is defined as the likelihood ratio

_ Prob(AlQ)
~ Prob(A|Py)’

where Prob(A|Q) is the probability of forming the alignment (the matching sequence) using the context of
the subject sequence (the database sequence), and Prob(A|Pp) is defined as the probability of forming the
matching sequence as induced by the background amino acid distribution. The final evaluefyctor is defined
as evalueyqs¢ X F' where evaluey, s is the original e-value reported by BLAST. If the factor is larger than one,



i.e., the probability to observe the alignment by chance is larger when considering the subject distribution,
then the correction factor will increase the e-value (reduce significant) as expected. In the example above,
Prob(A|Q) = 2.56 - 1073 while

Prob(A|Py) = Prob(Sw,=|Po)Prob(Sk,—|Po)Prob(St,+|Po)Prob(St,=|Po)Prob(St,«|Po)
=3.9310"°.

Therefore, the correction factor is F' = 65.17. For long alignments of low-complexity sequences this factor
can be many magnitudes of order larger.

Note that this correction preserves the general notion of the BLAST p-value (and e-value), while ac-
counting also for the alignment structure. The BLAST p-value is a measure of how likely it is to observe an
alignment with a given similarity score when comparing random sequences (with amino acid compositions
that are similar to the background distribution of amino acids Pp). The likelihood ratio F' tells us how much
more likely it is to observe the alignment by chance (now based on its structure) when the actual distribution
of amino acids is used. In other words, we suggest to use a new p-value measure that considers both the
score of the alignment SCORFE(A) and its structure STRUCT(A)

Prob(SCORE(A)|Q)
Prob(SCORE(A)|Py)
Prob(STRUCT(A)|Q)
Prob(STRUCT(A)|Po)
= Prob(SCORE(A)|Py) x F, (6)

Prob(SCORE(A)|Q) = Prob(SCORE(A)|Py)

R

Prob(SCORE(A)|P)

with the approximation

Prob(STRUCT(A)|Q) _ Prob(SCORE(A)|Q)
Prob(STRUCT(A)[Py)  Prob(SCORE(A)|Py)’

Note that this approach somewhat resembles the re-scaling technique that underlies the composition based
statistics method, but it is derived from different principles, and it does not modify the statistical parameters.

A concrete example is provided in Figure 4. This is the alignment reported by BLAST between TrEMBL
AAL60315 and TrEMBL Q23853. This alignment does not seem to have any biological significance, as it
is based almost purely on the repetitive amino acids T and P. BLAST assigns an evalue of 2.0e-05 to this
alignment. The factor method assigns an evalue 4.3e+19. While overly high (due to the sampling without
replacements) it eliminates the similarity from the list of significant matches, as desired.

Query: 6  TPAKTLEKETTTNPTKKPTPKTTERGTSTSQSTVLDTTISKHTIQQQSLYSTTPENTPNS 65
TP +T + T PT+ PTP TE TT T T T + TP TP
Sbjct: 641 TPTETPTETPTETPTETPTPTPTETPTETPTETTTPTPTETPTETPTETPTETPTETPTE 700

Query: 66 TQTPAASEPSTSNST 80
T+TP +E T T
Sbjct: 701 TETPTPTETPTPTET 715

Figure 4: An alignment between two low-complexity sequences. We compared TrEMBL AAL60315 (Attachment
glycoprotein G) with TrEMBL Q23853 (HYPOTHETICAL 98.7 kDa PROTEIN). BLAST assigns an evalue of 2.0e-05 to this
alignment while the factor method assigns an evalue of 4.3e+19.

3.2.2 Finite vs. infinite sources

The underlying assumption of the factor method, that the source is infinite, is clearly unrealistic (note that
the same assumption is employed in the statistical estimates of BLAST). However, changing the setup such
that sampling is done without replacements (finite sample) introduces other problems; specifically, one has to



update Q and recompute Prob(Sq..|Q) after every drawing, which slows down the computation. Moreover,
edge effects lead to other undesirable properties. The assumption that the source is fixed (infinite source) is
reasonable in practice since the same assumption is applied to both terms that make up the factor F'; based
on the source distribution Prob(A|Q) and the background distribution Prob(A|Pp). Only if the probabilities
are different we will observe different values for Prob(A) and a factor that is # 1.

3.3 Rescuing significant matches

Although most matches between low complexity sequences are chance similarities, once in a while a significant
similarity might come along. The correction we introduce eliminates false matches due to low-complexity
segments. However, since it uses only first order statistics, while ignoring the order of amino acids, it might
also eliminate these significant matches. Since the sequences are repetitive, the positions are not i.i.d. and
the estimates might result in extremely high factors (recall that these similarities will be completely missed
with tools like SEG, since the sequences are filtered out).

Our goal is to introduce a fast correction that will “rescue” these significant matches. The main obser-
vation is that true matches (as opposed to chance similarities) of low complexity segments are composed of
relatively long continuous subalignments of identical or similar matches. Therefore, if we can characterize the
distribution of segments of identical and similar matches in an alignment, we can re-estimate the significance
of the alignment.

We are interested in the probability to observe this alignment by chance. Theoretical results on the
statistics of local sequence alignment scores fail to provide accurate estimates for low-complexity sequences.
Therefore, once again we focus on the alignment structure as characterized by the collection of similar and
identical segments that make up the core of the alignment. To approximate the probability to observe a
given alignment by chance we use the segment-profile model, described next (two other approaches that are
based on different models are described in Appendix A). The parameters of the models are estimated from
a large collection of insignificant alignments®. In the experiments described below, more than 18,000,000
alignments were collected and analyzed. Each of these alignments has evalue > 1 and therefore, is most
likely to reflect chance similarity. We refer to this set as the training set.

3.3.1 The segment-profile model

This model characterizes the alignment structure through its set of similar segments. Our approach resembles
the approach that was introduced in [Karlin & Altschul 1993] to assess the significance of a match that is
composed of several ungapped alignments. However, unlike their approach that characterizes a match by the
set of scores of the ungapped alignments, the segment-profile approach focuses on the lengths of the similar
segments that make up the alignment. Formally, we are given an alignment A of length L (excluding gaps).
A similar segment is defined as a continuous sequence of only positive matches (conservative substitutions
including identities). Each segment is maximal in the sense that it cannot be extended to the left or the
right, or it won’t be a similar segment. We define a k-segment to be a similar segment of length k, and
denote by my the number of k-segments that are observed in a given alignment. The segment-profile of an
alignment is defined as the set {mq,ma,ms,...}. The same approach can be applied with identical segments
(where only identities are considered) instead of similar segments.

Let N be the total number of residues in the training set and nj the total number of observed k-segments.
The maximal number of non-concatenated segments of length k is given by n = (N +1)/(k + 1), where the
1 is added to force separators. We approximate the probability that a segment of length £ is a k-segment
by ng/n.

Given an alignment A of length L, the maximal possible number of k-segments is denoted by nyr =
(L+1)/(k+ 1), and we can use the binomial distribution with parameter p; = nji/n to estimate the
probability to observe exactly m k-segments,

Probg(m) = (”:j) P (1= p)™ke ™,

2These are not random alignments; the alignments are optimized, to maximize the similarity score between the aligned
sequences.
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Given an alignment with my k-segments, the pvalue of the alignment just based on my is
pvalue(my) = Probg(m > my,) = Z Proby(m).

Given the complete segment profile of the alignment {m1, ma, ms, ...}, the total pvalue is approximated by

pvalue(A) = H pvalue(my).
k

Finally, the evalue is obtained by applying the Bonferonni correction, evaluey,ofie = pvalue - N, where N is
the number of sequences in the database searched. Although simplistic, this approach successfully rescues
many biologically significant matches (see next sections).

The parameters {py} are estimated from the training set. To estimate the parameter p; for arbitrarily
large k we extrapolate the py for k > 20 as in Figure 5. This function can be modeled with the exponential

distribution of the form f(z) = a - exp(—az) with a ~ 1.

0.35 I ‘
empiricall ——
exponential fit -
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Figure 5: The characteristic parameter of the binomial distribution. For each k this is the probability that a random
segment of length k is a k-segment (similar segment of length k).

3.4 Comparison of correction methods

The final e-value returned by our post-normalization procedure is defined as the minimum over two different
estimates, evaluefqcior and evaluepyorire. In addition we tested two other methods (called the similarity-
profile and the longest match), as described in Appendix A. It is interesting to compare the contribution of
each method. We used a data set of 10,000 queries (see Section 4.2.2), and for each method we computed
the number of similarities that were assigned the minimal e-value with that method, conditioned that evalue
< 0.1 (after correction). The results are shown in Table 2.

Method Number of alignments Percentage of all alignments
Factor method 5756314 78.4%

Segment profile (similarity) 1314393 17.8%

Segment profile (identity) 57583 0.8%

Similarity profile 6576 0.1%

Identity profile 7332 0.1%

Longest similar match 145678 2%

Longest identical match 53785 0.7%

Table 2: Relative contribution of correction methods. For each method we report the number of alignments that were
assigned the minimal e-value with that method. All alignments considered were assigned an evalue < 0.1 after correction.

As the table indicates, the most effective method is the factor method. The segment-profile method is
second with about 18.6% of all alignments (when using either the segment-profile or the identity profile). Each
method detects a different subset of significant alignments, and by combining the results of all procedures
we can rescue a larger set of significant and biologically meaningful alignments. Practically, it is sufficient to
use the factor method and the segment-profile method that account together for about 97% of all alignments

reported.
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4 Results and performance evaluation

The hardest part of this study proved to be the evaluation. While obtaining a set of low-complexity queries
is easy, verifying the search results and assessing their quality was a much more difficult task. To find
the most effective method, one has to evaluate the accuracy and sensitivity of each method in detecting
significant and meaningful matches. While the definition of ‘significance’ is method-dependent and sub-
jected to the exact computational procedure, the definition of 'meaningful’ should be objective and should
hold regardless of the method used. In general, there are many databases of domain and protein families
that one can use to evaluate sequence-based search methods, such as Prints [Attwood et al. 1999], Pfam
[Bateman et al. 1999], ProDom [Corpet et al. 1999], and others. However, these databases ignore, for the
most part, low-complexity sequences (for example, Pfam uses SEG to exclude low-complexity segments).
Moreover, almost all existing databases focus on domains rather than on complete protein sequences, thus
further complicating the assessment.

As the standard of truth and our reference classification we chose the GO database [Ashburner et al. 2000].
The goal of our tests is to find out whether a suggested method succeeds in assigning lower e-values to the
library sequences that are truly related to the query sequence. This is done by checking whether the li-
brary sequences share mutual GO-terms with the query sequence as is explained in the next section. It
should be noted that while the GO database is an excellent source of biological knowledge (that was man-
ually curated for the most part), it is not ideal for performance evaluation. Usually the GO database is
used to check if a group of objects is enriched with similar GO terms, more than is expected by chance
[Wren & Garner 2004, Cora et al. 2004]. However, performance evaluation in our case requires much more
accurate measures. We describe our methodology in the next sections.

4.1 Evaluating biological relatedness using the GO database

Roughly speaking, a GO-term represents some mutual property of all proteins sharing it. GO terms are
organized in an a-cyclic graph, in which all paths begin at the same root node, and end in one of the graph’s
leaves or inner nodes. A node’s parent represents a property that is more general than the node’s property.
We define the level or the depth of a node as the shortest distance from the root node. The amount of
knowledge available on a protein will determine the depth of its GO-terms; this implies that proteins that
were more closely researched, are likely to be assigned to a lower GO-term in the graph. Unlike a tree form
of a graph, it is possible to have more than one path leading from the root to a node; this implies that inner
or leaf nodes may have more than one parent. Also, a protein may be assigned more than one GO-term,
each one on a different branch of the graph (the different branches represent different groups of properties).
At the top of the hierarchy, there is a single root node (’Gene Ountology’). This node branches into three
main categories: 'biological process’, ’cellular component’ and 'molecular function’. Each one of these second
degree terms denote a major class of GO terms. Since we are interested in functional similarity we restrict
our analysis to GO terms that are child terms (directly or indirectly) of 'molecular function’.

4.1.1 The common level

By definition, each pair of proteins must share some mutual ancestor; if the two proteins are not biologically
related in any way, they will probably share the root GO-term, or one of the second degree GO-terms
('biological process’, 'cellular component’ and 'molecular function’). The common level of two proteins is
defined as the level of their deepest common GO-term. To compute the common level of two proteins we
first compile the complete list of GO terms associated with each one them, starting from the leaf nodes,
and adding to the list all the parent nodes. These two lists are then compared to find the deepest common
GO-term.

Our initial set of tests was based on the common level. Our assumption was that the deeper the shared
GO-term, the more biologically significant the result is. However, while the common level is a good indicator
of a valid relationship, it does not perfectly correlate with functional similarity. Indeed, it has been shown in
[Lord et al. 2003] that different GO terms at the same level are not equally significant. For example, 160636
proteins in our data set (see Section 4.2) can be associated with the GO term ’binding’ at level 3, while only
6 are associated with ’chaperone regulator activity’ at the same level. In other words, the common level does
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not necessarily designate the level of the functional similarity and does not translate well to a structured
hierarchy.

4.1.2 The semantic similarity

To account for the variability in the size of GO families we adopt an approach related to the one described in
[Lord et al. 2003] that attempts to quantify the semantic similarity based on the least frequent common
GO term. Here we associate a significance measure with each GO term, that is the probability that two
protein selected at random will be associated with that GO term. Given a GO term g we first count how
many proteins are associated with it (or any of its children), denoted by N.4. The probability is then given
by
Neg(Neg — 1)

NN -1)
where N is the total number of proteins that are associated with GO terms. The GO significance of the
semantic similarity of two proteins sharing a GO term g is defined as p4. If two proteins share more than
one GO term, then the significance of their semantic similarity is defined as the least probability over all
common GO terms 3.

We exclude GO terms whose probability to occur at random is more than 0.05 (21 GO terms, each one
associated with 30,000 proteins or more) and GO terms that occur only once (572 GO terms). We also
eliminate the GO term ’molecular function unknown‘ that is associated with 11675 proteins. All together,
3425 GO terms are considered, ranging in size from 2 to 29424 proteins (for GO term 'monovalent inorganic
cation transporter activity’).

Finally, for each protein we compile a list of semantically similar proteins (based on GO annotations),
and order the list based on the significance of the common GO term. The list can be analyzed at different
significance thresholds. This parameter is tuned in section 4.2.2.

Pbg =

4.1.3 Matching sequence space and semantic space

While the semantic similarity is a better measure of functional similarity than the common level, it still does
not make the GO data suitable for evaluation. GO data is partial, and since it is derived from multiple
sources, it is not necessarily coherent. Consequently, in many cases proteins that are very similar based
on sequence are not necessarily associated with the same set of GO terms. This can pose a big problem
when evaluating the validity of the results, as true relationships can be wrongly labeled as false relations.
The problem is especially pronounced when the query protein is semantically similar to only a few proteins
according to GO (the relevant semantic space), but is similar (based on sequence) to many proteins
(relevant sequence space) most of which are associated with other, unrelated GO terms. A similar
mismatch problem occurs when the relevant sequence space is very small, but the relevant semantic space is
very large. In an attempt to minimize false assignments and produce an effective set of queries for evaluation,
we processed the queries to maximize the correlation between their semantic space and their sequence space.
We define a viable query as a query for which the relevant semantic space is not more than double the
size of the relevant sequence space (according to BLAST) and is not less than half the size of the sequence
space. This criterion can be applied at different GO significance levels. Each significance level defines a
different relevant semantic space. Naturally, the size of the semantic space decreases, as the significance level
increases.

4.2 Data sets
4.2.1 Database

We use a composite non-redundant (NR) database that contains about 933,000 sequence entries compiled
from multiple sources such as SwissProt, PIR, Genbank and others (the database is available at biozon.org).

31t should be noted that this approach is not perfect either, as a larger set of proteins that is associated with a specific GO
term does not necessarily mean a less significant functional similarity, but can be merely a consequence of a statistical bias that
is often observed as some protein families are more studied than others. However, it is a reasonable compromise, considering
other existing approaches.
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GO terms were collected from multiple sources, downloaded from the GO consortium website. Out of the
933,000 proteins in our data set, 493,260 can be associated with GO terms. In this study we focus only on
the subset of GO terms that describe molecular function. A total of 431,753 proteins are associated with
GO terms that belong to that category.

4.2.2 Queries

An initial random set of 10,000 low-complexity queries was selected from the NR database. The selection
criterion was that at least 15 sequence residues were filtered when using SEG (assuming that a smaller
low-complexity segment will have only a minor effect on the e-value). Many of these sequences might still be
robust to the existence of low-complexity segments, therefore the set was reduced to a set of 3,461 queries
for which a significant drop (at least 50%) in the number of matches was observed when the sequence was
filtered with SEG. Of these, 2,115 can be associated with GO terms that describe molecular function. As
discussed in Section 4.1.3, the relevant semantic space of a query does not necessarily match its relevant
sequence space. For each GO significance level we identified the set of viable queries (see Section 4.1.3). The
procedure was repeated for significance levels 0.005, 0.001, 0.0001, 0.00001, 0.000001 and 0.0000001. The
maximal number of viable queries was obtained at a level of 0.00001 with 264 queries, and therefore this
significance level was selected as the default level for subsequent analysis?. Finally, the 264 queries are
divided randomly into a training set and a test set, each with 132 queries.

4.3 Parameter optimization

Our method uses two parameters, D;, the maximal distance from the background distribution above which a
segment is deemed a low-complexity segment (Section 3.1.1) and D, the maximal distance from the common
source, above which an alignment is considered suspicious (Section 3.1.2). If an alignment fails to pass these
two filters then the post-normalization method is triggered.

To select the best set of parameters we ran our procedure on the training set with different values for D1
and Dsy. A total of 28 sets of parameters were tested, with D; ranging from 0 to 0.3 and D> ranging from 0
to 0.1. Each set of results was evaluated using the two performance measures described in Section 4.5. With
both measures, the best set is D1 = 0.05 and Dy = 0.05 (Figure 6).

overlap
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Figure 6: Parameter optimization. A total of 28 sets were tested and evaluated using the harmonic average (left) and the
overlap measure (right). See text for details

4The right significance level can vary from one query to another, but to simplify the analysis we focused on one level of
significance at a time.
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4.4 Results

We compared the performance of our method to the performance of three other methods: BLAST, BLAST
with SEG and the latest version of BLAST that uses composition-based statistics. Each one of the queries in
the test set was compared against the NR database using BLAST, and the results were re-evaluated using our
post-normalization method with (POST+T) and without (POST) applying the filters described in Section
3.1. We also ran BLAST with the SEG filter on (SEG) and with composition based statistics (COMP). For
each method the match list was pruned such that only matches with evalue < 0.1 were retained. The results
of these five procedures (BLAST,SEG,COMP,POST and POST+T) were then evaluated using the metrics
described below.

4.4.1 Accuracy

To evaluate the accuracy of each method we computed for each query the number of significant matches
that also share common GO terms with the query sequence (denoted by N.). The accuracy is defined as
that number divided by Ny, the number of significant matches that are associated with any GO term

accuracy = N¢/N,.

We repeated this procedure for each method and averaged the results over the set of 132 queries in our test
set. The results of this procedure are given in Figure 7. As the graph indicates, all methods perform much
better than the original BLAST program. As these methods filter many of the chance similarities, clearly
their accuracy increases. In general, the more conservative a method is, the more accurate the results are
expected to be. Indeed, the results are consistent with that postulation and we note that SEG (that simply
removes most of the low-complexity segments) is more accurate than COMP. Our post-normalization (POST)
has high accuracy; however, when thresholds are used (POST+T), then the method is triggered only when
the distances from the common source or the background distribution exceed the threshold. Consequently,
the accuracy decreases.

06

05 ]

04 -

accuracy

02 -

01 r BLAST [POST COMP [SEG POST+T

Figure 7: Accuracy of significant sequence matches.

4.4.2 Sensitivity

While the accuracy plot indicates the quality of the results, they might be misleading. As the number of hits
reported decreases, the quality is expected to increase, especially if only very significant hits are reported.
However, this can also affect substantially the sensitivity, as many meaningful hits might be missed as well.
It is the balance between the two that determines the effectiveness of a method.

To measure the sensitivity of each method we run a procedure similar to the one described above. For
each query we computed the number of significant matches that also share common GO terms with the
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query sequence (N.) and divide it by the total number of database sequences that share common GO terms
with the query (Ng)

C

sensitivity =
cg
That number is averaged over all queries. The results for all five methods are given in Figure 8. As
the graph indicates, the trend is now reversed and all methods perform worse than the original BLAST
program. Surprisingly, SEG performs quite well while being also the most accurate (Figure 7). Of all
correction methods, the threshold-triggered post-normalization method (POST+T) performs the best.
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Figure 8: Sensitivity of methods compared

4.5 Measures of overall performance

Both the accuracy and the sensitivity are incomplete measures of performance. In the ideal situation we
would like to maximize both, however usually there is a tradeoff between the two and one would like to
balance them somehow. There is no single measure that is widely accepted as the “right” measure. We
report the results for three popular measures that account for both; the harmonic average, the overlap and
the ROC measure.

4.5.1 The harmonic average

A common measure of performance is the harmonic average of the accuracy ('precision’) and sensitivity
(’recall’), defined as

accuracy * sensitivity

f=2x%

accuracy + sensitivity

This measure is often used in information retrieval to estimate the ’break-even point’ between the recall
and precision thus giving an estimate of the “best possible” compromise between these two measures
[Shaw et al. 1997]. The results over the test set are shown in Figure 9(a). As the graph indicates, the
best performance is obtained with the POST+T method. A close second is SEG. BLAST comes last, as
expected.

4.5.2 The overlap measure

Ideally, one would like to maximize the number of truly related sequences that are detected (true positives),
while minimizing the number of true sequences missed (false negatives) as well as the number of unrelated
sequences that are reported (false positives). One measure that combines all these elements is the overlap
measure. Formally, if A is the group of truly related sequences (based on GO annotations) and B is the
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Figure 9: Measures of overall performance. (a) harmonic average (b) overlap.

set of sequences that are reported as significantly similar (and are associated with any GO term), then the
overlap is defined as
|AN B|

Overlap = A0 B|

The results are shown in Figure 9(b), and are in good agreement with the previous results (using the harmonic
average).

4.5.3 The ROC measure

Our last and most important performance evaluation is ROC analysis [Hanley & McNeil 1982]. The ROC
measure is the area under the curve that plots the number of positives detected vs. the number of negatives,
in a sorted list of results. If in the sorted list the separation between the two populations is perfect then
the area under the curve is maximized, and is minimized in the reverse situation. The larger the area under
the curve, the better the method. To generate the ROC curve for each method, we pool together the results
for all queries in the test set, and order them based on their e-value. Next we determine for each match
if it is a true positive or a false positive based on the common GO terms (considering only terms that are
more significant than the default GO significance level, as described in Section 4.2.2). The results are shown
in Figure 10. All methods perform better than the original BLAST, but the differences between SEG and
COMP are marginal. The best performance is obtained with POST+T.
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Figure 10: ROC curves

17



4.6 Examples

Of the 3,461 queries in our data set, SEG returns zero matches for 44 queries, and COMP returns zero
matches for 19. When using the POST+T method, none of the queries end up with zero matches. In this
section we give a few concrete examples of alignments between low-complexity sequences. The first example
is SwissProt query P02734 (antifreeze peptide 4 precursor). This protein has a very high content of Alanine
(A). When searched against our NR database, BLAST reports 1691 unique matches (multiple matches with
the same library sequence are counted as one) with evalue < 0.1 most of which are purely due to repetitive
Alanines. SEG eliminates all matches. COMP reports only one match, with evalue of 0.002 (the similarity of
the query with itself is eliminated as well). POST+T keeps 218 of the original matches reported by BLAST
(one example is given in Figure 11), with many of the top matches being other antifreeze proteins.

Query: 1 MRITEANPDPDAKAVPAAAAPSTASDAAAAAAATAATAAAAAAATAATAAAAAAATAATA 60
+RITEANPDP AKA PAA A A+ AAAA A TA+ AAAAAAATAA AA AAA TAA A
Sbjct: 18 LRITEANPDPAAKAAPAAVADPAAA-AAAAVADTASDAAAAAAATAAAAAKAAADTAAAA 76

Query: 61 AKAAALTAANAAAAAAATA 79
AKAAA TAA AA AAAATA
Sbjct: 77 AKAAADTAAAAAEAAAATA 95

Figure 11: Alignment of SwissProt P02734 and P09031.

The second example is the alignment of T'TEMBL 060828 (polyglutamine binding protein) with TrEMBL
Q94LP1 (putative Ul small nuclear ribonucleoprotein). The alignment is displayed in Figure 12. BLAST
assigns evalue of 5e-11 to this alignment. Both proteins are marked as suspicious (JS-divergence from the
background distribution exceeds the threshold, with values of 0.120 and 0.223 for the query and the library
sequence), and the JS-divergence from the common source is relatively high (0.088). Consequently, the
post-normalization method is triggered. The factor method assigns an evalue of 2.5e+18. However, the
segment-profile model assigns a still significant evalue of 4.3e-04. This similarity is missed with COMP,
while SEG reports a much shorter alignment (due to filtering) with an evalue of 0.040. Not much is known
about these two proteins, and therefore it is hard to evaluate the biological significance of the match, however,
the signal suggests possible homology.

Query: 87 KSAKKLRSSNADAEEKLDRSHDKSDRGHDKSDRSHEK-LDRGHDKSDRGHDKS---DRDR 142
KS ++ R + D E  +RSHD++ K DR H+ DR D+ +RG D+ RDR
Sbjct: 303 KSRERPRERDRD-ERTRERSHDRTRERDSKEDRHHHRDRDRTRDR-ERGRDRERDHGRDR 360

Query: 143 ERGYDKVDRERERDR----ERDRDRGYDKADREEGKERRHHRREELAPYPKSKKAVSRKD 198
+R D+ DR+R+RDR ERDRDRG+D+ RE G++R R E A + + + + +D
Sbjct: 361 DRERDRRDRDRDRDRGRDYERDRDRGHDR-HRERGRDR--ERDYERASHERDRGHMHERD 417

Query: 199 EELDPMDP 206
E +P
Sbjct: 418 AEFANGEP 425

Figure 12: Alignment of TTEMBL 060828 and TrEMBL Q94LP1.

The next example is of TTEMBL 001362 (vitelline membrane protein) with PIR B48831 (vitelline mem-
brane protein homolog). BLAST assigns an evalue of 7.0e-30 (Figure 13). The factor method assigns an evalue
of 3.3e-08 while the segment-profile method assigns an evalue 8.2e-14. The divergence from the background
distribution exceeds the threshold for both sequences (0.151 and 0.130) and they are marked as suspicious.
However, the divergence from the common source is very small (0.028) and the original BLAST evalue is
kept. COMP mises this similarity, while SEG reports an alignment which is one third of the alignment
shown, again due to filtering.

Our fourth example is TTEMBL 068026 (hypothetical protein) with TTEMBL Q8XXMS5 (probable trans-
membrane protein). BLAST assigns evalue of 5e-17 to this alignment (Figure 14). The sequences do not
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Query: 5 ITLALFAVAAASAMPNYPPPPPKPYHAPPPPPHHAHPPPPPPPPAHYGHHAHPAPAPVVH 64
++L + A + P PPPPPKPYHAPPPPP+HA PP P P H PVVH
Sbjct: 3  LVLFTAVIGALADYPAPPPPPPKPYHAPPPPPYHA-PPHHAPAPLH---------- PVVH 51

Query: 65 TYPVHAPHAKCGANLLVGCAPSVAHAPCVPVHGHGHGYPAPAPHY 109
TYPV AP AKCGANLLVGCAPSVAH PCVPVH H PP HY
Sbjct: 52 TYPVKAPAAKCGANLLVGCAPSVAHVPCVPVHPH----PPPPAHY 92

Figure 13: Alignment of TTEMBL 001362 and PIR B48831.

pass the JS-filters and the post-normalization method is triggered. While the segment-profile model assigns
an insignificant evalue of 0.972, the factor method assigns a significant evalue of 9.8e-13. A slightly shorter
similarity (by 30 residues) is reported with COMP (with evalue of 2e-9), while SEG reports a much shorter
alignment (and filtered for the most part) with evalue 0.006. Again, there is a strong signal that suggests
homology.

Query: 2  TLAAFSLAVLALLLAPGPTNTLMAVAGASHGLARVLRLVPAELAGYLLTVVPLALAGAGL 61
TL S V +L+ PGPTNTL+ +G G+ R LV AE GY++ + L
Sbjct: 6  TLLKMSFYVSLVLIMPGPTNTLLLSSGLKVGVRRTRHLVMAEALGYVIAISLWGFFLCSL 65

Query: 62 MARAPGAALLLKLAAALWVMVLAVRLWCSAAA--GAEGFAIGAGRIFVTTALNPKALIFG 119
A P +KL ++++++ LAVHW + A E +G  +FVIT +NPKAL+F
Sbjct: 66 AASRPWLLDAIKLLSSVYILYLAVKMWTKSRALQHVEAGPVGFRDVFVTTLMNPKALLFA 125

Query: 120 LVLLPAP---SPAEIAARLLVFCALVVAVALLWGGFGA-LSHARAGEARAGGLRRIASGW 175
LP SA A +VF ++ ++W G L+ RA L R A+
Sbjct: 126 STLFPLEAFRSAAYFAWAMAVFLIVLAPIGIGWSYLGVLLTSRRAWAPHTPKLLRGAALV 185

Query: 176 LALVSVSLLLGAL 188
L+S +L+ L
Sbjct: 186 LLMFSGTLMFSIL 198

Figure 14: Alignment of TTEMBL 068026 and TrEMBL Q8XXMS5.

Our last example is an interesting similarity between TrEMBL 068026 and TrEMBL Q9KQQ9 (both
hypothetical proteins). BLAST assigns evalue of 2.0e-06. This similarity is missed by COMP and SEG. The
JS-divergence from the common source is border-case (0.047) and therefore is still considered potentially
meaningful. Furthermore the factor method corrects the evalue to 4.6e-04, thus maintaining its significance.
It is unclear what is the biological significance of this relationship, but both proteins are also similar to other
transporter transmembrane proteins.

5 Discussion

Low complexity segments are abundant in protein sequences. These segments pose a problem for sequence
comparison algorithms since their skewed composition leads to high scoring and statistically significant
matches that are biologically insignificant. Current approaches to deal with this problem handle low com-
plexity segments either through filtering or the use of composition based statistics.

In this paper we described a new method for re-estimating the significance of a match between the query
sequence and a database sequence based on the alignment structure and information theoretic divergence
measures. Our method is based on higher-order statistics that is more expressive than the first order statistics
of the sequence. The method was developed while trying to preserve the statistical framework that is used
in BLAST and provide meaningful statistical estimates in the form of an e-value. We evaluated the results
using the GO database as a reference set, and much attention was given to design sensible protocols of
evaluation.
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Query: 15 LAPGPTNTLMAVAGASHGLARVLRLVPAELAGYLLTVVPLALAGAGLMARAPGAALLLKL 74
+ PG TL GSG RL++ ELG L V + A+MRP L K+
Sbjct: 18 ITPGMNMTLALTLGMSVGYRRTLWMMVGELLGVALVAVSAVVGIAAVMLRYPDIFTLFKI 77

Query: 75 AAALWVMVLAVRLWCSAAA---—-----——-- GAEGFAIGAGRIFVTTALNPKALIFGLVL 122
A +++ L V++W S G++ + G FVT NPK F + L
Sbjct: 78 VGASYLVYLGVQMWRSRGKLAINIEQENTYQGSDWGLLVQG--FVTAIANPKGWAFMVSL 135

Query: 123 LP--APSPAETAARLLVFCALV----- VAVALLWGGFGALSHARAGEARAGGLRRIASGW 175
LP +A +L V. A++ ++++L G L + L RIA
Sbjct: 136 LPPFIDQSLSLAPQLTVLVAIILLSEFISMSLYATGGKGLKRLLSQAHHVRLLNRIAGSL 195

Query: 176 LALVSVSL 183
+AV + L
Sbjct: 196 MAGVGIWL 203

Figure 15: Alignment of TTEMBL 068026 and TrEMBL Q9KQQ9.

Our tests show that the existing methods are very successful in filtering spurious matches, and already
improve over BLAST. However, they sometimes suffer from certain artifacts (see Section 2.2). Our challenge
was to improve over the existing methods. The tests indicate that our algorithm eliminates the excess
of false positives that are otherwise abundant with low-complexity sequences, while performing well (in
terms of overall performance measures, such as the harmonic average and ROC analysis) compared to the
other methods. Moreover, our method does not generate counter-intuitive situations like the one observed
with composition-based statistics (Section 2.2), nor does it filter the sequences as SEG while missing useful
information. The proposed method is fast and can be applied to BLAST output files or can be integrated
as part of the BLAST program.

Although our new estimates of the p-value might still deviate from the exact p-value we believe that
our approximation is more useful than discarding these similarities overall. Since one usually would like to
know just if the similarity is significant or not, the exact value is less important, and even deviations on the
order of several orders of magnitude are acceptable. Note that our method will not work for low complexity
sequences that have diverged extensively through evolution, as it is almost impossible to discern those from
chance similarities (nor will they be discovered by all other methods). However, our method already discovers
many matches that are otherwise missed. The discovery of interesting low-complexity similarities opens the
possibility of exploring less studied proteins that were neglected thus far.

Currently our approach is using two parameters, which are the thresholds that trigger the post-normalization
method (see Section 3.1). These thresholds were optimized over an independent training set. However, as
is the nature of many thresholded decisions, they might be suboptimal since certain instances that are very
close to the threshold might be wrongly classified. A better approach would be to use soft decisions, for
example by using regression models or Bayesian analysis (and we are currently pursuing this direction).
Another drawback is that our method is composed of number of elements which are based on different prin-
ciples. One would wish for a single coherent method that captures the functionality of all the elements we
propose here, and we believe this is an important open question that concerns about 20% of the current
protein space. Despite these weaknesses, this paper presents new approaches to tackle this problem and the
overall method makes significant advances over the state of the art.
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7 Appendix A

In addition to the segment-profile approach we have attempted two other methods to rescue significant
matches between low-complexity sequences.

7.0.1 The similarity-profile criterion

The similarity-profile approach characterizes an alignment structure in terms of the set of similar segments in
the alignment, but in a way different from the segment-profile approach. Formally, we are given an alignment
A of length L (excluding gaps). Let my(A) denote the number of similar segments of length k£ and f(A),
the fraction of the alignment that is in similar segments of length k, i.e., fr(A) = k'm+(A). We refer to
the set of fractions {f.(A)}¥ as the similarity profile of the alignment. Similarly, we define an identical
segment as a contiguous sequence of identities. The similarity profile is reduced to the identity profile
when only identities are considered.

To characterize the similarity profiles in chance similarities we analyzed the alignments in our training set.
For each alignment we determined the similarity profile, and the distribution of fractions f; was computed
for each k, based on the complete set of alignments. The distributions py and cumulative distributions b,
for k = 1,...,6 are plotted in Figure 16. As expected, the probability to observe fr > C' decreases as k
increases (very similar results are obtained when using the identity profile of the alignments).
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Figure 16: Distributions of similar segments in chance similarities. Density and cumulative functions of fj for
k =1,3,6 (data for k > 6 is sparse and noisy and therefore was not considered in our model). For example, in about 9% of
chance alignments, roughly 12% of the aligned residues are in similar segments of length 1 (corresponds to the peak in the top
left figure), while very few alignments have more than 35% of the aligned residues in similar segments of length 1 (where the tail
of the distribution meets the x-coordinate). To model these distributions we used the extreme-value distribution, for f > 0.
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Note that the distributions appear to follow the extreme-value distribution. This is not surprising since
the dynamic programming algorithm that computes the alignments maximizes the similarity score by vir-
tually maximizing the number of aligned residues that are assigned a positive score (i.e., positive matches).
Although the positive matches are not guaranteed to form continuous segments, more often than not they
do, thus the algorithm practically maximizes the number and length of similar segments. As such, it also
maximizes the fraction of the alignment that is in similar segments, and the extreme value distribution
follows.

Given the true cumulative distributions Py, one can compute, for each k, the probability to observe in a
chance similarity a fraction fj that is higher than f;(A), i.e., Pu(fx > fr(A)). The true distributions are
estimated from the empirical distributions by curve fitting (see Figure 16). We approximate the significance
(p-value) of the given alignment by assuming that f1, fa, ..., f1 are independent random variables, distributed
according to p1,p2, ..., Pk, i.e.,

P £ pualue(A) = Pi(f1 > f1(A)) - Pa(fz = fo(A)) - P(fr = fL(A))

Note that Py(fr > fu(A)) = 11if fr(A) = 0. An alignment with a similarity profile such that fr(A) =
0 Vk > ko, will tend to have higher p-value if k¢ is small (1 to 4). An unrelated match will have most of
its similarity profile in segments of length 1 or 2, resulting in a fairly high p-value. However, if a significant
part of the alignment is in long similar segments (i.e., fx(A) > 0 for some k large), then the p-value of that
alignment will be small, as it is quite unlikely to observe that in chance alignments. Finally, the e-value
is obtained by applying the Bonferonni correction, £ = P - N, where N is the number of sequences in the
database searched (the number of tests), which is on the order of 10¢ in current sequence databases.

It should be noted that segments of length > 6 are counted with segments of length 6, since the data
is insufficient to generate reliable statistics for k > 6 in chance similarities. Extrapolation of parameters
was not feasible either as no clear trend was obvious from the parameters for lower values of k. This leads
to conservative estimates that tend to underestimate significance. However, this method can still detect
similarities that are missed by the factor method (see Section 3.4).

7.0.2 The longest match criterion

The similarity-profile approach described above uses statistics of the alignment as a whole. However, the
assumptions made (independence, ignoring other positions in the alignment in assessing the significance
of the whole alignment) may not hold and the empirical distributions may not be easily characterized for
long segments. Our second criterion focuses on the longest similar (or identical) segment. As before, the
assumption is that the typical longest similar segment in a chance similarity is relatively short, while true
similarities are characterized by relatively long identical and similar segment(s). Given an alignment of length
L and a maximal similar segment of length k, the p-value is estimated based on the probability to observe
such a segment by chance. It has been shown that the longest similar segment (sequence of positive matches)
in alignments of random sequences is distributed as the extreme value distribution [Arratia et al. 1986].
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Figure 17: Distribution of the longest similar segment in chance similarities

Indeed, the empirical distribution that was derived from the alignments in the training set follows nicely
the extreme value distribution as is shown in Figure 17. Similar results are obtained when the alignment is
characterized by the longest identical segment (the longest segment of identities).
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Given an alignment A we compute the length of the longest similar segment and the p-value of observing
that length by chance, using the background distribution in Figure 17. As before, the e-value is obtained by
applying the Bonferonni correction.
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