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Abstract

To produce a program guaranteed to satisfy a given specification one can synthesize it from a formal
constructive proof that a computation satisfying that specification exists. This process is particularly
effective if the specifications are written in a high-level language that makes it easy for designers
to specify their goals. We consider a high-level specification language that results from adding
knowledge to a fragment of Nuprl specifically tailored for specifying distributed protocols, called
event theory. We then show how high-level knowledge-based programs can be synthesized from
the knowledge-based specifications using a proof development system such as Nuprl. Methods
of Halpern and Zuck [1992] then apply to convert these knowledge-based protocols to ordinary
protocols. These methods can be expressed as heuristic transformation tactics in Nuprl.

1 Introduction

Errors in software are extremely costly and disruptive. NIST (the National Institute of Standards and
Technology) estimates the cost of software errors to the US economy at $59.5 billion per year. One
approach to minimizing errors is to synthesize programs from specifications. Synthesis methods have
produced highly reliable moderate-sized programs in cases where the computing task can be precisely
specified. One of the most elegant synthesis methods is the use of so-called correct-by-construction
program synthesis [Bates and Constable 1985; Constable et al. 1986; Smith and Green 1996; Kreitz
1998; Paulin-Mohring and Werner 1993; Geuvers et al. 2001; Geuvers et al. 2001]. Here programs are
constructed from proofs that the specifications are satisfiable. That is, a constructive proof that a speci-
fication is satisfiable gives a program that satisfies the specification. This method has been successfully
used by several research groups and companies to construct large complex sequential programs, but it
has not yet been used to create substantial realistic distributed programs.

The Cornell Nuprl proof development system was among the first tools used to create correct-by-
construction functional and sequential programs [Constable et al. 1986]. Nuprl has also been used
extensively to optimize distributed protocols [Liu et al. 1999; Birman et al. 2000], and to specify them
in the language of I/O Automata [Bickford et al. 2001; Bickford et al. 2001; Liu et al. 2001]. Recent
work by two of the authors has resulted in the definition of a fragment of the higher-order logic used
by Nuprl tailored to specifying distributed protocols, called event theory, and the extension of Nuprl
methods to synthesize distributed protocols from specifications written in event theory [Bickford 2003;
Bickford and Constable 2003].

Event logic is a specification language closely related to I/O automata. As has long been recognized
[Halpern and Moses 1990], designers typically think of specifications at a high level, which often in-
volves knowledge-based statements. For example, the goal of a program might be to guarantee that a
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certain process knows certain information. It has been argued [Fagin et al. 1995; Fagin et al. 1997]
that a useful way of capturing these high-level knowledge-based specifications is by using high-level
knowledge-based programs. Knowledge-based programs are an attempt to capture the intuition that
what an agent does depends on what it knows. For example, a knowledge-based program may say that
process 1 should stop sending a bit to process 2 once process 1 knows that process 2 knows the bit. Such
knowledge-based programs and specifications can be given precise semantics [Fagin et al. 1995; Fagin
et al. 1997; Halpern 1999]. They have already met with some degree of success, having been used in
papers such as [Dwork and Moses 1990; Hadzilacos 1987; Halpern et al. 2001; Halpern and Zuck 1992;
Mazer and Lochovsky 1990; Mazer 1990; Moses and Tuttle 1988; Neiger and Toueg 1993; Stulp and
Verbrugge 2002] both to help in the design of new protocols and to clarify the understanding of existing
protocols.

In this paper, we add knowledge operators to event theory raising its level of abstraction and show
by example that knowledge-based programs can be synthesized from constructive proofs that speci-
fications in event theory with knowledge operators are satsifiable. Our example uses the sequence-
transmission problem, where a sender must transmit a sequence of bits to a receiver in such a way that
the receiver eventually knows abitrarily long prefixes of the sequence. Halpern and Zuck [1992] provide
two knowledge-based programs for the sequence-transmission, prove them correct, and show that many
standard programs for the problem in the literature can be viewed as implementations of their high-level
knowledge-based program. Here we show that these two knowledge-based programs can be synthesized
from the specifications of the problem, expressed in event theory augmented by knowledge. We can then
translate the arguments of Halpern and Zuck to Nuprl, to show that the knowledge-based programs can
be transformed to the standard programs in the literature.

Engelhardt, van der Meyden, and Moses [1998, 2001] have also provided techniques for synthesiz-
ing knowledge-based programs from knowledge-based specifications, by successive refinement. We see
their work as complementary to ours. Since our work is based on Nuprl, we are able to take advantage
of the huge library of tactics provided by Nuprl to be able to generate proofs. The expressive power of
Nuprl also allows us to express all the high-level concepts of interest (both epistemic and temporal) eas-
ily. Engelhardt, van der Meyden, and Moses do not have a theorem-proving engine for their language.
However, they do provide useful refinement rules that can easily be captured as tactics in Nuprl.

2 Synthesizing Distributed Programs From Constructive Proofs

2.1 Nuprl: a brief overview

Much current work on formal verification using theorem proving, including Nuprl, is based on type
theory (see [Constable 2002] for a recent overview). A type can be thought of as a set with structure that
facilitates its use as a data type in computation; this structure also supports constructive reasoning. The
set of types is closed under constructors such as � and � , so that if

�
and � are types, so are

�
���

and
�
��� . where, intuitively,

�
��� represents the computable functions from

�
into � . Construc-

tive type theory, upon which Nuprl is based, was developed to provide a foundation for constructive
mathematics. The key feature of constructive mathematics is that “there exists” is interpreted as “we
can construct (a proof of)”. A consequence of this approach is that, for example, the law of excluded
middle does not hold.

At an abstract level, a program in Nuprl is just an object of some type Pgm. A program semantics
is a function S � Pgm � Sem assigning to each program pr � Pgm a meaning in type Sem. A
semantic property is a predicate X on meanings. We say that a program pr satisfies a semantic property
X if X holds of the semantic meaning of pr. Formally, we write pr |= X as an abbreviation of
X (S pr); thus, this fact can be expressed in Nuprl. A semantic property X is satisfiable if there is
some program that satisfies it. Satisfiability can also be expressed in Nuprl: we take Sat(X) to be
an abbrevation for 	 pr:Pgm.pr |= X. The key point for the purposes of this paper is that from a
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constructive proof of Sat(X), we can extract a program that satisfies X.
For an instance of this general constructive framework to be useful in practice, the parameters Pgm,

Sem, and S must be chosen so that (a) programs are concrete enough to be compiled, and (b) specifica-
tions are naturally expressed as predicates over Sem, and (c) there is a small set of rules for producing
proofs of satisfiabilty. To use this general framework for synthesis of distributed, asynchronous algo-
rithms, we choose the programs in Pgm to be distributed message automata.

Message automata are closely related to Lynch’s IO-Automata [Lynch and Tuttle 1987; Lynch
and Tuttle 1989] and are roughly equivalent to UNITY programs [Chandy and Misra 1988] (but with
message-passing rather than shared-variable communication). We describe distributed message au-
tomata in Section 2.3. As we shall see, they satisfy criterion (a) above.

The semantics of a program is the system, or set of runs, consistent with it. Typical specifications
in the literature are predicates on runs. We can view a specification as a predicate on systems by saying
that a system satisfies a specification exactly if all the runs in the system satisfy it.

To satisfy criterion (b) above, we choose a formal definition of runs that builds in the fundamental
order structure and provides the operators for appropriately abstract specifications. To do this we for-
malize runs as structures that we call event structures, much in the spirit of Lamport’s [1978] model of
events in distributed systems. Event structures are explained in more detail in the next section.

2.2 Event Structures

Following Lamport, we characterize a run of a program as a set of events. Each event is associated with
a unique agent or process (we use the two words interchangeably in this paper). Formally, events are
elements of a type E, and there is a function agent of type E � AG, where AG is some set of agents.
For each i � AG, the set of events e such that agent(e) = i is totally ordered. Intuitively, this set
of events is the history of events at agent i. If first(e) holds, then e is the first event in the history
associated with agent(e); if not, then e has a predecessor pred(e).

Events are further partitioned by their kinds. The kind(e) of event e is either rcv(l)—a receive
event on link l, or else local(a)—a local event of kind a.1 Every receive event has a sender event
sender(e). The sender event of a message is the event when the message was sent.

Following Lamport [1978], we can define a causal order on events as the transitive closure of the
sender-receiver and predecessor relations. Thus, � is the least relation on events such that � ��� � if

� � � is a receive event and � is the corresponding send event,

����� �
	���
������ ��� ��	���
���� � and � precedes � � in the total order associated with agent(e), or

� for some event � � � we have � ��� � � and � � � ��� � .
Intuitively, if � ��� � , then � is guaranteed to happen before � � .

The local state of an agent is represented as the values of a collection of state variables. Formally,
state variables are just identifiers that are assigned a value at each event.2 There are binary functions
when and after that describe the values of state variables before and after an event takes place. We
typically write these functions using infix notation. Thus, if agent(e) = i then (x when e)
describes the value of the state variable x at agent i just before e, and (x after e) describes its
value after e. Note that state variables are local variables and two agents may have state variables with
the same name.

1Receive events are further partitioned by a tag so that we can restrict the kinds of events sending messages on a given
link with a given tag without restricting other uses of that link.To simplify the discussion in this paper we have supressed all
mention of these tags.

2State variables are typed, but to simplify our discussion we suppress all type declarations.
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Every event e also has a value val(e). The value of a receive event is the message that is re-
ceived, and the value of a local event represents a value (satisfying some constraints) chosen (non-
deterministically) by the agent when the local event is generated. For example, if whenever a lo-
cal event of kind a occurs the agent chooses an integer value and sends twice that value on link l,
then events with kind(e) � rcv(l) and kind(sender(e)) � local(a) will have val(e) ����
val(sender(e)).

The axioms of the event structure say that an event is the sender of only a finite number of messages;
the predecessor function is one to one; causal order is well-founded; the local predecessor of an event
has the same agent; the sender of an event has the agent of the source of the link on which the message
was received; and the observation of state variables is related to the order structure in the obvious way,
namely: (x after pred(e)) = (x when e)

2.3 Distributed message automata

Programs are built from a small set of basic clauses. With each basic clause c we associate a formula��� in the language of event structures, and the event structures consistent with c are the ones satisfying� � . If we prove a specification � using a set of assumptions � � �	� 
 ����
 , then this set � of the clauses
used in the proof will be a program realizing � . A finite set � of basic clauses is feasible if there is an
event structure (a run) consistent with all the clauses in � (i.e. satisfying all the � � ). Every basic clause
is feasible and we have defined a syntactically checkable notion of compatibility that guarantees that the
union of compatible feasible sets is again feasible.

Accordingly, a distributed message automaton is a finite set of basic clauses. Each basic clause has
an agent, and as part of that agent it does one of six things:

1. defines the initial value of one state variable,

2. defines the effect of one kind of event on one state variable,

3. defines the messages sent on one link when events of one kind occur,

4. defines the precondition for one kind of local event,

5. lists all the kinds of event that affect one state variable,

6. lists all the kinds of event that send on a given link.

The first four basic clauses correspond to lines of code (and can easily be compiled into code). The
last two basic clauses are called frame conditions, and correspond to promises not to add code. A frame
condition and an effect clause or a send clause may be incompatible. We can form more complicated
programs (i.e., automata) from simpler automata by composition. The composition A � B of two
programs A and B is just the union of the clauses from A and B. The rules restrict composition of
message automata to automata whose clauses are pairwise compatible. The class of distributed message
automata (defined as a recursive type in Nuprl) is the smallest class containing the six basic clauses
above and closed under � .

The semantics of a distributed message automaton is the set of event structures that are consistent
with it. This is formally defined as a relation Consistent(R;es) between a program (i.e., message
automaton) R and event structure es. Let Sys-R consist of all event structures consistent with R.
A specification for us is a predicate on sets of runs. A program R is said to satisfy a specification if
Sys-R does. As we show in the full paper, the relation Consistent(R;es) is expressible in Nuprl.
Programs are also expressible in Nuprl. Thus, we can talk about the system consistent with a program
R in Nuprl.

Recall that a (standard) specification is a predicate on runs. A program R is said to satisfy a specifi-
cation if every run in Sys-R does.
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2.4 Realizability Rules

If P is a predicate on runs, R is a program, and the set of runs consistent with R is non-empty and
every run consistent with R satisfies P, then we write R ||-P and say that R realizes P. Note that R
||-P is just an abbreviation for the formula � es. (Consistent(R;es) � P(es)) � 	 es.
Consistent(R;es).

We have derived from the formal semantics of distributed message automata a set of nine rules for
proving the realizability of a specification P[es]. There are six base rules, one for each basic clause,
an additional rule for the combination of precondition and initialization clauses, a composition rule, and
a refinement rule. We now briefly explain these rules.

The refinement rule says that if P refines Q (that is, if a run satisfies P, then it also satisfies Q) and A
realizes P, then A also realizes Q:

A ||-P � ( � es:ES. (P[es] � Q[es])) � A ||-Q .

The composition rule requires the notion of compatibility. Two programs A and B are compatible,
denoted A || B, if the sends and effect clauses of one obey the constraints imposed by the frame clauses
of the other. The composition rule just captures the fact that A � B combines the constraints of A and B:

(A ||- P � B ||- Q � A || B) � A � B ||- P � Q .

Each basic rule says that a basic clause c realizes its associated realizability rule � � . For the purposes
of this paper we don’t need the details of the syntax of the six basic clauses and the full listing of the six
rules with all of their parameters. Instead, we give some examples.

The basic clause “at agent i initialize x to 5” realizes

� e@i. � first(e) � (x when e) = 5,

where � e@i.P is an abbreviation of � e.agent(e)=i � P.
A more important example for this paper is the precondition clause of the form “at agent i the pre-

condition for a local action a(v) is P(v,x,...,z)”. In this clause, the expression P(v,x,...,z)
is a predicate on the values of the state variables x,...,z and a value v. The intended meaning is
that “infinitely often” agent i decides whether there is a value v satisfying predicate P in the current
state, and if so the agent chooses some such v and performs a local action of kind a and value v.3

Also, an action of kind a may occur only when its value satisfies the precondition. The realizability rule
associated with this precondition clause is the conjunction of a liveness property

� e@i. 	 e’ � e. kind(e’)=local(a) ��� v. � P(v) after e’

and a safety property
� e@i.kind(e)=local(a) � P@e,

where P(v) after e � P(v,x after e,...,z after e) and P@e � P(val(e),x
when e,...,z when e)

2.5 Example

As an example of a parameterized specification that we will need later, consider the following predicate� �
	�� 
�
�������� � on event structures, where P is a precondition, f is a function, and l is a link.
� ��	�� 
�
�������� �

is a conjunction of a safety condition and a liveness condition. The safety condition asserts that every

3Performing an action of kind k means updating all the state variables in accordance with any effect clauses for k and
sending all messages in accordance with any sends clauses for k.
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receive event on link l has a value that is f of the state of the sender and that state satisfies the precon-
dition P. The liveness condition says that “infinitely often” either a receive event on � occurs or else the
precondition P fails.

Fair(P,f,l) �
(� e’.kind(e’)=rcv(l) � P@sender(e’) � val(e’) = f@sender(e’)
� � e@source(l). 	 e’ � e.kind(e’)=rcv(l) � � v:A. ( � (P(v) after e’ )

This specification is realized by the following program
� �
	�� - 
 � 
�
�������� � consisting of the three basic

clauses at agent source(l):

precondition for a(v) is P
local(a)(v) sends [f v] on l
only events in [local(a)] send on l

We can prove that the program realizes the specification using the realizability rules. The intuitive
reason is that the precondition is checked infinitely often. When it is true, the local event a occurs and
sends the message. If this happens infinitely often, eventually a receive event will occur. Since only
local action a sends this kind of message, the sender’s precondition must be the given one.

3 Adding knowledge to Nuprl

3.1 Consistent cut semantics for knowledge

To reason about knowledge in event structures we use a standard first-order modal logic of knowledge
and time. Assume that there are � processes. Consider a propositional logic of knowledge, where
formulas are formed by starting with a set � of functions symbols, predicate symbols, and constant
symbols of various arities. We form atomic predicates and terms as usual in first-order logic, and close
under conjunction, negation, universal quantification, the temporal operator � , and the modal operators���

, 	 ��
��
�
�
� ��� , one for each process 	 .4
Typically semantics for knowledge are given with respect to a pair 
�� ��� � consisting of a run � and

a time � , assumed to be the time on some external global clock (that none of the processes necessarily
knows about) [Fagin et al. 1995]. In event structures, there is no external notion of time. Fortunately,
Panangaden and Taylor [1992] give a variant of the standard definition with respect to what they call
asynchronous runs, which are essentially identical to event structures. Thus, we just apply their defini-
tion in our framework.

The truth of formulas is defined relative to a triple (Sys, E, c), consisting of a system Sys (i.e.,
a set of event structures), and event structure E in Sys, and a consistent cut c of E, where a consistent
cut c in E is a set of events in E closed under the causality relation. That is, if � � is an event in � and �
is an event in � that precedes � � (i.e., � ��� � ), then � must also be in c.

Define the equivalence relations � �
, 	 ��
��
�
�
� ��� , on consistent cuts by taking ��� � � � if 	 ’s history

is the same in � and � � . Intuitively, ��� � � � if process 	 cannot tell � and � � apart, given its information.
Given two consistent cuts � and � � , we say that ����� � if, for each process 	 , process 	 ’s history in � is a
prefix of process 	 ’s history in � � .

Given a nonempty set of objects � and a system ����� , an interpretation function � associates to
each cut 
 and symbol � in � its interpretation, denoted � 
 
 � �
� , which is a predicate or function on
� of the right arity. To extend this interpretation to terms, we start with a valuation ! , which as-
sociates with each variable an element of � . For each variable " , we define � 
 
 ��" � �#! 
�"�� . We
then define � 
 
 � $�
�%'& �
�
�
� ��%)(
� � by induction on the structure of terms, taking � 
 
 � $�
�%*& �
�
�
� ��%)(�� � �

4We can also define other standard modal operators, such as common knowledge, but we do not need them for the discus-
sion in this paper. We can also define temporal operators such as until.
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� 
 
 � $ � 
 � 
 
 ��% & ���
�
�
� � � 
 
 ��% ( � � . Using ! and � , we define what it means for a formula � to be true
at the consistent cut � in event structure � in system

�����
, denoted 
 ����� ����� �
� � � ! � � � � , by induction

on the structure of � , in the usual way:

� if � is a predicate symbol in � of some arity 	 , and %*& �
�
�
� ��%)( are terms, then


 ����� ����� �
� � � ! � � �
� 
�% & �
�
�
� ��%)(
� iff � 
 
 ��� � 
 � 
 
 ��% & ���
�
�
� � � 
 
 ��%)(�� �
� 
 ����� ����� � � � � ! � � � � � iff 
 ����� ����� �
� � � ! �
�� � �
� 
 ����� ����� � � � � ! � � � � &�� ��� iff 
 ����� ����� � � � � ! � � � � & and 
 ����� ����� �
� � � ! � � � ���
� 
 ����� ����� � � � � ! � � ��� " � � iff, for all � � � , 
 ����� ����� �
� � � !�� "������ � � � � , where !�� "������ is the

valuation that agrees with ! on all variables except possible " , and !�� "������ 
�"�� �
�
� 
 ����� ����� � � � � ! � � � ��� � iff for all � � � ����� and cuts � � of � � such that � � � � � , 
 ����� ��� � � � � � � � ! � � � �
� 
 ����� ����� � � � � ! � � � � � iff for all cuts � � of � such that ����� � , 
 ����� ����� � � � � � ! � � � � .

As usual, we take ! � to be an abbreviation of � � � � , so that ! � is true at 
���� � � if there is some cut � �
extending � where � is true.

Just as programs and the property of a program satisfying a specification can be expressed as a
formula in Nuprl, the satisfaction relation � �#" can be expressed as a formula in Nuprl. More precisely,
we would like to define a translation $ such that for all tuples 
 ����� ����� ��� , domains % , interpretations � ,
valuations & , and formulas � , $�
 ����� ����� � �'% � � � ! � � � is provable iff 
 ����� ����� � � ! � � � � � � .

To present the translation, some notation is necessary. The type of systems (sets of event structures)
is
� ��� 
�� � � and the type of all consistent cuts in event structure � is written as ()( 
���� . The translation $

is defined inductively on the structure of formula � as follows:

� if 
 is a predicate symbol in � of some arity 	 , and ��* �
�
�
� � �,+ are terms, then

$�
 ����� ����� � �'% � � �-&�� 
 
 ��* �
�
�
� � �.+ � � � � 
 � � 
 � 
 � 
 �
� �/* ���
�
�
� � � 
 � � �,+ �
� $ 
 ����� ����� �
�'% � � �-&���� � � � � 
0$�
 ����� ����� � �'% � � �-&�� � � �
� $ 
 ����� ����� �
�'% � � �-&�� 
 � &1� ��� � � � 
0$ 
 ����� ����� �
�'% � � �-&�� � & � �2� 
0$�
 ����� ����� � �'% � � �-&�� ��� � �
� $ 
 ����� ����� �
�'% � � �-&�� 
3��4 � � � � �5��4�67% � 
0$�
 ����� ����� � �'% � � �-&�� 
 � 
0&84�� � �
� $ 
 ����� ����� �
�'% � � �-&�� � � � � �9� � � 6 � � � 
�� � � � � � � �����;: � � � 6,(,( 
�� � � � � � � � � : 
0$ 
 ����� ��� � � � � �'% � � �-&�� � � �
� $ 
 ����� ����� �
�'% � � �-&�� � � ���9� � � 6,()( 
�� � � ����� � : 
0$ 
 ����� ����� � � �'% � � �-&�� � � �
As we said, we would now like to show that $ 
 ����� ����� �
�'% � � �-&�� � � is provable iff 
 ����� ����� �
� ! � � � � �� . However, since first-order epistemic logic relies on the principle of excluded middle, and Nuprl is

a constructive type theory that does not, in general, assume the law of the excluded middle, we can
prove that T has the desired effect only if we assume the law of the excluded middle. We remark that
this assumption is necessary only for the purpose of this translation and not for the proofs we present in
Section 4. With this assumption, we get the desired result.

Proposition 3.1: Assuming the principle of excluded middle, for all tuples 
 ����� ����� � � , domains % ,
interpretations � , valuations & , and formulas � , we have that $�
 ����� ����� � �'% � � �-&�� � � is provable iff

 ����� ����� �
� ! � � � � � � .

To simplify the notation, we abbreviate $ 
 ����� ����� �
�'%�� � �-&�� � � as ��<#='>@?BA CDA EFA G.A " ; we often abbreviate
this further as �H< � , when the other components are clear from context.

7



3.2 Knowledge-based programs and specifications

In this section we show how we can extend the notions of program and specification presented in
Section 2 to knowledge-based programs and specifications. This will allow us to employ the large
body of tactics and libraries already developed in Nuprl to synthesize knowledge-based programs from
knowledge-based specifications.

We have identified programs with distributed message automata, where a distributed message au-
tomaton is characterized by a set of clauses. We take a knowledge-based message automaton to be a
function that associates to each system (i.e., set of event structures) a message automaton; intuitively, a
knowledge-based message automaton allows preconditions on actions to depend on the knowledge of
processes about the whole system. For the purposes of this paper, we take knowledge-based programs
(hereafter abbreviated kb programs) to be knowledge-based message automata. Note that each standard
program 
 � corresponds to the kb program that associates to each system the program 
 � .

What should the semantics of a kb program be? As discussed in Section 2, in the case of standard
programs, a program semantics is a function of type

� � 
 ����� � � � � ; S associates with every program

 � � 
 ��� the system S(Pg) consisting of all the runs consistent with Pg. (Recall that Sem is the type
consisting of all systems.) As we have seen, the truth of a knowledge test in a kb program depends
on the whole system. Once we have a system, we can determine the truth of the knowledge tests. A
kb program then reduces to a standard program. Thus, a kb program has type KbPgm = Sem � Pgm.
Note that composing the semantic function S with a knowledge-based program yields a function from
systems to systems. A system

�����
is said to represent a kb program kbPg if it is fixed point of this

function. That is,
�����

represents the kb program kbPg if
� 
 ��� 
 � � 
 ����� � � ����� . Following Fagin et

al. [1995, 1997], we take the semantics of a kb program kbPg to be the set of systems that represent
kbPg. That is, a kb program semantics

� +�� is a function of type KbPgm � set-of-systems,
where set-of-systems is the type whose elements are sets of systems. As observed by Fagin et
al. [1995, 1997], it is possible to construct kb programs that are represented by no systems, exactly one
system, or more than one system. It is also possible to construct sufficient conditions (which are often
satisfied in practice) that guarantee that a kb program is represented by exactly one system. Note that, in
particular, standard programs when viewed as knowledge-based programs are represented by a unique
system; indeed,

� +�� 
�
 � ��� � � 
�
 � � 
 . Thus, we can view
� +�� as extending S.

We next consider knowledge-based specifications (hereafter abbreviated kb specifications). Recall
that a (standard) specification is a predicate on runs. Following [Halpern 1999], we take a kb speci-
fication to be a predicate on systems. That is, a kb specification has type Sem � P. If kbX is a kb
specification, then kbX( ��� � ) holds if

�����
satisfies the specification kbX.

As in [Fagin et al. 1995; Halpern 1999], we say that a kb program kbPg satisfies the kb specification
kbX if all the systems representing kbPg satisfy X. Thus, we take

��� 
 � � � �	��

as an abbreviation of

� ����� � 
 � +�� ��� 
 � � � �	��
 
 ����� � .
Example 3.2: Recall that in Section 2 a specification Fair(P,f,l) was considered that requires
that, infinitely often, either a precondition 
 fails at the state of the source of some link or a message is
received on the link; the message is constructed by applying the function � at the source of the link. The
specification is satisfied by a standard program

� ��	 � - 
 � 
�
�������� � .� �
	�� 
�
�������� � can be generalized to a kb specification
� �
	�� +�� 
�
 +�� ��� +�� ��� � , where, instead of using

a precondition 
 and function � , we use a knowledge-based predicate 
 +�� and a knowledge-based func-
tion � +�� , both of which take a system as an extra argument (in addition to the other arguments of P
and f).

� �
	�� +�� 
�
 +�� ��� +�� ��� � asserts that, in every run of the system, infinitely often either the kb pre-
condition fails or a receive event with the value given by � +�� occurs on line l.

� ��	�� +�� 
�
 +�� ��� +�� ��� � is
satisfied by a kb program

� �
	�� - 
 � +�� 
�
 +�� ��� +�� ��� � , which associates to each system
�����

the program� �
	�� - 
 � 
�
 +�� 
 ����� ����� +�� 
 ����� ����� � ; in system
�����

, a process following
� �
	�� - 
 � +�� 
�
 +�� ��� +�� ��� � sends a

message with value determined by � +�� 
 ����� � exactly when predicate 
 +�� 
 ����� � holds.
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4 The sequence transmission problem

The main motivation for formalizing epistemic logic in event theory is that it allows us to write kb
specifications in Nuprl, and then to synthesize kb programs. In this section, we consider one example
of how this can be done. We show how a kb program that solves the sequence transmission problem
(stp from now on) discussed by Halpern and Zuck [1992] can be synthesized from a kb specification of
the problem. In fact, Halpern and Zuck consider two different kb programs that solve the problem; we
show how both can be synthesized.

The stp involves a sender � who has an input tape with a (possibly infinite) sequence � � � "�� ��" & �
�
�
� �
of bits, and wants to transmit � to a receiver � ; � must write this sequence on an output tape � . A
solution to the problem must satisfy two conditions:

1. (safety): at all times, the sequence � of bits written by � is a prefix of � , and

2. (liveness): every bit " ( is eventually written by � on the output tape.

If messages cannot be lost, duplicated, reordered or corrupted, then � could simply send the bits in � to
� in order; however, just as Halpern and Zuck, we are interested in solutions to the stp in contexts where
communication is not reliable. Following Halpern and Zuck, we assume (a) that all corruptions are
detectable and (b) a weak fairness condition: all messages sent infinitely often are eventually received.

The safety and liveness conditions above are run-based specifications. As argued in [Fagin et al.
1995], it is often better to think in terms of knowledge-based specifications for this problem. The real
goal of the stp is to get the receiver to know the bits. That is, writing

��� 
�" � � as an abbreviation
for

� � 
�" � ����� � � � 
�" � � 
 � , we really want a knowledge-based liveness condition of the form
� 	 ! �	� 
�" � � . If we further require � 	 ��	 � 

��� 	 � � 	 : ��� 
�" � � 	 � � (that is, the receiver never
sets the 	 th bit of the output to 	 unless it knows that the 	 bit of the sequence � is actually 	 ) and
� 	��
� �B	 � 
 
�	 ��� : �	� 
�"�� � � � �	� 
�" � � 	 � : !�� � 	 � � 	 � (that is, if the receiver knows the first
	 bits, then it eventually writes them out), then clearly the safety and liveness specifications will hold.
The formula ��� � 	 ��� : � � 
�" � � is abbreviated as

� � � ��� �
�
� 	 � .
Recall that a kb specification is a predicate on systems; the condition � 	��B	 � � 

�
� 	 ��� 	 : ��� 
�" � �

	 � � is written in Nuprl as the kb-specification
� $ 
2* that associates to each system

�����
a predicate

that ensures that for any 	 and 	 , at any run � in the system and consistent cut � , the condition

��;� 	 ��� � � : ��� 
 4/� � � � holds. Similarly, the specification � 	 	 � 
 ��� � � � �
�
�'	 � � � �	� 
�" � � 	 � :
!�� � 	 � � is translated into Nuprl as the following kb specification

� $ 
�� , which requires, for each system�����
, natural number 	 , bit

�
, run � of

�����
, and consistent cut � in E,


 � � 
 ��� �
�
� 	 � : � � 
 4 � � � � � < � :�� � ��� � � 
��8� 	 � � � � < � � �

Our goal is to prove using Nuprl that
� $ 
�*�� � $ 
�� is satisfiable. As we said before, the constructive

proof will actually yield a kb program satisfying this specification. The proof that
� $ 
�*�� � $ 
�� is

satisfiable is carried out in Nuprl by refining it to subgoals that are, intuitively, easier to prove. The
system can often suggest appropriate subgoals using its library of tactics. In addition, the system has
a library of standard proofs that can be applied at appropriate times. We are extending the library so
that in includes standard facts about knowledge. For example, the well-known knowledge axiom that
whatever is known must be true (

� � � : � ) becomes a short lemma in Nuprl that can be invoked in any
subsequent proof and used for refining a goal � to

� � � . Similarly, the library includes the fact that, in
event structures, there is perfect recall [Fagin et al. 1995]: processes do not forget stable facts (that is,
facts which, once true, remain true), so the formula

� � � : � ��� � is valid if � is stable. Including these
results in the library facilitates reuse of code. These lemmas can be invoked repeatedly in the course of
a proof.

Reusability of code can also be exploited at the level of kb specifications; having formally defined
distributed programs in Nuprl, once we prove that a certain kb specification

�	��

is satisfiable we also
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construct a program 
 � that satisfies
����


that can be manipulated and reused during the proof. Ingenuity
is required to identify the specifications likely to appear in many proofs. But once good choices are
made, they can significantly simplify proofs. As we shall see, the specification in Section 3.2 is invoked
a number of times in the course of synthesizing a program that satisfies

� $ 
 &�� � $ 
 � .
Returning to our problem, we remark that performing a few standard Nuprl refinement steps allows

us to reduce the proof of
� � ��
 � $ 
�*�� � $ 
�� � to a few subgoals, the most interesting of which is that

��� 
 ��� �
�
� � ��� � < � : � � � � � � ��� 
 ��� �
�
� � � < � � (1)

is satisfiable. (To simplify notation, we have omitted the universal quantification over runs � and cuts �
in � .) This subgoal says that we want to find a program that ensures that � makes progress: if at some
cut � knows the first 	 bits, then later on � knows all these bits, and the next one in the sequence.

The fact that � continues to know the bits it already knows is an instance of the rule we mentioned
before regarding perfect recall in event structures. Thus, what we really have to do is find a program
that ensures that, if R knows the first 	 bits, it will eventually know the 
 	���
 � st bit.

Up to this point in the proof, we have used only standard facts about logic, standard refinement rules
for first-order logic, and natural induction. All of this is built into Nuprl. At this stage in the refinement,
ingenuity is required to find suitable rules specific to the particular kb specification of interest. It turns
out that only one new tactic is needed; we are guided to it by the weak fairness condition we have
imposed on communication. Observe that the fairness condition guarantees that if at S a message is sent
infinitely often, then � will eventually get it.

Intuitively, � learns 4,+ from
�
; we would like to be the case that infinitely often either there is no

value for which
�

doesn’t know that � knows it, or if such a value exists, then � receives it. This is
just an instance of the kb specification

� ��	 � +�� 
�
 +�� ��� +�� ��� � presented in example 3.2 and satisfied by the
program denoted by

� ��	 � - 
 � 
�
 +�� ��� +�� ��� � . We just need to choose the 
 +�� , � +�� , and l appropriate for our
problem. Let 
 +��= be the kb predicate that tests whether � ��� ��� 


holds; let � +��= be the kb function that,
given

�
’s state, if 
 +��= holds, returns the maximum index 	 such that

��� �	� 
 ��� �
�
� 	 ��� ��� � ��� �	� 
 � 	 �
holds; let l be the link between R and S.

� ��	�� +�� 
�
 +��= ��� +��= ��� � is the kb specification that requires that
infinitely often either

�	� �	� 

, or � receives 
 	 ��4���� .

Recall that
� ��	�� - 
 � +�� 
�
 +��= ��� +��= ��� � � � � �
	�� +�� 
�
 +��= ��� +��= ��� � . If

�
uses the kb program

� ��	�� - 
 � +�� 
�
 +��= ��� +��= ��� � ,
and

�
knows that � knows all the bits, then

�
sends no message; otherwise,

�
sends to � the maximum

value 	 such that
�

knows that � knows the first 	 bits, but does not know that � knows 4�� . Thus,
�

is essentially using the following kb program, also used in [Halpern and Zuck 1992] (which we write
using their notation):

if
�����	� � � � �
�
� 	 � 
1� � � �
����� � � 	 � then send 
�
�	���" � � � else skip �

It is clear that if S uses this kb program and does not know that R knows the 	 th bit, then S will
send the 	 th bit repeatedly as long as S does not know that R knows the 	 th bit. Since a message is
eventually received if sent infinitely often, R will eventually know the 	 th bit. Thus, we have reduced
the problem to finding a way to guarantee that, if R knows the first 	 bits and does not know " �

, then
S eventually knows that R knows the first 	 bits (and so will send " �

). This is again just an instance of
the kb specification

� �
	�� +�� 
�
 +�� ��� +�� ��� � . Let 
 +��� be the kb predicate that tests whether there is a bit that
� does not know; let � +��� the kb function that, given � ’s state that, if 
 +��� holds, returns the maximum
index � such that R knows the first � bits in the sequence; again, l is the link between R and S. In
other words, � +��� returns the (unique) value � such that

��� 
 ��� �
�
��� ��� �)� � ��� 
 ����� holds in � ’s state
when interpreted with respect to system

�����
.
� ��	 � +�� 
�
 +��� ��� +��� ��� � is the kb specification that requires

that infinitely often either 
 +��� fails, so the receiver knows all the bits, or S receives from � a message
and

�
knows that � +��� holds at all points where � ’s last action was to send this message. Now, when �

follows
� ��	 � - 
 � +�� 
�
 +��� ��� +��� ��� � , if � knows all the bits, then R sends no message; otherwise � sends to�

the maximum value � such that � knows the first � bits but does not know "�� . Thus, R is essentially
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using the following kb program used in [Halpern and Zuck 1992]:

if
��� � � � �
�
� � � 
1� � � �	� � � ��� then send 
 � � else skip �

Recall goal (1); from
� ��	�� +�� 
�
 +��� ��� +��� ��� � we infer that either

��� 
 < � , which implies
� � 
 ��� �
�
� � � < � ,

or there is some � such that � knows all the bits up to but excluding � . Since � knows all bits up to
�

,
it must be that � � �

; if ��� �
then, since � knows all bits up to � , � also knows 4 + ; if � � �

then� �
	�� +�� 
�
 +��� ��� +��� ��� � assures us that there is some cut �� extending � such that
�

receives
�

at �� . At this
moment it must be that

�
knows that � knows at least the bits up to

�
. From

� �
	�� +�� 
�
 +��= ��� +��= ��� � we
infer that either

�	����� 
 < �� holds, from which the knowledge axiom can be applied to deduce
� � 
 < �� ,

or there is some 	 such that
�

knows that � knows the bits up to 	 , but � � � �	� 
 � 	 � < �� holds. Thus,
	 � �

; if 	 � �
then

�
knows that � knows 4,+ , and so � knows 4,+ . If 	 � �

, than
� �
	�� +�� 
�
 +��= ��� +��= ��� �

assures us that there must be a later cut � � at which � receives 
 � ��4,+ � , and so � learns 4,+ . From the
perfect recall rule, we deduce that � knows all the bits up to and including 4 + , which completes our
proof.

It is now straightforward to prove in Nuprl that if R uses the kb program
� �
	�� - 
 � +�� 
�
 +��� ��� +��� ��� � ,

then S gets the requisite knowledge regarding which bit to send. The composition of the two programs


 � �
	�� - 
 � +�� 
�
 +��= ��� +��= ��� ������� 
 � �
	�� - 
 � +�� 
�
 +��� ��� +��� ��� �����

is thus essentially the kb program from [Halpern and Zuck 1992] that solves the stp. What we have
shown here is that this program can be synthesized in Nuprl, using just standard facts in the Nuprl
library, and the kb program Fair-Pg, which we will build into the Nuprl library, since it seems that it
will be generally useful in all systems where communication is fair.

Halpern and Zuck show that a number of standard programs used in the literature are implemen-
tations of this kb programs. We can prove this in Nuprl, essentially by emulating the Halpern-Zuck
proof. We omit the details in this abstract. Halpern and Zuck also present another kb program which is
receiver-driven: rather then S sending the 	 th bit when it S does not know that R knows the bit, S sends
the bit only when S knows that R does not know it. That is, the precondition of the sender’s program
has the test

�	� � �	� 
 � 	 � rather than � ������� 
 � 	 � . In the full paper, we show how this kb program can
be synthesized in Nuprl, using a relatively minor variant of the argument given above.

5 Conclusion

We have shown how to embed epistemic logic notions in constructive type theory. This allows us to
express knowledge-based specifications and knowledge-based programs in Nuprl. We then showed by
example how, from the constructive proof that a knowledge-based specification is satisfiable, we can
extract a knowledge-based program that is guaranteed to satisfy that specification. What is notable
about our proof is that it uses only standard logical arguments in Nuprl involving straightforward first-
order logic and induction (as is the case for the synthesis of many sequential programs that have been
carried out in Nuprl), standard arguments in epistemic logic (the knowledge axiom and the fact that
in event structures agents have perfect recall), and one new argument involving the knowledge-based
specification

� �
	�� +�� and the knowledge-based program
� �
	�� - 
 � +�� that implements it.

The structure of the argument gives us reason to believe that we will be able to incorporate into
the Nuprl library standard tactics that will apply to a wide variety of knowledge-based specifications,
and that we will be able to reuse these tactics in many proofs. We are currently in the process of
synthesizing other knowledge-based programs to verify that, and to deepen our understanding of the
techniques needed to knowledge-based verification. We believe that, once we have shown the power of
this approach, the ideas will quickly spread to other verification approaches based on higher-order logic.
We are optimistic about the prospects.
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