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Abstract

A shout option is a �nancial contract which allows the holder to change the payo�

during the lifetime of the contract. For example, the holder could have the right to set

the strike price to the current value of the underlying asset. Complex versions of these

options are embedded in �nancial products which o�er various types of maturity guar-

antees such as segregated funds marketed by Canadian insurance companies. The value

of these options can be determined by solving a collection of coupled partial di�erential

equations (PDEs). In this work we develop an extensible, object-oriented framework

for valuing these contracts which is capable of exploiting modern, high-performance

supercomputing architectures. We use this framework to study and illustrate practical

aspects of valuing and hedging these contracts.
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1 Introduction

Many �nancial products marketed to investors contain embedded options. Familiar examples

include callable bonds, convertible bonds, and savings bonds. Currently perhaps the most

prominent example in Canada are investment funds which provide maturity guarantees.

Frequently sold by life insurance companies, such products are known as \segregated funds".

Contracts of this form give the investor the bene�ts of the higher returns common in the

equity market while providing downside protection should the market fall. Although various

types of these contracts have been around at least since the early 1960s, they have recently

become very popular.1

The options which are contained in these types of contracts range from quite simple to

extremely complex. For example, a straightforward set guarantee e�ectively provides the

investor with a European put option. A more complicated case is a protective 
oor index,

which allows the holder to set a minimum amount to be received at the maturity of the

contract. A protective 
oor index e�ectively consists of the purchase of the stock index

along with a shout put option. A shout option is an option which allows the holder to reset

the strike price during the life of the contract. At maturity the value of the stock index

together with the payment provided by the shout put option is always worth at least the

protective 
oor level.

Some of the most complicated options are embedded in segregated funds. Such contracts

provide death bene�ts if the investor dies before the maturity date in addition to complex

maturity guarantees. Investors are often permitted to reset the level of the guarantee (i.e.

\shout") multiple times, up to some limit within a time period (e.g. four times per year).

When an investor shouts, the maturity date of the guarantee may (or may not) be extended.

Shouting more than once may involve a reduced percentage guarantee. For example, the �rst

shout may set the guarantee at the current index level, but shouting a second time may only

provide something like 98% of the prevailing index level, while a third shout might provide

a protection level of 96%.

Accurate models for the valuation and hedging of these types of options are required for

at least two reasons. First, it is important for both individual investors and the �rms selling

these complex contracts to have good estimates of the value of the included option features.

Second, it is critical for the institutions o�ering such products to be able to hedge the risk

exposures involved.2

There has not been much academic research in this general area. Simple maturity guar-

antees have been explored in [4]. Various (but relatively uncomplicated) kinds of shout

options have been described in [12] and [6]. Both of these papers describe the valuation

using a binomial or trinomial lattice method, and describe similarities between these type of

options and various other exotic options. Perhaps the most obvious point of comparison is

to a lookback option. If the holder happens to shout when the underlying asset price is at

1Net new sales of segregated funds in Canada grew from $701 million in 1996 to $5.9 billion in 1998,

while the number of segregated funds being o�ered increased from 246 to more than 800 (The Globe and

Mail, October 23, 1999).
2For a brief description of some concerns which have been raised regarding the pricing and hedging of

these contracts, see W. Falloon, \Canada's option nightmare", RISK, August 1999.
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its minimum (for a call) or maximum (for a put) value during the life of the contract, then

the option's payo� will be that of a lookback. As noted in [12], this implies that the value of

a lookback is an upper bound for the value of a shout option. Alternatively, as pointed out

in [6], shout options can be viewed as a restricted version of lookback options: if the holder

of a shout option has an in�nite number of shout opportunities, he will shout whenever the

underlying asset reaches a new maximum (in the case of a put) or minimum (for a call),

thereby e�ectively creating a lookback. More interestingly, if there is no initial 
oor level

and only a single shout opportunity, it is shown in [6] that the optimal shout policy for the

holder is deterministic, depending only on time (and not on the future level of the underlying

asset).

With regard to valuation techniques, note that in [6] the authors work under the stan-

dard Black-Scholes assumptions and deal exclusively with shout options which reset the

strike price to the current value of the underlying asset. These simpli�cations reduce the

dimensionality of the numerical problem. In this paper we consider more complex types of

shout options, while making minimal assumptions about the behaviour of the underlying

asset. To achieve this, we employ a numerical PDE approach. This o�ers several potential

bene�ts:

� Using a fully numerical approach allows for more general speci�cations of volatility

than the basic geometric Brownian motion assumption of Black-Scholes. Examples

include CEV models [8] and implied volatility surfaces [1, 7].

� Best/worst case uncertain parameter (e.g. volatility, interest rate, dividend yield) mod-

els [2, 15] can be used. Such models may be particularly suited to this type of appli-

cation, because the contracts are typically quite long term and have complicated pro-

visions. Uncertain parameter models can provide a reasonable compromise between

the added realism of additional stochastic factor(s) and the tractability of a single

stochastic factor framework.

� If desired, extensions to features such as discrete dollar dividends or barrier-type pro-

visions can be easily accommodated. Discrete dollar dividends are of interest because

the payment of the option is often amortized discretely over the life of the contract.

Barrier features are one possible means of incorporating default risk into the valuation

of these contracts.

� Since these contracts are typically long term the second order rate of convergence of

PDE methods is of practical interest when compared with the �rst order convergence

of lattice techniques.

It is necessary to develop robust, extensible algorithms for valuing these contracts. It will

be seen that the value of a shout option can be determined by valuing a collection of simpler

contracts. Object oriented computer languages allow us to create a class library which will

permit maintainability through code reuse. Further, by careful design and encapsulation of

data, it is easy to modify the program to take advantage of modern multiprocessor computer

architectures.
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2 Some Background Details

For clarity, we follow [16] and provide this de�nition of a shout option:

De�nition: A shout option is a contract de�ned by the following objects:

� An underlying asset price process S upon which the derivative security is written.

� A maturity time T for the contract.

� A payo� function g(S;K;U) which determines the payment made to the holder of the

security at maturity which is a function of the asset level S and a parameter called the

strike, K, which can be changed (at the discretion of the holder) during the life of the
contract.

� A maximum number of times Umax which the holder of the security can shout during
a given time period, thereby resetting the strike K. We will use the discrete variable

U = 0; : : : ; Umax to count the number of shouts used at any point in time.

� A function F(S;K;U; t) which determines how the strike K is set upon shouting. In

the case of a simple shout option where the strike is reset to the current asset level,
this function would be de�ned as K� = S.

� A shout dividend function D(S;K;U; t) which represents payments generated by the
option upon shouting. Cases where D(S;K;U; t) < 0 can be thought of as a fee charged
for shouting.

From this it can be seen that the holder of a shout option has the ability to improve on

the contract presently held by choosing to reset the strike K if it is bene�cial, in exchange for

reduced future 
exibility. This is a type of American option, where the payo� upon exercise

is speci�ed by the function D(S;K;U; t), along with the the value of the contract received.

It is also worth noting that the function F(S;K;U; t) could be multidimensional in some

cases, such as contracts where shouting sets both a new 
oor level and a new expiry time.

We assume that there is a risk free money market account and that the price of the

underlying asset S satis�es the stochastic di�erential equation

dS = �(S; t)Sdt+ �(S; t)Sdz;

where dz is the increment of a Wiener process and �(S; t) and �(S; t) are the drift rate and

volatility respectively. Standard no-arbitrage arguments then allow us to model the value of

the shout option as

@V

@t
+ (r(t)� q(t))S

@V

@S
+
1

2
�(S; t)2S2@

2V

@S2
� r(t)V � 0 (1)

V �
� V (2)

where at least one of (1-2) holds with equality throughout the domain. Here r(t) is the risk

free rate of return, q(t) is the dividend yield on the underlying asset, V = V (S;K;U; t), and
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we have de�ned V � (the value of the contract the holder receives upon shouting) as

V �(S;K;U; t) =

(
V (S;F(S;K;U; t); U + 1; t) +D(S;K;U; t) if U + 1 � Umax

�1 otherwise
: (3)

The terminal condition

V (S;K;U; T ) = g(S;K;U) (4)

is imposed at contract expiry t = T .

Following [16], we can express (1-2) in terms of an equivalent penalty method [17]:

@V

@t
+ (r(t)� q(t))S

@V

@S
+
1

2
�(S; t)2S2@

2V

@S2
� r(t)V = �Q(V; V �) (5)

where the penalty term Q serves to enforce the relevant constraints. This formulation is used

in our actual computations. Some other aspects of these valuation problems worth noting

are:

� In many cases, the holder is permitted to shout up to a maximum of Umax times during

a given time period (usually one year). At the end of this period, the discrete variable

U which tracks the number of shout opportunities used is reset to zero. If ti is a shout

counter reset time, then absence of arbitrage requires that the jump condition

V (S;K;U; t�
i
) = V (S;K; 0; t+

i
) (6)

must hold for all U where t�
i
and t+

i
are the times immediately before and after ti

respectively.

� Under Black-Scholes modelling assumptions (i.e. �(S; t) = �BS, a constant), the dimen-

sionality of the problem can be reduced for some contract speci�cations by working

with a new variable � = S=K. See [16] for further details about this similarity solution.

� Situations where F(S;K;U; t) is multidimensional add complexity to the problem. For

example, a common feature with segregated funds is that shouting involves resetting

not only the strike but also the time to expiry. In this case, an extra dimension is

required for a variable to track the expiration time of the contract.

In general (ignoring the case where F(S;K;U; t) is multidimensional to simplify the

discussion), we are faced with a three dimensional problem. The three dimensional system

of PDEs is �rst discretized in time, using a Crank-Nicolson method. Recall that the variable

U represents the number of shouts used by the holder and so it can only take on discrete

integer values U = 0; 1; :::; Umax. Within each plane U = const., the variable K is discretized

K = K0; :::;Kmax. Finally, for each value of U = const., K = const., the one dimensional

PDE equation (5) is discretized using a �nite volume method [16]. Note that typically we

have to interpolate the discrete solution in order to determine the value of the option received

upon shouting, as speci�ed in equation (3).

There are a number of signi�cant numerical issues involved in valuing these contracts.

These include constructing an e�cient grid, the treatment of boundary conditions, choice

of interpolation method, and method of enforcing the constraint V � (equation (3)). We will

not discuss these matters here, referring interested readers to a companion paper [16] which

provides a thorough treatment and a detailed validation of the algorithms.
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U = 0

U = 1

U = Umax

K

S

K0

Figure 1: An object-oriented interpretation of a shout option. The lineK = K0 represents

the contract that was initially sold to the investor. We de�ne the object type ShoutPlane

to represent planes with U = const. Each ShoutPlane will contain a number of OneD

objects which represent a line of K = const. within a plane of U = const.

3 An Object-Oriented Implementation

Recall that the value of the contract depends on the four independent variables S, K, U ,

and t. We are ultimately interested in the value of a shout option for a given level of the

underlying asset S0 with a speci�c initial strike K0 and with no shouts used (U0 = 0) at the

time of sale of the security. This problem is a three dimensional, time-dependent non-linear

di�erential equation (5).

However, this PDE can be simpli�ed by exploiting the structure of the dependence on

the variables U and K. For example, note that equation (5) depends on (K;U) only through

the penalty term Q(V; V �). If we imagine solving the PDE (5) by stepping through time, we

can see that once the solution has been obtained for a given value of U , then this determines

the value of V � for all discrete values of K for the plane U�1. Consequently, at each discrete

timestep, we solve for each plane of U = const. in the order Umax; Umax�1; ::; 0. Within each

plane U = const., the one dimensional PDEs for di�erent discrete values of K are completely

independent, since V � for this plane is known from the solution in plane U + 1.

Recall that the discrete variable U represents the number of shouts currently expended.

Therefore, planes of U = const: represent contracts which have the same number of shouts

used (see Figure 1). It is convenient to de�ne an object type ShoutPlanewhich encapsulates

planes of U = const. We reiterate here that, within each timestep, we compute solutions

6



in the order Umax; Umax � 1; :::; 0. As a result, within the plane U = const., we have a set

of independent one dimensional PDEs. This framework of objects which encapsulate planes

of U = const. allows us to internally schedule many aspects of the solution process such

as the timestepping algorithm. This will be helpful in a later section when we discuss the

parallelization of the algorithm. This also gives us the ability to de�ne generic operations such

as interpolation and data manipulation easily and safely. For example, often our algorithm

will require information not contained exactly within our discrete mesh. De�ning these

objects in an abstract manner allows us to de�ne operations such as interpolation,

double ShoutPlane::interpolate( double S, double K );

giving us the ability to externally query the object in a manner naturally de�ned by the

contract. The user of these functions need not be concerned with any of the details of the

S and K discretizations. In fact, there may not even be a discretization for one of the state

variables; for example, in the case of the similarity reduction mentioned above. When using

a similarity reduction, the ShoutPlane maintains only a single line of K = const. and the

interpolation member function is de�ned appropriately. This improves the maintainability

of the software by allowing the same interface to be used for the ShoutPlane regardless of

the implementation details chosen.

Within each ShoutPlane, the line K = const. represents a particular setting of the strike

price. The solution along each of these lines will be encapsulated in a OneD object. As a result,

each of the OneD objects contains both the S discretization and the solution for a particular

strike setting. These OneD objects are then given methods to set minimum constraints,

interpolate, and solve the partial di�erential equation (5) using techniques described in [16].

In fact, it can be seen that these objects are merely solving equations modelling a standard

American option with a time varying constraint. It should be noted that many exotic options

can be formulated in a similar fashion, i.e. in terms of a collection of these building block

contracts. Some examples are provided in [18, 14]. Therefore, a robust implementation of

the OneD object can allow algorithms for these complex options to be developed e�ciently

through code reuse.

So far we have discussed a structure for maintaining the data which must be available

to determine the value of a shout option. We must also be able to control and schedule

the communication of this data. For this we de�ne a scheduler/controller object which is

responsible for scheduling the solution of the building block objects and determining the

minimum value constraint V �. Each of the planes of constant U must be solved for all strike

prices K and asset prices S on the grid and advanced (backwards) through time using a

timestepping algorithm. Should the holder of the security shout, they receive a security

de�ned on the next higher plane U� = U + 1 with strike K� = F(S;K;U; t). Consequently,

the controller class schedules the ShoutPlane objects in the order U = Umax; :::; 0.

Observe that upon shouting information is collected from the plane one level above the

current position according to the \look up function" F . The value is only reset to V � in the

case that V �
� V . This e�ectively sets an American-type 
oor to the value of the contract

which is imposed continuously through time. The scheduler/controller can be implemented

in the following manner:
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For each U = 0; :::; Umax // initialization

ShoutPlane[U] = new ShoutPlane

For each discrete K

ShoutPlane[U].OneD[K] = new OneD

ShoutPlane[U].OneD[K].value = payoff(K,U)

End for K

End for U

t := T // timestep loop

While t > 0 do

t = max(t��t; 0)

For U = Umax; :::; 0

For each discrete K

ShoutPlane[U].OneD[K].constraint = get_constraint(K,U,t)

ShoutPlane[U].OneD[K].advance_solution()

End for K

End for U

End while

(7)

To illustrate further, consider the case of a standard shout put option where the strike

level is reset to the current asset price upon shouting. In this case for any S the controller

determines the constraint by looking at the value of the contract on the diagonal K� = S

on the next higher plane U + 1 (see Figure 2).

4 A Parallel Version for Multiprocessor Architectures

If we are interested in utilizing a more complicated speci�cation than the standard Black-

Scholes setting with constant volatility, we must solve the full three dimensional problem.

Other cases where we cannot use the similarity solution include some types of contract spec-

i�cations and uncertain parameter models. In these cases, the complexity of the numerical

solution may become so large that we cannot solve these problems quickly enough on a

uniprocessor machine.

Using our object-oriented construction described above, we note that the valuation of

the option for �xed U and K is independent of other values of U and K except through

the application of the constraint V �(S;K;U; t) de�ned in (3). As a result, each of the OneD

objects in a given plane of U = const: can be solved independently once the minimum value

constraint V � has been determined by the controller class.

In this work, we use the OpenMP library. This library is widely available on many

multiprocessor machines, and allows for development of portable software. The OpenMP

library consists of a set of preprocessor compiler directives (pragmas) which are ignored on

single processor architectures. We emphasize here that no changes were made to the basic

algorithms or software for these tests. We simply added the compiler directives in a small

number of locations.
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K

K

S

S

U

U + 1

Si

Si

V �

Figure 2: The 
ow of information in a standard shout option with F(S;K;U; t) = S. The

controller class determines the minimum value constraint by interpolating the solution on

the next higher ShoutPlane. Notice that all the values along the line S = Si are compared

with the same constraint value V � = V (Si; Si; U+1; t) to determine whether or not shouting

is optimal.

Since all of the data has been safely encapsulated within the OneD objects, we can easily

parallelize the code without worrying about potential data sharing problems. The OpenMP

library allows us to allocate multiple threads for parallel regions by simply specifying ap-

propriate pragma calls. Since the one dimensional PDE problems all require approximately

the same number of 
oating point operations, we �nd that static scheduling a�ords the best

performance. Further, we allocate chunksizes of 8 iterations through the loop since this

improves the performance of the caching system. The following is a code fragment which

implements the parallelization of the advance_solution section of the pseudo code (7) given

above.

void ShoutPlane::advance_solution()

{

#pragma omp parallel for schedule(static,8) default(shared)

for(int k = 0; k < nk; k++ ) {

oned[k].advance_solution(); // solve the OneD problems

// for a fixed U in parallel

}

}// end ShoutPlane::advance_solution()

(8)
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Number of Processors

2 4 8 16

K discretization speed up

128 nodes 1.94 3.69 7.07 12.08

256 nodes 1.95 3.68 6.96 12.65

Theoretical 1.96 3.77 7.02 12.31

Table 1: Timing results for parallel version of algorithm on SGI Origin 2000 cc-NUMA

multi-processor server; speed up = time serial

time parallel
. The number of nodes in the K discretiza-

tion gives the number of independent problems on each plane of U = const. The last row

gives the theoretical speed up using (9) assuming 98% parallelization. The shout option

has four exercise opportunities per year and a �ve year maturity. Black-Scholes modelling

assumptions with �BS = :2, r = :1, K0 = $100. These results are for a three dimensional

case (although a similarity solution exists for this particular problem, we did not use it in

these computations).

Code fragment (8) indicates that the addition of multithreading directives to the software is

not an onerous task.

If we study the serial version of implementation of the pseudo code, we �nd that approx-

imately 81% of the processor time is spent advancing the solution and 17% of the time is

spent interpolating the numerical solution to determine the constraint V �.3 Both of these

sections of the software can be parallelized using a few compiler directives similar to fragment

(8). We did not attempt to expose any other parallelism in this algorithm, being satis�ed

with 98%. Since both the time advance and interpolation sections can be parallelized, we

can estimate the maximum theoretical speed up using the formula:

speed up =
100

98
N
+ 2

(9)

where N denotes the number of processors used. Table 1 shows typical results for a full three

dimensional shout option valuation. As can be seen from the results, the observed increase

in speed is very close to the theoretical limit in equation (9).

5 Illustrative Examples

5.1 General Features

We begin by providing some results for the Black-Scholes model case where the holder has

�ve opportunities during the life of the contract to reset the strike of a put option to the

prevailing value of the underlying asset. These examples also assume that there is an initial

strike K0 set at $100. Table 2 presents results for contract lengths of �ve, ten, and twenty

years. Although these contracts are quite valuable, they are fairly insensitive to the time to

expiry. The at the money contract with S = $100 increases from $24.37 when T = 5 years

3The interpolation is expensive since we solve an inverse problem to determine mesh points to use in the

diagonal interpolation described in [16] which dramatically improves convergence.
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Shout Option Values

T = 5 years T = 10 years T = 20 years

S = $80 23.587 24.492 23.307

S = $100 24.374 27.280 27.466

S = $120 27.659 31.175 31.975

Table 2: Similarity solution for the value of a shout put option with �ve exercise oppor-

tunities. Black-Scholes modelling assumptions with �BS = :25, r = :06, and K0 = $100.

Values were obtained using a grid with 800 nodes. More detailed results illustrating execu-

tion timing and convergence for this case are provided in [16].

to $27.28 when T = 10 years, but only marginally further to $27.47 when T = 20 years. The

contract values exhibit similar behaviour for the S = $120 case. However, when S = $80,

the 20 year contract is less valuable than the 10 year contract. One advantage of our PDE

approach is that we use an automatic timestep size selector, similar to that described in [10].

Consequently, the longer term options are not much more expensive computationally than

the shorter term ones (uniprocessor CPU times are 259, 404, and 529 seconds for the �ve,

ten, and twenty year options respectively4). This is because the solution becomes smoother

as time evolves, and accordingly the automatic timestep selector takes bigger timesteps. This

type of e�ciency gain for long term options is not possible with lattice type methods.

Consider a standard shout put option where the holder of the security has the ability

to reset the strike price to the current asset level. Since the holder can always choose not

to reset the strike from its initial setting, these contracts must always be worth at least as

much as a European put option with the same initial strike as shown in Figure 3(a). As the

asset price S !1 it becomes pro�table for the holder of the shout put option to reset the

strike to the higher asset level since the current strike setting is unlikely to be in-the-money

at expiry. In Figure 3(b) we can see that as S ! 1 the shout put options with various

initial strike settings all tend asymptotically to the same value. However, under the market

conditions in this example, there is no optimal exercise boundary at �ve years to maturity.5

Therefore, the values for the di�erent strikes do not become identical no matter how large

the value of S since in all cases it is optimal to hold on to the opportunity to shout. The

small di�erences remaining for large S are simply di�erences in the values of extremely deep

out of the money options.

Figure 4 represents a case where there is an optimal exercise boundary. The �gure

illustrates how the algebraic constraints interact with the solution of the equation. The solid

line represents the value of a shout put option with a single exercise opportunity which has a

current strike set at K0 = $100. The dotted lines represent the values of standard European

put options with various strike settings; these are the solutions for particular K = const.

on the U + 1 plane. Notice how the value of the shout put option is required to lie above

the at the money value of each of the European options since the owner of the shout can

4This is for a �ne grid with 800 nodes. As shown in [16], reasonably accurate results can be obtained

using much coarser grids. For example, using a grid with 100 nodes results in pricing errors of about 5 cents.

This requires around 5 seconds of CPU time for the 20 year case.
5For a more detailed discussion regarding the optimal exercise boundary, refer to [16].
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oor set at

K0 = $100. Also shown are a European

put option with K = $100 and a shout put

option with no initial 
oor setting.
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Figure 3: Comparison of various shout options. Black-Scholes modelling assumptions

with �BS = :25, r = :06, and T = 5 years.
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Figure 4: Value of a shout put option with a single exercise opportunity and initial strike

K0 = $100 (solid), compared with the value of at the money European put options (dotted).

The arrows denote the change in value of the shout option upon shouting. Black-Scholes

modelling assumptions with �BS = :25, r = :06, and T = 1 year.
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Figure 5: Value of a shout put option with a single shout opportunity and an initial

strike K0 = $100 for various times � remaining until maturity. Black-Scholes modelling

assumptions with �BS = :25 and r = :06.

receive these contracts by shouting. For asset levels above S � $130 the holder receives a

security which is worth the same amount as the shout security. This is the exercise region,

where it is optimal for the holder to shout. For lower asset values, the holder would receive

a security which is worth less than the shout security which he currently owns. Therefore in

this region it is optimal for the holder not to shout.

Figure 5 plots the value of a shout option for various times remaining until maturity. With

a long time left, the option value pro�le is roughly U-shaped. As the time until maturity gets

relatively short, the pro�le gradually becomes more V-shaped, though of course it collapses

to a standard European put payo� at expiry. One implication of this behaviour is that it

may become relatively more di�cult to hedge these options as they approach maturity.

As noted above, many options embedded in products sold to Canadian investors also

feature a maturity extension upon shouting. In other words, the investor is permitted to

reset the guarantee level, but when this is done the time for which the guarantee applies is

extended. Figure 6 plots the option value for a typical case where the investor originally has

a ten year (European) put option with a strike price of $100. Upon shouting, the investor

would e�ectively receive an at the money put option which expires ten years from that time

(not from when the contract was originally bought). There is a maximum possible maturity

of 30 years from the original purchase date (i.e. shouting is only allowed for a period of 20

years from the initial sale date). In this case, we are solving a three dimensional problem

(it would be four dimensional if not for the similarity reduction). The option value pro�le

is broadly similar to that of a standard shout where only the strike is reset. Comparing

Figures 6 and 7, it can be seen that the value of a contract permitting two shouts per year

13
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Figure 6: Value of shout put option where the holder receives a 10 year at the money

put option upon shouting. The maximum contract maturity is 30 years. The contract has

an initial strike K0 = $100 and an initial maturity of 10 years. Black-Scholes modelling

assumptions with �BS = :25 and r = :06.

at S � $100 is about $35 without the maturity extension feature but close to $40 with it.

5.2 Modelling The Deferred Payment Of Embedded Options

As noted above, shout options are frequently embedded in other �nancial products, such as

segregated funds. It is common practice in Canada to amortize the cost of the contract over

its life by having the purchaser pay a percentage charge for the shout option feature.

The management operating expenses and insurance premiums of segregated funds are

often paid indirectly by the fund itself. In this way, the value of an investment in a segregated

fund is decreased by the the incurred operating expenses, usually on a daily basis. This can

be modelled by considering the incurred expenses to be a dividend yield paid by the fund.

Of course, the investor does not get to keep this dividend payment; instead it is paid to the

fund manager and the insurance company.

In Figure 7 we see that as the expense rate, re, is increased the initial value of the maturity

guarantee actually increases. The reason for this is simple; the maturity guarantee is required

to cover any losses in the fund as well the premiums charged. Of course, the investor is not

better o� with a higher expense rate. If the guarantee ultimately proves worthless (because

the underlying �nishes above the guaranteed level), the value of the investor's account will

be lower with a higher expense rate. Moreover, opportunities to reset the guarantee will

come at lower levels of the underlying asset value given a higher expense rate.

Since these guarantees are often sold without an initial premium, a relevant task is to

�nd the operating expense rate, re, which makes the present value of the payments to be
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Figure 7: Value of a shout option with 2 shout opportunities per year (20 total), with

an initial strike K0 = $100, subject to various operating expenses, re. Notice that the

initial value of the contract increases with the expense rate re charged to the customer.

Black-Scholes modelling assumptions with �BS = :25, r = :06, and T = 10 years.

received equal to the initial contract value. This amortization of the payment for the shout

option feature further complicates the hedging of these products. Receiving a proportional

yield has the undesirable e�ect that less income is received when the value of the fund is

low, which is exactly the time when the insurance policy is very valuable. As an extreme

example, consider the case where value of the underlying asset goes to zero immediately

after the sale of the maturity guarantee. Being charged a proportional amount, the investor

actually receives this guarantee for nothing!

If the length of maturity of the contract T is known, then under Black-Scholes assump-

tions it can be shown [11] that the proportional expense rate, re, which makes the investor

indi�erent to paying the guarantee premium, V , up front is given by

V = S0
�
1� e�reT

�
:

In Table 3 we determine the net initial value of the contract to the writer of a ten year shout

option (with two shout opportunities per year). We emphasize the di�erence between the

value of the contract sold and the net value to the writer; the net value to the writer includes

the bene�t of receiving the stream of payments associated with the guarantee.

Finally, there exists the possibility that the holder will lapse on the contract leaving

the writer with a hedging strategy which has only been partially paid for. Of course, this

hedging portfolio has positive value (since it is replicating a non-negative set of outcomes).

However, the value of this hedging portfolio may not be as much as the accumulated value

of the received payments, resulting in a net loss for the writer.

15



Dollar Amount

re = :00 re = :01 re = :02 re = :04 re = :06

Option value 33.81 34.38 35.02 36.51 38.20

Equivalent up front payment 0.00 9.52 18.13 32.97 45.12

Net Value -33.81 -24.86 -16.89 -3.54 6.92

Table 3: The net initial value to the writer of writing a shout option at various operating

expense rates, re, at asset level S = $100. The shout option has two shout opportunities

per year (20 total) and an initial strike K0 = $100. Black-Scholes modelling assumptions

with �BS = :25, r = :06, and T = 10 years.

5.3 The E�ects On Contract Value Of Some Alternative Speci�-

cations

We can see by the examples presented so far that these option contracts may be quite

valuable. Essentially, this is a result of the fact that these contracts can never be thought of

as being deep out of the money. If the current guarantee level is unlikely to be used at expiry,

the investor can reset to a better guaranteed level which is more likely to be worth money at

expiry. We can think of these contracts as having value coming from two sources: (a) from

the payo� of the presently held guarantee level; and (b) from the ability to shout an reset

the guarantee to a higher level. In Figure 3(a) we can see these two regions by comparing

the value of the shout option with a standard European put (which has no \shout" value)

and a shout option with no initial strike setting (which has no \current guarantee" value).

There are several potential ways to modify these types of contracts so as to reduce their

value. One possibility is to place restrictions on the availability of the shout opportunities.

For instance, segregated funds are commonly sold with the ability to shout two or four times

per year. In Figure 8, we can see that this does reduce the value of the option, though the

decrease is perhaps not as dramatic as might be expected.

We proceed further by restricting the shout opportunities to �xed dates. Shown in

Figure 8 is an option where the holder is only allowed to shout on six month anniversaries

of the sale of the contract. This results in a somewhat larger decrease in the value of the

contract. The �gure also shows that an even bigger e�ect can be achieved through a reduced

percentage guarantee.

Along somewhat di�erent lines, another possibility is to assume a default risk for the

writer. Figure 8 also plots the value of an option under the assumption that the writer will

not honour the contract if the underlying asset value at expiry falls to 50% of the protective


oor setting. Clearly, there is a large drop in the contract value, since we are e�ectively

capping the payo� (thus eliminating the states where the guarantee is most valuable). We

make no claims here about whether or not this is realistic. Our point is simply that estimated

values for these contracts may considerably overstate their true worth to investors, if there

is a chance of default.
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Figure 8: The impact of various contract features on the value of a shout option. Shown

are an option with 20 shout opportunities available at any time during the life of the con-

tract, an option which allows two shouts per year (20 total), and an option where the 20

shout opportunities are restricted to speci�c dates (half-yearly interval). All of these op-

tions have an initial strike of K0 = $100 and reset the strike according to K� = S. Slightly

cheaper is an option with 2 shouts per year which provides an initial strike of K0 = $95

and provides 95% guarantee protections, K� = :95S. Also shown is a model for a shout

option which allows 2 shouts per year (anytime) and incorporates the default risk of the

writer by assuming that the contract will not be honoured if the asset level falls from the

guarantee level by 50% upon expiry. Black-Scholes modelling assumptions with �BS = :25,

r = :06, and T = 10 years.

5.4 Hedging Strategies And Considerations

Strategies for hedging the risk exposure which arises from writing an option depend on the

delta (� = @V=@S) and gamma (� = @2V=@S2) of the particular contract. We have already

seen that a shout option can be thought of as the opportunity to receive one of a collection of

simpler options. As a result, once the numerical aspects of interpolation and discretization

errors have been reduced to an acceptable level, the dynamic hedging strategy for the shout

option will be as accurate as the valuation/hedging model for the building block European

options.

Figure 9(a) shows the option delta for a standard European put option along with a single

shout contract and a �ve shout contract. The general pattern is quite similar for all of these

contracts. As the underlying asset value increases, the option values all become linear (but

with a positive slope for the shout options, and steeper for �ve shout case than the single

shout case). Given this observation, the option gammas will obviously all go to zero if the

asset value gets large enough. Figure 9(b) shows that there isn't a great deal of di�erence
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Figure 9: Shout option hedging parameters. Black-Scholes modelling assumptions with

�BS = :25, r = :06, and T = 5 years.

between the gammas of a standard European put and a single shout option contract. The �ve

shout contract exhibits broadly similar behaviour, except near asset levels of approximately

$130, where its gamma falls very rapidly to zero. The general implication from these pictures

is that the shout options are probably not signi�cantly harder to dynamically hedge than

a standard European put.6 Of course the long term nature of the contracts involved raises

issues regarding the suitability of such an approach in the �rst place, since the assumption

of constant parameters (r, �) is highly questionable in this context [3].

5.5 Delta Hedged Value Versus Real Option Value

In the context of a discussion involving long term protective 
oor contracts in the U.S., a

portfolio manager was recently quoted as saying: \There's never been a 10-year window in

which we would have had to pay out in the history of the S&P 500".7 This suggests that

writing long term puts on the market is fairly safe since it is unlikely that the contracts

will end up in the money. Whatever its merits, this argument ignores the reset feature of

shout option contracts. As noted above, such contracts are really never far from being in

the money. Moreover, some concerns have been expressed regarding whether the institutions

writing such options in Canada have appropriately hedged the risks involved.8

Suppose we assume that many of the shout options embedded in segregated funds have

not been delta hedged. In this case, we can regard the embedded option as a type of \real

6Recall, however, that Figure 5 indicated that these contracts may become harder to hedge as the time

until expiry decreases.
7Steve Killian, senior portfolio manager and chief operating o�cer, Mainstay Equity Index Fund, quoted

in \New Aetna fund o�ers a guarantee, at a price", The Wall Street Journal, August 25, 1999. Mr. Killian

did go on to observe that there is no reason to assume that history will necessarily repeat itself.
8See W. Falloon, \Canada's option nightmare", RISK, August 1999.
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option". We can calculate the expected value of the contracts (rather than their delta hedged

value) by solving the backward equation (see, e.g. [13]),

@V

@t
+ ��(t)S

@V

@S
+
1

2
�(S; t)2S2@

2V

@S2
� r(t)V = 0; (10)

where the risk adjusted drift rate, ��, is not replaced by its risk neutral counterpart r. The

risk adjusted drift rate �� re
ects risk preferences [13]. We will refer to the value of this option

as the \present expected value" of the contract. An inspection of equation (10) shows that

the present expected value of a standard European put option is less than its delta hedged

(Black-Scholes) value when �� > r. Intuitively, this is because if �� > r, the asset price is

more likely to drift out of the money by expiry.

The interesting result is that the value of a shout option does not show a decrease in value

to anywhere near the same extent. The value of a shout option comes from two sources, the

payo� of the initial guarantee and the ability to lock in at higher levels during the life of the

contract. At the money, S = $100, the majority of the value comes from the ability to shout

and lock in at higher asset levels, not from the initial guarantee. With the higher drift rate

one expects to be able to lock in at a higher level, o�setting the decrease in value of the put

option. In Figure 10 we see that the decrease in value of the shout put option is minimal

compared with the decrease in value of a standard European put option when S � $100.
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Figure 10: Comparison of present expected value (dashed) with the delta hedged Black-

Scholes value (solid). The shout option contract allows two shouts per year (total=20).

Notice that at the money, S = $100, the present expected value of the European put option

shows a dramatic decrease in value compared with the delta hedged value. By contrast,

the present expected value of the shout option is relatively close to its delta hedged value.

Parameters used: �BS = :25, r = :06, �� = :10, K0 = $100, T = 10 years.

19



5.6 Uncertain Parameters

As noted above, the assumption of constant parameters (such as r and �) is highly question-

able in the context of long term option valuation. Ideally, it would be desirable to explore

stochastic volatility or stochastic interest rate models, but this is not feasible given the

complexity of the contracts (recall that we are already solving a two or three dimensional

problem, and that including the feature of resetting the time until expiry in addition to the

strike adds another dimension).

An alternative is to consider the use of uncertain parameter models [2, 15]. In this

context, we specify a range over which a parameter is assumed to vary throughout the life

of the contract. The downside of this approach is that we do not end up with a single

option value, but rather a range of possible values (from \best-case" to \worst-case"). At

�rst glance, this might seem like a trivial idea which simply involves calculating the option

values for the postulated high and low values of the parameter. However, this implicitly

assumes that the option value function is monotonic with respect to the parameter. If this is

not the case, then we are actually faced with solving a more general (and non-linear) PDE.

Note that these models do not admit the similarity reduction described previously and we

are forced to solve the full three dimensional problem. See [15] for further details regarding

uncertain parameter models.

With regard to a shout put option, we observe in Figure 9(b) that the gamma is always

positive. This implies that in an uncertain volatility model the best and worst cases will

be given by the high and low values of the assumed range for �. However, we can see in

Figure 9(a) that the delta of the shout option is not strictly negative as it is for a vanilla

European put. This may require that the hedging strategy switches between long and short

positions in the underlying asset at di�erent times, making it more di�cult to obtain best

and worst case bounds for the value of the contract if interest rates or dividend yields (since

these parameters multiply the option delta in the PDE) are uncertain.

Suppose we are willing to assume that the dividend yield lies within the range

q� � q � q+:

We can obtain a bound for the best-worst cases by solving a non-linear generalization of the

PDE. This uncertain dividend yield model uses

qbest(�) =

(
q+ if � < 0

q� if � � 0
;

qworst(�) =

(
q+ if � > 0

q� if � � 0
;

for the best and worst cases of the long position respectively. We reiterate that the best

and worst cases for uncertain dividends cannot be determined by using the solutions for the

extreme values of the dividend rates since the option delta is not of constant sign.

Figure 11(a) shows the results for an illustrative case where the dividend yield q is as-

sumed to lie within the range 1%-5%. The solid lines depict the best/worst case envelope,

whereas the dotted lines show the option values obtained when we assume that the dividend
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Figure 11: Uncertain parameter models. The solid lines represent the best/worst case

envelope. The contract allows two shouts per year (total = 20); Parameters used: �BS =

:25, K0 = $100, and T = 10 years.

yield is 1%, 3%, and 5%. Note that the option value increases with q for these constant

parameter cases. However, due to the non-linear nature of the uncertain parameter speci�-

cation, the best/worst case envelope lies outside the option values calculated for q = 1% and

q = 5%. Moreover, the range in values is quite wide, indicating that the computed values

are quite sensitive to the assumption that the dividend yield is known with certainty.

We now turn to examining the case of uncertain interest rates. The terms involving

r in the PDE are r(S� � V ). It can be shown that S� � V is always non-positive for

these contracts.9 As a result the envelope generated by the best and worst cases is given

by the extreme values of the interest rate range. Due to the long term nature of these

option contracts, the e�ect of interest rates on their value is extremely important. This is

illustrated in Figure 11(b), which shows that near the money (S � $100), the option value

with an interest rate of 5% is close to double that with an interest rate of 10%.

We conclude this section by observing that alternative speci�cations such as constant

elasticity of variance (CEV) models [8] can be easily handled in our general numerical frame-

work. This is potentially of interest since recent research [5, 9] has reported that computed

prices of some types of exotic options (e.g. barriers, lookbacks) for CEV models are much

more sensitive to departures from the Black-Scholes setting than are prices of standard op-

tion contracts. Of course, this also means that hedging strategies are substantially di�erent

across the CEV class of models for these exotic options. Results indicating that this is also

true in the context of shout options are provided in [16].

9To see this, consider the case where no initial strike is set. The option value in this situation is linear

in S and passes through the origin. Therefore, for such a contract S� � V is always zero. Also recall that

as S gets large, contracts where an initial strike is set become equivalent to the case of no initial strike

(Figure 3(b)). Since the delta of these contracts is non-decreasing in S (Figure 9(a)), we have S� � V � 0.
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If even further generality is desired, it is also easy to incorporate an implied volatility

surface [1, 7] into our algorithm. In the case of a simple shout option the contract received

upon shouting is a vanilla option. The volatility surface can be viewed as a method of

interpolating the prices of traded options to increase the consistency of the model with

presently observed market prices.

6 Conclusions

Shout options are a general class of �nancial contracts which allow the holder to modify the

contract. We can model these products by solving a system of PDEs which satisfy minimum

value constraints. We present an object-oriented framework which provides the necessary


exibility to model complex contract designs as well as incorporate various economic mod-

elling techniques. We extend this framework to a parallel version capable of exploiting

modern high performance multiprocessor computer architectures. The performance gains

achieved compare favourably with theoretical expectations. It is worth emphasizing again

that many other exotic options can be valued using similar techniques. An interesting avenue

for future research involves the application of high-performance computing to these types of

�nancial valuation problems.

In this paper we have explored the valuation of some complicated types of shout options

under various modelling assumptions. Given the size of the Canadian segregated fund market

($60 billion10), this is a problem of considerable practical interest for option writers and

regulators alike. We have described some of the di�culties in hedging these contracts, and

illustrated the e�ects of di�erent contract provisions on their values. We have also seen how

the valuation of these options is very sensitive to various modelling assumptions. If one

simply uses Black-Scholes assumptions with constant parameters, it is quite possible (even

likely) that the contracts will be considerably mispriced and incorrectly hedged.
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