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Age-related disorders of bone metabolism like osteoporosis may compromise 

structural integrity of bone and result in fragility fractures, particularly at cancellous 

bone sites.  Several factors contribute to cancellous bone strength, including bone 

density, architecture, and material properties.  Clinical assessment of bone density 

using dual-energy X-ray absorptiometry (DXA), which is somewhat distorted by the 

fan-shaped X-ray beam, does not fully account for fracture incidence and only 

partially correlates with bone strength.  Spatial variations in trabecular architecture 

captured by micro-computed tomography (microCT) have been related to structural 

behavior using microstructure-based models.  However, the impact of material 

variations is not well understood and should be investigated. 

DXA fan-beam magnification was quantified by scanning aluminum rods at 

several distances above the X-ray source.  Projected area and bone mineral content 

decreased by 1.6-1.8% per centimeter distance above the source, indicating that 

changes in girth over time would artificially reduce DXA measurements and obscure 

actual gains associated with growth or interventions. 

The ability of DXA to predict bone architecture and material properties was 

assessed in thoracolumbar specimens from 21 cadavers.  T11-L4 was scanned using 

DXA, and cancellous bone cores drilled from the center of T12 and L2 were scanned 

at 17 μm using microCT and then compressed uniaxially to failure.  DXA and 

microCT bone mass correlated similarly with cancellous bone stiffness and strength in 



 

females but not males.  DXA could not account for variations in architecture detected 

by microCT, particularly in the thoracic spine, for either males or females.  MicroCT 

scans may better assess bone strength in the thoracic spine and could replace DXA 

scans altogether if measurements could be made non-invasively, accurately, and 

affordably. 

Spatial variations in architecture and material properties were examined with 

architecture- and material-based finite element (FE) models developed from microCT 

scans.  Homogeneous and heterogeneous material models were examined.  FE models 

were improved by heterogeneity, whether between subjects using specimen-specific 

uniform properties or within subjects using spatially varying properties.  Apparent 

stiffness was the same for specimen-specific models, regardless of variations in tissue 

modulus.  The mean tissue modulus, rather than its distribution, appears to drive the 

overall mechanical behavior for vertebral cancellous bone. 
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CHAPTER 1 

 

INTRODUCTION 

 

Background and Significance 

Throughout life, the human skeleton performs critical biomechanical and 

metabolic functions.  The physiology and structure of bone provides support for the 

body, facilitates locomotion, protects the internal organs, and serves as a reservoir for 

essential minerals in the body, especially calcium.  Bone also houses red bone 

marrow, where the cellular components of blood are produced.  Bone tissue is 

organized into two different structures.  Cortical bone is comprised of densely-packed 

osteons and is found primarily in the shafts of long bones and in the outer shell of 

vertebrae.  Cancellous bone consists of a less dense structure of bone struts called 

trabeculae and is located primarily in the ends of long bones and in vertebral bodies.  

Bone can be studied on a variety of length scales, ranging from the whole bone level 

(1 cm – 1 m), down to the trabecular structure (1 mm – 1 cm), the lamellar tissue of 

individual trabeculae (1 μm – 1 mm), and the composite of collagen fibers and mineral 

crystals found at the ultrastructure level (1 nm – 1 μm).  Bone is a living tissue that 

adapts to its mechanical environment.  However, disruptions in bone metabolism due 

to disease, trauma, or other pathologies can compromise structural integrity and the 

ability of bone to bear loads.  Skeletal disorders result in fracture when the intrinsic 

strength of the bone structure drops below the level required to withstand applied 

loads either during normal activity or higher-energy trauma events, such as falls [88]. 

Age-related bone loss is complex and multifactorial, influenced by genetic 

factors (e.g., growth factors and bone morphogenic proteins), systemic regulatory 
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hormones (e.g., parathyroid hormone and calcitonin), and the mechanical environment 

(e.g., loads and displacements).  Bone is metabolically active and can regenerate itself 

by forming new tissue at sites of older or damaged tissue by a process called 

remodeling.  The normal remodeling process couples periods of bone resorption and 

bone formation, thereby maintaining adequate bone tissue to support skeletal 

functions.  However, the remodeling process may become unbalanced with aging, and 

increased resorption may produce irreversible perforation, thinning, and overall loss of 

bone tissue.  The remodeling process occurs at bone surfaces and, therefore, 

preferentially affects the open structure of cancellous bone more than the denser 

cortical bone due to the larger surface to volume ratio in the former.  In fact, 

remodeling affects approximately 20% of trabecular bone surfaces at any given time 

[97]. 

Age-related bone degradation can seriously compromise bone integrity.  For 

both men and women, bone mass decreases with age [1,3,28,65,70,139], but especially 

in women due to peri-menopausal bone loss.  By age 80, women lose approximately 

20% of their bone mineral density (BMD) in the lumbar spine, thereby increasing the 

likelihood for developing osteoporosis [49,114,115].  Osteoporosis is a skeletal 

condition marked by reduced bone mass and a deteriorated microarchitecture, which 

reduces bone strength and increases the likelihood of fracture [90,134].  In 2002, over 

10 million Americans had osteoporosis and another 34 million had osteopenia or low 

bone mass; of these individuals, approximately 80% were women [90].  By 2010, the 

prevalence of osteoporosis and osteopenia are expected to increase by 20%, making 

the population more susceptible to fragility fractures [90].  Osteoporosis-related 

fractures, which threaten a patient’s quality of life, result in increased morbidity and 

mortality and impart extensive healthcare costs [31,52,75].  As the life expectancy of 

the general population continues to increase, age-related declines will result in even 
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lower bone mass, and the total incidence of skeletal fractures will rise, unless 

diagnosis and treatment of skeletal deficiencies can be significantly improved [74,90]. 

Early assessment of fracture risk is, therefore, crucial to prevent and treat 

excessive bone loss from conditions such as osteoporosis [109-111].  Osteoporosis is 

one of the most serious public health concerns today, especially among the aging 

population.  Each year, Americans experience approximately 1.5 million osteoporotic 

fractures, nearly half of which occur in the spine [16,110,134].  At 50 years of age, 

white women have a 40% lifetime risk, and white men have a 13% lifetime risk, of 

sustaining an osteoporotic fracture at the spine, hip, or forearm [25,76].  Osteoporosis 

is often asymptomatic prior to fracture, thus making it difficult to predict and possibly 

prevent with anabolic therapies.  Therefore, the accurate evaluation of bone strength 

using surrogate measures from routine assessment tools is essential, as is 

understanding the determinants of bone mechanical behavior.  However, surrogate 

measures must be validated with experimental mechanical properties assessed in the 

laboratory.  

 

Laboratory Measurement of Bone Mechanical Properties 

Bone structural competence, the target prediction of surrogate imaging 

techniques and computer modeling, is measured by mechanical testing.  The 

mechanical behavior of cancellous bone can be described by apparent properties 

measured at the continuum level or by tissue properties measured for a single 

trabecula.  At least five characteristic lengths are generally required to justify the 

continuum assumption for cancellous bone [42], which equates to a minimum sample 

size of approximately 5-10 mm.  Cancellous bone is highly anisotropic and 

heterogeneous, and its response to mechanical loads depends on many factors, such as 
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the species, anatomic site, and age of the subject, which are manifested in the volume 

fraction (or apparent density), architecture, and tissue material properties of the bone 

sample (Figure 1.1).  For example, the mean apparent elastic modulus of human 

cancellous bone tested in compression varied between 67 MPa in the lumbar spine to 

489 MPa in the proximal tibia, and the compressive ultimate stress (strength) varied 

between 1.4 MPa in the lumbar spine and 7.4 MPa in the femur [61,62,68,71,85,91, 

112,113,143].  Similarly, the compressive ultimate strain varied greatly even within a 

single site, ranging between 1.5% and 7.4% in the human lumbar spine [61,85]. 

 

 

 
 

Figure 1.1.  Sample stress-strain curves for cylindrical samples of human vertebral 
cancellous bone of two subjects with different bone volume fractions (top curve = 
20%, bottom curve = 14%).  The samples were monotonically tested to failure in 
compression.  Both subjects had normal bone mass as assessed by a clinical bone 
density scan. 
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The preceding experimental data were all obtained for a loading orientation 

corresponding to the primary in vivo axis at each site (e.g., along the superior-inferior 

axis for the lumbar spine and proximal tibia and along the femoral neck axis for the 
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proximal femur).  Given the anisotropic nature of cancellous bone, the apparent 

properties would differ for other loading orientations.  For the lumbar spine, the 

compressive strength along the longitudinal bone axis (defined above) was measured 

as 2.1-3.4 times larger than that along the transverse axis, depending on the age of the 

subject [87]. 

Cancellous bone strength has also been described as asymmetric, with different 

values for compressive and tensile loading, although this supposition has not been 

conclusively proven.  In early studies of bovine cancellous bone, the compressive 

strength was, on average, 1.6 to 3 times greater than the tensile strength, independent 

of the apparent density [56,124].  However, studies in human cancellous bone first 

revealed that compressive and tensile strengths were similar [13,108] and then that the 

tensile strength was greater [112].  A more recent study of bovine cancellous bone 

taken from the proximal femur revealed that the asymmetry between compressive and 

tensile strengths was a function of the apparent modulus [60].  The data from this 

study indicated that the cancellous bone became proportionally stronger in 

compression than in tension with increasing modulus, and this variable strength 

asymmetry has also been demonstrated for human vertebral bone [61]. 

Traditionally, apparent-level mechanical properties were assessed by applying 

loads directly to the cancellous bone surface.  However, this technique produces 

experimental artifacts due to friction at the bone-platen interface and damage at the 

bone surface from machining.  Friction at the interface induces an uneven stress 

distribution near the bone surface [140], which may overestimate the apparent 

modulus by about 5%, as determined by FE models [11,96].  Excising a bone sample 

from the surrounding tissue disrupts the trabecular network, which may make the 

trabeculae near the surface unstable.  Trabecular instability at the surface will increase 
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the on-axis strain in this region and will underestimate the apparent modulus by 20-

40% [59,96]. 

Changing the boundary conditions can significantly alter the mechanical 

behavior of the bone sample.  Embedding the ends of the bone sample in a thin layer 

of bone cement increased the apparent modulus by 20%, while lubricating the platens 

with a thin film of low viscous oil reduced the modulus by 7% [67].  A new testing 

technique was devised to minimize the experimental artifacts by gluing the ends of 

cancellous bone specimens into brass end caps and introducing elastic preconditioning 

cycles before final loads were applied [58].  This procedure eliminated the initial 

nonlinear region of the stress-strain curve and is now widely accepted as the standard 

for mechanical testing of cancellous bone.  However, gluing the ends of the trabecular 

cores into brass caps introduces complex boundary conditions between the bone and 

end caps that are not well understood and not easily modeled. 

 

Heterogeneity in Bone Tissue Material Properties 

Similar to apparent properties, bone tissue properties are evaluated by 

mechanically testing an individual trabecula or small specimens extracted from within 

a trabecula.  Even in normal individuals, bone tissue mineral content and quality (e.g., 

degree of mineralization and mineral crystal size and maturity) show substantial 

variation both spatially [9,72,94] and temporally [40,41] for a given site and species. 

Techniques used to examine tissue properties include microbeam testing, 

nanoindentation, and spectroscopic compositional characterization.  From microbeam 

testing, the trabecular tissue modulus was measured as 18.6 GPa using tension tests, as 

20.7 GPa using ultrasonic methods [105], and as 3.8-4.6 GPa using three-point 

bending tests [15,62].  The mean tissue modulus assessed by nanoindentation ranged 
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7-26 GPa, depending on location within the tissue and type of lamellar tissue sampled, 

and individual measurements varied 17-62% [106,107,131,145].  This variation in 

modulus was true across individuals and for multiple anatomic sites.  Even within a 

single trabecula, indentation modulus ranged 8-16 GPa [107].  In a microspectroscopic 

analysis of human osteonal bone, the mineral crystal size and perfection and the 

degree of mineralization as assessed by the mineral:matrix ratio increased from the 

younger tissue at the osteon center to the older tissue at the osteon periphery [101].  

Similarly, in normal trabecular bone, mineral crystallinity and maturity increased with 

bone age, as measured by distance from the trabecular surface, so that the most 

recently deposited mineral was less mineralized, less crystalline, and less perfect 

crystals [100].  In studies of older patients, osteoporosis altered the bone tissue 

material properties, as generally evidenced by reduced mineral content and larger, 

more mature mineral crystals in both cortical [38,77,99] and trabecular bone [32,100].  

Such changes in tissue properties are expected to compromise the structural 

performance of bone, although the effect of bone tissue composition and distribution 

on mechanical properties is not well understood, particularly for cancellous bone. 

Tissue properties are difficult to characterize, because the experimental 

techniques currently available only examine a small volume of bone that likely does 

not fully capture the spatial variations in mineral content and quality.  Therefore, 

computer models that can mimic the in vivo tissue mineral gradients may allow us to 

analyze a larger volume of bone material and improve the assessment of cancellous 

tissue properties.  Overall, measurements of tissue material properties indicate that the 

tissue-level modulus of cancellous bone can vary substantially, and this variability 

may be at least partially explained by differences in mineralization, material 

disruptions due to bone remodeling, and various ultrastructure alterations (e.g., 

collagen maturity, orientation, and cross-linking) [73].   The biomechanical effects of 
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gradients in bone tissue modulus, as well as the relative effects of reduced bone mass 

and altered architecture, need to be examined. 

The structural behavior of cancellous bone is governed chiefly by bone mass or 

bone density, microarchitecture (the geometric and spatial distribution and 

connectivity of trabeculae), and tissue material properties [12,34,73,104,129].  

Alterations in any of these components could compromise the integrity of the bone 

structure and its ability to bear loads.  Although most in vivo imaging tools measure 

bone mass or apparent density (bone mass per total volume), these measures alone do 

not fully explain variations in mechanical properties observed experimentally.  In the 

following sections, the contribution of bone mass, architecture, and material properties 

to the structural behavior of cancellous bone will be described, as well as the clinical 

and laboratory tools used to characterize them. 

 

Clinical Bone Imaging and Osteoporosis Assessment 

Bone mass is most commonly assessed in vivo using dual-energy X-ray 

absorptiometry (DXA), which evaluates the inorganic mineral phase of bone with 

minimal radiation exposure to patients.  DXA scans can be performed for large 

regions, such as the lumbar spine, proximal femur, forearm, or even the whole body, 

thereby providing a non-invasive global measure of bone mass.  However, DXA scans 

are two-dimensional and can only provide projected areal measurements of bone 

mineral density.  In addition, the resolution with this technique is relatively low (on 

the order of 1 mm) and cannot capture architectural features of cancellous bone (on 

the order of 0.1 mm) or mineral distributions within the trabecular tissue.  Because 

unmineralized tissues do not inherently attenuate X rays, DXA scans also cannot 

evaluate the organic phase of bone or soft tissues surrounding bone.  
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Direct outcomes from DXA, measured in a particular bone region of interest, 

include projected bone area and bone mineral content (BMC).  Areal bone mineral 

density (aBMD) is a two-dimensional metric derived from the direct measures and is 

calculated as the ratio of BMC to projected area.  T-score is a statistical measure 

relating a patient’s aBMD to the peak aBMD of a sex- and race-matched population of 

normal young individuals, and is computed as follows: 

 

T-score = 
)population normal SD(young

)population normal aBMD(youngnt)aBMD(patie −
 

 

where SD = standard deviation.  The World Health Organization (WHO) divided T-

score into three diagnostic categories to characterize bone mass status [55].  Patients 

with aBMD within one standard deviation below the young population mean (T-score 

> -1.0) are considered normal.  Patients with a T-score between -1.0 and -2.5 are 

labeled with osteopenia or low bone mass.  Patients with a T-score less than or equal 

to -2.5 are diagnosed with osteoporosis. 

 Most clinical DXA scanners use a fan-shaped X-ray beam to evaluate bone 

geometry and mineral measures.  This beam geometry produces a wide incidence and 

thus can scan large bone areas quickly in a single pass, because it eliminates the need 

to scan in a raster pattern required for column-shaped beams.  The fan-beam 

measurements vary depending on the location of the bone region within the X-ray 

beam [4,8,18,37,102,119,127,128], making accurate comparisons between subjects of 

different girths, or within growing subjects over time, difficult.  Complications of this 

sort are compounded during the adolescent years, when growth-related increases in 

limb and trunk girths artificially decrease DXA measurements of bone area and BMC 

by amounts similar to increases in these measurements from exercise or drug 
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treatments [18].  In such cases, erroneously magnified fan-beam measurements may 

obscure true bone accrual and thus the effect of a particular intervention.  Quantifying 

and correcting magnification errors in fan-beam scanners is essential to identify bone 

mineral accrual with DXA correctly.  

Areal BMD from DXA correlates variably with bone mechanical properties, 

explaining 20-70% of the variability in vertebral failure load in vitro and in situ 

[7,14,69,82,89].  For cancellous bone specimens taken from the human proximal 

femur, aBMD explained only 10-40% of the variation in apparent elastic modulus and 

50-70% of the variation in ultimate stress [17].  For the human proximal tibia, BMC 

measured from photon absorptiometry (a precursor to DXA) explained 50-60% of the 

variation in apparent modulus and ultimate stress and only 5% of the variation in 

ultimate strain [66]. 

In addition, DXA aBMD and its T-score do not fully explain the incidence of 

osteoporotic fractures.  More than half of fragility fractures occur in women with a T-

score in the normal range [78,118,122].  Patients with a low T-score who were treated 

with antiresorptive drugs experienced only modest increases of 0-8% in aBMD that 

could not account for the accompanied 15-60% drop in vertebral fracture occurrence 

[21-24,117].  In fact, regression models from these experiments predicted only 4% and 

16% of the reduction in fracture risk for raloxifene and alendronate therapy, 

respectively [24,117].  Therefore, DXA aBMD and T-score alone do not sufficiently 

evaluate the risk of fracture, at least for changes in bone density associated with 

antiresorptive drugs.  Clinically, our ability to measure additional parameters that may 

correlate with fracture risk is limited.  However, laboratory methods allow us to 

examine the relative role of bone mass, architecture, and material properties. 
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Laboratory Characterization of Bone Mass and Microarchitecture 

Three-dimensional measurements of cancellous bone mass and structure may 

provide additional information to improve fracture prediction.  Cancellous bone mass 

is typically measured by either bone volume fraction (BV/TV), which is the volume of 

bone tissue present within the total volume of interest, or by apparent bone mineral 

density (appBMD), which is the amount of bone tissue present within the total 

volume.  Additionally, tissue bone mineral density (tisBMD), which is the amount of 

bone tissue within only the bone volume, can be computed as the product of BV/TV 

and appBMD.  Apparent bone density has been used to predict bone strength and 

apparent modulus using empirical formulations [12,33,47,105,108].  Regardless of the 

relationship used, apparent BMD and BV/TV obtained experimentally or from micro-

computed tomography (microCT) explained 60-85% of the variability in compressive 

elastic modulus and ultimate stress for human cancellous bone [59,61,66,68,80].  

Because cancellous bone ash fraction impacts bone strength and modulus more than 

volume fraction [44], appBMD and BV/TV may relate to bone mechanical properties 

differently.   

Cancellous microarchitecture also plays a key role in the structural competence 

of bone.  As early as the mid-19th century, increased fracture incidence was observed 

in older patients with thinning bone [19].  Therefore, characterizing the cancellous 

bone structure is important for understanding the relationship between architecture and 

mechanical properties.  Similar to bone mass measures, architecture parameters have 

also been experimentally correlated with elastic mechanical properties [20,35,36,53, 

95,136].  Independent of apparent density, bone regions with different architectures 

exhibited variable elastic mechanical properties that differed by over 50% [132].   

Based on studies using two-dimensional serial sectioning techniques, trabecular 

orientation and connectivity correlated with cancellous bone strength [36,103,129].  In 
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sheep femoral bone assessed with microCT, architecture indices explained 10-70% of 

the variation in compressive ultimate strength [79].  A static histomorphometry study 

indicated that some of the architecture-strength correlations also hold true in human 

vertebral bone [126]. 

Early assessments of cancellous bone morphology were based on two-

dimensional microscopy sections and modeled the structure as a set of parallel plates, 

but this approach was based on underlying geometric assumptions [98].  The parallel-

plate model had two degrees of freedom, the plate thickness and separation, which 

were held constant throughout the model.  Basic stereological parameters were 

computed from estimates of the bone volume and surface area.  Parameters included 

trabecular thickness (Tb.Th), defined as the mean plate thickness, trabecular 

separation (Tb.Sp), defined as the mean plate separation, and trabecular number 

(Tb.N), defined as the mean plate density.  The plate model did not accurately capture 

the complex structure of cancellous bone, which is composed of both trabecular rods 

and plates distributed non-uniformly throughout the volume [26,45]  Other variations 

on the plate model were also tried, but the accuracy of all two-dimensional techniques 

were highly dependent on the validity of the geometric model and its assumptions. 

Due to recent improvements in high-resolution tomographic imaging, cancellous 

bone architecture can now be characterized in three dimensions and with fewer 

assumptions than with two-dimensional techniques [30,116].  MicroCT provides a 

quantitative assessment of cancellous bone architecture and tissue mineral density for 

small ex vivo samples (on the order of 40 mm x 40 mm x 40 mm) (Figure 1.2).  

Because microCT involves a relatively large radiation dose, scans are not suitable for 

in vivo clinical use and require the invasive retrieval of a bone biopsy.  The resolution 

for microCT is much higher than for DXA, allowing measurements down to 0.010 mm 
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for small bone samples and therefore provides a detailed three-dimensional spatial 

mapping of cancellous bone architecture and mineralization. 
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Figure 1.2.  (a) Volume of human vertebral cancellous bone (∅8.25 mm x 8 mm) 
scanned with micro-computed tomography (microCT) and reconstructed at an isotropic 
voxel resolution of 17 μm.  (b) Frequency histogram of X-ray attenuation (measured in 
Hounsfield Units = HU) across all voxels of the microCT scan, which can be converted 
to tissue mineral density. 

 

Three-dimensional methods for characterizing bone morphology eliminate the 

need for an assumed model structure and directly measure architecture parameters 

from reconstructed image data [46].  Direct measurement of trabecular thickness 

(Tb.Th*) is computed by fitting maximum-sized spheres to the bone structure.  For 

each bone voxel, the local Tb.Th* is computed as the Euclidian distance to the nearest 

non-bone voxel, which is equivalent to finding the radius of a sphere centered on the 

bone voxel and enlarged to fill the trabecular structure without extending past the 

structure boundary.  Applying this distance transformation to all bone voxels creates a 

distance map of the distribution of local thicknesses.  Similarly, the distribution of 
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direct trabecular separation (Tb.Sp*) is calculated by fitting maximum-sized spheres 

centered on non-bone voxels to the marrow space.   

Cancellous bone is anisotropic, and the overall material behavior is governed by 

the trabecular geometry and orientation.  Specifically, apparent density and trabecular 

orientations can be analytically related to cancellous bone stiffness [20] and 

experimentally explain 72-94% of the variability in the elastic constants [130].  

Trabecular anisotropy is characterized by the mean intercept length (MIL), which is a 

measure of the mean distance between adjacent trabecular surfaces computed for 

various directions [43,133,142].  By counting the number of intersections between 

bone-marrow interfaces and a superimposed test grid of parallel lines with a particular 

orientation, the MIL for that orientation of the trabecular structure is calculated from 

the ratio of the total line length of the grid to the number of intersections.  To compute 

the overall three-dimensional MIL, the test grid is rotated through a number of random 

orientations in all three dimensions, and the planar MIL is computed for each.  These 

planar MILs are plotted in a three-dimensional polar plot, and the points are fit to an 

ellipsoid, which can be expressed as a second-rank fabric tensor.  The eigenvectors of 

the fabric tensor represent the principal directions of the trabecular structure, and the 

eigenvalues represent the principal three-dimensional MILs.  In addition, the 

anisotropy ratio is computed as the ratio of the largest to smallest principal MIL.  A 

minimum of 200 random orientations of a test grid with a maximum spacing of 0.2 

mm was deemed necessary to accurately assess the MIL [121].   

As mentioned previously, both apparent and tissue properties contribute to the 

mechanical performance of cancellous bone.  Just as the apparent-level material 

behavior of cancellous bone is governed by the mass and microarchitecture of 

trabeculae, the tissue material behavior is determined by the mineral content and 
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arrangement of ultrastructure constituents.  The collective role of bone mass, 

architecture, and tissue mineral properties (or variations in any of the three) in 

cancellous bone structural behavior cannot be fully examined using currently available 

imaging or testing techniques.  In particular, the biomechanical effects of gradients in 

bone tissue modulus need to be examined. 

 

Simulation of Bone Structure and Material Properties 

Computer models can non-invasively and non-destructively simulate variations 

in material properties and investigate their effect on apparent and tissue-level 

mechanical behavior, allowing insight into the biomechanical effects of age-related 

bone degradation and treatments.  Early analytical models employed a simple cellular 

solid analysis to study the relationship between apparent modulus (or strength) and 

appBMD or BV/TV [33], although the analysis could also be extended to quantitative 

architecture measures or tissue material properties.  The basic premise was that the 

mechanical behavior of a large group of periodically-spaced unit cells with identical 

morphology would sufficiently describe the apparent-level behavior of the overall 

structure.  Therefore, the behavior of only one unit cell needed to be analyzed for a 

given cell geometry, loading direction, and failure mode (e.g., elastic buckling, brittle 

fracture, or plastic yielding) [57].  However, such simplistic models, which inherently 

require geometric assumptions, do not capture the true architecture of cancellous bone 

and thus cannot assess the effect of geometric and material heterogeneity. 

Idealized finite element (FE) models also used the cellular solid paradigm and its 

inherent geometric assumptions but incorporated an irregular lattice-type structure to 

better mimic the complex in vivo geometry of cancellous bone [5,39,51,120,144].  

With lattice models, the effect of changes in the cancellous bone architecture is 
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assessed by removing or uniformly thinning trabecular elements and observing the 

resulting changes in mechanical behavior.  Changes in tissue material properties have 

not been evaluated with these models.  Because each trabecula is modeled as a single 

element, lattice-type FE models cannot capture local gradients in tissue material 

properties or even minute details in trabecular architecture. 

MicroCT scans can accurately capture both architecture [30] and mineral content 

throughout an entire cancellous bone sample.  Therefore, microCT-based FE models, 

which are generated by converting each voxel into a cubic finite element, can be used 

to couple the geometry of the bone structure and the material properties of the bone 

tissue.  Voxel-based models more closely mimic the true bone structure and reduce the 

need for geometric and material assumptions (Figure 1.3).  To date, they have 

primarily been used to examine the contribution of microarchitecture to the structural 

behavior of cancellous bone, and most have assumed isotropic and homogeneous 

material properties [48,53,132,136,137]. 

Voxel-based FE models also provide an opportunity to probe the effects of bone 

tissue heterogeneity on cancellous bone structural behavior.  Initial modeling studies 

did not incorporate measured tissue modulus distributions but either used the mean 

tissue modulus value [48,54,63,92,93,132,138] or assumed a particular spatial 

distribution [50,135].  Modeling non-uniform mineral distributions that varied as a 

function of depth from the trabecular surface altered apparent modulus by as much as 

20% [135].  In addition, independent of trabecular architecture, increasing the 

coefficient of variation in tissue modulus from 0 to 50% and also varying the spatial 

distributions of modulus resulted in a 2.5-24% lower structure apparent modulus [50].  

For a given architecture and bone volume fraction, architecture-based FE models with 

heterogeneous tissue properties predicted lower apparent moduli than models with 
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homogeneous properties.  One limitation to incorporating bone tissue heterogeneity in 

models is the lack of data available to simulate the material gradients accurately. 

 

 
 

Figure 1.3.  Finite-element mesh of human vertebral cancellous bone, generated by 
converting each voxel from a micro-computed tomography scan to an 8-noded 
linear brick element. 

 

Understanding the effect of bone tissue heterogeneity is necessary for accurate 

prediction of the mechanical performance of cancellous bone, but more representative 

property variations are needed.  Recently, systematic variations in tissue mineral 

density were observed from quantitative microCT scans of rabbit cancellous bone 

cubes, where tissue at the trabecular surface was less mineralized than tissue in the 

center of trabeculae [81].  Expressed as a percentage of the CT attenuation for cortical 

bone, the CT attenuation (and, consequently, mineral content) of the cancellous cubes 

decreased from 83% at the center of trabeculae to 68% at the trabecular surfaces.  

Interestingly, the mean CT attenuation was about 80% of the cortical bone attenuation.  

Architecture-based FE models using CT-derived tissue modulus distributions more 
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accurately predicted mechanical behavior than models using a homogeneous modulus 

[10].  Specifically, FE models with a homogeneous tissue modulus only explained 

75% of the variation in experimental apparent modulus, while adding material 

heterogeneity increased this explanatory power up to 88%.  Therefore, models that do 

not capture this marked reduction in tissue mineral content with proximity to the 

trabecular surface may not capture the actual extent of heterogeneity present in 

cancellous bone tissue. 

 

Age and Sex Effects 

Given the relatively higher incidence of fragility fractures in women, 

understanding the sex-related differences in bone mass, architecture, and material 

properties with aging is critical for improved diagnosis and treatment of osteoporosis.  

For both sexes, volume fraction in human cancellous bone declined steadily 

throughout life [2,27,84,125], as did ash density [86,87].  However, histomorphometry 

studies hinted that sex had minimal or no impact on this relationship [2,6,29,84,125, 

141].  Although ash density and volume fraction may change similarly with age for 

both sexes, the mechanisms of bone loss seem to be different and are at least partially 

related to the sex-specific changes in the cancellous architecture.  Regardless of sex, 

mean trabecular thickness as measured with traditional histomorphometry techniques 

decreased with age for vertebral bone [27,45,84,125].  For men, decreased bone 

volume resulted more from progressive thinning of trabeculae while maintaining the 

trabecular network, but for women, it resulted mainly from a loss of trabeculae (and 

consequently an increase in trabecular separation) while maintaining the thickness of 

the remaining trabeculae [2].  Nevertheless, trabecular separation appears to increase 

with age for both sexes, primarily through the loss of trabeculae [6,83,84,123,125]. 
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Sex-specificity in the changes of cancellous bone mechanical properties with age 

has not been clearly established.  In one study, the compressive ultimate strength of 

cancellous bone samples from human spines decreased with age, although the 

confounding contributions of sex and varying ash density were not assessed [141].  

Another study showed a clear degradation in bone mechanical properties with age 

independent of ash density.  Even after normalizing by ash density, apparent modulus, 

ultimate stress, and energy absorption to failure decreased significantly with age in 

human vertebrae [87]. 

Understanding the capacity of bone imaging techniques to predict fragility 

fracture depends vitally on understanding how the various bone metrics correlate with 

each other and especially with mechanical properties.  In addition, given that sex 

differences exist between age-related changes in bone mass, disparately resulting in 

more fractures in women, similar trends should also be found in bone architecture, 

tissue mineral composition and distribution, and/or apparent material properties.  

Normal spatial variability in the tissue properties of cancellous bone has been 

observed using various experimental techniques.  Although bone tissue composition 

and distribution are altered with osteoporosis [64,99], the effect of such variations on 

structural behavior is not well understood, particularly with respect to sex and degree 

of osteoporotic bone degradation.   

 

Study Objectives and Approaches 

Successful diagnosis and treatment of osteoporosis depends critically on 

understanding the mechanics of cancellous bone and the determinants of fragility 

fracture.  The load-bearing function of cancellous bone depends on several factors, 

including bone mass or density, microarchitecture, and tissue material quality.  While 
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bone mass and density are routinely assessed using a clinical DXA scan, these 

measures only account for 10-70% of the variability in stiffness and strength and are 

somewhat distorted from the fan-beam shape of the X-ray beam.  In addition, more 

than half of fragility fractures occur in women with a normal DXA T-score.   

Because DXA scans do not directly assess trabecular architecture or tissue 

material properties, other diagnostic tools may be needed.  High-resolution microCT 

scans precisely characterize both trabecular architecture and tissue mineral 

distribution, which is related to spatial material variations.  The impact of architectural 

variations on cancellous bone structural behavior has been examined using 

microstructure-based models developed from high-resolution imaging.  However, the 

contribution of spatial variations in material properties is not well understood and 

needs to be investigated.  Therefore, the objectives of this study were 1) to quantify 

bone mineral measurement errors associated with DXA fan-beam magnification; 2) to 

examine the ability of DXA to predict bone mineral and microarchitecture measures 

from microCT and bone material properties from structural testing; and 3) to 

investigate the effect of bone tissue heterogeneity on the mechanical performance of 

cancellous bone using finite element models. 

For the first objective, DXA fan-beam magnification was examined by scanning 

aluminum rods of different shapes (square, rectangular, solid round, and hollow 

round) at four distances above the X-ray source in two orientations, with rods aligned 

parallel and perpendicular to the longitudinal axis of the scanning table [18].  

Projected area, BMC, and areal BMD were assessed for each scan, and the variation of 

each of these parameters with distance from the X-ray source was computed.  Our 

published results showed that for round rods, which most closely mimic the geometry 

of long bones, projected area and BMC decreased 1.6-1.8% per centimeter increase in 
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distance from the X-ray source.  The resulting 7% variation in projected area and 

BMC and 2% variation in areal BMD could be problematic in clinical studies using 

DXA scans.  Any increases in girth over time would increase a bone’s distance from 

the fan-beam source, artificially reduce area and BMC measurements, and therefore 

obscure any legitimate gains associated with the study intervention.  Understanding 

and quantifying the degree of the fan-beam error is the necessary first step to 

correcting the DXA data. 

For the second objective, human cadaver lumber spine segments were scanned 

using clinical DXA to determine areal BMD and T-score.  Cancellous bone cores were 

machined from the center of the T12 and L2 vertebrae, and architecture and mineral 

composition and distribution were assessed using microCT.  Following microCT, the 

ends of the cores were glued into brass caps, and the samples were monotonically 

compressed to failure to compute the apparent material properties.  Measures from 

DXA and microCT were compared to those from mechanical testing to determine the 

ability of clinical and laboratory bone characterization techniques to predict bone 

strength and thus the likelihood of fragility fracture.  The effect of sex on these 

comparisons was also examined.  DXA and microCT mass measurements were 

similarly well-correlated with apparent modulus and strength in females but not in 

males.  However, DXA could not account for variations in architecture found by 

microCT, particularly by tissue BMD in the thoracic spine.  Therefore, microCT scans 

may be a superior alternative for assessing bone strength in the thoracic spine of both 

males and females and could replace DXA scans altogether if measurements could be 

made non-invasively, accurately, and affordably. 

Finally, for the third objective, architecture- and material-based FE models were 

developed to investigate the ability of material heterogeneity to improve predictions of 
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the mechanical behavior of human vertebral cancellous bone.  Homogeneous and 

various heterogeneous material models were examined.  We showed that FE models 

were improved by some degree of heterogeneity, whether across subjects to account 

for interspecimen variability or within subjects to account for intraspecimen 

variability.  Compared to uniform homogeneous models, heterogeneous and specimen-

specific homogeneous models increased the explanatory power for apparent modulus 

by 13% (increased r2 from 0.29 to 0.42) and improved the predicted values by 217% 

(increased slope from 0.36 to 0.78).  Apparent tissue stiffness was the same for 

heterogeneous and specimen-specific homogeneous models, which had tissue moduli 

that were mean-matched for each subject.  Therefore, the mean tissue modulus, rather 

than its distribution, appears to drive the overall mechanical behavior for vertebral 

cancellous bone.  Heterogeneous and specimen-specific homogeneous models both 

provide conservative estimates of apparent stiffness and may be useful for predicting 

mechanical behavior in the aging population. 

22 



 

References 

 

1. (None) (1996) Bone density reference data. In: Favus MJ, Ed. Primer on the 

Metabolic Bone Diseases and Disorders of Mineral Metabolism. Lippincott 

Williams & Wilkins: Philadelphia. pp. 483. 

2. Aaron JE, Makins NB, and Sagreiya K (1987) The microanatomy of trabecular 

bone loss in normal aging men and women. Clin Orthop Relat Res (215):260-71. 

3. Barden H (1997) Bone mineral density of the spine and femur in normal U.S. 

white females. J Bone Miner Res 12(Suppl. 1):S248. 

4. Barden HS, Settergren D, McClintock C, and Turner CH (2001) Measurement of 

Femur Geometry (HAL) with PRODIGY Is Accurate and Unaffected by 

Magnification. J Bone Miner Res 16(Suppl 1):S345. 

5. Beaupré GS and Hayes WC (1985) Finite element analysis of a three-

dimensional open-celled model for trabecular bone. J Biomech Eng 107(3):249-

56. 

6. Bergot C, Laval-Jeantet AM, Preteux F, and Meunier A (1988) Measurement of 

anisotropic vertebral trabecular bone loss during aging by quantitative image 

analysis. Calcif Tissue Int 43(3):143-9. 

7. Bjarnason K, Hassager C, Svendsen OL, Stang H, and Christiansen C (1996) 

Anteroposterior and lateral spinal DXA for the assessment of vertebral body 

strength: comparison with hip and forearm measurement. Osteoporos Int 

6(1):37-42. 

8. Blake GM, Parker JC, Buxton FM, and Fogelman I (1993) Dual X-ray 

absorptiometry: a comparison between fan beam and pencil beam scans. Br J 

Radiol 66(790):902-6. 

23 



 

9. Bonucci E, Ballanti P, Della Rocca C, Milani S, Lo Cascio V, and Imbimbo B 

(1990) Technical variability of bone histomorphometric measurements. Bone 

Miner 11(2):177-86. 

10. Bourne BC and van der Meulen MC (2004) Finite element models predict 

cancellous apparent modulus when tissue modulus is scaled from specimen CT-

attenuation. J Biomech 37(5):613-21. 

11. Brown TD and Ferguson AB, Jr. (1980) Mechanical property distributions in the 

cancellous bone of the human proximal femur. Acta Orthop Scand 51(3):429-37. 

12. Carter DR and Hayes WC (1977) The compressive behavior of bone as a two-

phase porous structure. J Bone Joint Surg Am 59-A:954-962. 

13. Carter DR, Schwab GH, and Spengler DM (1980) Tensile fracture of cancellous 

bone. Acta Orthop Scand 51(5):733-41. 

14. Cheng XG, Nicholson PH, Boonen S, Lowet G, Brys P, Aerssens J, van der 

Perre G, and Dequeker J (1997) Prediction of vertebral strength in vitro by spinal 

bone densitometry and calcaneal ultrasound. J Bone Miner Res 12(10):1721-8. 

15. Choi K, Kuhn JL, Ciarelli MJ, and Goldstein SA (1990) The elastic moduli of 

human subchondral, trabecular, and cortical bone tissue and the size-dependency 

of cortical bone modulus. J Biomech 23(11):1103-13. 

16. Chrischilles EA, Butler CD, Davis CS, and Wallace RB (1991) A model of 

lifetime osteoporosis impact. Arch Intern Med 151(10):2026-32. 

17. Cody DD, McCubbrey DA, Divine GW, Gross GJ, and Goldstein SA (1996) 

Predictive value of proximal femoral bone densitometry in determining local 

orthogonal material properties. J Biomech 29(6):753-61. 

18. Cole JH, Scerpella TA, and van der Meulen MC (2005) Fan-beam densitometry 

of the growing skeleton: are we measuring what we think we are? J Clin 

Densitom 8(1):57-64. 

24 



 

19. Cooper A. A treatise on dislocations and fractures of the joints. London: 

Longman, Hurst, Rees, Orme, and Brown, 1842. 

20. Cowin SC (1985) The relationship between the elasticity tensor and the fabric 

tensor. Mechanics of Materials 4:137-147. 

21. Cranney A, Tugwell P, Adachi J, Weaver B, Zytaruk N, Papaioannou A, 

Robinson V, Shea B, Wells G, and Guyatt G (2002) Meta-analyses of therapies 

for postmenopausal osteoporosis. III. Meta-analysis of risedronate for the 

treatment of postmenopausal osteoporosis. Endocr Rev 23(4):517-23. 

22. Cranney A, Tugwell P, Zytaruk N, Robinson V, Weaver B, Adachi J, Wells G, 

Shea B, and Guyatt G (2002) Meta-analyses of therapies for postmenopausal 

osteoporosis. IV. Meta-analysis of raloxifene for the prevention and treatment of 

postmenopausal osteoporosis. Endocr Rev 23(4):524-8. 

23. Cranney A, Wells G, Willan A, Griffith L, Zytaruk N, Robinson V, Black D, 

Adachi J, Shea B, Tugwell P, and Guyatt G (2002) Meta-analyses of therapies 

for postmenopausal osteoporosis. II. Meta-analysis of alendronate for the 

treatment of postmenopausal women. Endocr Rev 23(4):508-16. 

24. Cummings SR, Karpf DB, Harris F, Genant HK, Ensrud K, LaCroix AZ, and 

Black DM (2002) Improvement in spine bone density and reduction in risk of 

vertebral fractures during treatment with antiresorptive drugs. Am J Med 

112(4):281-9. 

25. Cummings SR and Melton LJ (2002) Epidemiology and outcomes of 

osteoporotic fractures. Lancet 359(9319):1761-7. 

26. Day JS, Murdoch DJ, and Dumas GA (2000) Calibration of position and angular 

data from a magnetic tracking device. J Biomech 33(8):1039-45. 

27. Dempster DW, Ferguson-Pell MW, Mellish RW, Cochran GV, Xie F, Fey C, 

Horbert W, Parisien M, and Lindsay R (1993) Relationships between bone 

25 



 

structure in the iliac crest and bone structure and strength in the lumbar spine. 

Osteoporos Int 3(2):90-6. 

28. Diaz Curiel M, Carrasco de la Peña JL, Honorato Perez J, Perez Cano R, Rapado 

A, and Ruiz Martinez I (1997) Study of bone mineral density in lumbar spine 

and femoral neck in a Spanish population. Multicentre Research Project on 

Osteoporosis. Osteoporos Int 7(1):59-64. 

29. Dunnill MS, Anderson JA, and Whitehead R (1967) Quantitative histological 

studies on age changes in bone. J Pathol Bacteriol 94(2):275-91. 

30. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, and Kleerekoper M (1989) 

The direct examination of three-dimensional bone architecture in vitro by 

computed tomography. J Bone Miner Res 4(1):3-11. 

31. Gabriel SE, Tosteson AN, Leibson CL, Crowson CS, Pond GR, Hammond CS, 

and Melton LJ, 3rd (2002) Direct medical costs attributable to osteoporotic 

fractures. Osteoporos Int 13(4):323-30. 

32. Gadeleta SJ, Boskey AL, Paschalis E, Carlson C, Menschik F, Baldini T, 

Peterson M, and Rimnac CM (2000) A physical, chemical, and mechanical study 

of lumbar vertebrae from normal, ovariectomized, and nandrolone decanoate-

treated cynomolgus monkeys (Macaca fascicularis). Bone 27(4):541-50. 

33. Gibson LJ (1985) The mechanical behavior of cancellous bone. J Biomech 

18:317-328. 

34. Goldstein SA (1987) The mechanical properties of trabecular bone: dependence 

on anatomic location and function. J Biomech 20(11-12):1055-61. 

35. Goldstein SA, Goulet R, and McCubbrey D (1993) Measurement and 

significance of three-dimensional architecture to the mechanical integrity of 

trabecular bone. Calcif Tissue Int 53:S127-32; discussion S132-3. 

26 



 

36. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, and Feldkamp LA 

(1994) The relationship between the structural and orthogonal compressive 

properties of trabecular bone. J Biomech 27(4):375-89. 

37. Griffiths MR, Noakes KA, and Pocock NA (1997) Correcting the magnification 

error of fan beam densitometers. J Bone Miner Res 12(1):119-23. 

38. Grynpas M (1993) Age and disease-related changes in the mineral of bone. 

Calcif Tissue Int 53 Suppl 1:S57-64. 

39. Guo XE, McMahon TA, Keaveny TM, Hayes WC, and Gibson LJ (1994) Finite 

element modeling of damage accumulation in trabecular bone under cyclic 

loading. J Biomech 27(2):145-55. 

40. Handschin RG and Stern WB (1994) Crystallographic and chemical analysis of 

human bone apatite (Crista Iliaca). Clin Rheumatol 13 Suppl 1:75-90. 

41. Handschin RG and Stern WB (1995) X-ray diffraction studies on the lattice 

perfection of human bone apatite (Crista iliaca). Bone 16(4 Suppl):355S-363S. 

42. Harrigan TP, Jasty M, Mann RW, and Harris WH (1988) Limitations of the 

continuum assumption in cancellous bone. J Biomech 21(4):269-75. 

43. Harrigan TP and Mann RW (1984) Characterization of microstructural 

anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 

19:761-767. 

44. Hernandez CJ, Beaupré GS, Keller TS, and Carter DR (2001) The influence of 

bone volume fraction and ash fraction on bone strength and modulus. Bone 

29(1):74-8. 

45. Hildebrand T, Laib A, Müller R, Dequeker J, and Rüegsegger P (1999) Direct 

three-dimensional morphometric analysis of human cancellous bone: 

microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner 

Res 14(7):1167-74. 

27 



 

46. Hildebrand T and Rüegsegger P (1997) A new method for the model-

independent assessment of thickness in three-dimensional images. J Microsc 

185:67-75. 

47. Hodgskinson R and Currey JD (1992) Young's modulus, density and material 

properties in cancellous bone over a large density range. J Mater Sci Mater Med 

3(377-381) 

48. Hou FJ, Lang SM, Hoshaw SJ, Reimann DA, and Fyhrie DP (1998) Human 

vertebral body apparent and hard tissue stiffness. J Biomech 31(11):1009-15. 

49. Hui SL, Slemenda CW, and Johnston CC, Jr. (1988) Age and bone mass as 

predictors of fracture in a prospective study. J Clin Invest 81(6):1804-9. 

50. Jaasma MJ, Bayraktar HH, Niebur GL, and Keaveny TM (2002) Biomechanical 

effects of intraspecimen variations in tissue modulus for trabecular bone. J 

Biomech 35(2):237-46. 

51. Jensen KS, Mosekilde L, and Mosekilde L (1990) A model of vertebral 

trabecular bone architecture and its mechanical properties. Bone 11(6):417-23. 

52. Johnell O (1997) The socioeconomic burden of fractures: today and in the 21st 

century. Am J Med 103(2A):20S-25S; discussion 25S-26S. 

53. Kabel J, Odgaard A, van Rietbergen B, and Huiskes R (1999) Connectivity and 

the elastic properties of cancellous bone. Bone 24(2):115-120. 

54. Kabel J, van Rietbergen B, Dalstra M, Odgaard A, and Huiskes R (1999) The 

role of an effective isotropic tissue modulus in the elastic properties of 

cancellous bone. J Biomech 32(7):673-80. 

55. Kanis JA, Melton LJ, 3rd, Christiansen C, Johnston CC, and Khaltaev N (1994) 

The diagnosis of osteoporosis. J Bone Miner Res 9(8):1137-41. 

56. Kaplan SJ, Hayes WC, Stone JL, and Beaupre GS (1985) Tensile strength of 

bovine trabecular bone. J Biomech 18(9):723-7. 

28 



 

57. Keaveny TM (2001) Strength of trabecular bone. In: Cowin SC, Ed. Bone 

Mechanics Handbook. CRC Press: Boca Raton. pp. 16-1-16-42. 

58. Keaveny TM, Guo XE, Wachtel EF, McMahon TA, and Hayes WC (1994) 

Trabecular bone exhibits fully linear elastic behavior and yields at low strains. J 

Biomech 27:1127-1136. 

59. Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, and Lou A (1997) 

Systematic and random errors in compression testing of trabecular bone. J 

Orthop Res 15(1):101-10. 

60. Keaveny TM, Wachtel EF, Ford CM, and Hayes WC (1994) Differences 

between the tensile and compressive strengths of bovine tibial trabecular bone 

depend on modulus. J Biomech 27(9):1137-46. 

61. Kopperdahl DL and Keaveny TM (1998) Yield strain behavior of trabecular 

bone. J Biomech 31(7):601-8. 

62. Kuhn JL, Goldstein SA, Choi K, London M, Feldkamp LA, and Matthews LS 

(1989) Comparison of the trabecular and cortical tissue moduli from human iliac 

crests. J Orthop Res 7(6):876-884. 

63. Ladd AJ, Kinney JH, Haupt DL, and Goldstein SA (1998) Finite-element 

modeling of trabecular bone: comparison with mechanical testing and 

determination of tissue modulus. J Orthop Res 16(5):622-628. 

64. Laib A, Kumer JL, Majumdar S, and Lane NE (2001) The temporal changes of 

trabecular architecture in ovariectomized rats assessed by MicroCT. Osteoporos 

Int 12(11):936-41. 

65. Lehmann R, Wapniarz M, Randerath O, Kvasnicka HM, John W, Reincke M, 

Kutnar S, Klein K, and Allolio B (1995) Dual-energy X-ray absorptiometry at 

the lumbar spine in German men and women: a cross-sectional study. Calcif 

Tissue Int 56(5):350-4. 

29 



 

66. Linde F, Gøthgen CB, Hvid I, and Pongsoipetch B (1988) Mechanical properties 

of trabecular bone by a non-destructive compression testing approach. Eng Med 

17(1):23-9. 

67. Linde F and Hvid I (1989) The effect of constraint on the mechanical behaviour 

of trabecular bone specimens. J Biomech 22(5):485-90. 

68. Linde F, Hvid I, and Pongsoipetch B (1989) Energy absorptive properties of 

human trabecular bone specimens during axial compression. J Orthop Res 

7(3):432-9. 

69. Lochmüller EM, Eckstein F, Kaiser D, Zeller JB, Landgraf J, Putz R, and 

Steldinger R (1998) Prediction of vertebral failure loads from spinal and femoral 

dual-energy X-ray absorptiometry, and calcaneal ultrasound: an in situ analysis 

with intact soft tissues. Bone 23(5):417-24. 

70. Löfman O, Larsson L, Ross I, Toss G, and Berglund K (1997) Bone mineral 

density in normal Swedish women. Bone 20(2):167-74. 

71. Lotz JC, Gerhart TN, and Hayes WC (1990) Mechanical properties of trabecular 

bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 

14(1):107-14. 

72. Malluche HH, Meyer W, Sherman D, and Massry SG (1982) Quantitative bone 

histology in 84 normal American subjects. Micromorphometric analysis and 

evaluation of variance in iliac bone. Calcif Tissue Int 34(5):449-55. 

73. Martin RB, Burr DB, and Sharkey NA. Skeletal Tissue Mechanics. New York: 

Springer, 1998. 

74. Melton LJ, 3rd (1993) Hip fractures: a worldwide problem today and tomorrow. 

Bone 14:S1-8. 

75. Melton LJ, 3rd (2000) Who has osteoporosis? A conflict between clinical and 

public health perspectives. J Bone Miner Res 15(12):2309-14. 

30 



 

76. Melton LJ, 3rd, Chrischilles EA, Cooper C, Lane AW, and Riggs BL (1992) 

Perspective. How many women have osteoporosis? J Bone Miner Res 7(9):1005-

10. 

77. Miller LM, Tibrewala J, and Carlson CS (2000) Examination of bone chemical 

composition in osteoporosis using fluorescence-assisted synchrotron infrared 

microspectroscopy. Cell Mol Biol (Noisy-le-grand) 46(6):1035-44. 

78. Miller PD, Siris ES, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, 

Chen YT, Berger ML, Santora AC, and Sherwood LM (2002) Prediction of 

fracture risk in postmenopausal white women with peripheral bone densitometry: 

evidence from the National Osteoporosis Risk Assessment. J Bone Miner Res 

17(12):2222-30. 

79. Mittra E, Rubin C, and Qin YX (2005) Interrelationship of trabecular mechanical 

and microstructural properties in sheep trabecular bone. J Biomech 38(6):1229-

37. 

80. Morgan EF, Bayraktar HH, and Keaveny TM (2003) Trabecular bone modulus-

density relationships depend on anatomic site. J Biomech 36(7):897-904. 

81. Morgan TG, van der Meulen MCH, and Bourne BC (2002) Density versus depth 

from trabecular surface measured by quantitative microCT. Trans Orthop Res 

Soc 27:110. 

82. Moro M, Hecker AT, Bouxsein ML, and Myers ER (1995) Failure load of 

thoracic vertebrae correlates with lumbar bone mineral density measured by 

DXA. Calcif Tissue Int 56(3):206-9. 

83. Mosekilde L (1988) Age-related changes in vertebral trabecular bone 

architecture--assessed by a new method. Bone 9(4):247-50. 

84. Mosekilde L (1989) Sex differences in age-related loss of vertebral trabecular 

bone mass and structure -- biomechanical consequences. Bone 10:425-432. 

31 



 

85. Mosekilde L and Mosekilde L (1986) Normal vertebral body size and 

compressive strength:  relations to age and to vertebral and iliac trabecular bone 

compressive strength. Bone 7:207-12. 

86. Mosekilde L and Mosekilde L (1990) Sex differences in age-related changes in 

vertebral body size, density and biomechanical competence in normal 

individuals. Bone 11:67-73. 

87. Mosekilde L, Mosekilde L, and Danielsen CC (1987) Biomechanical 

competence of vertebral trabecular bone in relation to ash density and age in 

normal individuals. Bone 8(2):79-85. 

88. Myers ER and Wilson SE (1997) Biomechanics of osteoporosis and vertebral 

fracture. Spine 22(24):25S-31S. 

89. Myers ER, Yano KA, Moro M, Silva MJ, and Hayes WC (1996) Lumbar bone 

mineral density predicts thoracolumbar failure load in compression and flexion. 

Trans Orthop Res Soc 21:645. 

90. National Osteoporosis Foundation (2002) America's Bone Health: The State of 

Osteoporosis and Low Bone Mass in Our Nation. Washington D.C. 

91. Neil JL, Demos TC, Stone JL, and Hayes WC (1983) Tensile and compressive 

properties of vertebral trabecular bone. Trans Orthop Res Soc 8:344. 

92. Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, and Keaveny TM (2000) High-

resolution finite element models with tissue strength asymmetry accurately 

predict failure of trabecular bone. J Biomech 33(12):1575-83. 

93. Niebur GL, Yuen JC, Burghardt AJ, and Keaveny TM (2001) Sensitivity of 

damage predictions to tissue level yield properties and apparent loading 

conditions. J Biomech 34(5):699-706. 

94. Ninomiya JT, Tracy RP, Calore JD, Gendreau MA, Kelm RJ, and Mann KG 

(1990) Heterogeneity of human bone. J Bone Miner Res 5(9):933-8. 

32 



 

95. Odgaard A, Kabel J, van Rietbergen B, Dalstra M, and Huiskes R (1997) Fabric 

and elastic principal directions of cancellous bone are closely related. J Biomech 

30(5):487-495. 

96. Odgaard A and Linde F (1991) The underestimation of Young's modulus in 

compressive testing of cancellous bone specimens. J Biomech 24(8):691-8. 

97. Ott SM (1996) Theoretical and methodological approach. In: Bilezikian J, Raisz 

LG, and Rodan GR, Ed. Principles of Bone Biology. Academic Press: San 

Diego, CA. pp. 231-241. 

98. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, and Rao 

DS (1983) Relationships between surface, volume, and thickness of iliac 

trabecular bone in aging and in osteoporosis. Implications for the microanatomic 

and cellular mechanisms of bone loss. J Clin Invest 72(4):1396-409. 

99. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, and Boskey AL (1997) FTIR 

microspectroscopic analysis of human iliac crest biopsies from untreated 

osteoporotic bone. Calcif Tissue Int 61(6):487-92. 

100. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, and Boskey AL (1997) FTIR 

microspectroscopic analysis of normal human cortical and trabecular bone. 

Calcif Tissue Int 61(6):480-6. 

101. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, and Boskey AL 

(1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue 

Int 59(6):480-7. 

102. Pocock NA, Noakes KA, Majerovic Y, and Griffiths MR (1997) Magnification 

error of femoral geometry using fan beam densitometers. Calcif Tissue Int 

60(1):8-10. 

103. Pugh JW, Rose RM, and Radin EL (1973) A structural model for the mechanical 

behavior of trabecular bone. J Biomech 6(6):657-70. 

33 



 

104. Raux P, Townsend PR, Miegel R, Rose RM, and Radin EL (1975) Trabecular 

architecture of the human patella. J Biomech 8(1):1-7. 

105. Rho JY, Ashman RB, and Turner CH (1993) Young's modulus of trabecular and 

cortical bone material: ultrasonic and microtensile measurements. J Biomech 

26(2):111-119. 

106. Rho JY, Roy ME, 2nd, Tsui TY, and Pharr GM (1999) Elastic properties of 

microstructural components of human bone tissue as measured by 

nanoindentation. J Biomed Mater Res 45(1):48-54. 

107. Rho JY, Tsui TY, and Pharr GM (1997) Elastic properties of human cortical and 

trabecular lamellar bone measured by nanoindentation. Biomaterials 

18(20):1325-1330. 

108. Rice JC, Cowin SC, and Bowman JA (1988) On the dependence of the elasticity 

and strength of cancellous bone on apparent density. J Biomech 21(2):155-68. 

109. Riggs BL and Melton LJ, 3rd (1986) Involutional osteoporosis. N Engl J Med 

314(26):1676-86. 

110. Riggs BL and Melton LJ, 3rd (1995) The worldwide problem of osteoporosis: 

insights afforded by epidemiology. Bone 17(5):505S-511S. 

111. Riggs BL, Wahner HW, Seeman E, Offord KP, Dunn WL, Mazess RB, Johnson 

KA, and Melton LJ, 3rd (1982) Changes in bone mineral density of the proximal 

femur and spine with aging. Differences between the postmenopausal and senile 

osteoporosis syndromes. J Clin Invest 70(4):716-23. 

112. Rohl L, Larsen E, Linde F, Odgaard A, and Jorgensen J (1991) Tensile and 

compressive properties of cancellous bone. J Biomech 24(12):1143-9. 

113. Rohlmann A, Zilch H, Bergmann G, and Kolbel R (1980) Material properties of 

femoral cancellous bone in axial loading. Part I: Time independent properties. 

Arch Orthop Trauma Surg 97(2):95-102. 

34 



 

114. Ross PD, Davis JW, Epstein RS, and Wasnich RD (1991) Pre-existing fractures 

and bone mass predict vertebral fracture incidence in women. Ann Intern Med 

114(11):919-23. 

115. Ross PD, Davis JW, Vogel JM, and Wasnich RD (1990) A critical review of 

bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46(3):149-

61. 

116. Rüegsegger P, Koller B, and Müller R (1996) A microtomographic system for 

the nondestructive evaluation of bone architecture. Calcif Tissue Int 58(1):24-9. 

117. Sarkar S, Mitlak BH, Wong M, Stock JL, Black DM, and Harper KD (2002) 

Relationships between bone mineral density and incident vertebral fracture risk 

with raloxifene therapy. J Bone Miner Res 17(1):1-10. 

118. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman 

A, Uitterlinden AG, van Leeuwen JP, and Pols HA (2004) Fracture incidence 

and association with bone mineral density in elderly men and women: the 

Rotterdam Study. Bone 34(1):195-202. 

119. Shypailo RJ, Posada JK, and Ellis KJ (1998) Whole-body phantoms with 

anthropomorphic-shaped skeletons for evaluation of dual-energy X-ray 

absorptiometry measurements. Appl Radiat Isot 49(5-6):503-5. 

120. Silva MJ and Gibson LJ (1997) Modeling the mechanical behavior of vertebral 

trabecular bone: effects of age-related changes in microstructure. Bone 

21(2):191-9. 

121. Simmons CA and Hipp JA (1997) Method-based differences in the automated 

analysis of the three-dimensional morphology of trabecular bone. J Bone Miner 

Res 12(6):942-7. 

122. Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, 

Berger ML, Santora AC, and Sherwood LM (2001) Identification and fracture 

35 



 

outcomes of undiagnosed low bone mineral density in postmenopausal women: 

results from the National Osteoporosis Risk Assessment. JAMA 286(22):2815-

22. 

123. Snyder BD, Piazza S, Edwards WT, and Hayes WC (1993) Role of trabecular 

morphology in the etiology of age-related vertebral fractures. Calcif Tissue Int 

53 Suppl 1:S14-22. 

124. Stone JL, Beaupre GS, and Hayes WC (1983) Multiaxial strength characteristics 

of trabecular bone. J Biomech 16(9):743-52. 

125. Thomsen JS, Ebbesen EN, and Mosekilde L (2000) A new method of 

comprehensive static histomorphometry applied on human lumbar vertebral 

cancellous bone. Bone 27(1):129-38. 

126. Thomsen JS, Ebbesen EN, and Mosekilde L (2002) Predicting human vertebral 

bone strength by vertebral static histomorphometry. Bone 30(3):502-8. 

127. Tothill P and Hannan WJ (2000) Comparisons between Hologic QDR 1000W, 

QDR 4500A, and Lunar Expert dual-energy X-ray absorptiometry scanners used 

for measuring total body bone and soft tissue. Ann NY Acad Sci 904:63-71. 

128. Tothill P, Hannan WJ, and Wilkinson S (2001) Comparisons between a pencil 

beam and two fan beam dual energy X-ray absorptiometers used for measuring 

total body bone and soft tissue. Br J Radiol 74(878):166-76. 

129. Townsend PR, Raux P, Rose RM, Miegel RE, and Radin EL (1975) The 

distribution and anisotropy of the stiffness of cancellous bone in the human 

patella. J Biomech 8(6):363-7. 

130. Turner CH, Cowin SC, Rho JY, Ashman RB, and Rice JC (1990) The fabric 

dependence of the orthotropic elastic constants of cancellous bone. J Biomech 

23(6):549-61. 

36 



 

131. Turner CH, Rho J, Takano Y, Tsui TY, and Pharr GM (1999) The elastic 

properties of trabecular and cortical bone tissues are similar: results from two 

microscopic measurement techniques. J Biomech 32(4):437-41. 

132. Ulrich D, Hildebrand T, van Rietbergen B, Müller R, and Rüegsegger P (1997) 

The quality of trabecular bone evaluated with micro-computed tomography, 

FEA and mechanical testing. Stud Health Technol Inform 40:97-112. 

133. Underwood EE. Quantitative Stereology. Reading, MA: Addison-Wesley, 1970. 

134. U.S. Department of Health and Human Services, Office of the Surgeon General 

(2004) Bone Health and Osteoporosis: A Report of the Surgeon General. 

Rockville, MD. 

135. van der Linden JC, Birkenhager-Frenkel DH, Verhaar JA, and Weinans H 

(2001) Trabecular bone's mechanical properties are affected by its non-uniform 

mineral distribution. J Biomech 34(12):1573-80. 

136. van Rietbergen B, Majumdar S, Pistoia W, Newitt DC, Kothari M, Laib A, and 

Rüegsegger P (1998) Assessment of cancellous bone mechanical properties from 

micro-FE models based on micro-CT, pQCT and MR images. Technol Health 

Care 6(5-6):413-20. 

137. van Rietbergen B, Weinans H, and Huiskes R (1997) Prospects of computer 

models for the prediction of osteoporotic bone fracture risk. Stud Health Technol 

Inform 40:25-32. 

138. van Rietbergen B, Weinans H, Huiskes R, and Odgaard A (1995) A new method 

to determine trabecular bone elastic properties and loading using 

micromechanical finite-element models. J Biomech 28(1):69-81. 

139. Vega E, Bagur A, and Mautalen CA (1993) Densidad mineral âosea en mujeres 

osteoporâoticas y normales de Buenos Aires. Medicina 53(3):211-6. 

37 



 

140. Vrijhoef MM and Driessens FC (1971) On the interaction between specimen and 

testing machine in mechanical testing procedures. J Biomech 4(4):233-8. 

141. Weaver JK and Chalmers J (1966) Cancellous bone: its strength and changes 

with aging and an evaluation of some methods for measuring its mineral content. 

J Bone Joint Surg Am 48(2):289-98. 

142. Whitehouse WJ (1974) The quantitative morphology of anisotropic trabecular 

bone. J Microsc 101:153-268. 

143. Yamada H. Strength of Biological Materials. Huntington: Krieger, 1973. 

144. Yeh OC and Keaveny TM (1999) Biomechanical effects of intraspecimen 

variations in trabecular architecture: a three-dimensional finite element study. 

Bone 25(2):223-8. 

145. Zysset PK, Guo XE, Hoffler CE, Moore KE, and Goldstein SA (1999) Elastic 

modulus and hardness of cortical and trabecular bone lamellae measured by 

nanoindentation in the human femur. J Biomech 32(10):1005-1012. 

 

 

38 



 

CHAPTER 2 

 

FAN-BEAM DENSITOMETRY OF THE GROWING SKELETON 

ARE WE MEASURING WHAT WE THINK WE ARE?* 

 

Introduction 

Fan-beam densitometers are frequently used to assess bone mass in children and 

adults.  They are often preferred to pencil-beam densitometers because of shorter scan 

times and higher spatial resolution.  The isocentric acquisition method, which involves 

a single pass of the fan-shaped X-ray beam longitudinally along the site of interest, is 

used in wide-angle fan-beam machines and minimizes the amount of data overlap or 

under-sampling that may occur with a rectilinear acquisition technique used in pencil-

beam machines.  However, the geometry of the fan beam produces a magnification 

error in areal bone measures that decreases with distance from the X-ray source [13].  

An object lying closer to the source is hit with a broader angle of X-rays, producing a 

wider incidence of transmitted and deflected X-rays on the detector array (Figure 2.1).  

Thus, the projected area increases as the distance between the object and the X-ray 

source decreases. 

Prior studies of wide-angle fan-beam densitometers have shown linear variations 

of mass [27,28], observed width [13], and hip axis length [1,23] with distance from the 

X-ray source.  Projected bone area (A, cm2), bone mineral content (BMC, g), and areal  

 

 
 
* Reprinted from J Clin Densitom, Vol. 8, Cole JH, Scerpella TA, and van der Meulen 
MCH, Fan-beam densitometry of the growing skeleton: are we measuring what we 
think we are?, pp. 57-64, Copyright (2005), with permission from the International 
Society for Clinical Densitometry. 
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Figure 2.1.  The effect of fan-beam magnification increases with proximity to the X-
ray source.  An object lying closer to the source has a larger detected width (W1) than 
does an identical object positioned farther away from the source (W2). 

 

bone mineral density (BMD, g/cm2) decreased by 2.8%, 3.1%, and 0.2% per cm 

distance above the source, respectively, for an anthropomorphic spine phantom over a 

distance range of 0-12 cm [4], although the statistical significance or specific nature of 

these variations were not reported.  Increases of 1.0-5.1% in BMC and of 0.8-4.1% in 

BMD have been observed in anthropomorphic whole body phantoms for a simulated 

increase in subcutaneous fat of 2 cm [26].  Many dual energy X-ray absorptiometry 

(DXA) studies have compared fan-beam data either to pencil-beam data for the 

purpose of cross-calibration [2,4,5,9-11,17,24,27,28] or to reference values for 

validation [14,15,29,30].  However, the effect of the magnification error on bone 

accrual measures (i.e., the specific relationship of A, BMC, and BMD with distance 

from the X-ray source) was not quantified in any of these studies.  Understanding 

which bone mineral measures vary and how they vary with distance from the source is 

a necessary first step in developing correction techniques for fan-beam magnification 

error. 
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Errors in measures of bone mineral due to fan-beam densitometry are of 

particular concern for longitudinal studies of adolescent subjects, who may experience 

significant growth between consecutive examinations.  Increased body thickness due 

to normal growth increases the distance between the subject and the X-ray source and 

produces magnification errors in bone measures.  The magnitude of error from the 

studies noted above (1-5%) is comparable to the magnitude of change in bone 

measurements reported in clinical bone density studies on growing subjects.  For 

example, longitudinal studies of adolescent female gymnasts observed an average 

annual increase in total body BMD of 3.4-5.6% [3,8,21].  Pre-pubertal and early 

pubertal children experienced increases of 2.9-6.9% in A, 7.0-12.0% in BMC, and 1.4-

12.0% in BMD at the femoral neck, lumbar spine, and total body over a period of 7 to 

8 months following exercise intervention [12,18-20,22].  Therefore, in clinical studies 

involving growing subjects, the change in bone accrual measures with distance from 

the X-ray source could obscure increases associated with growth, loading, or other 

interventions.  Quantifying and correcting magnification error is crucial for analyzing 

and reporting data from bone density studies accurately. 

We hypothesized that A, BMC, and BMD would vary linearly with distance 

from the X-ray source in wide-angle fan-beam densitometers.  This study was 

designed to quantify these specific relationships and to examine the variability of each 

measurement over a particular distance range using phantoms of known geometry, 

material properties, and location within the scan.  Understanding these relationships 

may help to correct the magnification error associated with fan-beam densitometry 

and, therefore, to assess bone accrual accurately over time in growing subjects. 
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Materials and Methods 

Test Phantom 

Four sets of 6061-T6 aluminum rods with different cross-sectional geometry 

were scanned using dual energy X-ray absorptiometry (DXA).  The geometries of the 

rods were chosen to test partial volume sensitivity (by comparing hollow and solid 

round rods) and edge detection sensitivity (by comparing round rods to both square 

and rectangular rods) of the densitometry software.  Rectangular rods were used to 

examine edge detection for rods with the same incident shape (i.e., same shape on the 

bottom surface, as seen by the X rays) but with different volumes.  Therefore, the 

wider side was placed parallel to the table surface. 

Hollow round rods (outer diameter 2.49 cm, inner diameter 1.27 cm), solid round 

rods (diameter 2.49 cm), solid square rods (2.54 cm x 2.54 cm) and solid rectangular 

rods (2.54 cm x 0.64 cm) were scanned at four distances from the X-ray source, as 

measured by distance above the scanning table (3.5, 7.0, 10.5, 14.0 cm).  Scans were 

acquired with a fan-beam densitometer (Delphi QDR 4500A, Hologic Inc., Bedford, 

MA) in lumbar spine array mode.  This distance range encompassed more than the 

expected distance range of femora in growing subjects.  All rods had a nominal length 

of 15.2 cm.  To simulate the presence of soft tissue, the rods were submerged in a 

16.5-cm water bath using a custom Plexiglas® box with solid sides and bottom and 

open top, and Plexiglas® inserts were used to hold the rods at the specified distances 

from the source (Figure 2.2). 

Each set of rods was scanned in two orientations, superior-inferior (SI) and 

medial-lateral (ML).  In the SI orientation, the longitudinal axes of the rods were 

parallel to the long axis of the table (rod cross-sections perpendicular to scanning 

direction), and in the ML orientation, the longitudinal axes of the rods were 
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Figure 2.2.  Illustration of the Plexiglas® phantom box with inserts for the round rods.  
Another set of inserts was used for the square and rectangular rods.  The box was 
filled with water to the top edge of the inserts to simulate soft tissue. 

 

 
 

 

 
Figure 2.3.  Scanning configuration for the aluminum rods in the (a) superior-inferior 
(SI) orientation and (b) medial-lateral (ML) orientation.  The cross-section of the rods 
in the SI orientation is parallel to the scan direction, and the cross-section of the rods 
in the ML orientation is perpendicular to the scan direction. 
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perpendicular to the long axis of the table (rod cross-sections parallel to scan 

direction) (Figure 2.3).  The box was not repositioned between scans of like 

orientation to minimize errors in the data.  For the ML orientation, each set of rods 

was scanned twice, once with the rods arranged smallest to largest distance from the 

source and once with them arranged largest to smallest distance from the source.  For 

the SI orientation, the rods were scanned 5 times, once with the scan centerline aligned 

with the centerline of the phantom box and once with the scan centerline aligned with 

the centerline of each of the 4 rods. 

 

Table 2.1.  Subset of analyses for individual scans in the superior-inferior orientation, 
including scan center and rods analyzed. 
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Each scan was analyzed multiple times on different regions of interest to obtain 

data for each rod within the field of view (Table 2.1).  For a given scan, only those 

rods that fit completely within the field of view were analyzed.  Due to the width of 

the lumbar spine scan and the arrangement of the rods within the phantom box, a 

maximum of 3 rods fit within the scan field of view for the SI orientation, and all rods 

were visible in the ML orientation.  The rod edges were poorly detected by the 

analysis software for the solid square rod at a distance of 10.5 cm in the scan centered 

about the 7.0 cm rod and for the hollow round rod at a distance of 7.0 cm in the scan 

centered about the 10.5 cm rod.  Therefore, these data were excluded from all 

analyses. 

To examine repeatability, the solid round rods and solid square rods were each 

scanned ten times in the SI orientation with the scan centerline aligned with the 

centerline of the phantom box.  The box was repositioned between scans.  Each scan 

was analyzed twice, once for rods positioned at a distance of 7.0 cm and once for rods 

positioned 10.5 cm above the scanning table.  All scans were acquired and analyzed 

by a single operator to determine the measured area A, measured mineral content 

(hereafter referred to as measured BMC), and measured mineral density (hereafter 

referred to as measured BMD) for each rod in each scan (Hologic software version 

11.2). 

 

Statistical Analysis 

Linear regressions were performed for A, measured BMC, and measured BMD 

with distance above the X-ray source, as measured by distance above the scanning 

table for each rod type and scan orientation (SAS 8, SAS Institute Inc., Cary, NC).  

Variability of A, measured BMC, and measured BMD was assessed using coefficients 

of variation (COV).  Eleven observations were included in the regressions and COV 
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for each rod type in the SI orientation, except for the solid square rods, which had only 

ten observations due to the excluded data.  Eight observations were included in the 

analyses for the ML orientation.  Repeatability was assessed using COV for A, 

measured BMC, and measured BMD of each distance (7.0 and 10.5 cm) for both solid 

round and solid square rods.  In addition, paired t-tests were conducted on the 

repeatability data to analyze the differences between the two distances for each rod 

type for A, measured BMC, and measured BMD.  A significance level of 0.05 was 

used for all calculations. 

 

Results 

Projected area decreased linearly with distance above the X-ray source, as 

assessed using distance above the table, for all rod types in the SI orientation 

(p<0.005, Figure 2.4).  The slopes of the regression lines were similar for all rods and 

ranged from -0.52 for the solid square rods to -0.64 for the solid rectangle rods, 

resulting in a rate of change of –1.6% to –1.9% per cm.  These relationships were 

strong, accounting for 94%, 94%, 68%, and 91% of the variability in the data for the 

hollow round rods, solid round rods, square rods, and rectangular rods, respectively 

(Table 2.2).  When analyzing only those rods centered within the scans, the linear 

regressions became stronger, accounting for 92-99% of the variability in the data, 

while those rods not centered within the scans accounted for 67-96%.  Measured BMC 

also decreased linearly with distance above the source for hollow and solid round rods 

in the SI orientation (p<0.0001, r2=0.97, Figure 2.5), although these fits varied little 

with position of the rods within the scans.  The slopes for the measured BMC 
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Figure 2.4.  Linear regressions of area with distance above the X-ray source (as 
measured by distance above the scanning table) for a subset of centered rods in the 
superior-inferior orientation.  All regressions had a significant slope, ranging from       
-0.52 to -0.64 (p < 0.005).  Interaction between rod type and distance above source 
was not significant (p = 0.70). 

 

 

Table 2.2.  Coefficients of determination (r2) and p-values for linear regressions of 
Area (A), measured bone mineral content (BMC), and measured bone mineral density 
(BMD) with distance above the X-ray source. 
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Figure 2.5.  Linear regressions of measured mineral content (BMC) with distance 
above the X-ray source as measured by distance above the scanning table for centered 
round rods in the SI orientation.  Regressions for both hollow and solid round rods had 
a significant slope of -1.0 and -1.3, respectively (p < 0.0001). 

 

regressions were greater than those for A and ranged from –1.3 for solid round rods to 

–1.0 for hollow round rods, resulting in rates of change of –1.7% to –1.8% per cm.  

No significant linear relationship was found between measured BMD and distance 

above the source for any of the rods in the SI orientation.  The interaction between rod 

type and distance above the source was not significant for area (p=0.70), measured 

BMC (p=0.18), or measured BMD (p=0.055).  The only significant linear 

relationships for the ML orientation were measured BMC and measured BMD versus 

distance from the source for the hollow round rods (r2=0.84 for both), with slopes of   

–0.47 and –0.02, respectively, and rates of change of –0.9% and –0.8% per cm, 

respectively.  No other significant linear relationships were present for A, measured 

BMC, or measured BMD with distance above the X-ray source. 
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Table 2.3.  Coefficients of variation (standard deviation/mean) for all rod types and 
both orientations (SI = superior-inferior and ML = medial-lateral) over a height range 
of 3.5-14 cm. 
 

 
 

The variability of A, measured BMC, and measured BMD was examined using 

coefficients of variation (Table 2.3).  Over a distance range of 3.5 to 14 cm, the 

variability in area measurements was 6.6% for hollow round rods, 6.9% for solid 

round rods, 7.7% for square rods, and 7.2% for rectangular rods in the SI orientation.  

The variability in measured BMC was 7.5% and 6.9% for hollow and solid round rods, 

respectively, which was similar to the variability in A.  However, the variability of 

measured BMC for the square and rectangular rods was much greater, with values of 

23.3% and 26.4%, respectively.  The variability of measured BMD was 2.3% for 

hollow round rods, 1.9% for solid round rods, 22.1% for square rods, and 25.1% for 

rectangular rods.  In general, the coefficient of variation for centered rods was not 

consistently greater than or less than that of non-centered rods.  For the ML 

orientation, variability for hollow and solid round rods, respectively, was 0.6% and 

1.1% for A, 4.5% and 1.8% for measured BMC, and 4.0% and 1.9% for measured 
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BMD.  The ML scans for the square and rectangular rods could not be analyzed by the 

analysis software. 

The repeatability scans revealed COVs ranging from 0.29% to 0.97% (Table 

2.4).  Since the variability of the measurements was very small (standard deviations 

were less than 1% of the means), these measurements were highly repeatable.  The 

measurements of A, measured BMC, and measured BMD at a distance of 7.0 cm 

above the scanning table were significantly greater than those at a distance of 10.5 cm 

for both solid round and solid square rods  (p<0.0001).  For the solid round rods, the 

mean difference between the measurements at a distance of 7.0 cm and those at 10.5 

cm was 1.62 ± 0.25 cm2 for A, 5.16 ± 0.50 g for measured BMC, and 0.051 ± 0.012 

g/cm2 for measured BMD.  For the solid square rods, the mean difference was 2.43 ± 

0.15 cm2 for A, 8.67 ± 0.68 g for measured BMC, and 0.063 ± 0.025 g/cm2 for 

measured BMD. 

 

 

Table 2.4.  Mean, standard deviation (SD), and coefficient of variation (COV) for 
repeatability measurements of Area (A), measured bone mineral content (BMC), and 
measured bone mineral density (BMD). 
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Discussion 

Area and measured bone mineral content decreased by 1.6-1.9% per cm increase 

in distance above the X-ray source, and these measurements varied by 6.6-26.4%, for 

rods in the SI orientation over the 10.5-cm distance range examined.  Based on a pilot 

study with only hollow round rods, we had anticipated that area would vary with 

distance from the X-ray source at a greater rate than would BMC, thereby causing 

BMD, which is calculated as BMC per area, to also vary with distance from the 

source.  Although no significant linear relationship was found in the present study, 

measured BMD varied by 1.9-2.3% over the distance range examined for the round 

aluminum rods in the SI orientation and over 20% for the square and rectangular rods.  

This lack of precision is troublesome, especially since BMD acquired from fan-beam 

densitometers is widely used in clinical studies due to its short scan acquisition time 

and improved spatial resolution.  Exercise intervention studies in growing children 

have shown BMD changes at multiple sites on the same order as the smallest BMD 

variations measured here [12,19,22].  Therefore, accurately detecting BMD changes in 

longitudinal studies of growing children can be problematic when using fan-beam 

densitometry unless the magnification error is corrected. 

Detecting BMD changes in growing subjects is difficult for any study where 

bone accrual is a measurement of interest.  For example, pubertal subjects in studies 

without exercise or hormonal interventions experienced 15.6% and 5.5% increases in 

total body BMC and BMD, respectively, over an 18-month period [6].  Similarly, 

control subjects in the aforementioned exercise-intervention studies experienced 

increases in BMD of 1.2-3.9% at total body, 1.2-6.8% at the lumbar spine, and 1.7-

3.9% at the femoral neck over a period of 7 months to 1 year [3,8,12,18-22].  Increases 

for the control groups were generally less than those for the intervention groups.  

However, both groups experienced bone accrual in amounts similar to the false 
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decreases in measurements seen here, which resulted from magnification error over 

the distance range examined. 

The magnitude of the magnification error noted here suggests that growth-related 

gains in limb and trunk girths may obscure longitudinal changes in bone density or 

bone geometry resulting from other factors, such as exercise or drug treatment.  As 

body thickness increases, bones move farther away from the X-ray source.  The 

present study suggests this would result in an apparent decrease in projected bone area 

and BMC due to changes in soft tissue, potentially leading to an underestimation of 

bone mineral accrual.  Based on our preliminary data from a clinical longitudinal 

study [25], girth changes are often significant between DXA scanning periods and can 

easily reach 3-5 cm (8-20%) at the thigh, which results in a distance change of 

approximately 0.5-0.8 cm above the source (and hence above the table).  For 

comparison, an increase in distance above the X-ray source of 0.5-0.8 cm resulted in a 

decrease of 0.9-1.4% in area and 1.0-1.6% in measured BMC for the hollow round 

aluminum rods in this study.  Skeletal sites with little soft tissue mass, such as the 

forearm, will have much less distortion than sites with a greater amount of soft tissue 

mass, such as the femoral neck. 

In the densitometer used in this study, the radiation source was located beneath 

the scanning table, and the detector array was located above the table.  Other 

densitometry devices may have a less common configuration, in which the radiation 

source is positioned above and the detectors are positioned below the scanning table 

[13].  Assuming a similar magnification effect on bone measurements as with the 

scanner used in the present study, bones of growing subjects would become closer to 

the X-ray source and, therefore, experience an apparent increase in BMC and 
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projected area over time.  This would potentially lead to an overestimation of bone 

mineral accrual. 

The difference in the linear relationships between the SI and ML orientations 

was not surprising.  The rods in the SI orientation were not only scanned at different 

distances from the X-ray source but also at different locations within the fan beam.  

Therefore, the X-ray beam hit the rods at the edge of the field of view at different 

angles than rods in the center, which may have contributed to the larger degree of 

variability (and hence lower precision) seen in the SI measurements.  The rods in the 

ML orientation were all centered within the field of view and therefore were affected 

only by distance above the X-ray source and not by position within the fan beam.  

Consequently, the data for the ML rods had less variability.  Although the linear 

relationships for measured BMC and measured BMD in the ML orientation were 

significant, the slopes were smaller than those for the SI orientation and were possibly 

below a level of clinical significance. 

The variability in area, measured BMC, and measured BMD data was similar for 

hollow and solid round rods in the SI orientation (COV of 0.023-0.066 and 0.019-

0.069, respectively).  In the ML orientation, these data were much more variable for 

the hollow round rods than for the solid round rods (COV of 0.006-0.040 and 0.011-

0.019, respectively) and thus were much less precise in measurements of area, BMC, 

and BMD.  Therefore, the fan-beam scanner used in this study appears sensitive to 

partial volume effects but only in the direction perpendicular to the scan direction.  

This is inconsequential clinically, given that bones with a thick cortex and central 

marrow cavity (as simulated by the hollow round rods) in the skeletal regions 

commonly measured by DXA are aligned longitudinally along the table, which 

corresponds to the SI orientation in this study.  The femoral neck, a region of great 
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interest clinically but not aligned along the SI axis, is composed primarily of 

cancellous bone.  The complex marrow cavities generated by the trabecular structure 

are on a scale too small to be resolved by DXA and, at the apparent level, will likely 

behave more like the solid round rods.  Therefore, partial volume effects likely will 

not be seen in the femoral neck as seen here with the hollow round rods. 

Measurements for the square and rectangular rods were more variable (COV of 

0.077-0.233 and 0.072-0.264, respectively), which indicates possible problems with 

edge detection.  Visual inspection of the scans for the square and rectangular rods 

revealed that the rod edges identified by the analysis algorithm appeared more variable 

than those for the round rods.  The lack of a significant relationship for measurements 

with distance above the X-ray source for the square and rectangular rods is not 

surprising, given that the variability in measurements was much larger than in the 

round rods.  Had the edges been detected more reliably, perhaps the same linear 

relationships would have also been found in the square and rectangular rods. 

Researchers acknowledge that BMD reported by DXA is an areal measure and 

may reflect changes in the bone geometry, changes in volumetric bone density, or 

both.  The individual contributions of each of these cannot be isolated.  Thus, many 

choose BMC as a more accurate measure of bone accrual, or they compute bone 

mineral apparent density (BMAD, g/cm3), which is an estimate of volumetric density 

based on various geometric assumptions [7,16].  BMAD is calculated using BMC and 

some exponential form of area specific for each site of interest.  However, as seen 

from this study using a fan-beam densitometer, both BMC and area vary linearly with 

distance above the X-ray source and, therefore, can also be problematic for the 

assessment of bone accrual in the growing skeleton. 

54 



 

In conclusion, we have identified significant magnification effects in areal 

measures using a wide-angle fan-beam densitometer, and we have shown that such 

magnification reduces the accuracy of DXA measurements.  The variation of area and 

measured bone mineral content with distance from the X-ray source have been 

quantified for the round rods, which most closely mimic human bone in vivo.  These 

relationships are linear and repeatable and theoretically provide an analytical 

correction for clinical DXA scans, provided the distance of a given bone above the 

scanning table can be determined.  Such corrections are specific to the particular DXA 

machine used in this study.  In spite of variability between specific DXA machines of 

the same model and between models of different manufacturers, however, we expect 

these findings to be at least qualitatively true for all wide-angle fan-beam 

densitometers due to the inherent nature of the X-ray beam profile.  The identified 

magnification effects are important in studies involving growing subjects, as 

increasing girths move bones farther from the X-ray source and may distort BMC and 

area over time.  The reduced accuracy of areal bone measurements may obscure the 

effect of a particular intervention.  Therefore, the quantification and correction of 

magnification errors associated with fan-beam densitometry is crucial to studies 

involving growing subjects and is necessary for accurate determination of bone 

mineral accrual using DXA. 
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CHAPTER 3 

 

DXA AND MICROCT PREDICT MATERIAL PROPERTIES IN 

VERTEBRAL CANCELLOUS BONE MORE ACCURATELY IN 

WOMEN THAN MEN* 

 

Introduction 

Although dual-energy X-ray absorptiometry (DXA) remains the standard for 

clinically assessing bone mass and predicting fracture risk, it does not fully explain the 

incidence of osteoporotic fractures.  More than half of fragility fractures occur in 

women with a normal DXA T-score [38,51,58].  In addition, the vertebral fracture 

occurrence in patients receiving antiresorptive drugs dropped 15-60%, which was 

much more than the 4-16% predicted from the 0-8% increases in areal bone mineral 

density (aBMD) from DXA [8-11,50].  Therefore, DXA aBMD and T-score alone are 

insufficient to evaluate fracture risk accurately. 

The strength of bone, and thus its resistance to fracture, is governed primarily by 

bone mass or density, architecture, and material properties [3,18,36,47,54].  Bone 

mass measured by DXA correlates variably with experimentally-measured bone 

mechanical properties, explaining 20-70% of the vertebral failure load in vitro and in 

situ [1,4,35,41,42].  For human cancellous bone, the explanatory power of a clinical 

bone density scan was 10-70% for apparent elastic modulus and ultimate stress and 

only 5% for ultimate strain [5,33].  

 
* Cole JH, Myers ER, Wells MT, and van der Meulen MCH (2007) DXA and 
microCT predict material properties in vertebral cancellous bone more accurately in 
women than men. In preparation. 
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Three-dimensional measures of bone mass, such as bone volume fraction 

(BV/TV) and apparent density, correlate somewhat better with experimentally 

determined bone mechanical properties than the 2-D aBMD from DXA.  Apparent 

density has been used to predict bone strength and apparent modulus using empirical 

formulations [3,17,25,48,49].  Regardless of the relationship used, apparent BMD and 

BV/TV acquired by experiments or micro-computed tomography (microCT) explained 

60-85% of the variability in compressive elastic modulus and ultimate stress for 

human cancellous bone [29,31,33,40].  Similar to bone mass measures, architecture 

parameters have been experimentally correlated with elastic mechanical properties 

[7,19,20,27,43,55,57].  In sheep femoral bone assessed with microCT, the commonly 

assessed architecture indices of trabecular thickness, trabecular separation, and degree 

of anisotropy explained 20-70% of the variation in compressive ultimate strength [39]. 

Material properties also contribute to the overall structural behavior of bone and 

have been shown to vary with aging and disease.  However, they have not been 

examined as fully as mass and architecture due to limitations with current imaging and 

testing techniques.  Bone tissue material properties were altered in older patients with 

osteoporosis and often resulted in reduced mineral content and larger, more mature 

mineral crystals [15,21,37,45,46].  Changes in tissue properties with aging and 

disease, whether at the apparent or ultrastructure level, may compromise integrity of 

the bone structure, although the effect of such alterations on mechanical properties is 

not well understood, particularly for cancellous bone. 

Because clinical DXA is used almost exclusively to diagnose and treat 

osteoporosis, understanding the extent that aBMD or T-score predicts bone strength, 

and particularly which components of strength, is important.  Therefore, the principal 

objective of this study was to examine the ability of DXA T-score to predict bone 
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mineral and microarchitecture measures from microCT and bone material properties 

from structural testing.  Because the incidence of fragility fractures among the elderly 

is greater in women than in men [6,12,16], we also wanted to investigate possible sex 

differences in bone mass, architecture, and material properties with age.  Therefore, 

the second objective of this study was to assess potential sex differences in age-related 

changes of bone architecture and material properties in cancellous bone.  We chose to 

examine the thoracolumbar spine, not only for its abundance of cancellous bone but 

also for its susceptibility to age-related fractures.  Vertebral cancellous bone 

contributes critically to skeletal load-bearing function [32,52].  For this study, we 

obtained cancellous bone specimens from the twelfth thoracic vertebra (T12) and the 

second lumbar vertebra (L2), a site used in clinical DXA scans to assess bone status.  

The lower thoracic and upper lumbar spine regions are common sites for fracture 

[2,13,26,60]. 

 

Methods 

Subjects 

Cadaver spine segments were obtained from 24 Caucasian donors (13 female, 11 

male) aged 56-92 years.  For 23 donors, the spine segment extended from the 11th 

thoracic vertebra (T11) through the 4th lumbar vertebra (L4), and for one donor, the 

segment extended from T11 through L2.  Spines were excluded if any vertebra in the 

T11-L4 segment showed evidence of fracture in the DXA scan (1 female) or if the 

cancellous bone of the T12 or L2 vertebra showed evidence of bone metastasis during 

dissection (1 female, 1 male).  To evaluate the relative value of different parameters in 

predicting cancellous bone mechanical properties, vertebral bone was characterized in 
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each patient using several assessment tools, including clinical and laboratory methods 

at both the macroscopic and microscopic level, as outlined below (Figure 3.1). 

 
 

 
 

   
 

Clinical DXA 
Imaged in saline 
bath 

Destructive Testing 
Compressed at 
0.5% ε/s 

Dissection 
T12, L2 vertebrae 
excised 

MicroCT 
Reconstructed and 
resampled to 17μm 

Figure 3.1.  Human vertebral bone was assessed at the whole bone level using clinical 
dual-energy X-ray absorptiometry (DXA) and at the microstructural level using micro-
computed tomography (microCT) and mechanical testing.  

 

 

Clinical Bone Density Scan 

Bone mineral status for all donors was assessed with clinical densitometry.  To 

prepare for the bone density scan, the spine segments were thawed to remove the ribs, 

additional vertebral levels that were outside T11-L4, and any portions of the pelvis to 

allow the spine to rest in a flat position for the DXA scan.  The spines were then 

refrozen.  The frozen T11-L4 segments were secured in a curved Plexiglas® fixture, 

immersed in a saline bath within a Plexiglas® box, and scanned with a clinical fan-

beam densitometer in lumbar spine array mode (Delphi QDR 4500A or QDR 4500W, 

Hologic Inc., Bedford, MA).  Two scans were acquired for each spine:  one for 

vertebral levels T11-L2 and one for levels L1-L4. 
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Clinical measurements of bone mineral were obtained from DXA scans.  Bone 

projected area, bone mineral content (BMC), and aBMD were computed using 

standard manufacturer software for regions T11-L2 and L1-L4.  In addition, the 

osteoporosis diagnostic index, T-score, was computed for L1-L4 of each donor. 

 

Micro-Computed Tomography Scan 

To prepare small cancellous specimens for microCT, the T12 and L2 vertebrae 

were excised from each spine segment, and a full-depth cylindrical specimen 

(diameter = 8.25 mm) was cut on the superior-inferior axis at low speed under 

continuous saline stream from the center of each vertebra using a metal bond diamond 

core drill (Starlight Industries, Rosemont, PA) in a drill press (Enco 105-1300, 

Fernley, NV, or Clarke BT1000, Perrysburgh, OH).  Cored specimens were wrapped 

in saline-soaked gauze and stored frozen in sealed plastic bags. 

To evaluate cancellous bone mass and architecture, cored vertebral specimens 

were analyzed using quantitative microCT (MS-8, GE Healthcare, London, Ontario, 

Canada).  The specimens were scanned in a saline bath treated with a protease 

inhibitor cocktail to minimize protein degradation in the bone tissue (P8340, Sigma-

Aldrich Inc., St. Louis, MO).  Each scan contained a calibration phantom consisting of 

air, saline, and a bone mineral standard (SB3, Gammex RMI, Middleton, WI).   The 

X-ray attenuations of these reference materials were used to calibrate the Hounsfield 

Unit (HU) scale by assuming that tissue mineral density was linearly related to 

grayscale values in HUs.  The measured CT attenuation values were scaled to HUs 

using the air and water portions of the phantom, which have known values of -1000 

and 0 HU, respectively.  The resulting grayscale values in HUs were converted to 

tissue densities based on the density of the bone mineral standard (1.15 g/cc).  
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The specimens were scanned in two batches with different scanning parameters.  

The first batch (26 cores from 13 donors) was scanned individually at high X-ray 

energy (voltage = 70 kVp, current = 90 μA) with 720 views, 8 frames per view, and a 

3-second exposure time for a total scan time of approximately 8 hours.  Data were 

reconstructed at an isotropic voxel resolution of 11.6 μm.  The second batch (16 cores 

from 8 donors) was scanned two at a time at the same energy and exposure time with 

400 views and 7 frames per view for a total scan time of approximately 4 hours.  Data 

were reconstructed at an isotropic voxel resolution of 17.0 μm.  For all cores, only an 

8 mm section from the center of the core was reconstructed for analysis.  After the 

microCT scans were completed, cancellous bone cores were wrapped in saline-soaked 

gauze and stored frozen in sealed plastic bags. 

The reconstructed cancellous cores were reoriented to align the superior-inferior 

axis of the core with the vertical axis in the analysis software, and the ends of the 

cores were then cropped flat to a length of 7.5 mm (MicroView ABA 2.1.1., GE 

Healthcare, London, Ontario, Canada).  MicroCT data were resampled at 17 μm to 

equilibrate voxel sizes between the two batch groups.  For each core, bone voxels 

were distinguished from non-bone voxels (e.g., air, marrow, saline) using the Otsu 

method, which assumes a bimodal distribution of grayscale values and computes the 

bone threshold in HU by maximizing the between-class variance of two populations 

[44].  Because the use of a global threshold across specimens with dissimilar averages 

in mineral density may result in an inaccurate topology [14], a unique threshold was 

computed for each specimen. 

Cancellous bone mass and architecture were assessed for each of the reoriented, 

cropped cores after thresholding using the following standard metrics:  bone volume 

fraction (BV/TV), tissue bone mineral density (tisBMD), apparent bone mineral 
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density (appBMD), direct trabecular thickness (Tb.Th*) [24], direct trabecular 

separation (Tb.Sp*) [24], mean intercept length in the principal material directions 

(MIL1, MIL2, MIL3) [22,56,59], and degree of anisotropy (DA) [20].  MILs were 

computed using 200 random rotations of a test grid with a spacing of 0.136 mm (8 

voxels), which is within the maximum grid spacing (0.2 mm) previously shown to be 

sufficient for calculating three-dimensional cancellous bone morphology [53].  DA 

was computed as the ratio of maximum to minimum MIL (MIL1/MIL3). 

 

Structural Testing 

Following the microCT scans, the cancellous bone cores were prepared for 

mechanical testing using a previously documented protocol designed to minimize end 

artifacts [28].  The cortical end plates were removed from each end of the thawed 

cancellous cores.  With the specimens submerged in a water bath, the marrow was 

removed from the surface of each end using a water jet.  Approximately one-fourth of 

the overall core length was cleaned at each end.  The ends were further cleaned by 

briefly submerging them in ethyl alcohol and then dried using an air jet under low 

pressure.  Snug-fitting brass caps were glued to the cleaned portion of each core end 

using an ethyl cyanoacrylate adhesive (Loctite® 401, Henkel Corporation, Rocky Hill, 

CT), such that the bone ends did not extend to the end of the brass caps.  The end-caps 

were aligned with the longitudinal axis of the bone core using a machinist’s universal 

V-block (Fisher Machine Products, Hawthorne, CA).  The diameter of each cancellous 

core was recorded as the mean of six measurements, and the exposed length was 

defined as the mean of four measurements, using metric dial calipers.  The central 

exposed section was wrapped with saline-soaked gauze and plastic wrap, and the 

capped cores were refrigerated for 24 hours to allow the adhesive to cure. 
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The mechanical properties of the cancellous bone cores were assessed through 

destructive uniaxial compression using a servohydraulic load frame (Mini-Bionix 858, 

MTS Systems Corporation, Eden Prairie, MN).  The brass end-caps were secured in 

small three-jaw chucks.  Displacement was measured with a 25-mm gage length axial 

extensometer (634.11F-24, MTS Systems Corporation, Eden Prairie, MN) attached to 

both end-caps.  Elastic and failure properties measured with this technique have been 

validated with an extensometer attached to the bone surface [29].  The effective gage 

length was computed as the average of the total length and the exposed length of the 

bone core [28].  Bone specimens were preconditioned for 5 cycles between 0 and 

0.10% compressive strain and then loaded monotonically at a rate of 0.50% strain per 

second to 3% compressive strain, which is well beyond reported failure strains for 

human cancellous bone [31,34].  Mechanical tests were conducted in displacement 

control at room temperature, and load and displacement data were sampled at 20 Hz. 

Mechanical properties were computed from the destructive testing data.  Load 

and displacement data were converted to apparent stress and strain using standard 

mechanics formulae [23].  Apparent elastic modulus was defined as the slope of a 

least-squares linear fit to the stress-strain data over 0.02-0.24% strain [31].  Due to the 

ambiguous border between elastic and plastic behavior regions, the yield point was 

defined as the stress corresponding to the intersection of the stress-stress curve with a 

line parallel to the initial slope of linear region but offset by 0.2% strain.  The ultimate 

point was defined by the point of maximum stress. 

 

Statistical Analysis 

Age- and sex-related differences in cancellous bone parameters were assessed 

using a mixed linear model on age, sex, and the age-sex interaction, accounting for 
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repeated measures over bone site (T12, L2).  The correlation of clinical bone density 

scans with cancellous bone architecture and apparent-level material properties was 

assessed using Pearson’s product-moment coefficients for DXA, microCT, and 

mechanical testing techniques (SAS 9.1, SAS Institute Inc., Cary, NC).  Correlations 

were first analyzed with sex pooled to examine general trends between the assessment 

modalities and then separately for men and women to determine sex-related 

differences in these trends.  A significance level of 0.05 was used for all analyses. 

 

Results 

Cancellous bone cylinders were taken from the T12 and L2 vertebrae of 10 male 

donors ages 56-79 (mean = 67.4 ± 6.9 years) and 11 female donors ages 58-92 (mean 

= 73.2 ± 11.8 years).  The mean ages of males and females were not significantly 

different (p = 0.192).  DXA T-score, computed over the L1-L4 vertebral levels, 

spanned the spectrum of diagnosis, from normal values of 0.2 in males and 0.5 in 

females to osteoporotic values of -2.9 for males and -5.2 for females (Figure 3.2). 

Based on T-score, four subjects (2 males, 2 females) were categorized with 

normal bone mass, nine subjects (7 males, 2 females) had low bone mass, and eight 

subjects (1 male, 7 females) were osteoporotic.  A linear model of age, sex, and their 

interaction, with repeated measures on bone site (T12, L2), was used to check for 

overall age-related sex differences in measured parameters.  Metrics of bone mass, 

architecture, and material properties did not vary significantly with age or by sex, and 

the variation of the bone parameters with age did not differ significantly between 

males and females (Figure 3.3, Table 3.1). 
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Figure 3.2.  Distribution of DXA L1-L4 T-scores for male (n = 10) and female (n = 
11) subjects.  Age in years and regions of bone diagnosis are depicted on the plot. 

 

 

 
(a) (b) 

 

Figure 3.3.  Measures of (a) bone mass (e.g., T-score and bone volume fraction = 
BV/TV) and apparent material properties (e.g., ultimate stress = σu) and (b) bone 
architecture (e.g., mean direct trabecular thickness = Tb.Th*) did not differ 
significantly by age, sex, or the age * sex interaction.  Males are depicted by open 
symbols and females by filled symbols. 
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Table 3.1.  Mean measurements of bone mass, architecture, and material properties 
for the T12 and L2 vertebrae taken from male and female cadavers.  Mean values for 
males and females were not significantly different (sex p > 0.05), and the variation 
with age was not significantly different by sex (interaction p > 0.05). 
 
  Males (n = 10) Females (n = 11) 
  T12 L2 T12 L2 
Parameter Units Mean SD Mean SD Mean SD Mean SD 
T-score†  --- --- -1.6 0.9 --- --- -2.8 1.7
aBMD g/cm2 0.805 0.135 0.912 0.091 0.582 0.143 0.745 0.221
BV/TV % 11.9 2.5 12.3 1.3 10.5 3.3 10.9 3.6
tisBMD g/cm3 0.66 0.08 0.72 0.17 0.65 0.07 0.66 0.07
appBMD g/cm3 0.078 0.017 0.088 0.022 0.068 0.020 0.071 0.022
MIL1 mm 0.21 0.02 0.22 0.03 0.21 0.03 0.21 0.02
MIL2 mm 0.17 0.02 0.18 0.02 0.16 0.02 0.17 0.01
MIL3 mm 0.16 0.02 0.15 0.01 0.14 0.02 0.16 0.01
DA  0.23 0.09 0.28 0.05 0.29 0.09 0.25 0.07
Tb.Th* mm 0.11 0.02 0.11 0.02 0.11 0.01 0.11 0.01
Tb.Sp* mm 1.33 0.17 1.30 0.18 1.35 0.16 1.36 0.15
Modulus MPa  562 177 539 131 470 275 488 231
Yield stress MPa  2.16 0.74 2.02 0.65 1.88 1.04 1.88 1.01
Ultimate 
stress MPa  2.25 0.78 2.14 0.80 2.04 1.13 1.97 1.07

Yield strain % 0.58 0.05 0.57 0.04 0.62 0.10  0.57 0.04
Ultimate 
strain % 0.75 0.13 0.77 0.20 0.95 0.36 0.80 0.25
† T-score was computed over vertebral levels L1-L4. 
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Correlations with Sex Pooled 

The correlative power of clinical DXA T-score with cancellous bone 

architecture, apparent material properties, and other measures of bone mass was 

investigated with Pearson’s product-moment coefficients.  When sex was pooled, T-

score correlated moderately with apparent elastic modulus, yield stress, and ultimate 

stress at T12 (r = 0.72-0.74) and at L2 (r = 0.63-0.70, Table 3.2).  T-score correlated 

with BV/TV and appBMD at T12 and L2 (r = 0.65-0.76) but not with tisBMD at either 

site.  T-score did not correlate with yield strain, ultimate strain, or any cancellous bone 

architecture measure at either T12 or L2 when sex was pooled. 

Three-dimensional measures of bone mass from microCT had similar 

relationships with apparent material properties as did T-score.  BV/TV, tisBMD, and 

appBMD correlated somewhat with apparent elastic modulus, yield stress, and 

ultimate stress at T12 and L2 (r = 0.45-0.67, Table 3.3).  None of the three density 

metrics correlated with yield strain or ultimate strain at either site.  MicroCT bone 

density metrics also did not correlate with most measures of architectural orientation, 

although tisBMD correlated with MIL1 and MIL2 at T12, and appBMD correlated with 

MIL2 and MIL3 at T12 and with MIL2 at L2.  Tissue BMD also tended to correlate 

with MIL1 and MIL2 at L2, although these relationships were not significant (p = 

0.052 and 0.064, respectively).  In particular, microCT density did not correlate at all 

with degree of anisotropy, which is the most common parameter used to assess 

structural orientation.  Interestingly, BV/TV correlated negatively with mean direct 

Tb.Sp* (T12 r = -0.68 and L2 r = -0.60), but tisBMD correlated positively with mean 

Tb.Sp* (T12 r = 0.70 and L2 r = 0.45).  Besides tisBMD at T12, no bone density 

measure was related to direct Tb.Th* at either vertebral site.
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Correlations by Sex 

When the correlations were performed separately by sex, marked differences in 

the relationship between bone assessment parameters emerged for males and females 

(Figure 3.4).  For apparent material properties, T-score correlated well with elastic 

modulus, yield stress, and ultimate stress for females at both T12 and L2 (r = 0.74-

0.95, Table 3.4) but only with elastic modulus at T12 for males (r = 0.74).  T-score 

also correlated well with BV/TV and appBMD at both T12 and L2 (r = 0.71-0.90) but 

again only for females.  For bone architecture, T-score only correlated with the L2 

primary principal MIL (r = 0.66) for females but not for males.  For females, T-score 

did not correlate with tisBMD, most architecture parameters (i.e., mean Tb.Th*, mean 

Tb.Sp*, MIL2, MIL3, DA), yield strain, or ultimate strain at either site.  For males, 

DXA T- score did not correlate with cancellous bone density, bone architecture, or 

apparent material properties at either site, except for elastic modulus at T12. 

Sex-specific trends were also found in the relationship of bone mass from 3-D 

microCT scans with bone architecture and apparent material properties.  For apparent 

material properties, BV/TV and appBMD correlated with elastic modulus (L2 p = 

0.05), yield stress, and ultimate stress in females at both sites (r = 0.60-0.90, Table 

3.5) but not for males at either site.  TisBMD did not correlate significantly with any 

apparent material property for males or females, except for T12 ultimate strain and 

nearly for T12 yield strain (p = 0.053) in males.  For trabecular architecture, BV/TV 

was negatively correlated with mean Tb.Sp* at both sites for females (r = -0.74 to -

0.77) and tended to be correlated for males at T12 (r = -0.63, p = 0.050).  Tissue BMD 

at T12 correlated with mean Tb.Th*, mean Tb.Sp*, and two of the principal MILs for 

males (r = 0.76-0.90) and with MIL1 and DA for females (r = 0.73-0.75).  Apparent 

BMD was not correlated with any architecture measure for either males or females, 

although it tended to correlate with Tb.Sp* at L2 for women (r = -0.60, p = 0.051). 
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77 

Table 3.5.  Pearson’s product-moment coefficients (r) and associated p-values for 
correlations of microCT bone mass measures with apparent material properties at both 
vertebral sites (T12, L2) by sex.  p < 0.05 in bold. 
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Discussion 

Cancellous bone mass, architecture, and material properties did not correlate 

with age or sex, indicating that bone strength cannot be predicted based on these 

factors alone.  DXA T-score, the primary clinical metric used to characterize bone 

mass and to predict skeletal fracture, correlated with some apparent material properties 

and three-dimensional measures of bone mass from microCT, but it did so almost 

solely for females.  For females, decreasing bone mass measured by DXA was 

moderately to strongly associated with decreasing bone volume fraction and apparent 

density, and with reduced apparent material properties, in both the thoracic and lumbar 

spine.  Therefore, DXA would more accurately predict both mineral mass and material 

properties in vertebral cancellous bone for females than for males and may therefore 

provide a more accurate assessment of fracture risk in that population. 

For the most part, DXA failed to predict parameters of bone microarchitecture 

regardless of sex.  Interestingly, microCT volume fraction and apparent density were, 

in general, also poor predictors of architecture, although these measures did relate well 

with trabecular separation in females.  However, when using tissue density, microCT 

was strongly associated with most of the architecture parameters studied, at least for 

females, including measures describing the trabecular structure, orientation, and 

degree of anisotropy.  To date, most studies have used BV/TV and apparent density to 

assess cancellous bone integrity.  Our data suggest that, while these factors may assess 

apparent material properties well, tissue density may be a better measure for 

evaluating the tissue architecture in female subjects. 

DXA is a large-scale, two-dimensional technique and only provides projected 

estimates of bone mineral density.  MicroCT provides a localized three-dimensional 

assessment of bone mineral mass and density and thus is assumed to provide a better 
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characterization of cancellous bone tissue.  In addition, the same core of cancellous 

bone for was used for microCT scans and mechanical testing and thus should provide 

a more direct comparison of measurements obtained from both.  However, at least for 

female subjects, microCT measurements related no better to apparent material 

properties than did DXA T-score, with correlation coefficients of 0.74-0.95 for DXA 

and 0.60-0.90 for microCT BV/TV and apparent density.  Both techniques were 

equally unrelated to apparent properties for male subjects.  On the other hand, 

microCT did provide a better assessment of cancellous bone architecture than did 

DXA.  While T-score correlated with almost none of the architecture parameters 

studied, microCT measures correlated strongly with metrics of cancellous bone 

structure and orientation in the males and of structure, primary orientation, and degree 

of anisotropy in females, mostly in the thoracic spine for both. 

Mostly, both DXA and microCT measures of bone mass could not predict yield 

or ultimate strain for males or females at either site.  Strain measures are important for 

characterizing tissue failure [30] and may provide more information not captured by 

clinical bone density measures, cancellous architecture measures, or even other 

apparent material properties.  Similarly, the degree of anisotropy in the trabecular 

structure was generally not associated with either DXA or microCT bone mass and 

thus may also contribute additional information about bone strength.  Interestingly, 

both apparent strains and degree of anisotropy were correlated with tissue density in 

the thoracic spine, although only for one of the sexes in each case. 

Although the mean L1-L4 T-score was lower in females than males for this 

study (-2.8 and -1.6, respectively), the difference was not significant due to a large 

variability across subjects for both groups.  However, when T-score was divided into 

the diagnostic categories of normal, low, and osteoporotic bone mass, the distribution 
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of males and females in each group differed (Figure 3.2).  Interestingly, males were 

primarily clustered centrally within the osteopenic group, between T-scores of -1.2 

and -2.3.  Two male subjects were in the normal range, and only one was in the 

osteoporotic range, and he was near the top end of the range.  Conversely, two females 

fell within the normal range, only two were in the mid-range of low bone mass, and 

the remaining 7 were concentrated in the osteoporotic group.  The analyses in this 

study were based on the continuous measure T-score and thus should apply regardless 

of the diagnostic category or the distribution within each category.  Nevertheless, the 

sex-specific T-score distributions support the hypothesis that the mechanism of age-

related bone loss is fundamentally different for men and women. 

In conclusion, our data showed that clinical DXA spine measurements correlated 

with high-resolution microCT volume fraction and apparent density in the vertebral 

cancellous bone of female subjects but not for male subjects.  In addition, DXA and 

microCT mass measurements were strongly related to most of the apparent material 

properties in females but not for males.  Therefore, both DXA and microCT predicted 

apparent material properties more accurately for women than for men in cancellous 

bone of the thoracic and lumbar spine.  For female subjects, DXA T-score correlated 

with apparent modulus and strength as strongly as the microCT mass measures did, 

but it could not account for the observed variations in trabecular architecture.  

MicroCT mass measures, on the other hand, correlated well with architecture 

measures, particularly in the thoracic spine of both males and females.  Specifically, 

microCT tissue density was related to degree of anisotropy in the thoracic bone of 

females, as well as to apparent tissue strains in the thoracic bone of males, both of 

which were not explained by any other parameter.  Therefore, use of microCT scans 

would improve the assessment of bone strength in the thoracic spine of both males and 

females.  In fact, they provided an overall better assessment than did DXA for all of 
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the determinants of bone strength and ideally could replace the DXA scan altogether if 

non-invasive measurements could be made accurately and affordably. 
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CHAPTER 4 

 

THE EFFECTS OF TRABECULAR TISSUE HETEROGENEITY 

ON THE MECHANICAL PERFORMANCE OF HUMAN 

VERTEBRAL CANCELLOUS BONE* 

 

Introduction 

The structural integrity of cancellous bone, which is essential to skeletal load-

bearing capacity, is governed chiefly by bone mass or apparent density, trabecular 

architecture, and tissue material properties [4,9,29,38,42].  Although the impact of 

apparent density and architecture on bone structural behavior has been well-

documented, much less is known about the influence of tissue material properties.  

Bone tissue is innately heterogeneous, exhibiting substantial spatial variation in tissue 

mineral content and quality [2,31,36,37].  A skeletal disorder characterized by low 

bone mass, osteoporosis alters bone tissue properties, as generally evidenced by 

altered mineralization and changes in chemical composition [8,11,30,35].  These 

changes in tissue properties may compromise the structural performance of bone, 

although the effect of tissue mineralization and composition on mechanical properties 

is not well understood, particularly for cancellous bone. 

Tissue properties are difficult to characterize experimentally and are only 

examined over a small bone volume that likely does not fully capture the spatial  

 

 
* Cole JH, Myers ER, and van der Meulen MCH (2007) The effects of trabecular 
tissue heterogeneity on the mechanical performance of human vertebral cancellous 
bone. In preparation. 
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variability.  Computer models that simulate a virtual biopsy of cancellous bone can be 

used to investigate the mechanical behavior of a much larger region of bone and 

provide the opportunity to analyze that behavior non-invasively over changes in 

structural and material parameters.  Early finite element (FE) models treated 

cancellous bone as an irregular lattice-type structure and were used to assess the effect 

of idealized changes in architecture but not tissue properties [1,12,19,41,50].  

Architecture-based models, developed by converting voxels from a high-resolution 

micro-computed tomography (microCT) scan into cubic finite elements, more closely 

mimic the bone structure with fewer geometric assumptions than in the lattice models 

[6].  To date, these voxel-based models have primarily been used to examine the role 

of architecture in cancellous bone structural behavior, and most have assumed 

isotropic and homogeneous material properties [15,17,20,21,28,32,33,43,47-49]. 

Recently, several studies have begun to incorporate tissue heterogeneity into FE 

models, but most analyses assumed a spatial distribution extrapolated from localized 

tissue measurements [18,44].  Increasing spatial variability in cancellous bone tissue 

modulus by 20-50% reduced the apparent stiffness by 7-24% and greatly increased the 

percentage of failed tissue computed by comparing element strains to tissue yield 

strain [18].  The mineral distribution implemented in the models had a variable effect 

on the apparent stiffness, depending substantially on the modulus-density relationship 

used.  Using FE models that mimicked a realistic in vivo mineral distribution, apparent 

stiffness decreased up to 4% with a linear relationship and increased up to 20% with a 

cubic relationship [44].  However, these studies only examined a small volume of 

cancellous bone (4-5 mm cubic regions) for a small number of samples (n = 3), and 

the findings depended on the assumed mineral distribution. 
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For a given volume of cancellous bone, microCT scans provide an accurate 

representation of tissue mineral distribution [16] that can be readily converted into a 

tissue modulus distribution using experimentally derived empirical relationships  

[4,10,14,40].  In a study using CT-derived tissue modulus distributions, architecture-

based FE models more accurately predicted mechanical behavior than models using a 

homogeneous modulus [3].  Specifically, adding the tissue heterogeneity to models of 

rabbit cancellous bone increased the ability to predict experimental apparent modulus 

from 75% to 88%.  Understanding the effect of bone tissue heterogeneity appears 

essential, therefore, to the accurate prediction of cancellous bone mechanical 

performance, at least for rabbit cancellous bone. 

The effect of tissue property variations on structural performance needs to be 

examined for human cancellous bone, as does the influence of sex and metabolic 

disorders such as osteoporosis.  The objectives of this study were 1) to simulate the 

structural behavior of cancellous bone in the human spine using specimen-specific 

architecture- and material-based computer models, 2) to assess the effects of varied 

material models on the mechanical performance of the bone structure, 3) to compare 

model-derived parameters to the compressive mechanical properties of the cancellous 

specimens, and 4) to determine the role of sex and clinical bone status in both the 

mechanical properties and the choice of material properties for computer modeling.  

Our approach was to model the architecture and material variations of human vertebral 

cancellous bone based on microCT scans and to compare the model predictions for 

different material distributions to experimentally measured mechanical properties of 

the same specimens. 
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Methods 

Subjects 

Cadaver spine segments were obtained from 24 Caucasian donors (13 female, 11 

male) aged 56-92 years.  For 23 donors, the spine segment extended from the 11th 

thoracic vertebra (T11) through the 4th lumbar vertebra (L4), and for one donor, the 

segment extended from T11 through the 2nd lumbar vertebra (L2).  Spines were 

excluded if any vertebra in the L1-L4 segment showed evidence of fracture in a 

clinical bone density scan (1 female) or if the cancellous bone of the L2 vertebra 

showed evidence of bone metastasis during dissection (1 female, 1 male).  A total of 

21 subjects were included in the study. 

 

Clinical Bone Density Scan 

Clinical bone mineral status was assessed for all donors with dual-energy X-ray 

absorptiometry (DXA).  T11-L4 spine segments were secured in a curved Plexiglas® 

fixture, immersed in a saline bath within a Plexiglas® box, and scanned with a clinical 

fan-beam densitometer in lumbar spine array mode (Delphi QDR 4500A or QDR 

4500W, Hologic Inc., Bedford, MA).  The osteoporosis diagnostic index, T-score, was 

computed for the L1-L4 subregion of each spine as the ratio of areal bone mineral 

density of the subject to the areal density of a sex- and race-matched young population 

with normal bone.  Subjects were classified by T-score according to the World Health 

Organization guidelines, as follows [22]:  Normal = T-score > -1.0; Osteopenia = -2.5 

< T-score ≤ -1.0; and Osteoporosis = T-score ≤ -2.5. 

 

Micro-Computed Tomography Scan 

To prepare a small cancellous specimen for microCT, the L2 vertebra was 

excised from each spine segment, and a full-depth cylindrical specimen (diameter = 

93 



8.25 mm) was cut on the superior-inferior axis at low speed under continuous saline 

stream from the center of the vertebra using a metal bond diamond core drill (Starlight 

Industries, Rosemont, PA) in a drill press (Enco 105-1300, Fernley, NV, or Clarke 

BT1000, Perrysburgh, OH).  Cored specimens were wrapped in saline-soaked gauze 

and stored frozen in sealed plastic bags. 

To obtain a voxel-based characterization of cancellous bone structure and tissue 

mineral density, cored vertebral specimens were analyzed using quantitative microCT 

(MS-8, GE Healthcare, London, Ontario, Canada).  The specimens were scanned in a 

saline bath treated with a protease inhibitor cocktail to minimize protein degradation 

in the bone tissue (P8340, Sigma-Aldrich Inc., St. Louis, MO).  Each scan contained a 

calibration phantom consisting of air, saline, and a bone mineral standard (SB3, 

Gammex RMI, Middleton, WI).  The X-ray attenuations of these reference materials 

were used to calibrate the Hounsfield Unit (HU) scale by assuming that tissue mineral 

density was linearly related to grayscale values in HUs.  The measured CT attenuation 

values were scaled to HUs using the air and water portions of the phantom, which 

have known values of -1000 and 0 HU, respectively.  The resulting grayscale values in 

HUs were converted to tissue densities based on the density of the bone mineral 

standard (1.15 g/cc).  

The specimens were scanned in two batches with different scanning parameters.  

The first batch (13 cores from 13 donors) was scanned individually at high X-ray 

energy (voltage = 70 kVp, current = 90 μA) with 720 views, 8 frames per view, and a 

3-second exposure time for a total scan time of approximately 8 hours.  Data were 

reconstructed at an isotropic voxel resolution of 11.6μm.  The second batch (8 cores 

from 8 donors) was scanned two at a time at the same energy and exposure time with 

400 views and 7 frames per view for a total scan time of approximately 4 hours.  Data 
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were reconstructed at an isotropic voxel resolution of 17.0 μm.  For all cores, only an 

8 mm section from the center of the core was reconstructed for analysis (Figure 4.1).  

After the microCT scans were completed, cancellous bone cores were wrapped in 

saline-soaked gauze and stored frozen in sealed plastic bags. 

 

   

 
(a) Normal (F68) (b) Osteopenia (F61) (c) Osteoporosis (F65) 

 
Figure 4.1.  Examples of reconstructed volumes (top) and finite element meshes 
(bottom) for (a) normal, (b) osteopenic, and (c) osteoporotic subjects.  Age of the 
female (F) subjects is denoted in years. 

 

The reconstructed cancellous cores were reoriented to align the superior-inferior 

axis of the core with the vertical axis in the analysis software, and the ends of the 

cores were then cropped flat to a length of 7.5 mm (MicroView ABA 2.1.1., GE 

Healthcare, London, Ontario, Canada).  MicroCT data were resampled at 17 μm to 

equilibrate voxel sizes between the two batch groups.  For each core, bone voxels 

95 



were distinguished from non-bone voxels (e.g., air, marrow, saline) using the Otsu 

method, which assumes a bimodal distribution of grayscale values and computes the 

bone threshold in HU by maximizing the between-class variance of two populations 

[34].  Because the use of a global threshold across specimens with dissimilar averages 

in mineral density may result in an inaccurate topology [6], a unique threshold was 

computed for each specimen.  Cancellous bone volume fraction (BV/TV) was 

assessed for each of the reoriented, cropped cores after thresholding. 

 

Finite-Element Modeling 

Image data from the microCT scans were used to build specimen-specific finite 

element (FE) models for all 21 subjects [15,49].  Before creating the finite element 

mesh, the microCT data were coarsened to reduce the number of degrees of freedom 

and, consequently, the amount of computational memory required for solving the 

model.  CT density values were averaged over blocks of 64 adjacent voxels of length 

17.0 μm to form a single, coarsened cubic voxel of length 68.0 μm.  Coarsening 

reduced the number of degrees of freedom for one model from about 24 million to 

about 1.3 million. 

A finite element mesh was created for the gage length region of each cancellous 

bone core and measured 8.25 mm in diameter and 7.5 mm in length (Figure 4.1).  

Using the reoriented subvolumes obtained from microCT scans, each coarsened bone 

voxel, as defined by specimen-specific thresholding, was converted into an 8-noded 

linear brick element.  Elements that were not connected to the primary structure, as a 

result of either the experimental coring procedure or artifacts of coarsening, were 

removed using the connectivity criterion of a 6-connected neighborhood.  Unless an 

element shared a face with a portion of the primary bone structure, it was considered 

unconnected and was removed from the model.  For all models, the number of 
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unconnected elements removed was between 0.7% and 3.3% of the total number of 

elements.  On average, the final FE models had 140,000 elements and 275,000 nodes, 

for a total of 820,000 degrees of freedom.   

FE models were assigned isotropic material properties with a constant Poisson’s 

ratio of 0.3 and a model-specific tissue modulus distribution that was either 

homogenous or heterogeneous.  Three sets of models were analyzed, each set 

simulating a different modulus distribution, as follows: 

1. A single homogeneous modulus of E = 20 GPa, chosen based on measurements 

from nanoindentation studies, was assigned to all elements for all subjects. 

2. A specimen-specific homogeneous modulus was computed using the voxel 

mineral content from microCT scans and a linear modulus-density relationship 

using the formula [4]: 

E = Ec 
b

c

mean

ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛  

where Ec is the compressive tissue modulus for fully mineralized cortical bone 

(defined here as 20 GPa), ρmean is the mean apparent density over all mineralized 

voxels of the bone specimen, ρc is the apparent density of the SB3 cortical bone 

mineral standard, and b is the exponent defining the nature of the E-ρ relationship 

(i.e., b = 1 for a linear relationship).  By assuming a linear relationship between 

apparent density and CT attenuation values, the ρmean/ρc ratio was computed using 

the ratio of the mean CT attenuation value to the SB3 mineral standard CT value.  

The resulting tissue modulus, E, was applied to all voxels within a given model. 

3. A specimen-specific heterogeneous modulus was computed using the same linear 

E-ρ formula, except ρmean was replaced by the individual voxel apparent density ρ, 

and E was computed individually for each voxel using the CT value for that voxel. 
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Figure 4.2.  Boundary conditions for finite element models.  A compressive strain 
of 0.25% was applied to nodes on the top surface of the mesh.  Nodes on the bottom 
surface were constrained to in-plane motion, and nodes at one corner of the bottom 
surface were completely constrained to prevent rigid-body motion. 

 

For each FE model, two outcome parameters were examined.  First, the model-

predicted apparent modulus was computed and compared with the experimental 

modulus to validate the model.  Second, the distribution of minimum principal strains 

throughout the bone structure was investigated.  Boundary conditions were applied to 

the models to replicate displacement-controlled uniaxial compressive loading in the 

linear elastic range (Figure 4.2).  Pre-yield compression was simulated by displacing 

the nodes on the top surface of the cancellous core mesh to a strain of -0.25%.  The 

nodes on the bottom surface of the mesh were treated as rollers constrained to in-plane 

motion only, and the nodes at one corner of the bottom surface were rigidly fixed to 

prevent rigid-body motion.  The apparent modulus was calculated by summing the 

nodal reaction forces on the bottom surface of the core mesh and dividing by the 

cross-sectional area of a circle enclosing that surface.  Minimum principal strains were 

analyzed at the element centroids located in a 5-mm central region of the volume of 

interest (VOI) to avoid elements with artificially high strains due to their proximity to 

the applied loads and boundary conditions.  With the mesh created and refined, the 

appropriate tissue material properties defined, and the boundary conditions applied, 
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the FE models were solved using a linear elastic static analysis (ABAQUS 6.3, HKS, 

Pawtucket, RI). 

 

Mechanical Testing 

Following microCT scans, the cancellous bone cores were tested destructively in 

uniaxial compression, and apparent-level properties were assessed to validate the FE 

models.  After the cortical end plates were removed, the bone core ends were glued 

inside snug-fitting brass caps using a previously documented protocol designed to 

minimize end artifacts [23].  Approximately one-fourth of the overall core length was 

capped at each end.  The diameter of each cancellous core was measured six times, 

and the exposed length was measured four times, using metric dial calipers, and the 

mean values were recorded.  After the cyanoacrylate glue was cured for 24 hours, the 

capped cores were preconditioned for 5 cycles between 0 and 0.10% compressive 

strain and then loaded monotonically to failure at a rate of -0.50% strain per second 

(Mini-Bionix 858, MTS Systems Corporation, Eden Prairie, MN).  Tests were 

conducted in displacement control at room temperature, and load and displacement 

data were sampled at 20 Hz.  Displacement was measured with a 25-mm gage length 

axial extensometer (634.11F-24, MTS Systems Corporation, Eden Prairie, MN) 

attached to both brass caps. 

Apparent mechanical properties were computed from the destructive testing data.  

Load and displacement data were converted to apparent stress and strain using 

standard mechanics formulae [13].  The yield point was defined using the 0.2% offset 

strain, and the ultimate point was defined using the maximum stress.  Apparent elastic 

modulus was defined as the slope of a least-squares linear fit to the stress-strain data 

over 0.02-0.24% strain [26]. 
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Statistical Analysis 

The predictive power of the FE models was assessed by comparing the predicted 

apparent moduli to the experimentally measured apparent moduli using simple linear 

regressions for each model type.  Because the outcome parameters of apparent 

modulus and minimum principal strain were computed using four methods for each 

subject (i.e., mechanical testing and the three sets of models), a repeated measures 

analysis on repeated factor measurement method was examined.  The collective effect 

of measurement method and either sex or clinical bone diagnosis on apparent modulus 

was assessed with a repeated measures analysis of variance (RM ANOVA) on sex (or 

clinical diagnosis), measurement method, and their interaction (i.e., a model with full 

effects).  Model-predicted apparent modulus values were compared to each other and 

to those obtained by mechanical testing using contrasts.   

The median, minimum, maximum, and standard deviation (SD) of the minimum 

principal strain distributions were computed.  To further examine these distributions, 

the minimum principal strain results were separated into the following three 

categories, and the percentage of elements in each category was computed for each 

model, as follows: 

1. Low strain  ε1 < 500 microstrain 

2. Middle strain 500 ≤ ε1 < 1500 microstrain  

3. High strain   ε1 ≥ 1500 microstrain 

The collective effect of measurement method and either sex or bone diagnosis on all 

minimum principal strain metrics was evaluated using a RM ANOVA with full 

effects.  A significance level of 0.05 was used for all analyses (SAS 9.1, SAS Institute 

Inc., Cary, NC). 
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Results 

CT-based finite element models were developed for lumbar spine cancellous 

bone of 21 subjects of both sexes, aged 58-92, with a broad range of DXA T-score 

(Table 4.1).  Measured from microCT scans at a resolution of 17 μm, bone volume 

fraction of the L2 vertebrae varied greatly, ranging from 6.9% to 20.4%, with a 

coefficient of variation (COV) of 24%.  Tissue BMD varied slightly less, ranging 0.6 

to 1.2 g/cc, with a COV of 19%.  Mean direct trabecular thickness was 0.090-0.135 

mm, and mean direct trabecular separation was 1.07-1.63 mm for L2 cancellous bone 

cores.  The distribution of tissue mineral throughout the bone volume, as assessed by 

normalized CT attenuation, differed somewhat between subjects, although the 

variation did not appear to be connected with either sex or clinical bone diagnosis 

(Figure 4.3). 

For models with specimen-specific heterogeneous material properties, the 

distribution of bone tissue modulus was similar in shape for all subjects (Figure 4.4).  

Males may have a higher dispersion of tissue modulus values in the low modulus 

range and a higher mean modulus.  Similarly, tissue modulus appeared to have distinct 

distributions by clinical bone diagnosis.  Overall, the heterogeneous tissue modulus 

assigned to each element was 5.2 to 36.6 GPa and averaged 9.9-13.3 GPa over all 

elements for a given model, resulting in a global mean of 11.5 GPa over all models 

(Table 4.1).  The variability in the heterogeneous tissue modulus was 23-33% across 

elements within a given model. 

A uniform compressive strain was applied to the top surface of the cancellous 

core models, and the apparent elastic moduli were computed for the structure (Figure 

4.5).  The mean predicted apparent modulus was 0.13-1.50 GPa for homogeneous 

models, 0.09-0.79 GPa for heterogeneous models, and 0.10-0.79 GPa for specimen-
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Table 4.1.  Subject characteristics, cancellous bone tissue modulus, and apparent 
modulus for each measurement method.  Mod = modulus, SD = standard deviation, 
Homo = homogeneous, Hetero = heterogeneous, SS = specimen-specific, Exp = 
Experimental, M = male, F = female. 

    Tissue Mod (GPa) Mean Apparent Mod (GPa) 

Sex Age L1-L4 
T-score 

Bone 
Diagnosis Mean (SD)† Homo SS 

Hetero 
SS 

Homo Exp

F 73 0.5 Normal 10.5 (3.0) 1.50 0.79 0.79 0.81
M 56 0.2 Normal 10.4 (2.5) 0.87 0.45 0.45 0.60
F 74 -0.8 Normal 12.1 (3.2) 0.79 0.48 0.48 0.84
M 77 -0.8 Normal 12.4 (3.3) 0.38 0.23 0.24 0.34
M 65 -1.2 Osteopenia 10.2 (2.7) 0.81 0.41 0.41 0.55
M 79 -1.2 Osteopenia 13.0 (3.1) 0.65 0.41 0.42 0.48
F 58 -1.5 Osteopenia 13.3 (3.3) 0.58 0.39 0.38 0.73
M 71 -1.6 Osteopenia 11.9 (3.5) 0.13 0.09 0.10 0.66
M 67 -1.7 Osteopenia 10.6 (2.6) 0.82 0.45 0.44 0.48
M 63 -1.8 Osteopenia 12.2 (3.1) 0.63 0.38 0.38 0.55
F 61 -1.9 Osteopenia 12.0 (3.6) 0.62 0.38 0.37 0.59
M 63 -2.2 Osteopenia 13.3 (3.2) 0.74 0.51 0.49 0.77
M 69 -2.3 Osteopenia   9.9 (3.0) 0.55 0.27 0.27 0.35
F 92 -2.6 Osteoporosis 11.9 (3.4) 0.56 0.34 0.33 0.47
M 64 -2.9 Osteoporosis 13.0 (3.0) 0.84 0.55 0.55 0.60
F 61 -3.2 Osteoporosis 11.7 (3.4) 0.45 0.27 0.26 0.45
F 87 -3.5 Osteoporosis 11.5 (3.2) 0.55 0.32 0.31 0.43
F 87 -3.8 Osteoporosis 11.6 (3.1) 0.32 0.19 0.29 0.40
F 68 -3.9 Osteoporosis 10.2 (3.0) 0.61 0.31 0.31 0.17
F 65 -4.4 Osteoporosis 10.1 (2.6) 0.37 0.18 0.19 0.29
F 79 -5.2 Osteoporosis 10.3 (3.3) 0.30 0.16 0.15 0.20

† Mean tissue modulus for specimen-specific heterogeneous and homogeneous 
models.  Modulus for universal homogeneous models equals 20 GPa. 
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Figure 4.3:  Bone tissue mineral distribution assessed using CT attenuation for all 21 
subjects, separated by (a) sex and (b) clinical bone diagnosis.  Shown are the 
percentages of voxels for each CT attenuation value, normalized by the CT value for 
the cortical bone phantom.  The CT attenuations shown here are only those above the 
bone threshold for each subject. 
 
 
 

Normal 
Osteopenia 
Osteoporosis 

Males 
Females 

 

(a) (b) 
 

Figure 4.4:  Heterogeneous tissue moduli were assigned to elements based on a linear 
relationship with apparent density as measured by microCT attenuation for all 21 
subjects.  Tissue modulus distributions are shown separated by (a) sex and (b) clinical 
bone diagnosis, expressed as the percentages of voxels for each tissue modulus value. 
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Figure 4.5.  Apparent modulus from finite element models moderately predicted 
experimentally measured values, regardless of tissue moduli assigned (homogeneous, 
heterogeneous, or specimen-specific (SS) homogenous).  Subjects are denoted by sex 
(M = male, F = female) and age in years. 

 

specific homogeneous models (Table 4.1, Figure 4.6).  Predicted values were all 

relatively similar to the experimentally measured values of 0.17-0.84 GPa.  Regardless 

of the tissue modulus assigned, the FE-predicted modulus was linearly related to the 

experimental apparent modulus (p = 0.012 for homogeneous, p = 0.0014 for 

heterogeneous, and p = 0.0016 for specimen-specific homogeneous) (Figure 4.7). 

Overall, the specimen-specific heterogeneous and homogeneous models 

predicted apparent modulus more accurately than universal homogeneous models.  

The slope for universal models (0.36) was much less than the desired unity slope, but 

the slopes for specimen-specific models (0.78 for both) came decidedly closer.  In 

fact, the regression slopes had a 95% confidence interval of 0.3-1.2 and thus were not 

significantly different from the unity slope.  Therefore, while universal homogeneous 
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Experimental 
Homogeneous 
Heterogeneous 
SS Homogeneous

Figure 4.6.  Apparent modulus (mean ± standard deviation) for each measurement 
method, shown for all subjects, separated by sex, and separated by clinical bone 
diagnosis.  SS = specimen-specific. 

 

 

(r2 = 0.42)
(r2 = 0.42)

(r2 = 0.29)

(slope = 1)

Figure 4.7.  Specimen-specific (SS) heterogeneous and homogeneous finite element 
models improved the prediction of experimentally measured apparent modulus as 
compared to universal homogeneous models.  The reference line represents a unity 
slope corresponding to an exact fit between predicted and measured values. 
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models had reasonable predictions only in the central range of apparent modulus 

values, the specimen-specific models improved the predictions across the entire range.  

In addition, specimen-specific heterogeneous and homogeneous models predicted 

measured apparent modulus more consistently than did universal homogeneous 

models, explaining 42% versus 29% of the variability in the data. 

Regardless of sex or clinical bone diagnosis, apparent modulus differed 

significantly across the methods of measurement, i.e., mechanical testing, 

homogeneous model, heterogeneous model, and specimen-specific homogeneous 

model (p < 0.0001).  The predicted apparent moduli were generally 1.7 times larger 

for homogeneous models than for heterogeneous models (contrast p < 0.0001, Figure 

4.6).  Apparent moduli predicted by specimen-specific homogeneous and 

heterogeneous models were not significantly different (contrast p = 0.93).  Predicted 

moduli from universal homogeneous models were, on average, 1.3 times larger than 

experimentally measured moduli (contrast p = 0.033), which were 1.7 times larger 

than moduli predicted from either specimen-specific heterogeneous or homogeneous 

models (contrast p = 0.0038 and 0.0048, respectively). 

Regardless of the measurement method, apparent modulus differed by clinical 

bone diagnosis but not by sex (p = 0.023 and 0.27, respectively, Figure 4.6).  

Specifically, apparent modulus decreased with declining bone mass across all 

experimental and computational methods, such that the cancellous bone from subjects 

with normal bone mass was stiffer than bone from either osteopenic (p = 0.044) or 

osteoporotic subjects (p = 0.0067) .  Although apparent modulus tended to be slightly 

lower in females than in males across measurement method, this effect was not 

significant.  The interaction between measurement method and sex or between method 

and bone diagnosis was also not significant (p = 0.42 and 0.078, respectively). 
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Distributions of compressive minimum principal strain (ε1) were evaluated in the 

5-mm central section of cancellous bone cores, away from the site of loading (Figure 

4.8).  Because the FE analyses were linear and displacements were applied, the results 

for ε1 would be the same in both sets of homogeneous models (i.e., universal and 

specimen-specific).  Therefore, only the results for universal homogeneous and 

specimen-specific heterogeneous models were evaluated.  Because the distributions of 

ε1 had a distinct negative skew, with the majority of the values concentrated near zero, 

the median was used as the measure of centrality in lieu of the mean.  For clarity, the 

values of compressive strain will be discussed in terms of the absolute value.  

Distributions of ε1 were slightly different for homogeneous and heterogeneous 

material models.  Regardless of sex or clinical bone diagnosis, the median value for ε1 

was slightly lower (i.e., less negative) for heterogeneous material models (p < 0.0001, 

Figure 4.9), although the spread of values was slightly higher (p < 0.0001 for SD).  

Neither the minimum nor maximum value of ε1 was significantly different between 

homogeneous and heterogeneous models (p = 0.17 and 0.14, respectively).  None of 

the descriptors of minimum principal strain distribution (i.e., median, minimum, 

maximum, or SD) differed significantly by sex or bone diagnosis.  The interaction 

between measurement method and sex and between method and bone diagnosis were 

also not significant. 

To further examine these distributions, the minimum principal strain results were 

separated into discrete categories (Figure 4.10).  When compared to homogeneous 

models, heterogeneous models had more elements in the low strain region (43.8% vs. 

43.2%, p = 0.0003) and fewer elements in both the middle strain region (39.4% vs. 

39.8%, p = 0.014) and the high strain region (16.4% vs. 16.2%, p = 0.023).  However, 

these differences were very small and doubtfully produced any dramatic effects on the 

mechanical behavior of the cancellous bone samples. 

107 



(a) (b) 

 
 

(c) (d) 

 
Figure 4.8.  Distributions of minimum principal tissue strains within a 5-mm central 
section away from the site of loading for samples with universal homogeneous (a,c) 
and specimen-specific heterogeneous (b,d) material properties for all subjects, 
separated by sex (a,b) and clinical bone diagnosis (c,d). 
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Homogeneous 
Heterogeneous

Figure 4.9.  Absolute value of the median minimum principal strain averaged over 
all subjects, by sex, and by clinical bone diagnosis.  Values are mean ± standard 
deviation. 

 

 

 

Homogeneous 
Heterogeneous

Figure 4.10.  Percentage of elements in each minimum principal strain group (low, 
middle, and high strain).  Values are mean ± standard deviation. 
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Discussion 

In architecture-based finite element models of human vertebral cancellous bone, 

specimen-specific tissue moduli that varied linearly with apparent density substantially 

improved the overall prediction of apparent stiffness.  The regression slope comparing 

predicted values with measured values was 2.2 times larger for all specimen-specific 

models, with both heterogeneous and homogeneous tissue moduli, than for universal 

homogeneous models and was closer to the desired unity slope.  In addition, 

specimen-specific heterogeneous and homogeneous models explained the variability 

in the data to a greater extent than did universal homogeneous models (42% vs. 29%, 

respectively).  On average, specimen-specific heterogeneous and homogeneous 

models reduced apparent stiffness by 40% as compared to universal homogeneous 

models.  Therefore, although universal models generally overpredicted apparent 

modulus measured by mechanical testing, specimen-specific models tended to 

underpredict.  Compared to experimental results, universal homogeneous models 

predicted a 1-260% (mean = 50%) stiffer material in 16 out of 21 subjects, and 

specimen-specific heterogeneous and homogeneous models predicted a 2-86% (mean 

= 31%) more compliant material in 20 out of 21 subjects.  

Universal homogeneous models for females that overpredicted apparent modulus 

did so by an average of 60%, compared to 40% for males.  Specimen-specific models 

that underpredicted apparent modulus did so by 33% for females and 29% for males.  

These results indicate that while specimen-specific finite element models predicted 

apparent stiffness similarly for males and females, adding tissue heterogeneity, 

whether within or between specimens, had a greater mean impact for females, and the 

variability in this change was also much higher for females.  For both males and 

females, specimen-specific heterogeneous and homogeneous FE models provided 

conservative estimates of tissue stiffness in all but one subject.  The material 
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distributions derived from microCT for the specimen-specific models reflected true in 

vivo distributions over the volume of bone examined.  The computed tissue modulus 

values were consistently lower than the assumed homogeneous value of 20 GPa 

(Figure 4.4), indicating that the specimen-specific models should more accurately 

assess the structural competence of cancellous bone. 

Apparent tissue stiffness was virtually indistinguishable for specimen-specific 

heterogeneous and homogeneous models with tissue moduli that were mean-matched 

for each subject.  These results suggest that the mean tissue modulus, rather than the 

distribution of tissue modulus, drives the overall mechanical behavior for vertebral 

cancellous bone.  Although specimen-specific homogeneous models mostly 

underpredicted tissue stiffness, they did so predictably with a fairly universal offset 

from the experimental results across the range of apparent modulus data examined.  

Because a linear elastic analysis was performed, the tissue moduli used in the 

specimen-specific homogeneous models could be scaled appropriately to provide a 

closer prediction of the actual stiffness. 

Using a linear relationship to convert apparent density (ρ) to tissue modulus (E) 

improved the accuracy of FE models in predicting apparent modulus, but an even 

better prediction is preferable before these types of models can be comfortably used 

for diagnosis or evaluation.  The slope of the regression with measured apparent 

moduli increased by 2.2 times but was still 1.3 times smaller than the desired unity 

slope.  The regression slope was not significantly different than the unity slope, but 

apparent moduli predicted by these heterogeneous models were still more accurate at 

higher values than at lower values.   

Based on these observations, we hypothesized that a nonlinear E-ρ relationship 

would improve the accuracy of the heterogeneous models.  The modulus-density 
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relationship has been experimentally examined in several studies of human bone, and 

some have observed a power relationship of the form E = aρp, where a is an empirical 

constant, and p ranged from 1.93 to 3 [4,10,14,20,25,40].  To test our theory, we 

incorporated a nonlinear E-ρ relationship with a power of 1.96 [14] into our 

heterogeneous models and computed apparent modulus.  The slope of the measured 

versus predicted apparent modulus increased to 1.4, and the regression explained 52% 

of the variability in the data (Figure 4.11).  Therefore, to obtain a slope closer to the 

unity slope, an exponent between 1 and 1.96 should be used, although the explanatory 

power of such a model would likely be no greater than 52%. 

 

 

(r2 = 0.42)

(r2 = 0.42)
(r2 = 0.29)

(r2 = 0.52)
(slope = 1) 

Figure 4.11.  Apparent modulus from finite element models moderately predicted 
experimentally measured values, regardless of tissue moduli assigned:  universal 
homogeneous (homo), linear heterogeneous (hetero 1), specimen-specific (SS) 
homogeneous, or nonlinear heterogeneous (hetero 1.96).  The reference line represents 
a unity slope corresponding to an exact fit between predicted and measured values. 

 

In the present study of vertebral bone specimens, the mean tissue elastic modulus 

for heterogeneous models (9.9-13.0 GPa) fell within the range of mean indentation 
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modulus in human bone tissue examined by nanoindentation (7-32 GPa) [5,39,52].  

Similarly, the predicted apparent stiffness from our models (0.94-1.5 GPa) correlated 

well with the results computed in previous finite element studies of human cancellous 

bone (0.42-1.1 GPa) [15,45,49].  Despite the observed spatial variations in tissue 

material properties of cancellous bone, few finite element studies to date have 

investigated the role of heterogeneous tissue properties in overall mechanical 

behavior, and those that did only examined a small number of samples (n = 3-5) 

[3,18,44].  Most of these studies used an assumed mineral distribution from localized 

tissue measurements to estimate tissue modulus and did not compare model-predicted 

outcomes to experimental data [18,44].  One study reported little change in apparent 

tissue stiffness with heterogeneous models, as compared to homogeneous models, 

although the tissue moduli were scaled about a small value of 5 GPa [44].  Another 

study, which incorporated more realistic heterogeneity using more variable tissue 

moduli and a higher mean modulus of 11-13 GPa, showed decreases in apparent 

stiffness of 7-24% [18]. 

One previous study incorporated tissue heterogeneity derived directly from 

mineral distributions to examine the ability of these models to predict mechanical 

behavior of cancellous bone [3].  Similar to our study, this study in rabbit cancellous 

bone scaled tissue moduli about a much higher reference modulus of 20 GPa and 

reported decreases of 35-43% in apparent stiffness (comparable to our 40%) for 26-

34% variability in tissue modulus (similar to our 23-33%).  In addition, their 

heterogeneous and specimen-specific homogeneous model predictions explained the 

experimentally measured mechanical behavior better than the homogeneous models  

(r2 = 0.85 vs. 0.76, respectively).  Although our model predictions did not have as high 

an explanatory power overall, our heterogeneous and specimen-specific homogeneous 
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models also improved the prediction of apparent stiffness as compared to 

homogeneous models (r2 = 0.42 vs. 0.29, respectively). 

For our finite element models with heterogeneous tissue properties, the 

distributions of minimum principal strain were similar to those in the universal 

homogeneous models, and neither sex nor bone diagnosis appeared to have a 

substantial impact.  Given that the bone tissue modulus varied up to 33% from 5-37 

GPa over all subjects (mean = 10-13 GPa), compared with the 20 GPa homogeneous 

modulus, a more distinct distribution of tissue strains was expected, with higher strains 

located in regions of lower apparent density and thus lower modulus.  In a study using 

voxel-based micro-FE models of specimens from two human proximal femora, 

average tissue-level principal strains were about 70% higher in the osteoporotic femur 

(520 microstrain) than in the normal femur (304 microstrain) and were more dispersed 

[46].  This study had a very small sample size, however, and the differences in tissue 

properties likely reflect normal interspecimen variability as much as true differences 

from bone degradation. 

Our results indicate that, like apparent modulus, tissue strains appear to be driven 

more by the mean tissue modulus than by its spatial distribution, although the models 

used had limitations.  In a study of rabbit cancellous bone, mineral content as assessed 

by CT attenuation increased with distance from trabecular surfaces, resulting in tissue 

that was about 15% more mineralized at the center of trabeculae than at the surface 

[31].  Intra-trabecular variation in tissue mineral content, and therefore in tissue 

modulus, could result in a structure that was stiffer and carried more load in the center 

and was more compliant and deformed more at the surface.  The finite element meshes 

in our study had an element size of 68 μm, which corresponded to 0.5 to 0.8 times the 

mean direct trabecular thickness (Tb.Th*) for each specimen, resulting in an average 
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of 1.2 to 2.2 elements per Tb.Th* across the bone volume of each specimen.  Voxel 

sizes of this magnitude are increasingly susceptible to partial volume effects.  

Although adequate apparent modulus predictions have been validated for element 

sizes up to 1 Tb.Th*, especially for loading in the superior-inferior direction as in our 

present study, FE models with voxel sizes greater than 0.5*Tb.Th do not adequately 

capture true deformation modes [16].  To capture bending using a geometrically linear 

model, the mesh would need to have several elements across any given trabecular 

cross-section.  Rather, our models behaved like a parallel-loaded system of aligned 

trabeculae.  Better comparisons of tissue-level strains may be achieved with a finer 

mesh that allows for more realistic deformation modes. 

The primary strength of our study was the use of a large sample size (n = 21) of 

both male and female human specimens representing a wide range of ages, bone 

density, and trabecular architecture at a clinically interesting site.  To our knowledge, 

this study examined tissue heterogeneity using micro-FE models in the largest sample 

size to date.  The direct conversion of CT mineral content to tissue modulus provided 

an accurate mapping of cancellous tissue properties throughout the bone volume and 

reflected the true in vivo material distributions better than previous studies using tissue 

moduli based on estimated tissue distributions [18,44].  In our study, mechanical tests 

were performed on the same specimens simulated by the FE models, thereby allowing 

a direct comparison between the measured and predicted results.   

The primary weakness of our study was the relatively coarse mesh compared to 

the size of the trabecular structure.  As mentioned previously, a finer mesh would 

more accurately evaluate deformation modes and might better assess tissue-level 

strains.  The use of a larger element size allowed us to study a volume of bone that 

was 12-25 times larger than that studied in previous heterogeneous FE models, and 
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thus may have more accurately captured variations in tissue properties.  Nevertheless, 

the core of cancellous bone examined was still a relatively small volume from the 

centrum of a single vertebra and thus may not fully capture the nature or extent of 

tissue heterogeneity in the whole vertebra or in the spine in general.  Strain energy 

density, which has been used to assess localized tissue damage [27], may be a better 

index for assessing the effects of tissue heterogeneity in our finite element models and 

should be examined in the future.  In addition, the distribution of minimum principal 

strains should be investigated for the nonlinear heterogeneous material case to assess 

the impact of tissue property variations in a more physiologic material model.  We 

chose to evaluate tissue strains, because they are independent of modulus and may 

provide more information about tissue failure than tissue stresses [24].  However, 

some studies have suggested that bone tissue failure is related to shear stress in 

bending trabeculae, and thus von Mises stress may provide a more accurate 

assessment of cancellous bone behavior [7,51].  Perhaps material variations would 

have a more pronounced effect on other measures of tissue stresses or strains than did 

minimum principal strain. 

Based on our findings, the ability of linear, voxel-based finite element models to 

predict the apparent-level behavior of cancellous bone was substantially improved by 

using specimen-specific tissue material properties, compared with using universal 

homogeneous properties.  Specimen-specific homogeneous models provided 

indistinguishable results from heterogeneous models and may be more desirable due to 

reduced model complexity and computational expense.  Therefore, finite element 

models need to include some degree of heterogeneity, whether across subjects to 

account for interspecimen variability or within subjects to account for intraspecimen 

variability.  However, specimen-specific models still only accounted for 40% of the 

variability in experimental data.  Overall, both of the specimen-specific models 
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provided conservative estimates of apparent stiffness, but the prediction differed 

somewhat depending on the level of apparent stiffness and may be improved by using 

a higher-order modulus-density relationship to define tissue properties.  Regardless of 

sex or bone diagnosis, our study showed that specimen-specific FE models predicted 

the apparent stiffness of human vertebral cancellous bone more accurately than the 

commonly-used universal models.  Our findings suggest that a virtual biopsy 

technique may be useful for predicting mechanical behavior in the aging population, 

although the tissue-level strains need to be investigated for a nonlinear material 

distribution to determine if the voxel-based FE models provide any useful information 

beyond a simple mechanical test. 
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CHAPTER 5 

 

SUMMARY AND DISCUSSION 

 

Summary 

The objective of this work was to examine the variation in cancellous bone 

material properties as a function of age, sex, and clinical bone status and to relate 

variations in trabecular material properties with cancellous structural behavior.  Bone 

status is a clinical assessment measured most commonly using dual-energy X-ray 

absorptiometry (DXA).  DXA is a non-invasive, two-dimensional technique that often 

involves a fan-shaped X-ray beam that magnifies images relative to their location 

within the beam [6,13].  Characterizing the degree of this magnification and its effect 

on bone mineral measurements is important for evaluating the diagnostic accuracy of 

this technique.  Although DXA is used to predict the risk for developing a skeletal 

fracture resulting from low bone density, its resolution (~ 1 mm) cannot capture the 

complex structure or tissue properties of cancellous bone.  Therefore, the inconsistent 

correlation of DXA measures with bone strength in vitro and in situ [1,5,24,26,28], or 

even with skeletal fracture occurrence [8], is not surprising.  Determining which 

aspects of bone structure or material properties that DXA correlates with to what 

extent it correlates may explain its limited ability to predict fracture. 

To quantify fan-beam magnification, various aluminum rod phantoms were 

scanned with DXA at incremental heights above the scanning table, which 

corresponded to different locations within the X-ray beam [6].  Both projected area 

and mineral content decreased 1.6-1.8% per centimeter above the table for round rods 

positioned longitudinally along the table similar to a lumbar spine or forearm scan.  
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For the height range examined, total variations of 7-8% in projected area and mineral 

content and 2% in mineral density were observed, and errors of this magnitude are 

problematic for clinical studies, particularly in pediatric subjects or others whose soft 

tissue thickness may change their location within the X-ray beam of a DXA scan. 

Clinical bone status was evaluated with DXA for both male and female human 

cadaver spines.  Thoracolumbar segments were scanned in the anterior-posterior 

direction and analyzed for areal bone mineral density (aBMD) and T-score, which 

relates a subject’s aBMD to what it should be at peak bone mass.  T-score is the 

clinical measure used to categorize a subject as having normal, osteopenic, or 

osteoporotic bone and thus is the bone status metric for this study [20].  Unfortunately, 

most laboratory techniques that have sufficient resolution to assess cancellous 

structure and material properties require an invasive bone biopsy and substantial 

radiation exposure and usually can only accommodate a small specimen.  Therefore, a 

full-depth cylindrical core of cancellous bone (diameter = 8.25 mm) was drilled from 

the center of the T12 and L2 vertebral bodies of each spine for laboratory 

characterization.   

Cancellous cores were scanned using micro-computed tomography (microCT) to 

assess microarchitecture and tissue mineral content and were compressed to failure to 

assess apparent material properties.  Cancellous bone mass, architecture, and 

compressive material properties did not correlate with age or sex.  Some of these 

measures somewhat correlated with T-score (i.e., bone status) but primarily for 

women.  For women, DXA T-score correlated 50-80% with bone volume fraction and 

apparent density and 55-90% with apparent elastic modulus and strength at T12 and 

L2.  Besides L2 principal mean intercept length for women, DXA did not relate to 

bone architecture measures for either sex.  Therefore, DXA generally does not 
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correlate with cancellous bone architecture for men or women and more accurately 

predicts bone mineral mass and material properties in the thoracolumbar spine for 

women than for men.    

Compared to DXA, microCT bone volume fraction and apparent density were 

generally not better indicators of trabecular architecture or material properties in 

women or men, although BV/TV correlated 55-60% with mean direct trabecular 

separation for women.  Similar to DXA, BV/TV and apparent density correlated 35-

80% with apparent stiffness and strength for women but not for men.  Tissue density, 

however, was a good indicator of trabecular architecture, at least in the thoracic spine.  

At T12, tissue density correlated 60-80% with measures of trabecular structure and 

orientation for men and 55% with primary trabecular orientation and degree of 

anisotropy for women, as well as 45% with ultimate strain in men.  Given that T12 is a 

common site for fracture [9,17], especially in men, microCT tissue density may 

provide more information about cancellous bone strength in the thoracic spine not 

accounted for by DXA T-score and thus may improve the assessment of fracture risk 

in men. 

Voxel-based finite element (FE) models can noninvasively probe the effects of 

architecture and tissue heterogeneity on structural behavior for a virtual biopsy of 

cancellous bone [2,16].  For models of human vertebral cancellous bone, specimen-

specific tissue moduli that varied linearly with apparent density greatly improved the 

prediction of apparent stiffness as compared with a universal homogeneous modulus 

of 20 GPa.  The regression slope for predicted versus measured apparent stiffness 

increased from 0.36 in universal homogeneous models to 0.78 in specimen-specific 

models, and the explanatory power also increased from 29% to 42%, respectively.  

The 95% confidence interval for the regression slope of specimen-specific models 
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overlapped with 1.0 and thus was not significantly different from the unity slope.  

Interestingly, apparent stiffness was predicted equally well by all specimen-specific 

models, whether using a heterogeneous distribution of tissue moduli or a single 

homogeneous tissue modulus for all elements in a given model.  Therefore, the overall 

mechanical behavior for vertebral cancellous bone seems to be driven more by the 

mean tissue modulus than by its distribution. 

On average, FE models with universal homogeneous material properties 

overpredicted experimentally measured apparent stiffness by 38%, and specimen-

specific models underpredicted it by 20%.  The actual tissue modulus distributions, 

computed directly from microCT mineral distributions, were consistently lower than 

the assumed universal homogeneous modulus of 20 GPa.  Therefore, the specimen-

specific models, which are based on the true material distributions, provide 

conservative estimates of apparent stiffness and should assess the mechanical behavior 

of cancellous bone more accurately than the universal homogeneous models.   

On average, the bone tissue modulus varied up to 33%, but the distributions of 

minimum principal strain were only slightly different in universal homogeneous and 

specimen-specific models.  Although a more distinct distribution of tissue strains was 

expected, perhaps they also depend more on the mean tissue modulus than on its 

spatial distribution, or perhaps the meshes of our models were too coarse to capture 

realistic deformation modes [16].  In the future, a different heterogeneous material 

model that can more closely match the experimentally observed behavior will be 

examined [4,12,15,19,22,29].  A preliminary look at heterogeneous models with 

material properties that vary nonlinearly with apparent density showed that these 

models improved apparent stiffness predictions and thus may also more accurately 

127 



 

assess tissue strains.  Regardless, the nature of observed differences in tissue strains, 

especially stratified by sex and clinical bone status, needs to be quantified. 

In conclusion, our work showed that DXA provides a more accurate prediction 

of bone mass, apparent stiffness, and strength in the thoracolumbar spine for women 

than for men.  While DXA T-score did not correlate with cancellous bone architecture 

for either men or women, microCT tissue density correlated with some measures of 

trabecular structure, orientation, and anisotropy for both men and women.  These 

findings suggest that microCT may beneficially supplement fracture risk assessment 

by DXA in women but may replace the DXA assessment altogether for men.  The 

virtual biopsy technique examined in this work provided good predictions of apparent 

level behavior for vertebral cancellous bone, but a more representative material model 

must be developed so that the effect of inter- and intra-specimen material variations on 

tissue behavior can be investigated further. 

The primary strength of our work was the examination of age-matched vertebral 

cancellous bone for a large group (n = 21) of both male and female cadavers that 

spanned a wide range of ages (56-92 years), clinical bone diagnosis (T-score = -5.2 to 

0.2), bone volume fraction (7-20%), and trabecular architecture (mean trabecular 

thickness = 0.083-0.148 mm and separation = 1.07-1.63 mm).  Despite the 

interspecimen variations in bone mass, architecture, and apparent material properties, 

none of these metrics differed significantly by age, sex, or the age-sex interaction.  

Therefore, we were able to examine more fundamental relationships among bone 

mass, architecture, and material properties using a variety of measurement techniques.  

A single set of cancellous bone cores were assessed using microCT, finite element 

modeling, and mechanical testing, so direct comparisons could be made between FE 

predicted and experimentally measured results, and these laboratory results were 
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related back to the clinical DXA measurements taken in the same subjects.  Individual 

FE models were based on microCT scans, which provided an accurate specimen-

specific depiction of variations in both architecture and material properties throughout 

the volume of interest, and thus required few geometric or material assumptions.  

The primary limitation of this work was that it only characterized cancellous 

bone material properties at the apparent level and did not examine local variations in 

tissue composition.  Factors such as mineral:matrix ratio, carbonate:phosphate ratio, 

mineral crystallinity, and collagen maturity may also contribute to the quality of 

cancellous bone and may help explain some of the variability in bone material 

stiffness and strength not explained by bone mass, trabecular architecture, or apparent 

material properties.  Tissue composition is currently being characterized for the 

cadaver specimens in this study using Fourier-transform infrared (FTIR) spectroscopy.  

In the future, we plan to relate the FTIR composition measures, especially those 

related to the inorganic components of the microstructure, to outcome measures from 

DXA, microCT, and mechanical testing.  Furthermore, compositional properties and 

variation obtained from techniques such as Raman spectroscopy, second harmonic 

generation microscopy, and nanoindentation could be incorporated in architecture-

based finite element models to more accurately simulate cancellous bone behavior. 

 

Discussion and Future Directions 

While recent advances in high-resolution tomographic and magnetic resonance 

(MR) techniques have improved the resolution of in vivo imaging, most cannot resolve 

cancellous bone structure at the level of a single trabecula.  Although most often 

performed at peripheral sites like the wrist and heel, high-resolution magnetic 

resonance imaging was recently used to evaluate trabecular structure in the proximal 
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femur [23].  However, the resolution with this technique, which is on the order of the 

trabecular thickness, remains insufficient to assess trabecular structure any better than 

histological techniques.  If the resolution of MR imaging can be adequately improved 

to eliminate partial volume effects, trabecular structure and apparent density could be 

measured non-invasively in the elderly or other populations at high risk for developing 

skeletal fragility fractures.  Architecture-based finite element models could factor bone 

tissue heterogeneity into the assessment to help devise preventive strategies and 

treatments to avoid fracture.  While these in vivo techniques are still being developed, 

they may provide an appealing alternative to the low-resolution, two-dimensional 

DXA scan. 

Osteoporosis assessment from T-score alone is rather limited.  Categories of 

normal, osteopenic, and osteoporotic bone have somewhat arbitrary cutoff values that 

were selected by the World Health Organization (WHO) to classify those at risk for 

osteoporotic fracture.  The categories were intended for epidemiologic studies and not 

for evaluating patients individually.  Other factors such as rate of bone turnover, 

loading conditions, factor of risk, or whole bone strength indices may relate better to 

architecture and/or tissue heterogeneity than T-score alone [27,30].  Factor of risk, 

which is the ratio of skeletal load to failure load, is a non-invasive assessment of 

skeletal integrity and was recently correlated with spine, hip, and wrist fractures with 

clear age and sex differences [3,30].  For all three sites, the ratios of skeletal load to 

bone strength increased with age but more so in women than in men.  This pattern of 

increasing factor of risk parallels the proportionately larger rise in fracture incidence 

observed in aging women and thus may help identify the mechanisms contributing to 

bone strength and fracture risk not captured by DXA. 
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For our architecture- and material-based FE models, the prediction of apparent 

stiffness was sensitive to tissue material properties.  Therapies for osteoporosis have 

been shown to affect the tissue mineral properties.  Bisphosphonates, for example, 

inhibit osteoclast activity [10] and thus tend to increase mineral content, as well as 

mineral crystal size [11,18,31].  The effects of therapy-induced changes in tissue 

properties on the structural performance of cancellous bone need to be characterized.  

High-resolution FE models derived from microCT scans cannot currently be 

developed for in vivo tissue and require an invasive biopsy procedure.  Recently, 

apparent-level FE models were developed from in vivo quantitative computed 

tomography (QCT) scans and have been used to examine the biomechanical effects of 

osteoporosis therapies noninvasively [21].  These apparent-level voxel models, with 

element sizes on the order of 1 mm, have been shown to predict vertebral compressive 

strength better than bone mineral density from QCT and thus may greatly improve the 

clinical assessment of fracture risk [7]. 

Based on the results of our work and of other studies mentioned herein, 

trabecular architecture and tissue properties play an important role in the structural 

behavior of bone, at least for vertebral cancellous bone.  Cancellous bone mass, 

structure, and mechanical properties can vary substantially across anatomic site and 

even across individuals [14,25,32].  Therefore, other sites and perhaps other 

populations need to be examined.  Furthermore, the assessment of tissue geometry and 

material at the trabecular level may improve our ability to predict the mechanical 

behavior of cancellous bone and further explore the mechanisms behind bone fragility. 
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APPENDIX A:  DATA 

 

List of Abbreviations and Symbols 
 
aBMD areal bone mineral density 
AP anterior-posterior 
Aniso## Ratio of eigenvalues corresponding to principal material 

directions 
BMC bone mineral content 
BV/TV bone volume fraction  
COR center of rotation 
COV coefficient of variation = SD / mean 
DA degree of anisotropy = 1 – MIL3/MIL1 
DOF degrees of freedom 
DXA dual-energy X-ray absorptiometry 
E elastic modulus 
εu ultimate strain 
εY yield strain 
elems elements 
GL gage length 
Hetero heterogeneous (linear modulus-density relationship) 
Homo homogeneous 
HU Hounsfield Units 
MIL# mean intercept length in principal direction # 
microCT micro-computed tomography 
σu ultimate stress 
σY yield stress 
SMI structure model index 
SS specimen-specific 
Tb.Th* mean direct trabecular thickness (mean listed) 
Tb.Sp* mean direct trabecular separation (mean listed) 
TMC tissue mineral content 
TMD tissue mineral density (same as tisBMD) 
VOI volume of interest 
Vol volume 
WA-BMD width-adjusted bone mineral density from lateral DXA scans 
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Subject Identification Key 
 

T12 L2
56601009 1 C3 C2 Male 64 -2.9 Osteoporosis
57400992 3 C4 C6 Female 61 -3.2 Osteoporosis
56601150 6 C7 C8 Female 87 -3.8 Osteoporosis
57100905 5 C9 C10 Female 87 -3.5 Osteoporosis
56601148 8 C11 C12 Female 61 -1.9 Osteopenia
51000686 9 C13 C14 Male 71 -1.6 Osteopenia
OH04020204 13 C15 C16 Female 92 -2.6 Osteoporosis
57401177 11 C17 C18 Male 63 -1.8 Osteopenia
56601390 12 C20 C21 Female 74 -0.8 Normal
56601076 10 C22 C23 Male 79 -1.2 Osteopenia
56601015 14 C24 C25 Female 58 -1.5 Osteopenia
56601394 16 C26 C27 Male 77 -0.8 Normal
56801530 15 C28 C29 Male 63 -2.2 Osteopenia
7753 17 C30T C30L Female 73 0.5 Normal
7912 21 C31T C31L Female 79 -5.2 Osteoporosis
7741 20 C32T C32L Male 69 -2.3 Osteopenia
8092 19 C33T C33L Male 65 -1.2 Osteopenia
8219 22 C34T C34L Male 67 -1.7 Osteopenia
7885 23 C35T C35L Male 56 0.2 Normal
7880 18 C36T C36L Female 68 -3.9 Osteoporosis
6062234 24 C37T C37L Female 65 -4.4 Osteoporosis

Bone StatusAge 
(yr)

T-score 
(L1-L4)Subject ID Spine 

ID
   Core ID Sex

Notes: 
• Three spines were exluded from the study and are not listed here 
• Spine ID was assigned based on the chronology of DXA scans 
• Core ID was assigned based on the chronology of microCT scans  
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Demographic Data 

Note:  All subjects were Caucasian 
 

Subject ID Sex Age 
(yr) 

Height 
(in) 

Weight 
(lb) Cause of Death 

56601009 Male 64 --- --- Myocardial infarction 

57400992 Female 61 66 100 Lung cancer 

56601150 Female 87 64 130 Respiratory failure 

57100905 Female 87 58 95 Coronary heart failure 

56601148 Female 61 63 110 Intracranial bleeding 

51000686 Male 71 68 160 Glioblastoma 

OH04020204 Female 92 --- --- Pneumonia 

57401177 Male 63 73 170 Lung cancer 

56601390 Female 74 67 166 Myocardial infarction 

56601076 Male 79 72 160 Stroke 

56601015 Female 58 --- --- Throat cancer 

56601394 Male 77 71 152 Myocardial infarction 

56801530 Male 63 63 218 Myocardial infarction 

7753 Female 73 --- --- Cardiorespiratory 
arrest 

7912 Female 79 --- --- Respiratory failure 

7741 Male 69 --- --- Lung cancer 

8092 Male 65 --- --- Respiratory failure, 
pancreatic cancer 

8219 Male 67 --- --- Lung cancer 

7885 Male 56 --- --- Cardiorespiratory 
arrest 

7880 Female 68 --- --- Respiratory failure 

6062234 Female 65 65 160 Acute respiratory 
failure 
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Clinical DXA Scans – Hospital for Special Surgery 

Hologic QDR 4500A Delphi, S/N 45758 
Paired AP/Lateral lumbar spine scans in fast array mode 
 
Spine ID = 56601009

Levels L1-L4
AP Scan (A11190313)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 12.73 9.00 0.707 -2.7
L2 14.56 11.72 0.805 -2.6
L3 15.15 11.58 0.764 -3.1
L4 17.91 14.25 0.796 -3.2
L1-L4 60.34 46.54 0.771 -2.9

Lateral scan (A11190314)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 9.96 5.76 0.578 0.178
L3 11.12 6.85 0.616 0.183
L4 11.63 8.48 0.730 0.188
L2-L4 32.71 21.09 0.645 0.184

Levels T11-L2
AP Scan (A11190316)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 11.84 7.34 0.620 -3.5 ---
T12 L2 12.33 7.28 0.591 -4.6 ---
L1 L3 13.48 9.26 0.687 -3.8 -2.9
L2 L4 14.03 11.35 0.809 -3.1 -2.6
T11-L2 L1-L4 51.67 35.24 0.682 -3.7 ---

Lateral scan (A11190317)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 9.27 4.71 0.508 0.164 ---
L1 L3 8.97 4.27 0.476 0.154 ---
L2 L4 9.67 5.77 0.597 0.180
T11-L2 L1-L4 27.90 14.75 0.529 0.167 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = 57400992  contained levels T11-L2 only

Levels T11-L2
AP Scan (A1119031C)

Area BMC aBMD
Actual Analyzed (cm2 2) (g) (g/cm ) Analyzed Actual
T11 L1 9.05 4.86 0.538 -3.5 ---
T12 L2 10.23 5.16 0.504 -4.8 ---
L1 L3 11.81 6.75 0.571 -4.7 -3.2
L2 L4 12.81 8.64 0.675 -4.0 -3.2
T11-L2 L1-L4 43.89 25.41 0.579 -4.3 ---

Lateral scan (A1119031D)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2 2) (g) (g/cm ) (g/cm3) Analyzed Actual
T12 L2 7.62 2.28 0.299 0.113 -5.5 ---
L1 L3 8.32 2.87 0.345 0.131 -5.7 ---
L2 L4 8.80 3.60 0.409 0.148 -4.5 -4.4
T11-L2 L1-L4 24.74 8.75 0.354 0.132 -5.6 ---

Levels T-score

Levels T-score
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Spine ID = 56601150

Levels L1-L4
AP Scan (A11190321)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 13.17 8.29 0.629 -2.7
L2 12.15 7.13 0.587 -4.0
L3 12.48 7.95 0.637 -4.1
L4 16.17 10.64 0.658 -4.2
L1-L4 53.96 34.00 0.630 -3.8

Lateral scan (A11190322)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 9.76 4.77 0.488 0.139 -3.6
L3 10.99 4.87 0.443 0.123 -4.6
L4 10.99 6.12 0.557 0.137 -3.0
L2-L4 31.74 15.76 0.497 0.133 -3.9

Levels T11-L2

Area BMC aBMD
Actual Analyzed (cm

AP Scan (A11200304)

2) (g) (g/cm2) Analyzed Actual
T11 L1 12.06 4.69 0.389 -4.9 ---
T12 L2 12.89 5.51 0.428 -5.5 ---
L1 L3 12.48 7.70 0.617 -4.2 -2.8
L2 L4 12.51 7.30 0.584 -4.8 -4.0
T11-L2 L1-L4 49.93 25.21 0.505 -4.9 ---

Lateral scan (A11200305)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 8.56 2.06 0.241 0.077 -6.1 ---
L1 L3 9.29 4.21 0.453 0.135 -4.5 ---
L2 L4 11.56 5.41 0.468 0.125 -3.9 -3.8
T11-L2 L1-L4 29.40 11.69 0.397 0.117 -5.0 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score



 

Spine ID = 57100905

Levels L1-L4
AP Scan (A1119031V)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 9.25 4.43 0.479 -4.1
L2 10.59 6.30 0.595 -3.9
L3 11.52 8.37 0.727 -3.2
L4 12.40 9.85 0.794 -2.9
L1-L4 43.75 28.95 0.662 -3.5

Lateral scan (A1119031W)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 8.10 2.29 0.282 0.106 -5.7
L3 8.35 3.81 0.456 0.152 -4.5
L4 10.26 5.11 0.498 0.150 -3.6
L2-L4 26.71 11.21 0.420 0.140 -4.8

Levels T11-L2
AP Scan (A1119031T)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 8.22 3.87 0.470 -4.1 ---
T12 L2 9.59 4.39 0.458 -5.2 ---
L1 L3 11.36 5.01 0.441 -5.8 -4.4
L2 L4 11.57 6.55 0.566 -5.0 -4.2
T11-L2 L1-L4 40.73 19.81 0.486 -5.1 ---

Lateral scan (A1119031U)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 5.77 2.04 0.353 0.123 -5.0 ---
L1 L3 6.45 1.97 0.305 0.103 -6.2 ---
L2 L4 7.41 2.50 0.337 0.116 -5.3 -5.1
T11-L2 L1-L4 19.63 6.50 0.331 0.114 -5.8 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = 56601148

Levels L1-L4
AP Scan (A0713041G)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 12.25 8.95 0.731 -1.8
L2 14.02 12.14 0.866 -1.5
L3 14.48 13.02 0.899 -1.7
L4 15.72 12.89 0.820 -2.7
L1-L4 56.46 47.00 0.833 -1.9

Lateral scan (A0713041H)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 8.70 4.34 0.499 0.168 -3.5
L3 8.95 4.86 0.543 0.159 -3.5
L4 9.63 6.55 0.680 0.167 -1.8
L2-L4 27.28 15.75 0.577 0.164 -2.9

Levels T11-L2
AP Scan (A0713041I)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 9.64 6.55 0.680 -2.2 ---
T12 L2 11.78 8.13 0.690 -3.1 ---
L1 L3 12.43 9.00 0.724 -3.3 -1.8
L2 L4 14.26 12.27 0.861 -2.3 -1.5
T11-L2 L1-L4 48.10 35.94 0.747 -2.7 ---

Lateral scan (A0713041J)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 7.31 4.00 0.547 0.167 -3.1 ---
L1 L3 8.01 4.43 0.553 0.183 -3.4 ---
L2 L4 9.36 5.65 0.604 0.190 -2.6 -2.5
T11-L2 L1-L4 24.69 14.08 0.570 0.181 -3.0 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score

 

143 



 

Spine ID = 51000686

Levels L1-L4
AP Scan (A0713041O)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 14.63 12.21 0.835 -1.6
L2 16.42 13.13 0.800 -2.7
L3 18.36 16.54 0.901 -1.8
L4 17.70 19.31 1.091 -0.5
L1-L4 67.10 61.19 0.912 -1.6

Lateral scan (A0713041P)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 9.71 5.50 0.566 0.155
L3 11.03 7.08 0.642 0.171
L4 12.35 9.97 0.807 0.193
L2-L4 33.09 22.55 0.682 0.177

Levels T11-L2
AP Scan (A0713041Q)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 12.80 10.86 0.849 -1.4 ---
T12 L2 14.91 12.61 0.846 -2.3 ---
L1 L3 15.68 12.93 0.825 -2.5 -1.7
L2 L4 17.47 16.11 0.922 -2.0 -1.6
T11-L2 L1-L4 60.85 52.50 0.863 -2.1 ---

Lateral scan (A0713041R)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 9.65 5.95 0.617 0.181 ---
L1 L3 10.14 5.91 0.583 0.167 ---
L2 L4 11.85 8.14 0.687 0.182
T11-L2 L1-L4 31.64 20.00 0.632 0.177 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = OH04020204

Levels L1-L4
AP Scan (A07140405)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 11.08 7.80 0.705 -2.0
L2 11.42 8.69 0.761 -2.4
L3 12.99 10.65 0.820 -2.4
L4 15.30 11.33 0.740 -3.4
L1-L4 50.78 38.48 0.758 -2.6

Lateral scan (A07140406)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 8.02 3.69 0.460 0.160 -3.9
L3 9.85 4.89 0.496 0.157 -4.0
L4 9.65 4.60 0.477 0.140 -3.8
L2-L4 27.52 13.18 0.479 0.152 -4.1

Levels T11-L2
AP Scan (A07140407)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 9.48 5.79 0.611 -2.9 ---
T12 L2 10.93 6.73 0.616 -3.7 ---
L1 L3 11.13 7.76 0.698 -3.5 -2.1
L2 L4 11.69 8.90 0.761 -3.2 -2.4
T11-L2 L1-L4 43.22 29.18 0.675 -3.4 ---

Lateral scan (A07140408)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 7.68 3.55 0.462 0.163 -3.9 ---
L1 L3 8.72 4.17 0.478 0.165 -4.2 ---
L2 L4 9.60 5.07 0.528 0.180 -3.3 -3.2
T11-L2 L1-L4 26.00 12.78 0.492 0.170 -3.9 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = 57401177

Levels L1-L4
AP Scan (A07130420)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 16.93 14.01 0.828 -1.6
L2 16.93 15.49 0.915 -1.6
L3 17.07 16.20 0.949 -1.4
L4 16.38 14.71 0.898 -2.2
L1-L4 67.30 60.41 0.898 -1.8

Lateral scan (A07130421)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 11.36 7.01 0.617 0.168
L3 11.79 8.28 0.702 0.190
L4 11.76 9.98 0.849 0.246
L2-L4 34.91 25.27 0.724 0.201

Levels T11-L2
AP Scan (A07130422)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 15.55 12.71 0.818 -1.7 ---
T12 L2 14.42 9.97 0.692 -3.7 ---
L1 L3 16.86 13.83 0.820 -2.6 -1.7
L2 L4 17.31 15.84 0.915 -2.1 -1.6
T11-L2 L1-L4 64.13 52.35 0.816 -2.5 ---

Lateral scan (A07130423)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 11.43 7.54 0.660 0.182 ---
L1 L3 12.98 8.64 0.666 0.177 ---
L2 L4 13.08 9.89 0.756 0.202
T11-L2 L1-L4 37.50 26.07 0.695 0.187 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = 56601390

Levels L1-L4
AP Scan (A07130420)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 12.11 11.48 0.949 0.2
L2 12.13 13.96 1.151 1.1
L3 12.77 11.21 0.878 -1.9
L4 17.59 15.85 0.901 -2.0
L1-L4 54.59 52.50 0.962 -0.8

Lateral scan (A07130421)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 7.83 6.30 0.804 0.230 -0.5
L3 10.44 5.26 0.504 0.137 -3.9
L4 8.60 5.92 0.689 0.161 -1.7
L2-L4 26.87 17.48 0.650 0.169 -2.0

Levels T11-L2
AP Scan (A07130422)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 11.34 6.41 0.565 -3.3 ---
T12 L2 13.01 7.37 0.566 -4.2 ---
L1 L3 12.09 11.06 0.915 -1.5 -0.1
L2 L4 12.55 14.40 1.148 0.3 1.1
T11-L2 L1-L4 48.98 39.24 0.801 -2.2 ---

Lateral scan (A07130423)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 8.54 4.22 0.494 0.151 -3.6 ---
L1 L3 9.34 7.38 0.790 0.243 -0.7 ---
L2 L4 9.09 7.69 0.846 0.234 -0.1 -0.1
T11-L2 L1-L4 26.98 19.29 0.715 0.212 -1.2 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = 56601076

Levels L1-L4
AP Scan (A0713041S)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 13.93 13.59 0.976 -0.3
L2 15.53 14.69 0.946 -1.3
L3 16.98 16.62 0.979 -1.1
L4 19.57 18.07 0.923 -2.0
L1-L4 66.00 62.97 0.954 -1.2

Lateral scan (A0713041T)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 11.93 7.65 0.641 0.180
L3 12.05 8.44 0.700 0.206
L4 13.04 9.34 0.716 0.179
L2-L4 37.01 25.43 0.687 0.188

Levels T11-L2
AP Scan (A0713041U)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 12.70 13.51 1.064 0.5 ---
T12 L2 14.60 14.12 0.967 -1.2 ---
L1 L3 15.28 14.60 0.956 -1.3 -0.5
L2 L4 16.85 16.59 0.985 -1.5 -1.0
T11-L2 L1-L4 59.42 58.83 0.990 -0.9 ---

Lateral scan (A0713041V)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 12.16 7.93 0.652 0.189 ---
L1 L3 12.77 8.72 0.683 0.195 ---
L2 L4 13.33 10.08 0.756 0.213
T11-L2 L1-L4 38.26 26.74 0.699 0.200 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = 56601015

Levels L1-L4
AP Scan (A08180418)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 11.76 9.11 0.775 -1.4
L2 14.03 11.74 0.837 -1.7
L3 15.06 12.56 0.834 -2.3
L4 14.98 15.85 1.058 -0.5
L1-L4 55.82 49.26 0.883 -1.5

Lateral scan (A08180419)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 8.07 4.12 0.510 0.163 -3.4
L3 8.66 4.20 0.485 0.145 -4.2
L4 9.13 6.99 0.765 0.203 -0.9
L2-L4 25.86 15.31 0.592 0.174 -2.7

Levels T11-L2
AP Scan (A0818041B)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 10.59 8.09 0.764 -1.5 ---
T12 L2 12.00 8.61 0.717 -2.8 ---
L1 L3 12.32 9.26 0.752 -3.0 -1.6
L2 L4 13.79 11.60 0.841 -2.5 -1.7
T11-L2 L1-L4 48.69 37.56 0.771 -2.5 ---

Lateral scan (A0818041C)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 8.43 4.06 0.481 0.165 -3.7 ---
L1 L3 8.30 4.28 0.516 0.177 -3.8 ---
L2 L4 9.06 4.65 0.513 0.162 -3.5 -3.4
T11-L2 L1-L4 25.79 12.99 0.503 0.168 -3.8 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = 56601394

Levels L1-L4
AP Scan (A0818041I)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 14.43 12.96 0.898 -1.0
L2 17.18 17.74 1.033 -0.6
L3 17.40 18.06 1.038 -0.6
L4 19.35 19.85 1.026 -1.1
L1-L4 68.35 68.62 1.004 -0.8

Lateral scan (A0818041J)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 15.84 11.48 0.724 0.184
L3 13.43 11.70 0.871 0.206
L4 16.51 12.56 0.761 0.177
L2-L4 45.79 35.73 0.780 0.188

Levels T11-L2
AP Scan (A0818041K)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 12.68 10.18 0.803 -1.9 ---
T12 L2 16.03 12.50 0.780 -2.9 ---
L1 L3 14.80 13.34 0.901 -1.8 -1.0
L2 L4 17.16 18.01 1.050 -0.9 -0.4
T11-L2 L1-L4 60.66 54.03 0.891 -1.8 ---

Lateral scan (A0818041L)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 12.51 7.14 0.571 0.165 ---
L1 L3 14.63 9.80 0.670 0.192 ---
L2 L4 14.00 13.01 0.930 0.223
T11-L2 L1-L4 41.14 29.96 0.728 0.197 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = 56801530

Levels L1-L4
AP Scan (A0818041D)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 16.06 13.18 0.821 -1.7
L2 17.32 15.02 0.867 -2.1
L3 18.04 15.89 0.881 -2.0
L4 20.38 17.17 0.843 -2.7
L1-L4 71.78 61.25 0.853 -2.2

Lateral scan (A0818041E)
Area BMC aBMD WA-BMD

(cm2) (g) (g/cm2) (g/cm3)
L2 13.33 8.55 0.642 0.185
L3 13.38 10.03 0.750 0.208
L4 13.91 11.13 0.800 0.207
L2-L4 40.61 29.71 0.732 0.200

Levels T11-L2
AP Scan (A0818041F)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 13.60 10.49 0.771 -2.2 ---
T12 L2 15.49 10.78 0.696 -3.6 ---
L1 L3 16.79 13.39 0.798 -2.8 -1.9
L2 L4 17.06 14.94 0.876 -2.4 -2.0
T11-L2 L1-L4 62.93 49.59 0.788 -2.8 ---

Lateral scan (A0818041G)
Area BMC aBMD WA-BMD

Actual Analyzed (cm2) (g) (g/cm2) (g/cm3) Analyzed Actual
T12 L2 10.87 5.78 0.532 0.154 ---
L1 L3 11.95 6.84 0.573 0.166 ---
L2 L4 12.02 9.44 0.786 0.225
T11-L2 L1-L4 34.83 22.06 0.633 0.183 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Clinical DXA Scans – Institute for Human Performance 

Hologic QDR 4500W S/N 47730W 
AP lumbar spine scans in fast array mode 
 

 

Spine ID = 7753

Levels L1-L4
AP Scan (C09060605)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 13.36 13.14 0.984 0.5
L2 13.54 14.56 1.076 0.4
L3 14.27 16.87 1.182 0.9
L4 16.32 18.89 1.157 0.4
L1-L4 57.48 63.46 1.104 0.5

Levels T11-L2
AP Scan (C09060606)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 10.03 9.89 0.986 0.6 ---
T12 L2 11.87 10.82 0.912 -1.1 ---
L1 L3 13.33 13.11 0.983 -0.9 0.5
L2 L4 13.62 14.69 1.079 -0.3 0.4
T11-L2 L1-L4 48.85 48.52 0.993 -0.5 ---

Levels T-score

Levels T-score
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Spine ID = 7912

Levels L1-L4
AP Scan (C09080604)

Area BMC aBMD
2) (g) (g/cm(cm 2)

L1 6.96 3.43 0.493 -3.9
L2 5.40 2.35 0.435 -5.4
L3 6.15 2.92 0.475 -5.5
L4 7.21 3.46 0.480 -5.8
L1-L4 25.73 12.17 0.473 -5.2

Levels T11-L2
AP Scan (C09080605)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 7.70 3.69 0.479 -4.1 ---
T12 L2 6.00 2.88 0.480 -5.0 ---
L1 L3 6.85 3.29 0.480 -5.5 -4.0
L2 L4 5.53 2.41 0.436 -6.2 -5.4
T11-L2 L1-L4 26.08 12.27 0.471 -5.2 ---

Spine ID = 7741

Levels L1-L4
AP Scan (C0906060H)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 14.95 10.56 0.707 -2.7
L2 16.38 13.10 0.800 -2.7
L3 16.66 15.03 0.903 -1.8
L4 19.86 18.14 0.913 -2.1
L1-L4 67.85 56.84 0.838 -2.3

Levels T11-L2
AP Scan (C0906060I)

Area BMC aBMD
Actual Analyzed (cm2 2) (g) (g/cm ) Analyzed Actual
T11 L1 11.98 10.30 0.860 -1.4 ---
T12 L2 14.40 11.75 0.816 -2.5 ---
L1 L3 15.10 10.59 0.702 -3.7 -2.8
L2 L4 16.67 13.33 0.800 -3.1 -2.7
T11-L2 L1-L4 58.14 45.98 0.791 -2.7 ---

Levels T-score

Levels T-score

evels T-score

Levels T-score

L
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Spine ID = 8092

Levels L1-L4
AP Scan (C0906060D)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 15.34 13.16 0.858 -1.4
L2 16.57 16.31 0.984 -1.0
L3 18.24 16.95 0.930 -1.6
L4 16.81 18.16 1.080 -0.6
L1-L4 66.96 64.58 0.964 -1.2

Levels T11-L2
AP Scan (C0906060E)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 11.93 9.61 0.806 -1.8 ---
T12 L2 14.07 11.38 0.809 -2.6 ---
L1 L3 15.92 13.40 0.842 -2.4 -1.5
L2 L4 16.06 15.83 0.986 -1.5 -1.0
T11-L2 L1-L4 57.98 50.22 0.866 -2.0 ---

Spine ID = 8219

Levels L1-L4
AP Scan (C09080608)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 17.27 13.97 0.809 -1.8
L2 16.07 14.17 0.882 -1.9
L3 17.68 16.41 0.928 -1.6
L4 21.44 20.95 0.977 -1.5
L1-L4 72.46 65.49 0.904 -1.7

Levels T11-L2
AP Scan (C09080609)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 13.38 12.32 0.921 -0.8 ---
T12 L2 14.40 11.47 0.797 -2.7 ---
L1 L3 16.94 13.76 0.812 -2.6 -1.8
L2 L4 16.23 14.32 0.882 -2.4 -1.9
T11-L2 L1-L4 60.95 51.88 0.851 -2.2 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score



 

Spine ID = 7885

Levels L1-L4
AP Scan (C0908060C)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 17.81 21.70 1.218 1.9
L2 18.38 19.41 1.056 -0.4
L3 20.00 22.66 1.133 0.3
L4 23.64 24.73 1.046 -0.9
L1-L4 79.84 88.51 1.109 0.2

Levels T11-L2
AP Scan (C0908060D)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 14.78 20.59 1.393 3.5 ---
T12 L2 16.83 17.83 1.060 -0.3 ---
L1 L3 17.84 21.89 1.227 1.1 2.0
L2 L4 18.22 19.47 1.069 -0.7 -0.2
T11-L2 L1-L4 67.68 79.79 1.179 0.8 ---

Spine ID = 7880

Levels L1-L4
AP Scan (C09060609)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 12.21 7.25 0.593 -3.0
L2 13.26 8.40 0.634 -3.6
L3 14.32 8.60 0.601 -4.4
L4 14.77 9.44 0.639 -4.3
L1-L4 54.57 33.69 0.617 -3.9

Levels T11-L2
AP Scan (C0906060A)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actual
T11 L1 8.94 5.29 0.592 -3.0 ---
T12 L2 10.92 5.84 0.535 -4.5 ---
L1 L3 12.25 7.26 0.592 -4.5 -3.0
L2 L4 12.64 7.95 0.629 -4.4 -3.6
T11-L2 L1-L4 44.75 26.34 0.589 -4.2 ---

Levels T-score

Levels T-score

Levels T-score

Levels T-score
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Spine ID = 6062234

Levels L1-L4
AP Scan (A0929060B)

Area BMC aBMD
(cm2) (g) (g/cm2)

L1 10.35 5.59 0.540 -3.5
L2 12.72 7.06 0.555 -4.3
L3 12.45 6.77 0.544 -4.9
L4 11.56 7.25 0.627 -4.4
L1-L4 47.09 26.67 0.566 -4.4

Lateral scan (A0929060C)
Area BMC aBMD WA-BMD 

(cm2) (g) (g/cm2) (g/cm3)
L2 7.78 3.09 0.396 -4.5
L3 8.44 3.46 0.410 -5.0
L4 9.05 3.82 0.422 -4.4
L2-L4 25.27 10.37 0.410 -4.9

Levels T11-L2
AP Scan (A09290607)

Area BMC aBMD
Actual Analyzed (cm2) (g) (g/cm2) Analyzed Actu
T11 L1 9.86 5.41 0.549 -3.4
T12 L2 10.31 5.02 0.487 -4.9
L1 L3 9.72 5.32 0.547 -4.9 -
L2 L4 11.15 6.42 0.576 -4.9 -
T11-L2 L1-L4 41.04 54.03 0.540 -4.6

Lateral scan (A09290608)
Area BMC aBMD WA-BMD 

Actual Analyzed (cm

al
---
---

3.4
4.1
---

2) (g) (g/cm2) (g/cm3) Analyz
T12 L2 8.31 3.47 0.418
L1 L3 6.96 2.82 0.406 -
L2 L4 8.40 3.72 0.443 -
T11-L2 L1-L4 23.68 10.02 0.423 -

Levels T-score

Levels T-score

Levels T-score

Levels T-
ed Actual

-4.3 ---
5.1 ---
4.2 -4.1
4.7 ---

score
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MicroCT Reconstruction and Analysis Parameters 
Resolution:  0.011605 mm C02-C10; 0.011616 mm C11-C29; 0.016970 mm C30-C37 

Air Water Bone Origin Size HU g/cc
C02 1150 1.40 4.38 4955 (727,763,935) (780,850,695) 1875 1.057
C03 650 1.36 4.54 4620 (243,172,928) (830,830,700) 1547 1.050
C04 648 1.49 5.23 3435 (216,157,891) (805,855,700) 981 1.043
C06 650 1.59 5.51 3247 (277,274,946) (810,810,700) 966 1.045
C07 650 1.63 5.71 3105 (250,188,886) (805,805,700) 921 1.044
C08 650 1.57 5.50 3264 (219,177,866) (850,830,700) 1043 1.048
C09 650 1.53 5.52 3225 (202,232,935) (790,820,700) 945 1.044
C10 650 1.57 5.57 3236 (116,187,916) (995,930,700) 981 1.045
C11 648.5 1.66 5.63 3197 (177,219,941) (825,845,695) 1078 1.051
C12 648.5 1.70 5.80 2996 (170,245,852) (915,820,700) 917 1.046
C13 648.5 1.64 5.11 3899 (211,298,930) (795,805,695) 1357 1.052
C14 648 1.74 5.88 3007 (196,158,905) (890,900,695) 1819 1.091
C15 647 1.66 5.74 3042 (191,193,911) (840,860,700) 1005 1.050
C16 647 1.80 5.90 3018 (223,150,906) (880,860,700) 944 1.047
C17 647 1.63 5.50 3308 (180,243,919) (830,810,700) 1073 1.049
C18 647 1.76 5.73 3185 (293,255,930) (835,840,700) 1060 1.050
C20 647 1.55 5.37 3450 (150,267,900) (815,805,695) 1159 1.050
C21 648.5 1.70 5.79 3063 (194,190,887) (930,925,695) 1005 1.049
C22 648.5 1.47 5.25 3587 (170,162,926) (840,875,700) 1343 1.056
C23 647 1.71 5.74 3150 (170,326,920) (810,795,695) 1141 1.054
C24 647 1.63 5.58 3285 (182,187,891) (835,805,700) 1181 1.054
C25 647 1.74 5.91 3010 (218,291,932) (875,840,700) 1080 1.054
C26 647 1.81 5.63 3416 (333,236,970) (825,830,700) 1169 1.051
C27 647 1.74 5.77 3202 (307,286,1017) (825,870,695) 1060 1.050
C28 647 1.70 5.71 3229 (267,139,978) (850,890,695) 1158 1.054
C29 647 1.78 5.86 3196 (314,185,1000) (820,925,695) 1156 1.054
C30T 1137 1.95 5.83 3847 (621,531,761) (600,555,485) 1045 1.041
C30L 1137 1.95 5.83 3847 (1181,906,681) (635,610,480) 1113 1.043
C31T 1138 1.99 5.91 3774 (486,1041,976) (630,580,485) 1034 1.041
C31L 1138 1.99 5.91 3774 (1241,1021,921) (550,620,500) 981 1.039
C32T 1138 2.10 5.90 3787 (1126,1116,986) (575,590,480) 1157 1.046
C32L 1138 2.10 5.90 3787 (706,511,901) (640,620,505) 1038 1.041
C33T 1138 2.20 5.74 4305 (1256,926,856) (630,585,485) 1169 1.041
C33L 1138 2.20 5.74 4305 (596,541,796) (595,550,505) 1269 1.044
C34T 1138 1.87 5.67 3946 (676,466,791) (590,580,505) 1185 1.045
C34L 1137 1.87 5.67 3946 (901,1136,711) (595,630,505) 1257 1.048

35T 1138 1.96 5.74 3905 (1207,852,848) (530,555,485) 1282 1.049
35L 1138 1.96 5.74 3905 (481,771.711) (560,600,505) 1221 1.047

C36T 1138 2.07 5.66 4354 (636,1201,801) (585,590,505) 1054 1.036
C36L 1138 2.07 5.66 4354 (1096,581,781) (615,610,505) 1155 1.040
C37T 1138 1.95 5.90 3891 (661,561,811) (625,560,505) 1136 1.044
C37L 1138 1.95 5.90 3891 (771,1246,701) (560,580,500) 1129 1.044

ThresholdMid-Region VOI (~8mm)Core 
ID COR Calibration (HU)

C
C
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MicroCT Mass and Architecture Measurements 

T12 L2 T12 L2 T12 L2 T12 L2
C3 C2 9.22 11.21 0.0247 0.0333 0.6707 0.7434
C4 C6 9.49 8.26 0.0242 0.0226 0.6385 0.6856
C7 C8 8.30 6.91 0.0213 0.0188 0.6412 0.6819
C9 C10 8.12 10.38 0.0212 0.0285 0.6525 0.6863
C11 C12 9.44 10.04 0.0278 0.0274 0.7387 0.6844
C13 C14 9.76 12.39 0.0285 0.0578 0.7308 1.1669
C15 C16 10.00 9.99 0.0285 0.0280 0.7133 0.7020
C17 C18 10.33 11.30 0.0280 0.0317 0.6782 0.7020
C20 C21 9.15 12.07 0.0260 0.0337 0.7112 0.6979
C22 C23 15.79 14.23 0.0470 0.0421 0.7450 0.7413
C24 C25 13.29 11.86 0.0387 0.0366 0.7286 0.7730
C26 C27 10.56 11.18 0.0302 0.0323 0.7158 0.7224
C28 C29 9.50 10.56 0.0291 0.0322 0.7670 0.7625
C30T C30L 19.32 20.41 0.0449 0.0492 0.5820 0.6038
C31T C31L 8.03 7.25 0.0200 0.0168 0.6216 0.5810
C32T C32L 15.25 11.79 0.0368 0.0269 0.6047 0.5717
C33T C33L 12.63 13.24 0.0275 0.0305 0.5448 0.5761
C34T C34L 10.86 13.01 0.0254 0.0314 0.5857 0.6041
C35T C35L 14.75 13.82 0.0355 0.0331 0.6028 0.5994
C36T C36L 9.71 11.23 0.0208 0.0260 0.5375 0.5799
C37T C37L 11.07 11.07 0.0255 0.0251 0.5757 0.5677

T12 L2 T12 L2 T12 L2 T12 L2
C3 C2 0.0994 0.1349 1.4187 1.6301 2.01 1.85
C4 C6 0.0953 0.1014 1.3099 1.4793 2.10 2.24
C7 C8 0.1016 0.0991 1.5664 1.5851 2.14 2.43
C9 C10 0.0917 0.0952 1.4586 1.3730 2.14 1.69
C11 C12 0.1178 0.1203 1.3467 1.5001 2.32 2.17
C13 C14 0.1219 0.1187 1.4356 1.3880 2.10 1.69
C15 C16 0.0882 0.0903 1.3993 1.3900 1.64 1.68
C17 C18 0.1206 0.1196 1.4424 1.2837 2.20 2.03
C20 C21 0.1056 0.1142 1.4704 1.4132 2.03 1.68
C22 C23 0.1313 0.1299 1.4036 1.4283 1.43 1.64
C24 C25 0.1206 0.1216 1.3202 1.3484 2.01 2.20
C26 C27 0.1045 0.1173 1.4101 1.3448 2.16 2.23
C28 C29 0.1479 0.1309 1.5907 1.4523 2.27 1.94
C30T C30L 0.1063 0.1097 1.0641 1.0750 1.67 1.73
C31T C31L 0.1247 0.1130 1.5327 1.3658 2.27 2.74
C32T C32L 0.1047 0.0909 1.1069 1.1050 1.78 2.00
C33T C33L 0.0925 0.0994 1.1558 1.1233 1.88 1.85

 Tb.Th* (mm) Tb.Sp* (mm)      SMI   Core ID

   Core ID              BV/TV      TMC (g)        TMD (g/cc)
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MicroCT Anisotropy Measurements 

T12 L2 T12 L2 T12 L2 T12 L2
C3 C2 0.204 0.264 0.154 0.189 0.133 0.169
C4 C6 0.189 0.215 0.138 0.180 0.124 0.144
C7 C8 0.227 0.184 0.160 0.151 0.132 0.136
C9 C10 0.186 0.202 0.144 0.159 0.138 0.151
C11 C12 0.226 0.242 0.180 0.181 0.163 0.159
C13 C14 0.227 0.219 0.167 0.180 0.155 0.150
C15 C16 0.204 0.205 0.131 0.160 0.125 0.137
C17 C18 0.198 0.226 0.183 0.176 0.179 0.152
C20 C21 0.226 0.225 0.152 0.175 0.139 0.154
C22 C23 0.245 0.221 0.211 0.205 0.187 0.172
C24 C25 0.251 0.230 0.197 0.205 0.161 0.184
C26 C27 0.215 0.194 0.162 0.187 0.149 0.155
C28 C29 0.241 0.253 0.209 0.199 0.198 0.180
C30T C30L 0.202 0.211 0.168 0.179 0.163 0.168
C31T C31L 0.220 0.193 0.173 0.166 0.165 0.154
C32T C32L 0.179 0.180 0.149 0.148 0.148 0.137
C33T C33L 0.195 0.195 0.147 0.146 0.142 0.138
C34T C34L 0.187 0.209 0.149 0.177 0.143 0.150
C35T C35L 0.190 0.193 0.170 0.167 0.169 0.142
C36T C36L 0.149 0.198 0.133 0.167 0.127 0.162
C37T C37L 0.185 0.194 0.159 0.172 0.151 0.164

T12 L2 T12 L2 T12 L2 T12 L2
C3 C2 1.54 1.56 1.32 1.39 1.16 1.12
C4 C6 1.52 1.49 1.37 1.19 1.11 1.25
C7 C8 1.73 1.35 1.42 1.22 1.21 1.11
C9 C10 1.35 1.34 1.29 1.28 1.04 1.05
C11 C12 1.39 1.52 1.26 1.33 1.10 1.14
C13 C14 1.47 1.46 1.36 1.22 1.08 1.19
C15 C16 1.63 1.49 1.55 1.28 1.05 1.17
C17 C18 1.11 1.48 1.08 1.28 1.03 1.16
C20 C21 1.62 1.46 1.49 1.29 1.09 1.13
C22 C23 1.31 1.29 1.16 1.08 1.13 1.20
C24 C25 1.56 1.25 1.28 1.12 1.22 1.11
C26 C27 1.44 1.26 1.32 1.04 1.09 1.21
C28 C29 1.22 1.41 1.15 1.27 1.06 1.11
C30T C30L 1.24 1.26 1.20 1.18 1.03 1.07
C31T C31L 1.33 1.25 1.27 1.16 1.05 1.08
C32T C32L 1.20 1.31 1.20 1.21 1.01 1.08

       Aniso13       Aniso12       Aniso23   Core ID

   Core ID        MIL1 (mm)       MIL2 (mm)       MIL3 (mm)
T12 L2

0.350 0.358
0.344 0.330
0.421 0.261
0.258 0.252
0.279 0.342
0.318 0.315
0.387 0.330
0.098 0.326
0.384 0.314
0.238 0.225
0.360 0.198
0.306 0.204
0.179 0.290
0.193 0.204
0.248 0.202
0.169 0.237
0.275 0.289
0.237 0.280
0.109 0.262
0.153 0.184
0.184 0.154

C33T C33L 1.38 1.41 1.33 1.33 1.03 1.06
C34T C34L 1.31 1.39 1.26 1.18 1.04 1.18
C35T C35L 1.12 1.36 1.11 1.16 1.01 1.17
C36T C36L 1.18 1.23 1.12 1.19 1.05 1.03
C37T C37L 1.23 1.18 1.16 1.12 1.05 1.05

    DA
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Endcapping Vertebral Trabecular Cores 

Pre Jet Post Jet Core Exposed
C02 56601009 L2 0.657 0.631 25.49 11.77
C03 56601009 T12 0.623 0.659 24.50 13.78
C04 57400992 T12 0.841 0.750 22.12 11.78
C06 57400992 L2 0.953 0.831 25.23 12.48
C07 56601150 T12 0.787 0.614 22.65 12.10
C08 56601150 L2 0.768 0.618 23.66 11.25
C09 57100905 T12 0.542 0.571 23.58 11.55
C10 57100905 L2 0.858 0.726 24.39 12.49
C11 56601148 T12 0.783 0.701 21.14 11.39
C12 56601148 L2 0.860 0.764 22.44 12.20
C13 51000686 T12 1.222 0.989 23.47 13.73
C14 51000686 L2 1.205 1.094 24.19 11.98
C15 OH04020204 T12 0.858 0.903 23.27 12.83
C16 OH04020204 L2 0.872 0.788 23.52 11.61
C17 57401177 T12 1.018 0.794 26.24 12.42
C18 57401177 L2 1.150 0.847 26.99 13.15
C20 56601390 T12 0.934 0.632 23.78 12.08
C21 56601390 L2 1.102 1.161 23.62 12.56
C22 56601076 T12 1.124 0.784 25.69 12.65
C23 56601076 L2 0.961 0.736 24.68 11.57
C24 56601015 T12 0.996 0.886 25.08 12.72
C25 56601015 L2 1.088 0.917 24.68 12.67
C26 56601394 T12 0.694 0.695 27.48 12.71
C27 56601394 L2 0.740 0.842 28.32 12.12
C28 56801530 T12 0.962 0.844 25.87 12.81
C29 56801530 L2 1.043 0.977 27.05 12.64
C30T 7753 T12 0.863 0.920 21.79 12.27
C30L 7753 L2 1.199 0.892 24.87 12.90
C31T 7912 L2 0.531 0.396 22.42 10.07
C31L 7912 T12 0.733 0.360 20.12 8.48
C32T 7741 L2 0.850 0.685 26.39 12.46
C32L 7741 T12 0.853 0.560 21.82 10.00
C33T 8092 T12 1.094 0.909 21.75 10.39
C33L 8092 L2 1.227 0.950 23.50 11.30
C34T 8219 T12 1.199 0.807 23.81 10.69
C34L 8219 L2 1.324 0.992 26.59 12.87
C35T 7885 T12 0.890 0.480 20.51 7.91
C35L 7885 L2 1.167 0.830 24.11 10.48
C36T 7880 L2 0.740 0.479 23.80 9.76
C36L 7880 T12 0.750 0.448 21.87 10.69
C37T 6062234 T12 0.890 0.577 18.70 9.09
C37L 6062234 L2 1.033 0.685 21.14 10.63

Mass (g)     Length (mm)Core ID Subject ID Level
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Mechanical Testing Parameters for Trabecular Cores 

8
1
4
6
2
6
9
1
9
5
0
6
4
9
9
0
8
7
1
7
9
2
9
5
2
3
9
6
2
9
7
3
1
9
6
0
3
9
4
4
7
5

e 
Preload Load

C02 27 8.18 18.63 0.0186 0.5588 5.58
C03 4 8.15 19.14 0.0191 0.5741 5.74
C04 16 8.16 16.95 0.0169 0.5084 5.08
C06 26 8.11 18.85 0.0189 0.5656 5.65
C07 10 8.04 17.37 0.0174 0.5212 5.21
C08 12 8.10 17.45 0.0175 0.5236 5.23
C09 1 8.12 17.56 0.0176 0.5269 5.26
C10 25 8.21 18.44 0.0184 0.5531 5.53
C11 11 8.14 16.26 0.0163 0.4879 4.87
C12 13 8.21 17.32 0.0173 0.5195 5.19
C13 5 8.17 18.60 0.0186 0.5580 5.58
C14 6 8.19 18.09 0.0181 0.5426 5.42
C15 3 8.17 18.05 0.0180 0.5414 5.41
C16 17 8.19 17.56 0.0176 0.5269 5.26
C17 2 8.19 19.33 0.0193 0.5799 5.79
C18 15 8.17 20.07 0.0201 0.6020 6.02
C20 24 8.15 17.93 0.0179 0.5378 5.37
C21 23 8.19 18.09 0.0181 0.5427 5.42
C22 18 8.17 19.17 0.0192 0.5751 5.75
C23 20 8.18 18.12 0.0181 0.5437 5.43
C24 21 8.17 18.90 0.0189 0.5669 5.66
C25 19 8.19 18.67 0.0187 0.5602 5.60
C26 14 8.13 20.10 0.0201 0.6029 6.02
C27 22 8.15 20.22 0.0202 0.6065 6.06
C28 9 8.18 19.34 0.0193 0.5802 5.80
C29 8 8.23 19.84 0.0198 0.5953 5.95
C30T 28 8.20 17.03 0.0170 0.5109 5.10
C30L 38 8.19 18.89 0.0189 0.5666 5.66
C31T 39 8.15 16.24 0.0162 0.4872 4.87
C31L 33 8.11 14.30 0.0143 0.4289 4.28
C32T 29 8.13 19.42 0.0194 0.5827 5.82
C32L 31 8.10 15.91 0.0159 0.4773 4.77
C33T 40 8.17 16.07 0.0161 0.4821 4.82
C33L 32 8.17 17.40 0.0174 0.5219 5.21
C34T 41 8.15 17.25 0.0173 0.5176 5.17
C34L 36 8.20 19.73 0.0197 0.5920 5.92
C35T 35 8.14 14.21 0.0142 0.4263 4.26
C35L 43 8.18 17.30 0.0173 0.5189 5.18
C36T 42 8.09 16.78 0.0168 0.5034 5.03
C36L 30 7.89 16.28 0.0163 0.4884 4.88
C37T 34 8.16 13.89 0.0139 0.4167 4.16
C37L 37 8.19 15.88 0.0159 0.4765 4.76

Strain rat
(mm/min)Core ID Test 

Order
Diameter 

(mm)
Effective 
GL (mm)

   Displacement (mm)
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Mechanical Testing Apparent Material Properties 

C02 56601009 L2 604.2 2.466 2.511 0.6080
C03 56601009 T12 282.2 1.030 1.062 0.5650
C04 57400992 T12 454.7 1.865 1.986 0.6100
C06 57400992 L2 447.9 1.631 1.632 0.5640
C07 56601150 T12 365.9 1.297 1.350 0.5550
C08 56601150 L2 404.8 1.572 1.591 0.5880
C09 57100905 T12 116.9 0.808 1.057 0.8910
C10 57100905 L2 428.8 1.403 1.402 0.5270
C11 56601148 T12 595.5 2.806 2.903 0.6710
C12 56601148 L2 588.3 2.191 2.195 0.5720
C13 51000686 T12 555.5 2.201 2.269 0.5960
C14 51000686 L2 662.0 2.626 2.763 0.5970
C15 OH04020204 T12 376.1 1.820 2.132 0.6840
C16 OH04020204 L2 469.5 2.011 2.093 0.6280
C17 57401177 T12 391.4 1.644 1.741 0.6200
C18 57401177 L2 551.6 2.130 2.142 0.5860
C20 56601390 T12 508.7 2.024 2.142 0.5980
C21 56601390 L2 843.8 3.227 3.472 0.5820
C22 56601076 T12 626.7 2.754 2.920 0.6390
C23 56601076 L2 484.7 1.565 1.585 0.5230
C24 56601015 T12 929.5 3.107 3.224 0.5340
C25 56601015 L2 727.3 3.108 3.189 0.6270
C26 56601394 T12 624.1 2.447 2.474 0.5920
C27 56601394 L2 342.0 1.265 1.268 0.5700
C28 56801530 T12 699.4 3.006 3.270 0.6300
C29 56801530 L2 766.5 3.211 3.820 0.6190
C30T 7753 T12 952.9 3.871 4.394 0.6060
C30L 7753 L2 808.0 3.350 3.680 0.6150
C31T 7912 T12 423.4 1.558 1.645 0.5680
C31L 7912 L2 195.7 0.745 0.862 0.5810
C32T 7741 T12 324.7 0.912 0.937 0.4810
C32L 7741 L2 351.8 1.080 1.095 0.5070
C33T 8092 T12 580.8 2.203 2.265 0.5790
C33L 8092 L2 547.3 1.892 1.980 0.5460
C34T 8219 T12 707.1 2.752 2.865 0.5890
C34L 8219 L2 482.0 1.677 1.786 0.5480
C35T 7885 T12 826.7 2.674 2.678 0.5230
C35L 7885 L2 595.4 2.240 2.490 0.5760
C36T 7880 T12 112.5 0.370 0.418 0.5290
C36L 7880 L2 167.9 0.507 0.654 0.5020

Core ID Level E (MPa) ◊ Y (MPa)Subject ID ◊Y (%)◊ u (MPa)

0.7074
0.7380
0.9040
0.5566
0.6784
0.6326
1.8465
0.5296
0.8214
0.5502
0.7595
0.7876
1.3606
0.8593
0.8497
0.6341
0.8332
0.9828
0.8981
0.5836
0.7042
0.7521
0.6876
0.5829
0.9753
1.1967
1.0588
1.0155
0.8066
1.0141
0.5786
0.5852
0.7090
0.7517
0.7508
0.8021
0.5431
1.0232
0.8775
1.2737

C37T 6062234 T12 331.6 1.125 1.143 0.5390 0.5774
C37L 6062234 L2 289.9 0.885 0.906 0.5050 0.6285

◊u (%)σY (MPa) εY (%) σu (MPa) εY (%) 
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MicroCT Tissue Mineral Distribution and Computed Tissue Modulus 

Mean Median Min Max SD COV %
C02 0.6516 0.6648 0.3784 1.0286 0.1483 22.8
C06 0.5835 0.5821 0.2975 1.0316 0.1717 29.4
C08 0.5816 0.5822 0.3196 0.9939 0.1554 26.7
C10 0.5762 0.5776 0.3032 1.0321 0.1598 27.7
C12 0.6020 0.5983 0.3061 1.1092 0.1780 29.6
C14 0.5961 0.5976 0.3003 1.0898 0.1729 29.0
C16 0.5928 0.5887 0.3128 1.1047 0.1681 28.4
C18 0.6082 0.6134 0.3328 1.0100 0.1574 25.9
C21 0.6042 0.6068 0.3281 1.0484 0.1598 26.5
C23 0.6481 0.6637 0.3622 1.0150 0.1542 23.8
C25 0.6652 0.6851 0.3588 1.0283 0.1644 24.7
C27 0.6172 0.6248 0.3310 1.0440 0.1630 26.4
C29 0.6624 0.6820 0.3617 1.0452 0.1584 23.9
C30L 0.5244 0.5169 0.2893 1.8288 0.1497 28.6
C31L 0.5137 0.4982 0.2599 1.0288 0.1670 32.5
C32L 0.4970 0.4770 0.2741 1.0293 0.1506 30.3
C33L 0.5075 0.4993 0.2948 0.9575 0.1339 26.4
C34L 0.5308 0.5289 0.3186 0.9663 0.1282 24.2
C35L 0.5211 0.5221 0.3127 0.9439 0.1236 23.7
C36L 0.5088 0.5058 0.2653 1.0058 0.1491 29.3
C37L 0.5023 0.4996 0.2902 0.9114 0.1297 25.8

C02 13038 13303 7581 20572 2965 22.7
C06 11678 11647 5965 20632 3435 29.4
C08 11639 11651 6405 19877 3108 26.7
C10 11532 11559 6078 20641 3195 27.7
C12 12047 11968 6138 22183 3561 29.6
C14 11931 11959 6022 21796 3458 29.0
C16 11864 11783 6272 22093 3363 28.3
C18 12172 12277 6670 20200 3147 25.9
C21 12092 12137 6577 20968 3196 26.4
C23 12968 13276 7258 20299 3084 23.8
C25 13311 13710 7190 20566 3289 24.7
C27 12351 12510 6635 20880 3260 26.4
C29 13255 13645 7248 20904 3168 23.9
C30L 10496 10343 5802 36576 2994 28.5
C31L 10282 9966 5214 20575 3341 32.5
C32L 9948 9545 5497 20585 3013 30.3
C33L 10158 9991 5909 19150 2679 26.4
C34L 10622 10581 6384 19325 2563 24.1
C35L 10427 10445 6266 18879 2472 23.7
C36L 10183 10119 5320 20116 2983 29.3
C37L 10052 10002 5816 18227 2593 25.8

Heterogeneous Tissue Modulus (MPa)

Core ID Tissue Mineral Density (HU/Bone HU)
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Finite Element Model Descriptions for L2 Specimens 

x-size y-size Groups Vol (%)
C02 936 142467 262333 786999 8.2343 8.2343 399
C06 955 103260 212201 636603 8.2343 8.1662 719
C08 954 85821 182167 546501 8.2343 8.1662 516
C10 962 134069 273573 820719 8.1662 8.1662 442
C12 964 124966 243166 729498 8.2343 8.2343 287
C14 897 72191 165393 496179 8.1662 8.0982 1413
C16 943 127492 264645 793935 8.2343 8.2343 632
C18 966 141829 280783 842349 8.1662 8.1662 360
C21 954 153262 296798 890394 8.2343 8.1662 458
C23 981 179398 331641 994923 8.2343 8.2343 490
C25 983 149338 292403 877209 8.2343 8.2343 602
C27 968 140995 280784 842352 8.2343 8.2343 925
C29 960 132479 245772 737316 8.2343 8.2343 454
C30L 868 250557 461802 1385406 8.1662 8.1662 745
C31L 949 86376 175304 525912 8.1662 8.1662 597
C32L 889 142570 294363 883089 8.1662 8.1662 1021
C33L 948 162213 316555 949665 8.1662 8.1662 986
C34L 945 160561 311258 933774 8.1662 8.1662 590
C35L 917 178298 336849 1010547 8.1662 8.1662 598
C36L 891 133407 249878 749634 8.1662 8.1662 571
C37L 924 134222 265404 796212 8.1662 8.1662 648

 Connect

98.8
97.4
96.9
99.0
99.3
91.7
98.5
99.3
99.2
98.7
98.4
97.9
97.9
99.3
96.7
97.3
98.1
99.1
98.8
98.4
98.1

ed RegionsCore 
ID Materials Elements Nodes DOF    CSA (mm)
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FE Assigned Tissue Modulus and Predicted Apparent Modulus 

 

Element size = 0.068 mm 
Applied strain = -0.25% 
 

Homo Hetero SSHomo Homo Hetero SSHomo
C02 20 13.0 13.0 0.8386 0.5505 0.5467
C06 20 11.7 11.7 0.4535 0.2667 0.2648
C08 20 11.6 11.6 0.3235 0.1904 0.1882
C10 20 11.5 11.5 0.5458 0.3179 0.3147
C12 20 12.0 12.0 0.6185 0.3819 0.3726
C14 20 11.9 11.9 0.1262 0.0937 0.0950
C16 20 11.9 11.9 0.5619 0.3376 0.3333
C18 20 12.2 12.2 0.6315 0.3812 0.3843
C21 20 12.1 12.1 0.7896 0.4829 0.4774
C23 20 13.0 13.0 0.6536 0.4139 0.4238
C25 20 13.3 13.3 0.5766 0.3863 0.3838
C27 20 12.4 12.4 0.3809 0.2283 0.2352
C29 20 13.3 13.3 0.7439 0.5084 0.4930
C30L 20 10.5 10.5 1.5023 0.7931 0.7890
C31L 20 10.3 10.3 0.2996 0.1567 0.1540
C32L 20 9.9 9.9 0.5515 0.2705 0.2743
C33L 20 10.2 10.2 0.8076 0.4094 0.4102
C34L 20 10.6 10.6 0.8234 0.4478 0.4373
C35L 20 10.4 10.4 0.8673 0.4541 0.4522
C36L 20 10.2 10.2 0.6072 0.3096 0.3092
C37L 20 10.1 10.1 0.3732 0.1818 0.1876

(mean) (mean)

Core 
ID

Tissue Modulus (GPa) Apparent Modulus (GPa)
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FE Minimum Principal Strains:  Homogeneous Models 
Analyzed over the middle 5mm of the 7mm core subsection modeled 

 
Applied strain = -0.25% 

Mean Median Min Max SD COV % # %
C02 94978 -1083 -1003 -6359 0 726 -67.0 3 0.005
C06 68839 -799 -646 -7557 0 682 -85.3 32 0.034
C08 57214 -771 -564 -7314 7 697 -90.4 17 0.016
C10 89380 -803 -609 -7999 0 686 -85.5 33 0.031
C12 83311 -958 -816 -6842 21 724 -75.6 16 0.016
C14 48128 -404 -235 -5790 27 492 -121.8 7 0.007
C16 84995 -860 -706 -8998 2 667 -77.6 12 0.007
C18 94552 -840 -661 -6708 11 688 -81.9 46 0.038
C21 102175 -1030 -901 -7096 0 758 -73.6 5 0.009
C23 119599 -733 -537 -8573 1 658 -89.8 0 0.000
C25 99559 -879 -648 -8016 0 770 -87.6 9 0.011
C27 93996 -486 -321 -5762 0 490 -100.8 7 0.008
C29 88320 -1072 -938 -6401 0 811 -75.7 1 0.001
C30L 167040 -1086 -955 -8219 0 776 -71.5 2 0.002
C31L 57583 -742 -492 -6340 63 737 -99.3 4 0.004
C32L 95047 -758 -561 -6651 0 688 -90.7 1 0.001
C33L 108142 -888 -762 -7687 0 686 -77.3 7 0.008
C34L 107040 -1015 -869 -10520 0 753 -74.2 18 0.018
C35L 118865 -939 -804 -8736 0 706 -75.2 13 0.019
C36L 88938 -899 -683 -6831 1 767 -85.3 10 0.008
C37L 89481 -538 -340 -6786 83 558 -103.7 40 0.045

Core 
ID

Analyzed 
Elements 

Minimum Principal Strain (microstrain) Post-yield 

Element size = 0.068 mm
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FE Minimum Principal Strains:  Homogeneous Models 
Analyzed over the middle 5mm of the 7mm core subsection modeled 
Element size = 0.068 mm 
Applied strain = -0.25% 
 

# elems % elems # elems % elems # elems % elems
C02 23930 25.20 46417 48.87 24631 25.93
C06 28625 41.58 30695 44.59 9519 13.83
C08 26326 46.01 22618 39.53 8270 14.45
C10 38636 43.23 37142 41.56 13602 15.22
C12 27208 32.66 38985 46.79 17118 20.55
C14 57075 63.78 11171 23.21 8306 9.28
C16 31016 36.49 40853 48.07 13126 15.44
C18 37862 40.04 41777 44.18 14913 15.77
C21 30531 29.88 47019 46.02 24625 24.10
C23 56624 47.34 48985 40.96 13990 11.70
C25 41097 41.28 39984 40.16 18478 18.56
C27 60400 64.26 29432 31.31 4164 4.43
C29 27445 31.07 36106 40.88 24769 28.04
C30L 57075 63.78 75780 45.37 8306 9.28
C31L 29051 50.45 19921 34.60 8611 14.95
C32L 44094 46.39 37766 39.73 13187 13.87
C33L 38009 35.15 51698 47.81 18435 17.05
C34L 33524 31.32 47694 44.56 25822 24.12
C35L 40457 34.04 54235 45.63 24173 20.34
C36L 35715 40.16 35493 39.91 17730 19.94
C37L 55758 62.31 27522 30.76 6201 6.93

Middle (500-1000)   High (> 1500)Core 
ID

    Low (< 500)
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FE Minimum Principal Strains:  Heterogeneous Models 
Analyzed over the middle 5mm of the 7mm core subsection modeled 
Element size = 0.068 mm 
Applied strain = -0.25% 
 

 
 

# %
0.014
0.048
0.016
0.048
0.015
0.011
0.004
0.049
0.007
0.004
0.007
0.022
0.004
0.000
0.011
0.003
0.007
0.023
0.025
0.010
0.070

-yield 
Mean Median Min Max SD COV %

C02 94978 -1067 -969 -6024 0 731 -68.5 8
C06 68839 -797 -631 -7398 0 691 -86.7 46
C08 57214 -768 -557 -6403 21 704 -91.6 17
C10 89380 -807 -605 -8632 0 698 -86.4 52
C12 83311 -955 -805 -6024 4 724 -75.8 15
C14 48128 -402 -232 -6111 5 498 -123.9 10
C16 84995 -860 -700 -7507 0 674 -78.3 6
C18 94552 -837 -647 -6908 0 696 -83.1 59
C21 102175 -1022 -875 -8030 0 768 -75.1 4
C23 119599 -722 -515 -7978 2 671 -93.0 2
C25 99559 -878 -639 -8128 13 778 -88.6 6
C27 93996 -470 -304 -6492 0 489 -104.0 20
C29 88320 -1078 -932 -7416 0 820 -76.0 4
C30L 167040 -1074 -918 -9962 0 796 -74.2 0
C31L 57583 -732 -475 -7137 0 747 -102.0 10
C32L 95047 -750 -536 -8172 0 705 -94.0 3
C33L 108142 -873 -732 -9726 0 700 -80.2 6
C34L 107040 -1014 -870 -10257 0 749 -73.9 23
C35L 118865 -936 -791 -8357 0 712 -76.0 17
C36L 88938 -895 -661 -7181 0 782 -87.4 12
C37L 89481 -526 -324 -7169 59 559 -106.3 62

Core 
ID

Minimum Principal Strain (microstrain) PostAnalyzed 
Elements 
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FE Minimum Principal Strains:  Heterogeneous Models 
Analyzed over the middle 5mm of the 7mm core subsection modeled 
Element size = 0.068 mm 
Applied strain = -0.25% 
 

# elems % elems # elems % elems # elems % elems
C02 24326 25.61 47365 49.87 23287 24.52
C06 28847 41.91 30356 44.10 9636 14.00
C08 26573 46.44 22442 39.22 8199 14.33
C10 38828 43.44 36783 41.15 13769 15.41
C12 27183 32.63 39257 47.12 16871 20.25
C14 57075 63.78 10979 22.81 8306 9.28
C16 31142 36.64 40673 47.85 13180 15.51
C18 38543 40.76 41019 43.38 14990 15.85
C21 30856 30.20 47457 46.45 23862 23.35
C23 58552 48.96 47152 39.43 13895 11.62
C25 41462 41.65 39774 39.95 18323 18.40
C27 62283 66.26 27634 29.40 4079 4.34
C29 27379 31.00 36027 40.79 24914 28.21
C30L 57075 63.78 76377 45.72 8306 9.28
C31L 29659 51.51 19577 34.00 8347 14.50
C32L 45400 47.77 36700 38.61 12947 13.62
C33L 39532 36.56 50977 47.14 17633 16.31
C34L 33318 31.13 48130 44.96 25592 23.91
C35L 40985 34.48 53761 45.23 24119 20.29
C36L 36476 41.01 34918 39.26 17544 19.73
C37L 57075 63.78 26295 29.39 6111 6.83

Middle (500-1000)  High (> 1500)Core 
ID

  Low (< 500)
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APPENDIX B:  Mechanical Testing Data Plots 

nd Stress-Strain Plots 

 

Load-Displacement a
 

 
 

 
 

 
 

170 



 

 
 

 
 

 

171 



 

 
 

 
 

 

172 



 

 
 

 
 

 
 

173 



 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C30T

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)
-L

oa
d 

(N
)

C30L

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C31T

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C31L

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

 
 

174 



 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C32T

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C32L

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C33T

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C33L

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C34T

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C34L

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

 
 

175 



 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C35T

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C35L

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C36T

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C36L

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C37T

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

-Extensometer Displacement (mm)

-L
oa

d 
(N

)

C37L

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

-Strain (%)

-S
tr

es
s 

(M
P

a)

 

176 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


