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SUMMARY 

The Arabian plate's interaction with the Eurasian plate has played a major role in 

building the young mountain belts along the Zagros-Bitlis continent-continent collision 

zone. Arabia's northward motion is considered to be the primary driving force behind the 

present-day westerly escape of the Anatolian plate along the North and East Anatolian 

fault zones as well as the formation of the Turkish and the Iranian plateaus. In this study 

we mapped Pn wave velocity and anisotropy structures at the junction of the Arabian, 

Eurasian, and African plates in order to elucidate the upper mantle dynamics in this 

region. Pn is a wave that propagates within the mantle lid of the lithosphere and is often 

used to infer the rheology and fabric of the mantle lithosphere. Applying strict selection 

criteria we used arrival times of 166,000 Pn phases to invert for velocity and anisotropy 

in the region. Using a least squares tomographic code, these data were analyzed to 

simultaneously solve for both velocity and azimuthal anisotropy in the mantle 

lithosphere.  

We found that most of the continental regions in our study area are underlain by 

low Pn velocity structures. Broad scale (~500 km) zones of low (< 8 km/s) Pn velocity 

anomalies underlie the Anatolian plate, the Anatolian plateau, the Caucasus region, 

northwestern Iran, and northwestern Arabia and  smaller scale (~200 km), very low (< 

7.8 km/s) Pn velocity zones underlie southern Syria, the Lesser Caucasus, the Isparta 

Angle, central Turkey, and the northern Aegean Sea.  The broad scale low velocity 

regions are interpreted to be hot and unstable mantle lid zones, whereas very low Pn 

velocity zones are interpreted to be regions of no mantle lid. The low and very low Pn 

velocity zones in eastern Turkey, northwestern Iran, and the Caucasus region may be 
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associated with the latest stage of intense volcanism that has been active since the Late 

Miocene. The low Pn velocity zones beneath the Anatolian plate, eastern Turkey, and 

northwestern Iran may in part be a result of the subducted Tethyan oceanic lithosphere 

beneath Eurasia. We also found a major low velocity zone beneath northwestern Arabia 

and the Dead Sea fault system. We interpret this anomaly to be a possible extension of 

the hot and anomalous upper mantle of the Red Sea and East Africa rift system. High Pn 

velocities (8.1 - 8.4 km/s) are observed to underlie the Mediterranean Sea, the Black Sea, 

the Caspian Sea, and the central and eastern Arabian plate. Observed Pn anisotropy 

showed a higher degree of lateral variation than did the Pn velocity structure. Though the 

Pn anisotropy varies even in a given tectonic region, in eastern Anatolia very low Pn 

velocity and Pn anisotropy structures appear to be coherent.   

 

Key words: Pn, tomography, velocity, anisotropy, Arabia, Anatolia, Middle East. 

 

1  INTRODUCTION 

The study area is located at the junction of the Arabian, Eurasian, and African 

plates. This region encompasses diverse active plate boundaries and relatively modest 

active intraplate deformation. Present-day boundaries of the Arabian plate are of several 

types (Fig. 1). In the southwest, a divergent plate boundary (Red Sea) exemplifies early 

stages of continental rifting and sea floor spreading. In the northwest, the Dead Sea Fault 

(DSF) transform system separates the Arabian plate from the Sinai and Levantine 

subplates (Fig. 1). In the north and northeast the boundary zone is a continent-continent 

collision, where the Arabian plate is colliding with the Eurasian plate along the Bitlis 
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Suture (BS) and the Zagros Suture (ZS) zones (Fig. 1). Northward motion of Arabia is 

partially accommodated by the westerly extruding Anatolian plate along the North 

Anatolian Fault (NAF) and the East Anatolian Fault (EAF) zones (McKenzie 1972; 

Sengor & Yilmaz 1981; Sengor et al. 1985; McClusky et al. 2000). The escaping 

Anatolian plate is bounded in the west and south by the subduction zones of the Hellenic 

and Cyprean arcs, respectively.  

In this paper we use the Pn phase to study the mantle lid velocity and infer the 

state of the lithosphere at the junction of the Arabian, Eurasian, and African plates. Pn 

phase is a guided high-frequency compressional wave that propagates within a high 

velocity mantle lid which acts like a wave-guide bounded by the low velocity zone (LVZ) 

below and the crust above (e.g. Menke & Richards 1980; Beghoul et al. 1993). Pn wave 

velocity is often used to infer uppermost mantle rheology. Variations in Pn velocities are 

caused by changes in the physical parameters of uppermost mantle rocks.  Changes in 

temperature and composition and the presence of water and volatiles are the main causes 

of velocity changes. Pn velocities are generally the highest in oceanic lithosphere and 

could reach up to 8.4 km/s (Walker 1977). Continental lithosphere Pn velocities, 

however, vary significantly depending on the rheology of the mantle lid. Higher Pn 

velocities (> 8 km/s) imply a tectonically stable mantle lid, while very low Pn velocities 

(< 7.8 km/s) are usually an indication of partial melt (e.g. Hearn 1999; Calvert et al. 

2000). 

Pn velocities also show azimuthal variation.  Seismic anisotropy has been 

observed in the upper mantle in both oceanic (Backus 1965) and continental settings 

(Beghoul & Barazangi 1990). Earlier studies have concluded that most of the anisotropy 
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occurs in the upper mantle, whereas between 600 km depth and the D" discontinuity the 

mantle appears to be relatively isotropic (e.g. Savage 1999; Kendall 2000). Studies of 

Rayleigh and Love surface waves (e.g. Anderson 1961), shear wave splitting of phases 

like SKS (e.g. Silver & Chan 1988), and Pn phases (e.g. Hearn 1996; Smith & Ekstrom 

1999) have provided abundant evidence for the presence of upper mantle seismic 

anisotropy. The major cause of seismic anisotropy in the upper mantle is lattice preferred 

orientation caused by plastic deformation (e.g. Mainprice & Nicolas 1989; Karato 1998). 

It is well established that the strength of lattice preferred orientation (LPO) is a function 

of finite strain and hence seismic anisotropy should evolve with deformation history 

(Savage 1999; Mainprice et al. 2000).  

A previous study in the same region, Hearn & Ni (1994) used 70,755 Pn phases to 

invert for Pn velocities without anisotropy consideration. Their study had good ray 

coverage within the Aegean region, but in the regions south of the Caspian Sea and 

within the Arabian plate only sparse data were available. A similar upper mantle study by 

Hearn (1999) on the uppermost mantle Pn velocity and anisotropy of the European region 

covered only parts of the Aegean Sea. In this study we use a technique similar to that of 

Hearn (1999) and tomographically invert for Pn velocity and anisotropy in the region. 

This study uses a significantly larger number of seismic stations and events, especially in 

the Arabian-Eurasian collision zone.  The use of the temporary 29-station broadband 

network of the Eastern Turkey Seismic Experiment and the 20-station short period 

seismic network in Syria provide critical and high resolution data that are crucial in 

understanding the complex tectonics of this region. 
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2  TECTONIC BACKGROUND 

Along the northern and northeastern boundary of Arabia the opening of the Neo-

Tethys ocean began in the Late Permian and continued until the Late Cretaceous times. 

Consumption of the Neo-Tethys oceanic lithosphere by subduction began in Early 

Cretaceous along the eastern and northeastern boundaries of the Arabian-African plate. 

The timing of collision between Arabia and Eurasia along the Bitlis and the Zagros 

sutures is still being debated, with proposed ages ranging from Late Cretaceous (Takin 

1972) to Pliocene (Dewey et al. 1973). Hempton (1982 & 1985) proposed an initial 

suturing to have begun in Middle to Late Eocene. 

 Along the present-day southwestern boundary of the Arabian plate, the opening 

of the Red Sea and the Gulf of Aden is thought to have occurred in two extensional 

episodes, one in the Middle-Late Eocene period and the other in the Early Pliocene (e.g. 

Hempton 1987). This separation of Arabia from Africa is accommodated by the left 

lateral DSF system and is also considered to be responsible for the reorganization of 

relative plate motions in the Anatolian plateau (Bozkurt 2001). In the Early Pliocene, 

continued N-S convergence between Arabia and Eurasia resulted in the extrusion of the 

Anatolian plate along the North Anatolian Fault (NAF) and the East Anatolian Fault 

(EAF) zones (e.g. Sengor & Yilmaz 1981; Sengor et al. 1985). The two fault systems 

separate an eastern domain experiencing mainly N-S compression from the westerly 

escaping Anatolian plate. The tectonic domains east of NAF and EAF comprise several 

sub-domains from north to south: the Greater Caucasus, the Transcaucasus depression, 

the Lesser Caucasus, the east Anatolian plateau, and the Arabian platform (Kocyigit & 

Erol 2001). 
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Extension behind the Aegean subduction system began in the middle to late 

Miocene (13-10 Ma) (Le Pichon & Angelier 1979; Jackson 1994) or possibly as recent as 

6 Ma (Mckenzie 1978). Extension of up to 100% is thought to have affected the Aegean 

region in an N-S direction (Mckenzie 1978), with the greatest extensional strains located 

in the southern Aegean, north of Crete (Angelier et al. 1982; Jackson 1994). Present-day 

extension occurring on the northern Aegean extending to ~31o E within the Anatolian 

plate (Angelier et al. 1982) is believed to be associated with the retreating subduction of 

the African oceanic lithosphere (eastern Mediterranean) beneath the Hellenic arc. This 

extension dies out in the area north of ~42o N in Bulgaria and northern Greece (Fig. 1). 

 

3  METHOD 

P-wave travel time residuals from sources at 1.8o to 16o distances were inverted to 

obtain the uppermost mantle velocity model for the region. A tomography method based 

on observed travel time residuals developed by Hearn (1996) is used to invert for Pn 

wave velocity and anisotropy as well as event and station delays. The model assumes that 

Pn behaves as a diffracted head-wave that travels through the uppermost mantle (a crust 

layer over a half-space upper mantle). The Pn phase model path includes three legs: an 

event leg, a mantle leg, and a station leg. The three segments of Pn travel time path are 

described by the following travel time equation (Hearn, 1996): 

 

tij = ai + bj + ∑ dijk (Sk + Ak cos 2 Φ + Bk sin 2 Φ )   (1) 

          

where ai is the station time leg for i station, bj is the event time leg for the j event, dijk is 

the distance traveled between j event and i station for cell k, Φ is the back azimuth angle, 
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Sk is the slowness value for the k cell, and Ak and Bk are anisotropy coefficients for the k 

cell (Hearn 1996). Equation (1) is solved for all event-station pairs using an LSQR 

algorithm that solves sparse linear equations and least squares problems (Paige & 

Saunders 1982) to obtain slowness, anisotropy, and station and event delays (Hearn 

1996). This method then separates each station and event leg travel times using an 

assumed crust model (this study assumes a model crust thickness of 35 km with 6.2 km/s 

velocity) and an average Pn wave velocity of the study area (8.1 km/s). The average Pn 

wave velocity was determined from the slope of the linear fit of the screened travel time 

data. This method also adjusts for the earth’s curvature (Hearn 1996). In our inversion we 

used a cell size of 0.25o x 0.25o for the region, similar to previous studies. 

Since travel-time data include a certain degree of noise and uneven ray coverage, 

a damping parameter is used to regularize the solution (Paige & Saunders 1982) and 

reduce noise artifacts. The use of LSQR damping for both velocity and anisotropy 

parameters resulted in a relatively smooth image.  In our inversion process, after a series 

of tests, we chose a final damping value of 1000 for both velocity and anisotropy.  This 

value was found to best remove erroneous data noise and best balance the contributions 

of anisotropy and velocity to the inverted model. Damping values of less than 1000 were 

found to produce spurious velocity anomalies, while values larger than 1000 significantly 

reduced our model resolution. Since event locations were fixed in our inversion, we 

introduced an error range to test the sensitivity of the tomographic model to possible 

erroneous event locations. This error was added to the events that passed the criteria 

selections. We found that the range 0.14-0.5° showed negligible difference in the 

anomaly details of the inverted model (see supplemental Figure 1). 
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4  DATA 

In this study two categories of Pn phase data were used. The first are phase data 

picked by the authors from the Eastern Turkey Seismic Experiment (29 PASSCAL 

broadband stations), the Syrian National Seismic Network (20 short period stations), the 

southern Caspian broadband stations (5 stations), the Iranian Long Period Array (ILPA) 

(5 stations), and the Turkish National Network (5 short period stations) data (Fig. 2a). 

The second category is phase data that were extracted from the International 

Seismological Centre (ISC) and the National Earthquake Information Center (NEIC) 

earthquake catalogs (Figs 2a and 2b).  

The second category of Pn phase data include 729,819 phases that were extracted 

from the ISC data catalogue and 95,716 phases from the NEIC data catalogue. A total of 

7,414 Pn phase picks were read by the authors using the data from the ETSE, Syria 

network, ILPA, Caspian stations, and the Turkish network. In addition, ETSE stations 

(Fig. 2a) were used to locate local seismicity in eastern Turkey. These local events 

amounted to a total of 2,715 phase picks, which provided a dense coverage within the 29-

station array (Figs 2a and 2b). 

Since the phase data might include many erroneous readings, especially those 

obtained from catalogues, a rigorous selection method was used.  In assessing data 

quality and integrity we used 13 criteria to filter out possible erroneous phase data at 

three levels. To minimize location errors the following criteria were used: locations were 

selected that had a minimum of 25 stations; azimuth gap < 150O; RMS residuals < 10 

seconds; nearest station used in the calculation < 800 km. Phase data were iteratively 

selected so that the inversion used a minimum of 5 stations to record a single event; a 
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station had to have recorded a minimum of 10 events, with 10 seconds maximum time 

residual and an event depth maximum of 45 km. Furthermore, phase data were screened 

to include only impulsive arrivals, with pick precision less than 2 seconds. We have 

experimented with a number of more strict criteria in our ISC and NEIC data and found 

that in regions where we maintained sufficient ray coverage and resolution our resulting 

model was not affected. For the data picked by the authors we only used phases with 

estimated accuracy of one second or better, in terms of picking precision. Out of 8,944 

events (Fig. 2b) and their associated stations, a total of 166,000 phases were selected 

using a maximum of 10 second travel time residual (Fig. 3a). Our tomographic inversion 

achieved a 35 % variance reduction from the initial linear fit (Fig. 3b). 

The station density used in the Pn velocity inversion is highly variable in the 

study area (Fig. 4). High station density areas are located along the DSF system, eastern 

Turkey, in and around the Caucasus mountain belts, in and around the Aegean Sea and 

within the Bulgarian and Romanian territories (Fig. 2a). There is sparse station coverage 

in the central and northeastern Arabia platform and east of 45o E meridian (Fig. 2a). The 

highest event density occurred in the Aegean region and the lowest within the Arabian 

plate (Fig. 2b). Path density for those events recorded at various stations is shown in Fig. 

4 as hit counts for each 0.25o x 0.25o cell. Regions with the highest cell hit counts, > 64 

hits, cover most of the area west of the Caspian Sea including Turkey, Greece, the 

Aegean Sea, southern Romania, the eastern Mediterranean Sea, and the DSF system (Fig. 

4). Areas with fewer ray hits, between 6 and 64 hits, predominate in the rest of the study 

area in parts of northern Arabia, Iran, the southern Caspian Sea, central and northern 

Romania, and the central and northern Black Sea (Fig. 4). 
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5  RESOLUTION ANALYSIS 

Although it is customary to discuss resolution analysis after presenting the 

inversion results, we will start discussing resolution analysis beforehand in order to give 

the reader a feel for the data resolution capacity in the study area. We used two separate 

geometries to test the resolution of our tomographic models.  These two geometries 

include a checkerboard and spike tests.  We recognize that these two tests may only 

represent end-members of our model resolution and may be biased toward an apparent 

higher resolution.   

A synthetic checkerboard model (2o x 2o), including a Gaussian random noise of 

one second amplitude, was used to test data coverage resolution using the same damping 

parameters of the tomographic model inversion. The input synthetic velocity 

checkerboard (Fig. 5a) is made of alternating high (+ 0.25 km/s) and low (-0.25 km/s) 

velocity anomalies, while the anisotropy checkerboard (Fig. 6a) was made of alternating 

E-W and N-S fast directions with 0.25 km/s magnitude for both orientations. 

The velocity checkerboard test results could be categorized into two end-member 

levels of resolution in the study area. The highest level of resolution is in regions where 

the squares’ shape, magnitude, and polarity are well resolved. This level occurs in the 

Aegean region and western Turkey. The lowest level of resolution, where no shape, 

magnitude, nor polarity is clearly resolved, occurs only in a small portion of the border 

zone between Iraqi and Saudi Arabian territories and at the model edges (Fig. 5b) due to 

lack of data coverage in these regions. We have reasonably good resolution of both the 

shape and magnitude of our test anomalies in central and eastern Turkey. However, our 

model appears to have poor resolution in central and northern Iran. The resolution is 
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higher in southern and northeastern Iran in regions directly northeast of the 

Arabian/Persian Gulf (Fig. 5b).  

We also tested the resolution of our tomographic model using a  a spike test with 

a large null space between each spike.  The results from this test were consistent with the 

results from the checkerboard test (see electronic supplemental Figure 2) 

The two end-member resolution levels also apply to the anisotropy checkerboard 

test results (Fig. 6b). The highest level of resolution, with complete recovery of shape, 

magnitude, direction and polarity occurs within the Aegean region, Greece, and western 

Turkey (Fig. 6b). Reasonably good anisotropy resolution is obtained along the DSF 

system, central to eastern Turkey, Romania, Bulgaria, and the Caucasus region. Within 

these areas there is some smearing of our test anomalies. One example is the 

southwestern portion of the EAF zone where anisotropy directions are NE-SW oriented 

(Fig. 6b).  Because anisotropy involves the determination of orientations, it is more prone 

to smearing effects due to uneven station and event distributions. This is exemplified in 

northern Iran, where unresolved anisotropy orientations form parallel zones of similar 

anisotropy orientations along the same areas with the velocity smearing paths (Fig. 6b). A 

zone with relatively improved shape and orientation resolutions, but smaller magnitudes, 

occupies the region directly northeast of the Arabian/Persian Gulf.  

 

6  INVERSION RESULTS 

6.1  Pn velocity anomalies 

Pn velocity tomography with an anisotropy component shows two scales of low 

Pn velocity anomalies (Fig. 7a). First, a broader scale (~500 km) low (< 8 km/s) Pn 
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velocity anomaly underlies northwestern Iran, eastern Anatolia, the Caucasus, and most 

of the Anatolian plate. These broad scale low Pn velocity anomalies occupy regions 

within the Eurasian side of the Eurasia-Arabia collision zone. In central Iran, fast Pn 

velocities appear to extend beyond the Zagros suture line, while in northwestern Iran and 

eastern Turkey the high Pn velocities are limited to the region immediately south of the 

Bitlis suture and the EAF zone (Fig. 7a).  At the northwestern boundary of the Arabian 

plate a broad, low Pn velocity anomaly underlies the DSF system and western Arabia 

plate proper (Fig. 7a). Farther south the latter broad anomaly extends to underlie the Sinai 

and Levantine region (Fig. 7a). Northwestern Arabia's broad low Pn velocity anomaly 

extends only as far north as central and western Syria. Minor low velocity tongues, partly 

caused by smearing, extend within the fast velocity zone south of the BS and EAF zone.  

Second, five smaller scale (~200 km) anomalies with Pn velocities lower than 7.8 

km/s are found to underlie areas within the broader scale low velocity anomalies. Those 

shorter scale anomalies occur beneath southernmost Syria and northern Jordan, the Lesser 

Caucasus, the Isparta Angle and central Turkey. An isolated shorter scale low velocity 

anomaly underlies a region in the northern Aegean Sea and parts of westernmost Turkey. 

Other low Pn velocity anomaly zones underlie western Greece, Bulgaria, western 

Romania and easternmost Yugoslavia (Fig. 7a).  

Zones of high Pn velocities (8-8.4 km/s) underlie the interior of the Arabian plate 

(including the Zagros fold belt), the southern Caspian Sea extending eastward beneath the 

Kopeh Dagh and westwards beneath Azerbaijan, the Black Sea, and most of the eastern 

Mediterranean Sea. Other regions showing high Pn velocity within the broad low velocity 

anomalies underlie regions within the Central Iranian Microplate (CIM) and a corridor 
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directly south of the Caspian Sea that extends southwest to the Zagros fold belt (in 

northern Iran), and two corridors in the eastern and western parts of the Anatolian plate 

(Fig. 7a). Also, we observe zones of very high Pn velocity (> 8.2 km/s) beneath regions 

directly north of the Hellenic arc, the intersection between the Cyprean and the Hellenic 

arcs, in eastern Romania, and Azerbaijan (western Greater Caucasus).  

We found only subtle differences in Pn velocities when not including anisotropy 

in our tomographic inversion (Fig. 7b). The anisotropy effect appears to be strongest 

under the Anatolian plate, the Aegean Sea, the Hellenic arc, and the Black Sea. 

Generally, including the anisotropy component in the Pn velocity inversion focuses 

anomalies. For example, the shorter scale, very low Pn velocity anomaly of the northern 

Aegean Sea (Fig. 7a) becomes spread out within the Aegean Sea and western Turkey in 

the isotropic model (Fig. 7b).  Including an anisotropy component laterally displaces the 

anomalies. For example, in the isotropic model (Fig. 7b), the high velocity anomaly 

southwest of the Hellenic Arc is displaced to the northeast of the Hellenic Arc, within the 

Aegean Sea (Fig. 7a). Similarly, the low velocity anomaly along western Greece (Fig. 7a) 

is replaced by a high velocity anomaly at the corresponding area in the isotropic model 

(Fig. 7b). Because of the fewer paths in the eastern parts of the study area, we observe no 

significant differences between the isotropic and anisotropic models. The high velocity 

corridor, directly south of the southern Caspian Sea, is caused by including anisotropy 

(Fig. 7a) in the inversion and therefore needs to be interpreted cautiously since that 

region does not show good azimuthal coverage of ray paths. 

To further test for possible uncertainties in the inverted anisotropic Pn velocity 

model, we used a bootstrap technique used by Hearn (1996). The bootstrap method 
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iteratively re-samples the data pool and reruns the inversion using the standard deviation 

in bootstrapped velocities as proxies for errors of the model. Bootstrap errors for our Pn 

velocity model are typically less than 0.05 km/s throughout the study area (Fig. 8). Few 

zones showed errors higher than 0.05 km/s. Those regions with large errors included the 

southeastern tip of the Caspian Sea, a small area along the northern Zagros Fold Belt, and 

a small area along the NAF zone (Fig. 8). 

 

6.2  Pn anisotropy 

Fig. 9 shows the resulting anisotropy magnitudes and directions inverted 

simultaneously with Pn velocity. Observed anisotropy magnitudes varied between 0.0 to 

0.65 km/s. The largest anisotropy values occur within the Aegean Sea (~0.6 km/s), the 

Hellenic arc (~0.65 km/s), the southern portion of the Dead Sea fault system (~0.45 

km/s), and across the easternmost segment of the NAF zone (~0.5 km/s). Smaller 

anisotropy magnitudes (~0.2 km/s) are observed within the Arabian plate and the zones 

east of it (Fig. 9). These variations in anisotropy magnitude could be due in part to the 

uneven data coverage (i.e. we have damped our inversion in such a way that regions with 

poor resolution tend to have smaller anisotropy magnitudes). 

Unlike the tomographic velocity anomalies, observed anisotropy anomalies show 

a higher degree of lateral variability. We observed sudden anisotropy changes across 

plates and along plate boundaries. Since not all anisotropy values are well resolved we 

will address only those regions with good anisotropy resolution. Within the Anatolian 

plate anisotropy fast axes are predominantly E-W in the east, N-S at the center and E-W 

in western Turkey. Similar sudden changes in anisotropy are observed along the DSF 
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system, where two different trends of anisotropy orientations are observed (Fig. 9). A 

predominantly E-W fast anisotropy orientation is present along the northern parts of the 

DSF system. A NE-SW anisotropy orientation is imaged along the southern portion of the 

DSF system. Anisotropy orientations along the DSF system show consistency along a 

narrower band in the inland regions.  This contrasts with wider zones of consistency in 

the Mediterranean Sea side (Fig. 9). The zone parallel to the DSF system’s restraining 

bend in southern Syria marks the change in anisotropy orientation from a NE-SW in the 

south to an E-W orientation in the north (Fig. 9). East of the DSF, in the central Arabia 

platform and along the northern Zagros fold belt, the anisotropy orientations are regarded 

as erroneous due to the limited ray coverage (Fig. 9). 

The Aegean region shows considerable variation in anisotropy orientation. In the 

south, anisotropy orientations are parallel to the Hellenic Arc (arc parallel anisotropy). 

Within the Aegean Sea, anisotropy is predominantly N-S oriented except for a zone in the 

northern Aegean Sea, where anisotropy is NW-SE oriented. In eastern Greece and farther 

southeast in the Aegean Sea, anisotropy is NE-SW oriented. The Sea of Crete shows the 

smallest anisotropy magnitudes, predominantly E-W oriented. 

Overall tomographic azimuthal Pn anisotropy shows reasonable correlation with 

azimuthal anisotropy obtained based on the two station method (Smith & Ekstrom 1999) 

in the Aegean region, the Dead Sea fault region and in central and eastern Turkey. 

We applied a bootstrap error analysis on observed Pn anisotropy as well. 

Comparably low (< 0.05 km/s) errors are also observed for the anisotropy. This may be 

due to the fact that we used the same damping on both velocity and anisotropy solutions. 
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6.3  Pn station delays 

Assuming excellent ray coverage, station delays contain the integrated 

information about the crustal thickness and average velocity variation of the crust (Fig. 

10). Considering that the delay is due to the crustal structure near the station, a station 

delay of ±1 second corresponds to ~10 km difference in crustal thickness or ~0.7 km/s 

velocity difference from the assumed crustal velocity model. Station delays obtained in 

our inversion varied between -3 seconds and +3 seconds. Anomalous station delays in 

excess of 3 seconds are observed at a few stations and may indicate systematic phase 

picking errors and/or systematic clock problems at those stations (Grand 1990; Hearn 

1996).  

Clusters of systematic positive, negative, or mixed station delays observed in 

different regions of the study area may bear some information about the crustal structure 

(Fig. 10). Positive station delays are mainly indicative of thick and/or slow crust 

compared to the assumed model. Regions showing clusters of positive station delays are 

located along the northern segment of the Dead Sea fault system, in eastern Turkey 

(mostly ETSE stations), along the Cyprean and the Hellenic arcs, and within Romanian 

territory (Fig. 10). Negative station delays are indicative of a thin and/or fast crust 

compared to the assumed model. Zones with negative station delay clusters are those 

found in the northern Aegean Sea and areas around it including eastern and northern 

Greece and northwestern Turkey (around the Sea of Marmara), and along the southern 

portion of the DSF system (Fig. 10).  

 

7 DISCUSSION AND CONCLUSIONS 
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7.1   Rheology and structure 

The Pn velocity results provide detailed insight into the rheology and dynamics of 

the mantle processes in the region.  High (> 8 km/s) Pn velocity zones found in portions 

of Arabia and the Mediterranean, Black, and Caspian Seas are used to infer the presence 

of stable mantle lid in these regions. Low Pn velocities found beneath the junction of the 

Arabian, Eurasian, and African plates are used to infer the presence of anomalously hot 

and/or thin mantle lid (Fig. 11). The broad scale, low Pn velocity anomalies beneath 

northwestern Iran, the Caucasus, and eastern Anatolia are interpreted to originate from a 

different geodynamic process than the low Pn velocity anomaly beneath the northwestern 

Arabia plate (Fig. 11). The regions of the Lut Block (LB) and the Central Iranian 

Microplate (CIM) are associated with volcanic activity throughout the Paleogene and 

most of the Neogene (Figs 1 and 11). However, a later stage of volcanic activity in 

eastern Turkey and northwestern Iran is known to have started in the Late Miocene and 

continued to historical times (e.g. Yilmaz 1990; Keskin et al. 1998). This volcanic 

activity is possibly related to earlier subduction of the Neo-Tethys oceanic lithosphere. A 

lithospheric delamination event in Plio-Quaternary time may also significantly contribute 

to the observed widespread volcanism. Such processes may explain the anomalous nature 

of the lithosphere in these regions. Within the broad low Pn velocity anomalies, zones of 

high Pn velocity (implying stable mantle lid) underlie the central CIM, a corridor directly 

south of the Caspian Sea, and a small area in northwestern Iran (Figs 1 and 11). The 

corridor directly south of the Caspian Sea is observed only in the model with anisotropy 

and therefore should be considered cautiously due to the poorly resolved anisotropy in 

that region (Figs 6b and 7b). 
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A careful examination of the boundary of the high Pn velocity zone beneath the 

southern Zagros shows that the high velocity area extends for ~100 km northeast of the 

Zagros suture line (Figs 11 and 7a). We interpret this region of high Pn velocity to 

possibly indicate that stable Arabia is underthrusting the southern parts of the Sanandaj-

Sirjan region (Eurasia). This interpretation is in agreement with Snyder & Barazangi 

(1986) who concluded that Arabia is being underthrust beneath the southern parts of the 

Sanandaj-Sirjan region. The checkerboard resolution tests, however, in this region show 

that our spatial resolution is poor, and, hence, this interpretation may be speculative.  

Farther north the high Pn velocity zone underlies only regions directly south of the 

Zagros-Bitlis suture line. We are confident based on our resolution tests that in the 

northern parts of the Zagros-Bitlis region, underthrusting of Arabia is very limited or 

absent as evidenced by a sudden change in Pn velocities across the suture line. 

One of the most important results of this study is the discovery of a low Pn 

velocity zone beneath the Dead Sea fault system and the northwestern Arabian plate. 

Sandvol et al. (2001a) showed that Sn is attenuated beneath the entire Dead Sea fault 

system, but the extent and location of the anomaly was ambiguous due to limited 

resolution. In this study, we use better event-station distribution in the region to quantify 

the mantle lid velocity beneath northwestern Arabia and the DSF system. We find that 

the broad, low Pn velocity anomaly is not centered along the DSF system, but rather 

extends a considerable distance within the Arabian plate proper. Also, the very low Pn 

velocity anomaly beneath southern Syria and northern Jordan is located east of the DSF 

system axis. The anomalous low Pn velocity zone is asymmetrical relative to the DSF. 

Whether or not this anomalous lithospheric mantle is a direct result of the development of 
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the DSF system is arguable. We argue against this possible interpretation owing to the 

velocity anomaly's asymmetry with respect to the DSF plate boundary and its extent 

eastward beneath the northwestern Arabia plate proper.  The broad low Pn velocity zone 

underlying the DSF system and northwestern Arabia coincides at the surface with 

relatively young volcanic outcrops (Neogene/Quaternary), while the very low Pn velocity 

(7.6 km/s) anomaly is overlain by Quaternary and Holocene volcanoes. We interpret the 

low Pn velocity anomaly beneath the DSF system and northwestern Arabia as a possible 

northward extension of the anomalous mantle beneath the Red Sea spreading system. 

This broad region of thin, hot mantle lithosphere may have facilitated the development of 

the DSF system in the Neogene. 

The presence of partial melt lowers normal lithospheric mantle velocities by at 

least five to six per cent (Sato et al. 1989). If we are to consider that 8.2 km/s is the 

normal Pn velocity, then 6% slower Pn velocity would allow us to consider the smaller 

scale very low Pn velocity anomalies beneath southern Syria, the Isparta Angle, central 

Turkey, the Lesser Caucasus, and the northern Aegean Sea as zones of possible partial 

melt, i.e. the lithospheric mantle is absent (Fig. 11). These very low Pn velocity 

anomalies correspond at the surface with Holocene volcanoes (Fig. 11). The very low Pn 

velocity (7.5 km/s) centered at the northern Aegean Sea is a region where the largest 

present-day extensional strain rates are observed (Sonder & England 1989; McClusky et 

al. 2000). The northern Aegean back arc extension region extends up to ~42o N and 31o E 

(Angelier et al. 1982; Jackson 1994), which is inclusive of the small very low Pn velocity 

anomaly. The very low Pn velocity (~7.5 km/s) and the thinned crust (26-32 km) beneath 

the Aegean (Makris & Vees 1977) is comparable to a rift system, such as the East 
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African rift system beneath Lake Turkana (Keller et al. 1994). This very low Pn velocity 

reflects perhaps very thin to absent mantle lid, where Pn propagation is actually sampling 

asthenospheric rather than lithospheric mantle. 

Regions showing stable upper mantle (high Pn velocities) underlie central and 

eastern Arabia, the southern Caspian Sea extending eastward beneath the Kopet Dagh 

and westward underlying most of Azerbaijan (eastern Greater Caucasus), most of the 

Black Sea, eastern portions of the Mediterranean Sea, the Sea of Crete and the southern 

Aegean Sea (Fig. 7a). The Zagros fold belt is underlain by fast Pn velocity (Fig. 7a). This 

is not surprising since the Zagros fold belt is geologically an integral part of the leading 

edge of the Arabian plate. We also observed zones of very high Pn velocity (> 8.3 km/s) 

beneath regions directly north of the Hellenic arc, the intersection between the Cyprean 

and the Hellenic arcs, in eastern Romania, and in Azerbaijan (western Greater Caucasus). 

Finally, zones of high Pn velocity indicative of stable upper mantle form corridors that 

divide the Anatolian plate into eastern, central, and western regions, all of which are 

underlain by low and very low Pn velocity zones (Figs 7a and 11). The origin and cause 

of these stable mantle lid corridors is unclear, but the location of the corridor at ~30o E  

(Fig. 11) coincides at the surface with the easternmost limit of the region undergoing 

extension in western Turkey and the northern Aegean Sea region. 

To further analyze our Pn tomography results we utilized available Sn phase 

attenuation in the region. Sn is the shear wave analagous to the Pn phase traveling within 

the lithospheric mantle (mantle lid), but it is more sensitive to temperature and the 

presence of melt. Fig. 11 shows that zones of high Sn attenuation (Khaled Al-Damegh, 
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personal communication, June 2002) correlate spatially with zones of low and/or very 

low Pn velocity.   

 

 

7.2   Pn anisotropy and station delays: tectonic implications 

Upper mantle seismic anisotropy is generally attributed to the alignment of 

olivine (the dominant upper mantle mineral) crystal axes in lattice preferred orientations 

(LPO) (Ismail & Mainprice 1998). In this study Pn anisotropy shows more lateral 

variation than does observed Pn velocity (Fig. 12). To avoid interpreting artifacts and 

smearing effects on observed anisotropy orientations, we will focus our interpretations on 

the Anatolian plate, northwestern Arabia, the Aegean region and the eastern 

Mediterranean Sea, where anisotropy structure is better resolved. In regions such as the 

Isparta Angle and the northern Aegean Sea, zones of very low Pn velocity anomalies 

showed spatial correlation with zones of distinct and localized Pn anisotropy orientations 

in the same region. At the convergent boundary between the African and Anatolian 

plates, Pn anisotropy is parallel to the arc trend (arc parallel) between the Hellenic trench 

and its arc extending to ~40O N, while no clear arc parallel anisotropy is observed south 

of the Cyprean arc (Fig. 12). 

 Along the major strike slip faults of the region (i.e. the NAF and DSF), 

anisotropy also changes significantly along strike.  Anisotropy orientations along the 

NAF change from NE-SW in the east, to E-W and N-S in the central parts, and to NW-

SE in the west close to the Sea of Marmara. Similarly, the NE-SW oriented fast axis in 

the southern portion of the DSF changes to an E-W orientation north of the restraining 
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bend of the DSF.  This change in anisotropy orientation at the restraining bend coincides 

with changes in the polarity of station delays (Figs 10 and 12), where the southern 

segment shows negative station delays and the northern segment shows positive station 

delays (Fig. 10). The negative station delays clustered along the southern segment of the 

DSF system may partly be due to a thinned crust. The systematic change of both station 

delay clusters and anisotropy orientations might suggest that similar processes 

(influencing stations delays) influence anisotropy orientations at depth.  The station 

delays for the entire region are shown in Figure 10. Although these delays can be used as 

a first order indication for crustal thickness and/or velocity variation in the crust, a 

cautious approach is needed in interpreting these results as noise and site effects may also 

influence the results.   

While Pn anisotropy is a measure of azimuthal anisotropy in the uppermost 

mantle, shear wave (SKS) splitting results available in the region provide polarization 

anisotropy information within the entire upper mantle. Fast SKS shear wave splitting 

determined for ETSE stations in eastern Turkey and a station in central Turkey (Sandvol 

et al. 2001b) generally showed NE-SW fast orientations, while a station in the southern 

segment of the DSF system showed N-S orientation (Fig. 12). Along the NAF zone and 

farther southeast in eastern Turkey azimuthal Pn anisotropy matched polarized anisotropy 

of SKS fast splitting orientations, while no obvious match is observed in the rest of the 

ETSE stations. NE-SW anisotropy orientations surrounding the easternmost segment of 

the NAF also correspond with a zone of relatively very low Pn velocity (Figs 11 and 12). 

This implies a thinned or absent mantle lid in the region surrounding the easternmost 

portion of the NAF and farther southeast directly north of BS, and that Pn anisotropy and 
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SKS splitting are both sampling asthenospheric deformation. While SKS orientations in 

central Turkey show a very good match with Pn azimuthal anisotropy, the stations along 

the southern segment of the DSF system show clear discrepancy. 

We also used available GPS measurements in the region to possibly relate 

observed surface plate motion with Pn anisotropy orientations. Eurasia fixed GPS vector 

directions (McClusky et al. 2000) within the Anatolian plate do not show a clear 

relationship with observed Pn anisotropy orientations (Fig. 12). The observed sudden 

variation of Pn anisotropy orientation beneath the Anatolian plate contrasts with the 

relatively uniform GPS observed westward motion of the Anatolian plate.  

Within the Aegean Sea, N-S oriented anisotropy conforms to observed N-S 

extension of the Aegean region (Mckenzie 1978; Jackson 1994). This suggests that the 

observed anisotropy orientations within the mantle of the Aegean are influenced by the 

dynamics of back-arc processes beneath the Aegean Sea. 

The lack of simple and consistent correlation between plate motion and Pn 

anisotropy orientations possibly suggests that more complex processes seem to influence 

Pn anisotropy orientations within the mantle lid. These processes could include both 

crustal (nearby dominant tectonic stresses) and upper mantle deformation (e.g. mantle 

flow). This interpretation is based on the following observations: (1) anisotropy 

orientations that appear to be localized in regions underlain by very low Pn velocity 

zones (e.g. the northern Aegean and the Isparta Angle), (2) anisotropy orientations along 

the easternmost segment of the NAF zone that are possibly sampling a larger scale 

asthenospheric anomaly beneath thin to absent mantle lid, and (3) rapid anisotropy 

variation. 
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FIGURE CAPTIONS 
 
Figure 1. Simplified tectonic map of the study area showing main plate boundaries. AP: 

Anatolian Plate, BS: Bitlis Suture, CA: Cyprean Arc, CIM: Central Iranian Microplate, 

DSF: Dead Sea Fault, EAF: East Anatolian Fault, GC: Greater Caucasus, HA: Hellenic 

Arc, IA: Isparta Angle, KD: Kopet Dagh, LC: Lesser Caucasus, LB: Lut Block, SL: Sinai 

and Levantine subplate, NAF: North Anatolian Fault, NWIP: North West Iranian Plate, 

TC: Transcaucasus, and ZS: Zagros Suture. 

 

Figure 2a. Map showing seismic stations used in this study. CA: southern Caspian Sea 

stations, ETSE: Eastern Turkey Seismic Experiment stations, ILPA: Iran Long Period 

Array, SN: Syrian National network, and TN: Turkish National network. Open triangles 

correspond to selected stations from the National Earthquake Information Center (NEIC) 

and the International Seismological Centre (ISC) catalogues. (See Fig.1 for geographic 

locations). 

 

Figure 2b. Map showing seismic events (in circles) used in the Pn velocity and 

anisotropy tomography inversion. (See Fig.1 for geographic locations). 

 

Figure 3. (a) Input travel time residuals (corrected for a 2-D velocity fit).  A 10 second 

cutoff is used in the Pn tomography inversion. The travel time residuals are calculated 

using the study area’s Pn average velocity (8 km/s). (See Fig.1 for geographic locations).  

The large number of positive residuals between 200 and 400 km is most probably 

misidentified Pg arrivals; we have found that these phase data have little impact on our 
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results (see electronic supplement Figure 3).  (b) Travel time residuals obtained using the 

Pn tomography results. A 35 % variance reduction is obtained compared to the input 2-D 

fit residuals. (See Fig.1 for geographic locations). 

 

Figure 4. Hit map of the study area using a logarithmic (base 2) grey shade scale. 

 

Figure 5a. Checkerboard synthetic velocity anomalies used to test the ability of the 

available stations and events coverage to resolve a 2o x 2o velocity square. The anomaly 

amplitudes alternate between -0.25 km/s and +0.25 km/s velocity. (See Fig.1 for 

geographic locations). 

  

Figure 5b. Pn velocity checkerboard test result. (See Fig.1 for geographic locations). 

 

Figure 6a. Checkerboard synthetic anisotropy anomalies used to test the ability of 

available stations and events coverage to resolve a 2o x 2o anisotropy square. The squares 

are made of alternating N-S and E-W anisotropy orientations of a 0.25 km/s magnitude. 

(See Fig.1 for geographic locations). 

 

Figure 6b. Pn anisotropy checkerboard test result. (See Fig.1 for geographic locations). 

 

Figure 7a. A map showing the Pn velocity tomographic results including Pn anisotropy. 

The image shows a broader scale low Pn velocity (< 8 km/s) anomaly underlying the 

boundary zone of Arabia and most of the Anatolian plate. Within the broader low 
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velocity zone anomalies, shorter scale very low Pn velocity (< 7.8 km/s) anomalies 

underlie southern Syria, the Lesser Caucasus region, the Isparta Angle, and central 

Turkey. (See Fig.1 for geographic locations).  

       

Figure 7b. A map showing the optimal isotropic Pn velocity model. This model shows 

minor differences from the anisotropic model of Figure 7a. Notice the difference in the 

Aegean Sea region, where higher velocities south of the Hellenic arc are displaced 

northward inside the Sea of Crete and southern Aegean Sea. (See Fig.1 for geographic 

locations). 

 

Figure 8. A map showing Pn velocity errors calculated using 100 bootstrap iterations. 

(See Fig.1 for geographic locations).  

  

Figure 9. A map showing Pn azimuthal anisotropy orientations. Compared to the Pn 

velocity of Figure 7a, Pn anisotropy orientations display a higher degree of lateral 

variation in the region. (See Fig.1 for geographic locations).  

 

Figure 10. A map showing station delay. Squares represent thick and/or slow crust; 

circles represent fast and/or thin crust (See Fig.1 for geographic locations). 

 

Figure 11. A comparative map showing Pn velocity with anisotropy (base map, red-blue 

color, see Fig. 7a), volcanic outcrops as green and pink polygons filled with plus signs, 

Sn attenuation zones as yellow hatched areas enclosed by a solid gray line (after Khaled 
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Al-Damegh, personal communication, June 2002), and volcanoes as yellow triangles. 

(See Fig.1 for geographic locations). 

 

Figure 12. A comparative map showing Pn anisotropy in solid blue lines (see Fig. 9), 

SKS shear wave splitting in solid green lines (after Sandvol et al. 2001b), and GPS vector 

direction in solid pink lines (after McClusky et al. 2000). (See Fig.1 for geographic 

locations). 
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Supplemental Figure 1a:
This velocity map is the result of adding a random error range 
between 0.01 0.14 degrees to the events locations.
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Supplemental Figure 1b:
This velocity map includes an event error that range 
between  -0.14 to 0.14 degrees.
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Supplemental Figure 1c:
This velocity image is the result of adding error to event location
between 0.41 to 1.4 degree.
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Supplemental Figure 1d:
This velocity image is the result of adding error to event location
between - 0.5 and 0.5 Degrees
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Supplemental Figure 2:
This velocity image is the result of a spike test
with a large null space between each spike.



(a)

(b)

Supplemental Figure 3:
(a) This figure shows the travel time residuals with probable
Pg arrivals between 2 and 4 degrees eliminated from our data
set.  (b) The resulting residuals after the tomographic inversion
using the data shown in 3a.  (c) The tomographic Pn velocity
image using the data shown in figure 3a and 3b.
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