

Brandeis University

Practical Issues in Anonymity

Chris Clifton, Shawn Merrill (Purdue University)
Keith Merrill (Brandeis University)

Problems with Anonymization

RE-IDENTIFICATION! Many anonymization schemes keeps being "broken", eventually people find sufficient data to link/re-identify (e.g. *k*-anonymity)

But, there is still a use case: Private use under a data use agreement

- Want to provide protection against accidental (or low resource) re-identification
- Contractual data use agreement to "pull back" data if linking datasets found

Problems with Anonymization

Even if we aren't concerned about re-identification

- Anonymization algorithm impacts practical utility more than value of "utility metric" (Nergiz & Clifton 2007)
- Choice of (user-defined) Generalization Hierarchy has even greater impact on utility
- · Difficulties with global generalization scaling on large datasets
 - Efficiency
 - Utility
 - Outliers

Need to sanitize the data in a way that preserves its use for the recipient.

Issue: Poor Utility from Bad Generalization Hierarchies

- Example: Issue with poor generalization hierarchy
 - Million-record anonymization of health data
 - Initial hierarchy (straightforward splits):
 minimum group size of 48, even with k=2
 - Improved hierarchy (data-depended) showed significantly better granularity
 - Differences each level of k [2, 4, 6, 8, 10, 20]
- Similar issues arise with differential privacy
 - Higher relative noise for small groups, even for histogram

Hierarchy Example: How Anonymization Can Go Awry

A college town will have a different age distribution than a retirement community.

· Given this Hierarchy:

 The presence of few (<k) 80-84 year olds forces everything to be generalized to "working age" and "retirement age"

PURDUE

User-Defined Hierarchy: Issues

- Relies on a curator's knowledge of the data
- Too data-driven causes significant information leaks
 - Similar problems to local recoding, clustered anonymization
- Context-insensitivity can lead to issues like semantic similarity among attributes
 - deFinetti Attack
- Can vary greatly based on the attribute [age vs. zip code vs. car type] and specifics [Lafayette, IN vs. Lafayette, LA]

Hierarchy Example

A better generalization hierarchy:

- · Must be made without direct use of the data
 - Minimality attacks
- · Can be done with relative frequency of the values in the population

A case for differential privacy?

Issue: Scaling

- Challenge: Difficulty in scaling generalization-based anonymization to million record dataset
 - Many techniques fail
 - Few that succeed result in significant record suppression
- Idea: Independently anonymize partitions
 - Potential for different generalizations for different partitions
 - Will this reduce suppression?
 - Agnostic to algorithm, privacy definition

13

PURDUE

Definition: Parallel Composition

We say that a sanitization scheme A satisfies **parallel composition** if, given disjoint datasets $D_1, ..., D_n$, with corresponding outputs $A(D_i)$, $\bigcup_{i=1}^n A(D_i)$ satisfies the privacy guarantee of the original scheme.

- Satisfied by:
 - Differential Privacy (McSherry SIGMOD'09)
 - Privacy budget treated independently for each dataset
 - Generalization-based k-anonymity, I-diversity with local recording
- Not satisfied by
 - Generalization-based anonymization with global recording
 - t-closeness

14

PURDUE

Definition: Partitioned Preprocessing

Choose a random partition $\{d_i\}$ of |D| into positive integers, then partition D into pieces D_i of size d_i uniformly at random. We call $\bigcup_{i=1}^n A(D_i)$ a **partitioned preprocessing** dataset.

- Works for parallel composition techniques
- Potentially stronger against some types of attacks on generalization
 - Minimality
 - deFinetti
- Attack resistance arguments hold for non-parallel decomposable techniques
 - E.g., global recoding (and potential utility benefits)

15

PURDUE UNIVERSITY.

Partitioned Preprocessing: Potential Utility Benefit

Age	Gender	Zip	Cancer	Age	Gender	Zip	Cancer
40-50	Male	92***	Yes	40-60	Male	925**	No
40-50	Male	92***	No	40-60	Male	925**	No
40-50	Male	92***	No	40-60	Male	925**	Yes
40-50	Male	92***	Yes	40-60	Male	925**	No

- Some benefits of local recoding
 - "Outliers" only force over-generalization in a single partition
- Each partition satisfies global recoding
 - Difficulty identifying which partition an item belongs to provides defense against attacks

19

Partitioned Preprocessing: Example

Semantic Attacks: Determine likely distribution of sensitive values in an equivalence class

- Individual may belong to many equivalence classes
 - Attack gives information on one equivalence class
- Attack increases $Pr(x.S = S_i)$ by only a (weighted) proportion of the increase in probability for that class

k=20	Underlying Partitions	Visible Partitions	Distribution of Partitions	% of Population
Average 25,000 size	20	6 + Suppressed Class	6, 5, 6, 1, 1,	.244, .30, .295, .062, .048, .024 Suppress: .016

Partitioned Preprocessing: Example

Original Record:

ZIP	YOB	GEN	VISIT	HOSPITAL	COMP	CAT	Possible Matches
43125	1967	F	2005-08-31	Riverside Methodist	Mosquito Bite	Other	7,916

Anonymized Versions:

ZIP	YOB	Visit Date	Hospital	Matches
43000 - 43240	1940 - 1979	2004-01-01 - 2005-12-31	Riverside Methodist Hospital	2520
43068 - 43156	1940 - 1979	2004-01-01 - 2005-12-31	Medium & Large Hospitals	3497
43068 - 43156	1900 - 1992	2004-01-01 - 2005-12-31	Riverside Methodist Hospital	1068
43119 - 43156	1940 - 1979	2004-01-01 - 2008-02-31	Large Hospitals	421
43119 - 43156	1900 - 1992	2005-07-01 - 2005-12-31	Medium & Large Hospitals	169
43068 - 43156	1900 - 1992	2004-01-01 - 2005-12-31	Large Hospitals	241

Still working...

- Implications of partitioned preprocessing on differential privacy
 - Near-optimal use of privacy budget
 - · Use noise from random partitioning to satisfy differential privacy
 - Potential operational value?
 - Amplification of privacy budget through sampling
- Implications of hierarchies on a differentially private census
 - Appropriate hierarchies, top-coding
 - Any "non-histogram" analyses?

26