
LEARNING TO MANIPULATE NOVEL OBJECTS
FOR ASSISTIVE ROBOTS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Jaeyong Sung

May 2017

c© 2017 Jaeyong Sung

ALL RIGHTS RESERVED

LEARNING TO MANIPULATE NOVEL OBJECTS FOR ASSISTIVE ROBOTS

Jaeyong Sung, Ph.D.

Cornell University 2017

The ability to reason about different modalities of information, for the pur-

pose of physical interaction with objects, is a critical skill for assistive robots.

For a robot to be able to assist us in our daily lives, it is not feasible to train

each robot for a large number of tasks with all instances of objects that exist

in human environments. Robots will have to generalize their skills by jointly

reasoning with various sensor modalities such as vision, language and haptic

feedback. This is an extremely challenging problem because each modality has

intrinsically different statistical properties. Moreover, even with expert knowl-

edge, manually designing joint features between such disparate modalities is

difficult.

In this dissertation, we focus on developing learning algorithms for robots

that model tasks involving interactions with various objects in unstructured hu-

man environments — especially on novel objects and scenarios that involve se-

quences of complicated manipulation. To this end, we develop algorithms that

learn shared representations of multimodal data and model full sequences of

complex motions. We demonstrate our approach on several different applica-

tions: understanding human activities in unstructured environment, synthe-

sizing manipulation sequences for under-specified tasks, manipulating novel

appliances, and manipulating objects with haptic feedback.

BIOGRAPHICAL SKETCH

Jaeyong Sung was born in Seoul, South Korea. He received Bachelor of Sci-

ence in Computer Science with a minor in Applied Mathematics from Cornell

University in 2011. During undergraduate studies, he became fascinated by the

field of robot learning while building a vision-based autonomous mobile robot.

After graduating, he went on to pursue software engineering, building cloud

computing solutions at Amazon Web Services. He returned to Cornell to pur-

sue Ph.D. with the desire of contributing to advancing machine intelligence for

robots.

iii

ACKNOWLEDGEMENTS

I would like to thank my committee members — Ashutosh Saxena, J. Kenneth

Salisbury, Bart Selman, François Guimbretière, Steve Marschner — for all their

advice and guidance throughout the years. I am especially grateful to my advi-

sor, Ashutosh Saxena, for his support and guidance. Since the time I met him as

an undergraduate researcher, he has taught me how good research in robotics

and machine learning should be done. I am also very thankful to J. Kenneth

Salisbury. Since I have moved to Stanford University to carry on my research,

he has been very supportive and has taught me to always look at problems

from many different perspectives. I would also like thank Bart Selman, who has

given lots of guidance and insightful comments throughout the years.

I am very grateful to all the lab members of Robot Learning lab at Cornell,

Ashesh Jain, Ian Lenz, Dipendra Misra, Ozan Sener, Hema Koppula, Yun Jiang

and Chenxia Wu, for stimulating discussions and for all the fun we had. Also,

I would like to thank Seok Hyun Jin for the countless sleepless nights working

together towards the deadlines. Also, thanks to all collaborators on different

projects including Colin Ponce, Joshua Reicher, Kevin Lee. Lastly, I am very

fortunate to have known Ian Lenz, who was passionate about robotics and was

always fun to be with, and he will be missed dearly.

Thanks also to all the lab members of Salisbury Lab at Stanford. In particular,

with Manuel Ahumada and Mark Stauber, I had lots of fun chatting about all

kinds of things and learned so much about building robots.

On a more personal note, I would like to thank my parents and my brother

for their love and support. Finally, I would like to thank my fiancé, Bojeong

Kim, for her endless support and patience for many years.

iv

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . v
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Unstructured Environment . 2
1.2 Learning Representation of Multimodal Data 5
1.3 Applications . 6
1.4 First Published Appearances of Described Contributions 7

2 Unstructured Human Activity Detection from RGBD Images 9
2.1 Related Work . 11
2.2 Our Approach . 13

2.2.1 Features . 13
2.2.2 Model Formulation . 16
2.2.3 MEMM with Hierarchical Structure 17
2.2.4 Graph Structure Selection 20

2.3 Experiments . 25
2.3.1 Results and Discussion . 28

2.4 Conclusion . 30

3 Synthesizing Manipulation Sequences for Under-Specified Tasks us-
ing Unrolled Markov Random Fields 33
3.1 Related Work . 36
3.2 Our Approach . 40
3.3 Model Formulation . 44

3.3.1 Features . 46
3.3.2 Attributes. 48
3.3.3 Learning . 49

3.4 Experiments . 50
3.5 Conclusion . 58

4 Deep Multimodal Embedding 59
4.1 Related Work . 62
4.2 Deep Multimodal Embedding: Our Approach 63

4.2.1 Network Architecture . 64
4.3 Learning Deep Multimodal Embedding of Point-cloud, Lan-

guage and Trajectory . 66
4.3.1 Pre-training Joint Point-cloud/Language Model 69
4.3.2 Pre-training Trajectory Model 71

v

5 Learning to Manipulate Novel Objects via Deep Multimodal Embed-
ding 72
5.1 Related Work . 75
5.2 Our Approach . 79

5.2.1 Problem Formulation . 80
5.2.2 Direct Manipulation Trajectory Transfer 82
5.2.3 Inferring Manipulation Trajectory to Transfer 84
5.2.4 Label Noise . 84

5.3 Robobarista: Crowd-sourcing Platform 86
5.4 System Details . 89

5.4.1 Data Representation . 90
5.4.2 Robotic Platform . 91
5.4.3 Model Parameters . 92

5.5 Experiments . 92
5.5.1 Robobarista Dataset . 94
5.5.2 Baselines . 95
5.5.3 Evaluations on Robobarista Dataset 96
5.5.4 End-to-end Robot Experiments 105
5.5.5 Transfer Experiments on Robot 108

5.6 Conclusion . 110

6 Learning to Represent Haptic Feedback for Partially-Observable Tasks112
6.1 Related Work . 115
6.2 Our Approach . 119

6.2.1 Problem Formulation . 120
6.2.2 Generative Model . 121
6.2.3 Deep Recurrent Recognition Network 123
6.2.4 Maximizing Variational Lower-bound 123
6.2.5 Optimal Control in Learned Latent State Space 124

6.3 System Details . 128
6.4 Experiments & Results . 130

6.4.1 Dataset . 130
6.4.2 Baselines . 132
6.4.3 Results and Discussion . 133

6.5 Conclusion . 137

7 Conclusion 138
7.1 Future Work . 139

A Appendix of Learning to Manipulate Novel Objects 141
A.1 Loss Function for Manipulation Trajectory 141
A.2 Segmenting Object Parts from Point-clouds 143

A.2.1 Generating Object Part Candidates 143
A.2.2 Part Candidate Ranking Algorithm 143

vi

A.2.3 Part Candidate Features . 144
A.3 Details of Baseline Models . 145

B Appendix of Learning to Represent Haptic Feedback 151
B.1 Lowerbound Derivation . 151

vii

LIST OF TABLES

2.1 Results of naive classifier, one-level MEMM model, and our full
model in each location. The table shows precision and recall
scores for all of our models. Note that the test dataset con-
tains random movements (in addition to the activities consid-
ered), ranging from a person standing still to walking around
while waving his or her hands. RGB HOG and RGBD HOG
refers to “simple HOG”. 32

3.1 Result of baselines, our model with variations of feature sets,
and our full model on our dataset consisting of 127 sequences.
The “prim” columns represent percentage of primitives correctly
chosen regardless of arguments, and “args” columns represent
percentage of a correct pair of primitive and arguments. The last
column shows average percentage of sequences correct over the
five programs evaluated. 50

5.1 Results on our dataset with 5-fold cross-validation. Rows list
models we tested including our model and baselines. Columns
show different metrics used to evaluate the models. 93

5.2 Results of 60 experiments on a PR2 robot running end-to-end
experiments autonomously on three different objects. 108

5.3 Results of 40 visual distraction experiments on a PR2 robot run-
ning end-to-end experiments autonomously. The robot is pre-
sented with two different novel objects that can be manipulated.
The robot has to identify the object part as specified from the
natural language instruction without any visual hints. 110

6.1 Summary of Notations. 122
6.2 Result of haptic signal prediction and robotic experiment. The

prediction experiment reports the average L2-norm from the
haptic signal (44 signals in newtons) and the robotic experiment
reports the success rate. It shows the results of more than 200
robotic experiments. 129

6.3 Time difference between the time the robot stopped and the
time the expert indicated it ‘clicked’. 136

viii

LIST OF FIGURES

1.1 Examples of various tasks which we test our algorithms. Robots
have to understand many novel appliances and humans in un-
structured human environment and interact with them. 3

1.2 Various models encoding different multimodal data including
point-cloud, natural language, manipulation trajectory, and tac-
tile haptic feedback. 5

2.1 The RGBD data from the Kinect sensor is used to generate an
articulated skeleton model. This skeleton is used along with the
raw image and depths for estimating the human activity. 10

2.2 Our two-layered MEMM model. 16
2.3 Samples from our dataset. Row-wise, from left: brushing teeth,

cooking (stirring), writing on whiteboard, working on computer,
talking on phone, wearing contact lenses, relaxing on a chair,
opening a pill container, drinking water, cooking (chopping),
talking on a chair, and rinsing mouth with water. 21

2.4 Leave-one-out cross-validation confusion matrix for each loca-
tion with the full model in the “new person” setting, using skele-
tal features and skeletal HOG features. The neutral activity de-
notes that the algorithm estimates that the person is either not
doing anything or that the person is engaged in some other ac-
tivity that we have not defined. The last matrix (bottom-right)
shows the results aggregated over all the locations. 27

2.5 Same format as Figure 2.4 except it is in the “have seen” setting. 28

3.1 Figure showing our Kodiak PR2 in a kitchen with different ob-
jects labeled with attributes. To accomplish the under-defined
task of pour(obj17), it has to first find the mug (obj13) and
carry it to the table (obj05) since it is dangerous to pour liquid
in a tight shelf. Once the mug is on the table, it has to bring the
liquid by the container (obj19) and then finally pour it into the
mug. 34

3.2 Markov Random Field representation of our model at discrete
time step t. The top node represents the given task g, ga1, ga2. The
second layer from the top represents the sequence of primitives,
and the layer below represents the arguments associated with
each primitive. And, the bottom node represents the environ-
ment represented with set of attributes. 44

3.3 Figure showing two of our 13 environments in our evaluation
dataset using 43 objects along with PR2 robot. 49

ix

3.4 Results with cross-validation. (a) On predicting the correct
primitive individually. (b) On predicting programs, with and
without user intervention. (c) On performing different tasks
with the predicted sequences. 53

3.5 Few snapshots of learned sequences forming the higher level
task of serving sweet tea, which takes the sequence of pouring
tea into a cup, pouring sugar into a cup, and then stirring it. . . . 56

3.6 Effect of attribute perception error. Figure showing percent-
age of programs correct with attribute labeling errors for binary
attributes. For 113 unique scenarios, binary attributes were ran-
domly flipped. 56

4.1 Deep Multimodal Embedding: Our deep neural network learns
to embed both point-cloud/natural language instruction combi-
nations and manipulation trajectories in the same semantically
meaningful space, where distance represents the relevance of
embedded data. 60

4.2 The proximity between two mapped points should reflect how
relevant two data-points are to each other, even if they are
from completely different modalities. We train our network to
bring demonstrations that manipulate a given object according
to some language instruction closer to the mapped point for that
object/instruction pair, and to push away demonstrations that
would not correctly manipulate that object. 67

4.3 Pre-training lower layers: Visualization of our pre-training ap-
proaches for h2,pl and h2,τ. For h2,pl, our algorithm pushes match-
ing point-clouds and instructions to be more similar. For h2,τ, our
algorithm pushes trajectories with higher DTW-MT similarity to
be more similar. 70

5.1 First encounter of an espresso machine by our PR2 robot. With-
out ever having seen the machine before, given language instruc-
tions and a point-cloud from Kinect sensor, our robot is capable
of finding appropriate manipulation trajectories from prior ex-
perience using our deep multimodal embedding model. 73

x

5.2 Mapping object part and natural language instruction input to
manipulation trajectory output. Objects such as the espresso
machine consist of distinct object parts, each of which requires a
distinct manipulation trajectory for manipulation. For each part
of the machine, we can re-use a manipulation trajectory that was
used for some other object with similar parts. So, for an object
part in a point-cloud (each object part colored on left), we can
find a trajectory used to manipulate some other object (labeled
on the right) that can be transferred (labeled in the center). With
this approach, a robot can operate a new and previously un-
observed object such as the ‘espresso machine’, by successfully
transferring trajectories from other completely different but pre-
viously observed objects. Note that the input point-cloud is very
noisy and incomplete (black represents missing points). 78

5.3 Screen-shot of Robobarista, the crowd-sourcing platform run-
ning on Chrome browser. We have built Robobarista platform
for collecting a large number of crowd demonstrations for teach-
ing the robot. 86

5.4 System Overview: Given a point-cloud and a language instruc-
tion, our goal is to output a trajectory that would manipulate
the object according to the instruction. The given point-cloud
scene is segmented into many parts and ranked for each step of
the instruction manual. By embedding point-cloud, language,
and trajectory modalities into a joint embedding space, our algo-
rithm selects the best trajectory to transfer to the new object. . . 87

5.5 Examples from our dataset, each of which consists of a natu-
ral language instruction (top), an object part in point-cloud rep-
resentation (highlighted), and a manipulation trajectory (below)
collected via Robobarista. Objects range from kitchen appliances
such as stove and rice cooker to urinals and sinks in restrooms.
As our trajectories are collected from non-experts, they vary in
quality from being likely to complete the manipulation task suc-
cessfully (left of dashed line) to being unlikely to do so success-
fully (right of dashed line). 88

5.6 Examples of objects from our dataset. Each image shows the point
cloud representation of an object. We overlaid some of its parts by
CAD models for online Robobarista crowd-sourcing platform. Note
that the actual underlying point-cloud of object parts contains much
more noise and is not clearly segmented, and none of the models have
access to overlaid model for inferring manipulation trajectory. 95

xi

5.7 Examples of successful and unsuccessful transfers of manipu-
lation trajectory from left to right using our model. In first two
examples, though the robot has never seen the ‘coffee dispenser’
and ‘slow cooker’ before, the robot has correctly identified that
the trajectories of ‘cereal dispenser’ and ‘DC power supply’, re-
spectively, can be used to manipulate them. 96

5.8 Comparisons of transfers between our model and the baseline (deep
multimodal network without embedding [148]). In these three exam-
ples, our model successfully finds correct manipulation trajectory from
these objects while the other one does not. Given the lever of the
toaster, our algorithm finds similarly slanted part from the rice cooker
while the other model finds completely irrelevant trajectory. For the
opening action of waffle maker, trajectory for paper cutter is correctly
identified while the other model transfers from a handle that has in-
compatible motion. 99

5.9 Thresholding Accuracy: Accuracy-threshold graph showing re-
sults of varying thresholds on DTW-MT scores. Our algorithm
consistently outperforms the previous approach [148] and an
LMNN-like cost function [174]. 101

5.10 Effect of Constraints: The use of inter-modal and intra-modal con-
straints on deep embedding space h3. The left one shows em-
bedding space trained only with inter-modal constraints and
the right one shows that of utilizing both constraints (our
full model). The red points represents embeddings of point-
cloud/language pairs and the green points represents embed-
ding of trajectories. While both embeddings shows similar ac-
curacy on our dataset, our full model provides much visible
clusters, allowing us to more easily visualize and analyze what
model has learned. 102

5.11 Learned Deep Point-cloud/Language/Trajectory Embedding Space:
Joint embedding space h3 after the network is fully fine-tuned, vi-
sualized in 2d using t-SNE [166] . Inverted triangles represent pro-
jected point-cloud/language pairs, circles represent projected trajec-
tories. The occupancy grid representation of object part point-clouds
is shown in green in blue grids. Among the two occupancy grids
(Sec. 5.4.1), we selected the one that is more visually parsable for each
object. The legend at the bottom right shows classifications of object
parts by an expert, collected for the purpose of building a baseline.
As shown by result of this baseline (object part classifier in Table 5.1),
these labels do not necessarily correlate well with the actual manipu-
lation motion. Thus, full separation according to the labels defined in
the legend is not optimal and will not occur in this figure or Fig. 5.14.
These figures are best viewed in color. 103

xii

5.12 Robotic Experiments: We test our algorithm on a PR2 robot with
three different novel objects – coffee dispenser handle, beverage
dispenser lever, and door handle. 105

5.13 Examples of transferred trajectories being executed on PR2. On
the left, PR2 is able to rotate the ‘knob’ to turn the lamp on. In
the third snapshot, using two transferred trajectories, PR2 is able
to hold the cup below the ‘nozzle’ and press the ‘lever’ of ‘coffee
dispenser’. In the last example, PR2 is frothing milk by pulling
down on the lever, and is able to prepare a cup of latte with many
transferred trajectories. 106

5.14 Learned Point-cloud/Language Space: Visualization of the point-
cloud/language layer h2,lp in 2d using t-SNE [166] after the network
is fully fine-tuned. Inverted triangles represent projected point-clouds
and circles represent projected instructions. A subset of the embedded
points are randomly selected for visualization. Since 3D point-clouds
of object parts are hard to visualize, we also include a snapshot of a
point-cloud showing the whole object. Notice correlations in the mo-
tion required to manipulate the object or follow the instruction among
nearby point-clouds and natural language. 107

6.1 Haptic feedback from a tactile sensor being used to modify a
nominal plan of manipulation. Our framework learns an appro-
priate representation (embedding space) which in turn is used to
learn to find optimal control. 114

6.2 Framework Overview. We model the task that requires incorpo-
ration of tactile feedback in a partially observable MDP (a) which
its transition and emission functions are parametrized by neural
networks (b). To find an appropriate representation of states for
the POMDP, we approximate the posterior with a Deep Recur-
rent Recognition Network (c), consisting of two LSTM (square
blocks) recurrent networks. Deep Q-Network (d), consisting
of two fully connected layers, utilizes a learned representation
from (c) and a learned transition model from (a) to train Deep
Q-Network (d). 118

6.3 Samples of haptic signals from three different objects with a PR2
fingertip tactile sensor. Each graph shows a normalized tempo-
ral sequence of signals from both tips of the finger. Notice a large
variation in feedback produced by what humans identify as a
‘click’. 121

6.4 System Details of our system for learning and robotic experi-
ments. 127

6.5 A set of objects used for experiment. All three objects have dif-
ferent surface area and shape, which results in vastly different
types of ‘clicks’ when observed via a tactile sensor. 128

xiii

6.6 Projection of learned representation of haptic feedback using t-
SNE [165] for ‘stirrer’ and ‘fan’. Each dot represents an inferred
state at each time frame, and blue and red dots represents pos-
itive and negative reward at those time frame. Here we show
some of successful (blue) and unsuccessful (red) sequences. For
both objects, notice both classes initially starts from similar state
and then diverges, forming clusters. Several successful and un-
successful haptic signals are shown as well. 135

A.1 Deep Multimodal Network without Embedding, a baseline
model takes the input x of three different modalities (point-
cloud, language, and trajectory) and outputs y, whether it is a
good match or bad match. It first learns features separately (h1)
for each modality and then learns the relation (h2) between in-
put and output of the original structured problem. Finally, last
hidden layer h3 learns relations of all these modalities. 149

xiv

CHAPTER 1

INTRODUCTION

The ability to perform many tasks with objects in complex environment is

one of the key challenges for robots stepping into human environment. In our

daily lives, we encounter and interact with a variety of complex environments

without much effort. For instance, if you are a chef, you will almost certainly

be able to walk into any kitchen in the world and start cooking very quickly

without much help, after a quick tour of the environment. On the other hand,

for an assistive robot, it is extremely challenging to adapt and generalize their

skills to a new environment.

In order for a robot to physically interact with a large variety of objects, the

robot needs to jointly reason about different modalities of information. Most

of the previous robot learning algorithms are designed to perform a single ma-

nipulation task very accurately or are designed to handle a small variation of

the same scene. By designing a learning algorithm that can learn a shared rep-

resentation of different modalities, I will demonstrate that a single model can

enable a robot to perform more than 100 manipulation tasks on a large number

of objects it has never seen before.

A robot has to be able to reason about various types of modalities, includ-

ing vision, natural language, geometry, motions, and even haptic feedback, that

have intrinsically different statistical properties. By jointly reasoning about dif-

ferent modalities of information, a robot can model the interplay of tasks with

objects in different environments. For instance, when a robot encounters an ap-

pliance it has never seen before, the robot should be able to come up with a

basic strategy of actions on how to manipulate the appliance, by observing its

1

shape and reading the instruction manual provided with the appliance. Espe-

cially if the robot has a lot of prior experience with various appliances, the robot

should be able to generalize to the novel object. By developing models that can

jointly reason about different sensory inputs and its prior experiences, a robot

can learn to generalize a large variety of required motions for manipulation,

including how to approach, grasp and interact with the object.

The focus of this dissertation is to develop algorithms that can reason about

multimodal data, enabling robots to model large number of tasks on different

objects in complex environments. Our robot collects data from different sen-

sory inputs such as point-cloud, natural language, haptic sensor, RGB-D, and a

database of manipulation trajectories. The models introduced in this disserta-

tion are able to learn shared representations of these multimodal data in order to

accomplish full sequences of complex manipulation motions. Figure 1.1 shows

few of the tasks we test our robots on: planning a manipulation trajectory for

a novel appliance with point-cloud and natural language, understanding hu-

man activity from RGB-D camera, and learning to represent haptic feedback of

objects. In following sections, we describe in detail the challenges of a robot

interacting in a human environment.

1.1 Unstructured Environment

The unstructured nature of human environments, such as homes and offices,

poses a great challenge to assistive robots both in perception and interaction. In

particular, we address the following aspects of many challenges:

• Large variety of different scenarios. Unlike a factory floor, there are large

2

Unknown
Internal Mechanism

Haptic Sensor

Figure 1.1: Examples of various tasks which we test our algorithms.
Robots have to understand many novel appliances and hu-
mans in unstructured human environment and interact with
them.

number variations of scenarios robots have to reason about in order to

appropriately perform different tasks. For example, if a robot sees that

a person in need of assistance heads towards a couch and asks the robot

to bring a magazine from a table, it has to be able to respond to different

scenarios such as when a magazine is under a mug or when a really thin

magazine requires to be slid off to the side of the table to be picked up.

• Large variety of objects and required motions. Furthermore, there are

large varieties of objects and their instances. Every household has dif-

ferent types of appliances (e.g. espresso machine, toaster, waffle maker

and deep fryer). An espresso machine alone has thousands of variations

3

of models with different capabilities, different shapes, and different sizes.

Even for the same task of frothing milk, some machines have knobs that

need to be rotated while some other machines have levers that need to be

pulled and need to be held onto. Thus, in order to successfully manipu-

late these objects, the robot has to reason about infinitely many potential

movements with different approach strategies, different grasp strategies,

different types of interactions, and different release strategies.

Although there are significant developments in low-level controllers for

robots, it is not feasible to build a single sequence or a single set of rules that

can account for all kinds of different situations and manipulate all different

types of objects. Even for a simple task such as boiling a water, depending

on types of available tools, one may need to use a stove top, a microwave or

an electric kettle. In Chapter 3, in order to accomplish manipulation tasks that

are under-specified in instructions, we propose an algorithm that dynamically

unrolls graphical models to sequence next motion primitives.

Robots are especially clueless when they encounter an object they have never

seen before. Because every object type (e.g. espresso machine) can have such

large variations, simply relying on scene understanding techniques, that can

label or segment the object out of the scene, are not much useful for robots in

manipulating them. Instead, based on an idea that many objects share similarly

operated parts, we introduce an algorithm that learns to transfer manipulation

trajectories across objects that serve completely different purpose. For instance,

a robot that knows how to flush a urinal is now able to operate a similar handle

on an espresso machine that is operated similar to the urinal handle (Chapter 5).

4

p
o
in
t-
cl
o
u
d
(𝒑
)

la
n
gu
ag
e
(𝒍
)

tr
aj
e
ct
o
ry
(𝝉
)

𝒉𝟏𝒙 𝒉𝟐 𝒉𝟑

push pull handle lever

fillstove stopcup

control

towards

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝒕

⋯

𝒐𝟏 𝒐𝟐 𝒐𝟑 𝒐𝒕

⋯

𝒒𝝓,𝟏 𝒒𝝓,𝟐 𝒒𝝓,𝟑 𝒒𝝓,𝒕

Figure 1.2: Various models encoding different multimodal data includ-
ing point-cloud, natural language, manipulation trajectory, and
tactile haptic feedback.

1.2 Learning Representation of Multimodal Data

People use many different sensory input — visual, auditory, and tactile — to

accomplish different tasks in our daily lives. Humans are able to map from dif-

ferent sensory systems to same concepts using common representation of different

modalities [29]. For example, we are able to correlate the appearance with feel of

a banana, or a language instruction with a real-world action. For a robot to take

advantage of such multimodal input, it should be able to find a good joint repre-

sentation of different modalities. Finding a good representation of multimodal

data has previously been found useful in many perceptual and interactive tasks

including grasping [84], lip-audio understanding [111] and autonomous driv-

ing [189].

Obtaining a good common representation between different modalities is

challenging for two main reasons. First, each modality might intrinsically have

very different statistical properties — for example, most trajectory representa-

tions are inherently dense, while a bag-of-words representation of language is

5

by nature sparse. This makes it challenging to apply algorithms designed for

unimodal data, as one modality might overpower the others. Second, even with

expert knowledge, it is extremely challenging to design joint features between

such disparate modalities.

We introduce an algorithm that can find semantically meaningful represen-

tation of three distinct modalities of data. In Chapter 4, our deep multimodal

embedding algorithm learns joint embedding of point-cloud, natural language,

and manipulation trajectory using deep neural networks. These learned models

provide semantically meaningful representation of modalities that allows robot

to reason about different modalities in a shared embedding space. In Chap-

ter 6, we also propose an algorithm that learns to jointly embed sequences of

haptic feedback and sequences of previous actions. This model allows robot to

dynamically adapt its strategy according to perceived feedback.

1.3 Applications

Such challenges of unstructured environment and multimodal data arise in

many robotics tasks of perception, planning, and manipulation. We demon-

strate our algorithms on several different real world problems robots encounter

in unstructured human environments.

In order to handle such challenges of unstructured environment, we model

the sequential nature of activities and tasks that involves sequences of different

motions. For example, there is no single sequence of motions that can describe

all activities that we would relate to as ‘brushing teeth.’ In Chapter 2, we show

that robots can learn possible sequences of sub-activities by observing tasks per-

6

formed by several people with a RGB camera and a depth camera. In Chapter 3,

we then show that robots can dynamically plan a sequence of sub-activities (mo-

tion primitives) for different novel scenarios.

Furthermore, we present a general learning algorithm that can learn a

joint embedding space of different modalities (Chapter 4). Using this algo-

rithm, we learn a semantically meaningful representation of point-cloud, nat-

ural language, and motion trajectory, where motion trajectories consist of sub-

sequences of motions representing approach, grasp, and interaction strategies.

In Chapter 5, we utilize this learned embedding space to plan sequences of com-

plex motions given visuals and natural language instruction manuals of novel

objects. For instance, our algorithm enables our robot to even prepare a cup

of latte without any prior experience of espresso machines or coffee grinders.

Lastly, in Chapter 6, we show that our robot can also learn an appropriate rep-

resentation of complex haptic feedback to influence transitions in sequences of

motion trajectories.

1.4 First Published Appearances of Described Contributions

Most of the contributions presented in this thesis have first appeared as prior

publications:

• Chapter 2: Sung, Ponce, Selman, and Saxena [146]

• Chapter 3: Sung, Selman, and Saxena [147]; Misra, Sung, Lee, and Saxena

[101]

• Chapter 4: Sung, Lenz, and Saxena [150]; Sung, Jin, Lenz, and Saxena [149]

7

• Chapter 5: Sung, Jin, and Saxena [148]; Sung, Lenz, and Saxena [150];

Sung, Jin, Lenz, and Saxena [149]

• Chapter 6: Sung, Salisbury, and Saxena [151]

8

CHAPTER 2

UNSTRUCTURED HUMAN ACTIVITY DETECTION FROM RGBD

IMAGES

Our goal is to enable robots to perform many tasks with different objects

in complex environments, which requires modeling and understanding tasks

performed in human environments. By observing humans carrying out tasks,

robots can learn about interaction of tasks with objects and environment. In this

chapter, we focus on modeling how humans perform different activities.

Being able to automatically infer the activity that a person is performing is

essential in many applications, such as in personal assistive robotics. For exam-

ple, if a robot could watch and keep track of how often a person drinks water,

it could prevent the dehydration of elderly by reminding them. True daily ac-

tivities do not happen in structured environments (e.g., with closely controlled

background), but in uncontrolled and cluttered households and offices. Due to

its unstructured and often visually confusing nature, detection of daily activities

becomes a much more difficult task. In addition, each person has his or her own

habits and mannerisms in carrying out tasks, and these variations in speed and

style create additional difficulties in trying to detect and recognize activities. In

this work, we are interested in reliably detecting daily activities that a person

performs in a home or office, such as cooking, drinking water, brushing teeth,

talking on the phone, and so on.

Most previous work on activity classification has focused on using 2D video

(e.g., [115, 46]) or RFID sensors placed on humans and objects (e.g., [182]). The

use of 2D videos leads to relatively low accuracy (e.g., 78.5% in [94]) even when

there is no clutter. The use of RFID tags is generally too intrusive because it

9

Figure 2.1: The RGBD data from the Kinect sensor is used to generate an
articulated skeleton model. This skeleton is used along with
the raw image and depths for estimating the human activity.

requires a placement of RFID tags on the people.

In this work, we perform activity detection and recognition using an inex-

pensive RGBD sensor (Microsoft Kinect). Human activities, despite their un-

structured nature, tend to have a natural hierarchical structure; for instance,

drinking water involves a three-step process of bringing a glass to one’s mouth,

tilting the glass and head to drink, and putting the glass down again. We

can capture this hierarchical nature using a hierarchical probabilistic graphical

model—specifically, a two-layered maximum entropy Markov model (MEMM).

Even with this structured model in place, different people perform tasks at dif-

ferent rates, and any single graphical model will likely fail to capture this varia-

tion. To overcome this problem, we present a method of on-the-fly graph struc-

ture selection that can automatically adapt to variations in task speeds and style.

Finally, we need features that can capture meaningful characteristics of the per-

son. We accomplish this by using the PrimeSense skeleton tracking system [122]

in combination with specially placed Histogram of Oriented Gradient [21] com-

puter vision features. This approach enables us to achieve reliable performance

in detection and recognition of common activities performed in typical cluttered

human environments.

10

We evaluated our method on twelve different activities (see Figure 2.3) per-

formed by four different people in five different environments: kitchen, of-

fice, bathroom, living room and bedroom. Our results show a precision/recall

of 84.7%/83.2% in detecting the correct activity when the person was seen

before in the training set and 67.9%/55.5% when the person was not seen

before. We have also made the dataset and code available open-source at:

http://pr.cs.cornell.edu/humanactivities

2.1 Related Work

There is a large body of previous work on human activity recognition. One

common approach is to use space-time features to model points of interest in

video [83, 27]. Several authors have supplemented these techniques by adding

more information to these features [59, 179, 182, 94, 114, 135]. However, this

approach is only capable of classifying, rather than detecting, activities. Other

approaches include filtering techniques [129] and sampling of video patches

[13]. Hierarchical techniques for activity recognition have been used as well,

but these typically focus on neurologically-inspired visual cortex-type models

[40, 137, 108, 124]. Often, these authors adhere faithfully to the models of the

visual cortex, using motion-direction sensitive “cells” such as Gabor filters in

the first layer [59, 115].

Another class of techniques used for activity recognition is that of the hidden

Markov model (HMM). Early work by Brand et al. [15] utilize coupled HMMs

to recognize two-handed activities. Weinland et al. [175] use an HMM together

with a 3D occupancy grid to model human actions. Martinez-Contreras et al.

[97] utilize motion templates together with HMMs to recognize human activi-

11

ties. As well as generative models like HMM, Lan et al. [82] employe a discrim-

inative model which was aided by interaction analysis between people. Smin-

chisescu et al. [140] use conditional random fields (CRF) and maximum-entropy

Markov models, arguing that these models overcome some of the limitations

presented by HMMs. Notably, HMMs create long-term dependencies between

observations and tries to model observations, which are already fixed at run-

time. On the other hand, MEMM and CRF are able to avoid such dependencies

and enables longer interaction among observations. However, the use of 2D

videos leads to relatively low accuracies.

Other authors have worked on hierarchical dynamic Bayesian networks.

Early work by Wilson and Bobick [178] extend HMM to parametric HMM for

recognizing pointing gestures. Fine et al. [33] introduce hierarchical HMM,

which was later extended by Bui et al. [16] to a general structure in which each

child can have multiple parents. Truyen et al. [161] then developed a hierarchi-

cal semi-Markov CRF that could be used in partially observable settings. Liao

et al. [93] apply hierarchical CRFs to activity recognition but their model re-

quires many GPS traces and is only capable of off-line classification. Wang et al.

[172] propose Dual Hierarchical Dirichlet Processes for surveillance of the large

area. Among several others, the hierarchical HMM is the closest model of these

to ours, but does not capture the idea that a single state may connect to different

parents only for specified periods of time, as our model does. As a result, none

of these models fit our problem of online detection of human activities in un-

controlled and cluttered environment. Since MEMM enables longer interaction

among observations unlike HMM [140], the hierarchical MEMM allows us to

take new observations and utilize dynamic programming to consider them in

an online setting.

12

Various robotic systems have used activity recognition before. Theodoridis

et al. [156] use activity recognition in robotic systems to discern aggressive ac-

tivities in humans. Li et al. [92] discuss the importance of non-verbal communi-

cation between human and robot and developed a method to recognize simple

activities that are nondeterministic in nature, while other works have focused

on developing robots that utilizes activity recognition to imitate human activi-

ties [24, 95]. However, we are more interested here in assistive robots. Assistive

robots are robots that assist humans in some task. Several types of assistive

robots exist, including socially assistive robots that interact with another person

in a non-contact manner, and physically assistive robots, which can physically

help people [31, 153, 113, 89, 60, 74].

2.2 Our Approach

We use a supervised learning approach in which we collected ground-truth la-

beled data for training our model. Our input is RGBD images from a Kinect

sensor, from which we extract certain features that are fed as input to our learn-

ing algorithm. We train a two-layered maximum-entropy Markov model which

will capture different properties of human activities, including their hierarchical

nature and the transitions between sub-activities over time.

2.2.1 Features

We can recognize a person’s activity by looking at his current pose and move-

ment over time, as captured by a set of features. The input sensor for our robot

13

is a RGBD camera (Kinect) that gives us an RGB image as well as depths at each

pixel. In order to compute the human pose features, we describe a person by

a rigid skeleton that can move at fifteen joints (see Figure 2.1). We extract this

skeleton using a tracking system provided by PrimeSense [122]. The skeleton is

described by the length of the links and the joint angles. Specifically, we have

the three-dimensional Euclidean coordinates of each joint and the orientation

matrix of each joint with respect to the sensor. We compute features from this

data as follows.

Body pose features. The joint orientation is obtained with respect to the

sensor. However, we are interested in true pose, which is invariant of sensor

location. Therefore, we transform each joint’s rotation matrix so that the rota-

tion is given with respect to the person’s torso. For 10 joints, we convert each

rotation matrix to half-space quaternions in order to more compactly represent

the joint’s orientation. (A more compact representation would be to use Euler

angles, but they suffer from representation problem called gimbal lock [136].)

Along with these joint orientations, we would like to know whether the person

is standing or sitting, and whether or not person is leaning over. Such informa-

tion is observed from the position of each foot with respect to the torso (3 ∗2) by

using the head and hip joints to compute the angle of the upper body against

vertical. We have 10 ∗ 4 + 3 ∗ 2 + 1 = 47 features for the body pose.

Hand Position. Hands play an especially important role in carrying out

many activities, so information about what hands are doing can be quite pow-

erful. In particular, we want to capture information such as “the left hand is

near the stomach” or “the right hand is near the right ear.” To do this, we com-

pute the position of the hands with respect to the torso, and with the respect to

14

the head in the local coordinate frame. Though we capture the motion informa-

tion as described next, in order to emphasize hand movement, we also observe

hand position over last 6 frames and record the highest and lowest vertical hand

position. We have 2 ∗ (6 + 2) = 16 features for this.

Motion Information. Motion information is also important for classifying a

person’s activities. We select nine frames spread out over the last three seconds,

spaced as follows: {−5,−9,−14,−20,−27,−35,−44,−54,−65}, where the numbers

refer to the frames chosen. Then, we compute the joint rotations that have oc-

curred between each of these frames and the current frame, represented as half-

space quaternions (for the 11 joints with orientation information). This gives.

9 ∗ 11 ∗ 4 = 396 features. We refer to body pose, hand and motion features as

“skeletal features”.

Image and point-cloud features. Much useful information can be derived

directly from the raw image and point cloud as well. We use the Histogram of

Oriented Gradients (HOG) feature descriptors [21], which gives 32 features that

count how often certain gradient orientations are seen in specified bounding

boxes of an image. Although this computation is typically performed on RGB

or grayscale images, we can also view the depth map as a grayscale image and

compute the HOG features on that. We have two HOG settings that we use.

In the “simple HOG” setting, we find the bounding box of the person in the

image, and compute RGB and depth HOG features for that bounding box, for a

total of 64 features. In the “skeletal HOG” setting, we use the extracted skeleton

model to find the bounding boxes for the person’s head, torso, left arm, and

right arm, and we compute the RGB and depth HOG features for each of these

four bounding boxes, for a total of 256 features. In this chapter’s primary result,

15

Figure 2.2: Our two-layered MEMM model.

we use the “skeletal HOG” setting.

2.2.2 Model Formulation

Human activity is complex and dynamic, and therefore our learning algorithm

should model different nuances in human activities, such as the following.

First, an activity comprises a series of sub-activities. For example, the activ-

ity “brushing teeth” consists of sub-activities such as “squeezing toothpaste,”

“bringing toothbrush up to face,” “brushing,” and so forth. Therefore for each

activity (represented by z ∈ Z), we will model sub-activities (represented by

y ∈ Y). We will train a hierarchical Markov model where the sub-activities y are

represented by a layer of hidden variables (see Figure 2.2).

For each activity, different subjects perform the sub-activities for different

periods of time. It is not clear how to associate the sub-activities to the activities.

This implies that the graph structure of the model cannot be fixed in advance.

16

We therefore determine the connectivity between the z and the y layers in the

model during inference.

Model. Our model is based on a maximum-entropy Markov model

(MEMM) [98]. However, in order to incorporate the hierarchical nature of activ-

ities, we use a two-layered hierarchical structure, as shown in Figure 2.2.

In our model, let xt denote the features extracted from the articulated skele-

ton model at time frame t. Every frame is connected to high-level activities

through the mid-level sub-activities. Since high-level activities do not change

every frame, we do not index them by time. Rather, we simply write zi to de-

note the ith high-level activity. Activity i occurs from time ti−1 + 1 to time ti. Then

{yti−1+1, ..., yti} is the set of sub-activities connected to activity zi.

2.2.3 MEMM with Hierarchical Structure

As shown in Figure 2.2, each node zi in the top layer is connected to several

consecutive nodes in the middle layer {yti−1+1, ..., yti}, capturing the intuition that

a single activity consists of a number of consecutive sub-activities.

For the sub-activity at each frame yt, we do not know a priori to which ac-

tivity zi it should connect at the top layer. Therefore, our algorithm must decide

when to connect a middle-layer node yt to top-layer node zi and when to con-

nect it to next top-layer node zi+1. We show in the next section how selection of

graph structure can be done through dynamic programming. Given the graph

structure, our goal is to infer the zi that best explains the data. We do this by

modeling the joint distribution P(zi, yti−1+1 · · · yti |Oi, zi−1) where Oi = xti−1+1, ..., xti ,

17

and for each zi, we find the set of yt’s that maximize the joint probability. Finally,

we choose the zi that has the highest joint probability distribution.

Learning Model. We use a Gaussian mixture model to cluster the original

training data into separate clusters, and consider each cluster as a sub-activity,

rather than manually labeling sub-activities for each frame. We constrain the

model to create five clusters for each activity, and then combine all the clusters

for a certain location’s activities into a single set of location specific clusters. In

addition, we also generate a few clusters from the negative examples, so that

our algorithm becomes robust to not detecting random activities. Specifically,

for each classifier and for each location, we create a single cluster from each of

the activities that do not occur in that location.

Our model consists of the following three terms:

• P(yt|xt): This term models the dependence of the sub-activity label yt on

the features xt. We model this using the Gaussian mixture model we have

built. The parameters of the model are estimated from the labeled training

data using maximum-likelihood.

• P(yti−m|yti−m−1, zi) (where m ∈ {0, ..., (ti− ti−1−1)}). A sequence of sub-activities

describes the activities. For example, we can say the sequence “squeez-

ing toothpaste,” “bringing toothbrush up to face,” “actual brushing,” and

“putting toothbrush down” describes the activity “brushing teeth.” If we

only observe “bringing toothbrush up to face” and “putting toothbrush

down,” we would not refer to it as “brushing teeth.” Unless the activity

goes through a specific set of sub-activities in nearly the same sequence,

it should probably not be classified as the activity. For all the activities

except neutral, the table is built from observing the transition of posterior

18

probability for soft cluster of Gaussian mixture model at each frame.

However, it is not so straightforward to build P(yti−m|yti−m−1, zi) when zi is

neutral. When a sub-activity sequence such as “bringing toothbrush to

face” and “putting toothbrush down” occurs, it does not correspond to

any known activity and so is likely to be neutral. It is not possible to collect

data of all sub-activity sequences that do not occur in our list of activities,

so we rely on the sequences observed from non-neutral activities. If N

denotes neutral activity, then P(yti−m|yti−m−1, zi = N) ∝ 1−
∑

zi,N
P(yti−m|yti−m−1, zi).

• P(zi|zi−1). The activities evolve over time. For example, one activity may

be more likely to follow another, and there are brief moments of neutral

activity between two non-neutral activities. Thus, we can make a better

estimate of the activity at the current time if we also use the estimate of

the activity at previous time-step. Unlike other terms, due to difficulty of

obtaining rich data set for maximum likelihood estimation, P(zi|zi−1) is set

manually to capture these intuitions.

Inference. Consider the two-layer MEMM depicted in Figure 2.2. Let a sin-

gle zi activity node along with all the yt sub-activity nodes connected directly to

it and the corresponding xt feature inputs be called a substructure of the MEMM

graph. Given an observation sequence Oi = xti−1+1, ..., xti and a previous activity

zi−1, we wish to compute the joint probability P(zi, yti−1+1 · · · yti |Oi, zi−1):

P(zi, yti−1+1 · · · yti |Oi, zi−1)

=P(zi|Oi, zi−1)P(yti−1+1 · · · yti |zi,Oi, zi−1)

=P(zi|zi−1) ·
ti∏

t=ti−1+2

P(yt|yt−1, zi, xt) ·
∑
yti−1

P(yti−1+1|yti−1 , zi, xti−1+1)P(yti−1)

We have all of these terms except P(yt|yt−1, zi, xt) and P(yti−1+1|yti−1 , zi, xti−1+1). Both

terms can be derived as

19

P(yt|yt−1, zi, xt) =
P(yt−1, zi, xt|yt)P(yt)

P(yt−1, zi, xt)

We make a naive Bayes conditional independence assumption that yt−1 and zi

are independent from xt given yt. Using this assumption, we get:

P(yt|yt−1, zi, xt) =
P(yt|yt−1, zi)P(yt|xt)

P(yt)

We have fully derived P(zi, yti−1+1 · · · yti |Oi, zi−1):

P(zi, yti−1+1 · · · yti |Oi, zi−1) =P(zi|zi−1)

·
∑
yti−1

P(yti−1+1|yti−1 , zi)P(yti−1+1|xti−1+1)
P(yti−1+1)

P(yti−1)

·

ti∏
t=ti−1+2

P(yt|yt−1, zi)P(yt|xt)
P(yt)

Note that this formula can be factorized into two terms where one of them only

contains two variables.

P(zi, yti−1+1 · · · yti |Oi, zi−1) = A ·

ti∏
t=ti−1+2

B(yt−1, yt)

Because the formula has factored into terms containing only two variables each,

this equation can be easily and efficiently optimized. We simply optimize each

factor individually, and we obtain:

max P(zi, yti−1+1 · · · yti |Oi, zi−1) = max
yti−1+1

A · max
yti−1+2

B(yti−1+1, yti−1+2) · · ·max
yti
B(yti−1, yti)

2.2.4 Graph Structure Selection

Now that we can find the set of yt’s that maximize the joint probability

P(zi, yti−1+1 · · · yti |Oi, zi−1), the probability of an activity zi being associated with the

20

Figure 2.3: Samples from our dataset. Row-wise, from left: brushing teeth,
cooking (stirring), writing on whiteboard, working on com-
puter, talking on phone, wearing contact lenses, relaxing on a
chair, opening a pill container, drinking water, cooking (chop-
ping), talking on a chair, and rinsing mouth with water.

ith substructure and the previous activity, we wish to use that to compute the

probability of zi given all observations up to this point. However, to do this, we

must solve the following problem: for each observation yt, we must decide to

which high-level activity zi it should be connected (see Figure 2.2). For example,

consider the last y node associated with the “drinking water” activity in Figure

2.2. It’s not entirely clear if that node really should connect to the “drinking wa-

ter” activity, or if it should connect to the following “neutral” activity. Deciding

with which activity node to associate each y node is the problem of hierarchical

MEMM graph structure selection.

Unfortunately, we cannot simply try all possible graph structures. To see

why, suppose we have a graph structure at time t − 1 with a final high-level

node zi, and then are given a new node yt. This node has two “choices”: it can

21

either connect to zi, or it can create a new high-level node zi+1 and connect to that

one. Because every node yt has this same choice, if we see a total of n mid-level

nodes, then there are 2n possible graph structures.

We present an efficient method to find the optimal graph structure using

dynamic programming. The method works, in brief, as follows. When given

a new frame for classification, we try to find the point in time at which the

current high-level activity started. So we pick a time t′, and say that every frame

after t′ belongs to the current high-level activity. We have already computed

the optimal graph structure for the first t′ time frames, so putting these two

subgraphs together give us a possible graph structure. We can then use this

graph to compute the probability that the current activity is z. By trying all

possible times t′ < t, we can find the graph structure that gives us the highest

probability, and we select that as our graph structure at time t.

The Method of Graph Structure Selection. Now we describe the method

in detail. Suppose we are at some time t; we wish to select the optimal graph

structure given everything we have seen so far. We will define the graph struc-

ture inductively based on graph structures that were chosen at previous points

in time. Let Gt′ represent the graph structure that was chosen at some time t′ < t.

Note that, as a base case, G0 is always the empty graph.

For every t′ < t, define a candidate graph structure G̃t′
t consisting of Gt′ (the

graph structure capturing the first t′ timeframes), followed by a single substruc-

ture from time t′ + 1 to time t connected to a single high-level node zi. Note that

this candidate graph structure sets ti−1 = t′ and ti = t. Given the set of candidate

structures {G̃t′
t |1 ≤ t′ < t}, the plan is to find the graph structure and high-level

activity zi ∈ Z to maximize the likelihood given the set of observations so far.

22

Let O be the set of all observations so far. Then P(zi|O; G̃t′
t) is the probabil-

ity that the most recent high-level node i is activity zi ∈ Z, given all obser-

vations so far and parameterized by the graph structure G̃t′
t . We initially set

P(z0|O; G0) to a uniform distribution. Then, through dynamic programming, we

have P(zi−1|O; Gt′) for all t′ < t and all z ∈ Z (details below). Suppose that, at time

t, we choose the graph structure G̃t′
t for a given t′ < t. Then the probability that

the most recent node i is activity zi is given by

P(zi|O; G̃t′
t) =

∑
zi−1

P(zi, zi−1|O; G̃t′
t)

=
∑
zi−1

P(zi−1|O; G̃t′
t)P(zi|O, zi−1; G̃t′

t)

=
∑
zi−1

P(zi−1|O; Gt′)P(zi|Oi, zi−1) (2.1)

The two factors inside the summation are terms that we know, the former due

to dynamic programming, and the latter estimated by finding maximum of

P(zi, yti−1+1 · · · yti |Oi, zi−1), described in the previous section.

Thus, to find the optimal probability of having node i be a specific activity zi,

we simply compute

P(zi|O; Gt) = max
t′<t

P(zi|O; G̃t′
t)

We store P(zi|O; Gt) ∀ zi for dynamic programming purposes (Equation 2.1).

Then, to make a prediction of an activity at time t, we compute

activityt = argmax
zi

P(zi|O)

= argmax
zi

max
t′<t

P(zi|O; G̃t′
t)

Optimality. We show that this algorithm is optimal by induction on the time

t. Suppose we know the optimal graph structure for every time t′ < t. This is

23

certainly true at time t = 1, as the optimal graph structure at time t = 0 is the

empty graph. The optimal graph structure at time t involves a final high-level

node zi that is connected to 1 ≤ k ≤ t mid-level nodes.

Suppose the optimal structure at time t has the high-level node connected to

k = t − t′ mid-level nodes. Then what graph structure do we use for the first t′

nodes? By the induction hypothesis, we know the optimal graph structure Gt′

for the first t′ nodes. That is, Gt′ is the graph structure that maximizes the prob-

ability P(zi−1|O). Because zi is conditionally independent of any high-level node

before zi−1, the graph structure before zi−1 does not affect zi. Similarly, the graph

structure before zi−1 obviously does not depend on the graph structure after zi−1.

Therefore, the optimal graph structure at time t is G̃t′
t , the concatenation of Gt′ to

a single substructure of t − t′ nodes.

We do not know what the correct time 0 ≤ t′ < t is, but because we try all, we

are guaranteed to find the optimal t′, and therefore the optimal graph structure.

Complexity. Let n and m be the number of activities and sub-activities, re-

spectively, and let t be the time. Space complexity for the dynamic programming

algorithm is O(n · t) since we store 1-d array of size t for each activity. At each

timeframe, we must compute the optimal graph structure. By setting a maxi-

mum substructure size of T � t, dynamic programming requires n activities to

be checked for each of T possible sizes. Each check requires a computation of

P(zi, yti−1+1 · · · yti |Oi, zi−1), which takes O(m ·T) time. Thus, each timeframe requires

O(n ·m · T 2) computation time. We do this computation for each of t timeframes,

for an overall time complexity of O(n · m · T 2 · t).

24

2.3 Experiments

Data. We used the Microsoft Kinect sensor, which outputs an RGB image to-

gether with aligned depths at each pixel at a frame rate of 30Hz. It produces a

640x480 depth image with a range of 1.2m to 3.5m. The sensor is small enough

for it to be mounted on inexpensive mobile ground robots.

We considered five different environments: office, kitchen, bedroom, bath-

room, and living room. Three to four common activities were identified for

each location, giving a total of twelve unique activities (see Table 2.1). Data was

collected from four different people: two males and two females. None of the

subjects were otherwise associated with this project (and hence were not knowl-

edgeable of our models and algorithm). We collected about 45 seconds of data

for each activity from each person. The data was collected in different parts of

regular household with no occlusion of arms and body from the view of sen-

sor. When collecting, the subjects were given basic instructions on how to carry

out the activity, such as “stand here and chop this onion,” but were not given

any instructions on how the algorithm would interpret their movements. (See

Figure 2.3.)

Our goal is to perform human activity detection, i.e., our algorithm must be

able to distinguish the desired activities from other random activities that peo-

ple perform. To that end, we collected random activities by asking the subject to

act in a manner unlike any of the previously performed activities. The random

activity contains sequence of random movements ranging from a person stand-

ing still to a person walking around and stretching his or her body. Note that

random data was only used for testing.

25

For testing, we experimented with two settings. In the “new person” setting,

we employed leave-one-out cross-validation to test each person’s data; i.e. the

model was trained on three of the four people from whom data was collected,

and tested on the fourth. In the other “have seen” setting of the experiment,

the model was given data about the person carrying out the same activity. To

achieve this setting, we halved the testing subject’s data and included one half

in the training data set. So, even though the model had seen the person do the

activity at least once, they had not seen the testing data itself.

Finally, to train the model on both left-handed and right-handed people

without needing to film them all, we simply mirrored the training data across

the virtual plane down the middle of the screen. We have made the data avail-

able at: http://pr.cs.cornell.edu/humanactivities/

Models. We compared two-layered MEMM against two models, naive clas-

sifier based on SVM and one-level MEMM. Both models were trained on full set

of features we have described earlier.

• Baseline: Naive Classifier. As the baseline model, we used a multi-class

support vector machine (SVM) as a way to map features to corresponding

activities. Here SVM is used to map the features to the high-level activities

directly.

• One-level MEMM. This is a one-level MEMM model which builds upon the

naive classifier. P(yt|xt) is computed by fitting a sigmoid function to the

output of the SVM. Transition probabilities between activities, P(yt|yt−1),

use the same table we have built for full model, which in that model is

called P(zi|zi−1). Using P(yt|xt) and P(yt|yt−1), we compute the probability

that the person is engaged in activity j at time t.

26

(a) bathroom (b) bedroom (c) kitchen

(d) living room (e) office (f) overall

Figure 2.4: Leave-one-out cross-validation confusion matrix for each lo-
cation with the full model in the “new person” setting, using
skeletal features and skeletal HOG features. The neutral activ-
ity denotes that the algorithm estimates that the person is either
not doing anything or that the person is engaged in some other
activity that we have not defined. The last matrix (bottom-
right) shows the results aggregated over all the locations.

• Hierarchical MEMM. We ran our full model with a few different sets of

input features in order to show how much improvement our selection of

features brings compared to the set of features that solely relies on images.

We tried using “simple HOG” features (using a person’s full bounding

box) with just RGB image data, “simple HOG” features with both RGB

and depth data, and skeletal features with the “skeletal HOG” features for

both RGB and depth data.

27

(a) bathroom (b) bedroom (c) kitchen

(d) living room (e) office (f) overall

Figure 2.5: Same format as Figure 2.4 except it is in the “have seen” set-
ting.

2.3.1 Results and Discussion

Table 2.1 shows the results of the naive classifier, one-level MEMM and our

full two-layered model for the “have seen” and “new person” settings. The

precision and recall measures are used as metrics for evaluation. Our model

was able to detect and classify with a precision/recall measure of 84.7%/83.2%

and 67.9%/55.5% in “have seen” and “new person” settings, respectively. It is

not surprising that the model performs better in the “have seen” setting, as it

has seen that person’s body type and mannerisms before.

We found that both the naive classifier and one-level MEMM were able to

classify well when a frame contained distinct characteristics of an activity, but

performed poorly when characteristics were subtler. For example, for tasks like

‘rinsing mouth’ and ‘drinking water’ that does not always have an apparent

28

characteristics in every frame, these models consistently performed much lower

in different locations as shown in Table 2.1. The one-layer MEMM was able

to perform better than the naive classifier, as it naturally captures important

temporal properties of motion. Our full two-layer MEMM, however, is able

to capture the hierarchical nature of human activities in a way that neither the

naive classifier nor the one-layer MEMM can do. As a result, it performed the

best of all three models.

The comparison of feature sets on our full model shows that the features we

use are much more robust compared to features that rely on RGB and/or Depth.

In the “have seen” setting, the HOG on RGB images are capable of captur-

ing powerful information about a person. However, when seeing a new person,

changes in clothing and background can cause confusion especially in uncon-

trolled and cluttered backgrounds, as shown by relatively low precision/recall

value of 33.1%/23.5%. The skeletal features along with HOG on depth, while

sometimes less informative than the HOG on images, are both more robust to

changes in people. Thus, by combining skeletal features, skeletal HOG image

features, and skeletal HOG depth features, we simultaneously achieved good

accuracy in the “new person” setting and very good accuracy in the “have seen”

setting.

Figure 2.4 and Figure 2.5 show the confusion matrices between the activi-

ties in “new person” and “have seen” setting when using skeletal features and

“skeletal HOG” image and depth features. When it did not classify correctly,

it usually chose the neutral activity, which is typically not as bad as choosing

a wrong “active” activity. When we look at the confusion matrices, we see

that many of the mistakes are actually reasonable in that the algorithm confuses

29

them with very similar activities. For example, cooking-chopping and cooking-

stirring are often confused, rinsing mouth with water is confused with brushing

teeth, and talking on the couch is confused with relaxing on the couch. For these

tasks, the skeleton tracker was not robust enough to provide accurate tracking

of the arm and the hand motions.

Another strength of our model is that it correctly classifies random data as

neutral most of the time, as shown in the bottom row of the confusion matrices.

This means that it is able to distinguish whether the provided set of activities

actually occurs or not—thus our algorithm is not likely to misfire when a person

is doing some new activity that the algorithm has not seen before. Also, since

we trained on both the regular and mirrored data, the model performs well with

both left- and right-handed people.

However, there are some limitations to our method. First, our data only

included cases in which the person was not occluded by an object; our method

does not model occlusions and may not be robust to such situations. Second,

some activities require more contextual information other than simply human

pose. For example, knowledge of objects being used could help significantly in

making human activity recognition algorithms more powerful in the future.

2.4 Conclusion

In order for a robot to perform tasks in a complex environment, the robot first

has to be able to model various activities in unstructured human envrionments.

In this chapter, we considered the problem of detecting and recognizing activ-

ities that humans perform in unstructured environments such as homes and

30

offices. We used an inexpensive RGBD sensor (Microsoft Kinect) as the input

sensor, the low cost of which enables our approach to be useful for applications

such as smart homes and personal assistant robots. We presented a two-layered

maximum entropy Markov model (MEMM). This MEMM modeled different

properties of the human activities, including their hierarchical nature, the tran-

sitions between sub-activities over time, and the relation between sub-activities

and different types of features. During inference, our algorithm exploited the

hierarchical nature of human activities to determine the best MEMM graph

structure. We tested our algorithm extensively on twelve different activities

performed by four different people in five different environments, where the

test activities were often interleaved with random activities not belonging to

these twelve categories. It achieved good detection performance in both set-

tings, where the person was and was not seen before in the training set, respec-

tively.

31

Table 2.1: Results of naive classifier, one-level MEMM model, and our full
model in each location. The table shows precision and recall
scores for all of our models. Note that the test dataset con-
tains random movements (in addition to the activities consid-
ered), ranging from a person standing still to walking around
while waving his or her hands. RGB HOG and RGBD HOG
refers to “simple HOG”.

“New Person”
Naive One-layer Full Model

Classifier MEMM RGB HOG RGBD HOG Skel.+Skel HOG
Location Activity Prec Rec Prec Rec Prec Rec Prec Rec Prec Rec

bathroom
rinsing mouth 77.7 49.3 71.8 63.2 42.2 73.3 49.1 97.3 51.1 51.4
brushing teeth 64.5 20.5 83.3 57.7 50.7 30.8 73.4 16.6 88.5 55.3
wearing contact lens 82.0 89.7 81.5 89.7 44.2 40.6 52.5 59.5 78.6 88.3
Average 74.7 53.1 78.9 70.2 45.7 48.2 58.3 57.8 72.7 65.0

bedroom
talking on the phone 82.0 32.6 82.0 32.6 0.0 0.0 15.6 8.8 63.2 48.3
drinking water 19.2 12.1 19.1 12.1 0.0 0.0 3.0 0.1 70.0 71.7
opening pill container 95.6 65.9 95.6 65.9 60.6 34.8 33.8 36.5 95.0 57.4
Average 65.6 36.9 65.6 36.9 20.2 11.6 17.4 15.2 76.1 59.2

kitchen
cooking (chopping) 33.3 56.9 33.2 57.4 56.1 90.0 59.9 74.2 45.6 43.3
cooking (stirring) 44.2 29.3 45.6 31.4 58.0 4.0 94.5 11.1 24.8 17.7
drinking water 72.5 21.3 71.6 23.9 0.0 0.0 91.8 23.9 95.4 75.3
opening pill container 76.9 6.2 75.8 6.2 83.6 33.5 54.1 35.0 91.9 55.2
Average 56.8 28.4 56.6 29.7 49.4 31.9 75.1 36.1 64.4 47.9
talking on the phone 69.7 0.9 83.3 25.0 0.0 0.0 31.0 11.8 51.5 48.5

living drinking water 57.1 53.1 52.8 55.8 0.0 0.0 1.2 0.0 54.3 69.3
room talking on couch 71.5 35.4 57.4 91.3 42.7 59.4 53.2 63.2 73.2 43.7

relaxing on couch 97.2 76.4 95.8 78.6 0.0 0.0 100.0 21.5 31.3 21.1
Average 73.9 41.5 72.3 62.7 10.7 14.9 46.4 24.1 52.6 45.7

office
talking on the phone 60.5 31.0 60.6 31.5 17.5 6.7 2.7 0.6 69.4 48.2
writing on whiteboard 47.1 73.3 45.2 74.1 41.2 25.1 94.0 97.0 75.5 81.3
drinking water 41.1 12.4 51.2 23.2 0.0 0.0 0.0 0.0 67.1 68.8
working on computer 93.5 76.8 93.5 76.8 100.0 11.9 100.0 29.0 83.4 40.7
Average 60.5 48.4 62.6 51.4 39.7 10.9 49.2 31.7 73.8 59.8

Overall Average 66.3 41.7 67.2 50.2 33.1 23.5 49.3 33.0 67.9 55.5
“Have Seen”

Naive One-layer Full Model
Classifier MEMM Skel.+Skel HOG

Location Activity Prec Rec Prec Rec Prec Rec

bathroom
rinsing mouth 73.3 49.7 70.7 53.1 61.4 70.9
brushing teeth 81.5 65.1 81.5 75.6 96.7 77.1
wearing contact lens 87.8 71.9 87.8 71.9 79.2 94.7
Average 80.9 62.2 80.0 66.9 79.1 80.9

bedroom
talking on the phone 70.2 67.2 70.2 69.0 88.7 90.8
drinking water 64.1 31.6 64.1 39.6 83.3 81.7
opening pill container 48.7 52.3 48.7 54.8 93.3 77.4
Average 61.0 50.4 61.0 54.5 88.4 83.3

kitchen
cooking (chopping) 78.9 28.9 78.9 29.0 70.3 85.7
cooking (stirring) 44.6 45.8 44.6 45.8 74.3 47.3
drinking water 52.2 51.5 52.2 52.4 88.8 86.8
opening pill container 17.9 62.4 17.9 62.4 91.0 77.4
Average 48.4 47.2 48.4 47.4 81.1 74.3
talking on the phone 34.1 67.7 34.1 67.7 88.8 90.6

living drinking water 80.2 48.7 71.0 53.8 80.2 82.6
room talking on couch 91.4 50.7 91.4 50.7 98.8 94.7

relaxing on couch 95.7 96.5 95.7 96.5 86.8 82.7
Average 75.4 65.9 73.1 67.2 88.7 87.7

office
talking on the phone 80.4 52.2 80.4 52.2 87.6 92.0
writing on whiteboard 42.5 59.3 42.5 59.3 85.5 91.9
drinking water 53.4 36.7 53.4 36.7 82.3 81.5
working on computer 89.2 69.3 89.2 69.3 89.5 93.8
Average 66.4 54.4 66.4 54.4 86.2 89.8

Overall Average 66.4 56.0 65.8 58.1 84.7 83.2

32

CHAPTER 3

SYNTHESIZING MANIPULATION SEQUENCES FOR

UNDER-SPECIFIED TASKS USING UNROLLED MARKOV RANDOM

FIELDS

When a robot performs a task in a complex environment, it should be able to

plan its motions according to the context the environment. We previously intro-

duced an algorithm that models human activities as sequences of sub-activities

through observation. In this chapter, we focus on synthesizing a sequence of

symbolic motion primitives by taking contexts of various objects into account.

When interacting with a robot, users often under-specify the tasks to be per-

formed. For example in Figure 3.1, when asked to pour something, the robot

has to infer which cup to pour into and a complete sequence of the navigation

and manipulation steps—moving close, grasping, placing, and so on.

This sequence not only changes with the task, but also with the perceived

state of the environment. As an example, consider the task of a robot fetching

a magazine from a desk. The method to perform this task varies depending on

several properties of the environment: for example, the robot’s relative distance

from the magazine, the robot’s relative orientation, the thickness of the maga-

zine, and the presence or the absence of other items on top of the magazine. If

the magazine is very thin, the robot may have to slide the magazine to the side

of the table to pick it up. If there is a mug sitting on top of the magazine, it

would have to be moved prior to the magazine being picked up. Thus, espe-

cially when the details of the manipulation task are under-specified, the success

of executing the task depends on the ability to detect the object and on the abil-

ity to sequence the set of primitives (navigation and manipulation controllers) in

33

Figure 3.1: Figure showing our Kodiak PR2 in a kitchen with different ob-
jects labeled with attributes. To accomplish the under-defined
task of pour(obj17), it has to first find the mug (obj13) and
carry it to the table (obj05) since it is dangerous to pour liquid
in a tight shelf. Once the mug is on the table, it has to bring the
liquid by the container (obj19) and then finally pour it into the
mug.

various ways in response to the environment.

In recent years, there have been significant developments in building low-

level controllers for robots [157] as well as in perceptual tasks such as object

detection from sensor data [72, 61, 181]. In this work, our goal is to, given the

34

environment and the task, enable robots to sequence the navigation and manip-

ulation primitives. Manually sequencing instructions is not scalable because of

the large variety of tasks and situations that can arise in unstructured environ-

ments.

In this work, we take an attribute-based representation of the environment,

where each object is represented with a set of attributes, such as their size,

shape-related information, presence of handles, and so forth. For a given task,

there are often multiple objects with similar functions that can be used to accom-

plish the task, and humans can naturally reason and choose the most suitable

object for the given task [69]. Our model, based on attribute representation of

objects, is similarly capable of choosing the most suitable object for the given

task among many objects in the environment.

We take a dynamic planning approach to the problem of synthesizing, in the

right order, the suitable primitive controllers. The best primitive to execute at

each discrete time step is based on a score function that represents the appropri-

ateness of a particular primitive for the current state of the environment. Con-

ceptually, a dynamic plan consists of a loop containing a sequence of conditional

statements each with an associated primitive controller or action. If the cur-

rent environment matches the conditions of one of the conditional statements,

the corresponding primitive controller is executed, bringing the robot one step

closer to completing the overall task (example in Section 3.2). We will show how

to generalize sequencing of primitives to make them more flexible and robust,

by switching to an attribute-based representation. We then show how to unroll

the loop into a graph-based representation, isomorphic to a Markov Random

Field. We then train the parameters of the model by maximum margin learning

35

method using a dataset comprising many examples of sequences.

We evaluated our model on 127 controller sequences for five under-specified

manipulation tasks generated from 13 environments using 7 primitives. We

show that our model can predict suitable primitives to be executed with the

correct arguments in most settings. Furthermore, we show that, for five high-

level tasks, our algorithm was able to correctly sequence 70% of the sequences

in different environments.

The main contributions of this chapter are:

• We propose the use of attribute-based representation of an environment

for task planning.

• We infer the sequence of steps where goals are under-specified and have

to be inferred from the context.

• We represent a dynamic plan as a graph by unrolling the loop into a

Markov Random Field.

3.1 Related Work

There is a large body of work in task planning across various communities. We

describe some of them in the following categories.

Manual Controller Sequencing. Many works manually sequence different

types of controllers to accomplish specific types of tasks. Bollini et al. [14] de-

velop an end-to-end system which can find ingredients on a tabletop and mix

them uniformly to bake cookies. Others used pre-programmed sequences for

36

tea serving and carrying humans in healthcare robotics [109, 106]. These ap-

proaches however cannot scale to large number of tasks when each task requires

its own complicated rules for sequencing controllers and assumes a controlled

environment, which is very different from actual human households, where ob-

jects of interest can appear anywhere in the environment with a variety of simi-

lar objects.

Beetz et al. [8] retrieve a sequence for “making a pancake” from online web-

sites but assumes an environment with correct labels and a single choice of ob-

ject for the task. Human experts can generate finite state machines for robots but

this again requires explicit labels (e.g. AR tags) [112]. Our work addresses these

problems by representing each object in the environment as a set of attributes

which is more robust than labeling the individual object [32, 30, 81]. In our re-

cent work [102], we learn a sequence given a natural language instruction and

object labels, where the focus is to learn the grounding of the natural language

into the environment.

Learning Activities from Videos. In the area of computer vision, several

works [184, 185, 146, 73] consider modeling the sequence of activities that hu-

mans perform. These works are complementary to ours because our problem is

to infer the sequence of controllers and not to label the videos.

Symbolic Planning. Planning problems often rely on symbolic represen-

tation of entities as well as their relations. This has often been formalized as

a deduction [45] or satisfiability problem [67]. A plan can also be generated

hierarchically by first planning abstractly, and then generating a detailed plan

recursively [65]. Such approaches can generate a sequence of controllers that

can be proven to be correct [64, 9]. Symbolic planners however require encod-

37

ing every precondition and effect of each operation, which will not scale in hu-

man environments where there are large variations. Such planners also require

domain description for each planning domain including the types of each ob-

ject (e.g., pallet crate - surface, hoist surface - locatable) as well as any relations

(e.g., on x:crate y:surface, available x:hoist). The preconditions and effects can

be learned directly from examples of recorded plans [183, 190] but this method

suffers when there is noise in the data [190], and also suffers from the difficulty

of modeling real world situations with the PDDL representation [183].

Such STRIPS-style representation also restricts the environment to be repre-

sented with explicit labels. Though there is a substantial body of work on la-

beling human environments [72, 79], it still remains a challenging task. A more

reliable way of representing an environment is representing through attributes

[32, 30]. An attribute-based representation even allows classification of object

classes that are not present in the training data [81]. Similarly, in our work, we

represent the environment as a set of attributes, allowing the robot to search for

objects with the most suitable attributes rather than looking for a specific object

label.

Predicting Sequences. Predicting sequences has mostly been studied in a

Markov Decision Process framework, which finds an optimal policy given the

reward for each state. Because the reward function cannot be easily specified in

many applications, inverse reinforcement learning (IRL) learns the reward func-

tion from an expert’s policy [110]. IRL is extended to Apprenticeship Learning

based on the assumption that the expert tries to optimize an unknown reward

function [1]. Most similar to our work, the Max-Margin Planning frames imi-

tation learning as a structured max-margin learning problem [125]. However,

38

this has only been applied to problems such as 2D path planning, grasp predic-

tion and footstep prediction [126], which have much smaller and clearer sets of

states and actions compared to our problem of sequencing different controllers.

Co-Active Learning for manipulation path planning [57], where user prefer-

ences are learned from weak incremental feedback, does not directly apply to

sequencing different controllers.

Both the model-based and model-free methods evaluate state-action pairs.

When it is not possible to have knowledge about all possible or subsequent

states (full backup), they can rely on sample backup which still requires sufficient

sample to be drawn from the state space [36]. However, when lots of robot-

object interactions are involved, highly accurate and reliable physics-based

robotic simulation is required along with reliable implementation of each ma-

nipulation controllers. Note that each of the manipulation primitives such as

grasping are still not fully solved problems. For example, consider the scenario

where the robot is grasping the edge of the table and was given the instruc-

tion of follow traj pour(table,shelf). It is unclear what should occur

in the environment and becomes challenging to have reliable simulation of ac-

tions. Thus, in the context of reinforcement learning, we take a maximum mar-

gin based approach to learning the weight for wTφ(s, a) such that it maximizes

the number of states where the expert outperforms other policies, and chooses

the action that maximizes wTφ(s, a) at each time step. The key in our work is

representing task planning as a graph-based model and designing a score func-

tion that uses attribute-based representation of environment for under-specified

tasks.

39

3.2 Our Approach

We refer to a sequence of primitives (low-level navigation and manipulation con-

trollers) as a program. To model the sequencing of primitives, we first repre-

sent each object in the environment with a set of attributes as described in Sec-

tion 3.3.2. In order to make programs generalizable, primitives should have the

following two properties. First, each primitive should specialize in an atomic

operation such as moving close, pulling, grasping, and releasing. Second, a

primitive should not be specific to a single high-level task. By limiting the role

of each primitive and keeping it general, many different manipulation tasks

can be accomplished with the same small set of primitives, and our approach

becomes easily adaptable to different robots by providing implementation of

primitives on the new robot.

For illustration, we write a program for “throw garbage away” in Program

1. Most tasks could be written in such a format, where there are many if state-

ments inside the loop. However, even for a simple “throw garbage away” task,

the program is quite complex. Writing down all the rules that can account for

the many different scenarios that can arise in a human environment would be

quite challenging.

Program 1 is an example of what is commonly referred to as reactive or dy-

namic planning [130, 71]. In traditional deliberative planning, a planning al-

gorithm synthesizes a sequence of steps that starts from the given state and

reaches the given goal state. Although current symbolic planners can find opti-

mal plan sequences consisting of hundreds of steps, such long sequences often

break down because of unexpected events during the execution. A dynamic

40

Program 1 “throw garbage away.”

Input: environment e, trash a1

gc := f ind garbage can(e)

repeat

if a1 is in hand & gc is close then

release(a1)

else if a1 is in hand & far from gc then

move close(gc)

else if a1 is close & a1 not in hand & nothing on top of a1 then

grasp(a1)
...

else if a1 is far then

move close(a1)

end if

until a1 inside gc

plan provides a much more robust alternative. At each step, the current state

of the environment is considered and the next appropriate action is selected

by one of the conditional statements in the main loop. A well-constructed dy-

namic plan will identify the next step required to bring the robot closer to the

overall goal in any possible world state. In complex domains, dynamic plans

may become too complicated. However, we are considering basic human activ-

ities, such as following a recipe, where dynamic plans are generally quite com-

pact and can effectively lead the robot to the goal state. Moreover, as we will

demonstrate, we can learn the dynamic plan from observing a series of action

sequences in related environments.

41

In order to make our approach more general, we introduce a feature based

representation for the conditions of if statements. We can extract some features

from both the environment and the action that will be executed in the body of

if statement. With extracted features φ and some weight vector w for each

if statement, the same conditional statements can be written as wTφ, since the

environment will always contain the rationale for executing certain primitive.

Such a feature-based approach allows us to re-write Program 1 in the form of

Program 2.

Program 2 “throw garbage away.”

Input: environment e, trash a1

gc := f ind garbage can(e)

repeat

et := current environment

if wT
1φ(et,release(a1)) > 0 then

release(a1)

else if wT
2φ(et,move close(gc)) > 0 then

move close(gc)
...

else if wT
nφ(et,move close(a1)) > 0 then

move close(a1)

end if

until a1 inside gc

Now all the if statements have the same form, where the same primitive

along with same arguments are used in both the condition as well as the body

of the if statement. We can therefore reduce all if statements inside the loop

further down to a simple line which depends only on a single weight vector and

42

a single joint feature map, as shown in Program 3, for finding the most suitable

pair of primitive p̂t and its arguments (â1,t, â2,t).

Program 3 “throw garbage away.”

Input: environment e, trash ga1

repeat

et := current environment

(p̂t, â1,t, â2,t) := argmax
pt∈P,a1,t ,a2,t∈E

wTφ(et, pt(a1,t, a2,t))

execute p̂t(â1,t, â2,t)

until p̂t = done

The approach taken in Program 3 also allowed removing the function

f ind garbage can(e). Both Program 1 and Program 2 require f ind garbage can(e)

which depends on semantic labeling of each object in the environment. The at-

tributes of objects will allow the program to infer which object is a garbage can

without explicit encoding.

Program 3 provides a generic representation of a dynamic plan. We will

now discuss an approach to learning a set of weights. To do so, we will em-

ploy a graph-like representation obtained by “unrolling” the loop representing

discrete time steps by different layers. We will obtain a representation that is

isomorphic to a Markov Random Field (MRF) and will use a maximum margin

based approach to training the weight vector. Our MRF encodes the relations

between the environment, primitive and its arguments. Our empirical results

show that such a framework is effectively trainable with a relatively small set of

example sequences. Our feature-based dynamic plan formulation therefore of-

fers an effective and general representation to learn and generalize from action

sequences, accomplishing high-level tasks in a dynamic environment.

43

Figure 3.2: Markov Random Field representation of our model at dis-
crete time step t. The top node represents the given task
g, ga1, ga2. The second layer from the top represents the se-
quence of primitives, and the layer below represents the argu-
ments associated with each primitive. And, the bottom node
represents the environment represented with set of attributes.

3.3 Model Formulation

We are given a set of possible primitives P (navigation and manipulation con-

trollers) to work with (see Section 3.4) and an environment E represented by

a set of attributes. Using these primitives, the robot has to accomplish a ma-

nipulation task g ∈ T . The manipulation task g is followed by the arguments

ga1, ga2 ∈ E which give a specification of the task. For example, the program

“throw garbage away” would have a single argument which would be the ob-

ject id of the object that needs to be thrown away.

At each time step t (i.e., at each iteration of the loop in Program 3), our envi-

ronment et will dynamically change, and its relations with the primitive is rep-

resented with a joint set of features. These features include information about

the physical and semantic properties of the objects as well as information about

44

their locations in the environment.

Now our goal is to predict the best primitive pt ∈ P to execute at each discrete

time step, along with its arguments: pt(a1,t, a2,t). We will do so by designing a

score function S (·) that represents the correctness of executing a primitive in the

current environment for a task.

S (g(ga1, ga2), et, pt(a1,t, a2,t)) = wTφ(g(ga1, ga2), et, pt(a1,t, a2,t))

In order to have a parsimonious representation, we decompose our score

function using a model isomorphic to a Markov Random Field (MRF), shown in

Figure 3.2. This allows us to capture the dependency between primitives, their

arguments, and environments which are represented by set of attributes. In

the figure, the top node represents the given task and its arguments (g, ga1, ga2).

The second layer from the top represents the sequence of primitives, and the

layer below represents the arguments associated with each primitive. And, the

bottom node represents the environment which is represented with set of at-

tributes. Note that we also take into account the previous two primitives in the

past, together with their arguments: pt−1(a1,t−1, a2,t−1) and pt−2(a1,t−2, a2,t−2).

Now the decomposed score function is:

S = S ae︸︷︷︸
args-env

+

prim-task︷︸︸︷
S pt + S aet︸︷︷︸

args-env-task

+

prim-args-env︷︸︸︷
S pae + S ppt︸︷︷︸

prim-prim(prev)-task

+

prim-args-args(prev)-env︷︸︸︷
S paae

The terms associated with an edge in the graph are defined as a linear function

of its respective features φ and weights w:

S ae = wae1
Tφae(a1,t, et) + wae2

Tφae(a2,t, et)

S pt = wpt
Tφpt(pt, g)

45

Similarly, the terms associated with a clique in the graph are defined as a linear

function of respective features φ and weights w:

S aet = waet1
Tφaet(a1,t, et, g) + waet2

Tφaet(a2,t, et, g)

S pae = wpae1
Tφpae(pt, a1,t, et) + wpae2

Tφpae(pt, a2,t, et)

S ppt = wppt1
Tφppt(pt−1, pt, g) + wppt2

Tφptt(pt−2, pt, t)

S paae =
∑

i, j∈(1,2),k∈(t−2,t−1)

wpaaei jk
Tφpaae(pt, ai,k, a j,t, et)

Using these edge and clique terms, our score function S can be simply written

in the following form, which we have seen in Program 3 with an extra term g

for the task: S (g(ga1, ga2), et, pt(a1,t, a2,t)) = wTφ(g(ga1, ga2), et, pt(a1,t, a2,t)).

3.3.1 Features

In this section, we describe our features φ(·) for the different terms in the previ-

ous section.

Arguments-environment (φae): The robot should be aware of its location and

the current level of its interaction with objects (e.g., grasped), which are given

as possible primitive arguments a1,t, a2,t. Therefore, we add two binary features

which indicate whether each primitive argument is already grasped and two

features for the centroid distance from the robot to each primitive arguments.

For capturing spatial relation between two objects a1,t and a2,t, we add one

binary feature indicating whether primitive arguments a1,t, a2,t are currently in

collision with each other.

Arguments-environment-task (φaet): To capture relations between the objects of

interest (task arguments) and objects of possible interest (primitive arguments),

46

we build a binary vector of length 8. First four values represent the indicator

values of whether the objects of interest are identical as the objects of possible

interest, and the last four represent spatial relation of whether they overlap from

top view.

It is important to realize the type of object that is below the objects of in-

terests, and the desired property (e.g., bowl-like object or table-like object) may

differ depending on the situation. We create two feature vectors, each of length

l. If the robot is holding the object, we store its extracted attributes in the first

vector. Otherwise, we store them in the second vector. If the primitive has two

arguments, we use the first primitive argument since it often has higher level of

interaction with the robot compared to the second argument.

Finally, to capture correlation between the high-level task and the types of

object in primitive argument, we take a tensor product of two vectors: an at-

tribute vector of length 2l for two objects and a binary occurrence vector of

length |T |. The matrix of size 2l × |T | is flattened to a vector.

Primitive-task (φpt): The set of primitives that are useful may differ depending

on the type of the task. We create a |T |×|P| binary co-occurrence matrix between

the task g and the primitive pt that has a single non-zero entry in the current

task’s (gth) row and current primitive’s (pt
th) column.

Primitive-arguments-environment (φpae): Some primitives such as hold above

require one of the objects in arguments to be grasped or not to be grasped to exe-

cute correctly. We create a |P| × 2 matrix where the row for the current primitive

(pt
th row) contains two binary values indicating whether each primitive argu-

ment is in the manipulator.

47

Primitive-primitive(previous)-task (φppt): The robot makes different transitions

between primitives for different tasks. Thus, a binary co-occurrence matrix of

size |T | × |P|2 represents transition occurrence between the primitives for each

task. In this matrix, we encode two transitions for the current task g, from t − 2

to t and from t − 1 to t.

Primitive-arguments-arguments(previous)-environment (φpaae): For a certain

primitive in certain situations, the arguments may not change between time

steps. For example, pour(A,B) would often be preceded by hold above

(A,B). Thus, the matrix of size |P| × 8 is created, with the pt
th row contain-

ing 8 binary values representing whether the two primitive arguments at time t

are the same as the two arguments at t − 1 or the two arguments at t − 2.

3.3.2 Attributes.

Every object in the environment including tables and the floor is represented us-

ing the following set of attributes: height h, max(width(w),length(l)), min(w, l),

volume(w ∗ l ∗ h), min(w, l, h)-over-max(w, l, h), median(w, l, h)-over-max(w, l, h),

cylinder-shape, box-shape, liquid, container, handle, movable, large-horizontal-

surface, and multiple-large-horizontal-surface. Attributes such as cylinder-

shape, box-shape, container, handle, and large-horizontal-surface can be reli-

ably extracted from RGB or RGBD images, and were shown to be useful in

several different applications [32, 30, 81, 72]. We study the effects of attribute

detection errors on our model in Section 3.4.

48

Figure 3.3: Figure showing two of our 13 environments in our evaluation
dataset using 43 objects along with PR2 robot.

3.3.3 Learning

We use a max-margin approach to train a single model for all tasks. This max-

imum margin approach fits our formulation, since it assumes that the discrim-

inant function is a linear function of a weight vector w and a joint feature map

φ(g(ga1, ga2), et, pt(a1,t, a2,t)), and it has time complexity linear with the number of

training examples when solved using the cutting plane method [62]. We formal-

ize our problem as a “1-slack” structural SVM optimization problem:

min
w,ξ≥0

1
2

wT w +
C
l

n∑
i=1

li∑
t=1

ξi
t

s.t. for 1 ≤ i ≤ n, for each time step t :

∀p̂ ∈ P,∀â1, â2 ∈ E :

wT [φ(gi(gi
a1, g

i
a2), ei

t, pi
t(a

i
1,t, a

i
2,t))−φ(gi(gi

a1, g
i
a2), ei

t, p̂(â1, â2))]

≥ ∆({pi
t, a

i
1,t, a

i
2,t}, { p̂, â1, â2}) − ξi

t

where n is the number of example sequences, li is the length of the ith sequence,

and l is the total length combining all sequences. The loss function is defined as:

∆({p, a1, a2}, { p̂, â1, â2}) = 1(p , p̂)+1(a1 , â1)+1(a2 , â2)

49

Table 3.1: Result of baselines, our model with variations of feature sets,
and our full model on our dataset consisting of 127 sequences.
The “prim” columns represent percentage of primitives cor-
rectly chosen regardless of arguments, and “args” columns rep-
resent percentage of a correct pair of primitive and arguments.
The last column shows average percentage of sequences correct
over the five programs evaluated.

move close grasp release place above hold above traj circle traj pour Average Sequence

prim arg prim arg prim arg prim arg prim arg prim arg prim arg prim arg prim arg

chance 14.3 1.1 14.3 1.1 14.3 1.1 14.3 0.1 14.3 0.1 14.3 1.1 14.3 0.1 14.3 0.7 0 0

multiclass 99.6 - 90.4 - 95.7 - 68.5 - 79.7 - 100.0 - 14.7 - 78.4 - - -

symb-plan-svm 99.6 82.5 94.2 72.4 67.4 63.0 60.9 43.5 76.6 73.4 96.7 76.7 97.1 91.2 84.6 71.8 58.4 49.6

symb-plan-manual 99.6 85.4 94.2 76.3 67.4 63.0 60.9 50.0 76.6 76.6 96.7 96.7 97.1 97.1 84.6 77.9 58.4 54.9

Only edge features 23.5 15.3 56.4 45.5 93.5 93.5 0.0 0.0 18.8 9.4 100.0 100.0 50.0 44.1 48.9 44.0 0 0

Only clique features 99.6 1.9 96.8 82.7 90.2 90.2 72.8 15.2 87.5 15.6 96.7 96.7 100.0 97.1 91.9 57.0 45.0 0

Ours - full 99.3 82.8 96.8 84.0 97.8 97.8 89.1 79.3 96.9 92.2 100.0 100.0 97.1 94.1 96.7 90.0 91.6 69.7

With a learned w, we choose the next action in sequence by selecting a pair

of primitive and arguments that gives the largest discriminant value:

argmax
pt∈P,a1,t ,a2,t∈E

wTφ(g(ga1, ga2), et, pt(a1,t, a2,t))

3.4 Experiments

Dataset. We considered seven primitives (low-level controllers): move close

(A), grasp (A), release (A), place above (A,B), hold above (A,B),

follow traj circle (A) and follow traj pour (A,B). Depending on

the environment and the task, these primitives could be instantiated with dif-

ferent arguments. For example, consider an environment that contains a bottle

(obj04) containing liquid (obj16) and an empty cup (obj02) placed on top of the

shelf, among other objects. If, say from a recipe, our task is to pour the liq-

uid, then our program should figure out the correct sequence of primitives with

50

correct arguments (based on the objects’ attributes, etc.):

{pour(obj16); env2} →

{move close(obj02); grasp(obj02); move close(obj04);

place above(obj02,obj26); release(obj02); grasp(obj04);

hold above(obj04,obj02); follow traj pour(obj04,obj02)}

Note that the actual sequence does not directly interact with the liquid (obj16)—

the only object specified by the task—but rather with a container of liquid

(obj04), an empty cup (obj02), and a table (obj26), while none of these objects

are specified in the task arguments. As seen in this example, the input for our

planning problem is under-specified.

For evaluation, we prepared a dataset where the goal was to produce correct

sequences for the following tasks in different environments:

• stir(A): Given a liquid A, the robot has to identify a stirrer of ideal size

(from several) and stir with it. The liquid may be located on a tight shelf

where it would be dangerous to stir the liquid, and the robot should al-

ways stir it on top of an open surface, like a table. The robot should always

only interact with the container of the liquid, rather than the liquid itself,

whenever liquid needs to be carried or poured. Our learning algorithm

should learn such properties.

• pick and place(A,B): The robot has to place A on top of B. If A is un-

der some other object C, the object C must first be moved before interacting

with object A.

• pour(A): The robot has to identify a bowl-like object without object labels

and pour liquid A into it. Note again that liquid A cannot be directly

51

interacted with, and it should not be poured on top of a shelf.

• pour to(A,B): The liquid A has to be poured into the container B. (A

variant of the previous task where the container B is specified but the

model should be able to distinguish two different tasks.)

• throw away(A): The robot has to locate a garbage can in the environment

and throw out object A.

In order to learn these programs, we collected 127 sequences for 113 unique

scenarios by presenting participants the environment in simulation and the task

to be done. We considered a single-armed mobile manipulator robot for these

tasks. In order to extract information about the environment at each time frame

of every sequence, we implemented each primitive using OpenRAVE simulator

[26]. Though most of the scenarios had a single optimal sequence, multiple

sequences were introduced when there were other acceptable variations. The

length of each sequence varies from 4 steps to 10 steps, providing a total of

736 instances of primitives. To ensure variety in sequences, sequences were

generated based on the 13 different environments shown in Figure 3.3, using 43

objects each with unique attributes.

Baseline Algorithms. We compared our model against following baseline

algorithms:

• chance: At each time step, a primitive and its arguments are selected at

random.

• multiclass: A multiclass SVM [62] was trained to predict primitives without

arguments, since the set of possible arguments changes depending on the

environment.

52

(a) Confusion matrix for
the seven primitives in our
dataset. Our dataset con-
sist of 736 instances of seven
primitives in 127 sequences
on five manipulation tasks.

(b) Percentage of pro-
grams correct. Without any
feedback in completely au-
tonomous mode, the accuracy
is 69.7%. With feedback
(number of feedbacks on
x-axis), the performance
increases. This is on full 127
sequence dataset.

(c) Percentage of programs
correct for 12 high-level
tasks such as making
sweet tea. In completely
autonomous mode, the accu-
racy is 75%. With feedback
(number of feedbacks on
x-axis), the performance
increases.

Figure 3.4: Results with cross-validation. (a) On predicting the correct
primitive individually. (b) On predicting programs, with and
without user intervention. (c) On performing different tasks
with the predicted sequences.

• symbolic-plan-svm: A PDDL-based symbolic planner [183, 190] requires a

domain and a problem definition. Each scenario was translated to sym-

bolic entities and relations. However, the pre-conditions and effects of

each action in domain definition were hand-coded, and each object was

labeled with attributes using predicates. Unlike our model that works on

an under-specified problem, each symbolic planning problem requires an

explicit goal state. In order to define these goal states, we have trained

ranking SVMs [63] in order to detect a ‘stirrer’, an ‘object to pour into’

and a ‘garbage can’ for stir, pour, and throw away, respectively. Each

symbolic planning instance was then solved by reducing to a satisfiability

problem [67, 128].

• symbolic-plan-manual: Based on the same method as symbolic-plan-svm, in-

stead of training ranking SVMs, we provided ground-truth goal states.

53

Even after providing lots of hand-coded rules, it is still missing some rules

due to the difficulty of representation using PDDL [183, 190], These miss-

ing rules include the fact that liquid needs to be handled through its con-

tainer and that objects should not be manipulated on top of the shelf.

Evaluation and Results. We evaluated our algorithm through 6-fold cross-

validation, computing accuracies over primitives, over primitives with argu-

ments, and over the full sequences. Figure 3.4a shows the confusion matrix

for prediction of our seven primitives. We see that our model is quite robust for

most primitives.

With our dataset, our model was able to correctly predict pairs of primitives

and arguments 90.0% of the time and full sequences 69.7% of the time (Table

3.1). Considering only the primitives without arguments, it was able to predict

primitive 96.7% of the time and full sequence 91.6% of the time. The last col-

umn of Table 3.1 shows the performance with respect to whether the complete

sequence was correct or not. For example, for “pouring”, our model has not

only learned to bring a cup over to the table, but also learned to choose a cup

when there are multiple other objects like a pot, a bowl, or a can that may have

similar properties.

How do baselines perform for our under-specified planning problem? The

results of various baseline algorithms are shown in Table 3.1. If the primitive

and arguments pairs are predicted at random, none of the sequences would

be correct because of the large search space of arguments. Multiclass baseline

algorithm, which is only capable of predicting next primitives without filling in

the arguments, was not able to even correctly identify the correct next primitive,

especially for more complex primitives with two arguments.

54

The symbolic planner based approaches, symbolic-plan-svm and symbolic-

plan-manual, suffered greatly from under-specified nature of the problem. The

planners predicted correctly 49.6% and 54.9% of the times, respectively, com-

pared to our model’s performance of 69.7%. Even though both planners made

use of heavily hand-coded domain definitions of the problem, due to the na-

ture of the language used by symbolic planners, rules such as that liquid should

not be handled on top of shelves were not able to be encoded. Even if the lan-

guage were capable of encoding these rules, it would require a human expert in

planning language to carefully encode every single rule the expert can come up

with.

Also, by varying the set of features, it is evident that without very robust

primitive-level accuracies, the models are unable to construct a single correct

sequence.

How important is attribute representation of objects? For 113 unique sce-

narios in our dataset, we have randomly flipped binary attributes and observed

the effects of detection errors on correctness for the full sequence (Figure 3.6).

When there is no error in detecting attributes, our model performs at 69.7%.

With 10% detection error, it performs at 55.8%, and with 40% detection errors,

it performs at 38.1%. Since the attribute detection is more reliable than the ob-

ject detection [32, 30, 81], our model will perform better than planners based on

explicit object labels.

How can the robot utilize learned programs? These learned programs can

form higher level tasks such as making a recipe found online. For example, serv-

ing sweet tea would require the following steps: pouring tea into a cup, pouring

sugar into a cup, and stirring it (Figure 3.5). We have tested each of the four

55

Figure 3.5: Few snapshots of learned sequences forming the higher level
task of serving sweet tea, which takes the sequence of pouring
tea into a cup, pouring sugar into a cup, and then stirring it.

Figure 3.6: Effect of attribute perception error. Figure showing percent-
age of programs correct with attribute labeling errors for binary
attributes. For 113 unique scenarios, binary attributes were
randomly flipped.

tasks, serve-sweet-tea, serve-coffee-with-milk, empty-container-and-throw-away, and

serve-and-store, in three environments. Each of the four tasks can be sequenced

in following manner by programs respectively: pour → pour to → stir,

pour to → pour to, pour → throw away, and pour → pick and place.

Except few unsuccessful scenarios that were due to incorrect choice of argu-

ments for part of the sequence, our model was able to successfully complete the

full task for 9 scenarios out of total 12 scenarios.

Does the robot need a human observer? In an assistive robotics setting, a

56

robot will often be accompanied by a human observer. With help from the hu-

man, performance can be greatly improved. Instead of choosing a primitive and

argument pair that maximizes the discriminant function, the robot can present

the top 2 or 3 primitive and argument pairs to the observer, who can simply give

feedback on the best option among those choices. Such feedback not only gives

more training data for robots to train on but also prevents robots from causing

damage to the environment.

At the initial time step of the sequence, with only a single piece of feedback,

given 2 or 3 choices, performance improves to 74.1% and 75.6% respectively

from 69.7% (Figure 3.4b). If feedback was provided through whole sequence

with the top 2 or 3 choices, it further improves to 76.7% and 81.4%. Furthermore,

the four higher level tasks (recipes) considered earlier also shows that with a

single feedback at the initial time step of each program, the results improve

from 75% to 100% (Figure 3.4c).

Robotic Experiments. Finally, we demonstrate that our inferred programs

can be successfully executed on our Kodiak PR2 robot for a given task in an en-

vironment. Using our implementation of the primitives discussed in Section 3.4,

we show our robot performing the task of “serving sweet tea.” It comprises ex-

ecuting three programs in series – pour, pour to and stir – which in total

required sequence of 20 primitives with correct arguments. Each of these pro-

grams (i.e., the sequence of primitives and arguments) is inferred for this envi-

ronment. Figure 3.1 shows a few snapshots and the full video is available at:

http://pr.cs.cornell.edu/learningtasksequences

57

3.5 Conclusion

When modeling tasks that involves objects in complex environments, context of

various objects plays a important role. In this chapter, we considered the prob-

lem of learning sequences of controllers for robots in unstructured human envi-

ronments. In an unstructured environment, even a simple task such as pouring

can take variety of different sequences of controllers depending on the config-

uration of the environment. We took a dynamic planning approach, where we

represent the current state of the environment using a set of attributes. To en-

sure that our dynamic plans are as general and flexible as possible, we designed

a score function that captures relations between task, environment, primitives,

and their arguments, and we trained a set of parameters weighting the vari-

ous attributes from example sequences. By unrolling the program, we can ob-

tain a Markov Random Field style representation, and use a maximum margin

learning strategy. We demonstrated on a series of example sequences that our

approach can effectively learn dynamic plans for various complex high-level

tasks.

58

CHAPTER 4

DEEP MULTIMODAL EMBEDDING

In order to model tasks that involves objects in complex environments, a

robot has to be able to reason with different modalities. In earlier chapters, we

considered modeling tasks and activities based on sensor inputs and attributes

of objects which may come from many different sources. In this chapter, we

discuss a learning algorithm that builds a representation for interactions (ob-

ject manipulation tasks) by mapping different modalities of visual, natural lan-

guage, and complex motions into a shared representation.

Consider a robot manipulating a new appliance in a home kitchen, e.g. a

toaster or a juicer. The robot must use the combination of its observations of

the world and natural language instructions to infer how to manipulate objects.

Such ability to fuse information from different input modalities and map them

to actions is extremely useful to many applications of household robots [148],

including assembling furniture, cooking recipes, and many more.

Even though similar concepts might appear very differently in different sen-

sor modalities, humans are able to understand that they map to the same con-

cept. For example, when asked to “turn the knob counter-clockwise” on a

toaster, we are able to correlate the instruction language and the appearance

of a knob on a toaster with the motion to do so. We also associate this con-

cept more closely with a motion which would incorrectly rotate in the opposite

direction than with, for example, the motion to press the toaster’s handle down-

wards. There is strong evidence that we are able to correlate between different

modalities through common representations [29].

59

p
o
in
t-
cl
o
u
d
(𝒑
)

la
n
gu
ag
e
(𝒍
)

tr
aj
e
ct
o
ry
(𝝉
)

𝒉𝟏𝒙 𝒉𝟐 𝒉𝟑

push pull handle lever

fillstove stopcup

control

towards

Figure 4.1: Deep Multimodal Embedding: Our deep neural network
learns to embed both point-cloud/natural language instruc-
tion combinations and manipulation trajectories in the same
semantically meaningful space, where distance represents the
relevance of embedded data.

Obtaining a good common representation between different modalities is

challenging for two main reasons. First, each modality might intrinsically have

very different statistical properties – for example, here our trajectory represen-

tation is inherently dense, while our representation of language is naturally

sparse. This makes it challenging to apply algorithms designed for unimodal

data. Second, even with expert knowledge, it is extremely challenging to de-

sign joint features between such disparate modalities. Designing features which

map different sensor inputs and actions to the same space, as required here, is

60

particularly challenging.

In this work, we use a deep neural network to learn a shared embedding

between the pairing of object parts in the environment with natural language

instructions, and manipulation trajectories (Figure 4.1). This means that all

three modalities are projected to the same feature space. We introduce an al-

gorithm that learns to pull semantically similar environment/language pairs

and their corresponding trajectories to the same regions, and push environ-

ment/language pairs away from irrelevant trajectories based on how irrelevant

they are.

In the past, deep learning methods have shown impressive results for learn-

ing features for a wide variety of domains [76, 142, 47] and even learning

cross-domain embeddings [144]. In contrast to these existing methods, here

we present a new pre-training algorithm for initializing networks to be used for

joint embedding of different modalities. Our algorithm trains each layer to map

similar cases to similar areas of its feature space, as opposed to other methods

which either perform variational learning [50] or train for reconstruction [44].

In Chapter 5, we validate our approach on a large manipulation dataset [148]

and perform a series of robotic experiments with our learned embedding space.

In summary, the key contributions of this chapter are:

• We present an algorithm which learns an semantically meaningful embed-

ding space by enforcing a varying and loss-based margin.

• We present an algorithm for unsupervised pre-training of multi-modal

features to be used for embedding which outperforms standard pre-

training algorithms [44].

61

4.1 Related Work

Metric Embedding. Several works in machine learning make use of the power

of shared embedding spaces. LMNN [174] learns a max-margin Mahalanobis

distance for a unimodal input feature space. Weston et al. [176] learn linear

mappings from image and language features to a common embedding space for

automatic image annotation. Moore et al. [104] learn to map songs and natural

language tags to a shared embedding space. However, these approaches learn

only a shallow, linear mapping from input features, whereas here we learn a

deep non-linear mapping which is less sensitive to input representations.

Deep Learning for Multimodal Data. In recent years, deep learning algo-

rithms have enjoyed huge successes, particularly in the domains of computer

vision and natural language processing (e.g. [76, 142]). In robotics, deep learn-

ing has previously been successfully used for detecting grasps for novel objects

in multi-channel RGB-D images [84] and for classifying terrain from long-range

vision [47].

Ngiam et al. [111] use deep learning to learn features incorporating both

video and audio modalities. Sohn et al. [143] propose a new generative learning

algorithm for multimodal data which improves robustness to missing modali-

ties at inference time. In these works, a single network takes all modalities as

inputs, whereas here we perform joint embedding of multiple modalities using

multiple networks.

Deep Learning for Joint Embedding. Several previous works use deep net-

works for joint embedding between different feature spaces. Mikolov et al.

[99] map different languages to a joint feature space for translation. Srivastava

62

and Salakhutdinov [144] map images and natural language “tags” to the same

space for automatic annotation and retrieval. While these works use conven-

tional pre-training algorithms, here we present a new pre-training approach for

learning embedding spaces and show that it outperforms these existing meth-

ods (Sec. 5.5.3.) Our algorithm trains each layer to map similar cases to similar

areas of its feature space, as opposed to other methods which either perform

variational learning [50] or train for reconstruction [44].

Hu et al. [53] also use a deep network for metric learning for the task of face

verification. Similar to LMNN [174], Hu et al. [53] enforces a constant margin

between distances among inter-class objects and among intra-class objects. In

Sec. 5.5.3, we show that our approach, which uses a loss-dependent variable

margin, produces better results for our problem. Our work builds on deep neu-

ral network to embed three different modalities of point-cloud, language, and

trajectory into shared embedding space while handling lots of label-noise origi-

nating from crowd-sourcing.

4.2 Deep Multimodal Embedding: Our Approach

The main challenge of our work is to learn a model which maps three disparate

modalities – point-clouds, natural language, and trajectories – to a single seman-

tically meaningful space. In particular, we focus on point-clouds of object parts,

natural language instructing manipulation of different objects, and trajectories

that would manipulate these objects.

We introduce a method that learns a common point-cloud/language/trajectory

embedding space in which the projection of a task (point-cloud/language com-

63

bination) should higher similarity to projections of relevant trajectories than

task-irrelevant trajectories. Among these irrelevant trajectories, some might be

less relevant than others, and thus should be pushed further away.

For example, given a door knob that needs to be grasped normal to the door

surface and an instruction to rotate it clockwise, a trajectory that correctly ap-

proaches the door knob but rotates counter-clockwise should have higher simi-

larity to the task than one which approaches the knob from a completely incor-

rect angle and does not execute any rotation.

We learn non-linear embeddings using a deep learning approach, as shown

in Fig. 4.1, which maps raw data from these three different modalities to a joint

embedding space. Prior to learning a full joint embedding of all three modali-

ties, we pre-train embeddings of subsets of the modalities to learn semantically

meaningful embeddings for these modalities.

We show in Sec. 5.4 that learned joint embedding space can be efficiently

used for finding an appropriate manipulation trajectory for object parts with

natural language instruction.

4.2.1 Network Architecture

To solve this problem of learning to manipulate novel objects and appliance as

defined in equation (5.1), we learn two different mapping functions that map to

a common space—one from a point-cloud/language pair and the other from a

trajectory. More formally, we want to learn ΦP,L(p, l) and ΦT (τ) which map to a

64

joint feature space RM:

ΦP,L(p, l) : (P,L)→ RM

ΦT (τ) : T → RM

Here, we represent these mappings with a deep neural network, as shown in

Figure 4.1.

The first, ΦP,L, which maps point-clouds and trajectories, is defined as

a combination of two mappings. The first of these maps to a joint point-

cloud/language space RN2,pl — ΦP(p) : P → RN2,pl and ΦL(l) : L → RN2,pl . Once

each is mapped to RN2,pl , this space is then mapped to the joint space shared with

trajectory information: ΦP,L(p, l) : ((P,L)→ RN2,pl)→ RM.

We use two separate multi-layer deep neural networks, one for ΦP,L(p, l) and

one for ΦT (τ). Take Np as the size of point-cloud input p, Nl as similar for natural

language input l, N1,p and N1,l as the number of hidden units in the first hidden

layers projected from point-cloud and natural language features, respectively,

and N2,pl as the number of hidden units in the combined point-cloud/language

layer. With W’s as network weights, which are the learned parameters of our

system, and a(·) as a rectified linear unit (ReLU) activation function [188], our

model for projecting from point-cloud and language features to the shared em-

bedding h3 is as follows:

h1,p
i = a

(∑Np

j=0 W1,p
i, j p j

)
h1,l

i = a
(∑Nl

j=0 W1,l
i, j l j

)
h2,pl

i = a
(∑N1,p

j=0 W2,p
i, j h1,p

j +
∑N1,l

j=0 W2,l
i, j h

1,l
j

)
h3

i = a
(∑N2,pl

j=0 W3,pl
i, j h2,pl

j

)
The model for projecting from trajectory input τ is similar, except it takes input

65

only from a single modality.

4.3 Learning Deep Multimodal Embedding of Point-cloud,

Language and Trajectory

In our joint feature space, proximity between two mapped points should reflect

how relevant two data-points are to each other, even if they are from completely

different modalities. Such property should hold in both inter-modal distances

between embeddings of different modalities and intra-modal distances between

embeddings of same modalities,

We train our network to bring demonstrations that manipulate a given object

according to some language instruction closer to the mapped point for that ob-

ject/instruction pair, and to push away demonstrations that would not correctly

manipulate that object. Trajectories which have no semantic relevance to the ob-

ject are pushed much further away than trajectories that have some relevance,

even if the latter would not manipulate the object according to the instruction.

For every training point-cloud/language pair (pi, li), we have two sets of

demonstrations: a set of trajectories Ti,S that are relevant (similar) to this task

and a set of trajectories Ti,D that are irrelevant (dissimilar) as described in

Sec. 5.2.4.

Inter-modal Constraints. Trajectories that are appropriate for the task

(point-cloud/language) should be closer in embedding space than trajectories

that are not appropriate for the task. For each pair of (pi, li), we want all projec-

tions of τ j ∈ Ti,S to have higher similarity to the projection of (pi, li) than τk ∈ Ti,D.

66

𝚽 𝒑𝒊, 𝒍𝒊

𝚽 𝝉𝒊

𝚽 𝝉𝒌

𝚽 𝒑𝒌, 𝒍𝒌

sim Φ 𝑝𝑖 , 𝑙𝑖 , 𝛷 𝜏𝑖

𝑠𝑖𝑚 𝛷 𝑝𝑖 , 𝑙𝑖 , 𝛷 𝜏𝑖
≥ Δ 𝜏𝑖 , 𝜏𝑘 + sim Φ 𝑝𝑖 , 𝑙𝑖 , 𝛷 𝜏𝑘

Intra-modal Constraints

Inter-modal Constraints

𝑠𝑖𝑚 𝛷 𝑝𝑖 , 𝑙𝑖 , 𝛷 𝜏𝑖
≥ Δ 𝜏𝑖 , 𝜏𝑘 + sim Φ 𝑝𝑖 , 𝑙𝑖 , 𝛷 𝑝𝑘 , 𝑙𝑘

Figure 4.2: The proximity between two mapped points should reflect how
relevant two data-points are to each other, even if they are from
completely different modalities. We train our network to bring
demonstrations that manipulate a given object according to
some language instruction closer to the mapped point for that
object/instruction pair, and to push away demonstrations that
would not correctly manipulate that object.

A simple approach would be to train the network to distinguish these two sets

by enforcing a finite distance (safety margin) between the similarities of these

two sets [174], which is written in the form of a constraint:

sim(ΦP,L(pi, li),ΦT (τ j)) ≥ 1 + sim(ΦP,L(pi, li),ΦT (τk))

Rather than simply being able to distinguish two sets, we want to learn

semantically meaningful embedding spaces from different modalities. Recall-

ing our earlier example where one incorrect trajectory for manipulating a door

knob was much closer to correct than another, it is clear that our learning al-

gorithm should drive some of incorrect trajectories to be more dissimilar than

others. The difference between the similarities of τ j and τk to the projected point-

cloud/language pair (pi, li) should be at least the loss ∆(τ j, τk). This can be writ-

67

ten as a form of a constraint:

∀τ j ∈ Ti,S ,∀τk ∈ Ti,D

sim(ΦP,L(pi, li),ΦT (τ j)) ≥ ∆(τ j, τk) + sim(ΦP,L(pi, li),ΦT (τk))

Intuitively, this forces trajectories with higher loss (∆) from the ground truth

to embed further than those with lower distance. Enforcing all combinations of

these constraints could grow exponentially large. Instead, similar to the cutting

plane method for structural support vector machines [163], we find the most

violating trajectory τ′ ∈ Ti,D for each training pair of (pi, li, τi ∈ Ti,S) at each

iteration. The most violating trajectory has the highest similarity augmented

with the loss scaled by a constant α:

τ′i = argmax
τ∈Ti,D

(sim(ΦP,L(pi, li),ΦT (τ)) + α∆(τi, τ))

The cost of our deep embedding space h3 is computed as the hinge loss of

the most violating trajectory.

Lh3(pi, li, τi) = |∆(τ′i , τi) + sim(ΦP,L(pi, li),ΦT (τ′i)) − sim(ΦP,L(pi, li),ΦT (τi))|+

The cost of inter-modal constraints for our embedding space h3 is computed

as the hinge loss of the most violating trajectory:

Linter
h3 = |∆(τ′i , τi) + sim(ΦP,L(pi, li),ΦT (τ′i)) − sim(ΦP,L(pi, li),ΦT (τi))|+ (4.1)

Intra-modal Constraints. Similarly, the proximity between embeddings

of same modalities should also reflect semantic relevance between the points.

Since we have most clear definition of semantic relevance between trajectories,

68

we constrain the point-cloud/language pairs (pk, lk) associated with the irrele-

vant trajectories (τk ∈ Ti,D) should be at least be ∆(τ j, τk). Thus, in the form of

constraint:

∀τ j ∈ Ti,S ,∀τk ∈ Ti,D

sim(ΦP,L(pi, li),ΦT (τ j)) ≥ ∆(τ j, τk) + sim(ΦP,L(pi, li),ΦP,L(pk, lk))

Fig. 4.2 shows visualizations of inter-modal and intra-modal constraints.

Again, we find the most violated point-cloud/language pair (p′i , l
′
i) and its

associated trajectory (τ′i).

Lintra
h3 = |∆(τ′i , τi) + sim(ΦP,L(pi, li),ΦP,L(p′i , l

′
i)) − sim(ΦP,L(pi, li),ΦT (τi))|+ (4.2)

Thus, the cost of our deep embedding space h3 is computed as summation

of inter-modal costs and intra-modal costs:

Lh3 = Linter
h3 + Lintra

h3

The average cost of each minibatch is back-propagated through all the layers

of the deep neural network using the AdaDelta [187] algorithm.

4.3.1 Pre-training Joint Point-cloud/Language Model

One major advantage of deep learning methods is the use of unsupervised

pre-training to initialize neural network parameters to a good starting point

before the final supervised fine-tuning stage. Pre-training helps these high-

dimensional networks to avoid overfitting to the training data.

69

point-cloud (𝒑) language (𝒍) trajectory (𝝉)

𝒉𝟏

𝒙

𝒉𝟐,𝒑𝒍

point-cloud/language embedding

trajectory (𝝉′)

trajectory embedding

𝒉𝟏

𝒙

𝒉𝟐,𝝉

Figure 4.3: Pre-training lower layers: Visualization of our pre-training
approaches for h2,pl and h2,τ. For h2,pl, our algorithm pushes
matching point-clouds and instructions to be more similar. For
h2,τ, our algorithm pushes trajectories with higher DTW-MT
similarity to be more similar.

Our lower layers h2,pl and h2,τ represent features extracted exclusively from

the combination of point-clouds and language, and from trajectories, respec-

tively. Our pre-training method initializes h2,pl and h2,τ as semantically mean-

ingful embedding spaces similar to h3, as shown later in Section 5.5.3.

First, we pre-train the layers leading up to these layers using spare de-

noising autoencoders [170, 188]. Then, our process for pre-training h2,pl is similar

to our approach to fine-tuning a semantically meaningful embedding space for

h3 presented above, except now we find the most violating language l′ while

still relying on a loss over the associated optimal trajectory:

l′ = argmax
l∈L

(sim(ΦP(pi),ΦL(l)) + α∆(τ, τ∗i))

Lh2,pl(pi, li, τi) = |∆(τi, τ
′)+sim(ΦP(pi),ΦL(l′)) − sim(ΦP(pi),ΦL(li))|+

70

Notice that although we are training this embedding space to project from point-

cloud/language data, we guide learning using trajectory information.

After the projections ΦP and ΦL are tuned, the output of these two projec-

tions are added to form the output of layer h2,pl in the final feed-forward net-

work.

4.3.2 Pre-training Trajectory Model

For our task of inferring manipulation trajectories for novel objects, it is espe-

cially important that similar trajectories τ map to similar regions in the feature

space defined by h2,τ, so that trajectory embedding h2,τ itself is semantically

meaningful and they can in turn be mapped to similar regions in h3. Standard

pretraining methods, such as sparse de-noising autoencoder [170, 188] would

only pre-train h2,τ to reconstruct individual trajectories. Instead, we employ pre-

training similar to Sec. 4.3.1, except now we pre-train for only a single modality

– trajectory data.

As shown on right hand side of Fig. 4.3, the layer that embeds to h2,τ is du-

plicated. These duplicated embedding layers are treated as if they were two

different modalities, but all their weights are shared and updated simultane-

ously. For every trajectory τ ∈ Ti,S , we can again find the most violating τ′ ∈ Ti,D

and the minimize a similar cost function as we do for h2,pl.

In the following chapter, we demonstrate how learned model enables robots

to perform complex tasks of manipulating novel objects utilizing information

from different modalities.

71

CHAPTER 5

LEARNING TO MANIPULATE NOVEL OBJECTS VIA DEEP

MULTIMODAL EMBEDDING

The previous chapter has introduced a model that can map different modal-

ities of information into a same representation. In this chapter, we focus on

using such learned representation to model sequences of complex motions for

the task of manipulating novel objects in complex environments given a visual

and a natural language instruction of an object.

Consider the espresso machine in Figure 5.1—even without having seen this

machine before, a person can prepare a cup of latte by reading an instruction

manual and visually observing the machine. This is possible because humans

have vast prior experience with manipulating differently-shaped objects. While

robots can perform increasing more complex tasks (e.g. [88, 85]), it is un-scalable

and infeasible for roboticists to program the exact sequence for a every variety

of objects in human environments.

In this work, we focus on answering the following question: can a robot ma-

nipulate novel objects by learning to transfer manipulation trajectories from completely

different objects? Our goal is to enable robots to generalize their manipulation

ability to a large number of tasks on novel objects ranging from toaster, sink,

water fountain, soda dispenser to toilets.

The key idea of our work is that objects designed for use by humans share

many similarly-operated object parts such as handles, levers, nozzles, and buttons;

thus, manipulation motions can be transferred even between completely differ-

ent objects if we represent these motions with respect to these parts. For exam-

72

Figure 5.1: First encounter of an espresso machine by our PR2 robot.
Without ever having seen the machine before, given language
instructions and a point-cloud from Kinect sensor, our robot
is capable of finding appropriate manipulation trajectories
from prior experience using our deep multimodal embedding
model.

ple, even if the robot has never seen an espresso machine before, it should be

able to manipulate it if it has previously seen similarly-operated parts of other

objects such as a urinal, soda dispenser, or restroom sink, as illustrated in Fig-

ure 5.2.

Classification of objects or object parts (e.g. ‘handle’) alone does not provide

73

enough information for robots to actually manipulate them, since semantically-

similar objects or its parts are often operated completely differently—consider,

for example, manipulating the ‘handle’ of a urinal, as opposed to the ‘handle’ of

a door. While object parts that are operated in similar fashion are often referred

by different names, there exists similarity in their shapes that allows motions to

be transferred between completely different objects. Thus, rather than relying

on scene understanding techniques [12, 90, 41], we directly use point-clouds for

manipulation planning using machine learning algorithms.

We use deep neural networks to learn a shared embedding space between

the object parts point-cloud, natural language instructions, and manipulation

trajectories (Figure 4.1), which in turn is used to identify appropriate manipu-

lation trajectories from prior experience to transfer to novel objects. Our algo-

rithm also allows for efficient inference because, given a new instruction and

point-cloud, we only need to find the nearest trajectory to the projection of this

pair in the learned embedding space using a fast nearest-neighbor algorithms

[105].

To train our joint embedding, we need scalable methods of collecting thou-

sands of demonstrations on more than a hundred different objects. To this

end, we develop Robobarista platform, a crowd-sourcing platform that allows

any person on the web to teach a robot by simply dragging the robot end-

effector in 3D visualizer. With our noise handling algorithm, our model trained

with crowd-sourced demonstrations outperforms the model trained with expert

demonstrations, even with the significant amount of noise in crowd-sourced

manipulation demonstrations.

We evaluate our approach on a large dataset of 116 objects with 250 natural

74

language instructions for which there are 1225 crowd-sourced manipulation trajecto-

ries from 71 non-expert users. Our results show that deep multimodal embed-

ding algorithm outperforms expert-designed feature-based models and other

deep learning approaches. We also perform 100 fully autonomous end-to-end

experiments on PR2 robot, showing that our approach allows robot to actually

manipulate appliances it has never seen before. Finally, we further test our hy-

pothesis of object part-based transfer of manipulation trajectories to even pre-

pare a cup of latte.

In summary, the key contributions of this chapter are:

• We present a novel approach of part-based transfer between different objects

for manipulation planning of novel objects.

• We present an online crowd-sourcing platform which allows us to easily

scale collection of manipulation demonstrations.

• We introduce a large-scale manipulation dataset and evaluate our ap-

proach on this dataset, showing significant improvements over other

state-of-the-art methods.

5.1 Related Work

Improving robotic perception and teaching manipulation strategies to robots

has been a major research area in recent years. In this section, we describe re-

lated work in various aspects of learning to manipulate novel objects.

Scene Understanding. In recent years, there has been significant research fo-

cus on semantic scene understanding [90, 72, 76, 180], human activity detection

75

[146, 54] as we have shown in Chapter 2, and features for RGB-D images and

point-clouds [141, 80]. Similar to our idea of using part-based transfers, the de-

formable part models [41, 42] are effective in object detection. However, when

robot encounters object it has not manipulated before, classification of objects

or its parts alone does not provide enough information for a robot to reliably

plan manipulation. Even a simple category such as ‘kitchen sinks’ or ‘handle’

has a huge amount of variation in how different instances are manipulated – for

example, depending on the brand and the model of a kitchen sink, each ‘handle’

requires very different strategies such as pulling the handle upwards, pushing

downwards, pushing sideways, and so on. Instead of classifying object, di-

rect perception approaches [39, 77] perceive affordances based on the shape of

the object. These works focus on detecting an object part given an object with

known affordance for motions such as ‘pour’, while we focus on predicting the

correct motion of novel objects with just an instruction manual.

Manipulation Strategy. Many works in robotic manipulation focus on

task-specific manipulation of known objects—for example, baking cookies with

known tools [14] and folding the laundry [100] – or focus on learning specific

motions such as grasping [68] and opening doors [28]. Others [147, 101] focus

on sequencing manipulation tasks assuming perfect manipulation primitives

such as grasp and pour are available. Instead, here, we use learning to generalize

to manipulating novel objects never seen before by the robot, without relying on

preprogrammed motion primitives.

For the more general task of manipulating new instances of objects, previ-

ous approaches rely on finding articulation [145, 121] or using interaction [66],

but they are limited by tracking performance of a vision algorithm. Many ob-

76

jects that humans operate daily have small parts such as ‘knobs’, which leads

to significant occlusion as manipulation is demonstrated. Another approach

using part-based transfer between objects has been shown to be successful for

grasping [22, 25]. We extend this approach and introduce a deep learning model

that enables part-based transfer of trajectories by automatically learning relevant

features. Our focus is on the generalization of manipulation trajectory via part-

based transfer using point-clouds without knowing objects a priori and without

assuming any of the sub-steps (‘approach’, ‘grasping’, and ‘manipulation’).

A few recent works use deep learning approaches for robotic manipulation.

Levine et al. [87] use a Gaussian mixture model to learn system dynamics, then

use these to learn a manipulation policy using a deep network. Lenz et al. [85]

use a deep network to learn system dynamics for real-time model-predictive

control. Both these works focus on learning low-level controllers, whereas here

we learn high-level manipulation trajectories.

Learning from Demonstration. Several successful approaches for teach-

ing robots tasks, such as helicopter maneuvers [2] or table tennis [107], have

been based on Learning from Demonstration (LfD) [5]. Although LfD allows

end users to demonstrate a manipulation task by simply taking control of the

robot’s arms, it focuses on learning individual actions and separately relies on

high level task composition [96, 23] or is often limited to previously seen objects

[120, 118]. We believe that learning a single model for an action such as ‘turning

on’ is impossible because human environments have so many variations. Al-

though being able to explore and learn from its own practice is an important

skill for robots, it is not feasible to pre-train robots for all possible variations in

all possible variations of environments.

77

Figure 5.2: Mapping object part and natural language instruction in-
put to manipulation trajectory output. Objects such as the
espresso machine consist of distinct object parts, each of which
requires a distinct manipulation trajectory for manipulation.
For each part of the machine, we can re-use a manipulation tra-
jectory that was used for some other object with similar parts.
So, for an object part in a point-cloud (each object part colored
on left), we can find a trajectory used to manipulate some other
object (labeled on the right) that can be transferred (labeled in
the center). With this approach, a robot can operate a new and
previously unobserved object such as the ‘espresso machine’,
by successfully transferring trajectories from other completely
different but previously observed objects. Note that the in-
put point-cloud is very noisy and incomplete (black represents
missing points).

Unlike learning a model from demonstration, instance-based learning [3, 35]

replicates one of the demonstrations. Similarly, we directly transfer one of the

demonstrations, but focus on generalizing manipulation planning to completely

new objects, enabling robots to manipulate objects they have never seen before.

Crowd-sourcing. Many approaches to teaching robots manipulation and

other skills have relied on demonstrations by skilled experts [5, 2]. Among

previous efforts to scale teaching to the crowd [20, 154, 58], Forbes et al. [35]

employs a similar approach towards crowd-sourcing but collects multiple in-

stances of similar table-top manipulation with same object. Others also build

web-based platform for crowd-sourcing manipulation [158, 159]. However,

78

these approaches either depend on the presence of an expert (due to required

special software), or require a real robot at a remote location. Our Robobarista

platform borrows some components of work from Alexander et al. [4], but

works on any standard web browser with OpenGL support and incorporates

real point-clouds of various scenes.

5.2 Our Approach

Our goal is to build an algorithm that allows a robot to infer a manipulation

trajectory when it is introduced to a new object or appliance with its natural lan-

guage instruction manual. To this end, we propose an idea that because many

differently-shaped objects share similarly-operated object parts, the manipula-

tion trajectory for a novel object can be transferred from a completely different

object with similarly-operated parts.

For example, the motion required to operate the handle of the espresso ma-

chine in Figure 5.2 is almost identical to the motion required to flush the urinal

with the handle. By identifying and transferring trajectories from prior experi-

ence with parts of other objects, robots can even manipulate objects they have

never seen before.

We first formulate this problem as a structured prediction problem (Fig-

ure 5.2). Given a point-cloud for each part of an espresso machine and a natural

language instruction such as ‘Push down on the handle to add hot water’ for

each part of the object, our algorithm outputs a trajectory which performs the

desired task using a pool of prior motion experience.

79

This is a challenging problem because the object is entirely new to the robot,

and because it must jointly consider the point-cloud, natural language instruc-

tion, and each potential trajectory. Manually designing useful features from

these three modalities is extremely challenging.

Popular supervised deep learning approaches (e.g. [76, 142, 47]) would di-

rectly try to output manipulation trajectory; however, in order for an algorithm

to output in extremely large space (time-series sequences of 6-DoF end-effector

poses), it requires a huge number of expert demonstrations on a large number

of objects. Collecting such data is extremely time and resource extensive as it

requires joint physical presence of a robot, an expert, and the object to be ma-

nipulated.

In order to address these challenges, we employ a deep multimodal embedding

algorithm (Chapter 4) that learns a shared, semantically meaningful embedding

space between these modalities, while dealing with a noise in crowd-sourced

demonstration data. Then, we introduce our Robobarista crowd-sourcing plat-

form, which allows us to easily scale the collection of manipulation demonstra-

tions to non-experts on the web.

5.2.1 Problem Formulation

Our goal is to learn a function f that maps a given pair of point-cloud p ∈ P of

an object part and a natural language instruction l ∈ L to a trajectory τ ∈ T that

can manipulate the object part as described by free-form natural language l:

f : P × L → T (5.1)

80

For instance, given the handle of the espresso machine in Figure 5.2 and an nat-

ural language instruction ‘Push down on the handle to add hot water’, the al-

gorithm should output a manipulation trajectory that will correctly accomplish

the task on the object part according to the instruction.

Point-cloud Representation. Each instance of a point-cloud p ∈ P is rep-

resented as a set of n points in three-dimensional Euclidean space where each

point (x, y, z) is represented with its RGB color (r, g, b):

p = {p(i)}ni=1 = {(x, y, z, r, g, b)(i)}
n
i=1

The size of this set varies for each instance. These points are often obtained by

stitching together a sequence of sensor data from an RGBD sensor [56].

Trajectory Representation. Each trajectory τ ∈ T is represented as a se-

quence of m waypoints, where each waypoint consists of gripper status g, trans-

lation (tx, ty, tz), and rotation (rx, ry, rz, rw) with respect to the origin:

τ = {τ(i)}mi=1 = {(g, tx, ty, tz, rx, ry, rz, rw)(i)}
m
i=1

where g ∈ {“open”, “closed”, “holding”}. g depends on the type of the end-

effector, which we have assumed to be a two-fingered parallel-plate gripper

like that of PR2 or Baxter. The rotation is represented as quaternions (rx, ry, rz, rw)

instead of the more compact Euler angles to prevent problems such as gimbal

lock.

In order to acquire a smooth trajectory from a waypoint-based trajectory τ,

we interpolate intermediate waypoints. Translation is linearly interpolated and

the quaternion is interpolated using spherical linear interpolation (Slerp) [138].

Each modality is converted into a fixed-length vector for our machine learn-

ing algorithm as described in Sec 5.4.1.

81

5.2.2 Direct Manipulation Trajectory Transfer

Even if we have a trajectory to transfer, a conceptually transferable trajectory is

not necessarily directly compatible if it is represented with respect to an incon-

sistent reference point.

To make a trajectory compatible with a new situation without modifying

the trajectory, we need a representation method for trajectories, based on point-

cloud information, that allows a direct transfer of a trajectory without any modifica-

tion.

Challenges. Making a trajectory compatible when transferred to a different

object or to a different instance of the same object without modification can be

challenging depending on the representation of trajectories and the variations

in the location of the object, given in point-clouds.

Many approaches which control high degree of freedom arms such as

those of PR2 or Baxter use configuration-space trajectories, which store a time-

parameterized series of joint angles [157]. While such approaches allow for di-

rect control of joint angles during control, they require costly recomputation for

even a small change in an object’s position or orientation.

One approach that allows execution without modification is representing

trajectories with respect to the object by aligning via point-cloud registration

(e.g. [35]). However, a large object such as a stove might have many parts

(e.g. knobs and handles) whose positions might vary between different stoves.

Thus, object-aligned manipulation of these parts would not be robust to differ-

ent stoves, and in general would impede transfer between different instances of

the same object.

82

Lastly, it is even more challenging if two objects require similar trajectories,

but have slightly different shapes. And this is made more difficult by limita-

tions of the point-cloud data. As shown in left of Fig. 5.2, the point-cloud data,

even when stitched from multiple angles, are very noisy compared to the RGB

images.

Our Solution. Transferred trajectories become compatible across different

objects when trajectories are represented 1) in the task space rather than the

configuration space, and 2) relative to the object part in question (aligned based

on its principal axis), rather than the object as a whole.

Trajectories are represented in the task space by recording only the position

and orientation of the end-effector. By doing so, we can focus on the actual

interaction between the robot and the environment rather than the movement

of the arm. It is very rare that the arm configuration affects the completion of the

task as long as there is no collision. With the trajectory represented as a sequence

of gripper position and orientation, the robot can find its arm configuration that

is collision free with the environment using inverse kinematics.

However, representing the trajectory in task space is not enough to make

transfers compatible. The trajectory must also be represented in a common co-

ordinate frame regardless of the object’s orientation and shape.

Thus, we align the negative z-axis along gravity and align the x-axis along

the principal axis of the object part using PCA [51]. With this representation,

even when the object part’s position and orientation changes, the trajectory does

not need to change. The underlying assumption is that similarly operated object

parts share similar shapes leading to a similar direction in their principal axes.

83

5.2.3 Inferring Manipulation Trajectory to Transfer

Once all mappings are learned using deep multimodal embedding algorithm,

we solve the original problem from equation (5.1) by choosing, from a library

of prior trajectories, the trajectory that gives the highest similarity (closest in

distance) to the given point-cloud p and language l in our joint embedding space

RM. As in previous work [176], similarity is defined as sim(a, b) = a · b, and the

trajectory that maximizes the magnitude of similarity is selected:

argmax
τ∈T

sim(ΦP,L(p, l),ΦT (τ))

The previous approach to this problem [148] required projecting the combi-

nation of the current point-cloud and natural language instruction with every

trajectory in the training set through the network during inference. Here, we

pre-compute the representations of all training trajectories in h3, and need only

project the new point-cloud/language pair to h3 and find its nearest-neighbor

trajectory in this embedding space. As shown in Section 5.5.3, this significantly

improves both the runtime and accuracy of our approach and makes it much

more scalable to larger training datasets like those collected with crowdsourc-

ing platforms.

5.2.4 Label Noise

When our data contains a significant number of noisy trajectories τ, e.g. due

to crowd-sourcing (Sec. 5.3), not all trajectories should be trusted as equally

appropriate, as will be shown in Sec. 5.5.

84

For every pair of inputs (pi, li), we have Ti = {τi,1, τi,2, ..., τi,ni}, a set of trajecto-

ries submitted by the crowd for (pi, li). First, the best candidate label τ∗i ∈ Ti for

(pi, li) is selected as the one with the smallest average trajectory distance to the

others:

τ∗i = argmin
τ∈Ti

1
ni

ni∑
j=1

∆(τ, τi, j)

We assume that at least half of the crowd tried to give a reasonable demon-

stration. Thus a demonstration with the smallest average distance to all other

demonstrations must be a good demonstration. We use the DTW-MT distance

function (described later in Appendix A.1) for our loss function ∆(τ, τ̄), but it

could be replaced by any function that computes the loss of predicting τ̄ when

τ is the correct demonstration.

Using the optimal demonstration and a loss function ∆(τ, τ̄) for comparing

demonstrations, we find a set of trajectories Ti,S that are relevant (similar) to

this task and a set of trajectories Ti,D that are irrelevant (dissimilar.) We can use

thresholds (tS , tD) determined by the expert to generate two sets from the pool

of trajectories:

Ti,S = {τ ∈ T |∆(τ∗i , τ) < tS }

Ti,D = {τ ∈ T |∆(τ∗i , τ) > tD}

This method allows our model to be robust against noisy labels and also

serves as a method of data augmentation by also considering demonstrations

given for other tasks in both sets of Ti,S and Ti,D.

85

Figure 5.3: Screen-shot of Robobarista, the crowd-sourcing platform run-
ning on Chrome browser. We have built Robobarista plat-
form for collecting a large number of crowd demonstrations
for teaching the robot.

5.3 Robobarista: Crowd-sourcing Platform

To train our multimodal embedding neural network, it is important to have ac-

cess to a large amount of training data, which is especially challenging for robot

manipulation tasks with lots of different objects. In order to collect a large num-

ber of manipulation demonstrations without risking, we built a crowd-sourcing

web platform that we call Robobarista (see Fig. 5.3). It provides a virtual envi-

ronment where non-expert users can teach robots via a web browser, without

expert guidance or physical presence with a robot and a target object.

The system simulates a situation where the user encounters a previously

unseen target object and a natural language instruction manual for its manipu-

lation. Within the web browser, users are shown a point-cloud in the 3-D viewer

on the left and a manual on the right. A manual may involve several instructions,

such as “Push down and pull the handle to open the door”. The user’s goal is

86

Object Part Candidates

Object Part 3D Grid
Representation

Scene:

Instruction:
Turn the adjustment knob
clockwise to the desired
darkness.

(stitched point-cloud)

Segmenting Object Parts

p
o

in
t-

cl
o

u
d

 (
𝒑

)
la

n
gu

ag
e

 (
𝒍)

tr

aj
e

ct
o

ry
 (

𝝉
)

𝒉𝟏 𝒙 𝒉𝟐 𝒉𝟑

pull push stop lever

fill turn handle

control

down cup

Input Output
Trajectory

for each step of manual

Deep Multimodal Embedding

XZ-slice XY-slice

Object
Part

Candidate
Ranking
System

1

2 Push down on the right lever
to start toasting.

1

2

XZ-slice XY-slice

1

2

Figure 5.4: System Overview: Given a point-cloud and a language in-
struction, our goal is to output a trajectory that would manip-
ulate the object according to the instruction. The given point-
cloud scene is segmented into many parts and ranked for each
step of the instruction manual. By embedding point-cloud, lan-
guage, and trajectory modalities into a joint embedding space,
our algorithm selects the best trajectory to transfer to the new
object.

to demonstrate how to manipulate the object in the scene for each instruction.

The user starts by selecting one of the instructions on the right to demon-

strate (Fig. 5.3). Once selected, the target object part is highlighted and the tra-

jectory edit bar appears below the 3-D viewer. Using the edit bar, which works

like a video editor, the user can playback and edit the demonstration. The tra-

jectory representation, as a set of waypoints (Sec. 5.2.1), is directly shown on the

edit bar. The bar shows not only the set of waypoints (red/green) but also the

interpolated waypoints (gray). The user can click the ‘play’ button or hover the

cursor over the edit bar to examine the current demonstration. The blurred trail

of the current trajectory (ghosted) demonstration is also shown in the 3-D viewer

to show its full expected path.

Generating a full trajectory from scratch is difficult for non-experts. Thus,

similar to Forbes et al. [35], we provide a trajectory that the system has already

87

Figure 5.5: Examples from our dataset, each of which consists of a natural
language instruction (top), an object part in point-cloud repre-
sentation (highlighted), and a manipulation trajectory (below)
collected via Robobarista. Objects range from kitchen appli-
ances such as stove and rice cooker to urinals and sinks in
restrooms. As our trajectories are collected from non-experts,
they vary in quality from being likely to complete the manip-
ulation task successfully (left of dashed line) to being unlikely
to do so successfully (right of dashed line).

seen for another object as the initial starting trajectory to edit.1

In order to simulate a realistic experience of manipulation, instead of simply

showing a static point-cloud, we have overlaid CAD models for parts such as

‘handle’ so that functional parts actually move as the user tries to manipulate

the object.

A demonstration is edited by: 1) modifying the position/orientation of a

waypoint, 2) adding/removing a waypoint, and 3) opening/closing the grip-

per. Once a waypoint is selected, the PR2 gripper is shown with six directional

arrows and three rings, used to modify the gripper’s position and orientation,

respectively. To add extra waypoints, the user can hover the cursor over an

interpolated (gray) waypoint on the edit bar and click the plus(+) button. To re-

1We have made sure that it does not initialize with trajectories from other folds to keep 5-fold
cross-validation in experiment section valid.

88

move an existing waypoint, the user can hover over it on the edit bar and click

minus(-) to remove. As modification occurs, the edit bar and ghosted demon-

stration are updated with a new interpolation. Finally, for editing the status

(open/close) of the gripper, the user can simply click on the gripper.

For broader accessibility, all functionality of Robobarista, including 3-D

viewer, is built using Javascript and WebGL. We have made the platform avail-

able online (http://robobarista.cs.cornell.edu)

5.4 System Details

Our goal is to use our learned embedding space to allow the robot to infer a ma-

nipulation trajectory when it is introduced to a new appliance with its natural

language instruction manual.

As shown in Fig. 5.4, for example, given a point-cloud of a scene with a

toaster and an instruction such as ‘Push down on the right lever to start toast-

ing,’ it should identify part of the scene the instruction is referring to and output

a trajectory, representative of how the two-fingered end-effector should move,

including how to approach, grasp, and push down on the lever.

First, in order to correctly identify a part p out of a scene s that an instruc-

tion asks to manipulate, a point-cloud of a scene s is segmented into many small

potential candidates. All segments are ranked for each step of the manual in-

struction. Details of finding and ranking of object part candidate algorithm are

explained in Appendix A.2.

Multiple variations of correct segmentations and lots of incorrect segmenta-

89

tion provided by segmentation algorithm make learning of our deep embedding

representation even more robust as it is used as extra positive and negative pairs

as empirically shown in Sec. 5.5.3.

Then, from a library of trajectories with prior experience, the trajectory that

gives the highest similarity to the selected point-cloud p and language l in our

embedding space RM:

argmax
τ∈T

sim(ΦP,L(p, l),ΦT (τ))

As in [176], similarity is defined as sim(a, b) = a · b.

Our approach allows us to pre-embed all candidate trajectories into a shared

embedding space. The correct trajectory can then be identified by embedding

only a new point-cloud/language pair. As shown in Sec. 5.5.3, this significantly

improves both the inference run-time and accuracy as it makes it more scalable

to a larger number of trajectories.

5.4.1 Data Representation

All three data modalities – point-cloud, language, and trajectory data (p, l, τ) are

variable-length and must be transformed into a fixed-length representation.

Each point-cloud segment is converted into a real-valued 3D occupancy grid

where each cell’s value is proportional to how many points fall into the cube it

spans. We use a 100 × 100 × 100 grid of cubic cells with sides of 0.25cm. Unlike

our previous work [148], each cell count is also distributed to the neighboring

cells with an exponential distribution. This smooths out missing points and

increases the amount of information represented. The grid then is normalized

90

to be between 0 ∼ 1 by dividing by the maximal count.

While our approach focuses on the shape of the part in question, the shape

of the nearby scene can also have a significant effect on how the part is manipu-

lated. To account for this, we assign a value of 0.2 to any cell which contains only

points which belong to the scene but not the specific part in question, but are

within some distance from the nearest point for the given part. To fill hollow

parts behind the background, such as tables and walls, we ray-trace between

the starting location of the sensor and cells filled by background points and fill

these similarly.

While our segment ranking algorithm uses the full-sized grid for each seg-

ment, our main embedding algorithm uses two compact grids generated by

taking average of cells: 10 × 10 × 10 grid with cells with sides of 2.5cm and of

1cm.

Each language instruction is represented as a fixed-size bag-of-words repre-

sentation with stop words removed. Finally, for each trajectory τ ∈ T , we first

compute its smooth interpolated trajectory τs ∈ Ts (Sec. 5.2.1), and then nor-

malize all trajectories Ts to the same length while preserving the sequence of

gripper states such as ‘opening’, ‘closing’, and ‘holding’.

5.4.2 Robotic Platform

We tested our algorithms on a PR2, an omni-directional base, and many sen-

sors including a Microsoft Kinect, stereo cameras, and a tilting laser scanner

(Fig. 5.13). For our these experiments, a point-cloud is acquired from the head

91

mounted Kinect sensor and each motion is executed on the specified arm using

a Cartesian end-effector stiffness controller [14] in ROS [123]. Our embedding

algorithm are written with Theano [7], and most of our computations are done

on a remote computer utilizing a GPU for our embedding model.

5.4.3 Model Parameters

Through validation, we found an optimal embedding space size M of 25 and

intermediate-layer sizes N1,p, N1,l, N1,τ, N2,pl, and N2,τ of 250, 150, 100, 125, and

100 with the loss scaled by α = 0.2. These relatively small layer sizes also had

the advantage of fast inference, as shown in Sec. 5.5.3.

5.5 Experiments

We perform a series of experiments on our approach to manipulating novel ob-

jects focusing on following set of questions:

1. Does our approach of directly transferring manipulation trajectories apply

to a large number of novel appliances and objects?

2. Is it possible to crowd-source manipulation trajectories from non-experts

and use it to learn to manipulate novel appliances and objects?

3. How does our deep multimodal embedding algorithm compare to other

machine learning approaches in the task of transferring trajectories? Does

it learn a semantically meaningful space for the three distinct modalities

of point-cloud, language and manipulation trajectories?

92

Table 5.1: Results on our dataset with 5-fold cross-validation. Rows list
models we tested including our model and baselines. Columns
show different metrics used to evaluate the models.

per manual per instruction

Models DTW-MT DTW-MT Accuracy (%)

Chance 28.0 (±0.8) 27.8 (±0.6) 11.2 (±1.0)

Object Part Classifier - 22.9 (±2.2) 23.3 (±5.1)

Structured SVM 21.0 (±1.6) 21.4 (±1.6) 26.9 (±2.6)

Latent SSVM + Kinematic [145] 17.4 (±0.9) 17.5 (±1.6) 40.8 (±2.5)

Task similarity + Random 14.4 (±1.5) 13.5 (±1.4) 49.4 (±3.9)

Task Similarity + Weights [35] 13.3 (±1.2) 12.5 (±1.2) 53.7 (±5.8)

Deep Network with Noise-handling without Embedding 13.7 (±1.6) 13.3 (±1.6) 51.9 (±7.9)

Deep Multimodal Network without Embedding 14.0 (±2.3) 13.7 (±2.1) 49.7 (±10.0)

Deep Multimodal Network with Noise-handling without Embedding [148] 13.0 (±1.3) 12.2 (±1.1) 60.0 (±5.1)

LMNN-like Cost Function [174] 15.4 (±1.8) 14.7 (±1.6) 55.5 (±5.3)

Our Model without Any Pretraining 13.2 (±1.4) 12.4 (±1.0) 54.2 (±6.0)

Our Model with SDA 11.5 (±0.6) 11.1 (±0.6) 62.6 (±5.8)

Our Model without Noise Handling 12.6 (±1.3) 12.1 (±1.1) 53.8 (±8.0)

Our Model without Multiple Segmentations 11.0 (±0.8) 10.5 (±0.7) 65.1 (±4.9)

Our Model with Experts 12.3 (±0.5) 11.8 (±0.9) 56.5 (±4.5)

Our Model - Deep Multimodal Embedding 10.3 (±0.8) 9.9 (±0.5) 68.4 (±5.2)

4. Does our approach allow real robots to successfully complete the manip-

ulation task when encountered with novel objects?

To answer question 1, we first collect a large dataset consisting of a wide

variety of objects for evaluation. We utilize our Robobarista crowd-sourcing

platform (question 2) to collect manipulation trajectories for these objects. On

this large dataset, we design different machine learning approaches to compare

against our deep multimodal embedding algorithm and evaluate the learned

93

embedding space of different modalities (question 3). We then test our full end-

to-end system on PR2 robot manipulating different objects (question 4). Finally,

to fully explore our idea of transferring manipulation trajectories (question 1)

on a physical robot (question 4), we ask our robot to prepare a cup of latte with

a grinder and an espresso machine.

5.5.1 Robobarista Dataset

In order to test our model, we have collected a dataset of 116 point-clouds of

objects with 249 object parts (examples shown in Figure 5.5). Objects range from

kitchen appliances such as stoves and rice cookers to bathroom hardware such

as sinks and toilets. Figure 5.6 shows a sample of 70 such objects. There are

also a total of 250 natural language instructions (in 155 manuals).2 Using the

crowd-sourcing platform Robobarista, we collected 1225 trajectories for these

objects from 71 non-expert users on the Amazon Mechanical Turk. After a user

is shown a 20-second instructional video, the user first completes a 2-minute

tutorial task. At each session, the user was asked to complete 10 assignments

where each consists of an object and a manual to be followed.

For each object, we took raw RGB-D images with the Microsoft Kinect

sensor and stitched them using Kinect Fusion [56] to form a denser point-

cloud in order to incorporate different viewpoints of objects. Objects range

from kitchen appliances such as ‘stove’, ‘toaster’, and ‘rice cooker’ to ‘urinal’,

‘soap dispenser’, and ‘sink’ in restrooms. The dataset is made available at

http://robobarista.cs.cornell.edu

2Although not necessary for training our model, we also collected trajectories from the expert
for evaluation purposes.

94

Figure 5.6: Examples of objects from our dataset. Each image shows the point
cloud representation of an object. We overlaid some of its parts by
CAD models for online Robobarista crowd-sourcing platform. Note
that the actual underlying point-cloud of object parts contains much
more noise and is not clearly segmented, and none of the models
have access to overlaid model for inferring manipulation trajectory.

5.5.2 Baselines

To compare different aspects of our model, we designed a large number of mod-

els. Object part classifier classifies each object part into a part label and transfer

95

“Pull the Colossal
Crunch handle to
dispense.”

“Pull down on the
right handle to
dispense the coffee.”

“Turn the switch
clockwise to switch
on the power supply”

“Rotate the knob
clockwise to turn
slow cooker on.”

Successful Transfers Unsuccessful Transfer

“Turn the handle
counterclockwise to
unlock the cooker.”

“Turn the knob
counterclockwise to
decrease the temperature”

Figure 5.7: Examples of successful and unsuccessful transfers of manip-
ulation trajectory from left to right using our model. In first
two examples, though the robot has never seen the ‘coffee dis-
penser’ and ‘slow cooker’ before, the robot has correctly iden-
tified that the trajectories of ‘cereal dispenser’ and ‘DC power
supply’, respectively, can be used to manipulate them.

accordingly. Structured SVM-based models and task similarity-based models rely

on expert-designed state-of-the-art techniques to reason about three modalities

of point-cloud, language and trajectory. We also designed deep neural network-

based models [148] that outputs a score for the given pairs of point-cloud, lan-

guage and trajectory rather than finding a semantically meaningful embedding.

Variations of our deep multimodal embedding are also tested with different pre-

training algorithm, without noise-handling, with LMNN-like [174] cost func-

tion, and so forth. Please refer to Appendix A.3 for the detailed descriptions of

each baseline model.

5.5.3 Evaluations on Robobarista Dataset

We evaluated all models on our dataset using 5-fold cross-validation and the re-

sults are in Table 5.1. All models which required hyper-parameter tuning used

10% of the training data as the validation set.

96

Rows list the models we tested including our model and baselines. Each

column shows one of three evaluation metrics. The first two use dynamic time

warping for manipulation trajectory (DTW-MT) from Appendix A.1. The first

column shows averaged DTW-MT for each instruction manual consisting of one

or more language instructions. The second column shows averaged DTW-MT

for every test pair (p, l).

As DTW-MT values are not intuitive, we also include a measure of “accu-

racy,” which shows the percentage of transferred trajectories with DTW-MT

value less than 10. Through expert surveys, we found that when DTW-MT of

manipulation trajectory is less than 10, the robot came up with a reasonable tra-

jectory and will very likely be able to accomplish the given task. Additionally,

Fig. 5.9 shows accuracies obtained by varying the threshold on the DTW-MT

measure.

Can manipulation trajectories be transferred from completely different ob-

jects? Our full model gave 65.1% accuracy (Table 5.1), outperforming every

other baseline approach tested.

Fig. 5.7 shows two examples of successful transfers and one unsuccessful

transfer by our model. In the first example, the trajectory for pulling down on

a cereal dispenser is transferred to a coffee dispenser. Because our approach to

trajectory representation is based on the principal axis (Sec. 5.2.2), even though

the cereal and coffee dispenser handles are located and oriented differently, the

transfer is a success. The second example shows a successful transfer from a

DC power supply to a slow cooker, which have “knobs” of similar shape. The

transfer was successful despite the difference in instructions (“Turn the switch..”

and “Rotate the knob..”) and object type. This highlights the advantages of our

97

end-to-end approach over relying on semantic classes for parts and actions.

The last example in Fig. 5.7 shows a potentially unsuccessful transfer. De-

spite the similarity in two instructions and similarity in required counterclock-

wise motions, the transferred motion might not be successful. While the knob

on radiator must be grasped in the middle, the rice cooker has a handle that ex-

tends sideways, requiring it to be grasped off-center. For clarity of visualization

in figures, we have overlaid CAD models over some noisy point-clouds. Many

of the object parts were too small and/or too glossy for the Kinect sensor. We

believe that a better 3-D sensor would allow for more accurate transfers. On

the other hand, it is interesting to note that the transfer in opposite direction

from the radiator knob to the rice cooker handle may have yielded a correct

manipulation.

Can we crowd-source the teaching of manipulation trajectories? When we

trained our full model with expert demonstrations, which were collected for

evaluation purposes, it performed at 56.5% compared to 65.1% by our model

trained with crowd-sourced data. Even though non-expert demonstrations can

carry significant noise, as shown in last two examples of Fig. 5.5, our noise-

handling approach allowed our model to take advantage of the larger, less accu-

rate crowd-sourced dataset. Note that all of our crowd users are true non-expert

users from Amazon Mechanical Turk.

Is intermediate object part labeling necessary? A multiclass SVM trained on

object part labels was able to obtain over 70% recognition accuracy in clas-

sifying five major classes of object parts (‘button’, ‘knob’, ‘handle’, ‘nozzle’,

‘lever’.) However, the Object Part Classifier baseline, based on this classification,

performed at only 23.3% accuracy for actual trajectory transfer, outperforming

98

“Press the button to
open the lid.”

“Push down on the right
lever to start toasting.”

“Turn handle
counterclockwise to
turn on cold water.”

“Lift up the handle before
placing the paper.”

“Pull the handle up to open
the waffle maker.”

“Pull down the center handle
to fill the cup with ice.”

Input
Deep Multimodal Network

without Embedding [60]
Deep Multimodal Embedding

(Our Model)

“Push the Diet Pepsi
button to fill the cup.”

“In an emergency, hit the
push-button in the back.”

“Rotate the handle on
the right clockwise.”

Figure 5.8: Comparisons of transfers between our model and the baseline (deep
multimodal network without embedding [148]). In these three ex-
amples, our model successfully finds correct manipulation trajectory
from these objects while the other one does not. Given the lever of
the toaster, our algorithm finds similarly slanted part from the rice
cooker while the other model finds completely irrelevant trajectory.
For the opening action of waffle maker, trajectory for paper cutter
is correctly identified while the other model transfers from a handle
that has incompatible motion.

chance by merely 12.1%, and significantly underperforming our model’s result

of 65.1%. This shows that object part labels alone are not sufficient to enable

manipulation motion transfer, while our model, which makes use of richer in-

formation, does a much better job.

Can features be hand-coded? What does our learned deep embedding space

99

represent? Even though we carefully designed state-of-the-art task-specific fea-

tures for the SSVM and LSSVM models, these models only gave at most 40.8%

accuracy. The task similarity method gave a better result of 53.7%, but it requires

access to all of the raw training data (point-clouds, language, and trajectories)

at test time, which leads to heavy computation at test time and requires a large

amount of storage as the size of training data increases. Our approach, by con-

trast, requires only the trajectory data, and a low-dimensional representation of

the point-cloud and language data, which is much less expensive to store than

the raw data.

This shows that it is extremely difficult to find a good set of features which

properly combines these three modalities. Our multimodal embedding model

does not require hand-designing such features, instead learning a joint embed-

ding space as shown by our visualization of the top layer h3 in Figure 5.11. This

visualization is created by projecting all training data (point-cloud/language

pairs and trajectories) of one of the cross-validation folds to h3, then embedding

them to 2-dimensional space using t-SNE [166]. Although previous work [148]

was able to visualize several nodes in the top layer, most were difficult to in-

terpret. With our model, we can embed all our data and visualize all the layers

(see Figs. 5.11 and 5.14).

One interesting result is that our system was able to naturally learn that

“nozzle” and “spout” are effectively synonyms for purposes of manipulation.

It clustered these together in the lower-right of Fig. 5.11 based solely on the fact

that both are associated with similar point-cloud shapes and manipulation tra-

jectories. At the same time, it also identified one exception, a small cluster of

“nozzles” in the center of Fig. 5.11 which require different manipulation mo-

100

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30

A
cc

u
ra

cy
 (

%
)

Threshold

Sung et al. [61]

LMNN-like cost func.

Our Model without Noise Handling

Our Model

Figure 5.9: Thresholding Accuracy: Accuracy-threshold graph showing
results of varying thresholds on DTW-MT scores. Our algo-
rithm consistently outperforms the previous approach [148]
and an LMNN-like cost function [174].

tions.

In addition to the aforementioned cluster in the bottom-right of Fig. 5.11, we

see several other logical clusters. Importantly, we can see that our embedding

maps vertical and horizontal rotation operations to very different regions of the

space – roughly 12 o’clock and 8 o’clock in Fig. 5.11, respectively. Even though

these have nearly identical language instructions, our algorithm learns to map

them differently based on their point-clouds, mapping nearby the appropriate

manipulation trajectories.

Should cost function be loss-augmented? When we changed the cost function

for pre-training h2 and fine-tuning h3 to use a constant margin of 1 between rele-

vant Ti,S and irrelevant Ti,D demonstrations [174], performance drops to 55.5%.

This loss-augmentation is also visible in our embedding space. Notice the pur-

ple cluster around the 6 o’clock region of Fig. 5.11, and the lower part of the

101

Figure 5.10: Effect of Constraints: The use of inter-modal and intra-modal
constraints on deep embedding space h3. The left one shows
embedding space trained only with inter-modal constraints
and the right one shows that of utilizing both constraints (our
full model). The red points represents embeddings of point-
cloud/language pairs and the green points represents embed-
ding of trajectories. While both embeddings shows similar
accuracy on our dataset, our full model provides much visi-
ble clusters, allowing us to more easily visualize and analyze
what model has learned.

cluster in the 5 o’clock region. The purple cluster represents tasks and demon-

strations related to pushing a bar (often found on soda fountains), and the lower

part of the red cluster represents the task of holding a cup below the nozzle. Al-

though the motion required for one task would not be replaceable by the other,

the motions and shapes are very similar, especially compared to most other mo-

tions e.g. turning a horizontal knob.

Is pre-embedding important? As seen in Table 5.1, without any pre-training

our model gives an accuracy of only 54.2%. Pre-training the lower layers with

the conventional stacked de-noising auto-encoder (SDA) algorithm [170, 188]

increases performance to 62.6%, still significantly underperforming our pre-

training algorithm, which gives 65.1%. This shows that our metric embedding

102

Turn handle
counterclock
wise to mix
in hot water.

Rotate the
speaker
knob
clockwise
until it clicks.

Rotate the
Heart to
Heart knob
clockwise to
dispense.

To unlock the
door, rotate
the lock
clockwise.

Push the
button to
fill the cup.

Press the
button to
turn the
range hood
on.

Hold the
bowl below
the Colossal
Crunch
nozzle.

Hold the
cup below
the nozzle
on the left.

Hold the milk pitcher
under the froth
wand and submerge
the nozzle of the
wand into the milk.

Push on
the bar to
fill the cup
with ice.

Pull down on
the right
dispenser's
lever to fill
the cup.

Figure 5.11: Learned Deep Point-cloud/Language/Trajectory Embedding
Space: Joint embedding space h3 after the network is fully
fine-tuned, visualized in 2d using t-SNE [166] . Inverted triangles
represent projected point-cloud/language pairs, circles represent
projected trajectories. The occupancy grid representation of object
part point-clouds is shown in green in blue grids. Among the
two occupancy grids (Sec. 5.4.1), we selected the one that is more
visually parsable for each object. The legend at the bottom right
shows classifications of object parts by an expert, collected for the
purpose of building a baseline. As shown by result of this baseline
(object part classifier in Table 5.1), these labels do not necessarily
correlate well with the actual manipulation motion. Thus, full
separation according to the labels defined in the legend is not
optimal and will not occur in this figure or Fig. 5.14. These figures
are best viewed in color.

pre-training approach provides a better initialization for an embedding space

than SDA.

Fig. 5.14 shows the joint point-cloud/language embedding h2,pl after the net-

work is initialized using our pre-training algorithm and then fine-tuned using

our cost function for h3. While this space is not as clearly clustered as h3 shown

103

in Fig. 5.11, we note that point-clouds tend to appear in the more general cen-

ter of the space, while natural language instructions appear around the more-

specific edges. This makes sense because one point-cloud might afford many

possible actions, while language instructions are much more specific.

Can automatically segmented object parts be manipulated? From Table 5.2,

we see that our segmentation approach was able to find a good segmentation

for the object parts in question in 50 of 60 robotic trials (Sec. 5.5.4), or 83.3% of

the time. Most failures occurred for the beverage dispenser, which had a small

lever that was difficult to segment.

When our full DME model utilizes two variations of same part and uses all

candidates as a training data for the auto-encoder, our model performs at 68.4%

compared to 65.1% which only used expert segmentations.

Does embedding improve efficiency? The previous model [148] had 749, 638

parameters to be learned, while our model has only 418, 975 (and still gives

better performance.)

The previous model had to compute joint point-cloud/language/trajectory

features for all combinations of the current point-cloud/language pair with each

candidate trajectory (i.e. all trajectories in the training set) to infer an optimal

trajectory. This is inefficient and does not scale well with the number of training

datapoints. However, our model pre-computes the projection of all trajectories

into h3. Inference in our model then requires only projecting the new point-

cloud/language combination to h3 once and finding the trajectory with maximal

similarity in this embedding.

In practice, this results in a significant improvement in efficiency, decreasing

104

Figure 5.12: Robotic Experiments: We test our algorithm on a PR2 robot
with three different novel objects – coffee dispenser handle,
beverage dispenser lever, and door handle.

the average time to infer a trajectory from 2.3206ms to 0.0135ms, a speed-up of

about 171x. Time was measured on the same hardware, with a GPU (GeForce

GTX Titan X), using the Theano library [7]. We measured inference times 10000

times for first test fold, which has a pool of 962 trajectories. Time to prepro-

cess the data and time to load into GPU memory was not included in this mea-

surement. We note that the only part of our algorithm’s runtime which scales

up with the amount of training data is the nearest-neighbor computation, for

which there exist many efficient algorithms [105]. Thus, our algorithm could be

scaled to much larger datasets, allowing it to handle a wider variety of tasks,

environments, and objects.

5.5.4 End-to-end Robot Experiments

In this section, we evaluate our complete end-to-end system on a physical robot.

We perform a total of 100 fully autonomous experiments on a PR2 robot with

three objects of coffee dispenser handle, beverage lever, and door handle as

105

Figure 5.13: Examples of transferred trajectories being executed on PR2.
On the left, PR2 is able to rotate the ‘knob’ to turn the lamp on.
In the third snapshot, using two transferred trajectories, PR2
is able to hold the cup below the ‘nozzle’ and press the ‘lever’
of ‘coffee dispenser’. In the last example, PR2 is frothing milk
by pulling down on the lever, and is able to prepare a cup of
latte with many transferred trajectories.

shown in Fig. 5.12.

We first performed 60 experiments with three objects individually presented

to the robot. We presented the robot with the object placed within reach from

different starting locations along with a language instruction. For 20 experi-

ments per each object, locations of the robot as well as the object were changed.

Each object was also presented with two different natural language instruction.

Given a raw point-cloud data, the robot has to 1) segment and identify appro-

priate object part, 2) infer manipulation trajectory using our deep multimodal

embedding algorithm, and 3) execute inferred trajectory.

Table 5.2 shows the results of the experiment on three objects, presenting

success rate of each algorithm of end-to-end system. The segmentation ranking

algorithm performed well at 83.3% on average but it was not as reliable for the

beverage dispenser which has a small lever. Note that our main contribution

of this work, the idea of transferring manipulation trajectory using deep multi-

modal embedding algorithm, has a success rate of 94.4%, 100.0% and 78.9%. The

door handle had slightly lower success rate because the sensor (Kinect) failed

106

Pull down
on the lever
to dispense
paper
towel.

Push down
on the
right lever
to start
toasting.

Lift up the
skim milk
release bar
handle.

Pull the Corn
Flakes handle
to dispense.

Pull the other knob
clockwise to mix
cold water.

Turn the handle left
(clockwise) until
the cup has been
filled.

Rotate the left knob
clockwise to the
desired setting.

Press the
emergency stop
button to directly
remove power to
actuators of robot.

Rotate the leftmost
knob clockwise to
the desired setting.

Hold the cup
below the apple
juice nozzle.

Place the cup
below the
nozzle.

Hold the cup
below the
spout.

Push the
handle to fill
the bottle.

Figure 5.14: Learned Point-cloud/Language Space: Visualization of the point-
cloud/language layer h2,lp in 2d using t-SNE [166] after the network
is fully fine-tuned. Inverted triangles represent projected point-
clouds and circles represent projected instructions. A subset of the
embedded points are randomly selected for visualization. Since 3D
point-clouds of object parts are hard to visualize, we also include a
snapshot of a point-cloud showing the whole object. Notice correla-
tions in the motion required to manipulate the object or follow the
instruction among nearby point-clouds and natural language.

to pick up enough structure that makes it look like a door handle, especially

missing the majority of cylindrical part that connects to the door. Our robot was

then able to correctly follow these trajectories with a few occasional slips due to

the relatively large size of its gripper compared to the object parts.

Visual Distraction Experiments. We now introduce our robot with visual

distractions so that there are also other potential target objects. We present robot

with two manipulable objects, coffee dispenser with a handle and beverage dis-

penser with a lever.

The result of 40 experiments are shown in Table 5.3. These two objects were

both new to the robot and our training data did not contain any similar scene

107

Table 5.2: Results of 60 experiments on a PR2 robot running end-to-end
experiments autonomously on three different objects.

Success Rate Dispenser Beverage Door

of Each Step Handle Lever Handle Avg.

1) Segmentation 90.0% 65.0% 95.0% 83.3%

2) DME Traj. Inference 94.4% 100.0% 78.9% 91.1%

3) Execution of Traj. 82.4% 76.9% 100.0% 86.4%

that had these two types of object parts together. However, the reliability of seg-

mentation ranking algorithm only dropped slightly from 83.3% to 75.0%. Our

main contribution of deep multimodal embedding algorithm and its execution

on an arm performed well at 87.1% and 88.5%.

All videos of robotic experiments are available at following website: http:

//robobarista.cs.cornell.edu/videos

5.5.5 Transfer Experiments on Robot

We further evaluate our fundamental hypothesis that many novel objects can

be manipulated by transferring manipulation trajectories for each part from

completely different objects without any modification. To validate the idea, we

tested with three complex objects the algorithm had never seen before—a coffee

grinder, a lamp, and an espresso machine (Fig. 5.13).

For this experiment, for each object, the robot is presented with a pre-

segmented point-cloud along with a natural language text manual, with each

108

step in the manual associated with a segmented part in the point-cloud. Once

our algorithm outputs a trajectory (transferred from a completely different ob-

ject), we find the manipulation frame for the part’s point-cloud by using its

principal axis (Sec. 5.4.1). Then, the transferred trajectory is executed relative to

the part using this coordinate frame, without any modification to the trajectory.

The chosen manipulation trajectory, defined as a set of waypoints, is con-

verted to a smooth and densely interpolated trajectory (Sec. 5.2.1.) The robot

first computes and execute a collision-free motion to the starting point of the

manipulation trajectory. Then, starting from this first waypoint, the interpo-

lated trajectory is executed. For these experiments, we placed the robot in reach

of the object, but one could also find a location using a motion planner that

would make all waypoints of the manipulation trajectory reachable.

Some of the examples of successful execution on a PR2 robot are shown in

Fig. 5.13. For example, a manipulation trajectory from the task of “turning on a

light switch” is transferred to the task of “flipping on a switch to start extract-

ing espresso”, and a trajectory for turning on DC power supply (by rotating

clockwise) is transferred to turning on the floor lamp.

Our robot was able to even prepare a cup of latte by following 5 instruc-

tion steps with one hard-coded motion of putting portafilter into the espresso

machine. These demonstrations shows that part-based transfer of manipula-

tion trajectories is feasible without any modification to the source trajectories

by carefully choosing their representation and coordinate frames (Sec. 5.2.2).

Although some of these motions can definitely be more refined, it is surpris-

ing that a robot can even use an espresso machine, which is difficult even for a

novice human user.

109

Table 5.3: Results of 40 visual distraction experiments on a PR2 robot run-
ning end-to-end experiments autonomously. The robot is pre-
sented with two different novel objects that can be manipulated.
The robot has to identify the object part as specified from the
natural language instruction without any visual hints.

Success Rate Dispenser Beverage

of Each Step Handle Lever Avg.

1) Segmentation 80.0% 70.0% 75.0%

2) DME Traj. Inference 81.3% 92.9% 87.1%

3) Execution of Traj. 92.3% 84.6% 88.5%

The video of making a cup of latte is available at the project website: http:

//robobarista.cs.cornell.edu/videos

5.6 Conclusion

In order for a robot to reason about manipulation tasks for various objects in

human environments, the robot has to reason about various modalities of infor-

mation. In this chapter, we propose a novel approach to predicting manipula-

tion trajectories via object-part based transfer using deep multimodal embed-

ding. Our algorithm even allows robots to successfully manipulate objects they

have never seen before. We formulate this as a structured-output problem and

approach the problem of inferring manipulation trajectories for novel objects

by jointly embedding point-cloud, natural language, and trajectory data into a

common space using deep neural networks. We introduce a method for learn-

ing a semantically meaningful common representation of multimodal data us-

110

ing a loss-augmented cost function. We also introduce a method for pre-training

the network’s lower layers, learning embeddings for subsets of modalities, and

show that it outperforms standard pre-training algorithms. Learning such an

embedding space allows efficient inference by comparing the embedding of

a new point-cloud/language pair against pre-embedded demonstrations. To

overcome the challenge of collecting large-scale manipulation dataset, we intro-

duce our crowd-sourcing platform, Robobarista, which allows non-expert users

to easily give manipulation demonstrations over the web. This enables us to

collect a large-scale dataset of 249 object parts with 1225 crowd-sourced demon-

strations, on which our algorithm outperforms other methods. Finally, we also

verify on our robot that even manipulation trajectories transferred from com-

pletely different objects can be used to successfully manipulate novel objects

the robot has never seen before.

111

CHAPTER 6

LEARNING TO REPRESENT HAPTIC FEEDBACK FOR

PARTIALLY-OBSERVABLE TASKS

When a robot performs a task on a complex object, a visual or a language

instruction may not be sufficient, and it may require incorporating haptic feed-

back. In previous chapters, we discussed a method for building a representa-

tion of different modalities that can assist in planning a complex motion. In

this chapter, we focus on building a representation of haptic feedback for the

purpose of modifying plans while manipulating objects.

Many tasks in human environments that we do without much effort require

more than just visual observation. Very often they require incorporating the

sense of touch to complete the task. For example, consider the task of turning a

knob that needs to be rotated until it clicks, like the one in Figure 6.1. The robot

could observe the consequence of its action if any visible changes occur, but

such clicks can often only be directly observed through the fingers. Many of the

objects that surround us are explicitly designed with feedback – one of the key

interaction design principles – otherwise “one is always wondering whether

anything has happened” [116].

Recently, there has been a lot of progress in making robots understand and

act based on images [86, 173, 103] and point-clouds [148]. A robot can definitely

gain a lot of information from visual sensors, including a nominal trajectory

plan for a task [148]. However, when the robot is manipulating a small object

or once the robot starts interacting with small parts of appliances, self-occlusion

by its own arms and its end-effectors limits the use of the visual information.

112

However, building an algorithm that can examine haptic properties and in-

corporate such information to influence a motion is very challenging for multi-

ple reasons. First, haptic feedback is a dynamic response that is dependent on

the action the robot has taken on the object as well as internal states and prop-

erties of the object. Second, every haptic sensor produces a vastly different raw

sensor signal.

Moreover, compared to the rich information that can be extracted about a

current state of the task from few images (e.g. position and velocity information

of an end-effector and an object [103, 86]), a short window of haptic sensor sig-

nal is merely a partial consequence of the interaction and of the changes in an

unobservable internal mechanism. It also suffers from perceptual aliasing – i.e.

many segments of a haptic signal at different points of interaction can produce

a very similar signal. These challenges make it difficult to design an algorithm

that can incorporate information from haptic modalities (in our case, tactile sen-

sors).

In this work, we introduce a framework that can learn to represent haptic

feedback for tasks requiring incorporation of a haptic signal. Since a haptic

signal only provides a partial observation, we model the task using a partially

observable Markov decision process (POMDP). However, since we do not know

of definition of states for a POMDP, we first learn an appropriate representation

from a haptic signal to be used as continuous states for a POMDP. To overcome

the intractability in computing the posterior, we employ a variational Bayesian

method, with a deep recurrent neural network, that maximizes lower bound of

likelihood of the training data.

Using a learned representation of the interaction with feedback, we build on

113

Unknown
Internal Mechanism

Haptic Sensor

Modify
Path

Q-Learning

Learned Haptic Representation Learned POMDP

Figure 6.1: Haptic feedback from a tactile sensor being used to modify a
nominal plan of manipulation. Our framework learns an ap-
propriate representation (embedding space) which in turn is
used to learn to find optimal control.

deep Q-learning [103] to identify an appropriate phase of the action from a pro-

vided nominal plan. Unlike most other applications of successful reinforcement

learning [103, 139], the biggest challenge is a lack of a robotics simulation soft-

ware that can generate realistic haptic signals for a robot to safely simulate and

explore various combinations of states with different actions.

To validate our approach, we collect a large number of sequences of haptic

feedback along with their executed motion for the task of ‘turning a knob until

114

it clicks’ on objects of various shapes. We empirically show on a PR2 robot that

we can modify a nominal plan and successfully accomplish the task using the

learned models, incorporating tactile sensor feedback on the fingertips of the

robot. In summary, the key contributions of this chapter are:

• We introduce an algorithm which learns task relevant representation of

haptic feedback.

• We present a framework for modifying a nominal manipulation plan for

interactions that involves haptic feedback.

• We present an algorithm for learning optimal actions with limited data

without simulator.

6.1 Related Work

Haptics. Haptic sensors mounted on robots enable many different interesting

applications. Using force and tactile input, a food item can be classified with

characteristics which map to appropriate class of motions [38]. Haptic adjectives

such as ‘sticky’ and ‘bumpy’ can be learned with biomimetic tactile sensors [18].

Whole-arm tactile sensing allows fast reaching in dense clutter. We focus on

tasks with a nominal plan (e.g. [148]) but requires incorporating haptic (tactile)

sensors to modify execution length of each phase of actions.

For closed-loop control of robot, there is a long history of using different

feedback mechanisms to correct the behavior [10]. One of the common ap-

proaches that involves contact relies on stiffness control, which uses the pose

of an end-effector as the error to adjust applied force [133, 6]. The robot can

115

even self-tune its parameters for its controllers [160]. A robot also uses the error

in predicted pose for force trajectories [85] and use vision for visual servoing

[17].

Haptic sensors have also been used to provide feedback. A human operator

with a haptic interface device can teleoperate a robot remotely [117]. Features

extracted from tactile sensors can serve as feedback to planners to slide and roll

objects [91]. [119] uses tactile sensor to detect success and failure of manipula-

tion task to improve its policy.

Partial Observability. A POMDP is a framework for a robot to plan its ac-

tions under uncertainty given that the states are often only obtained through

noisy sensors [157]. The framework has been successfully used for many tasks

including navigation and grasping [52, 78]. Using wrist force/torque sensors,

hierarchical POMDPs help a robot localize certain points on a table [168]. While

for some problems [52], states can be defined as continuous robot configuration

space, it is unclear what the ideal state space representation is for many complex

manipulation tasks.

When the knowledge about the environment or states is not sufficient, [134]

use a fully connected DBN for learning factored representation online, while

[19] employ a two step method of first learning optimal decoder then learning to

encode. While many of these work have access to a good environment model, or

is able to simulate environment where it can learn online, we cannot explore or

simulate to learn online. Also, the reward function is not available. For training

purposes, we perform privileged learning [167] by providing an expert reward

label only during the training phase.

116

Representation Learning. Deep learning has recently vastly improved the

performance of many related fields such as compute vision (e.g. [76]) and

speech recognition (e.g. [48]). In robotics, it has helped robots to better clas-

sify haptic adjectives by combining images with haptic signals [37], predict

traversability from long-range vision [47], and classify terrains based on acous-

tics [164].

For controlling robots online, a deep auto-encoder can learn lower-

dimensional embedding from images and model-predictive-control (MPC) is

used for optimal control [171]. DeepMPC [85] predicts its future end-effector po-

sition with a recurrent network and computes an appropriate amount of force.

Convolutional neural network can be trained to directly map images to motor

torques [86, 34]. As mentioned earlier, we only take input of haptic signals,

which suffers from perceptual aliasing, and contains a lot less information in a

single timestep compared to RGB images.

Recently developed variational Bayesian approach [70, 127], combined with

a neural network, introduces a recognition model to approximate intractable

true posterior. Embed-to-Control [173] learns embedding from images and tran-

sition between latent states representing unknown dynamical system. Deep

Kalman Filter [75] learns very similar temporal model based on Kalman Filter

but is used for counterfactual inference on electronic health records.

Reinforcement learning (RL), also combined with a neural network, has re-

cently learned to play computer games by looking at pixels [103, 49]. Applying

standard RL to a robotic manipulation task, however, is challenging due to lack

of suitable state space representation [34]. Also, most RL techniques rely on trial

and error [152] with the ability to try different actions from different states and

117

𝒔𝟏 𝒔𝟐

𝒐𝟏 𝒐𝟐
𝒓𝟏 𝒓𝟐

𝒂𝟐

⋯ 𝒔𝑻

𝒐𝑻
𝒓𝑻

𝒂𝑻

observed

not observed

observed only during training

(a) Graphical Model Rep. of POMDP Model

𝒂𝒕 𝒔𝒕−𝟏

𝝁 𝜮

(b) Tran. Network

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝒕

⋯

𝒐𝟏 𝒐𝟐 𝒐𝟑 𝒐𝒕

⋯

𝒒𝝓,𝟏 𝒒𝝓,𝟐 𝒒𝝓,𝟑 𝒒𝝓,𝒕

(c) Deep Recurrent Recognition Network

𝒂𝒕𝒔𝒕

𝑸(𝒔𝒕, 𝒂𝒕)

(d) Deep Q Network

Figure 6.2: Framework Overview. We model the task that requires incor-
poration of tactile feedback in a partially observable MDP (a)
which its transition and emission functions are parametrized
by neural networks (b). To find an appropriate representa-
tion of states for the POMDP, we approximate the posterior
with a Deep Recurrent Recognition Network (c), consisting
of two LSTM (square blocks) recurrent networks. Deep Q-
Network (d), consisting of two fully connected layers, utilizes a
learned representation from (c) and a learned transition model
from (a) to train Deep Q-Network (d).

118

observe reward and state transition. However, for many of the robotic manip-

ulation tasks that involve physical contact with the environment, it is too risky

to let an algorithm try different actions, and reward is not trivial without in-

strumentation of the environment for many tasks. In this work, the robot learns

to represent haptic feedback and find optimal control from limited amount of

haptic sequences despite lack of good robotic simulator for haptic signal.

6.2 Our Approach

Our goal is to build a framework that allows robots to represent and reason

about haptic signals generated by its interaction with an environment.

Imagine you were asked to turn off the hot plate in Figure 6.1 by rotating

the knob until it clicks. In order to do so, you would start by rotating the knob

clockwise or counterclockwise until it clicks. If it doesn’t click and if you feel

the wall, you would start to rotate it in the opposite direction. And, in order

to confirm that you have successfully completed the task or hit the wall, you

would use your sense of touch on your finger to feel a click. There could also be

a sound of a click as well as other observable consequences, but you would not

feel very confident about the click in the absence of haptic feedback.

However, such haptic signal itself does not contain sufficient information for

a robot to directly act on. It is unclear what is the best representation for a state

of the task, whether it should only be dependent on states of internal mecha-

nisms of the object (which are unknown) or it should incorporate information

about the interaction as well. The haptic signal is merely a noisy partial obser-

vation of latent states of the environment, influenced by many factors such as a

119

type of interaction that is involved and a type of grasp by the robot.

To learn an appropriate representation of the state, we first define our manip-

ulation task as a POMDP model. However, posterior inference on such latent

state from haptic feedback is intractable. In order to approximate the poste-

rior, we employ variational Bayes methods to jointly learn model parameters

for both a POMDP and an approximate posterior model, each parametrized by

a deep recurrent neural network.

Another big challenge is the limited opportunity to explore with different

policies to fine-tune the model, unlike many other applications that employs

POMDP or reinforcement learning. Real physical interactions involving contact

are too risky for both the robot and the environment without lots of extra safety

measures. Another common solution is to explore in a simulated environment;

however, none of the available robot simulators, as far as we are aware, are

capable of generating realistic feedback for objects of our interest.

Instead, we learn offline from previous experiments by utilizing a learned

haptic representation along with its transition model to explore offline and learn

Q-function.

6.2.1 Problem Formulation

Given a sequence of haptic signals (~o = o1, ..., ot) up to current time frame t

along with a sequence of actions taken (~a = a1, ..., at), our goal is to output a

sequence of appropriate state representations (~s = s1, ..., st) such that we can

take an optimal next action at+1 inferred from the current state st.

120

speaker fan stirrer

Figure 6.3: Samples of haptic signals from three different objects with a
PR2 fingertip tactile sensor. Each graph shows a normalized
temporal sequence of signals from both tips of the finger. No-
tice a large variation in feedback produced by what humans
identify as a ‘click’.

6.2.2 Generative Model

We formulate the task that requires haptic feedback as a POMDP model, defined

as (S , A,T,R,O). S represents a set of states, A represents a set of actions, T

represents a state transition function, R represents a reward function, and O

represents an observation probability function. Fig. 6.2a represents a graphical

model representation of a POMDP model and all notations are summarized in

Table 6.1.

Among the required definitions of a POMDP model, most importantly, state

S and its representation are unknown. Thus, all functions T,R,O that rely on

states S are also not available.

We assume that all transition and emission probabilities are distributed as

Gaussian distributions; however, they can take any appropriate distribution for

the application. Mean and variance of each distribution are defined as a function

121

Table 6.1: Summary of Notations.

Notations Descriptions

S continuous state space (a learned representation)

O observation probability (S → O) of haptic signal

T conditional probability between states (S × A→ S)

A a set of possible actions to be taken at each time step

R a reward function (S → R)

pθ a generative model for O and R

θ parameters of generative model

qφ an approximate posterior distribution

(a recognition network for representing haptic signal)

φ parameters of recognition network (recurrent neural network)

Q(s, a) an approximate action-value function (S × A→ R)

γ a discount factor

with input as parent nodes in the graphical model (Fig. 6.2a):

s1 ∼ N(0, I)

st ∼ N(fsµ(st−1, at), fsΣ
(st−1, at)2I)

ot ∼ N(foµ(st), foΣ
(st)2I)

rt ∼ N(frµ(st), frΣ
(st)2I)

We parametrize each of these functions as a neural network. Fig. 6.2b shows a

two layer network for parametrization of the transition function, and emission

networks take a similar structure. The parameters of these networks form the

parameters of the generative model θ = {sµ, sΣ, oµ, oΣ, rµ, rΣ}.

122

6.2.3 Deep Recurrent Recognition Network

Due to non-linearity of multi-layer neural network, computing the posterior

distribution p(~s|~o,~r, ~a) becomes intractable [75]. The variational Bayes method

[70, 127] allows us to approximate the real posterior distribution with a recog-

nition network (encoder) qφ(~s|~o,~r, ~a).

Although it is possible to build a recognition network qφ(~s|~o,~r, ~a) that takes

the reward~r as a part of the input, such recognition network would not be useful

during a test time when the reward ~r is not available. Since a reward is not

readily available for many of the interaction tasks, we assume that the sequence

of rewards ~r is available only during a training phase given by a expert. Thus,

we build an encoder qφ(~s|~o, ~a) without a reward vector while our goal will be to

reconstruct a reward ~r as well (Sec. 6.2.4).

Among many forms and structures qφ could take, through validation with

our dataset, we chose to define qφ,t(st|o1, ..., ot, a1, ..., ot) as a deep recurrent net-

work with two long short-term memory (LSTM) layers as shown in Fig. 6.2c.

6.2.4 Maximizing Variational Lower-bound

To jointly learn parameters for the generative θ and the recognition network φ,

our objective is to maximize likelihood of the data:

maxθ
[
log pθ(~o,~r|~a)

]

123

Using a variational method, a lower bound on conditional log-likelihood is de-

fined as:

log pθ(~o,~r|~a) = DKL(qφ(~s|~o,~r, ~a)||pθ(~s|~o)) +L(θ, φ)

≥ L(θ, φ)

Thus, to maximize maxθ
[
log pθ(~o,~r|~a)

]
, the lower bound L(θ, φ) can instead be

maximized.

L(θ, φ) = −DKL
(
qφ(~s|~o,~r, ~a)||pθ(~s|~a)

)
+ Eqφ(~s|~o,~r,~a)

[
log pθ(~o,~r|~s, ~a)

]
(6.1)

Using a reparameterization trick [70] twice, we arrive at following lower

bound (refer to Appendix for full derivation):

L(θ, φ) ≈ −DKL
(
qφ(s1|~o,~r, ~a)||p(s1)

)
−

1
L

T∑
t=2

L∑
l=1

[
DKL

(
qφ(st|st−1, ~o,~r, ~a)||p(st|s

(l)
t−1, ut−1)

)]
+

1
L

L∑
l=1

[
log pθ(~o|~s(l)) + log pθ(~r|~s(l))

]
where ~s(l) = gφ(ε(l), ~o,~r, ~a) and ε(l) ∼ p(ε) (6.2)

We jointly back-propagate on neural networks for both sets of encoder φ and

decoder θ parameters with mini-batches to maximize the lower bound using

AdaDelta [187].

6.2.5 Optimal Control in Learned Latent State Space

After learning a generative model for the POMDP and a recognition network

using a variational Bayes method, we need an algorithm for making an optimal

124

Algorithm 4 Deep Q-Learning in Learned Latent State Space

Dgt = {} . “ground-truth” transitions by qφ

for all timestep t of (~o, ~a) in training data (i) do

st, st+1 ← qφ,µ + ε qφ,Σ where ε ∼ p(ε)

Dgt ← Dgt ∪ 〈s
(i)
t , a

(i)
t+1, r

(i)
t+1, s

(i)
t+1〉

end for

loop

Dexplore = {} . explore with learned transition

for all s(i)
t in training data that succeeded do

at+1 =


rand(a ∈ A) with prob. ε

argmaxa∈A Q(s(i)
t , a) otherwise

rt+1 =


r(i)

t if at+1 == a(i)
t+1

−1 otherwise

st+1 ← T (s(i)
t , at)

Dexplore ← Dexplore ∪ 〈s
(i)
t , at+1, rt+1, st+1〉

end for

D← Dgt ∪ Dexplore . update deep Q-network

for all minibatch from D do

yt ← rt + γmaxa′Q(st+1, a′)

Take gradient with loss [yt − Q(st, at+1)]2

end for

end loop

decision in learned representation of haptic feedback and action. We employ

a reinforcement learning method, Q-Learning, which learns to approximate an

optimal action-value function [152]. The algorithm computes a score for each

125

state action pair:

Q : S × A→ R

The Q function is approximated by a two layer neural network as shown in

Fig. 6.2d.

In a standard reinforcement learning setting, in each state st, an agent learns

by exploring the selected action argmaxa∈A Q(st, a) with a current Q function.

However, doing so requires an ability to actually take or simulate the chosen

action from st and observe rt+1 and st+1. However, there does not exist a good

robotics simulation software that can simulate complex interactions between a

robot and an object and generate different haptic signals. Thus, we cannot freely

explore any states.

Instead, we first take all state transitions and rewards 〈s(i)
t , a

(i)
t+1, r

(i)
t+1, s

(i)
t+1〉 from

the i-th training data sequence and store in Dgt. Both s(i)
t and s(i)

t+1 are computed

by the recognition network qφ with a reparameterization technique (similar to

Sec. 6.2.4).

At each iteration, we first have an exploration stage. For explorations, we

start from states s(i)
t of training sequences that resulted in successful completion

of the task and choose an action at+1 with ε-greedy. With the learned transition

function T (Sec. 6.2.2), the selected action at+1 is executed from s(i)
t . However,

since we are using a learned transition function, any deviation from the distri-

bution of training data could result in unexpected state, unlike explorations in

a real or a simulated environment.

Thus, if the optimal action at+1 using a current Q-function deviates from the

ground-truth action a(i)
t+1, the action is penalized with a negative reward to pre-

126

Robot

Model on GPU

ethernet

Learning System

Joints
Tactile

Sensors

Task
Planner

JTCartesian
Controller

Tactile-based
Grasping

Noise
Suppressor

Normalizer

Generative
Model

Recognition
Network

Deep
Q-Network

recurrent
state

Nominal
Trajectory

Dataset
Unsupervised
Pre-training

Deep
Q-Learning

Variational
Bayes

Figure 6.4: System Details of our system for learning and robotic experi-
ments.

vent deviations into unexplored states. If the optimal action is same as the

ground-truth, the same reward as the original is given. For such cases, the

only difference from the ground-truth would be in st+1, which is inferred by

the learned transition function. All exploration steps are recorded in Dexplore.

After the exploration step in each iteration, we take minibatches from D =

Dgt ∪ Dexplore and backpropagate on the deep Q-network with the loss function:

[rt + γmaxa′Q(st+1, a′)] − Q(st, at)]2

The algorithm is summarized in Algorithm 4.

127

Stirrer/Hot Plate Speaker Fan

Figure 6.5: A set of objects used for experiment. All three objects have dif-
ferent surface area and shape, which results in vastly different
types of ‘clicks’ when observed via a tactile sensor.

6.3 System Details

Robotic Platform: All experiments were performed on a PR2 robot, a mobile

robot with two 7 degree-of-freedom arms. Each two-fingered end-effector has

an array of tactile sensors located at its tips. We used a Jacobian-transpose based

JTCartesian controller [43] for controlling its arm during experiments.

For stable grasping, we take advantage of the tactile sensors to grasp an

object. The gripper is slowly closed until certain thresholds are reached on both

sides of the sensors, allowing the robot to easily adapt to objects of different

sizes and shapes. To avoid saturating the tactile sensors, the robot does not

grasp the object with maximal force.

Tactile Sensor: Each side of the fingertip of a PR2 robot is equipped with

RoboTouch tactile sensor, an array of 22 tactile sensors covered by protective

silicone rubber cover. The sensors are designed to detect range of 0 – 30 psi

(0 – 205 kPa) with sensitivity of 0.1 psi (0.7 kPa) at the rate of 35 Hz.

128

Table 6.2: Result of haptic signal prediction and robotic experiment.
The prediction experiment reports the average L2-norm from
the haptic signal (44 signals in newtons) and the robotic experi-
ment reports the success rate. It shows the results of more than
200 robotic experiments.

Haptics Prediction Robotic Experiment

0.05secs 0.25secs 0.50secs Stirrer Speaker Desk Fan

Chance 6.68 (±0.18) 6.68 (±0.17) 6.69 (±0.18) 31.6% 38.1% 28.5%

Non-recurrent Recognition Network [173] 1.39 (±2.51) 5.03e5 (±5.27e7) 3.23e7 (±1.07e10) 52.9% 57.9% 62.5%

Recurrent-network as Representation [85] 0.33 (±0.01) 1.01 (±0.09) 1.76 (±0.03) 63.2% 68.4% 70.0%

Our Model without Exploration - - - 35.0% 33.3% 52.6%

Our Model 0.72 (±0.08) 0.79 (±0.09) 0.78 (±0.10) 80.0% 73.3% 86.7%

We observed that each of the 44 sensors has a significant variation and noise

in raw sensor readings with drifts over time. To handle such noise, values are

first offset by starting values when interaction between an object and the robot

started (i.e. when a grasp occurred). Given the relative signals, we find a nor-

malization value for each of 44 sensors such that none of the values goes above

0.05 when stationary and all data is clipped to the range of −1 and 1. Normal-

ization takes place by recording few seconds of sensor readings after grasping.

Learning Systems: For fast computation and executions, we offload all of

our models onto a remote workstation with a GPU connected over a direct eth-

ernet connection. Our models run on a graphics card using Theano [7], and

our high level task planner sends a new goal location at the rate of 20 Hz. The

overall system detail is shown in Figure 6.4.

129

6.4 Experiments & Results

In order to validate our approach, we perform a series of experiments on our

dataset and on a PR2 robot.

6.4.1 Dataset

In order to test our algorithm that learns to represent haptic feedback, we col-

lected a dataset of three different objects – a stirrer, a speaker, and a desk fan

(Fig. 6.5) – each of which have a knob with a detent structure (an example CAD

model shown in Fig. 6.1). Although these objects internally have some type of a

detent structure that produce a feedback that humans would identify as a ‘click’,

each ‘click’ from each object is very distinguishable to humans. Different shapes

of objects and the flat surface of the two fingers result in vastly differently tactile

sensor readings as shown in Fig. 6.3.

In our model, for the haptic signals ~o, we use a vector of 44 tactile sensor

array as described in Sec. 6.3. The reward ~r is given as one of three classes at

each time step, representing a positive, a negative and a neutral reward. For

every object, actions ~a are numbers representing phases in its nominal plan,

with each phase as a binary variable.

In more detail, the stirrer (hot plate) has a knob with a diameter of 22.7mm

with a depth of 18.7mm, and the haptic feedback requires and lasts about 30◦ ro-

tations to turn it on or turn it off. We start from both left (off state) and right side

(on state) of the knob. The speaker has a small cylindrical knob that decreases

in its diameter from 13.1mm to 9.1mm with height of 12.8mm and requires 30◦ de-

130

gree rotation. However, given that PR2 fingertips with silicon cover measures

23mm and are parallel plates, grasping a tiny 9.1mm knob results in drastically

different sensor readings at every execution of the task. The desk fan has a

square knob with a two-step detent control that has a width of 25.1mm and a

large surface area. The click lasts 45◦ degree rotation and has a narrow stop-

pable window of about ±20◦ degrees. To test whether our model has learned

the concept of clicking once, if it goes beyond the first stopping point, resulting

in two clicks, it is considered as a failure.

The stirrer and the speaker can be rotated both clockwise and counterclock-

wise with each having a wall at both ends. The desk fan has three stoppable

points (near 0◦, 45◦, and 90◦) to adjust fan speed and could get stuck in-between

if the rotation is not enough or exceeds the stopping point.

Each object has an associated multiple phases of nominal path which is de-

fined as a set of smoothly interpolated waypoints consisting of end-effector po-

sition and orientation along with gripper actions of grasping similar to [148].

For each of the objects, we collected at least 25 successes and 25 total failures.

The failures include slips, excessive rotations beyond acceptable range, rotation

even after hitting a wall, and near breaking of the knob. Also included were

trajectories that resulted in failure in less dramatic manner such as insufficient

rotations. Each data sequence consists of a sequence of trajectory phases as well

as tactile sensor signals after each execution of the waypoint.

To label the reward for each sequence afterwards, an external camera with

a microphone was placed nearby the object. The expert labeled the timeframe

for each sequence that succeeded or failed by reviewing the audio and visually

inspecting haptic signal. These recordings were only used for labeling the data,

131

and such camera or microphone is not made available to robot during our ex-

periments. For sequences that turned the knob past the successful stage but did

not stop rotating the knob, only negative rewards were given.

Of multiple phases in a nominal plan, which includes pre-grasping and post-

interaction trajectories, we focus on two or three phases (rotation and stopping

phases). These phases occur after grasping and success is determined by abil-

ity to detect when to shift to the last phase (a shift from interaction to post-

interaction phase).

6.4.2 Baselines

We compare our model against several baseline methods on our dataset and for

robotic experiment. Since most of the related works are applied to problems in

different domains, we take key ideas (or key structural differences) from rele-

vant works and fit them to our problem.

1) Chance: It follows a nominal plan and makes a transition between phases by

randomly selecting the amount of degree to rotate a knob without incorporating

haptic feedback.

2) Non-recurrent Recognition Network: Similar to [173], we take non-recurrent

deep neural network of only observations without actions. However, it has ac-

cess to a short history in a sliding window of haptic signal at every frame. For

control, we apply the same Q-learning method as our full model.

3) Recurrent Network as Representation: Similar to [85], we directly train a recur-

rent network to predict future haptic signals. At each time step t, the LSTM

132

network takes concatenated observation ot and previous action at as input, and

the output of LSTM is concatenated with at+1 to predict ot+1. However, while [85]

relies on hand-coded MPC cost function to choose an action, we apply same Q-

learning that was applied to our full model. For haptic prediction experiment,

transitions happen by taking output of the next time step as input to the next

observation.

4) Our Model without Exploration: During the final deep Q-Learning (Sec. 6.2.5)

stage, it skips the exploration step that uses a learned transition model and only

uses sequences of representation from the recognition network.

6.4.3 Results and Discussion

To evaluate all models, we perform two types of experiments – haptic signal

prediction and robotic experiment.

Haptic Signal Prediction: We first compare our model against baselines on a

task of predicting future haptic signal. For all sequences that either eventu-

ally succeeded or failed, we take every timestep t, and predict timestep t + 1

(0.05secs), t + 5 (0.25secs) and t + 10 (0.5secs). The prediction is made by encod-

ing (recognition network) a sequence up to time t and then transiting encoded

states with a learned transition model to the future frames of interest. We take

the L2-norm of the prediction of 44 sensor values (which are in newtons) and

take the average of that result. The result is shown in the middle column of

Table 6.2.

Robotic Experiment: We also test on a PR2 robot the task of turning the knob

133

until it clicks on three different objects – stirrer, speaker, and desk fan (Fig. 6.5).

The right hand side of Table 6.2 shows results of over 200 executions. Each

algorithm was tested on each object at least 15 times.

Can it predict future haptic signals? When it predicts randomly (chance), re-

gardless of the timestep, it has an average of 6.7. When the primary goal is

to be able to perform the next haptic signal prediction, for one step prediction,

recurrent-network as representation baseline performs best of 0.330 among all

models, while ours performed 0.718. On the other hand, our model does not di-

verge and performs consistently well. After 0.5secs, when other models started

to diverge to an error of 1.757 or much larger, our model still had prediction

error of 0.782.

What does learned representation represent? We visualize our learned embed-

ding space of haptic feedback using t-SNE [165] in Fig. 6.6. Initially, both suc-

cessful (blue paths) and unsuccessful (red paths) all starts from similar states

but they quickly diverge into different clusters of paths much before they even-

tually arrive at states that were given positive or negative rewards shown as

blue and red dots.

Does good representation lead to successful execution? Our model allows

robot to successfully execute on the three objects 80.0%, 73.3%, and 86.7%

respectively, performing the highest compared to any other models. The

next best model which uses recurrent network as representation performed at

63.2%, 68.4%, and 70.0%. However, note that this baseline still take advantage

of our Q-learning method. Our model that did not take advantage of simulated

exploration performed much poorly (35.0%, 33.3%, and 52.6%), showing that

good representation combined with our Q-learning method leads to successful

134

Successful

Not Successful

Successful

Not Successful

Figure 6.6: Projection of learned representation of haptic feedback us-
ing t-SNE [165] for ‘stirrer’ and ‘fan’. Each dot represents an
inferred state at each time frame, and blue and red dots repre-
sents positive and negative reward at those time frame. Here
we show some of successful (blue) and unsuccessful (red) se-
quences. For both objects, notice both classes initially starts
from similar state and then diverges, forming clusters. Several
successful and unsuccessful haptic signals are shown as well.

execution of the tasks.

Is recurrent network necessary for haptic signals? Non-recurrent recognition

network quickly diverged to extremely large number of 3.2e7 even though it

successfully predicted 1.389 for a single step prediction. Note that it takes win-

dowed haptic sequence of last 5 frames as input. Unlike images, short window

of data does not hold enough information about haptic sequence which lasts

much longer timeframe. For robotic experiment, non-recurrent network per-

formed 52.9%, 57.9%, and 62.5% even with our Q learning method.

How accurately does it perform the task? When our full model was being

tested on three objects, we also had one of the author observe (visually and au-

dibly) very closely and press a button as soon as the click occurs. On successful

execution of the task, we measure the time difference between the time the robot

135

Table 6.3: Time difference between the time the robot stopped and the
time the expert indicated it ‘clicked’.

Stirrer Speaker Desk Fan

0.180 secs (±0.616) 0.539 secs (±1.473) −0.405 secs (±0.343)

stops turning and the time the expert presses the key, and the results are shown

in Table 6.3.

The positive number represents that the model was delayed than the expert

and the negative number represents that the model transitioned earlier. Our

model only differed from human with an average of 0.37 seconds. All execu-

tions of tasks were performed at same translational and rotational velocity as

the data collection process. Since the robot was performing these tasks slowly,

the 0.37 seconds delay results in very small amount of rotation.

Note that just like a robot has a reaction time to act on perceived feedback,

an expert has a reaction time to press the key. Also, since the robot was relying

on haptic feedback while the observer was using every possible human senses

available including observation of the consequences without touch, some dif-

ferences are expected. Especially, the fan had a delay in visible consequences

compared to the haptic feedback because the robot was rotating these knobs

slower than normal humans would turn in daily life; thus, the robot was able to

react 0.4 seconds faster.

Video of robotic experiments are available at this website:

https://sites.google.com/site/icra17haptics/

136

6.5 Conclusion

For a robot to perform various manipulation tasks, a robot has to be able to

model interplay of an object with the task being performed, including haptic

feedback. In this chapter, we present a novel framework for learning to repre-

sent haptic feedback of an object that requires sense of touch. We model such

tasks as partially observable model with its generative model parametrized by

neural networks. To overcome intractability of computing posterior, variational

Bayes method allows us to approximate posterior with a deep recurrent recog-

nition network consisting of two LSTM layers. Using a learned representation

of haptic feedback, we also introduce a Q-learning method that is able to learn

optimal control without access to simulator in learned latent state space uti-

lizing only prior experiences and learned generative model for transition. We

evaluate our model on a task of rotating knobs until they click. With more than

200 robotic experiments on the PR2 robot, we show that our model is able to

successfully manipulate knobs that click while predicting future haptic signals.

137

CHAPTER 7

CONCLUSION

As robots move into our environments at homes and offices, it is inevitable

that robots will encounter objects it has never seen before. It is not feasible to

train robots on all variations of objects in human environments. As we have

shown, in order to even manipulate objects it has never encountered before, a

robot has to reason about many sensor and information modalities including

vision, natural language, manipulation motion, and haptic feedback.

In this dissertation, we introduced the new learning algorithms that address

challenges of reasoning about multimodal data. Our deep multimodal embed-

ding algorithm learns a joint-embedding of point-cloud, natural language, and

manipulation trajectory. The algorithm trains deep neural networks to learn a

semantically meaningful common representation of multimodal data using a

loss-augmented cost function. We also introduced an algorithm for learning a

representation of haptic feedback for partially observable task.

Furthermore, we proposed a novel approach to predicting manipulation

trajectories by transferring motions from similarly operated object parts. We

demonstrate that this idea allows robots to successfully manipulate novel ob-

jects, even preparing a cup of latte with an espresso machine and a coffee

grinder that a robot has never seen before. We utilize learned embedding net-

work to identify most appropriate manipulation trajectory for the point-cloud

of the object and the natural language instruction of the task. To overcome

the challenge of collecting large-scale manipulation dataset, we introduced our

crowd-sourcing platform, Robobarista, which allows non-expert users to easily

give manipulation demonstrations over the web.

138

7.1 Future Work

While my dissertation has shown the potential of identifying appropriate ma-

nipulation strategies for novel objects, there are many opportunities of broad-

ening the scope of my work.

• Closed-loop execution with various feedback: For some of the objects,

open-loop execution of a transferred pose trajectory sometimes may not

be enough to correctly manipulate objects. In order to correctly execute

a transferred manipulation trajectory on such objects, robots may have

to incorporating diverse set of feedbacks including visual, auditory and

force feedback [177, 169]. For such tasks, our algorithm can still provide

an initialization of a required motion while the robot would incorporate

different feedback to adapt its trajectory online.

• Crowd-sourcing all sensor modalities: In order for robots to manipu-

late novel objects in real environment, it would have to achieve nearly

perfect accuracy due to dangers involved with having robots manipulate

real world objects. Our work introduced one of the largest manipulation

dataset using our crowd-sourcing platform. With recent advancement in

computer vision and smart phones, it is now possible to also crowd-source

collection of point-cloud and natural language instruction manual. As it

was shown recently with large datasets in the field of computer vision and

natural language processing, once we can scale our dataset to even larger

size, our model would be able to achieve higher accuracy.

• Connecting to reinforcement learning: Even humans are bit rough when

they are doing certain tasks for the first time, and they only get better after

139

several practices. Our algorithm can provide a fairly accurate transferred

trajectory as the initial trajectory for reinforcement learning methods. Us-

ing the initial trajectory, a reinforcement learning algorithm can further

polish the transferred trajectory in order for a robot to accomplish the task

with more precisions. Such initialization would allow those algorithms to

reach mastery of the task in a significantly lower number of steps.

140

APPENDIX A

APPENDIX OF LEARNING TO MANIPULATE NOVEL OBJECTS

A.1 Loss Function for Manipulation Trajectory

For both learning (Sec. 4.3) and evaluation (Sec. 5.5.3), we need a function which

accurately represents distance between two trajectories. Prior metrics for tra-

jectories consider only their translations (e.g. [73]) and not their rotations and

gripper status. We propose a new measure, which uses dynamic time warping,

for evaluating manipulation trajectories. This measure non-linearly warps two

trajectories of arbitrary lengths to produce a matching, then computes cumula-

tive distance as the sum of cost of all matched waypoints. The strength of this

measure is that weak ordering is maintained among matched waypoints and

that every waypoint contributes to the cumulative distance.

For two trajectories of arbitrary lengths, τA = {τ(i)
A }

mA
i=1 and τB = {τ(i)

B }
mB
i=1 , we de-

fine a matrix D ∈ RmA×mB , where D(i, j) is the cumulative distance of an optimally-

warped matching between trajectories up to index i and j, respectively, of each

trajectory. The first column and the first row of D is initialized as:

D(i, 1) =

i∑
k=1

c(τ(k)
A , τ

(1)
B) ∀i ∈ [1,mA]

D(1, j) =

j∑
k=1

c(τ(1)
A , τ

(k)
B) ∀ j ∈ [1,mB]

where c is a local cost function between two waypoints (discussed later). The

rest of D is completed using dynamic programming:

D(i, j) = c(τ(i)
A , τ

(j)
B) + min{D(i − 1, j − 1),D(i − 1, j),D(i, j − 1)}

141

Given the constraint that τ(1)
A is matched to τ(1)

B , the formulation ensures that

every waypoint contributes to the final cumulative distance D(mA,mB). Also,

given a matched pair (τ(i)
A , τ

(j)
B), no waypoint preceding τ(i)

A is matched to a way-

point succeeding τ(j)
B , encoding weak ordering.

The pairwise cost function c between matched waypoints τ(i)
A and τ

(j)
B is de-

fined:

c(τ(i)
A , τ

(j)
B ;αT , αR, β, γ) = w(τ(i)

A ; γ)w(τ(j)
B ; γ)(dT (τ(i)

A , τ
(j)
B)

αT
+

dR(τ(i)
A , τ

(j)
B)

αR

)(
1 + βdG(τ(i)

A , τ
(j)
B)

)
where dT (τ(i)

A , τ
(j)
B) = ||(tx, ty, tz)

(i)
A − (tx, ty, tz)

(j)
B ||2

dR(τ(i)
A , τ

(j)
B) = angle difference between τ(i)

A and τ
(j)
B

dG(τ(i)
A , τ

(j)
B) = 1(g(i)

A = g(j)
B)

w(τ(i); γ) = exp(−γ · ||τ(i)||2)

The parameters α, β are for scaling translation and rotation errors, and gripper

status errors, respectively. γ weighs the importance of a waypoint based on its

distance to the object part. 1 Finally, as trajectories vary in length, we normalize

D(mA,mB) by the number of waypoint pairs that contribute to the cumulative

sum, |D(mA,mB)|path∗ (i.e. the length of the optimal warping path), giving the

final form:

distance(τA, τB) =
D(mA,mB)

|D(mA,mB)|path∗

This distance function is used for noise-handling in our model and as the final

evaluation metric.
1We assign αT , αR, β, γ values of 0.0075 meters, 3.75◦, 1 and 4 respectively.

142

A.2 Segmenting Object Parts from Point-clouds

Our algorithm, presented above (Sec. 4.2), assumes that object parts p corre-

sponding to each natural language instruction l have already been segmented

from the point-cloud scene s. While our focus here is on learning to manipulate

these segmented parts, we also introduce a segmentation approach which both

allows use to build a real-world end-to-end system and allows us to augment

our training data for better unsupervised learning, as shown in Sec. 5.5.3.

A.2.1 Generating Object Part Candidates

We employ a series of geometric feature based techniques to segment a scene s

into small overlapping segments {p1, p2, ..., pn}.

We first extract Euclidean clusters of points while limiting the difference of

normals between a local and larger region [55, 132]. We then filter out segments

which are too big for human hands. To handle a wide variety of object parts of

different scales, we generate two sets of candidates by executing our segmen-

tation pipeline with two different sets of parameters, which are combined for

evaluation.

A.2.2 Part Candidate Ranking Algorithm

Given a set of segmented parts p, we must now use our training dataD to select

for each instruction l j the best-matching part p∗j. We do so by optimizing the

score ψ(p j, l j) of each segment pi for a step l j in a manual, evaluated in three

143

parts:

ψ(pi, l j;D) = ψ f eat(pi, l j)
(
ψpc(pi, l j) + ψlang(pi, l j)

)
The score ψpc is based on the kp-most identical segments from the training

data D, based on cosine similarity using our grid representation (Sec. 5.4.1).

The score is summation of similarity against these segments and their associ-

ated language (scaled by α): ψpc(pi, l j) =
∑n

k=1(sim(pi, pk) + α sim(li, lk)). If the

associated language does not exist (i.e. pk is not a manipulable part), it is given

a set similarity value.

Similarly, the score ψlang is based on the kl-most identical language instruc-

tions in the training data D. It is a summation of similarity against identical

language and associated expert segmentations of the point-cloud.

The feature score ψ f eat is computed by weighted features wTφ f eat(pi, l j) as de-

scribed in following section. Each score of the segmented parts is then adjusted

by multiplying by ratio of its score against the marginalized score in the man-

ual: ψ̂(pi, l j) =
ψ(pi,l j)∑

lk∈mnew ψ(pi,lk)ψ(pi, l j). For each l j ∈ mnew, an optimal segment of the

scene chosen as the segment with the maximum score: maxpi∈snewψ̂(pi, l j).

A.2.3 Part Candidate Features

We compute 3 features for each segmentation in the context of the original scene.

First, we infer where a person would stand by detecting the ‘front’ of the object

based on plane segmentation, constrained to have a normal axis less than 45◦

from the line between the object’s centroid and the original sensor location, thus

assuming that the robot is introduced to the object within 45◦ from the ‘front’.

144

We also compute a ‘reach’ distance from an imaginary person 1.7m tall. The

reach distance is defined as the distance from the top of the person to each seg-

ment subtracted by the distance of the closest one.

Stitched point-clouds have significant noise near their edges. Thus, we com-

pute the distance from the imaginary view ray, a line defined by the centroid

of the scene to the head of the person. Lastly, some objects with many identical

parts such as a soda fountain or a sauce dispenser, a description (e.g. ‘Coke’ or

‘Sprite’, ‘ketchup’ or ‘mustard’) might be difficult to disambiguate. Thus, for

such cases, we also provided a 3D point as input, as if human is pointing at the

label of the desired selection. Note that this does not point at the actual part but

rather at its label or vicinity. A distance from this point is also used as a feature.

A.3 Details of Baseline Models

In this section, we explain each baseline model (Sec. 5.5.2) that we evaluate our

full model against:

1) Random Transfers (chance): Trajectories are selected at random from the set

of trajectories in the training set.

2) Object Part Classifier: To test our hypothesis that classifying object parts

as an intermediate step does not guarantee successful transfers, we trained an

object part classifier using multiclass SVM [162] on point-cloud features φ(p)

including local shape features [72], histogram of curvatures [131], and distribu-

tion of points. Using this classifier, we first classify the target object part p into

an object part category (e.g. ‘handle’, ‘knob’), then use the same feature space

145

to find its nearest neighbor p′ of the same class from the training set. Then the

trajectory τ′ of p′ is transferred to p.

3) Structured support vector machine (SSVM): We used SSVM to learn a dis-

criminant scoring function F : P × L × T → R. At test time, for target

point-cloud/language pair (p, l), we output the trajectory τ from the train-

ing set that maximizes F . To train SSVM, we use a joint feature mapping

φ(p, l, τ) = [φ(τ); φ(p, τ); φ(l, τ)]. φ(τ) applies Isomap [155] to interpolated τ for

non-linear dimensionality reduction. φ(p, τ) captures the overall shape when

trajectory τ is overlaid over point-cloud p by jointly representing them in a

voxel-based cube similar to Sec. 5.4.1, with each voxel holding count of occu-

pancy by p or τ. Isomap is applied to this representation to get the final φ(p, τ).

Finally, φ(l, τ) is the tensor product of the language features and trajectory fea-

tures: φ(l, τ) = φ(l) ⊗ φ(τ). We used our loss function (Appendix A.1) to train

SSVM and used the cutting plane method to solve the SSVM optimization prob-

lem [62].

4) Latent Structured SVM (LSSVM) + kinematic structure: The way in which

an object is manipulated largely depends on its internal structure – whether

it has a ‘revolute’, ‘prismatic’, or ‘fixed’ joint. Instead of explicitly trying

to learn this structure, we encoded this internal structure as latent variable

z ∈ Z, composed of joint type, center of joint, and axis of joint [145]. We

used Latent SSVM [186] to train with z, learning the discriminant function

F : P × L × T × Z → R. The model was trained with feature mapping

φ(p, l, τ, z) = [φ(τ); φ(p, τ); φ(l, τ); φ(l, z); φ(p, τ, z)], which includes additional fea-

tures that involve z. φ(l, z) captures the relation between l, a bag-of-words repre-

sentation of language, and bag-of-joint-types encoded by z (vector of length 3 in-

146

dicating existence of each joint type) by computing the tensor product φ(l)⊗φ(z),

then reshaping the product into a vector. φ(p, τ, z) captures how well the portion

of τ that actually interacts with p abides by the internal structure h. φ(p, τ, z) is

a concatenation of three types of features, one for each joint type. For ‘revolute’

type joints, it includes deviation of trajectory from plane of rotation defined by

z, the maximum angular rotation while maintaining pre-defined proximity to

the plane of rotation, and the average cosine similarity between rotation axis

of τ and axis defined by z. For ‘prismatic’ joints, it includes the average co-

sine similarity between the extension axis and the displacement vector between

waypoints. Finally, for ‘fixed’ joints, it includes whether the uninteracting part

of τ has collision with the background p since it is important to approach the

object from correct angle.

5) Task-Similarity Transfers + random: We compute the pairwise similarities be-

tween the test case (ptest, ltest) and each training example (ptrain, ltrain), then transfer

a trajectory τ associated with the training example of highest similarity. Pairwise

similarity is defined as a convex combination of the cosine similarity in bag-of-

words representations of language and the average mutual point-wise distance

of two point-clouds after a fixed number of iterations of the ICP [11] algorithm.

If there are multiple trajectories associated with (ptrain, ltrain) of highest similarity,

the trajectory for transfer is selected randomly.

6) Task-similarity Transfers + weighting: The previous method is problem-

atic when non-expert demonstrations for a single task (ptrain, ltrain) vary in qual-

ity. Forbes et al. [35] introduces a score function for weighting demonstrations

based on weighted distance to the “seed” (expert) demonstration. Adapting to

our scenario of not having any expert demonstrations, we select τ that has the

147

lowest average distance from all other demonstrations for the same task, with

each distance measured with our loss function (Appendix A.1.) This is similar

to our noise handling approach in Sec. 5.2.4.

7) Deep Network without Embedding: We train a deep neural network to learn a

similar scoring function F : P×L×T → R to that learned for SSVM above. This

model discriminatively projects the combination of point-cloud, language, and

trajectory features to a score which represents how well the trajectory matches

that point-cloud/language combination. Note that this is much less efficient

than our joint embedding approach, as it must consider all combinations of a

new point-cloud/language pair and every training trajectory to perform infer-

ence, as opposed to our model which need only project this new pair to our joint

embedding space. This deep learning model concatenates all the input of three

modalities and learns three hidden layers before the final layer.

8) Deep Multimodal Network without Embedding: The same approach as ‘Deep

Network without Embedding’ with layers per each modality before concatenat-

ing as shown in Figure A.1. More details about the model can be found in [148].

9) LMNN [174]-like cost function: For all top layer fine-tuning and lower layer

pre-training, we define the cost function without loss augmentation. Similar to

LMNN [174], we give a finite margin between similarities. For example, as cost

function for h3:

Lh3(pi, li, τi) = |1+sim(ΦP,L(pi, li),ΦT (τ′))

−sim(ΦP,L(pi, li),ΦT (τi))|+

10) Our Model without Pretraining: Our full model finetuned without any pre-

training of lower layers – all parameters are randomly initialized.

148

point cloud (𝒑) language (𝒍) trajectory (𝝉)

ℎ1

𝑥

ℎ2

ℎ3

𝑦

Figure A.1: Deep Multimodal Network without Embedding, a baseline
model takes the input x of three different modalities (point-
cloud, language, and trajectory) and outputs y, whether it is
a good match or bad match. It first learns features separately
(h1) for each modality and then learns the relation (h2) between
input and output of the original structured problem. Finally,
last hidden layer h3 learns relations of all these modalities.

11) Our Model with SDA: Our full model without pre-training h2,pl and h2,τ as

defined in Sections 4.3.1 and 4.3.2. Instead, we pre-train each layer as stacked

de-noising autoencoders [170, 188].

12) Our Model without Noise Handling: Our model is trained without noise

handling as presented in Section 5.2.4. All of the trajectories collected from the

crowd are trusted as a ground-truth labels.

13) Our Model without Multiple Segmentations. Our model trained only with

expert segmentations, without taking utilizing all candidate segmentations in

auto-encoders and multiple correct segmentations of the same part during train-

149

ing.

14) Our Model with Experts: Our model is trained only using trajectory

demonstrations from an expert which were collected for evaluation purposes.

15) Our Full Model - Deep Multimodal Embedding: Our full model as described

in this paper with network size of h1,p, h1,l, h1,τ, h2,pl, h2,τ, and h3 respectively

having a layer with 150, 175, 100, 100, 75, and 50 nodes.

150

APPENDIX B

APPENDIX OF LEARNING TO REPRESENT HAPTIC FEEDBACK

B.1 Lowerbound Derivation

To continue our derivation of the lower bound on conditional log-likelihood

from Sec. 6.2.4. The second term of equation 6.1:

Eqφ(~s|~o,~r,~a)
[
log pθ(~o,~r|~s, ~a)

]
= Eqφ(~s|~o,~r,~a)

[
log pθ(~o|~s) + log pθ(~r|~s)

]
≈

1
L

L∑
l=1

[
log pθ(~o|~s(l)) + log pθ(~r|~s(l))

]
=

1
L

L∑
l=1

T∑
t=1

[
log pθ(ot|s

(l)
t) + log pθ(rt|s

(l)
t)

]
where ~s(l) = qφ,µ + ε(l)qφ,Σ and ε(l) ∼ p(ε)

Reparametrization trick ([70, 127]) at last step samples from the inferred distri-

bution by a recognition network qφ.

151

And, for the first term from equation 6.1:

DKL
(
qφ(~s|~o,~r, ~a)||pθ(~s|~a)

)
=

∫
s1

· · ·

∫
sT

qφ(~s|~o,~r, ~a)
[
log

qφ(~s|~o,~r, ~a)
pθ(~s|~a)

]
= DKL

(
qφ(s1|~o,~r, ~a)||p(s1)

)
+

T∑
t=2

Est−1∼qφ(st−1 |~o,~r,~a)
[

DKL
(
qφ(st|st−1, ~o,~r, ~a)||p(st|st−1, at−1)

)]
using reparameterazation trick again,

= DKL
(
qφ(s1|~o,~r, ~a)||p(s1)

)
+

T∑
t=2

1
L

L∑
l=1

[
DKL

(
qφ(st|st−1, ~o,~r, ~a)||p(st|s

(l)
t−1, at−1)

)]
where s(l)

t−1 = qφ,t−1,µ + ε(l)qφ,t−1,Σ and ε(l) ∼ p(ε)

Combining these two terms, we arrive at equation 6.2.

We do not explain each step of the derivation at length since similar ideas

behind the derivation can be found at [75] although exact definition and formu-

lation are different.

152

BIBLIOGRAPHY

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse

reinforcement learning. In International Conference on Machine Learning,

2004.

[2] Pieter Abbeel, Adam Coates, and Andrew Ng. Autonomous heli-

copter aerobatics through apprenticeship learning. International Journal

of Robotics Research, 2010.

[3] David W Aha, Dennis Kibler, and Marc K Albert. Instance-based learning

algorithms. Machine learning, 1991.

[4] Brandon Alexander, Kaijen Hsiao, Chad Jenkins, Bener Suay, and Russell

Toris. Robot web tools [ros topics]. Robotics & Automation Magazine, IEEE,

19(4):20–23, 2012.

[5] Brenna Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A

survey of robot learning from demonstration. RAS, 2009.

[6] Jennifer Barry, Kaijen Hsiao, Leslie Kaelbling, and Tomás Lozano-Pérez.

Manipulation with multiple action types. In ISER, 2012.

[7] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J.

Goodfellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua Bengio.

Theano: new features and speed improvements. Neural Information Pro-

cessing Systems DLUFL Workshop, 2012.

[8] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner, D. Panger-

cic, T. Ruhr, and M. Tenorth. Robotic roommates making pancakes. In

Humanoids, 2011.

153

[9] Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric

Klavins, and George J Pappas. Symbolic planning and control of robot

motion. Robotics & Automation Magazine, 2007.

[10] Stuart Bennett. A brief history of automatic control. IEEE Control Systems

Magazine, 16(3):17–25, 1996.

[11] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In

Robotics-DL tentative, pages 586–606. International Society for Optics and

Photonics, 1992.

[12] Matthew Blaschko and Christoph Lampert. Learning to localize objects

with structured output regression. In European Conference on Computer

Vision, 2008.

[13] Oren Boiman and Michal Irani. Detecting irregularities in images and in

video. IJCV, 74(1):17–31, 2005.

[14] M. Bollini, J. Barry, and D. Rus. Bakebot: Baking cookies with the pr2.

In International Conference on Intelligent Robots and Systems PR2 Workshop,

2011.

[15] M. Brand, N. Oliver, and A. Pentland. Coupled hidden makov models

for complex action recognition. In Computer Vision and Pattern Recognition,

1997.

[16] H. Bui, D. Phung, and S. Venkatesh. Hierarchical hidden markov models

with general state hierarchy. In AAAI, 2004.

[17] François Chaumette and Seth Hutchinson. Visual servo control. i. basic

approaches. Robotics & Automation Magazine, IEEE, 13(4):82–90, 2006.

154

[18] Virginia Chu, Ian McMahon, Lorenzo Riano, Craig G McDonald, Qin

He, Jorge Martinez Perez-Tejada, Michael Arrigo, Naomi Fitter, John C

Nappo, Trevor Darrell, et al. Using robotic exploratory procedures to

learn the meaning of haptic adjectives. In International Conference on

Robotics and Automation, 2013.

[19] Gabriella Contardo, Ludovic Denoyer, Thierry Artieres, and Patrick Gal-

linari. Learning states representations in pomdp. In ICLR, 2014.

[20] Christopher Crick, Sarah Osentoski, Graylin Jay, and Odest Chadwicke

Jenkins. Human and robot perception in large-scale learning from demon-

stration. In Human-Robot Interaction. ACM, 2011.

[21] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for hu-

man detection. In Computer Vision and Pattern Recognition, 2005.

[22] Hao Dang and Peter K Allen. Semantic grasping: Planning robotic grasps

functionally suitable for an object manipulation task. In International Con-

ference on Intelligent Robots and Systems, 2012.

[23] C. Daniel, G. Neumann, and J. Peters. Learning concurrent motor skills

in versatile solution spaces. In International Conference on Intelligent Robots

and Systems. IEEE, 2012.

[24] Yiannis Demiris and Andrew Meltzoff. The robot in the crib: a develop-

mental analysis of imitation skills in infants and robots. Infant and Child

Development, 17(1):43–53, 2008.

[25] Renaud Detry, Carl Henrik Ek, Marianna Madry, and Danica Kragic.

Learning a dictionary of prototypical grasp-predicting parts from grasp-

ing experience. In International Conference on Robotics and Automation, 2013.

155

[26] R. Diankov. Automated Construction of Robotic Manipulation Programs. PhD

thesis, Carnegie Mellon University, 2010.

[27] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition

via sparse spatio-temporal features. In Int’l Wrksp Visual Surv Perf. Eval.

Tracking Surv., 2005.

[28] Felix Endres, Jeff Trinkle, and Wolfram Burgard. Learning the dynamics

of doors for robotic manipulation. In International Conference on Intelligent

Robots and Systems, 2013.

[29] Goker Erdogan, Ilker Yildirim, and Robert A Jacobs. Transfer of object

shape knowledge across visual and haptic modalities. In Proceedings of the

36th Annual Conference of the Cognitive Science Society, 2014.

[30] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by

their attributes. In Computer Vision and Pattern Recognition, 2009.

[31] David Feil-Seifer and Maja J Matarié. Defining socially assistive robots.

In ICORR, 2005.

[32] Vittorio Ferrari and Andrew Zisserman. Learning visual attributes. In

Neural Information Processing Systems, 2007.

[33] Shai Fine, Yoram Singer, and Naftali Tishby. Parsing human motion with

stretchable models. Machine Learning, 1998.

[34] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and

Pieter Abbeel. Deep spatial autoencoders for visuomotor learning. In

International Conference on Robotics and Automation, 2016.

156

[35] Maxwell Forbes, Michael Jae-Yoon Chung, Maya Cakmak, and Rajesh PN

Rao. Robot programming by demonstration with crowdsourced action

fixes. In Second AAAI Conference on Human Computation and Crowdsourcing,

2014.

[36] L. Frommberger. Qualitative Spatial Abstraction in Reinforcement Learning.

Springer, 2010.

[37] Yang Gao, Lisa Anne Hendricks, Katherine J Kuchenbecker, and Trevor

Darrell. Deep learning for tactile understanding from visual and haptic

data. arXiv preprint arXiv:1511.06065, 2015.

[38] Mevlana C Gemici and Ankur Saxena. Learning haptic representation

for manipulating deformable food objects. In International Conference on

Intelligent Robots and Systems. IEEE, 2014.

[39] James Jerome Gibson. The ecological approach to visual perception. Psychol-

ogy Press, 1986.

[40] Martin Giese and Tomaso Poggio. Neural mechanisms for the recognition

of biological movement. Nature Rev Neurosc., 4:179–192, 2003.

[41] Ross Girshick, Pedro Felzenszwalb, and David McAllester. Object detec-

tion with grammar models. In Neural Information Processing Systems, 2011.

[42] Ross Girshick, Forrest Iandola, Trevor Darrell, and Jitendra Malik. De-

formable part models are convolutional neural networks. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[43] Stuart Glaser. Jt cartesian controller. http://wiki.ros.org/robot_

mechanism_controllers/JTCartesian%20Controller. [Online;

accessed 02.26.2016].

157

[44] Ian Goodfellow, Quoc Le, Andrew Saxe, Honglak Lee, and Andrew Y Ng.

Measuring invariances in deep networks. In Neural Information Processing

Systems, 2009.

[45] Cordell Green. Application of theorem proving to problem solving. Tech-

nical report, DTIC Document, 1969.

[46] Abhinav Gupta, Praveen Srinivasan, Jianbo Shi, and Larry S. Davis. Un-

derstanding videos, constructing plots learning a visually grounded sto-

ryline model from annotated videos. In Computer Vision and Pattern Recog-

nition, 2009.

[47] Raia Hadsell, Ayse Erkan, Pierre Sermanet, Marco Scoffier, Urs Muller,

and Yann LeCun. Deep belief net learning in a long-range vision system

for autonomous off-road driving. In International Conference on Intelligent

Robots and Systems, 2008.

[48] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos,

Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam

Coates, et al. Deep speech: Scaling up end-to-end speech recognition.

arXiv preprint arXiv:1412.5567, 2014.

[49] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for par-

tially observable mdps. arXiv preprint arXiv:1507.06527, 2015.

[50] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507, 2006.

[51] K. Hsiao, S. Chitta, M. Ciocarlie, and E. Jones. Contact-reactive grasping

of objects with partial shape information. In International Conference on

Intelligent Robots and Systems, 2010.

158

[52] Kaijen Hsiao, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Grasping

pomdps. In International Conference on Robotics and Automation, 2007.

[53] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative deep metric learn-

ing for face verification in the wild. In Computer Vision and Pattern Recog-

nition, 2014.

[54] Ninghang Hu, Zhongyu Lou, Gwenn Englebienne, and Ben Krse. Learn-

ing to recognize human activities from soft labeled data. In Proceedings of

Robotics: Science and Systems, Berkeley, USA, July 2014.

[55] Yani Ioannou, Babak Taati, Robin Harrap, et al. Difference of normals as

a multi-scale operator in unorganized point clouds. In 3DIMPVT, 2012.

[56] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, et al.

Kinectfusion: real-time 3d reconstruction and interaction using a moving

depth camera. In ACM Symposium on UIST, 2011.

[57] Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena.

Learning trajectory preferences for manipulators via iterative improve-

ment. In Neural Information Processing Systems, 2013.

[58] Ashesh Jain, Brian Wojcik, Thorsten Joachims, and Ashutosh Saxena.

Learning preferences for manipulation tasks from online coactive feed-

back. In International Journal of Robotics Research, 2015.

[59] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A biologically inspired system

for action recognition. In International Conference on Computer Vision, 2007.

[60] Yun Jiang, Marcus Lim, Changxi Zheng, and Ashutosh Saxena. Learning

to place new objects in a scene. International Journal of Robotics Research,

2012.

159

[61] Yun Jiang, Hema Koppula, and Ashutosh Saxena. Hallucinated humans

as the hidden context for labeling 3d scenes. In Computer Vision and Pattern

Recognition, 2013.

[62] T. Joachims, T. Finley, and C-N. J. Yu. Cutting-plane training of structural

svms. Machine Learning, 2009.

[63] Thorsten Joachims. Training linear svms in linear time. In KDD, 2006.

[64] B. Johnson and H. Kress-Gazit. Probabilistic analysis of correctness of

high-level robot behavior with sensor error. In Robotics: Science and Sys-

tems, 2011.

[65] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical task and motion plan-

ning in the now. In International Conference on Robotics and Automation,

2011.

[66] Dov Katz, Moslem Kazemi, J Andrew Bagnell, and Anthony Stentz. In-

teractive segmentation, tracking, and kinematic modeling of unknown 3d

articulated objects. In International Conference on Robotics and Automation,

pages 5003–5010. IEEE, 2013.

[67] Henry Kautz and Bart Selman. Planning as satisfiability. In European con-

ference on Artificial intelligence, 1992.

[68] Ben Kehoe, Akihiro Matsukawa, Sal Candido, James Kuffner, and Ken

Goldberg. Cloud-based robot grasping with the google object recognition

engine. In International Conference on Robotics and Automation, 2013.

[69] Charles Kemp, Noah D Goodman, and Joshua B Tenenbaum. Learning to

learn causal models. Cognitive Science, 34(7), 2010.

160

[70] Diederik P Kingma and Max Welling. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114, 2013.

[71] Sven Koenig. Agent-centered search. AI Magazine, 2001.

[72] H. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic labeling of

3d point clouds for indoor scenes. Neural Information Processing Systems,

2011.

[73] Hema Koppula and Ashutosh Saxena. Anticipating human activities us-

ing object affordances for reactive robotic response. In Robotics: Science

and Systems, 2013.

[74] H.S. Koppula, A. Anand, T. Joachims, and Ashutosh Saxena. Semantic

labeling of 3d point clouds for indoor scenes. In Neural Information Pro-

cessing Systems, 2011.

[75] Rahul G Krishnan, Uri Shalit, and David Sontag. Deep kalman filters.

arXiv preprint arXiv:1511.05121, 2015.

[76] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-

sification with deep convolutional neural networks. In Neural Information

Processing Systems, 2012.

[77] O. Kroemer, E. Ugur, E. Oztop, and J. Peters. A kernel-based approach

to direct action perception. In International Conference on Robotics and Au-

tomation, 2012.

[78] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient

point-based pomdp planning by approximating optimally reachable be-

lief spaces. In Robotics: Science and Systems, 2008.

161

[79] K. Lai, L. Bo, X. Ren, and D. Fox. Detection-based object labeling in 3d

scenes. In International Conference on Robotics and Automation, 2012.

[80] K. Lai, L. Bo, and D. Fox. Unsupervised feature learning for 3d scene

labeling. In International Conference on Robotics and Automation, 2014.

[81] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen

object classes by between-class attribute transfer. In Computer Vision and

Pattern Recognition, 2009.

[82] Tian Lan, Yang Wang, Weilong Yang, and Greg Mori. Beyond actions: Dis-

criminative models for contextual group activities. In Neural Information

Processing Systems, 2010.

[83] Ivan Laptev. On space-time interest points. IJCV, 64(2):107–123, 2005.

[84] Ian Lenz, Honglak Lee, and Ashutosh Saxena. Deep learning for detecting

robotic grasps. Robotics: Science and Systems, 2013.

[85] Ian Lenz, Ross Knepper, and Ashutosh Saxena. Deepmpc: Learning deep

latent features for model predictive control. In Robotics: Science and Sys-

tems, 2015.

[86] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-

end training of deep visuomotor policies. arXiv preprint arXiv:1504.00702,

2015.

[87] Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich

manipulation skills with guided policy search. International Conference on

Robotics and Automation, 2015.

162

[88] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-

end training of deep visuomotor policies. Journal of Machine Learning Re-

search, 2016.

[89] Congcong Li, TP Wong, Norris Xu, and Ashutosh Saxena. Feccm for scene

understanding: Helping the robot to learn multiple tasks. In Video contri-

bution in International Conference on Robotics and Automation, 2011.

[90] Li-Jia Li, Richard Socher, and Li Fei-Fei. Towards total scene understand-

ing: Classification, annotation and segmentation in an automatic frame-

work. In Computer Vision and Pattern Recognition, 2009.

[91] Qiang Li, Carsten Schürmann, Robert Haschke, and Helge J Ritter. A

control framework for tactile servoing. In Robotics: Science and Systems,

2013.

[92] Zhe Li, Sven Wachsmuth, Jannik Fritsch, and Gerhard Sagerer. Vision Sys-

tems: Segmentation and Pattern Recognition, chapter 8, pages 131–148. In-

Tech, 2007.

[93] Lin Liao, Dieter Fox, and Henry Kautz. Extracting places and activities

from gps traces using hierarchical conditional random fields. International

Journal of Robotics Research, 26(1):119–134, 2007.

[94] Jingen Liu, Saad Ali, and Mubarak Shah. Recognizing human actions

using multiple features. In Computer Vision and Pattern Recognition, 2008.

[95] M. Lopes, F. S. Melo, and L. Montesano. Affordance-based imitation

learning in robots. In International Conference on Intelligent Robots and Sys-

tems, 2007.

163

[96] O. Mangin, Pierre-Yves Oudeyer, et al. Unsupervised learning of simulta-

neous motor primitives through imitation. In IEEE International Conference

on Development and Learning and on Epigenetic Robotics, 2011.

[97] Francisco Martinez-Contreras, Carlos Orrite-Urunuela, Elias Herrero-

Jaraba, Hossein Ragheb, and Sergio A. Velastin. Recognizing human

actions using silhouette-based hmm. In Advanced Video and Signal Based

Surveillance, pages 43–48, 2009.

[98] Andrew Mccallum, Dayne Freitag, and Fernando Pereira. Maximum en-

tropy markov models for information extraction and segmentation. In

International Conference on Machine Learning, 2000.

[99] Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. Exploiting similarities

among languages for machine translation. CoRR, 2013.

[100] S. Miller, J. Van Den Berg, M. Fritz, T. Darrell, K. Goldberg, and P. Abbeel.

A geometric approach to robotic laundry folding. International Journal of

Robotics Research, 2012.

[101] D. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave: Context-sensitive

grounding of natural language to mobile manipulation instructions. In

Robotics: Science and Systems, 2014.

[102] Dipendra Misra, Jaeyong Sung, Kevin Lee, and Ashutosh Saxena. Tell me

dave: Context-sensitive grounding of natural language to mobile manip-

ulation instructions. In Robotics: Science and Systems, 2014.

[103] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-

nis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with

deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

164

[104] J. Moore, Shuo Chen, T. Joachims, and D. Turnbull. Learning to embed

songs and tags for playlist prediction. In Conference of the International

Society for Music Information Retrieval (ISMIR), pages 349–354, 2012.

[105] Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms

for high dimensional data. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 2014.

[106] T. Mukai, S. Hirano, H. Nakashima, Y. Kato, Y. Sakaida, S. Guo, and

S. Hosoe. Development of a nursing-care assistant robot riba that can

lift a human in its arms. In International Conference on Intelligent Robots and

Systems, 2010.

[107] K. Mülling, J. Kober, O. Kroemer, and J. Peters. Learning to select and

generalize striking movements in robot table tennis. International Journal

of Robotics Research, 32(3):263–279, 2013.

[108] Jim Mutch and David Lowe. Multiclass object recognition using sparse,

localized features. In Computer Vision and Pattern Recognition, 2006.

[109] H. Nakai, M. Yamataka, T. Kuga, S. Kuge, H. Tadano, H. Nakanishi,

M. Furukawa, and H. Ohtsuka. Development of dual-arm robot with

multi-fingered hands. In RO-MAN, 2006.

[110] Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement

learning. In International Conference on Machine Learning, 2000.

[111] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee,

and Andrew Y Ng. Multimodal deep learning. In International Conference

on Machine Learning, 2011.

165

[112] H. Nguyen, M. Ciocarlie, J. Hsiao, and C. C. Kemp. Ros commander

(rosco): Behavior creation for home robots. In International Conference on

Robotics and Automation, 2013.

[113] Hai Nguyen, Cressel Anderson, Alexandor Trevor, Advait Jain, Zhe Xu,

and Charles C. Kemp. El-e: An assistive robots and fetches objects from

flat surfaces. In Human-Robot Interaction, 2008.

[114] Juan Niebles, Chih-Wei Chen, and Li Fei-Fei. Modeling temporal struc-

ture of decomposable motion segments for activity classification. In Euro-

pean Conference on Computer Vision, 2010.

[115] Huazhong Ning, T. X. Han, D. B. Walther, Ming Liu, and T. S. Huang. Hi-

erarchical space-time model enabling efficient search for human actions.

IEEE Trans Circuits Sys. Video Tech., 19(6), 2009.

[116] Donald A Norman. The design of everyday things. Basic books, 1988.

[117] Jaeheung Park and Oussama Khatib. A haptic teleoperation approach

based on contact force control. International Journal of Robotics Research, 25

(5-6):575–591, 2006.

[118] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal. Learning and general-

ization of motor skills by learning from demonstration. In International

Conference on Robotics and Automation, 2009.

[119] Peter Pastor, Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou,

and Stefan Schaal. Skill learning and task outcome prediction for manip-

ulation. In International Conference on Robotics and Automation, 2011.

[120] Mike Phillips, Victor Hwang, Sachin Chitta, and Maxim Likhachev.

166

Learning to plan for constrained manipulation from demonstrations. In

Robotics: Science and Systems, 2013.

[121] Sudeep Pillai, Matthew Walter, and Seth Teller. Learning articulated mo-

tions from visual demonstration. In Robotics: Science and Systems, 2014.

[122] PrimeSense. Nite middleware. http://www.primesense.com/, 2011.

[123] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,

Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot

operating system. In International Conference on Robotics and Automation

workshop on open source software, 2009.

[124] Marc’Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, and Yann LeCun.

Unsupervised learning of invariant feature hierarchies with applications

to object recognition. In Computer Vision and Pattern Recognition, 2007.

[125] N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin planning.

In International Conference on Machine Learning, 2006.

[126] Nathan Ratliff, David Silver, and J Andrew Bagnell. Learning to search:

Functional gradient techniques for imitation learning. Autonomous Robots,

2009.

[127] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic

backpropagation and approximate inference in deep generative models.

arXiv preprint arXiv:1401.4082, 2014.

[128] Jussi Rintanen. Planning as satisfiability: Heuristics. Artificial Intelligence,

2012.

167

[129] Mikel D. Rodriguez, Javed Ahmed, and Mubarak Shah. Action mach:

A spatio-temporal maximum average correlaton height filter for action

recognition. In Computer Vision and Pattern Recognition, 2008.

[130] S. J. Russell and P. Norvig. Artificial intelligence: a modern approach. Vol. 2.

Prentice Hall, 2010.

[131] R. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In Inter-

national Conference on Robotics and Automation, 2011.

[132] Radu Bogdan Rusu. Semantic 3d object maps for everyday manipulation

in human living environments. KI-Künstliche Intelligenz, 2010.

[133] J Kenneth Salisbury. Active stiffness control of a manipulator in cartesian

coordinates. In Decision and Control including the Symposium on Adaptive

Processes, 1980 19th IEEE Conference on, 1980.

[134] Brian Sallans. Learning factored representations for partially observable

markov decision processes. In Neural Information Processing Systems, pages

1050–1056. Citeseer, 1999.

[135] Benjamin Sapp, David Weiss, and Ben Taskar. Parsing human motion

with stretchable models. In Computer Vision and Pattern Recognition, 2011.

[136] Ashutosh Saxena, Justin Driemeyer, and Andrew Ng. Learning 3-d ob-

ject orientation from images. In International Conference on Robotics and

Automation, 2009.

[137] T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired

by the visual cortex. In Computer Vision and Pattern Recognition, 2005.

168

[138] Ken Shoemake. Animating rotation with quaternion curves. ACM SIG-

GRAPH Computer Graphics, 19(3):245–254, 1985.

[139] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,

George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda

Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. Nature, 529(7587):484–489, 2016.

[140] C. Sminchisescu, A. Kanaujia, Zhiguo Li, and D. Metaxas. Conditional

models for contextual human motion recognition. In International Confer-

ence on Computer Vision, 2005.

[141] R. Socher, B. Huval, B. Bhat, C. Manning, and A. Ng. Convolutional-

recursive deep learning for 3d object classification. In Neural Information

Processing Systems, 2012.

[142] Richard Socher, Jeffrey Pennington, Eric Huang, Andrew Ng, and

Christopher Manning. Semi-supervised recursive autoencoders for pre-

dicting sentiment distributions. In EMNLP, 2011.

[143] Kihyuk Sohn, Wenling Shang, and Honglak Lee. Improved multimodal

deep learning with variation of information. In Neural Information Process-

ing Systems, 2014.

[144] Nitish Srivastava and Ruslan R Salakhutdinov. Multimodal learning with

deep boltzmann machines. In Neural Information Processing Systems, 2012.

[145] J. Sturm, C. Stachniss, and W. Burgard. A probabilistic framework for

learning kinematic models of articulated objects. JAIR, 41(2):477–526,

2011.

169

[146] Jaeyong Sung, Colin Ponce, Bart Selman, and Ashutosh Saxena. Unstruc-

tured human activity detection from rgbd images. In International Confer-

ence on Robotics and Automation, 2012.

[147] Jaeyong Sung, Bart Selman, and Ashutosh Saxena. Synthesizing manipu-

lation sequences for under-specified tasks using unrolled markov random

fields. In IEEE/RSJ International Conference on Intelligent Robots and Systems,

2014.

[148] Jaeyong Sung, Seok Hyun Jin, and Ashutosh Saxena. Robobarista: Object

part-based transfer of manipulation trajectories from crowd-sourcing in

3d pointclouds. In International Symposium on Robotics Research, 2015.

[149] Jaeyong Sung, Seok Hyun Jin, Ian Lenz, and Ashutosh Saxena. Robo-

barista: Learning to manipulate novel objectsvia deep multimodal em-

bedding. 2016.

[150] Jaeyong Sung, Ian Lenz, and Ashutosh Saxena. Deep multimodal embed-

ding: Manipulating novel objects with point-clouds, language and trajec-

tories. In International Conference on Robotics and Automation (ICRA), 2017.

[151] Jaeyong Sung, J. Kenneth Salisbury, and Ashutosh Saxena. Learning to

represent haptic feedback for partially-observable tasks. In International

Conference on Robotics and Automation (ICRA), 2017.

[152] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-

duction. MIT press, 1998.

[153] Adriana Tapus, Cristian Ţăpuş, and Maja J. Matarié. User-robot person-

ality matching and assistive robot behavior adaptation for post-stroke re-

habilitation therapy. Intel. Ser. Robotics, 1(2):169–183, 2008.

170

[154] Stefanie Tellex, Ross Knepper, Adrian Li, Thomas Howard, Daniela Rus,

and Nicholas Roy. Asking for help using inverse semantics. Robotics:

Science and Systems, 2014.

[155] J. Tenenbaum, V. De Silva, and J. Langford. A global geometric frame-

work for nonlinear dimensionality reduction. Science, 290(5500):2319–

2323, 2000.

[156] T. Theodoridis, A. Agapitos, Huosheng Hu, and S. M. Lucas. Ubiquitous

robotics in physical human action recognition: A comparison between dy-

namic anns and gp. In International Conference on Robotics and Automation,

2008.

[157] Sebastian Thrun, Wolfram Burgard, Dieter Fox, et al. Probabilistic robotics.

MIT press Cambridge, 2005.

[158] R Toris and S Chernova. Robotsfor. me and robots for you. In Proceed-

ings of the Interactive Machine Learning Workshop, Intelligent User Interfaces

Conference, pages 10–12, 2013.

[159] Russell Toris, David Kent, and Sonia Chernova. The robot management

system: A framework for conducting human-robot interaction studies

through crowdsourcing. Journal of Human-Robot Interaction, 3(2):25–49,

2014.

[160] Sebastian Trimpe, Alexander Millane, Simon Doessegger, and Raffaello

DAndrea. A self-tuning lqr approach demonstrated on an inverted pen-

dulum. In IFAC World Congress, page 11, 2014.

[161] Tran The Truyen, Dinh Q. Phung, Hung H. Bui, and Svetha Venkatesh. Hi-

171

erarchical semi-markov conditional random fields for recursive sequen-

tial data. In Neural Information Processing Systems, 2008.

[162] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector

machine learning for interdependent and structured output spaces. In

International Conference on Machine Learning. ACM, 2004.

[163] I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, and Y. Singer. Large

margin methods for structured and interdependent output variables. Jour-

nal of Machine Learning Research, 6(9), 2005.

[164] Abhinav Valada, Luciano Spinello, and Wolfram Burgard. Deep feature

learning for acoustics-based terrain classification. In International Sympo-

sium on Robotics Research, 2015.

[165] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using

t-sne. Journal of Machine Learning Research, 9(2579-2605):85, 2008.

[166] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using

t-sne. Journal of Machine Learning Research, 9(2579-2605):85, 2008.

[167] Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learn-

ing using privileged information. Neural Networks, 2009.

[168] Ngo Anh Vien and Marc Toussaint. Touch based pomdp manipulation

via sequential submodular optimization. In Humanoids, 2015.

[169] Francisco Vina, Yasemin Bekiroglu, Christian Smith, Yiannis Karayianni-

dis, and Danica Kragic. Predicting slippage and learning manipulation

affordances through gaussian process regression. In Humanoids, 2013.

172

[170] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine

Manzagol. Extracting and composing robust features with denoising au-

toencoders. In International Conference on Machine Learning, 2008.

[171] Niklas Wahlström, Thomas B Schön, and Marc Peter Deisenroth. From

pixels to torques: Policy learning with deep dynamical models. arXiv

preprint arXiv:1502.02251, 2015.

[172] Xiaogang Wang, Xiaoxu Ma, and W.E.L. Grimson. Unsupervised ac-

tivity perception in crowded and complicated scenes using hierarchical

bayesian models. Pattern Analysis and Machine Intelligence, 2009.

[173] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Ried-

miller. Embed to control: A locally linear latent dynamics model for con-

trol from raw images. In Neural Information Processing Systems, 2015.

[174] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric

learning for large margin nearest neighbor classification. In Neural Infor-

mation Processing Systems, 2005.

[175] Daniel Weinland, Edmond Boyer, and Remi Ronfard. Action recognition

from arbitrary views using 3d exemplars. In International Conference on

Computer Vision, 2007.

[176] J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vo-

cabulary image annotation. In International Joint Conference on Artificial

Intelligence, 2011.

[177] Steven Wieland, D Gonzalez-Aguirre, Nikolaus Vahrenkamp, Tamim As-

four, and Rüdiger Dillmann. Combining force and visual feedback for

physical interaction tasks in humanoid robots. In Humanoid Robots, 2009.

173

[178] Andrew D. Wilson and Aaron F. Bobick. Parametric hidden markov mod-

els for gesture recognition. Pattern Analysis and Machine Intelligence, 1999.

[179] Shu-Fai Wong, Tae-Kyun Kim, and Roberto Cipolla. Learning motion cat-

egories using both semantic and structural information. In Computer Vi-

sion and Pattern Recognition, 2007.

[180] Chenxia Wu, Ian Lenz, and Ashutosh Saxena. Hierarchical semantic la-

beling for task-relevant rgb-d perception. In Robotics: Science and Systems,

2014.

[181] Chenxia Wu, Ian Lenz, and Ashutosh Saxena. Hierarchical semantic la-

beling for task-relevant rgb-d perception. In Robotics: Science and Systems,

2014.

[182] Jianxin Wu, Adebola Osuntogun, Tanzeem Choudhury, Matthai Phili-

pose, and James M. Rehg. A scalable approach to activity recognition

based on object use. In International Conference on Computer Vision, 2007.

[183] Q. Yang, K. Wu, and Y. Jiang. Learning action models from plan examples

using weighted max-sat. Artificial Intelligence, 171, 2007.

[184] Weilong Yang, Yang Wang, and Greg Mori. Recognizing human actions

from still images with latent poses. In Computer Vision and Pattern Recog-

nition, 2010.

[185] Bangpeng Yao and Li Fei-Fei. Modeling mutual context of object and hu-

man pose in human-object interaction activities. In Computer Vision and

Pattern Recognition, 2010.

[186] C.-N. Yu and T. Joachims. Learning structural svms with latent variables.

In International Conference on Machine Learning, 2009.

174

[187] Matthew D Zeiler. Adadelta: An adaptive learning rate method. arXiv

preprint arXiv:1212.5701, 2012.

[188] Matthew D Zeiler, M Ranzato, Rajat Monga, et al. On rectified linear units

for speech processing. In International Conference on Acoustics, Speech and

Signal Processing, 2013.

[189] Richard Zhang, Stefan A Candra, Kai Vetter, and Avideh Zakhor. Sensor

fusion for semantic segmentation of urban scenes. In 2015 IEEE Interna-

tional Conference on Robotics and Automation (ICRA). IEEE, 2015.

[190] Hankz Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li. Learning

complex action models with quantifiers and logical implications. Artificial

Intelligence, 2010.

175

