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Due to their continuous and natural motion, fluidic elastomer actuators (FEAs) have 

shown potential in a range of robotic applications including prosthetics and orthotics. 

Despite their advantages and rapid developments, robots using these actuators still 

have several challenging issues to be addressed. First, the reliable production of low 

cost and complex actuators that can apply high forces is necessary, yet none of 

existing fabrication methods are both easy to implement and of high force output. 

Next, compliant or stretchable sensors that can be embedded into their bodies for 

sophisticated functions are required, however, many of these sensors suffer from 

hysteresis, fabrication complexity, chemical safety and environmental instability, and 

material incompatibility with soft actuators. Finally, feedback control for FEAs is 

necessary to achieve better performance, but most soft robots are still “open-loop”.  In 

this dissertation, I intend to help solve the above issues and drive the applications of 

soft robotics towards hand orthotics and prosthetics. 



 

 

First, I adapt rotational casting as a new manufacturing method for soft actuators. I 

present a cuboid soft actuator that can generate a force of >25 N at its tip, a near ten-

fold increase over similar actuators previously reported. Next, I propose a soft orthotic 

finger with position control enabled via embedded optical fiber. I monitor both the 

static and dynamic states via the optical sensor and achieve the prescribed curvatures 

accurately and with stability by a gain-scheduled proportional-integral-derivative 

controller. Then I develop the soft orthotic fingers into a low-cost, closed-loop 

controlled, soft orthotic glove that can be worn by a typical human hand and helpful 

for grasping light objects, while also providing finger position control. I achieve 

motion control with inexpensive, binary pneumatic switches controlled by a simple 

finite-state-machine. Finally, I report the first use of stretchable optical waveguides for 

strain sensing in a soft prosthetic hand. These optoelectronic strain sensors are easy to 

fabricate, chemically inert, and demonstrate low hysteresis and high precision in their 

output signals. I use the optoelectronically innervated prosthetic hand to conduct 

various active sensation experiments inspired by the capabilities of a real hand.  
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CHAPTER 1 

INTRODUCTION 

1.1 Soft robotics 

Soft robots, defined as systems that are capable of autonomous behavior, and that are 

primarily composed of materials with moduli in the range of that of soft biological 

materials [1], provide a new paradigm for designing robots. Different from traditional 

robotic design, where the body, actuators, sensors, controllers and power sources are 

perfectly separated and are made of rigid materials [2], soft robotic systems have 

inseparable components [3] that are, most times, made of soft materials [4]. For 

example, the body of a typical fluidically powered soft robot is formed by soft 

actuators made from elastomers, which exhibit inherent compliance that enables the 

robotic body to achieve adaptive response to the environment. This mixture of 

functions and the new material selections boosted a new research area—soft robotics 

[1-2, 4-5]. 

Soft robotic systems have several advantages that are impossible or difficult to achieve 

using traditional robotic systems. First, soft robots usually have inherent compliance 

coming from the low elastic modulus of the body or actuators as well as the 

compressibility of the gas used to power them. This compliance enables the robots to 

deal with unpredictable and irregular environments in a simple manner [6], without 

sensors or controllers incorporated. For example, soft robots achieved grasping fragile 

and irregular objects [4] and crawling on unknown terrains [7] with just open-loop 
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control. Next, soft robotic systems are usually safe when interacting with humans [8] 

and comfortable to wear if used as exoskeletons. Traditional industrial robots work in 

places without humans and without considering safety issues and soft robots are safe 

to interact with because of their low stiffness and high adaptivity. Finally, the 

fabrication process for soft robots is usually simpler and are more likely to achieve 

mass-production [4]. Because of the above reasons, as well as recent technology 

development on materials and manufacturing techniques, soft robotics achieved fast 

development. In the next section, I will review the development history of soft 

robotics. 

1.2 Literature review 

Early-stage soft robotics research includes McKibben Artificial Muscle developed in 

the 1950s. McKibben muscle is actuated by compressed gas and has only one mode of 

motion—contraction. By using a pair of these muscles antagonistically, they could 

actuate a joint bidirectionally like human’s muscle. Because of the compressibility of 

the actuating medium and the softness of the bladder, McKibben muscle shows 

compliant behavior and researchers have been utilizing this property to ease its control 

[9]. 

Started from the 1990s, along with the fast development of robotics where robots 

became more and more accurate, fast and could hold more payloads, researchers 

around the world started to look for alternative methods of designing robotic systems. 

Some of them approaches the problem by analyzing current rigid systems and reached 

the conclusion that elasticity or compliance will increase safety and introduce 
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intelligence to the original completely stiff system. Pratt et al. (1995) proposed 

incorporating series elasticity could increase shock tolerance, increase force accuracy 

and provide energy storage [10]. Suzumori et al. (1996) used soft materials to produce 

compliant robot in order to generate soft motions and gentle touch for a multifinger 

robotic hand [11]. Tsagarakis et al. (2003) proposed the need for and the use of soft 

actuators in an anthropomorphic robot [12]. Bicchi et al. (2004) proved that 

intentionally introducing compliance in the design would increase the safety level of 

robotic arms interacting with humans [8].  

While the above researchers and scientists proposed and proved theoretically or 

experimentally incorporating compliance would improve the performance of existing 

robotic systems, especially in the safety aspect, other researchers approached this 

problem from bio-inspired views. They observed real-life animals and humans, and 

found that invertebrate animals achieved almost all their functions from soft tissues 

and even vertebrate animals achieved many functions from their soft organs. They 

mimic the mechanism of animals and humans and made soft-bodied robots from 

bioinspiration and biomimetics. Menciassi et al. (2004) proposed a shape memory 

alloy actuated artificial earthworm by mimicking the structure and locomotion of its 

natural counterpart [13]. Cutkosky et al. (2009) designed a gecko-inspired climbing 

robot that utilized multimaterial and compliant structure [14]. After reviewing various 

bio-inspired robots, Pfeifer et al. (2009) proposed the concept of morphological 

computation to design intelligent, adaptive robots [6]. Trimmer et al. (2011) designed 

a caterpillar-inspired soft-bodied rolling robot, which mimicked caterpillar’s 
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locomotion mechanism [15]. Laschi et al. (2011) designed an octopus-inspired soft 

robotic arm that was made of soft materials [16] . 

Started from 2010, soft robotics enters into a fast-growing period, largely due the 

development of soft materials and rapid prototyping techniques. In 2011, Ilievski et al. 

in Whitesides group of Harvard University published their work on soft robotics for 

chemists, where soft lithography was proposed for the first time to be used to make 

purely elastomeric robots [4]. Since then, the same fabrication techniques were 

conducted to prove more concepts and assumptions of fluidic elastomer actuators 

(FEAs): Shepherd et al. (2011) proposed a quadrupedal multigait soft robot, which 

proved soft robots could produce complex motion via simple design and control [17]. 

Tolley et al. (2014) proposed an untethered quadrupedal soft robot and proved the 

possibility of self-containing for soft robots and their ability to endure extreme 

environment [18]. Stokes et al. (2014) proved the combination of soft and hard robots 

by proposing a hybrid system [19]. Besides soft lithography, other rapid prototyping 

techniques have also been applied in soft robotics, like three-dimensional (3D) 

printing. Peele et al. (2015) used digital mask projection stereolithgraphy (another 3D 

printing technique) and printed multi degree of freedom soft tentacles [20]. MacCurdy 

et al. (2015) developed a 3D printing technique to print hydraulically actuated soft 

actuators [21]. Bartlett et al. (2015) used multimaterial 3D printing to print a 

functional soft robot that could jump [22].  

Sensor incorporation and controller design for soft robots also gained rapid advances 

along with fabrication techniques. Ramuz et al. (2012) developed transparent, optical, 
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pressure sensitive artificial skin that could be used for soft robots [23]. Roberts et al. 

(2013) developed soft capacitive sensor to measure shear strain and elastic pressure 

for soft matters [24]. Kramer et al. (2013) has used masked deposition to fabricate Ga-

In based elastomer conductive sensors [25]. Menguc et al. (2014) achieved large strain 

sensing by embedding liquid metal into the microfluidic channels of elastomers [26]. 

Muth et al. (2014) 3D printed stretchable strain sensor using conductive ink [27]. Most 

functional soft robots used open-loop control and utilized the inherent compliance to 

finish complex tasks. Duriez (2013) proposed using real-time finite element analysis 

to assist the nonlinear control of soft robots [28]. Marchese et al. (2014) has been 

working on the feedback control of a hydraulic, planar, soft robotic system based on 

computer vision and the low-level control used PID controller [29]. Morrow et al. 

(2016) achieved force and position control of a gripper via liquid-metal pressure 

sensor and strain sensor, also using PID controller [30]. 

Based on so many new technique developments and fundamental researches, soft 

robotics has achieved many applications in different areas. Current applications of soft 

robots include the following: 

(i) Bioinspired robots with new functions. Marchese et al. (2014) developed a robotic 

fish based on FEAs that was capable of not only forward swimming but also rapid 

maneuvers [31]. Recent work of Wehner et al. (2016) combined several most 

advanced technologies, including actuator fabrication and power source fabrication for 

soft robots, and they developed a fully self-contained, autonomous octopus-inspired 
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robot [32]. Also, the possibility of developing bio-inspired robots provides chances for 

biologists to better understand the mechanism of natural animals as well. 

(ii) Surgery robots. Cianchetti et al. (2014) investigated the feasibility of using 

stiffness-controllable soft actuators into minimally invasive surgery [33]. Sareh et al. 

(2014) further created miniaturized sensing elements for the compliant actuators to 

acquire tactile data during surgery [34]. 

(iii) Exoskeleton and prosthetics. Orthotics and prosthetics are robotic areas that are 

closest to humans being, thus safety and comfort outweigh other factors like accuracy 

and speed and soft robotics provide more chances of success than traditional robotics. 

Polygerinos et al. (2015) built up a soft glove that assisted in both rehabilitation 

training and activities of daily life for people with hand disabilities [35]. Yap et al. 

(2015) developed an fMRI-compatible soft glove for hand rehabilitation [36]. Deimel 

and Brock (2015) developed a fiber-reinforced soft hand that can achieve dexterous 

grasping of various objects [37].  

(iv) Other areas. Other applications of soft robotics include architecture [38], 

education [39], agriculture, neuroscience, etc. 

1.3 Challenges  

Despite rapid and prosperous development in almost every aspect of soft robotics, 

there are still several challenging issues that need to be addressed to carry this area 

forward into more practical applications. 
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First issue lays in the fabrication method. The McKibben muscle is capable of 

generating large forces; this actuator, however, is limited in that it has only one mode 

of powered actuation: contraction. Other fluid powered soft actuators that are under 

development have many modes of actuation (bending, extending, and contracting) but 

are fabricated laboriously, usually by soft lithography, investment casting, or fiber 

winding. The useful actuator designs from these processes are limited as soft 

lithography is essentially a layup process, investment casting is costly, and fiber 

winding is practical in only very simple architectures. Additionally, actuators 

fabricated from soft lithography function by the expansion of thin elastomer 

membranes that burst at low pressures for the current choices of materials, and relies 

on adhesive layers that easily delaminate. For many future applications of soft robotics 

(e.g., prosthetics or therapeutic and surgical tools), mass production of complex 

actuator designs that apply high forces will be necessary.  

Next issue is the sensing and control of soft robots. Despite soft robots possess 

intrinsic compliance, incorporation of sensing and control is still necessary to increase 

the accuracy and rapidity of motions, respond to environment change and interact with 

human beings. Most existing sensors are incompatible with these large strains. 

Commercially available flexible sensors usually suffer from low sensitivity, low 

repeatability and signal drift. Liquid-metal based resistive and soft capacitive sensors 

can be sensitive, but rely on expensive material or require a multi-step construction 

process. Computer vision can provide high quality position sensing, but the camera 

systems, besides being costly and complex, can interfere with the user’s motion.  Due 
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to these sensor limitations, most soft robots are still “open-loop”. Compared with other 

aspects of soft robotics, the effort going into the control of soft robots is very rare. 

Last issue is in the power source of soft robots. Current power source for soft robots 

include: compressed air tank, air/liquid pump, and combustion. Compressed air tank is 

bulky and heavy and can hardly be untethered; pump is of low efficiency and speed; 

combustion is fast and simple to build up, but is only limited to momentum actuation. 

More suitable power systems for soft robots are highly required. 

1.4 Dissertation scope and organization 

Due to their continuous and natural motion, fluidically powered soft actuators have 

shown potential in a range of robotic applications including prosthetics and orthotics. 

In my dissertation, I focus on two issues for soft robotics: (i) fabrication, and (ii) 

sensing and control towards the application of hand prosthetics and orthotics. The 

application of my results is not limited to this space and can be expanded into other 

applications. 

In Chapter 2, I adapted rotational casting as a new manufacturing method for soft 

actuators. The criteria for both mold design and material properties of the elastomeric 

precursors to produce networks of pneumatic channels are described. I present a 

cuboid soft actuator that can generate a force of >25 N at its tip, a near ten-fold 

increase over similar actuators previously reported. Additionally, I used this 

manufacturing technique and fabricated a wearable assistive device for increasing the 

force a user can apply at their fingertips. 
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In chapter 3, I proposed a soft orthotic with position control enabled via an embedded 

optical fiber based strain sensor. The design, manufacture, and integration of both the 

pneumatically powered actuators and optical sensors are described. This orthotic 

actuator-sensor pair is self-contained and worn on a human finger. When un-powered, 

the elastomeric actuator allows facile movement and, when pneumatically actuated, 

the orthotic causes bending of the wearer’s finger. Position control is achieved by 

measurement of signal intensity from a light-emitting diode (LED) input traveling 

through an embedded optical fiber—greater curvature results in increased light 

intensity. Both the static and dynamic states are monitored via the optical sensor and 

the prescribed curvatures are achieved accurately and with stability by a gain-

scheduled proportional-integral-derivative (PID) controller implemented by applying 

pulse-width-modulation (PWM) signals to a solenoid valve to adjust the internal 

pressure of the actuator. 

In Chapter 4, I developed the soft orthotic fingers in Chapter 3 into a closed-loop 

controlled soft orthotic with integrated curvature sensors.  My goal is a low cost soft 

orthotic that can be worn by a typical human hand and provide enough tip force at 

each finger to be helpful for grasping light objects (e.g., fruits), while also providing 

finger position (defined as average curvature) control. I have achieved reasonable 

functionality at these goals by using three advances described in this chapter: (i) a new 

rotational-casting technique as described in Chapter 2, followed by an over-molding 

process for making the glove; (ii) measuring finger motion through optical losses in a 

molded-into-place etched plastic fiber-optic cable as described in Chapter 3; and (iii) 

controlling motion with inexpensive, binary pneumatic switches controlled by a 
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simple finite-state-machine. The composite glove is purely polymeric, highly 

compliant, and provides little resistance to natural motion when not pressurized. When 

inflated, the fingers of the glove curve and stiffen.  

In Chapter 5, I report the first use of stretchable optical waveguides for strain sensing 

in a prosthetic hand. These optoelectronic strain sensors are easy to fabricate, 

chemically inert, and demonstrate low hysteresis and high precision in their output 

signals. As a demonstration of their potential, the photonic strain sensors are used as 

curvature, elongation, and force sensors integrated into a fiber reinforced soft 

prosthetic hand. The optoelectronically innervated prosthetic hand is used to conduct 

various active sensation experiments inspired by the capabilities of a real hand. My 

final demonstration uses the prosthesis to feel the shape and softness of three tomatoes 

and select the ripe one.  
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CHAPTER 2 

SCALABLE MANUFACTURING OF HIGH FORCE 

WEARABLE SOFT ACTUATORS*  

2.1 Introduction 

Soft machines are emerging as a new component in robotics that allow for simpler 

operation of complex functions (e.g., robotic manipulators) [1-3], more natural 

motions [4-7], and new functions (e.g., climbing walls) [8]. In many cases, these 

machines are actuated by pneumatically powered balloons composed of elastomers [1-

3, 9, 10]: increasing their inflated pressure results in greater stiffness and shape 

change. At low or zero inflation pressures, these actuators exhibit low stiffness and 

cause limited resistance to movement as wearable devices and human interfaces. As a 

result, there is a growing effort to use soft actuators for exoskeletons and prosthetics 

that can augment the force of, or altogether replace, human grasping and locomotion, 

as well as perform physical therapy tasks [11-13]. 

The McKibben muscle (a fiber-reinforced soft actuator) was developed over six 

decades ago and is capable of large ranges of stiffness as a function of pressure [14]; 

for example, Fluidic Muscle DMSPTM (Festo, Inc.) can be inflated from 0 to ~800 

kPa (~120 psi) [15]. This actuator, however, is limited in that it has only one mode of 

powered actuation: contraction. Other fluid powered soft actuators that are under 
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development have many modes of actuation (bending, extending, and contracting) [16-

18] but are fabricated laboriously, usually by replica molding [1, 3], investment casting 

[19], or fiber winding [20]. The useful actuator designs from these processes are 

limited as replica molding is essentially a layup process, investment casting is costly, 

and fiber winding is practical in only very simple architectures. Additionally, replica 

molded actuators function by the expansion of thin elastomer membranes that burst at 

low pressures for the current choices of materials [21], and relies on adhesive layers 

that easily delaminate. For many future applications of soft robotics (e.g., prosthetics 

or therapeutic and surgical tools), mass production of complex actuator designs that 

apply high forces will be necessary.  

In this chapter, I describe the manufacturing process of soft actuators using rotational 

casting, a reliable and high throughput production method. I present criteria for both 

the mold designs and required material parameters of the elastomeric precursors. To 

demonstrate this method’s utility, we rotationally casted a soft actuator that can 

generate a force of >25 N at its tip, a near ten-fold increase over similar actuators 

previously reported [12]. Additionally, we fabricated and tested a wearable, assistive 

device for increasing the force a user can apply at their fingertips.  

2.2 Experimental Design 

We chose to rotationally cast our actuators (Figure 2.1(a)) because it is an established 

process for high volume fabrication of hollow, monolithic structures (e.g., boat hulls 

and chocolate eggs). We used a 3D printer (Scholar 30, Objet, Inc.) to fabricate both 

the rotational casting machine and to rapidly iterate molds for the actuators. To 
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compare our rotational casted actuators to existing ones, we used a similar design to 

elastomeric, pneumatic network (Pneu-Nets) [1] and characterized them by testing 

their applied tip force at varying internal pressures at a fixed curvature. To fabricate 

force augmentation devices for a human hand, we designed soft actuators based on the 

shape of a finger.  

 

 
Figure 2.1 Biaxial rotational casting system and a sperical actuator. (a) Biaxial 
rotational casting system with multiple spherical molds, (b) complex viscosity 
evolution of Ecoflex 0030 at oscillation frequency of 1 rad/s at 25 ℃, (c) rotational 
cast spherical actuator with inset of cross-section, and (d) inflated spherical actuator at 
ΔP=27 kPa. 
 

To intuitively actuate the force augmentation device, we attached electromyography 

(EMG) sensors (Muscle Sensor v3, Advancer Technologies) to muscles in the forearm 

to trigger the finger actuators because they are low in cost and easy to implement. The 

electrical impulses detected by the EMG sensors open and close solenoid valves 

(Solenoid Air Directional Control Valve, McMaster) in line with the compressed air 

for powering the actuator. We chose a pneumatic power source because air is inviscid, 
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thus can be delivered rapidly, and it can have an energy density similar to lithium 

polymer batteries for use in untethered operation [22].  

Due to the complexity of the rotational flow fields of our viscoelastic precursors, I 

determined the dependence of machine and material parameters for fabricating a soft 

actuator using a simplified analytical model for Newtonian fluids and observing, 

experimentally, the flow conditions through transparent molds. I used Matlab® to 

simulate the trajectories of mold elements during rotation and used the results to 

determine the gear ratios in our machine to uniformly coat the interior of the molds. 

The rheological properties of the viscoelastic pre-elastomers we used were measured at 

an oscillatory frequency comparable to the strain rate of flows in our system using the 

Cox-Merz rule [23]. 

2.3 Experimental Methods 

Table 2.1 describes the material properties of the elastomers we used for rotational 

casting. We measured the rheological properties using a Discovery Hybrid Rheometer 

from TA Instruments. The initial viscosities were tested at oscillation frequency of 1 

rad/s at 25 °C, and the same oscillation frequency and temperature were used for all 

viscometry. We conducted tensile tests (ASTM D412) using Zwick/Roell Z010 to 

measure all the elastomers’ mechanical properties. We used Silicone Thinner (a non-

reactive silicone fluid from Smooth-On, Inc.) to lower the viscosities of the materials 

for compatibility with rotational casting. 
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We chose the axial speed ratio to be 47/36. The input rotational speed was a constant 6 

revolutions/min for all actuator designs. We rotated the molds filled with Ecoflex 0030 

for 45 minutes and cured them in a 60 °C oven for 15 minutes. We chose ELASTOSIL 

M4601 a/b and added 15% of ST to rotational cast cuboid actuators for 

characterization and finger exos. We encapsulated the cuboid actuator using 

ELASTOSIL M4601 a/b without ST. We rotated the molds filled with pre-elastomers 

for 3 hours and placed them in an oven at 60 °C for 1 hour to fully cure. 

Table 2.1 Rheological and mechanical properties of materials used 
Material name Initial 

viscosity 
[Pa·s]a)  

100% elastic 
moduli 
[MPa]b) 

Ultimate 
strength 
[MPa]b) 

Ultimate 
elongation 
[%]b) 

Ecoflex 0030 (from Smooth-
On, Inc.) 

4.0 0.04 0.8 670 

Ecoflex 0050 (from Smooth-
On, Inc.) 

7.9 0.06 1.2 800 

ELASTOSIL M4601 a/b (from 
Wacker Chemical Corp.) 

16.2 0.46 4.4 760 

ELASTOSIL M4600 a/b (from 
Wacker Chemical Corp.) 

39.2 0.54 4.0 620 

a) Tested at oscillatory angular velocity 1 rad/s, oscillatory strain amplitude 10% at 25 
°C;  
b) Tested under ASTM D412. 

2.4 Results and Discussions 

2.4.1 Parameters of the rotational casting system 

The majority of rotational casting processes use a frame with two axes of rotation to 

coat the interior of a heated, hollow mold. During rotation, a molten thermoplastic 

resin coats the mold surface, then the system is cooled until the material falls below its 

glass transition temperature and becomes stiff [24]. Though some thermoplastic 
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elastomers may be compatible with rotational casting of soft actuators (e.g. Elastollan 

from BASF), the elastomers currently used in soft robots are cured using radical or 

condensation polymerization [1-5, 7, 9, 12,13, 16-22]. 

The rotational casting system we developed for fabricating soft actuators uses 

materials that are liquid at room temperature and polymerize into soft elastomers 

during the casting process. This system has four parameters that must be tuned: (i) 

viscosity evolution during casting; (ii) rotational speed of the primary axis, ωx; (iii) 

axial speed ratio of the machine, r; and (iv) the internal surface geometry of the two-

part molds. 

As the elastomeric material gels, the viscosity increases towards infinity [25], and 

there is an increasing resistance to flow from external forces such as gravity, normal 

force and drag from the mold during rotational casting. Using rheometery, we have 

identified three important viscosity regimes for the rotational casting of thermosetting 

elastomers (Figure 2.1(b)): low, when the initial viscosity, η0, allows the material to 

flow too fast to rotate with the mold; coating, where the polymer has reached a 

threshold viscosity, ηc, large enough to spread along the interior surface; and high, 

when the gelling elastomer has exceeded another threshold viscosity, ηh, and no longer 

flows fast enough to uniformly coat regardless of the number of rotational cycles. 

The lower threshold of low regime flow rate is entirely dependent on η0; however, the 

coating and high regimes are also dependent on the characteristics of the rotational 

casting machine and the mold geometry. To determine the dependence of the threshold 

viscosities (ηc and ηh) on rotational casting parameters we used a slowly rotating 
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hollow spherical mold, the slow rotation ensures gravity is the primary driving force 

for flow and the sphere geometry simplifies analysis. Assuming a steady state, no-slip, 

laminar flow of incompressible Newtonian fluid (see Section 2.6.2 for derivation and 

assumption validation) we found the dependence of 𝜂! and 𝜂! on the machine and 

mold parameters:  

        𝜂! =
!
!

!"
!!!∙!(!)

ℎ!                          (Equation 2.1) 

𝜂! =
!!
!

                                      (Equation 2.2) 

with elastomer density, ρ, gravitational constant, g, rotational velocity of the primary 

axis, ωx, mold radius, R, average coating thickness, ℎ, speed ratio of the secondary to 

the primary axis, r, and  𝑓 𝑟 =
!!!!!"#!!!"!!

!
!!

, which is an increasing function of r 

describing how r affects mold speed in biaxial rotation. α is an empirically determined 

value (ideally, α = 0, which indicates pre-elastomers are still relative to the mold; in 

our experiment, α = 0.05, which indicates the speed of pre-elastomers only achieve 5% 

of the mold speed). Using the typical material and machine parameters used in our 

experiments (ρ ~ 103 kg/m3, ωx = 6 rev/min, R = 10 mm, ℎ = 2 mm, r ~ 1.25) we find 

the threshold viscosities for coating are ηc ~ 2.6 Pa·s, ηh ~ 52 Pa·s. 

To verify our analytical model, we used transparent molds to observe the ability of 

silicone pre-elastomers to form coatings at increasing viscosities (Figure 2.12). Using 

the same parameters for our analytical model, we found good agreement with ηc
exp=7.1 

Pa·s and ηh
exp=42 Pa·s. We believe our underprediction of ηc is due to our steady state 
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analysis not accounting for the initial pool of material at the bottom of the mold. The 

resulting spherical actuator, fabricated from Ecoflex 0030, is capable of changing 

volume by 2200 % at an internal pressure, ΔP ~27 kPa  (ΔP ~4 psi; Figure 2.1(c, d)). 

Other materials that have different viscosity evolutions of their pre-elastomers can be 

modified for use in this process via the addition of Silicone Thinners (ST; Smooth-On, 

Inc.). Adding ST to Elastosil M4601 a/b (Wacker Chemical Corp.; Figure 2.12), 

allows a similar η0 to Ecoflex 0030. We found that high concentrations of ST affects 

the cured properties of the elastomer (Figure 2.13), and thus we kept these 

concentrations below 20% by volume. Though it is also possible to tune a material’s 

viscosity evolution profile using temperature (Figure 2.14; increasing the material 

available for rotationally casting elastomers), we did not use that feature to fabricate 

devices in this paper. 

Simulated trajectories of a mold element (Figure 2.2) indicate that its initial position 

determines the coverage area, while speed ratio, r, determines the coverage density. 

Elements on the pole (Figure 2.2(a)) always cover a circle independent of r, elements 

on the equator (Figure 2.2(d)) cover the entire sphere surface, and elements between 

them (Figure 2.2(b, c)) partially cover the sphere surface area. By choosing r=46/37, 

we achieved the greatest coverage density, which resulted in a more homogenous 

material distribution. Though these gear ratios appear similar in value (1.25, 1.27, 

1.24), the least common multiple of the numerator and denominator (20, 154, 1702) 

are dramatically different and result in different coating abilities (see Secion 2.6.1 for a 

detailed explanation). 
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Figure 2.2 Simulated element trajectories of four different positions on the mold under 
three axial speed ratios: 5:4, 14:11 and 46:37. The simulations were run for one biaxial 
rotational cycle for each speed ratio in Matlab®. The first column shows the initial 
position of the element simulated in black marker: row (a) shows the simulations of an 
element on the pole; row (b) shows the simulations of an element between the pole and 
the equator; row (c) shows another element between the pole and equator but closer to 
the equator; row (d) shows an element on the equator.  
 

For more complex actuators, the mold design is critical. Figure 2.3(a, b) shows the 

functional design of a bending actuator. The profile of the mold’s interior structure 

shows a flat side and a wavy array of channels that form the pneumatic network. 

Before rotational casting, we place a layer of nylon fiber mesh on the flat side of the 

mold to limit the strain in this location while actuated. During rotational casting, the 

material distributes along the interior structures and polymerizes into a monolithic part 
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as shown in Figure 2.3(c). When pressurized, the wavy portion stretches and the strain-

limiting area does not, causing bending (Figure 2.3(e)). 

 
Figure 2.3 Rotational casting process. (a) Rotational casting machine with multiple 
molds, (b) profile of interior structure of a cuboid soft actuator mold and elastomer 
coating, (c) rotationally cast monoliths, (d) encapsulation and (e) inflation the cuboid 
actuator. 

Concave mold geometries (Figure 2.3(b), points A-C) accumulate more material than 

flat or convex features, and the larger the curvature the thicker the coating (e.g., wall 

thickness at point A is greater than points B and C). On the contrary, convex points 

(Figure 2.3(b), point E) tend to have vanishingly thin walls. In order to overcome this 

problem, we designed the distance between the strain limiting layer (D) and the convex 

portion (E) to be smaller than twice the average thickness of the coating, so the 

material on both sides build up and “kiss off” each other. This “kiss-off” feature is 

widely used in industrial rotational molding to increase the stiffness of plastic parts 
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[24]. By using this feature, the rotational cast part is monolithic and composed of a 

series of separate units connected by a common flat layer (Figure 2.3(c)).  

To apply compressed air to each unit of the actuator, we inserted a steel wire through 

each chamber and encapsulated it using the same elastomer (Figure 2.3(d)). After 

encapsulation, we removed the wire and applied pressure; Figure 2.3(e) shows the 

curvature at 40 kPa (6 psi). We also use the encapsulating layer for two other 

functions—providing a human to machine interface and adding the desired amount of 

structural stiffness.  

As this method relies on gravity to coat the mold interiors, the same downward force is 

exerted at all points in the machine; therefore, multiple actuators can be cast 

simultaneously. To demonstrate the scalability of this manufacturing method, we fixed 

multiple molds on the machine and cast them in one set (see Figure 2.3(a, c)).  

2.4.2 Force tests of cuboid actuators 

ELASTOSIL M4601 (a tougher silicone than Ecoflex 0030, Table 2.1) with 15% ST 

has an appropriate viscosity profile for rotational casting actuators (Figure 2.14). Using 

this material, we were able to cast cuboid actuators that generated high forces when 

pressurized Figure 2.4(a)). At inflation pressure of 167 kPa (~25 psi), we were able to 

place a 0.5 kg weight on it with no obvious deformation. As many applications for 

actuators depend on the force applied at the end of the effector, we measured the tip 

force exerted over increasing pressures at two different curvatures, κ, using a blocking 

force measurement (Figure 2.4(b, c); Section 2.6.5). We used curvature as a metric as 
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it is an important parameter for exoskeletons design; for example, actuators for fingers 

were measured to be κ ~ 20 m-1 and elbows, κ ~10 m-1. Figure 2.4(c) shows the tip 

force is zero until the actuator contacts the block, and then increases approximately 

linearly with inflated pressure, with larger rate for smaller curvature constraint. The 

maximum pressure and maximum force we tested for these rotational cast actuators are 

234 kPa (34 psi) and 27.4 N, which exceeds pneumatic bending actuators of similar 

dimensions and purely elastomeric material made from replica molding [12].  

 
Figure 2.4 Force tests for rotational casted actuators. (a) Inflated cuboid actuator with a 
0.5 kg weight on its top, (b) force test set up and (c) tip force vs. pressure of three 
specimens with two different curvatures. 
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2.4.3 EMG triggered finger actuator 

We designed a wearable actuator (exo) for a human finger where the only constraint in 

natural movement, when unpowered, comes from the resilience of the stretched, low 

elastic modulus silicone (Table 2.1). To further reduce constraint during movement, 

we used thin actuators (thickness ~ 6 mm; Figure 2.5(a)), which we then coated 

(Figure 2.5(b)) in a thin encapsulating layer. This layer also formed three circular 

bands to secure it to human hand, and a protrusion we used to clamp the pneumatic 

tether (see Section 2.6.4 for mold details). This actuator demonstrates limited 

resistance to the free movement of a finger as shown in Figure 2.5(c) and generates a 

force of 4.0 N when pressurized at 140 kPa (~21 psi) and κ ~ 20 m-1 (Figure 2.5(d)). 

A large programmable range of stiffness when pressurized makes these actuator great 

candidates for both exoskeletons and prosthetics. To demonstrate their utility, we 

prototyped a simple human-controlled finger exo. This system uses an 

electromyographic (EMG) sensor and microcontroller that opens and closes a solenoid 

valve in line with compressed air to power the finger actuator in Figure 2.5 (Video 2.1; 

see Section 2.6.5 for more details). The EMG is attached to the forearm where the 

muscles control finger movements (i.e., flexor digitorum profundus muscle) are 

located, and by reading the electrical activity of the muscles, we were able to sense 

their contraction. Upon sensing this action, the microcontroller opens the valve and 

pressurizes the finger actuator. Figure 2.5(e) demonstrates the EMG signal change 

over time, the corresponding valve state, and the finger actuator movement. When the 

user’s finger is at rest, the EMG signal is low and the finger actuator is uninflated; 
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when they begin to pick up a 2 kg weight, the EMG signal increases until it reaches a 

threshold and the finger actuator is rapidly inflated. To deflate the actuator, the user 

then squeezes to trigger another impulse of the EMG signal, which closes the valve 

and deflates the finger actuator. 

 

Figure 2.5 EMG controlled soft finger worn by a hand. (a) Rotationally casted, 
pneumatic network monolith, (b) encapsulted into exoskeleton form and placed on a 
finger, (c) uninflated finger actuator bends with finger, (d) inflated finger actuator and 
(e) EMG signal while sensing muscle activation. [b-d scale is identical] 
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2.5 Conclusions 

I have developed a design and manufacturing method for fabricating monolithic soft 

machines via rotational casting. As the resulting actuators have no seams, they fail 

only due to the ultimate strength of the materials (or flaws therein) and not due to 

assembly errors; as a result, they can attain high pressure and apply relatively large 

forces. In this chapter, I have shown three different actuators: spherical, bending, and a 

finger exo that has the potential for augmenting the force of users with reduced 

musculature or enhancing the applied force beyond normal human abilities. The 

fabrication technique can be extended to a large variety of complex internal 

architectures. 

Compared with traditional fabrication methods, our process has three advantages: (i) it 

uses thermosetting elastomers (e.g., silicones, urethanes, acrylates, styrene-butadiene 

rubbers) which are common materials currently in use and desirable for soft robotics 

[1]; (ii) it simplifies the soft machine fabrication process; (iii) many actuators can be 

fabricated simultaneously (Figure 5.4(a), Section 2.6.1). Presently, the generated force 

by the finger actuator (~4.0 N) is still insufficient to replace human limbs to 

manipulate heavy objects. By using an integrative mold design, a glove and sleeve 

assist device could be fabricated in one step, and using tougher materials (e.g. 

polyurethanes) will allow significant augmenting force for the movement of 

appendages. 

Our machine and molds (see Section 2.6 or web link to digital CAD files) are currently 

limited in scale by the build area of available 3D printers. In principle, however, much 
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larger rotational casting machines are already in use and could be adapted for full 

exoskeletons or fabricating thousands of actuators simultaneously. Additionally, using 

the same design principles and thermoplastic elastomers, we could produce large soft 

robots using industrial equipment. Finally, it is common in industry to co-mold and 

over-mold objects with the rotationally casted form; therefore, it should be 

straightforward to incorporate sensors, motors, and power sources directly into 

exoskeleton systems and prosthetics.  

2.6 Supplementary Materials 

 
Figure 2.6 Relationships of different parameters in rotational casting system 
 

Producing consistent and strong actuators using rotational casting requires specific 

calibration of several tuning parameters. As shown in Figure 2.6, in our system, the 

final shape of the actuator is determined by the distribution of pre-elastomers along 

internal surface of the mold. Gravitational force, drag and normal force from the mold 

wall, as well as the rheological properties of materials determine motion of pre-

elastomers. For each volume element of the pre-elasotmers, the above three forces 
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change over time with the rotation of the molds about two axes. Thus, besides the 

noticeable effect from the internal geometry, axial speed ratio is another important 

factor in affecting the final actuator homogeneity as it determines the spatial location 

of mold elements. 

 
Figure 2.7 Rotational casting machine with dimensions (in the unit of mm) and 
coordinate systems. 

It is difficult to consider all parameters simultaneously, unless numerical simulation is 

conducted. In this section, I will separately discuss more about each parameter that 

was computed or designed to produce the soft actuators presented earlier in this 

chapter. Tuning the parameters required the following: a proper axial speed ratio 

(Section 2.6.1), a model to relate rotational speed and actuator dimensions with 

viscosity (Section 2.6.2), the dependence of viscosity and ultimate strength of 
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elastomers on thinner percentage (Section 2.6.3), and mold geometries (Section 2.6.4). 

All data was produced using the 3D printed rotational casting machine in Figure 2.7. 

At the end of this section, we briefly show the procedures of the tip force tests and 

EMG-triggering experiment discussed in Section 2.4.3. The digital CAD files of 3D 

printed parts for building up the rotational machine can be found at: 

https://www.dropbox.com/sh/yf0fsf018gf9wmj/AADIrkANUyYPxpwBB0-

TTr31a?dl=0. 

2.6.1 Axial speed ratio design 

The rotational casting machine is made up of two rotating frames: the outer one 

rotating about the X-axis driven by a motor and the inner one about the Y-axis driven 

by a bevel gear transmission. To exclude the effect of mold geometry and only 

consider the effect of axial speed ratio, we used a spherical mold (see Figure 2.17) for 

the design. The curvature of every point on the internal surface is equivalent for a 

spherical mold. A good axial speed ratio must satisfy: (1) avoid adding inhomogeneity 

for mold motion; (2) allow short periods for fast distribution of pre-elastomers. 

There are two sets of coordinate systems shown in Figure 2.7: the XYZ coordinate, 

which is relative to the outer frame, and the global xyz-coordinate, which is fixed to 

the ground. Molds were fixed on the inner frame. We defined the axial speed ratio for 

the inner frame as following: 

         𝑟 = !!
!!
= !!

!!
                                     (Equation 2.3)       
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where N1 and N2 are coprime integers and ωX and ωY are the rotating speed about X-

axis and Y-axis. 

 

Figure 2.8 Grid on a spherical surface. Intersection points are points being simulated. 
 

We simulated (using Matlab®) the rotation of the spherical mold using different axial 

speed ratios to understand how they would affect coating uniformity. Besides 

simulating the trajectories of certain points as shown in Figure 2.2, we chose 182 

points distributed on the sphere surface (no point was greater than 3mm in separation) 

as shown in Figure 2.8.  

Each point was rotated just as it would be on the rotational casting machine. Their z 

position was tracked at different axial ratios because only z position is distinguishable 

with respect to the three driving forces for rotational casting (gravity, drag and normal 

force). The data for the each chosen point was plotted into a probability density 



 

 34 

functions (PDF, set at 1 mm intervals). PDFs for 182 points were plotted into one 

figure to see how different axial speed ratios affected mold motions (Figure 2.9). The 

ideal speed ratio would have produced identical density distribution for each point 

chosen after rotating for a complete period, yet we found no such speed ratio. We 

found the least common multiple (LCM) of N1 and N2 is a critical factor: the larger the 

LCM is, the fewer the number of PDFs and the more homogenous the coating. 

The number limit we found for PDFs was six. Further analysis shows that the six 

different PDFs come from different initial Z-positions. Although the biaxial rotational 

casting machine could not produce identical motions for every point on the mold, we 

believe that a triaxial rotational casting machine could. For our purpose these PDFs 

were acceptable because they are symmetric, relatively flat, and identical for points 

with the same initial Z positions, thus we can simply manipulate the initial position of 

the mold to satisfy the homogeneity requirement of high priority. 

Considering the second criterion, shorter period, we want small values for N1 and N2. 

Given the tradeoffs between large LCM and small values for N1 and N2, we chose r 

with a smaller LCM as long as the PDF number is close to six. For example, 46/37 is a 

better choice than 55/46. Also, r should be neither close to 1 nor too large. For 

example, if r = 101:100, when the mold completes one rotation about the Y-axis, it 

completes 101/100 rotations about the X-axis. The two axes have a 1/100-rotation 

difference, and it takes 100 rotations about the Y-axis to complete a full period. 

However, for r = 5:4, a complete period spans only 5 rotations about the Y-axis. If we 

choose r close to 5:4, we can complete roughly a full period every 5 rotations about the 
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Y-axis. Thus we chose numbers close to 3/2, 4/3, and 5/4, but with larger LCM’s. 

From the above selection criteria, we selected axial speed ratio as 46:37 (close to 5:4) 

to use in our experiments. 

 
Figure 2.9 z-position PDFs for different axial speed ratios (x-axis in unit of mm) 
 

For the above simulation, the mold is fixed at the center. Next we would prove that 

molds could be placed at any places of the machine. If we could prove this assumption, 

we could enlarge our machine and put a large number of molds in one run and reduce 
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the manufacturing time to realize mass production. In the following part, we will prove 

it theoretically. 

 
Figure 2.10 Schematic of mold rotation about two axes, the dotted line indicates the 
positions after rotating 
 

Assume a spherical mold whose center is fixed at the center of the coordinates O and 

another mold whose center is fixed at O1. Pick a random point A on the mold centered 

at O and pick a point A1 on the other mold which is of the same relative position to O1 

as A to O. Rotate two molds together, first about x-axis an angle of θx then about y-

axis and angle of θy. We will prove that the relative position of A1 to O1 after rotation 

is the same as that of A to O.  

Proof: 
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Let 

𝑅! =
1 0 0
0 𝑐𝑜𝑠𝜃! −𝑠𝑖𝑛𝜃!
0 𝑠𝑖𝑛𝜃! 𝑐𝑜𝑠𝜃!

                           (Equation 2.4) 

𝑅! =
𝑐𝑜𝑠𝜃! 0 −𝑠𝑖𝑛𝜃!
0 1 0

𝑠𝑖𝑛𝜃! 0 𝑐𝑜𝑠𝜃!
                           (Equation 2.5) 

So 

𝑂𝐴′ = 𝑅𝑦𝑅𝑥𝑂𝐴                                      (Equation 2.6) 

𝑂𝑂!′ = 𝑅𝑦𝑅𝑥𝑂𝑂!                                   (Equation 2.7) 

𝑂𝐴!′ = 𝑅𝑦𝑅𝑥𝑂𝐴!                                   (Equation 2.8) 

Then 

𝑂!′𝐴!′ = 𝑅𝑦𝑅𝑥(𝑂𝐴! − 𝑂𝑂!) = 𝑅𝑦𝑅𝑥𝑂!𝐴!                 (Equation 2.9) 

Finally, 

𝑂𝐴′ = 𝑂!!𝐴!!                                 (Equation 2.10) 

The reason that we only care about relative position is that the driven forces of 

rotational casting are gravity, drag and normal force from the mold with no centrifugal 

force, for which only the relative positions of elements on the mold matter. Also, 

centrifugal forces are avoided by limiting the rotational speed. 
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2.6.2 Model to relate viscosity with rotational speed and actuator 

dimensions 

We assume that a proper axial speed ratio is designed to ensure spatial homogeneity 

for mold motions and the same spherical mold is used to exclude the effect of mold 

geometry. In addition, the following assumptions are made to establish a simple model 

for analyzing the relationship for pre-elastomer properties, input speed and other 

factors: (1) the pre-elastomers are incompressible and isotropic Newtonian fluid with 

shear viscosity, η and density, 𝜌; (2) only laminar flow exists; (3) no slip between the 

pre-elastomer and the mold surface; (4) ignore unsteady acceleration and only consider 

the steady state. 

 

 

Figure 2.11 Cross-sectional profile of the spherical mold with pre-elastomers inside 
and an enlarged diagram of a locality with tangent plane of included angle 𝜃 with the 
ground; solid arrows indicate motions of pre-elastomers and dotted arrows indicate 
motions of mold elements 
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Under all the assumptions described above, the velocity field circled in Figure 2.11 can 

be described using Navier Stokes Equation as: 

  𝜂 !
!!!
!!!

+ 𝜌𝑔 𝑠𝑖𝑛 𝜃 = 0                         (Equation 2.11) 

with boundary conditions as: 

𝑢!(𝑦 = 0) = 0                                (Equation 2.12) 

!!!
!!
(𝑦 = ℎ) = 0                              (Equation 2.13) 

where ux is the velocity along x direction relative to mold, h is the thickness of the pre-

elastomer at this point. 

By solving the above equations with boundary conditions, we calculate: 

𝑢! = − !" !"# !
!

(!
!
𝑦! − ℎ𝑦)                    (Equation 2.14) 

Then we determine the average velocity with wall thickness h and plane angle 𝜃 using 

the following equation: 

𝑢!,! =
!!

!
! !"

!
=

!!" !"#!!
!
!!

!!!!!
! !"

!
= !

!
!" !"# !

!
ℎ!  

(Equation 2.15) 

Finally, we calculate the average velocity of pre-elastomers of the whole sphere along 

the mold with an average thickness, ℎ, using the following equation: 
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𝑢! =
!!,!

!
! ∙!!" !"# !∙!!"

!!!!
= !

!"
!"
!
ℎ!                  (Equation 2.16) 

Now we have related the motion of pre-elastomers with forces and its properties and 

thickness. Before we discuss the rationality and motivation of calculating the above 

average velocity, we first discuss about the mold’s motion. 

The mold rotates about X-axis at the speed of 𝜔! and about Y-axis at the speed of 𝜔!, 

thus 

𝜔 = 𝜔!𝐼 + 𝜔!𝐽                                (Equation 2.17) 

X-axis is fixed with 𝐼 = 𝚤, but Y-axis is rotating with 𝐽 = 𝑐𝑜𝑠𝜑𝚥 + 𝑠𝑖𝑛𝜑𝑘, where 𝜑 is 

the angle between Y-axis and y-axis, thus 

𝜔 = 𝜔!𝚤 + 𝜔! 𝑐𝑜𝑠𝜑 𝚥 + 𝜔! 𝑠𝑖𝑛𝜑 𝑘                (Equation 2.18) 

We ignore the rotation about the z-axis and only consider the rotations in the vertical 

direction, thus 

𝜔 = 𝜔!𝚤 + 𝜔! 𝑐𝑜𝑠𝜑 𝚥 = 𝜔!! + 𝜔!! 𝑐𝑜𝑠! 𝜑      (Equation 2.19) 

For a fixed axial speed ratio  𝑟, 

𝜔 = 𝜔! 1+ 𝑟! 𝑐𝑜𝑠! 𝜑                       (Equation 2.20) 

So the mold could be seen as rotating about a horizontal axis with a speed 

𝜔! 1+ 𝑟! 𝑐𝑜𝑠! 𝛼. Half the sphere is rotating up and the other half is rotating down. 

For the half sphere rotating up, the radius of gyration can be calculated as: 



 

 41 

𝑅 =
(! !"# !)(!!" !"# !)!"#

!
!

!
!!!!

= !
!
                   (Equation 2.21) 

So is the radius of gyration for the other half sphere that is rotating down. Now we 

could estimate the average velocity of points on the mold: 

𝑣!",! = 𝑣!"#$,! = 𝜔 ∙ 𝑅 = !!!
!

1+ 𝑟! 𝑐𝑜𝑠! 𝜑            (Equation 2.22) 

where φ changes with time linearly, so we could calculate the time-average velocity 

by integrating 𝜔  with 𝜑. Define 𝑓(𝑟) =
!!!! !"#!!!!

! !"

!!
, thus 

𝑣!" = 𝑣!"#$ =
!!!
!
𝑓(𝑟)                      (Equation 2.23) 

Now we relate the mold velocity with input rotational speed, dimension of the mold 

and speed ratio. Next, we relate mold motion with pre-elastomer’s motion. 

In the low viscosity regime (b), 𝜂 is small, so based on Equation 2.16, 𝑢! is large. 

More specifically, 

𝑢! > 𝑣!"                                     (Equation 2.24) 

Notice that 𝑢! is the average velocity relative to mold, thus the direction of absolute 

velocity of pre-elastomers is downward. In a macro view, pre-elastomers flow to the 

very bottom of the mold. When the following condition is satisfied: 

𝑢! = 𝑣!"                                    (Equation 2.25) 
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pre-elastomers start to stick the mold and have a tendency to climb up. From the above 

equation, we can estimate 𝜂! as Equation 2.1. 

As 𝜂 increase, pre-elastomers lie in the coating regime and satisfy: 

𝑢! < 𝑣!"                                     (Equation 2.26) 

however, when 

𝑢! << 𝑣!"                                   (Equation 2.27) 

pre-elastomers stick completely with the mold and enter the high viscosity regime. The 

threshold 𝜂! could be estimated from the following semi-empirical relation: 

𝑢! = 0.05 ∙ 𝑣!"                                (Equation 2.28) 

The above equation shows we choose the threshold viscosity when the speed of the 

liquid only achieves 5% (𝛼 in the Equation 2.2) of the mold speed. The reason that we 

are using “average” velocity is: (1) velocity differs from point to point for both the 

mold and the pre-elastomer and they follow different rules of changing, so it is 

extremely difficult to get an analytical model for the whole system; (2) we used these 

equations to estimate the threshold viscosities and analyze how they are dependent on 

other parameters, in that case, a rough average estimate is enough and easy to 

implement. 
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In the next part, we will calculate the two threshold viscosities using Equation 2.25 and 

2.28 and compare with data from experiments. The values for parameters are: 

𝜌 = 1000  kg/m!, 𝑔 = 10  m/s!, 𝜔! = 6  revs/min, 𝑅 = 10  mm, ℎ = 2  mm, 𝑟 = !"
!"

. 

From Equation 2.25: 

𝜂! =
!
!

!"
!!!"(!)

ℎ! = 2.6  Pa ∙ s                      (Equation 2.29) 

From Equation 2.28: 

𝜂! =
!"!
!

!"
!!!"(!)

ℎ! = 52  Pa ∙ s                     (Equation 2.30) 

From Equation 2.25 and 2.28, we also see that 𝜌 and ℎ increase required 𝜂! and 𝜂! 

while 𝜔!, 𝑅 and r decrease them when increase. 

Then we directly tested 𝜂! and 𝜂!. We choose a set speed (6 revs/min) and began 

changing the viscosity to observe the motion of the pre-elastomers at different 

viscosities. For visualization we fabricated a mold (mold dimensions are the same as 

the spherical mold shown in Figure 2.17) using the transparent rubber VytaFlex 20 

(from Smooth-On. Inc). We loaded Ecoflex 0030 precursors of different viscosities 

into the transparent mold and Figure 2.12 shows the screenshots at different times of 

five viscosities. 
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Figure 2.12 Pre-elastomer motions of five viscosities at different time intervals: (a) 
𝜂  ~  5  Pa ∙ s; (b) 𝜂  ~  8  Pa ∙ s; (c) 𝜂  ~  12  Pa ∙ s; (d) 𝜂  ~  34  Pa ∙ s; (e) 𝜂  ~  61  Pa ∙ s. 
 

We observed the motions of pre-elastomers and tested the viscosity of pre-elastomer 

when it just start to stick to mold and when it ended moving relative to mold: 

𝜂!   ~  7.1  Pa ∙ s and 𝜂!  ~  42  Pa ∙ s. 

Comparing the experimental results with the calculated ones, we found that is close yet 

the experimental 𝜂! is larger than the calculated one. At the start of the coating regime 

of Figure 2.1(b), pre-elastomers are still at the very bottom of the mold, the average 

thickness is larger than when they are distributed along complete internal surface, so ℎ 

should be modified. For example, by substituting ℎ = 4  mm, we get 𝜂! = 10.4  Pa ∙ s.  

2.6.3 Reducing viscosity by adding thinners to silicone 

A necessary requirement for the pre-elastomers of rotational casting is:  

                                η0<ηc                                          (Equation 2.31) 
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Thus for pre-elastomers with high initial viscosity, thinners were used to reduce η0. We 

added Silicone Thinner (ST, from Smooth-On, Inc.) to the silicone rubbers (including 

Ecoflex 0050, ELASTOSIL M4601 a/b and ELASTOSIL M4600 a/b) to reduce the 

viscosity of their pre-elastomers for rotational casting. Figure 2.13 shows the 

dependence of initial viscosity on ST percentage. 

 

 
Figure 2.13 Thinner percentage vs. initial viscosity 
 

Adding thinners also affected the mechanical properties of the cured elastomers, 

especially the strength and elasticity. Figure 2.14(a-c) show the dependence of ultimate 

strength, ultimate elongation and 100% modulus on ST percentage, respectively. The 

dependence of ultimate strength on ST percentage is unidirectional: increasing ST 

percentage decreases ultimate strength. For example, by adding 25% of ST, the 
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ultimate strength of ELASTOSIL M4600 a/b drops by 50% from 4 MPa to 2 MPa. Yet 

the dependence of ultimate elongation on ST percentage is ambiguous. For example, 

ELASTOSIL M4600 a/b reached its maximum ultimate elongation at the ST 

percentage of 25%. Ultimate elongation also decreases with the adding of ST. 

 
Figure 2.14 Tensile tests results of materials with different percentages of ST 
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In conclusion, adding ST decreases the ultimate strength, affects ultimate elongation 

and makes the material softer by decreasing its tensile modulus. In order to gain the 

required initial viscosity of the pre-elastomers, we sacrificed partial strength and 

elasticity of the cured elastomers. We also tested the ultimate strength by adhering two 

pieces of ELASTOSIL M4601 a/b together. The sample broke at the adhesive location 

and gave us an ultimate strength of 2.6 MPa. However, if we add 25% of ST into 

M4601 a/b, the ultimate strength dropped down to 2.3 MPa, which is lower than the 

adhesive strength (donated by 𝜎! ). Thus another criterion for choosing the ST 

percentage besides Equation 2.31 is: 

𝜎! > 𝜎!                                        (Equation 2.32) 

where 𝜎! is the ultimate strength of the elastomer adding thinners. 

 
Figure 2.15 Viscosity evolution of different materials 
 



 

 48 

For the above reasons we looked for a ST percentage to balance between the initial 

viscosity and the ultimate strength. We chose ELASTOSIL M4601 a/b and added 15% 

of ST to make cuboid actuator and the finger actuator. Figure 2.15 shows the viscosity 

evolution of Ecoflex 0030, M4601 a/b and M4601 a/b with 15% ST at different 

temperatures. 

2.6.4 Mold dimensions 

We used two types of molds in our paper: (1) molds for rotational casting; (2) molds 

for encapsulation. Figure 2.16 shows the three molds for rotational casting: mold for 

spherical actuator, mold for cuboid actuator (the same one as Figure 2.3(b)) and mold 

for finger actuator. They are all assembled from several 3D printed parts into a hollow 

piece with one connected cavity. Figure 2.17, 2.18 and 2.19 show dimensions and the 

cross-sectional views for the three molds. 

 

 
Figure 2.16 Explode views of mold assemblies for spherical actuator (left), cuboid 
actuator (middle) and finger actuator (right). 
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Figure 2.17 Orthogonal views of mold assembly for spherical actuator 
 

 
Figure 2.18 Orthogonal views of mold assembly for cuboid actuator 
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Figure 2.19 Orthogonal views of mold assembly for finger actuator 
 

Note that dimensions for curves in the front view in Figure 2.19 are not given because 

the curves were not designed as circular arc; instead, they were designed by reducing 

the height of the design of the cuboid actuator (see Figure 2.18 in the front view by 

half. 

The second kind of molds used in the paper are the molds for encapsulation, which 

include one to encapsulate the rotational casted actuator from mold in Figure 2.18 to 

form a cuboid actuator (see Figure 2.20) and the other to encapsulate the rotational 

casted actuator from mold in Figure 2.19 to form a finger actuator (see Figure 2.21). 
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Figure 2.20 Orthogonal views of mold for encapsulation for a cuboid actuator 
 

 
Figure 2.21 Exploded view of mold for capsulation for a finger actuator 
 

As shown in Figure 2.21, the mold for encapsulation for a finger actuator is designed 

in seven interlocking 3D-printed parts to facilitate disassembly and removal of the 
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monolithic elastomer actuator after curing. A fit tolerance of 0.25 mm creates tight 

interlocking to prevent leakage while allowing for ease of assembly. Two mold 

segments (each composed of two pieces to facilitate mold removal) are stacked on top 

of each other and a base piece to form the primary structure of the actuator and the 

finger bands, while an upper extension segment creates a solid column for a hose 

clamp. A 9.0 mm central cavity accommodates the separately rotational casted interior 

actuator (with mold shown in Figure 2.19), which will be pneumatically inflated. The 

3D printing design process allows for the mold to be easily customized with negligible 

change in manufacturing time. The important dimensions of the mold assembly are 

shown in Figure 2.22. 

 

 
Figure 2.22 Orthogonal views of mold for encapsulation for finger actuator 
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2.6.5 Force test and EMG triggering experiment 

Our force test set up is shown in Figure 2.4(b): (i) we placed the actuator on flat 

surface, with a force sensor under one of the tips; (ii) then we put a bezel over the top 

of it to constrain its height when actuated; (iii) we chose a height corresponding to a 

curvature and fixed the position, then increased pressures and recorded applied forces. 

Figure 2.4(c) shows the tip force vs. pressure relationship of actuators with two 

different curvatures. The two specimens had the same dimensions 

(105mm×36mm×18mm) but were manufactured at different times. 

The EMG triggering experiment includes two steps: (1) collect muscle signal from 

user by attaching the EMG electrodes on their forearm and deliver the signal to 

Arduino; (2) use the signal collected from step 1 to open/close two solenoid valves, 

with one valve inflating the actuator and the other deflating it. We decided the 

threshold muscle potential from trials of the user. A video showing a user pick up a 2-

kg weight with finger exo on the index is shown in Video 2.1. 
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CHAPTER 3 

CURVATURE CONTROL OF SOFT ORTHOTICS VIA LOW 

COST SOLID-STATE OPTICS† 

3.1 Introduction 

Soft robotic systems composed of organic elastomers have an intrinsic compliance that 

has demonstrated its potential as wearable devices because of their conformability, 

safety, and comfort [1]. The intrinsic compliance stems from the material’s low elastic 

modulus, which is comparable to bio-tissues [2]. Though intrinsically compliant 

actuators like McKibben Artificial Muscles [3, 4] have existed for decades, new 

designs of fluidically-powered elastomeric actuator (FEAs) [5, 6] have shown great 

potential as wearable orthotics.   

Current hand orthotics under development usually serve two functions: (1) 

rehabilitation training [7, 8] or (2) assisting activities of daily living [9, 10, 11]. Both 

of these uses require safe, reliable, and predictable performance and feedback control 

systems. Despite increasing sophistication in the design and fabrication of FEAs [12], 

the sensing and control of these actuators are still nascent. A prime reason for the lag 

in control sophistication is the high nonlinearity of these systems and relatively 

specialized fabrication required for soft sensors. Though compliant and stretchable 

sensors have been developed for FEAs, open-loop control is still the most commonly 
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used method for their operation. Many control systems require higher accuracy, 

repeatability and resolution than presently available [13, 14, 15]. Besides simple open 

loop control, some relevant control methods for FEAs include adaptive control, real-

time finite element method and vision-based PID control. Adaptive control has been 

applied to McKibben Muscles [16], which is essentially a linear actuator, but not 

bending FEAs. Real-time finite element method [17] can give a good estimate of the 

actuator’s behavior, but this method requires sufficient knowledge of the system to 

perform accurate simulations. Traditional proportional-integral-derivative (PID) 

feedback control based on computer vision has been applied to hydraulic FEAs and 

shown great results, yet this method requires external cameras that limit the potential 

mobility of the wearer [18, 19]. 

 
Figure 3.1 Optical fiber embedded orthotic unpowered (top), moving a finger while 
unpowered (middle) and actuating causing the finger to move while being pressurized 
(bottom). 
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In the previous chapter, I described a reliable and effective method for fabricating high 

force FEA-based orthotics using rotational casting [20]. To better improve the 

functionality of these actuators towards hand orthotics, this chapter demonstrates the 

monolithic integration of an optical light guide for curvature sensing. In addition to 

fabrication and integration, I have also developed a controller to maintain the 

curvature of FEAs. Specifically, I characterized the system’s static and dynamic 

responses experimentally and developed a curvature control algorithm using gain-

scheduled PID controller. We implemented the algorithm by adjusting the actuator’s 

inflating pressure, which is generated from a compressed air source through a fast-

responsive, pulse-width-modulation (PWM) controlled solenoid valve. 

3.2 Design and Fabrication 

3.2.1 Design 

Talbe 3.1 Design paramertes of the finger Orthotic 
Design parameters, units Values 
Length, mm 110 
Effective length, mm 70 
Range of motion, degrees 0-105 
Pressure, kPa 0-270 
Tip Force, N 0-5 

The orthotic we designed (Figure 3.1) has the following features: (1) Low stiffness 

when deflated, which enables easy movement of the wearer’s finger;  (2) high 

force/torque generation; [20] (3) repeatable performance from its manufacturing 

technique (rotational casting); (4) integrated curvature sensor with high repeatability 

and resolution; (5) compatible bending range for finger motions. Table 3.1 

summarizes the design parameter values of the finger exoskeleton. 
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3.2.2 Fabrication 

The fabrication process for the orthotic with embedded curvature sensor includes three 

stages: (1) fabricate the internal actuator (Figure 3.2), (2) shape and pattern the 

sensor’s light guide (Figure 3.3), and (3) assemble and cast into a complete orthotic 

(Figure 3.4).  

3.2.2.1 Actuator fabrication 

The internal actuator is a monolithic structure composed of a series of hollow 

chambers with nylon mesh incorporated in one side to program a bending mode of 

inflation. Figure 3.2 shows our custom-built rotational casting machine used to cast 

the seamless FEAs [20]. The material we used for the internal actuator is a blend of 

commercially available silicone rubbers (90% ELASTOSIL M 4601, 10% silicone 

thinner from Smooth On, Inc, by volume). 

 
Figure 3.2 Custom-built rotational casting machine with multiple molds. Viscous pre-
elastomers inside the mold flow against the internal walls coating them and forming a 
seamless actuator. 
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3.2.2.2 Curvature sensor fabrication 

Optical fibers have been used previously for accurate sensing of bending [21, 22]. This 

system inputs light from an LED into an optical waveguide and a Photo-Darlington 

detector reads the output signal on the other side—increased bending causes lower 

light intensity from the waveguide and less current output from the photosensitive 

detector. To fabricate the waveguide, we bent a piece of 1-mm-diameter acrylic 

optical fiber into a U shape via thermoforming, and then we used a laser cutter (Zing 

24 from Epilog) to roughen the optical fiber on one side (Figure 3.3). The anisotropic 

roughening enhances the signal change upon bending.  

 
Figure 3.3 (left) U-shaphed Optical fiber being roughened by a laser cutter. (right) a 
photo of the optical fiber being cut by a laser cutter.  

Excessive roughening will cause the output light intensity to drop to zero; therefore, 

we engraved the optical fiber with 2 mm roughened lengths at intervals of 2 mm 

(Figure 3.3). The total engraving section is of the same length as the orthotic’s 
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effective bending length. To avoid cracks from engraving causing fracture upon 

actuation, we oriented the fiber so it bends in the direction of closing the cracks. In 

this orientation, light intensity detected by the photo-Darlington increases with 

bending curvature. 

3.2.2.3 Assembly and cast process 

 
Figure 3.4 Assembly of parts cast into a single orthotic: optical fiber and LED/photo-
Darlington was housed in the holders, and the holders were fixed on the mold through 
four pins. 
 



 

 63 

To embed the sensor in the orthotic, we chose to cast the LED, photo-Darlington and 

the engraved optical fibers into the actuator. The peak wavelength of the LED and the 

sensitive wavelength of the photo-Darlington were both at the range of infrared light, 

which eliminated the interference of visible light. To ensure the best contact angle for 

the optical fiber, LED and photo-Darlington inside the actuator, we designed the 

housing shown in Figure 3.4. As the optical fiber is inextensible, we placed it close to 

the neutral bending plane of the actuator with the strain limiting fabric. We then 

poured silicone rubber pre-elastomer into the mold and cast them into a single piece. 

The resulting orthotic has the following features: 7 internal pneumatic chambers, 

nylon mesh fabric on one side, optical fiber curvature sensor close to the neutral plane, 

encapsulated LED and photo-Darlington, two pairs of exposed pins as electrical 

connections to the outer circuit, a rubber band for fixing onto the finger and a flat 

section for fixing onto the back of hand. 

3.3 Experimental Setup 

To characterize and control our orthotic system, we built a platform that is composed 

of a microcontroller board, an electrical relay and solenoid valve, a pressure sensor 

(PSE 530-R06 from SMC), a circuit for the optical fiber sensor, a constant-pressure air 

source, and power supply (Fig 3.5(a)).  
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Figure 3.5 Testing platform for the orthotic: (a) a photo of the setup; (b) schematic of 
the circuit set up; (c) schematic of the air flow at both the on and off state for the 
solenoid valve. 
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The microcontroller we used is an ArduinoTM MEGA 2560 that collects analog data 

from the pressure and optical fiber sensors and implements the PID controller to 

output the Pulse Width Modulation (PWM) signals for valve control. The solenoid 

valve we chose was a VQ110U-5M from SMC Corporation. It is a large flow, 

normally closed, 3-port solenoid valve with a fast response time (On: 3.5 ms, off: 2 

ms). The airflow schematic is shown in Figure 3.5(c). The relay we used was an SRD-

05VDC-SL-C from Songle Relay with an operation time of 10 ms and release time of 

5 ms. The response times of the solenoid valve and the relay are critical as they limit 

the PWM frequency we could use to control the open and close the valve. Using this 

relay and valve system, we chose 60 Hz as the PWM frequency. We chose acrylic 

optical fiber (CK-40, EskaTM, Inc.) and an 870 nm LED (IF E91D, Industrial Fiber 

Optics, Inc). The photo-Darlington detector (IF D93, EskaTM, Inc.) has a peak 

photosensitivity of 850 nm. To limit the current, we used resistances of 220 ohm (R1) 

and 100 ohm (R2) in the circuits of the LED and photo-Darlington, respectively 

(Figure 3.5(b)). This test platform can be easily extended to control multiple FEAs. 

3.4 Results and Discussions 

3.4.1 Calibration of the optical fiber sensor  

Before conducting tests on the finger orthotic, we calibrated an optical fiber sensor 

embedded into elastomeric orthotic using a video camera and image processing. The 

curvatures (1 𝑟) were achived through a high-resolution camera located facing the side 

of the orthotic and 7 points were picked on the neutral plane line to fit the orthotic 
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curvature into a circle. Despite a non-linear response (we fit it into a third-order 

polynomial as shown in Figure 3.6), the sensor exhibited very good properties in terms 

of resolution, accuracy, repeatability and curvature range. Additionally, the sensor also 

exhibits good dynamic properties (i.e., a very short response time of 5 ms). Table 3.2 

summarizes the capabilities of our embedded curvature sensor. 

Table 3.2 Optical fiber sensor parameters 
Properties Parameters, unit Value 
Sensitivity Slope of current over curvature, mA/m-1 0.3-3.8 
Accuracya Relative error, % 5.4 
Resolutiona Minimum discriminated curvature, m-1 0.04 
Repeatabilitya, b Curvature standard deviation, m-1 0.05 
Range Curvature range, m-1 0-26 
Dynamic 
Propertiesc 

Response time, ms 5 

a) These are average values;  
b) Based on three separate tests performed on the same optical fiber sensor; 
c) These are not tested data but from the datasheets of commercial LED and photo-
Darlington. 
 

 
Figure 3.6 Calibration curve of the embedded optical sensor. 
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Note that the values we collected above were specific to the orthotic sensor. Some of 

the properties could be further improved to satisfy stricter requirements; for example, 

the range of the sensor could be extended to as large as 50 m-1 by simply changing the 

roughening pattern. 

3.4.2 Quasi steady state response of the orthotic 

Using the calibrated curvature sensor, we tested the quasi-steady state response of the 

orthotic (Figure 3.7). For our orthotic system, we assume a constant curvature along 

the orthotic and we chose pressure (P) as the input and curvature (𝜅 = 1 𝑟) as the 

output. The single input single output (SISO) system is described as: 

𝜅 = 𝑓(𝜅,𝑃)                                         (Equation 3.1) 

The quasi steady state response of this system where we fixed the internal pressure 

and assumed 𝜅 = 0 was recorded and shown in Figure 3.7. It is a nonlinear system, due 

to the nonlinear properties of the hyperelastic elastomer and the geometry of the 

actuator design; however, we were able to fit it to a piecewise linear system. We 

divided the response into three ranges based on their slopes: (1) small curvature range 

(0 to 4 m-1); (2) medium curvature range (4-7 m-1); and (3) large curvature range (7-26 

m-1). Within each range, the system shows linearity. This approximation allowed us to 

characterize the dynamic response of the system and implement the gain scheduled 

controller design. 
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Figure 3.7 Quasi-static state response of the orthotic approximated by a piecewise 
linear model: black-small curvature range, blue-medium curvature range and red-large 
curvature range.  

3.4.3 Orthotic dynamic response 

For each of the three ranges described above, we tested the orthotic’s dynamic 

response by generating sinusoidal input of different frequencies using a PWM signal 

(Figure 3.8). The results show that the dynamic responses for each region are similar, 

however, the gains (i.e. ratio of curvature to pressure) are different. This orthotic has a 

bandwidth of around 8 Hz, allowing it to absorb high frequency oscillation of pressure 

resulting from relative low frequency of PWM signal (60 Hz). 
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Figur3.8 Dynamic response of the orthotic at different curvature ranges. 
 

3.4.4 Gain-scheduled PID controller 

 

 
Figure 3.9 Block diagram of the dual loop control system 
 

We used a dual loop PID to control the curvature of a free moving orthotic. The block 

diagram of the control system is shown in Figure 3.9. The inner loop was a low-level 

PID controller that uses input from a pressure sensor to adjust the internal pressure of 

the soft orthotic, which is required because pressure generated from the low-frequency 

PWM signal is nonlinear and frequency-dependent. Due to the plant’s nonlinearity, a 
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fixed PID controller for the outer loop covering the complete range will cause either 

instability at high curvature range or slow response at small curvature range. 

Therefore, we used a gain-scheduled PID controller for the outer loop and, based on 

the static response of the system in Figure 3.7, we chose the scheduling variable to be 

the reference curvature (𝜅!"#). The discrete implementation of the gain-scheduled PID 

controller by our microcontroller is described as: 

𝑃!"##$%&,! = 𝐾!,!𝑒!,! + 𝐾!,! 𝑒!,! − 𝑒!,!!! + 𝐾!,! 𝑒!,!

!

!

 

where  𝑗 =
Small  range,when  𝜅!"# ∈ 0, 4   m!!

Medium  range,when  𝜅!"# ∈ 4, 7   m!!

Large  range,when  𝜅!"# ∈ 7,26   m!!
       

(Equation 3.2) 

To test the system’s ability to absorb external disturbances and maintain its prescribed 

curvature, we intentionally introduced disturbances of different intensities (ranging 

from 2 m-1 to 5 m-1) after it reached equilibrium (Figure 3.10). We also demonstrated 

its disturbance rejection ability by using a weight to block its way to the prescribed 

curvature (Video 3.1): it could easily push a small weight (e.g., 1N) and reach its 

targeted curvature, yet when it came to large weight (e.g., 5N), it oscillated and 

exhibited instability. Also, when the reference curvature was changing very rapidly, 

the system also exhibited instability. These dynamic instabilities are most pronounced 

at the threshold of each range in our piecewise linear function. To account for these 

highly dynamical systems, more sophisticated controllers will be required. The gain-

scheduled PID controller parameters and performance are summarized in Table 3.3. 
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Despite the small tracking error and good performance in rejecting disturbances, the 

dual-loop gain-scheduled PID controller has a large rise time that makes it difficult to 

perform dynamic tracking of time-varying reference signals. While we do not address 

this further in this paper, using simpler discontinuous controller will reduce the rising 

time significantly. 

 
Figure 3.10 Gain-scheduled PID control performace of small curvature range (left), 
medium curvature range (middle) and large curvature range (right):a step reference 
signal is exerted (red) and the input pressure (orange) and output curvature (blue) was 
tracked through the embedded optical fiber sensor over time; disturbances were 
introduced to test the systems’ sensitivity. 
 
Table 3.3 parameters and performance of gain-scheduled PID controller 
 Small range Medium range Large range 
PID 
paramet-
ers 

Kp 2.4 0.6 0.2 
Ki 0.0002 0.0005 0.002 
Kd 0.02 0.005 0.01 

Perform-
ance 

Steady state error, m-1 0.26 0.19 0.37 
Rising timea, s 2.5 8.2 12.1 
Stabilityb Stable Stable Stable 

a) Time required to rise from 10% to 90% of equilibrium value;  
b) Tested by giving a disturbance of greater than 2 m-1; 
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3.5 Conclusions 

In this chapter, I demonstrated a soft orthotic with position control via embedded 

solid-state curvature and pressure sensors. I described the fabrication of each part, 

including the rotational casted internal actuator, the laser cut optical fiber-based 

curvature sensor and their integration with off the shelf hardware. I developed a PID 

control system for both the optical and pressure sensing system and performed the 

sensor calibration, static characterization, dynamic characterization and demonstrated 

curvature feedback control. 

My results not only increase the knowledge space of FEAs, including their 

nonlinearity, dynamic response and control complexity, but also demonstrates a low-

cost, reliable, and easy to implement optical fiber based sensor. Though, in this 

chapter, I used a constant curvature assumption for the model and control the finger 

orthotic, it is a simple extension to include multiple fibers for piecewise curvature 

sensing. Future work will incorporate increased sensor densities for more sophisticated 

control of complex orthotics (e.g., gloves for rehabilitation [23]) and designing better 

controller for tracking dynamic reference input. 
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CHAPTER 4 

SOFT ORTHOSIS WITH INTEGRATED OPTICAL STRAIN 

SENSORS AND EMG CONTROL‡ 

4.1 Introduction 

Human fingers and hands are frequently injured because they are delicate, complex, 

and used persistently. Over 3 million people in the U.S. suffer from hand or forearm 

disabilities [1], and worldwide hand injuries account for one third of all work injuries 

[2]. Due to the importance of hands and the prevalence of hand issues, there is an 

increasing effort towards developing hand orthotics. These efforts have resulted in 

active hand orthoses that have been used for rehabilitation training and restoring 

partial hand function [3]. To ensure safety and to reduce control complexity, some 

orthoses use mechanical compliance [4, 5] like under-actuated linkages [6] or low 

stiffness materials and structures (e.g., rubbers and flexible wires) [7, 8-11]. The 

orthoses made of elastomeric materials tend to be more comfortable, perhaps because 

their low elastic modulus (10 kPa<G´<1 MPa) [12] is similar to that of human skin 

(~100 kPa) [13]. 

Orthotic systems made of elastomers, and powered with fluid pressure, show potential 

for both rehabilitation and gripping assistance [8-11]. For both purposes, the control 

must use sensory feedback (e.g., sensing of position, force, etc.) in order to apply the 

intended motions or forces. Commercially available flexible sensors usually suffer 
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from low sensitivity, low repeatability and signal drift. Liquid-metal based resistive 

and soft capacitive sensors can be sensitive, but rely on expensive material or require a 

multi-step construction process [14-16]. Computer vision can provide high quality 

position sensing [17], but the camera systems, besides being costly and complex, can 

interfere with the user’s motion.  Due to these sensor limitations, most soft orthotics 

do not use them; instead they are “open-loop”. 

 
Figure 4.1 The glove is a soft orthosis. Here it helps a limp human hand grasp an 
apple. The inset shows a computer representation of the finger shape, as estimated 
using curvatures sensed by the embedded fiberoptic cables (these cables are the 
sensors used in the feedback control loop). 
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To address these issues, in this chapter I am developing a closed-loop controlled soft 

orthotic with integrated curvature sensors.  My goal is a low cost soft orthotic that can 

be worn by a typical human hand and provide enough tip force at each finger to be 

helpful for grasping light objects (e.g., fruits), while also providing finger position 

(defined as average curvature) control. I have achieved reasonable functionality at 

these goals by using three advances described in this chapter: (i) a new rotational-

casting technique, followed by an over-molding process for making the glove; (ii) 

measuring finger motion through optical losses in a molded-into-place etched plastic 

fiber-optic cable; and (iii) controlling motion with inexpensive, binary pneumatic 

switches controlled by a simple finite-state-machine. The composite glove is purely 

polymeric, highly compliant, and provides little resistance to natural motion when not 

pressurized. When inflated, the fingers of the glove curve and stiffen. 

4.2 Soft orthotic glove with embedded sensors and actuators 

Here I describe the overall design of the device of our soft orthosis (Figure 4.1). 

4.2.1 Design 

The glove has multiple functions: (i) it is an actively powered assistive device that 

helps each finger bend independently; (ii) it is a self-contained sensing device, the 

optical fibers that are molded into the fingers are curvature sensors, and thus also 

approximately sense deflection even for passive motions with no actuation; and (iii) 

by combining actuation and control, the glove is a robotic hand with fingers that can 

achieve prescribed motions or forces. 
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Figure 4.2 Schematic of the glove. Each component is labeled and exists on each 
finger: LEDs, pressure-chambers, optical fibers, photodetectors, nylon fabric, clamps, 
air-supply tubes and optical-component holders.   
 

The body of the glove is made of a silicone elastomer (ELASTOSIL® M4601 A/B; 

Wacker Chemie, AG) to which we added 10% Silicone Thinner from Smooth-On, Inc. 

Each finger has a series of interconnected air chambers and a relatively inextensible 

nylon fabric along the palm side of each finger (Figure 4.2); upon fluid pressurization, 
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these actuators cause a grasping motion [18]. In the language of beam theory, the 

neutral axis for bending is just outside this strain-limiting fabric, and not in the middle 

of the finger. The finger mechanics are discussed further in Section 4.2.2. 

The optical fiber sensors go from the root of the finger to the tip and back, bent in a U 

around the nylon fabric and are approximately in the bending beam’s neutral plane. At 

one end of each optical fiber is an LED. At the other end is a photodetector (a “photo-

Darlington” that reacts to light intensity by amplifying a current). These transmitter-

sensor pairs are held to the fiber ends with custom 3D-printed holders and they are 

powered via thin electrical wires (red and black, Figure 4.1). Pneumatic power comes 

from an external pressure source via tubes that are inserted into holes molded into the 

wrist side of the glove. The tubes are connected to a pressure source via inexpensive 

three-position (pressurize, hold, and drain) electrical solenoid valves. 

4.2.2 Actuator motion analysis 

In this orthotic, each of the five fingers is made of a series of interconnected hollow 

spherical chambers. Figures 4.3(a) and (b) show a single finger in two configurations: 

(i) its “rest state,” when the gauge pressure, the difference between the interior and 

exterior pressure, is zero, 𝛥𝑃=0; and (ii) bent to a curvature 𝜅 = 1/𝜌 caused by both 

the pressure difference, 𝛥𝑃>0, and the bending load the finger carries.  
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Figure 4.3 Schematic of one finger. (a) Rest state, with no loads and no pressure; (b) 
bending equilibrium state where internal pressure is balanced by the stretching of 
elastomer; (c) simplified model of the bending equilibrium state: struts are replaced by 
hoop strain constraint and other parameters stay the same; (d) free body diagram of a 
short section of the finger actuator at the bending equilibrium state with both pressure 
and an externally induced moment MN. 

To approximately calculate the curvature 𝜅 in terms of other parameters, we further 

simply the finger model into a bending thin-wall cylindrical pressure vessel. The hoop 

strain (the increase in diameter of the cylindrical finger) is constrained by the “struts” 
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(the walls between the spheres) (Figure 4.3(b)). We model the “strut” structures by 

assuming the hoop strain is constrained (Figure 4.3(c)). We model the whole 

cylindrical finger (elastomer, stiff fabric at the bottom, gas pressure and radial 

constraint) using a composite-beam model.   

We approximate the fabric at the finger bottom as inextensible, thus the beam neutral 

axis is at the finger bottom. We assume that any external axial load is at the neutral 

axis so does not enter the bending calculations. For simplicity, we assume that the 

cylinder wall thickness t is much less than the finger radius r (t<<r) and that the 

elastomer is linear and isotropic. The net moment 𝑀! about the neutral axis is due to 

the axial elastic tension stress in the elastomer 𝜎!"#!$ (acting on the hollow cylinder 

with radius r, thickness t and moment of inertia about the neutral axis of 𝐼! = 3𝜋𝑟!𝑡) 

and that due to the gas pressure 𝛥𝑃 (acting on the area 𝜋𝑟! a distance r from the 

neutral axis). 

𝑀! = − 𝜎!"#!$ 𝑦𝑑𝐴 + 𝑟 ∙ 𝛥𝑃 ⋅ (𝜋𝑟!)            (Equation 4.1) 

Equilibrium of the cylinder in the y direction (Figure 4.3(d)) gives a modified version 

of the standard thin-walled pressure vessel formula 

𝛥𝑃 ∙ 𝑟 = 𝜎!!!"𝑡 + 𝑇!                        (Equation 4.2) 

where 𝜎!!!" is the hoop stress in the elastomer and  𝑇! is a force per length that comes 

from restraint against hoop strain (against cylinder bulging).  In the model here, the 

restraint represents the sidewall struts of the spheres. It could also represent restraint 

from circumferential fibers [20] or from interior foam [21]. As per conventional 
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composite beam theory, we assume plane normal sections remain plane and normal 

and hence the elastomer axial strain is given by 

   𝜖!"#!$ = 𝜅𝑦                                   (Equation 4.3) 

The linear elastic material properties of the elastomer are: 

𝜖!"#!$ = 𝜎!"#!$ 𝐸 − 𝜈 𝜎!!!" 𝐸 − 𝜈 𝜎!"#$"% 𝐸 

𝜖!!!" = 𝜎!!!" 𝐸 − 𝜈 𝜎!"#!$ 𝐸 − 𝜈 𝜎!"#$"% 𝐸          (Equation 4.4) 

where the elastomer elastic modulus is E and Poisson’s ratio 𝜈. 

As per usual pressure-vessel theory, in which the fluid pressure is much smaller than 

the vessel (elastomer) stresses, we neglect the radial stress, setting 𝜎!"#$"% = 0. As 

mentioned in regard to Equation 4.2 above, for simplicity we assume that the restraint 

against bulging can be represented as a circumferential stress per unit length, 𝑇!. 

Again, for simplicity, we think of these fibers as having modulus (force per unit 

length) 𝐸!, so 

𝑇! = 𝐸!𝜖!!!"                                 (Equation 4.5) 

Substitution of Equation 4.2 to 4.5 into Equation 4.1 and integrating over the hollow 

cross section we get 

𝜅 = −
𝐸! − 𝜈!𝐸! + 𝐸𝑡

3𝜋𝑟!𝑡 𝐸𝐸! + 𝐸!𝑡
𝑀! +

𝐸! − 𝜈!𝐸! − 2𝐸𝜈𝑡 + 𝐸𝑡
3𝑡 𝐸𝐸! + 𝐸!𝑡

𝛥𝑃 

 (Equation 4.6) 
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With no radial restraint (Ef = 0) and 𝜈~0.5, the common approximation for elastomeric 

materials, the coefficient of 𝛥𝑃 vanishes and the pressure has no effect on curvature or 

bending moment.  Thus for elastomeric fingers of this general design, the induction of 

curvature is entirely dependent on the restraint tension, 𝑇!;  with no circumferential 

constraint, in this case from struts, but possibly from interior foam or circumferential 

fibers, there is no bending due to pressure. The simplest approximation for this 

restraint is to assume inextensible fibers, struts or whatever (Ef = ∞), in which case the 

relation between pressure, curvature and net finger moment is 

𝜅 = − !!!!

!!"!!!
𝑀! +

!!!!

!!"
𝛥𝑃 .                     (Equation 4.7) 

This linear-elastic small-strain composite-beam model shows, for example, how 

curvature increases with pressure and decreases with increasing elastomer modulus 

and elastomer thickness. Most importantly, the model shows the necessity of radial 

(circumferential) constraint in elastomeric fingers for pressure to cause bending, at 

least to the extent that this small-strain linear theory applies. When applied to long and 

narrow balloons (𝜈=0.5), the theory says that to first order there is no elongation with 

pressurization. In reality, however, with large expansions long and narrow balloons do 

elongate some. Similarly, even without radial constraint, elastomeric fingers will bend 

with large enough pressurization (violating the simple small strain theory here).  

The maximum net finger moment can also be derived from the above model by setting 

𝜅 = 0: 

𝑀!"#$ = 𝜋𝑟!𝛥𝑃                          (Equation 4.8) 
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When substituting 𝛥𝑃 = 270  kPa and 𝑟 = 10  mm, we get 𝑀!"#$ = 0.8  N ∙m. For an 

8 cm long finger this yields a theoretical upper limit for the finger tip force of 10 N.  

4.3 Manufacture of the soft orthotic glove 

Our orthotic glove is constructed using a new rotational-casting technique followed by 

an over-molding process. The optical fiber sensor is also fabricated from an innovative 

method. 

4.3.1 Rotational casting 

There exist several methods to produce soft actuators [22], each with its own 

drawbacks. Replica molding (sometimes referred to as soft lithography) can lead to 

delamination at material bonds. Investment, or lost-wax, casting involves the building 

and destruction of molds for each part, costing time and money. With rotational 

casting, however, we have molds that are reusable and simultaneously produce 

multiple actuators that do not delaminate when pressurized (Figure 4.4) [19]. For this 

process, we 3D print a mold, partially fill it with viscous pre-elastomers, fix the mold 

onto the casting machine, and rotate it until the elastomer solidifies.  Finally, we peel 

the actuators from the molds (Figure 4.4(c)).  
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Figure 4.4 Rotational casting. (a) Casting process: 1) Molds; 2) Partially filled molds; 
3) Rotational casting process; 4) Final elastomer structure. (b) Rotational casting 
machine with multiple molds affixed. (c) Molds used (top) and monolithic elastomers 
produced from those molds, with cross sections shown in the bottom right corner. 

4.3.2 Preparation of optical-fiber sensors 

Our strain sensor is a lightguide fabricated from one piece of plastic optical fiber. 

First, using thermoforming at 50 ℃, we form the optical fiber into a U shape that 

allows us to reliably align it into the finger actuator (Figure 4.5). Then, using a laser 
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engraver (50 Watts Epilog Zing 24), we etch off a thin layer from one side of the U 

(lower right of Figure 4.5). Etching damages the cladding layer of the fiber, reducing 

internal reflections, part of the light is thus lost when travelling the length of the fiber. 

Because only one side is etched, the amount of light dissipation is affected by bending; 

we measure this light amount change via a photodetector and correlate it to curvature 

[23].  

 
Figure 4.5 Over-molding of different components. Internal chambers of the actuator 
are aligned with the over-mold. One end of the U-shaped lightguide attaches to the 
fixtures in the over-mold. The fixtures are attached by the pins of the LED and a 
photodetector. After assembly, silicone pre-elas tomer is poured into the over-mold to 
form a single finger actuator with sensors. 
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If too much of the fiber is engraved, the light dissipation can saturate while the sensor 

is still in a working range of curvature. To ensure that our sensor lies below this 

saturation limit, we only engrave a sequence of short sections of the surface. The 

lightguide responds to both extension and compression of the engraved side: 

compression increases the signal intensity (preferable) and extension decreases it. 

Therefore, we align the fibers within the fingers to operate in compression, which has 

an additional benefit of reducing the likelihood of fatigue fracture of the micro-cracks 

which we introduced during etching. 

4.3.3 Over-molding 

We assemble the rotational casting and the lightguide sensor in a 3D printed finger 

mold, and over-mold them into a self-contained finger actuator. A steel wire is used to 

mold a connecting pathway between the internal actuators and is fixed in place using a 

3D printed mold cap  (Figure 4.5). A custom 3D-printed fixture holds the LED, 

photodetector, and the optical fiber sensor in the correct positions and orientations. 

After assembling, more silicone pre-elastomer is poured into the mold to over-mold 

into a complete finger with integral actuator and sensor. We cast five fingers of 

appropriate lengths into a complete hand orthotic. 

4.4 Control system 

The present control system uses a state machine controller shown in Figure 4.6. Each 

finger is controlled by its own 3-position valve (air in, hold, and air out), and each 3-

position valve is made from two 2-position valves (air in, and air out) mounted to a 
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pressure manifold. The simple non-linear controller lets air into a finger to increase 

curvature, and lets air out to decrease curvature. If the curvature is close to the target 

(within a specified deadband) then flow is stopped, maintaining gas volume, and 

preventing set-point hunting. Approaching this deadband region, flow is stopped to 

prevent overshoot. 

The 2-way valves are normally closed (Figure 4.6(a); X-valve, Parker Hannifin 

Corporation) and switched using power transistors (TIP120). The inflating valve 

connects the gas source to the actuator, and the deflating valve vents the actuator to 

the atmosphere. When the inflating valve is open and deflating valve is closed, gas 

from the source pressurizes the actuator—the “in” state. When the inflating valve is 

closed and the deflating valve is open, gas vents from the actuator to atmosphere—the 

“out” state. When both are closed, gas remains inside the actuator—the “hold” state 

(Figure 4.6(a, b)). Viscoelasticity, gas compressibility, and gas-line resistance cause a 

lag between valve decisions and sensed motion and leads to an overshoot. Creating a 

deadband big enough to inhibit the resulting overshoot oscillations, however, leads to 

poor system accuracy. To prevent oscillations and maintain accuracy, we added state 

transitions to cut flow or leakage before the acceptable target deadband was sensed as 

reached (Figure 4.6(c) and Table 4.1). This controller code is repeated ad-infinitum at 

time intervals of Δt=5ms, as that is slightly longer than the timing required for the 

valves to open or close. 
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Figure 4.6 Control system: (a) diagram of how each finger is connected to the gas 
supply through valves; (b) block diagram of the control system; (c) controller 
represented in a state machine diagram, where error is calculated from the current 
measured value subtracted from the targeted value and ∆𝜅! ∆𝜅! and ∆𝜅! are three 
threshold parameters to compare with error; definitions of state 1 to 5 is in Table 4.1.  
 

Each finger has its own state-machine controller, with each having five states. A state 

corresponds to a command to each three-position valve.  State transition conditions are 

based on the ‘error’ Δκ —the difference between the target and the measured 

curvatures.  A check for a transition is made every controller cycle. There are three 

threshold parameters in the state-machine controller: acceptably small error is 

specified as “∆𝜅!”, where large-enough ∆𝜅! prevents excessive attempts at correction, 

and “∆𝜅!” and “∆𝜅!” define the thresholds of the large-error region. When these 

thresholds are exceeded, inflation or deflation occurs, respectively. Between the high 

and low error regions, two settling time variables “X” and “Y” for positive and 

negative error determine a remnant valve-off time. In effect, the valves are attenuated 

by 1/(X+1) and 1/(Y+1) in these intermediate-error bands. In general, ∆𝜅! determines 

the accuracy of tracking but leads to an instability if set too small. Increasing ∆𝜅! and 
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∆𝜅! will increase stability but decrease the actuating speed. X and Y represents how 

long to wait during both the “in and hold” and “out and hold” states—increasing X 

and Y improves stability and decreases speed.  The valves are off in the deadband, 

fully actuated towards the target when the error is large, and attenuated by 1/(X+1) and 

1/(Y+1) in zones near the deadband.  In effect, this is an implementation of a three 

level Pulse Width Modulation (PWM) system with three levels (all off, all on, and 

attenuated). 

Table 4.1 Actions during states 

State Inflating valve Deflating valve Comments 

1 Off for ∆𝑡 Off for ∆𝑡 “Hold” 

2 On for ∆𝑡, then Off for 𝑋∆𝑡 Off for (𝑋 + 1)∆𝑡 “In and hold” 

3 Off for (𝑌 + 1)∆𝑡 On for ∆𝑡, then Off for 𝑌∆𝑡 “Out and hold” 

4 On for ∆𝑡 Off for ∆𝑡 “In” 

5 Off for ∆𝑡 On for ∆𝑡 “Out” 
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4.5  Experimental results and discussion 

4.5.1 Calibration of optical-fiber sensors 

 
Figure 4.7 Lighguide calibration. Photodetctor current output at various curvatures of 
the actuators. Blue dots are measured results and red lines are linear fits. The last 
figure shows the real time curvature tracking of the glove after calibration where all 
fingers are bent at a curvature of 20 m-1 (5 cm radius). 

To calibrate the lightguides, we imaged each finger from the side while measuring the 

current output 𝐼 from the photodetector (Figure 4.7). We calculated the curvature 𝜅 by 

picking 4-7 points (determined by the number of chambers in the actuator) from each 

picture and fitting them to a circle. For curvature from 0 to 35 m-1, the calibrations of 

all five fingers were linearly fit with a sensitivity (𝜆 ∝ ∆𝐼 Δ𝜅) range of 0.23 mA∙  m 
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<  𝜆<0.49 mA∙  m. This sensitivity can be adjusted by changing both the engraving 

pattern and LED intensity. Other sensor features include: (i) a fast response time of 5 

ms; (ii) a high curvature resolution of 0.04 m-1; (iii) repeatability of 0.05 m-1, 

measured by the standard deviation of a single curvature over five different tests. The 

response time, resolution and repeatability outperform other sensing systems based on 

resistance and capacitance [14-16]. The sensor, however, has a nonlinear response 

beyond the range we tested; 𝜆 decreases at higher curvatures. 

4.5.2 Force test with the electromyography (EMG) signal 

We did a force test for each finger actuator [19] and the output tip force ranged from 0 

to 5N, by applying pressure ranging from 0 to 270 kPa [24]. This force output is 

similar to that of fiber-reinforced soft actuators reported as hand assistive device [9, 

10], smaller than a cable driven soft glove [7], and at most half of the theoretical upper 

limit calculated above. To better understand how this orthosis functions as a hand 

assistive device, we measured the applied force of four fingers while monitoring the 

EMG intensity as a measure of the user’s effort  [25]. A healthy user wore the glove 

and held a hand exerciser as shown in Figure 4.8. On each button of the hand 

exerciser, we attached a force sensor (FlexiForce A301 Sensor from Tekscan) to 

record the force exerted on it. Simultaneously, we measured forearm muscle exertion 

using a MyoTM armband that uses eight EMG sensors applied uniformly around the 

forearm. 
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The wearer pressed the four buttons to an average force of 1.0 N, and we then 

activated the orthosis. We observed an immediate increase in force from 1.0 N to 1.6 

N, which then dropped to 1.4 N. We then depressurized the orthosis and observed an 

immediate drop in applied force to 0.3 N, which then rose up to 1.0 N. We repeated 

this process and got similar results. Finally, we asked the user to press the buttons to 

achieve a force of 1.6 N, using solely their own effort. 

 
Figure 4.8 Force test with worn glove. A hand exerciser with force sensor attached to 
each button was held by the user and the EMG signal was recorded at the same time. 

From the above experiments, we saw that the actuator caused a significant and sudden 

overshoot force when activated and deactivated, the system then reached a stable state. 

During the later period, when the user was achieving 1.6 N of applied force from 1.0 

N, we recorded an increase of the EMG intensity (the summation of all eight sensors 
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of the armband). While the user was applying 1.0 N of force and the orthosis was 

augmenting to 1.6 N, the measured EMG intensity remained constant. This experiment 

demonstrated that the orthosis was assisting the user by augmenting his force by a 

factor of 1.6, saving muscular effort. 

4.5.3 Control results 

As a test of our controller, we performed unloaded tracking tests for step changes in a 

curvature target. We ran the controller in an Arduino MEGA, using the analogue and 

digital pins for sensor input and valve commands, respectively. We set ∆𝜅!=0.3 m-1, 

X=Y=3 (attenuation by 1/4 in near-deadband zones) and chose three different values of 

∆𝜅! and ∆𝜅!. 

We tested the controller’s step response using various step stimuli for various 

durations (Figure 4.9). When ∆𝜅!=∆𝜅!=∆𝜅! the controller is an on-off controller with 

deadband and no transitional zone, leading to oscillations around the reference. When 

∆𝜅!=∆𝜅!=4∆𝜅!, we observed good accuracy (within 0.3 m-1 curvature), good stability 

(no oscillation or overshoot) and high speed (rise time of about 150 ms). When 

∆𝜅!=∆𝜅!=13∆𝜅!, a large intermediate attenuation zone, the rise time increased to 500 

ms. 

Many have explored the use of EMG signals for control of orthotics [26]. We 

attempted to check the potential of our orthotic towards this goal. We used a filtered 

EMG signal as a reference to represent a curvature target. 
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While a Butterworth low-pass filter has been used with myoelectric signals [26], we 

found that persistent force application by the fingers did not translate into a constant 

filtered signal. Instead, we collected an EMG signal from a user’s forearm using the 

MyoTM armband at 200 Hz and used a moving average filter of 100 samples every 

200 ms to produce a 5 Hz signal with less noise. We then fed this signal into our 

controller as the reference signal. Figure 4.10 shows both the raw EMG signal and the 

processed data for tracking. Our results show that the orthosis, using a state machine 

controller, can follow an EMG signal with small overshoot and small oscillation. 

 
Figure 4.9 Step response of the controller with three different state-transition 
parameter sets. Red lines are the input signals and blue lines are the measured system 
responses. The right plots show enlarged views of step response data.  
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Figure 4.10 Index curvature tracking of an EMG signal previously collected from a 
healthy user. 

4.6 Conclusion and Future Work 

I designed both the hardware and a control method for a closed loop soft orthosis. I 

performed initial quantification of its force augmenting capabilities and feedback 

control via optical fiber sensors embedded into each actuator. I also showed that the 

orthotic can be used to track commands from an EMG signal. My simplified linear 

mechanical analysis shows the key role of radial, that is circumferential, constraint for 
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the functioning of inflated elastomeric fingers.  It also shows that stronger fingers are 

possible using circumferential unidirectional fibers around round-section polymeric 

fingers with axial constraint at the bottom, verifying prior experimental results [20]. 

My system, promising as it is, needs improvement. First, our present choice of 

materials and actuator design do not yield enough force to conduct many common 

daily activities (e.g, opening a jar requires a torque of about 1 to 2 N ∙m [27], 

requiring tens of Newtons to grip a typical lid). Tougher materials, such as 

polyurethanes, along with larger circumferential constraint, should allow me to 

achieve higher forces. Next, with a more refined state-machine controller I should be 

able to improve the system’s tracking ability. Finally, my sensing, and hence control, 

is limited to only curvature. With compliant force sensors, I could achieve force or 

compliance control. My hope is that the low cost of our device and controller will lead 

to devices that could be useful to a large population of patients in need of hand 

prostheses. 
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CHAPTER 5 

OPTOELECTRONICALLY INNNERVATED SOFT 

PROSTHETIC HAND VIA STRETCHABLE OPTICAL 

WAVEGUIDES§ 

5.1 Introduction 

Human hands serve not only prehensile functions, but also as powerful sensory organs 

[1]: we feel the world by sense of touch mostly through our hands. Hence, the loss of a 

hand means not only losing the ability of grasping and manipulation, but it also closes 

a door to sensory perception—hand amputees can no longer touch and feel through 

their fingers. Therefore, an ideal prosthetic hand should achieve dexterous 

manipulation as well as rich sensation [2]. Fortunately, many kinds of brain-computer 

interfaces (BCI) are being developed to realize the direct communication between 

human brain and external devices [3–5], and the effectiveness of using feedback 

sensation to enhance the functionality of prosthetic hands has been demonstrated by 

other researchers through patient-involved experiments [6, 7]. The work presented in 

this chapter is focused on increasing sensation in a soft and dexterous prosthetic hand. 

Advanced prosthetic hands have realized dexterous motions by increasing the number 

of degree of freedom (DOF)[8], [9] or using under-actuated mechanisms [10–13]. 

Most of these hand prosthetic systems are powered by motors [2, 8, 10–13]. Recently, 
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fluidically powered soft actuators have shown their potential as prosthetics and 

orthotics [14–16] ; these devices, compared with motor-driven counterparts, are 

lighter, undergo continuous and more natural deformation with simple control inputs 

[17, 18], are easy to fabricate [14, 19] , and due to their liquid phase processing are 

more likely to be realized in mass production (e.g., replica molding, injection molding, 

rotational molding) [20, 21]. Very few soft prosthetics, however, have demonstrated 

equivalent sensing ability as motor-driven hand prosthetics, which many times achieve 

proprioceptive sensing through motor motion encoders [8, 10–13] and realize force 

sensing through multi-axial Force/Torque load cells [10, 12, 13], which are bulky and 

rigid. On the contrary, fluidically driven soft systems operate via stretching of their 

bodies at strains, 𝜖 =(L-L0)/L0 >0.50 [14, 19, 22]. Most existing sensors are 

incompatible with these large strains and, while excellent efforts are being made in the 

area of developing stretchable sensors for soft actuators [23–29], there is still an 

opportunity for reliable, easy to fabricate, safe, and chemically stable ones.  

This chapter reports the first use of stretchable optical waveguides for strain sensing in 

a prosthetic hand. These photonic strain sensors are easy to fabricate, chemically inert, 

demonstrate low hysteresis and high precision in their output signals. As a 

demonstration of their potential, in this chapter I use them as curvature, elongation, 

and force sensors integrated into a fiber-reinforced soft prosthetic hand. I use this 

optoelectronically innervated prosthetic hand to conduct various active sensation 

experiments inspired by the capabilities of a real hand. 



 

 104 

5.2 Stretchable sensors based on waveguides 

In the early 1970s, Xerox Corporation patented an optical waveguide modulator by 

deforming an elastomeric cladding [30]. In the 1980s, elastomeric waveguides were 

used in strain sensing [31], tactile sensing [32], position sensing [33], acoustic sensing 

[34] and gas sensing [35]; however, the fabrication of those sensors usually required 

complex instruments and processes and could only be achieved by large corporations 

and national laboratories. Since the 1990s, due to newly available fabrication 

techniques (e.g., soft lithography [36]), elastomeric waveguides have been applied as 

innovative sensors in academic research [37, 38]. I have developed a class of these 

sensors, elastomeric optical waveguides, and applied them to prosthetics.  

 
Figure 5.1 Stretchable waveguide fabrication and structure of the optoelectronically 
innervated soft finger. (a) Steps for fabricating a waveguide and the corresponding 
cross section for each step; (b) fabricated waveguides with assorted color LEDs 
inserted from one end in a sinuous shape; (c) waveguides in a curved shape; (d) 
waveguide in a knot; (e) schematic of a soft innervated finger in both unpowered state 
(left) and powered state (right) and its cross section (bottom right corner). 

This waveguide is fabricated to be intentionally lossy—as light propagates through it, 

some radiates to the environment and the more it is deformed, the more light is lost. 
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We measure the light power loss of the waveguide through a photodetector to indicate 

its deformation. Specifically, the sensory waveguide is a step index multimode optical 

fiber composed of a high index of refraction core, ncore ~1.46, with cross sectional area 

Acore ~1 mm x 1 mm, clad with a lower nclad ~1.40 elastomer of Aclad ~3 mm x 3 mm. 

To fabricate the stretchable waveguide, we use a four-step soft lithography process 

[39] (Figure 5.1(a)): (i) 3D print a mold for making the cladding, (ii) pour pre-

elastomer for cladding into the mold and demold after curing, (iii) fill the cladding 

with the pre-elastomer of core material, and (iv) pour pre-elastomers of the cladding to 

enclose the core. We also cast two holes at each end of the waveguide to house the 

LED and photodetector (i.e., photodiode). Soft lithography ensures that all structures 

of the initial mold are replicated in the final waveguide without any detail loss, 

including surface roughness [40].   

The core material of the waveguide is a transparent polyurethane rubber (Vytaflex 20; 

Smooth On, Inc.) with a refractive index of ncore =1.461 and a propagation loss of 2 

dB/cm at a wavelength of 860 nm and the cladding material is a highly absorptive 

silicone composite (ELASTOSIL® M 4601 A/B; Wacker Chemie AG) with a 

refractive index of nclad =1.389 and a propagation loss of 1,500 dB/cm at a wavelength 

of 860 nm. The optical properties for these two materials over a larger wavelength 

range (400 nm to 1,000 nm) are shown in Figure 5.8(a,b). Due to the relatively large 

difference in n for elastomers, the numerical aperture (NA=0.45 at 860 nm) ensures a 

large acceptance angle ((𝜃!"#~26°) of light input and thus lowers the coupling 

difficulties for the LED and the photodetector at the extents of the waveguide.  
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The resulting waveguide is different from commercial ones for several reasons:  

(i) It is highly compliant and stretchable. The core and cladding materials have 

ultimate elongations,  𝜖ult ~10 and 𝜖ult ~7, respectively, and elastic moduli (measured at 

100% strain), E’~300 kPa and E’~400 kPa, respectively (Figure 5.9). The combination 

of high compliance and extensibility allows these waveguides to operate as bending, 

elongation, and pressure sensors for most situations a hand would typically encounter 

(e.g., pressing, touching, grasping). 

(ii) The core material has a relatively large propagation loss as compared to ones used 

for fiberoptic communication. As our waveguides are applied to prosthetic hands for 

sensation, this relatively large propagation loss improves sensitivity during elongation 

while still allowing a detectable amount of light over the length scales typical of a 

human hand using a low-cost photodiode and a simple current amplifying circuit. 

(iii) Our cladding material absorbs light at a rate of 1,500 dB/cm. This low index 

material not only serves as the cladding to ensure total internal reflection for light 

inside the waveguide, but also serves as the jacket to protect the core and forms the 

coupling house for LED and photodetector, preventing ambient light from altering the 

signal. 

(iv) We 3D print the molds using a polyjet printer (Objet 30) for our optical 

waveguides. This fabrication process generates a surface roughness between the core 

and cladding of 6 nm (RMS, see Figure 5.10). This relatively rough interface causes 
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scattering and thus more loss of propagation, however, the design freedom of 3D 

printing allows for complex sensor shapes. 

After the waveguides are fabricated, we cast three of them into a finger actuator using 

over-molding (Figure 5.1(e)). The body of the finger is made of silicone elastomer 

(Ecoflex 0030, Smooth On, Inc.), whose optical and mechanical properties are shown 

in Figure 5.8 and Figure 5.9. The three dimensional integration of the sensors and 

actuators means the waveguides are parts of the body and they will deform when the 

actuator does, serving as proprioceptive sensors. 

5.3 Characterization of waveguide sensors 

We define the output power of a waveguide with no bending, no elongation and no 

pressing deformation as the baseline power 𝐼!. With the output power as I, the output 

power loss in decibels (dB) is then defined as: 

𝑎 = 10log!"(𝐼!/𝐼)                              (Equation 5.1) 

By this definition, the output power loss compared to the baseline is always 0; with 

increasing power a<0, and with decreasing power a>0. 

To characterize the sensitivity of the waveguides during different deformation modes, 

we measured the output power of a length of stretchable waveguide during (i) 

elongation, (ii) bending, and (ii) pressing (see Figure 5.11 for characterization 

methods).  
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Elongation: For the elongation data (Figure 5.2(a)), we observed a highly linear 

response curve of power loss with strain. This linear curve can be derived from the 

Beer–Lambert law: 

𝐴 = 𝑒𝐿𝑐                                     (Equation 5.2) 

Where A is absorbance, L is the path length, e is the absorptivity of the material and c 

is the concentration of chemical species in the medium that attenuate light. Assume 

constant e and c while stretching, A is proportional to L, and by definition of A,  

𝐴 = log!" 𝐼!/𝐼 + 𝑏 = 𝑎/10+ 𝑏                  (Equation 5.3) 

where b is the baseline absorbance. Strain is defined as  

𝜖 = (𝐿 − 𝐿!)/𝐿!                                (Equation 5.4) 

So that 

𝑎 = 10𝑒𝑐𝐿!𝜖                                   (Equation 5.5) 

and  10𝑒𝑐𝐿! is a constant. 

Experimental results using a L0 = 100 mm waveguide yielded a linear, stretch 

dependent loss of ~2 dB/cm over ∆𝜖 ~ 0.85 using an LED (peak wavelength~875 nm, 

TSHA4400 from Vishay Intertechnology, Inc) and a photodiode (380 nm-1100 nm, 

SFH 229 from OSRAM Licht AG); using different input power, light frequency or 

photodetector parameters will alter this sensitivity. It is, therefore, important to 

calibrate the waveguides accordingly. In addition to linearity, the waveguide when 
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operating as a stretch sensor also shows high repeatability (see Figure 5.12(a) and  

Video 5.1), high precision and high signal-to-noise ratio (50-150, Figure 5.2, error 

bars indicate noise) over the tested range.  

Bending: The waveguide we developed has anisotropic optical transmission properties 

(Figure 5.2(b)). The “top” of the waveguide core interface (indicated in Figure 5.1(a)) 

is atomically smooth, while the “bottom” core interface has an RMS roughness of 6 

nm due to demolding from a 3D printed surface (Figure 5.10). The result of this 

anisotropy is that the signal output depends on the direction of bending: towards the 

top surface (i.e., top is in compression, bottom is in tension) leads to a signal rise 

followed by a drop in output power, while bending toward the bottom surface causes 

the output power to decrease monotonically. Using this difference, we can determine 

whether the sensor is being bent up or down. There is no anisotropy in bending side to 

side (although future versions could be programmed with this feature). 

 

Figure 5.2 Characterization of waveguide sensor for: (a) pure elongation, (b) pure 

bending, and (c) pure pressing. (Error bars indicate standard errors from 20 cyclic tests 

of one waveguide sample.) 
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In addition to directional anisotropy, the optical transmission loss rate depends on 

curvature [41]. To characterize this dependence, we measured the power output during 

bending at uniform curvature up to 𝜅 ~ 200 m-1.  The output power loss vs. 𝜅 shows a 

linear trend in the medium curvature range of 20 – 70 m-1 and a sensitivity of 0.02 

dB.m/cm. We note that, although the sensing profile is non-linear, it is highly 

repeatable and precise (Video 5.2), and thus easy to calibrate. 

Pressing: Due to the low elastic moduli of our constituent elastomers, small forces 

exerted over the area of a fingertip can cause a large local deformation in the 

waveguide. We used this property to sense pressing, and tested the power output 

response to varying forces exerted externally. Our results show acute pressing (e.g., 

ΔA <6 mm2) causes a linear response in output power; however, blunt pressing (e.g., 

ΔA >15 mm2) results in a non-linear response (Figure 5.2(c)). This results means we 

can change the sensitivity of the waveguide by changing its dimensions to fit the 

working range of a particular application. The repeatability of pressing sensation is 

demonstrated in Video 5.3 and Figure 5.12(b). 

This compliant, stretchable waveguide shares the same material library (including 

silicone elastomers, polyurethane elastomers, tough hydrogels, etc.) as many 

commonly developed soft robots [19, 21, 42]. It shows high linearity to elongation, 

bending and local pressing and is highly repeatable and precise. To demonstrate the 

capability of these waveguides for imparting sensation to soft robots, we incorporated 

them into the fingers of a soft prosthetic hand.  



 

 111 

5.4 Innervated prosthetic hand design 

 

Figure 5.3 Innervated prosthetic hand. (a) Schematic of hand structure and 
components; (b) image of the fabricated hand mounted on a robotic arm with each 
finger actuated at Δ𝑃 =100 kPa. 

Our prosthetic hand is composed of four pneumatically actuated soft fingers and a 

thumb mounted onto a 3D-printed rigid palm (Figure 5.3(a)). Each digit is a hollow 

silicone tube (outer diameter = 18 mm, inner diameter = 1 mm; Figure 5.1(a)) with 

fibers patterned into the elastomer. Compressed air enters each finger through their 

hollow cores and the inflation pressure causes the fingers to bend and the hand to 

grasp. 

Actuation: We patterned the fabric in the actuator to cause a finger-like motion upon 

pressurization. The nylon fabric is laser cut to be solid on one side and have slits on 

the other. This design is based on a mechanical model we established previously, 

where constraining circumferential stretching during inflation causes more axial 
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actuation and the strain-limiting portion on one side of the elastomeric structure causes 

bending around that layer [16]. The slits allow for circumferential constraint while still 

allowing the gaps in between to stretch for actuation. Figure 5.1(e) shows that the 

finger curves in between the slits, yet there is negligible circumferential bulging. On 

the palm side of the actuators (i.e., the neutral bending plane), there was no elongation 

due to the solid sheet of nylon.  

Control: For our demonstration, we used a single air supply for all four fingers and 

thumb, and we used two solenoid valves (X-valve, Parker Hannifin Corporation) for 

each to control actuation—one for allowing flow into a finger (actuate) and the other 

to exhaust it (de-actuate). We controlled the on/off state of each valve to determine the 

pressure inside each finger and, thus, its motion. Though we have demonstrated 

sophisticated control over actuators previously [16, 43], we chose “open loop” in this 

paper to focus on the importance of the stretchable waveguides for active sensation. 

To test the capabilities of the prosthetic hand, we affixed it to the end joint of a 5-DOF 

robotic arm (CRS CataLyst Express; Figure 5.3(b)).  

Sensing: To impart the sense of touch to the soft prosthetic, we embedded the photonic 

strain sensors throughout the actuator membranes. In our demonstration, we 

incorporated three waveguides into each finger, where each is bent into a U-shape 

(towards the gravity-driven interface) so that LEDs can transmit light through the 

entirety of the actuators and the photodetectors can sense it on the other side (Figure 

5.1(e)). The photonic sensor located at the top of the actuator experiences the largest 

axial strain and thus the largest sensitivity to the bending motion. We placed the 



 

 113 

second sensor in the middle plane of the finger, which has medium axial strain, but 

also relays information about internal pressure.  

The final waveguide serves as a touch sensor for the fingertip of the prosthetic hand; 

we achieve this isolated function by placing it at the neutral bending plane, where 

there is no axial strain. This photonic sensor is different from the other two sensors 

because it is longer and extends to the tip of the finger. The tip of the finger 

experiences no deformation while inflating and is used solely for detecting contact 

force when touching objects. In order to tune the external force sensing range of our 

prosthetic hand’s fingertips, we integrated a stiff plate (∆A ~ 2 x 3 mm2) at the 

fingertips in contact with the waveguide to enhance the sensitivity (Figure 5.3(a)). 

This force amplifying structure directly transmits external tip force to the waveguide.  

Video 5.4 demonstrates the isolated functions of three waveguides in one finger: (i) 

when we pressed the finger tip, the bottom waveguide responded and the other two did 

not; (ii) when we inflated the finger, the middle and top waveguide showed responses 

immediately and the bottom waveguide did not. To distinguish the different functions 

of the middle waveguide and top waveguide, we kept the inflation pressure constant 

while we bent the finger back to straight; we observed a significant signal drop (50%) 

for the top waveguide and a negligible signal drop (10%) for the middle waveguide. 

When the finger is deflated, there is a significant signal drop (90%) for the middle 

waveguide. In the following section, we use these differences for haptic sensation. 
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5.5 Active haptic sensing experiments 

Our soft prosthetic hand is a multifunctional one with both powerful motor capabilities 

(Figure 5.4(a-c)) and versatile sensory ones (Fig 5.4(d-f)). Each digit of the hand is 

capable of both proprioception (sensing internal pressure and active bending) and 

exteroception (sensing passive bending and external force at the fingertip). To 

demonstrate these capabilities, we designed three experiments inspired by common 

tasks of the human hand including: detecting shape and texture, probing softness, and 

object recognition. 

 
Figure 5.4 Capabilities of the hand. (a) Holding a coffee mug; (b) grasping a tomato 
with the palm facing down and (c) palm facing up; (d) shaking a human hand; (e) 
lateral scanning over surfaces to detect roughness and shape; and (f) probing the 
softness of a soft sponge using the middle finger. 
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5.5.1 Lateral scanning to detect shape and texture 

The most commonly used exploratory procedure for detecting roughness and shape of 

a surface by a human hand is lateral scanning[44]. Using our robotic arm, we guided 

the hand to conduct lateral scans at a fixed height over several surfaces to distinguish 

their shape and texture (Video 5.5). We oriented the palm of the hand at a shallow 

angle (20°) with the surface so that each fingertip was touching the surface. When 

performing lateral scanning, the soft finger can be expressed as a spring and the height 

of the point it is touching changes the states of the spring—both compression distance, 

∆𝐻, and contact force, ∆𝐹. As the fingers moved along the contoured surfaces, the 

bottom waveguide measured ∆𝐹 as it changed with surface height, ∆𝐻. Increasing the 

stiffness of the finger also increases its sensitivity, 𝑘 = ∆𝐹/∆𝐻. As actuation pressure 

increases, the measurement sensitivity increases, but this increased pressure also 

causes the hand to close. With an actuator pressure of ∆𝑃=100 kPa (~15 psi), we were 

able to find a suitable balance between sensitivity and an open hand shape.  

Using this method, we tested the ability of the fingers to topographically map seven 

different 3D printed surfaces (Figure 5.5(a), left). After a simple calibration using an 

inclined plane with known height and angle, we reconstructed the height profile of the 

seven surfaces (Figure 5.5(a), right). From this data, we observed that our hand could 

distinguish curves as small as 5 m-1 and roughness on the order of 100 microns. We 

also found that our hand can be used to reconstruct the shape of simple objects such as 

a computer mouse (Figure 5.5(c,d)) including the scroll wheel and the click of the 

mouse buttons. Although the sensitivity of our hand is far from that of a human’s, 
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which can sense roughness on the scale of nanometers [45], we have demonstrated a 

promising system for replicating shape and texture detection using stretchable, optical 

sensors with a soft hand. 

 
Figure 5.5 Shape and texture detection. (a) (left) Seven surfaces of different shape and 
roughness and (right) the reconstructed surfaces by the hand; (b) picture of the lateral 
scanning for (A) using bottom waveguide of each digit; (c) lateral scanning of a 
computer mouse; (d) mouse and the reconstructed shape. 
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5.5.2 Softness Detection 

 
Figure 5.6 Softness detection. (a) States of the softness detection at different air 
pressures for unblocked (right), sponge (middle) and acrylic (right); (b) model of 
softness detection; (c) force-curvature curves for different objects detected from 
bottom and top waveguides of index. 
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Along with shape and texture, our hands can also detect the softness of objects. As the 

relationship between ∆𝐻 and ∆𝐹 is used in most forms of mechanical testing, we 

applied this information to measuring the softness of objects. To demonstrate this 

ability, we used our prosthetic hand to measure the softness of an unblocked (control) 

state along with five common materials and objects: acrylic, polyurethane sponge, 

silicone rubber, a ripe tomato, and an unripe tomato. We measured their softness by 

positioning the tip of an unactuated (0 kPa) finger so that it was barely touching the 

top of the object to be measured. We took readings of the tip force and the degree of 

bending in the unactuated state as well as at varying internal pressures, indicated by 

the bottom waveguide power loss and the top waveguide power loss, respectively 

(Video 5.6).  

Figure 5.6(a) shows the index finger measuring softness of the unblocked state, 

sponge, and acrylic. The system, consisting of the finger and the material being 

probed, can be modeled as a two-spring system (Figure 5.6(b)). By varying the 

stiffness of the finger (via the internal pressure, which is monitored by the middle 

waveguide power loss), we were able to generate a stress-strain curve for each of the 

materials we measured (Figure 5.6(c)): the loss in the bottom waveguide is 

proportional to the contact force (thus stress) on the object while the loss in the top 

waveguide is proportional to its deformation (thus strain). We measured four states (0 

kPa, 33 kPa, 67 kPa and 100 kPa) for each object and fit them into a linear curve. The 

slope of these fitted lines is the indicator we picked for the softness of the objects 

(larger slopes indicate harder objects). As expected, this data shows the objects 

decreasing in softness in the following order: unblocked, sponge, rubber, ripe tomato, 
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unripe tomato, acrylic. Note that our hand can barely distinguish the difference in 

softness between an unripe tomato and the acrylic. This issue is mainly because of the 

large contrast between the object’s and the finger’s stiffness: higher internal pressures 

would be required to achieve detectable position changes in harder objects. This result 

is similar to that of human’s process of detecting softness: we apply a large force to 

detect a hard object and a gentle press for a soft one. 

5.5.3 Object Recognition 

In our final demonstration, we combined shape and softness measurement to select the 

ripest (softest) among a group of three tomatoes aligned in a row. First, we used our 

lateral-scanning, shape-reconstruction method to determine the shape and location of 

three tomatoes (Figure 5.7(a)). After determining their location, we positioned the 

index finger to measure their softness  (Figure 5.7(b)). As shown in Video 5.7, our 

hand was able to locate and select the ripe (red) tomato based upon its softness. 

Though there is seemingly little difference in output signal from Tomato 2 to Tomato 

3, we were still able to determine the ripe tomato was softer (larger top waveguide loss 

and smaller bottom waveguide loss). During the process of scanning and probing, we 

caused a human-like gentle motion by our soft prosthetic hand to avoid the risk of 

destroying the tomatoes. 
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Figure 5.7 Waveguide power loss during the process of detecting shape and probing 
softness. (a) Process of middle finger detecting shape using its bottom waveguide: 
actuate fingers, scan above tomatoes, de-actuate fingers. (b) Process of index finger 
probing softness using three waveguides: press unblocked, press tomato 1 (unripe), 
press tomato 2 (ripe), and press tomato 3 (unripe). 
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5.6 Conclusions and Discussions 

In this chapter, I presented a soft prosthetic hand with rich sensation realized via 

stretchable optical waveguides. My work is the combination and extension of several 

developing areas in both material science and robotics: 3D printing, soft lithography, 

and soft robotics. This sensor demonstrates excellent precision (signal-to-noise ratio > 

50) and stretchability (∆𝜖 ~8 5% strain). We believe the easy fabrication, low cost, 

chemical compatibility, and high repeatability of the developed stretchable waveguide 

sensors will benefit the field of robotics (e.g., soft robot bodies and skins for hard 

ones). In addition, I demonstrated that soft prosthetic hands could not only perform 

dexterous manipulation, but also achieve various haptic sensing functions through 

simple innervation and control. 

My current prosthetic hand prototype, still in its early stage, shows many capabilities, 

yet still has many aspects that can be improved upon. First, sensory density can be 

greatly increased. As the waveguide sensors and the body of the actuator share the 

same material library, more sensors could be incorporated into the actuators, or 

completely replace the body of the actuators, to achieve higher information density for 

both proprio- and extero-ception. The sensitivity can also be increased by using a 

larger power range from the LED (from the baseline power to ambient light power), 

by using high-power laser diodes, and increasing the pressure range of the soft 

actuators (within the material’s elasticity range) to press on objects with more force. In 

essence, the waveguide sensor I developed is a strain sensor based on geometric 

change; therefore, by 3D printing more complex sensor shapes, I can use them for 
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more than bending, pressure, and press sensing (e.g., damage detection). Finally, 

although I positioned these sensors in different places on the actuator, we still 

observed signal coupling. When more sensors are incorporated to extract denser 

information, the output signals will be increasingly coupled and it will be difficult to 

calibrate the relationship between input and output signals; however, because the 

outputs of waveguide sensors are precise and repeatable, by collecting large quantities 

of data, I could use machine-learning techniques to map inputs to outputs (regression) 

or perform more subtle object recognition (classification) (46). 

5.7 Materials and Methods 

Objectives and design of the study.  Our objective is to prove that optical sensors can 

be co-integrated into soft actuators and provide high quality sensory capabilities. We 

designed an elastomeric optical waveguide that is highly stretchable, chemically 

stable, easy to fabricate, and also exhibits high precision in signal output. We chose 

the combination of 3D printing and soft lithography as the fabrication method because 

of its large design freedom and proven ability to replicate shapes in soft materials with 

high precision[18]. We designed each finger of our prosthetic hand to be soft to make 

use of their intrinsic compliance so that we can implement most of our experiments by 

open-loop control. Importantly, the softness of the finger actuators allows external 

forces to transmit to the internal structure and embedded sensors. 

Fabrication of waveguides. Molds for cladding were 3D printed using an Objet 3D 

printer in glossy mode. The mold was put in oven at 60 °C for 4 hours. Mold release 

was applied on the surface of the mold. ELASTOSIL M4601 part A and part B were 
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mixed at a ratio of 1:1 using a planetary centrifugal mixer at speed of 2000 rpm for 30 

s and the mixed pre-elastomer was poured into the mold for cladding and put in oven 

at 60 °C for 1 h for curing. The cured piece was demolded from the mold and laid flat 

on a tray. Vytaflex 20 part A and part B were mixed at a ratio of 1:1 using planetary 

centrifugal mixer at speed of 2000 rpm for 1 min and the mixed pre-elastomer was 

poured into the cured cladding piece within 10 min. The cladding with the uncured 

core was put on a hot plate at 70 °C for 1h. After the core was cured, pre-elastomer of 

M4601 (prepared in the same way as the cladding piece) was poured onto the top of 

the core and cured in oven. 

Fabrication of the innervated finger. Two shorter waveguides and one longer one 

were prepared in advance. Linear slits were cut into a rectangular piece of Nylon 

fabric (see Figure 5.14). Three waveguides, nylon fabric and the finger molds (Figure 

5.13) were assembled together and the mold cap was put on. Pre-elastomer of Ecoflex 

30 was poured into the mold. Finally, a thin steel spring wire was inserted into the 

mold through a thin hole on the mold cap. The assembly was put in oven at 60 °C for 

30 min. The assembly was disassembled, the steel wire was taken off and the cured 

finger was demolded. A tube was inserted from the end hole and a clamp was used to 

fasten the air inlet. 

Characterization of materials. The refractive index of materials was measured using 

Woollam Spectroscopic Ellipsometer with 30 mm x 30 mm x 3 mm samples. The 

absorbance of materials was measured using Shimadzu UV-Vis-NIR Spectrometer. 

The mechanical tests were conducted on Zwick tensile test machine. Surface 
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roughness was measured using MicroXAM optical profilometer. Three separate 

samples were used to conduct each characterization. 

Characterization methods for waveguide sensors. Elongation: we fixed two ends of 

the waveguide onto the two jaws of a bench vise and precisely rotated the screws to 

stretch the waveguide to different strains, and at the same time, we recorded the power 

loss (Figure 5.11(a)). Bending: we manipulated the waveguide to conform to laser cut 

acrylic arcs and recorded the corresponding power loss (Figure 5.11(b)). Pressing: we 

fixed the ends of the waveguide and laid it flat on a scale. We then put a plate with 

known width onto the waveguide, and placed different weights onto the plate to record 

the power loss. This process was repeated with plates of varying width (Figure 

5.11(c)). Only one sample was used for each characterization and each signal was 

collected 20 times to get the mean and standard deviation.  

Data acquisition and processing. We used an LED as the light source and 

photodetector as the light sensor for our optical waveguides. Using a current to voltage 

(I/V) converter circuit (Figure 5.15), we were able to detect the light power received at 

the photodetector. Due to slight variations in manufacturing, some waveguides had 

higher intrinsic power loss than others. We selected the resistance values for our LED 

and I/V converter circuits to adjust for these differences in transmissivity between 

waveguides. With appropriate resistor values selected (Table 5.1), each waveguide 

sensor produced a maximum voltage of approximately 5V. By measuring the voltage, 

we were able to determine the power loss of the sensors when stretched, bent, or 

touched. Capacitance in the I/V converter circuit was chosen to be 4,700 pF to ensure 
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low noise and fast speed. We measured the output voltage of our circuits using 15 

analog pins of an Arduino (Arduino MEGA 2560) Microcontroller, and used its serial 

port with a baud rate of 9600 to transmit the data to a computer. This data was 

received through MATLAB R2016, for further processing and plotting. Our sampling 

frequency was approximately 60 Hz for each of the 15 sensor channels.  

5.8 Supplementary Materials 

 
Figure 5.8 Optical properties of M4601 a/b, Ecoflex 30 and Vytaflex 20. (A) 
Refractive index over 400 nm to 1,000 nm; (B) Absorbance over 400 nm to 1,000 nm. 
 

 
Figure 5.9 Mechanical Properties of M4601, Ecoflex 30 and Vytaflex 20. (A) 100% 
elastic modulus; (B) Ultimate stress; (C) Ultimate elongation. 
 



 

 126 

 
Figure 5.10 Surface profile of waveguide core/cladding interfaces. 
 
 

 
Figure 5.11 Characterization setups. (A) Elongation; (B) Bending; (C) Pressing. 
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Figure 5.12 Repeatability tests. (A) Repeated elongation tests for a waveguide 
stretched to 20%, 40% and 60% of its original length; (B) Repeated pressing tests for a 
waveguide being pressed to 5 N through plates of different areas. 
 
 

 
Figure 5.13 Mold design for the middle finger. 
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Figure 5.14 Nylon fabric and mold assembly. (A) Cut nylon fabric; (B) Rolled nylon 
fabric; (C) Waveguides and nylon fabric assembled into finger mold. 
 

 
Figure 5.15 Circuit for powering LED and amplifying photodiode current. 
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Table 5.1 Resistors, capacitors used in LED-photodiode circuits for waveguide 
Finger Waveguide R1(Ω) R2(MΩ) C1(pF) 
Index Top waveguide 220 1 4700 

Middle waveguide 220 1 4700 
Bottom waveguide 220 2 4700 

Middle Top waveguide 100 2 4700 
Middle waveguide 100 2 4700 
Bottom waveguide 100 2 4700 

Ring Top waveguide 220 2 4700 
Middle waveguide 220 2 4700 
Bottom waveguide 47 2 4700 

Pinky Top waveguide 100 1 4700 
Middle waveguide 220 1 4700 
Bottom waveguide 100 1 4700 

Thumb Top waveguide 100 2 4700 
Middle waveguide 100 2 4700 
Bottom waveguide 100 1 4700 



 

 130 

REFERENCES 

[1] L. A. Jones, S. J. Lederman, Human Hand Function (Oxford Univ. Press, 2006). 

[2] M. C. Carrozza, S. Micera, B. Massa, M. Zecca, R. Lazzarini, N. Canelli, P. Dario, 

The development of a novel prosthetic hand - Ongoing research and preliminary 

results. IEEE/ASME Trans. Mechatronics. 7, 108–114 (2002). 

[3] M. A. Lebedev, M. A. L. Nicolelis, Brain-machine interfaces: Past, present and 

future. Trends Neurosci. 29, 536–546 (2006). 

[4] P. M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. Citi, C. 

Cipriani, L. Denaro, V. Denaro, G. Di Pino, F. Ferreri, E. Guglielmelli, K. Hoffmann, 

S. Raspopovic, J. Rigosa, L. Rossini, M. Tombini, P. Dario, Double nerve intraneural 

interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 

121, 777–783 (2010). 

[5] J. A. Berg, F. V Tenore, L. Jessica, R. J. Vogelstein, S. J. Bensmaia, Restoring the 

sense of touch with a prosthetic hand through a brain interface. Proc. Natl. Acad. Sci. 

U. S. A. 111, 875–875 (2014). 

[6] G. S. Dhillon, K. W. Horch, Direct neural sensory feedback and control of a 

prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472 (2005). 

[7] S. Raspopovic, M. Capogrosso, F. M. Petrini, M. Bonizzato, J. Rigosa, G. Di Pino, 

M. Controzzi, T. Boretius, E. Fernandez, G. Granata, C. M. Oddo, A. L. Ciancio, C. 

Cipriani, M. C. Carrozza, W. Jensen, E. Guglielmelli, T. Stieglitz, P. M. Rossini, S. 

Micera, Restoring natural sensory feedback in realtime bidirectional hand prostheses. 

Sci. Transl. Med. 6, 222 (2014). 

[8] T. Mouri, H. Kawasaki, K. Yoshikawa, J. Takai, S. Ito, Antrhopomorphic robot 

hand: Gifu hand II, in Proceedings of the 2002 International Conference on Control, 

Automation and Systems, 16 to 19 October 2002, Jeonbuk, Korea, pp. 1288-1293. 

[9] F. Röthling, R. Haschke, J. J. Steil, H. Ritter, Platform portable anthropomorphic 

grasping with the bielefeld 20-DOF shadow and 9-DOF TUM hand, in Proceedings of 

the 2007 IEEE International Conference on Intelligent Robots and Systems, 29 

October to 2 November 2007, San Diego, CA, pp. 2951–2956. 



 

 131 

[10] M. C. Carrozza, G. Cappiello, S. Micera, B. B. Edin, L. Beccai, C. Cipriani, 

Design of a cybernetic hand for perception and action. Biol. Cybern. 95, 629–644 

(2006). 

[11] A. D. Deshpande, Z. Xu, M. J. Vande Weghe, B. H. Brown, J. Ko, L. Y. Chang, 

D. D. Wilkinson, S. M. Bidic, Y. Matsuoka, Mechanisms of the anatomically correct 

testbed hand. IEEE/ASME Trans. Mechatronics. 18, 238-250 (2013). 

[12] A. M. Dollar, R. D. Howe, The highly adaptive SDM hand: Design and 

performance evaluation. Int. J. Robot. Res. 29, 585–597 (2010). 

[13] M. G. Catalano, G. Grioli, E. Farnioli, A. Serio, C. Piazza, A. Bicchi, Adaptive 

synergies for the design and control of the Pisa/IIT SoftHand. Int. J. Robot. Res. 33, 

768–782 (2014). 

[14] R. Deimel, O. Brock, A novel type of compliant and underactuated robotic hand 

for dexterous grasping. Int. J. Robot. Res. 35, 161–185 (2016). 

[15] P. Polygerinos, K. Galloway, S. Sanan, M. Herman, C. J. Walsh, EMG controlled 

soft robotic glove for assistance during activities of daily living. in Proceedings of the 

2015 IEEE International Conference on Rehabilitation Robotics, 11 to 14 August 

2015, Singapore, pp. 55–60. 

[16] H. Zhao, J. Jalving, R. Huang, R. Knepper, A. Ruina, R. Shepherd, A helping 

hand: Soft orthosis with integrated optical strain sensors and EMG control. IEEE 

Robot. Autom. Mag. 23, 55-64 (2016). 

[17] A. Stilli, H. A. Wurdemann, K. Althoefer, Shrinkable, stiffness-controlled soft 

manipulator based on a bio-inspired antagonistic actuation principle. in Proceedings of 

the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 14 to 

18 September 2014, Chicago, IL, pp. 2476–2481. 

[18] R. F. Shepherd, F. Illievski, W. Choi, S. A. Morin, A. A. Stokes, A. D. Mazzeo, 

X. Chen, M. Wang, G. M. Whitesides, Multigait soft robot. Proc. Natl. Acad. Sci. U. 

S. A. 108, 20400–20403 (2011). 

[19] F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, G. M. Whitesides, Soft 

robotics for chemists. Angew. Chemie - Int. Ed. 50, 1890–1895 (2011). 



 

 132 

[20] H. Zhao, Y. Li, A. Elsamadisi, R. Shepherd, Scalable manufacturing of high force 

wearable soft actuators. Extrem. Mech. Lett. 3, 89–104 (2015). 

[21] A. D. Marchese, R. K. Katzschmann, D. Rus, A recipe for soft fluidic elastomer 

robots. Soft Robot. 2, 7–25 (2015). 

[22] B. N. Peele, T. J. Wallin, H. Zhao, R. F. Shepherd, 3D printing antagonistic 

systems of artificial muscle using projection stereolithography. Bioinspir. Biomim. 10, 

55003 (2015). 

[23] S. S. Robinson, K. W. O'brien, H. Zhao, B. N. Peele, C. M. Larson, B. C. Mac 

Murray, I. M. Van Meerbeek, S. N. Dunham, R. F. Shepherd, Integrated soft sensors 

and elastomeric actuators for tactile machines with kinesthetic sense. Extrem. Mech. 

Lett. 5, 47–53 (2015). 

[24] C. Larson, B. Peele, S. Li, S. Robinson, M. Totaro, L. Beccai, B. Mazzolai, R. 

Shepherd, Highly stretchable electroluminescent skin for optical signaling and tactile 

sensing. Science 351, 1071–1074 (2016). 

[25] M. Amjadi, K.-U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and 

wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 

26, 1678–1698 (2016). 

[26] C. To, T. L. Hellebrekers, Y.-L. Park, Highly stretchable optical sensors for 

pressure, strain, and curvature measurement. in Proceedings of the 2015 IEEE 

International Conference on Intelligent Robots and Systems, 28 September to 2 

October 2015, Hamburg, Germany, pp. 5898–5903. 

[27] F. L. Hammond, Y. Menguc, R. J. Wood, Toward a modular soft sensor-

embedded glove for human hand motion and tactile pressure measurement. in 

Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and 

Systems, 14 to 18 September 2014, Chicago, IL, pp. 4000–4007. 

[28] L. P. Jentoft, A. M. Dollar, C. R. Wagner, R. D. Howe, Intrinsic embedded 

sensors for polymeric mechatronics: Flexure and force sensing. Sensors 14, 3861–

3870 (2014). 

[29] H. A. Wurdemann, S. Sareh, A. Shafti, Y. Noh, A. Faragasso, D. S. Chathuranga, 

H. Liu, S. Hirai, Embedded electro-conductive yarn for shape sensing of soft robotic 



 

 133 

manipulators. in Proceedings of the 2015 Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, 25 to 29 August 2015, Milan, 

Italy, pp. 8026–8029. 

[30] J. Maher, "Waveguide optical modulator." U.S. Patent 4,128,299, issued 

December 5, 1978. 

31] Y. Shibata, A. Nishimura, S. Niwa, Y. Osawa, T. Uemiya, "Optical sensors." U.S. 

Patent 4,750,796, issued June 14, 1988.  

[32] S. Begej, Planar and finger-shaped optical tactile sensors for robotic applications. 

IEEE J. Robot. Autom. 4, 472–484 (1988). 

33] G. J. Kookootsedes, H. H. Reese, B. I. Gutek, G. H. Pretzer, "Touch position 

sensitive optical waveguides." U.S. Patent 4,701,017, issued October 20, 1987. 

[34] N. Lagakos, E. U. Schnaus, J. H. Cole, J. Jarzynski, J. A. Bucaro, Optimizing 

fiber coatings for interferometric acoustic sensors. IEEE Trans. Microw. Theory Tech. 

30, 529–535 (1982). 

[35] R. A. Lieberman, L. L. Blyler, L. G. Cohen, A distributed fiber optic sensor based 

on cladding fluorescence. J. Light. Technol. 8, 212–220 (1990). 

[36] O. J. A. Schueller, X. Zhao, G. M. Whitesides, S. P. Smith, M. Prentiss, 

Fabrication of liquid-core waveguides by soft lithography. Adv. Mater. 11, 37–41 

(1999). 

[37] M. Ramuz, B. C. K. Tee, J. B. H. Tok, Z. Bao, Transparent, optical, pressure-

sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223–

3227 (2012). 

[38] J. Missinne, S. Kalathimekkad, B. Van Hoe, E. Bosman, J. Vanfleteren, G. Van 

Streenberge. Stretchable optical waveguides. Opt. Express. 22, 4168–4179 (2014). 

[39] G. M. Whitesides, S. K. Y. Tang, Fluidic optics. Proc. SPIE 6329, Optofluidics 

(San Diego, CA, 2006), pp. 1-13 (2006).  

[40] D. Qin, Y. Xia, G. M. Whitesides, Soft lithography for micro- and nanoscale 

patterning. Nat. Protoc. 5, 491–502 (2010). 



 

 134 

[41] J. A. Jay, An overview of macrobending and microbending of optical fibers. 

http://www.corning.com/media/worldwide/coc/documents/Fiber/RC-

%20White%20Papers/WP-General/WP1212_12-10.pdf (2010). 

[42] D. Rus, M. T. Tolley, Design, fabrication and control of soft robots. Nature 521, 

467–475 (2015). 

[43] H. Zhao, R. Huang, R. F. Shepherd, Curvature control of soft orthosis via low 

cost solid-state optics. in Proceedings of the 2016 IEEE International Conference on 

Robotics and Automation, 16 to 21 May 2016, Stockholm, Sweden, pp. 4008–4013. 

[44] S. J. Lederman, R. L. Klatzky, Hand movements: A window into haptic object 

recognition. Cogn. Psychol. 19, 342–368 (1987). 

[45] L. Skedung, M. Arvidsson, J. Y. Chung, C. M. Stafford, B. Berglund, M. W. 

Rutland, Feeling small: Exploring the tactile perception limits. Sci. Rep. 3, 2617 

(2013). 

[46] J. Gafford, F. Doshi-Velez, R. Wood, C. Walsh, Machine learning approaches to 

environmental disturbance rejection in multi-axis optoelectronic force sensors. Sensors 

and Actuators A: Physical. 248, 78-87 (2016) 

	
  



 

 135 

CHAPTER 6 

CONCLUSIONS  

6.1 Summary 

This dissertation reports several advances in fabrication, sensation and control of 

fluidic elastomer actuators and their application towards hand orthotics and 

prosthetics. These advances are summarized below: 

Fabrication. Rotational casting reported in Chapter 2 provides an alternative method 

of fabricating monolithic soft actuators that can withstand high pressures and, 

therefore, become stiffer than previously reported pneu-net actuators. This fabrication 

method also is a standard method used in the mass production of plastic parts. 

Rotational casting, followed by an over-molding process reported in Chapter 3 is an 

excellent method for incorporating sensors into sot actuators. The mechanical model 

reported in Chapter 4 proves that the circumferential constraint is the key factor for 

FEAs to bend towards the neutral plane, and this model further verified the advantage 

of fiber-reinforced soft actuators as reported in Chapter 5. Both rotational casting and 

fiber reinforcement method are more efficient in terms of converting the input energy 

to useful force and generate more robust actuators compared with other fabrication 

techniques. 

Sensation. Chapter 3 and 4 report an over-molded, etched fiber-optic cable used to 

sense deflection; Chapter 5 reports the first use of stretchable optical waveguides for 

strain sensing. Both kinds of sensors are easy to fabricate, chemically inert, 
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demonstrate low hysteresis and high precision in their output signals. The stretchable 

optical waveguides are under continued development as they are composed of 

chemically similar materials to the soft actuators and can be molded into them, 

providing higher density sensing networks. 

Control. In Chapter 3, we used a gain-scheduled PID controller to achieve position 

control, however, this method suffered from slow responses and difficult manual 

tuning of parameters. In contrast, the discontinuous controller based on the state 

machine reported in Chapter 4 performed accurately, rapidly and with little instability 

and was easy to implement.  

Using a synthesis of our new fabrication techniques, sensors, and control methods, my 

dissertation reports two prototype devices: (i) a soft orthotic glove (Chapter 4) and (ii) 

a soft prosthetic hand (Chapter 5). (i) The orthotic glove is purely polymeric, highly 

compliant, and provides little resistance to natural motion when the actuators are not 

pressurized. When inflated, the fingers of the glove curve and stiffen augmenting the 

wearer’s grasping force using position control via embedded fiberoptic curvature 

sensors. (ii) The prosthetic hand could not only perform dexterous manipulation, but 

also achieve various somesthetic functions through simple innervation and control. 

Using this prosthetic, we conducted various active sensation experiments inspired by 

the capabilities of a real hand: localizing the position of objects and feeling their 

stiffnesses. Both of these prototypes are of low cost and relatively high quality and we 

hope that they will benefit people with disabilities in the future. 
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The fabrication, sensation and control techniques developed in my dissertation can be 

expanded into other applications beyond hand prosthetics and orthotics. For example, 

rotational casting can be used in fabrication high-force, larger-sized exoskeletons for 

upper limbs and lower limbs. Stretchable waveguide sensors can be incorporated into 

soft robots targeting at search and rescue or assisting surgery process to increase their 

accuracy. Finite state machine based controller can adopted as the low-level controller 

for bio-inspired robots to increase their adaptivity to the environment. 

6.2 Future work 

There are numerous ways that my work can be expanded and further developed. 

Human hands have a high density of sensory organelles that can sense not only 

motions and contacts, but also temperature and pain [1]. Inspired by these abilities, the 

sensing density of the prosthetic hand will be improved by minimizing the dimensions 

of the waveguide sensors and adding more sensing parameters, e.g., temperature, pH.  

More sophisticated controllers can be designed to consider the inherent compliance 

and nonlinear properties of FEAs [2]. Machine learning is a powerful tool in data 

analysis and could be used into the signal coupling of more sensing data [3]. In 

addition, dynamic models would be helpful in the mechanistic understanding of FEAs 

and give more design guidance. New fabrication techniques for multi-material [4], 

multi-stiffness [5], and multi-functional robots will be required for the synthesis of 

these fundamental advancements into new orthotics and prosthetics that better 

replicate the natural functions and even add new abilities. Experiments with patients 

using these prosthetics and orthotics will be required to understand what need to be 
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addressed and which are superfluous. Wouldn’t it be interesting if those without the 

need for prosthetics became jealous of those using them?   
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