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Today’s oceans are undergoing rapid and unprecedented changes resulting from anthropogenic 

impacts. The North Atlantic right whale, one of the most endangered baleen whales with just 

over 500 animals remaining in the species, is one example of a species at risk resulting from 

human influence. Modern right whale research is focused on elevated mortality rates due to 

vessel collisions and fishing gear entanglement. Although understudied, depressed calving rates 

also contribute significantly to slow growth. Here we analyze the effect of climate-driven 

fluctuations in prey abundance on right whale reproductive dynamics since 1980. 

 

Calanus finmarchicus, the lipid-rich copepod that right whales prey on, were anomalously 

abundant in the 1980s and 2000s, while concentrations were low in the 1990s. These fluctuations 

in copepod abundance were driven remotely by freshwater pulses from the Arctic Ocean, and by 

changes in advective supply to the Gulf of Maine related to North Atlantic circulation patterns. 

Synchronized with the low prey regime, right whale calf production in the 1990s was depressed 

relative to the surrounding decades.  

 



 

In a series of matrix population models, physical variables tied to basin-scale oceanographic 

mechanisms, climate indices and Continuous Plankton Recorder-derived C. finmarchicus 

abundance anomalies were tested in the prediction of right whale calf births over the time series 

1980-2007. While several lagged physical variables and the annual C. finmarchicus anomaly 

outcompeted the prey-independent calf prediction model, the best reproduction model was driven 

by a combination of bimonthly anomalies in sub-regions spanning the southern Gulf of Maine. 

The objectively-selected regions and seasons of prey anomalies driving the best reproduction 

model correspond well with known right whale feeding and breeding habits.  

 

The full demography of the right whale population was analyzed using capture-recapture 

techniques, demonstrating that prey availability has an observable effect on interannual 

variations in reproduction but not on mortality. Population size was projected over a 100-year 

period under three different observed decadal prey regimes, with positive population growth 

predicted under each scenario. However, a future northward shift in C. finmarchicus habitat due 

to rising sea temperatures may increase the frequency of low prey scenarios for right whales, 

leading to population decline. 
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CHAPTER 1  

INTRODUCTION: ECOLOGICAL IMPACTS IN A CHANGING OCEAN 

 Anthropogenic influences on the environment and its inhabitants have caused a rapid 

increase in species extinctions, and scientists have speculated that we may be inciting the sixth 

mass extinction event in Earth’s history (Barnosky et al. 2011). Humans have impacted organism 

fitness and ecosystem function through direct harvest, habitat destruction, resource depletion, 

pollution, introduction of invasive species and foreign pathogens, and climate change. While 

many changes in terrestrial ecosystems are clearly discernable and sampling methods are 

straightforward, changes in marine ecosystems are less visible and harder to quantify. In this 

chapter, several of the most threatening impacts of human industry on marine ecosystems are 

introduced to provide some background on the state of our oceans at this time. Then, a case study 

of the North Atlantic right whale is presented to demonstrate how human influences have led to 

the near-extinction of one of the ocean’s great baleen whales. Finally, the research presented in 

this dissertation, which examines the impact of climate-associated fluctuations in prey 

availability on right whale demography and population dynamics, is summarized. Despite 

previous beliefs, the ocean is not too big to escape human influence. 

 

2.1 CLIMATE CHANGE 

Global temperatures have risen at a rate of 0.2°C each decade over the past three decades 

as a result of increased anthropogenic emissions of greenhouse gases (Hansen et al. 2006). The 

global oceans have absorbed over 93% of this increase in heat content (Levitus et al. 2012). The 

influx of carbon dioxide and rapid accumulation of heat energy have significantly altered Earth’s 

marine ecosystems (Hoegh-Guldberg and Bruno 2010). As warming trends progress towards 
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increased stratification and a shift towards permanent El Nino-like conditions, evidence suggests 

that marine primary production, which accounts for half of all global net primary production, 

will decline (Behrenfeld et al. 2006). Using global satellite-derived chlorophyll data, Polovina et 

al. (2008) found that the ocean’s least productive waters expanded by 15% over an 8-year time 

series due to increases in vertical stratification near the ocean surface.  

Biological responses to warming oceans include shifts in species range distributions and 

massive coral reef bleaching episodes. Scientists have also documented widespread changes in 

phenology, or the timing of seasonal activities. In a meta-analysis of over 1700 species, 

Parmesan and Yohe (2003) found an average poleward range shift of 6.1 km per decade and an 

advancement of springtime activities of 2.3 days per decade. In the case of pelagic environments, 

ecosystems such as the North Sea have been impacted by a trophic mismatch as spring 

phytoplankton blooms occur progressively earlier in response to warming, but secondary and 

tertiary consumers such as zooplankton and fish larvae, which have evolved to exploit the bloom 

timing, have not yet altered their behavior (Edwards and Richardson 2004). In a study of 36 

demersal fish species in the North Sea, half, in particular the smaller, shorter-lived species, have 

exhibited northward range shifts (Perry et al. 2005). Fish species with slower life histories and 

longer maturation times are already susceptible to overexploitation, and with slower adaptation 

they face greater vulnerability to the effects of warming temperature changes. Many marine 

species are unable to shift poleward due to abiotic factors, such as geographical barriers or 

inadequate light levels. For example, the coral species composing tropical reef communities face 

serious constraints on their adaptability to climate change.   

Rising global temperatures are accentuated at upper latitudes and have led to rapid sea ice 

loss and glacier melt. Decline in Arctic sea ice cover is accelerating, with a current loss of 10% 
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of perennial ice cover per decade (Comiso et al. 2008). This represents a massive loss of habitat 

for sea-ice algae and phytoplankton, which account for over half of the total primary production 

in the Arctic Ocean (Post et al. 2013). Decreased ice extent and warming waters in the Bering 

Sea have caused upper trophic level demersal fish, historically limited to warmer sub-Arctic 

waters, to expand their range to Arctic waters. As the Bering Sea shifts from a benthic- to a 

pelagic-dominated ecosystem, marine mammal and seabird populations that prey on benthic 

invertebrates will decline (Grebmeier et al. 2006). In the Southern Ocean, sea ice loss has led to a 

shift towards declining krill densities and increases in salp abundance, effecting the species that 

prey on krill, including penguins, albatross, seals and whales (Atkinson et al. 2004).  

Thermal expansion, coupled with discharge from the melting cryosphere, have increased 

ocean volume and sea levels are currently rising at a rate of 3.2 mm/year (IPCC: Church et al. 

2013). In addition to displacing millions of people living near coasts, sea level rise is expected to 

have effects on coastal ecology. In areas with steep coastal topography or extensive coastal 

infrastructure, such as sea walls, loss of intertidal habitat to rising seas may reduce foraging 

grounds for seabirds (Galbraith et al. 2002). In cases where sea level rise occurs faster than coral 

reef accretion, reef drowning may occur (Knowlton et al. 2001). 

 

2.2 OCEAN ACIDIFICATION 

Along with absorbing most of the heat from greenhouse warming, the global oceans also 

absorb one third of the carbon dioxide released from fossil fuel burning. While this oceanic 

uptake has reduced atmospheric concentration of carbon dioxide and, in turn, decreased the 

impacts of global warming, absorption of carbon dioxide has fundamentally altered ocean 

chemistry (Doney et al. 2009). Carbon dioxide reacts with seawater to form carbonic acid, 
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lowering ocean pH and decreasing the availability of calcium carbonate needed by calcareous 

organisms, such as corals and calcifying plankton, to form shells.  

In the case of coral reefs, ocean acidification has caused a decrease in the rate of reef 

building, a decline in skeletal density, and an increase in energy invested in reef building 

(Hoegh-Guldberg et al. 2007). In addition to warming waters, coral reefs have undergone 

massive degradation on a global scale by increased disease prevalence and local stressors, such 

as point-source pollution and outbreaks of predators like the crown-of-thorns starfish. For 

example, there has been a 50% loss of reef cover on the Great Barrier Reef since 1985 (De’ath et 

al. 2012).  

Commercially important mollusks, such as oysters and mussels, depend on high 

concentrations of calcium carbonate for both early development and adult reproduction. 

Economic losses from declines in the US mollusk fishery are projected to range from $300 

million to several billion dollars over the next half century (Cooley and Doney 2009). While 

ocean acidification causes declines in the growth and condition of calcareous organisms, some 

fleshy algal species may actually thrive due to increased photosynthetic rates and decreased 

grazing (Kroeker et al. 2012). A shift towards algal-dominated ecosystems will likely be 

accompanied by a decrease in biodiversity and altered ecosystem function.  

 

2.3 POLLUTION 

Marine ecosystems are exposed to toxins in the seawater through riverine discharge, 

atmospheric deposition and point-source pollution. Human activity including land-use change, 

infrastructural development and construction, agriculture, shipping and recreation have 

contributed to marine pollution and resulted in coastal and pelagic ecosystem alterations and 
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degradation (Islam and Tanaka 2004). For centuries, humans considered the oceans too big to 

pollute, and operated under the concept that “the solution to pollution is dilution.” However, in 

recent decades, scientists have discovered myriad devastating effects of pollution in marine 

environments.  

Millions of tons of non-biodegradable plastic have been produced over the past century, 

becoming the most abundant type of marine debris and posing a serious threat to marine life 

(Derraik 2002). Marine debris can harm organisms through the mechanisms of entanglement, 

ingestion, and suffocation. Accumulated in the North Pacific gyre, the great ‘garbage patch’ has 

a 6:1 weight ratio of near-surface fragmented plastic to plankton (Moore et al. 2001). Floating 

plastic debris accumulates and concentrates persistent organic pollutants (POPs), such as 

polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), making them 

accessible to marine organisms in much higher concentrations than in typical seawater (Rios et 

al. 2010). Floating plastic can also be used as a transport mechanism for the dispersal of invasive 

species (Gregory 2009). 

 Ten thousand to several hundred thousand tons of crude oil are accidentally spilled into 

the ocean from tankers and barges each year (ITOPF 2016). Acute-phase mortality events 

following an oil spill are directly observable and well studied. Sea birds and marine mammals 

are especially affected due to their need to frequently access the air-sea interface. Contact with 

surface slicks causes feathers and fur to lose insulation efficiency, causing death by hypothermia. 

Oiled animals also suffer mortality from smothering, drowning, and poisoning from ingestion. 

Oil typically penetrates the water column to the benthos, leading to mass mortality of macroalgae 

and benthic invertebrates due to its toxic effects or smothering (Teal and Howarth 1984). Less 

understood are the indirect and long-term ecosystem effects following an oil spill. For years 



 

6 

following the Exxon Valdez spill, chronic exposure to PAHs in the sediment affected herring and 

salmon egg development, and bioaccumulation of toxins in prey increased sea otter and seabird 

mortality rates (Peterson et al. 2003).  

Massive influxes of nitrogen and phosphorous from upstream agricultural fertilization are 

transported into estuaries and coastal marine ecosystems. Coastal eutrophication has caused 

harmful algal blooms, rendering shellfish toxic and resulting in human poisoning and death 

(Smith 2003). Following unbridled algal growth, increased concentrations of particulate organic 

matter stimulate bacterial production, resulting in increased microbial respiration leading to 

massive hypoxic zones. The two largest ‘dead zones’ formed from anthropogenic nutrient 

loading are the Baltic Sea (49,000 km2; Conley et al. 2009) and the Gulf of Mexico (21,000 km2; 

Rabalais et al. 2002). These low oxygen waters are unusable for benthic invertebrates and 

pelagic species, causing habitat loss and habitat fragmentation (Diaz and Rosenberg 2008). 

In addition to chemical pollution, noise pollution has recently been identified as having a 

deleterious effect on marine ecosystems. A significant portion of anthropogenic noise in the 

water is an unintentional byproduct of shipping and boating activities or construction and use of 

offshore platforms for oil and gas wells as well as wind farms. Sound is also used deliberately as 

a measurement device for navigation, detection of submarines, fish-finding, and seismic 

reflection profiling for oil exploration (Slabbekoorn et al. 2010). High intensity sounds from 

activities such as pile driving or air gun use for oil exploration can cause tissue damage, 

behavioral changes or sudden death in nearby fish and marine mammals (Popper and Hastings 

2009, Gordon et al. 2003). Chronic acoustic masking can have deleterious effects on social 

marine mammals, such as baleen whales, which depend on sound for communication (Clark et 

al. 2009).  
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2.4 OVERFISHING 

More noticeable than ecosystem degradation from unintentional anthropogenic 

disturbance, the abundance of marine organisms, especially at upper trophic levels, has been 

impacted directly through human harvesting. Global biomass of large predatory fish has been 

reduced to 10% of pre-industrial levels as a result of overfishing (Myers and Worm 2003). This 

trend was true for coastal species such as codfishes, flatfishes, skates and rays, and for pelagic 

species such as tuna, billfishes and swordfish. Community biomass is typically reduced by 80% 

of the pre-exploitation value within 15 years of industrialized fishing, and often before any 

scientific monitoring has taken place.  

As the abundance of upper-trophic level fish declines, humans “fish down the food web” 

targeting lower-trophic level organisms (Pauly et al. 1998). Statistics from the Food and 

Agricultural Organization show that the mean trophic level of seafood has declined from 1950 to 

1994 as markets transition from carrying long-lived piscivorous demersal fish to short-lived, 

pelagic planktivorous fish and invertebrates. Although the collapse of upper-trophic level 

fisheries is prevalent, especially in the North Atlantic, middle- and lower-trophic level harvesting 

is increasing even in areas where top predator catches have not declined, termed “fishing through 

the food web” (Essington and Beaudreau 2006).  

In addition to decreasing marine biomass, overfishing has resulted in unintended 

ecological consequences such as changes in community structure. The removal of top predators 

has led to inadvertent trophic cascades. For example, release from predation due to overfishing 

has caused an increase in grazing by sea urchin populations in the Mediterranean, leading to a 

transition from erect algal communities to coralline barrens (Sala et al. 1998). In the Black Sea, 

population surges of both phytoplankton and jellyfish have been attributed to the combined 
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effects of trophic cascades driven by overfishing and eutrophication (Daskalov 2002). In the 

Northwest Atlantic, the collapse of benthic fish species, such as cod, haddock and hake, 

contributed to an increase in small pelagic fish and benthic macroinvertebrates, a decline in large 

zooplankton and a surge in phytoplankton (Frank et al. 2005). However, the effects of top-down 

forcing on the lower trophic levels in this system have been called into question (Greene 2012, 

Pershing et al. 2014). 

Another unintended consequence of global fishing is bycatch, or the incidental take of 

organisms with little or no commercial value. Over 40% of harvested marine organisms are 

either unused or unmanaged, and therefore classified as bycatch (Davies et al. 2009). Bycatch 

can occur either when a non-targeted species is caught, or when a non-targeted sex, age or size 

class of the targeted species is caught. Shrimp trawl fisheries have the highest ratio of bycatch to 

target species intake by weight, and they account for one third of all bycatch globally (Alverson 

et al. 1994). Gill-net fisheries are primarily responsible for the bycatch of marine mammals, with 

a mean take of over 6000 cetaceans and pinnipeds each year in the US fisheries alone (Read et 

al. 2006). Long-line fisheries are responsible for a tremendous amount of loggerhead and 

leatherback sea turtle bycatch, resulting in a decline of 80-95% in Pacific populations (Lewison 

et al. 2004). Sharks and rays are demographically sensitive to threats due to life history 

characteristics, such as late maturity and low productivity. As a result of targeted fisheries for 

shark fins (Clarke et al. 2007), minimal regulation of “pest” species and frequent occurrence of 

bycatch, three-quarters of pelagic sharks and rays are designated as threatened or near-threatened 

(Dulvy et al. 2008). Large coastal and oceanic shark populations in the Northwest Atlantic, 

including hammerhead, white and thresher sharks, have declined by over 75% since the 1960s as 

a result of long-line bycatch (Baum et al. 2003). 
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Fishing practices over coral reefs have had especially devastating impacts on these fragile 

and diverse ecosystems. Destructive practices such as cyanide fishing and dynamite fishing are 

used to stun or kill fish for fishermen to collect once they float to the surface. These practices 

result in widespread mortality of the organisms and reef structures in the community, far beyond 

the targeted species. Both the destruction of reef area and the elimination of top predators from 

overfishing can lead to a phase shift from a coral reef-dominated to an algal-dominated 

community (McManus 2000). A global assessment in 1997 found that nearly all coral reefs have 

been degraded by overfishing, as indicated by the low abundance of upper trophic indicator 

species (Hodgson 1999).  

Anthropogenic stressors have caused extensive changes to the physical marine 

environment and led to significant degradation of marine ecosystems. Rrom the direct effects of 

harvesting resources from the ocean to the indirect effects of introduced pollution and climate 

change, marine ecosystems have suffered decreases in both biomass and biodiversity. In 

response to the rapidly changing marine environment, it is especially essential to monitor marine 

ecosystems to assess the degree of anthropogenic impact, pinpoint drivers to change and 

determine what mitigation tactics may be employed. 

 

2.5 MARINE MAMMALS AS INDICATORS OF ENVIRONMENTAL CHANGE 

 Marine mammals serve as remarkable sentinels to environmental change because they 

“integrate and reflect ecological variation across large spatial and long temporal scales” (Moore 

et al. 2008). High mortality in the southern sea otter, a keystone species in kelp forest 

ecosystems, has occurred, partially due to exposure to toxins in the water such as petroleum and 

POPs (Jessup et al. 2004). As inhabitants of coastal waters, manatees are vulnerable to both 
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watercraft collisions and disease caused by harmful algal blooms (Bonde et al. 2004). Marine 

mammals dependent on sea ice, such as the polar bear and the ringed seal, serve as the most 

blatant examples of ecosystem change resulting from climate change (Hunter et al. 2010; 

Ferguson and Stirling 2005). 

Few cetacean species directly suffer from recent physical changes to their environment 

such as warming temperatures and melting sea ice because they have adapted to a wide range of 

physical conditions due to their large habitat range. However, there is evidence of declines in 

cetacean populations resulting from environmentally driven changes to their prey. Baleen whales 

especially depend on patches of highly concentrated plankton to sustain their large caloric 

requirements. Due to the long life histories, high energetic requirements and low productivity of 

most cetacean species, small changes to the abundance, distribution or patchiness of prey can 

lead to dramatic changes to cetacean vital rates.  

Incidence of starved, beached gray whales increased drastically at the start of the new 

millenium, likely as a result of reduced prey availability in places such as Chirikov Basin (Moore 

et al. 2003). Modeling studies have projected that warming temperatures, decreased sea ice 

extent and an expanding krill fishery in the Southern Ocean will cause a reduction in krill 

biomass and lead to a significant decline in blue whale birth rates (Weidenmann et al. 2011). Fin 

whale blubber thickness and birth rates were also shown to vary with environmentally driven 

changes in prey conditions in Icelandic waters (Williams et al. 2013). Efforts to rebuild the 

Southern Resident Killer Whale population, which subsists on large quantities of Chinook 

salmon, directly conflict with efforts to maximize Chinook landings in the Pacific Northwest 

(Williams et al. 2011).  
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2.6 NORTH ATLANTIC RIGHT WHALES 

 Nicknamed the “urban whale”, the North Atlantic right whale, Eubalaena glacialis, 

serves as a striking sentinel to anthropogenic change to the marine environment. With a habitat 

spanning the Eastern seaboard of the US and southern Canada, right whales feed, breed and 

migrate through waters rife with human activity. Harvested for oil and baleen for centuries, the 

right whale population was decimated before the start of the 20th century (Reeves et al. 1999). 

Despite the moratorium on commercial whaling in 1935, the North Atlantic right whale remains 

one of the most endangered large whale species, with a population numbering just over 500 

individuals (Pettis and Hamilton 2015).  

The most common causes of death for these slow, maladroit creatures are vessel 

collisions and fishing gear entanglements. Of the 40 right whales necropsied between 1970 and 

2006, the cause of death in 53% was determined to be a vessel collision (Campbell-Malone et al 

2008). Evidence of entanglement has been documented in 83% of the population, with 26% of 

adequately photographed individuals exhibiting new signs of entanglement annually (Knowlton 

et al. 2012).  

Like other baleen whales, right whales have a tight-knit social structure and rely heavily 

on low-frequency calls for communication, navigation, feeding and breeding. Due to the 

proximity of critical habitat to active shipping lanes, right whales have lost over 60% of their 

communication space (Hatch et al. 2012). Right whales are also exposed to chemical pollution, 

including PCBs and neurotoxins from harmful algal blooms, with potential maternal transfer to 

neonates (Woodley et al. 1991; Doucette et al. 2012).  

There is evidence that right whales have also experienced physiological stress resulting 

from periods of food limitation. While not necessarily increasing mortality rates among healthy 
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adult whales, low prey availability has the potential to decrease reproductive efficiency or 

increase prenatal or neonatal mortality rates due to the unusually high energetic demands of 

mammalian reproduction (Wade and Schneider 1992). Pregnant North Atlantic right whales 

undergo a significant migration from feeding grounds in the Gulf of Maine to breeding grounds 

near the coast of Florida, further increasing the demands of reproduction. Miller et al. (2011) 

found that North Atlantic right whales have significantly thinner blubber layers than their close 

cousins, the Southern right whale (Eubalaena australis), suggesting a difference in nutrition 

between the two species. North Atlantic right whales experience thinner blubber layers following 

periods of low prey availability, and blubber layers are thinnest during lactation. Modeled 

energetic requirements compared with in situ prey data demonstrate that lactating females, unlike 

other demographic groups, may not be acquiring sufficient nutrition (Fortune et al. 2013).  

The decline in right whale population growth observed during the 1990s raised serious 

concerns about population viability (Caswell et al. 1999; Fujiwara and Caswell 2001). However, 

the resurgence of calf births in the 2000s, mirroring fertility conditions in the 1980s, indicated 

that a linear trend in population growth was overly simplistic. To improve the management of 

this critically endangered species, it is essential to better understand the interannual and 

interdecadal fluctuations in right whale vital rates. In this dissertation, I examine the effects of 

environmental changes moderated through prey availability on the demography of the North 

Atlantic right whale. 

 

Chapter 2: Climate-Associated Regime Shifts Drive Decadal-Scale Variability in Recovery of 

North Atlantic Right Whale Population 
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In Chapter 2, I address large variations in the frequency of North Atlantic right whale calf 

births which occurred over decadal time periods. In the 1980s, calf production averaged 28 

calves * 100 reproductive females-1 * year-1. In the 1990s, average calf production declined to 14 

calves * 100 females-1 * year-1. Then in the 2000s, average calf production increased again to 24 

calves * 100 females-1 * year-1. This decadal scale variation in breeding rates can be partially 

explained by climate-associated fluctuations in prey availability in critical right whale feeding 

grounds.  

To demonstrate this association, I built a simple three-stage reproduction model 

following adult female right whales as they step between years of resting, pregnant and lactating. 

Time series of right whale life history data were taken from the North Atlantic Right Whale 

Consortium photographic ID (Right Whale Consortium 2011). Transitions between reproductive 

stages were modeled independently and as a function of food availability. As a proxy for prey 

abundance, I used late stage Calanus finmarchicus anomalies taken from the Continuous 

Plankton Recorder (CPR) transect running from Boston, MA to Cape Sable, Nova Scotia. The 

CPR transect was broken into 4 distinct regions: Cape Cod Bay, West Gulf of Maine, East Gulf 

of Maine and Scotian Shelf, and C. finmarchicus data was parsed into bimonthly anomalies.  

A demographic matrix model was used to predict a time series of calf births from 1980-

2007. Models dependent on spatially- and temporally-resolved prey anomalies performed better 

than the prey-invariant null model or the model dependent on annually averaged, transect-wide 

C. finmarchicus anomalies. The regions and seasons driving the best resolved model correspond 

well with known right whale feeding and mating grounds. These prey-dependent reproduction 

models indicate a tight coupling between C. finmarchicus abundance in the Gulf of Maine and 

right whale reproductive success.  
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Chapter 3: Climate-associated changes in prey availability drive reproductive dynamics of the 

North Atlantic right whale population 

 In Chapter 3, the three state right whale reproduction model was examined more 

rigorously, assessing various environmental variables that may impact calf rates through the 

mechanism of prey abundance. Prey-driven variations in right whale calf production are linked to 

both circulation changes in the North Atlantic and temperature and salinity changes stemming 

from the Arctic Ocean. A period of low Arctic Ocean Oscillation (AOO) index in the 1990s 

corresponded to a massive export of cold, freshwater, marked as a Great Salinity Anomaly in the 

Northwest Atlantic. This transport led to changes in the timing and extent of stratification, 

altering the phytoplankton and zooplankton assemblages in the Gulf of Maine (MERCINA 

2012). This remotely driven, ecosystem-wide regime shift coincided with lower birth rates 

throughout the decade. An extremely negative phase of the North Atlantic Oscillation during the 

winter of 1996 led to a decline in the Gulf of Maine C. finmarchicus population (Greene and 

Pershing 2003; Greene and Pershing 2004). This additional decline in copepod abundance 

coincided with a near cessation in right whale reproduction in 1999 and 2000. At the end of the 

1990s, the Arctic Ocean shifted back to a regime of increased freshwater storage in the Beaufort 

Gyre, and the NAO reverted back to a positive phase. As C. finmarchicus rebounded in the early 

2000s, right whale fertility increased to levels seen in the 1980s, and the population entered a 

period of growth.  

To analyze the connection between these physical phenomena and the interannual 

variation in right whale reproduction, the effects of six other variables tied to Gulf of Maine 

ecology, in addition to CPR-derived late stage C. finmarchicus anomalies were tested. Calf births 

from 1980-2007 were predicted as a function of the NAO, Regional Slope Water Temperature, 
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Arctic Oscillation, AOO, Regional Shelf Water Salinity and CPR-derived autumn phytoplankton 

color index. Each variable was tested with time lags varying from zero to five years. 

Calf births were best predicted by the four-year-lagged Regional Slope Water 

Temperature, likely because this index describing the Northwest Atlantic’s coupled slope water 

system captures and explains the drop in reproduction at the end of the 1990s, which is the most 

significant anomaly observed in the three decade period of study. The 2- and 3-year lagged AOO 

index as well as the unlagged Autumn phytoplankton anomaly also perform well, capturing the 

variability in calf births driven by altered seasonal stratification resulting from remote Arctic 

forcing.  

Out of all variables and time lags compared, the reproduction model driven by regionally 

and seasonally resolved, CPR-derived late-stage C. finmarchicus anomalies performed optimally. 

Some inferences about right whale reproductive biology can be made regarding the shape of the 

probability functions as reproductive females transition between states. The probability of a 

female becoming pregnant increases gradually from 20% to 40% with increasing prey 

concentrations in the Western Gulf of Maine in November/December, a known breeding ground, 

and across the entire CPR transect in March/April. These results may indicate the combined 

importance of blubber reserves built during spring feeding and high prey concentrations in the 

late fall bringing the population together for mating opportunities. The probability of a pregnant 

female transitioning to lactation, i.e. being observed with a live calf, behaves like a step function 

with increasing prey in the Eastern Gulf of Maine in July/August. This function indicates that a 

specific threshold of prey availability is required for successful gestation and neonate survival.   

Model predicted calving intervals are estimated for each year from 1980-2007 using the 

regionally- and seasonally-resolved prey-dependent reproduction model. Each theoretical calving 
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interval can be interpreted as a snap-shot of reproductive efficiency given that year’s prey 

conditions. In 1998 and 1999, the anomalously low prey concentrations corresponded with a near 

cessation in reproduction, with theoretical calving intervals exceeding the expected lifetime of a 

right whale. If the environmental conditions observed over this time period persisted, the 

population could decline rapidly. Although climate-driven regime shifts in the Northwest 

Atlantic are unpredictable, right whale feeding grounds occupy the southernmost boundary of the 

region inhabited by C. finmarchicus. As sea temperatures rise, Reygondeau and Beaugrand 

(2011) predict a northward shift in C. finmarchicus habitat, potentially increasing the frequency 

of low prey scenarios for right whales, or consequently forcing the species to shift their own 

habitat.  

 

Chapter 4: A species on the brink: Effects of prey-driven fecundity and anthropogenic mortality 

rates on demographic projections of the North Atlantic right whale population 

 Expanding on the previous chapters, I develop the North Atlantic right whale 

reproduction model into a full demographic model representing all life stages for male, female, 

and unknown sex individuals. Using the photographic-ID database (Right Whale Consortium, 

2014), each confirmed whale sighting corresponds to a “capture” event, and capture-recapture 

techniques are used to model the transitions between life stages. Capture probabilities are 

estimated for each demographic group as a function of annual survey effort. Probabilities of 

transitioning between demographic states are modeled as constants, then as a function of CPR-

derived late-stage C. finmarchicus. Using the female states of the full demographic model, I 

project right whale population growth into the next century under different prey availability and 

mortality scenarios.  
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 In the time-invariant model, the population growth rate over the time period 1980-2012 is 

positive, with λ=1.026. Averaged over the time series, approximately one quarter of available 

females breed each year. Prey dependence was tested in each state transition, but only the 

inclusion of prey in the transition from adult female resting to breeding significantly improved 

the model.  

 The right whale population was projected forward 100 years under three different 

resampled prey scenarios: high prey concentrations in the 1980s, low prey concentrations in the 

1990s, and high prey concentrations in the 2000s. Under the two high prey scenarios, the 

population grows faster with a narrower range of variability in λ than in the low prey scenario. 

However, even in the low prey scenario resampled from the 1990s, population growth remains 

positive. Given these demographic results, right whales appear to be in a period of recovery, and 

the outlook for this species is hopeful.  

 Since right whales are vulnerable to anthropogenic mortality resulting from ship strikes 

or entanglement in fishing gear, it is essential that this species continues to be closely managed. 

Although population growth remains positive under all prey projection scenarios tested here, 

viability is a function of both reproduction and mortality rates. Should a change in shipping or 

fishing gear policies lead to an increase in mortality, population growth cannot be guaranteed. In 

a scenario where 12 additional whales are killed each year, or just over 2% of the population, the 

growth rate becomes negative under typical prey concentrations. With the compounding effects 

of both low prey availability and a small increase in mortality rates, the population could become 

vulnerable again. 
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CHAPTER 2 

CLIMATE-ASSOCIATED REGIME SHIFTS DRIVE DECADAL-SCALE VARIABILITY IN 

RECOVERY OF NORTH ATLANTIC RIGHT WHALE POPULATION 

Abstract 

Despite an elevated mortality rate from lethal interactions with humans, the North 

Atlantic right whale population has continued to grow during the first decade of the new 

millennium. This unexpected population growth is the result of a 128% increase in female-

specific reproduction relative to the 1990s. Here, we demonstrate that the recent increase in 

annual right whale calf production is linked to a dramatic increase in the abundance of its major 

prey, the copepod species Calanus finmarchicus, in the Gulf of Maine. The resurgence of C. 

finmarchicus was associated with a regime shift remotely forced by climatic changes in the 

Arctic. We conclude that decadal-scale variability in right whale reproduction may be largely 

driven by fluctuations in prey availability linked to climate-associated ecosystem regime shifts. 

(Originally published as Meyer-Gutbrod 2014) 

 

2.1 INTRODUCTION 

Humans began hunting the North Atlantic right whale (Eubalaena glacialis) nearly a 

millennium ago. By the end of the 19th century, the population was so depleted that it was of 

little commercial value to the whaling industry (Allen, 1908). In 1935, the right whale population 

first received protected status from the League of Nations, and, since 1949, a complete 

moratorium on hunting has been in place and overseen by the International Whaling Commission 

(Best et al., 2001). Despite the end of commercial whaling in the mid-20th century, the recovery 

of this endangered population has been gradual and highly variable. Accurate demographic 
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studies only became possible after an extensive and ongoing effort was initiated during the 1970s 

to photograph and catalog all individuals in the population (Kraus et al., 1986). Subsequent 

analyses of the demographic data indicated that the population’s growth rate increased gradually 

during the 1980s, but then declined sharply during the 1990s (Fujiwara and Caswell, 2001). 

Demographic projections based on data from the early1990s suggested that the population was 

on a trajectory that would lead to its eventual extinction in less than 200 years (Fujiwara and 

Caswell, 2001).   

As news of these demographic projections spread within the right whale research 

community, a consensus view emerged that the population would continue to decline unless the right 

whale’s elevated mortality rates associated with ship strikes and entanglement in fishing gear could 

be significantly reduced (Fujiwara and Caswell, 2001; Kareiva, 2001; Waring et al., 2001). In 

contrast to this expectation, the right whale population began to recover during the following decade. 

Despite high mortality rates and even more dire demographic projections during the decade of the 

2000s (Kraus et al., 2005), the population grew from ~340 animals at the beginning of the decade to 

~486 animals by 2010 (Figure 2.1[Top]). A major factor in this recovery was the 128% increase in 

female-specific average annual calf production between 2001 and 2010 relative to the previous 

decade (Figure 2.1[Bottom]). Here, we use a data-driven, stochastic reproduction model to explore 

the ecological underpinnings for this dramatic increase in right whale reproduction. 

 

2.2 METHODS  

2.2.1 Right Whale Population Data 

North Atlantic right whales have been photographically cataloged in a consistent manner 

since 1980 and are identified using unique markings, scars and callosity patterns (Kraus et al., 1986). 
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Figure 2.1: Time series of North Atlantic right whale population size from 1980 to 2010. [Top]: total 
number of all whales (dark blue), number of reproductively viable females (red), and [Bottom]: 
number of calf births (light blue). 
 

Population growth rates reported in this paper use what are considered to be the best estimates of 

the total population and numbers of reproductively viable female whales. The North Atlantic 

Right Whale Consortium (NARWC; http://www.narwc.org/) provided us with a list of all known 

whales along with the years in which they died or were last sighted. Six years missing is the 

standard used by the NARWC to define a whale that is presumed to have died. Annual estimates 

of the total number of whales presumed to be alive therefore include any whales on the list that 

are not known to have died or have not gone missing for six or more years without a subsequent 

sighting. Because of the potential for bias in using this six-year rule, we only used population 

data up until 2007 in our models. Among whales presumed to be alive, females considered 

reproductively viable are ones known to have given birth or to have reached nine years of age, 
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the average age of first parturition (Hamilton et al., 1998). Whales categorized as senescent are 

also removed from the time series of reproductively viable females (Knowlton et al., 1994). 

The time series of annual calf production used in this study includes all known calf births, 

regardless of whether the mother was known and/or whether the calf survived its first year of 

life. Due to high survey effort in the mid-Atlantic region, mother/calf pairs have an especially 

high sighting probability; therefore, it is assumed that all newborn calves have been observed.  

 

2.2.2 Right Whale Reproduction Model 

The stochastic reproduction model used in this study assigns reproductively viable 

females into three states: (1) recovering, (2) pregnant, or (3) nursing (Figure 2.2). Recovering 

females can remain in the resting state (1- Ø21) or become pregnant (Ø21). Pregnant females can 

give birth and enter the nursing state (Ø32) or abort the pregnancy and reenter the recovering state 

(1- Ø32). Nursing females can only transition to the recovering state (Ø13=1) .  

 

Figure 2.2: North Atlantic right whale reproduction model. Reproductive females can be in the 
(1) recovering state between pregnancies, (2) pregnant, or in the (3) nursing state.  Transitional 
probabilities between states are determined as functions of C. finmarchicus abundance in the 
Gulf of Maine. 
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Using this sequence of three reproductive states, we constructed the following transitional 

probability matrix:  

 

Each element Aij in the matrix is the probability of a reproductively viable female transitioning 

from state j to state i in a year. The projection matrix A is multiplied by the female abundance 

vector Nt−1, or the number of living viable females in each of the three reproductive states during 

year t-1, to estimate the female abundance vector Nt during the following year t. 

Nt = [A] ∗ Nt−1 

The two probabilities optimized in this study are Ø21 and Ø32, which represent the probability of 

a female transitioning from the recovering state (1) to the pregnant state (2), and the probability 

of a female transitioning from the pregnant state (2) to the nursing state (3), respectively. 

Transitional probabilities were estimated as logistic functions dependent on C. finmarchicus 

abundance. Model parameter vectors were optimized to yield a predicted calf production time 

series that best fits the observed one provided by the NARWC. 

The transitional probabilities were estimated as logistic functions to constrain the 

probabilities between 0 and 1 while offering flexibility in the shape of the function: 

     

where the vector notation β21*X and β32*X each represent a linear combination of an intercept 

and coefficient(s) multiplied by the independent prey variable(s), X. These transitional 

probabilities were fit into a demographic matrix model, and the parameter vectors β21 and β32 

[Equation 2.1] 

[Equation 2.2] 

[Equation 2.3] 

[Equation 2.4] 
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were estimated to yield a predicted annual calf production time series most closely resembling 

the observed time series. 

 The model estimates of β21 and β32 predict different functional responses of the 

transitional probability Ø21 and the transitional probability Ø32 as functions of prey abundance. 

Ø21 increases gradually with increasing values of C. finmarchicus abundance index, yielding a 

relatively linear relationship. However, Ø32 behaves like a quasi-step function, with the transition 

to nursing a calf changing abruptly from highly improbable to highly probable over a narrow 

range of C. finmarchicus abundance values. This abrupt transition occurs at abundance values 

slightly below the climatological average for that bimonthly time period. 

Calanus finmarchicus abundance indices were estimated from Gulf of Maine Continuous 

Plankton Recorder (CPR) survey data collected from 1980-2007 (Greene et al., 2013). Despite 

the sampling limitations of the CPR and the averaging out of spatial and temporal patchiness, 

this index has proven to be a remarkably useful proxy for characterizing inter-annual to inter-

decadal variability in C. finmarchicus abundance (MERCINA, 2001, 2004; Greene et al., 2008). 

Six bimonthly C. finmarchicus abundance indices were determined for the entire Gulf of Maine 

region and for each of four geographical subregions: Massachusetts Bay (MB), Western Gulf of 

Maine (WGOM), Eastern Gulf of Maine (EGOM), and Scotian Shelf (SS) (Figure 2.3). An 

annual average C. finmarchicus abundance index was also determined for the entire Gulf of 

Maine region and for each subregion. Combinations of all indices were added and evaluated in a 

stepwise fashion to determine the best overall model fit to the annual calf production time series.  
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Figure 2.3: Gulf of Maine CPR survey area used to characterize prey availability to right whales. 
CPR survey area is divided into four geographical subregions: Massachusetts Bay (MB), 
Western Gulf of Maine (WGOM), Eastern Gulf of Maine (EGOM), and Scotian Shelf (SS). CPR 
survey sampling (black circles) in the Gulf of Maine occurs at approximately monthly intervals. 

 

2.3 RESULTS 

Annual calf production estimates from our model demonstrate the tight coupling between 

right whale reproduction and prey abundance over the past three decades (Figure 2.4[Top & 

Middle]). Results from the model incorporating bimonthly and regional variations in prey 
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distributions incorporated in the new model are consistent with independent observations of 

whale foraging patterns (Kenney et al., 2001), increasing confidence that the new model captures 

the relevant features of this predator-prey interaction.  

In our best-fit model, the probability of reproductively viable females transitioning from 

the resting state to the pregnant state is driven primarily by C. finmarchicus abundance in the 

WGOM during November/December. This time frame spans the peak mating season for right 

whales, and the western and central Gulf of Maine have been identified as a likely mating ground 

(Cole et al., 2013). The probability of reproductively viable females transitioning from the 

resting state to the pregnant state is driven secondarily by C. finmarchicus abundance in the 

entire Gulf of Maine during March/April. This time frame corresponds to a period when high 

right whale abundance is observed in Cape Cod Bay (Pendleton et al., 2009), Massachusetts Bay 

(Schevill et al., 1986), and the Great South Channel (Kenney et al., 1995). Finally, the 

probability of reproductively viable females transitioning from the pregnant state to the nursing 

state is driven by C. finmarchicus abundance in the EGOM during July/August. Since right 

whales are typically found nearby in the lower Bay of Fundy during late summer (Mate et al., 

1997), this relationship suggests that the EGOM subregion may be a significant feeding ground 

for pregnant females.  

The close relationship between annual calf production and C. finmarchicus abundance in the 

Gulf of Maine is reflected in the decadal variability observed for both (Figure 2.4[Top & 

Middle]). Since complete records began in 1980, statistically significant changes in calf 

production and C. finmarchicus abundance were observed at the beginning of each decade 

(Greene et al., 2013). Corresponding, statistically significant changes were also observed each 

decade in calf production per 100 reproductive females (Figure 2.5).  During the 1980s, C.  
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Figure 2.4: [Top]: Time series of C. finmarchicus annual abundance index (Greene et al. 2013) 
estimated for entire Gulf of Maine CPR survey area. [Middle & Bottom]: Time series of annual 
calf production (calves · year-1) observed (black line) and [Middle]: predicted by model driven 
by bi-monthly- and geographic-specific abundance estimates of C. finmarchicus in the Gulf of 
Maine (red line) and [Bottom]: predicted by model driven by annual abundance estimates of C. 
finmarchicus averaged for entire Gulf of Maine (blue line). The pale red and blue shading 
surrounding the model predictions correspond to the 95% confidence intervals. 
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finmarchicus was abundant, and right whale calf production averaged 28 calves · 100 females-1 · 

year-1. During the 1990s, there was a large decline in C. finmarchicus abundance, and the 

average right whale calf production rate decreased to 14 calves · 100 females-1 · year-1. During 

the 2000s, C. finmarchicus abundance surged again, and the average right whale calf production 

increased to 24 calves · 100 females-1 · year-1. 

 
Figure 2.5: Time series of female-specific annual calf production (calves*100 females-1*year-1). 
Decadal averages of female-specific annual calf production are shown with blue lines.  
 
 

2.4 DISCUSSION 

These correlated changes in C. finmarchicus abundance and right whale calf production 

have been linked to ecosystem responses in the Gulf of Maine to both basin- and hemispheric-

scale climate forcing (Greene et al., 2013). The elevated abundance of C. finmarchicus in the 

Gulf of Maine during the 1980s was due to a favorable combination of high local productivity 

and sufficient advective supply into the region from upstream source regions (MERCINA, 2004). 

At the end of the 1980s, the Arctic climate system underwent a regime shift that triggered a 

large-scale export of freshwater out of the Arctic Ocean and into the North Atlantic (Greene et 

al., 2008; MERCINA, 2012). The resulting Great Salinity Anomaly of the 1990s led to a 
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sequential reduction of salinities in shelf ecosystems throughout the Northwest Atlantic (Greene 

et al., 2008; MERCINA, 2012). In the Gulf of Maine, the low-salinity waters altered the timing 

and extent of water-column stratification, which subsequently impacted the production and 

seasonal cycles of phytoplankton, zooplankton, and higher-trophic-level consumers in the 

ecosystem (Greene and Pershing, 2007; Greene et al., 2008; MERCINA, 2012). The abundance 

of C. finmarchicus declined precipitously after this climate-driven ecosystem regime shift, and 

right whale annual calf production soon followed after a one- to two-year time lag (Figure 

2.4[Top & Middle]). During the late 1990s, C. finmarchicus abundance declined even further 

after the 20th century’s largest drop in the North Atlantic Oscillation (NAO) Index was observed 

during winter 1996. Large-scale circulation changes in the slope and shelf waters of the 

Northwest Atlantic were observed during the subsequent two years (MERCINA, 2001; Greene 

and Pershing, 2003), and these were hypothesized to have been major contributing factors to the 

crash of C. finmarchicus in 1998 and the subsequent reproductive failure of right whales in 1999 

and 2000 (Figure 2.4[Top & Middle]) (Greene et al., 2003; Greene and Pershing, 2004). 

At the end of the 1990s, the Arctic climate system underwent another regime shift, this 

time entering a period favoring enhanced freshwater storage in the Arctic Ocean that persisted 

throughout the first decade of the 2000s (MERCINA, 2012). The corresponding reduction in 

freshwater export from the Arctic Ocean resulted in elevated salinities throughout Northwest 

Atlantic shelf ecosystems. In the Gulf of Maine, the plankton shifted back to resemble the 

assemblage characteristic of the 1980s regime, including a resurgence of C. finmarchicus 

abundance. Primed with a large number of females that had not reproduced during the poor prey 

conditions of the late 1990s, the relatively large portion of resting females responded with a rapid 

increase in annual calf production during the early 2000s, which remained at an elevated level 
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for the remainder of the decade. Rather than facing the prospect of eventual extinction, as was 

forecast at the beginning of the decade, the right whale population in 2010 was on a positive 

trajectory towards recovery. It should be noted, however, that continued elevated rates of right 

whale calf production are contingent upon favorable future prey conditions. 

 

2.5 CONCLUSION 

 The North Atlantic right whale population’s recovery during the past decade 

demonstrates that factors affecting both reproduction and mortality must be considered when 

projecting the fate of an endangered species. In retrospect, there is evidence supporting the 

hypothesis that decadal-scale variability in the population’s recovery rate is strongly driven by 

climate-associated ecosystem regime shifts. Specifically, this variability is a reflection of large 

fluctuations in annual calf production as it responds to changes in the ecosystem that affect prey 

availability. This conclusion does not mean that anthropogenic sources of mortality are 

unimportant and that their mitigation should not be adopted as major elements in a conservation 

management plan. In fact, a plan that can reduce mortalities associated with ship strikes and 

entanglement in fishing gear will only serve to hasten the population’s recovery. What our 

conclusion does mean is that climate variability and change will introduce a level of uncertainty 

into demographic projections that must be taken into consideration when the goals of a 

conservation management plan are set and evaluated. 
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CHAPTER 3 

CLIMATE-ASSOCIATED CHANGES IN PREY AVAILABILITY DRIVE REPRODUCTIVE 

DYNAMICS OF THE NORTH ATLANTIC RIGHT WHALE POPULATION  

Abstract  

Considered one of the most endangered cetacean species, the North Atlantic right whale 

(Eubalaena glacialis) suffered declining abundance during the 1990s due to a high rate of 

anthropogenic-associated mortality and a low rate of reproduction. Previous studies have 

suggested that the reproductive rate is tightly coupled to the abundance of Calanus finmarchicus 

in the Gulf of Maine (GOM), which has been shown to respond to ecosystem regime shifts 

associated with decadal-scale climate forcing from the Arctic. Given the endangered status of the 

right whale population, it is vital to determine how climate-associated changes in prey 

availability will affect this species in the future. Here, we investigate a 3-state reproduction 

model that explores multiple environmental proxies as potential predictors of annual calf 

production during the period from 1980 to 2007. The model achieves its best fit to observations 

using temporally and spatially resolved C. finmarchicus abundance data derived from 

Continuous Plankton Recorder (CPR) surveys of the GOM. Building on previous research, this 

prey-dependent model, which uses bimonthly and geographically specific abundance anomalies 

of C. finmarchicus, significantly improves estimates of annual calf production relative to a null 

model. The temporal and geographic distributions of prey objectively chosen for inclusion in the 

new version of the model correspond well with observed right whale seasonal distribution 

patterns, providing further evidence that the model captures essential features of right whale 

reproductive ecology. (Originally published as Meyer-Gutbrod 2015) 
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3.1 INTRODUCTION  

The North Atlantic right whale population was severely impacted by persistent whaling 

pressure from the 11th to the 20th century (Aguilar 1986, Reeves et al. 1999), and the remaining 

members of the population now occupy a greatly reduced range in the Northwest Atlantic. 

Despite the introduction of international regulations protecting right whales from commercial 

whaling in 1935, the North Atlantic population has failed to recover due to a combination of 

variable birth rates and high mortality rates (Fujiwara & Caswell 2001, Greene & Pershing 

2004). The high mortality rates are largely anthropogenic in origin, with right whales being 

especially vulnerable in coastal waters to ship strikes and entanglement in fishing gear (Gaskin 

1987, Knowlton & Kraus 2001). With an estimate of only 522 individuals remaining in the 

population (Pettis & Hamilton 2014), the North Atlantic right whale has been designated as 

‘endangered’ under the US Endangered Species Act and by the International Union for 

Conservation of Nature.  

Caswell et al. (1999) developed a stochastic model of North Atlantic right whale 

population growth from 1980 to 1996. According to their model, a declining population growth 

rate was attributed to a decrease in survival probability and an increase in the calving interval. 

Given the population growth rate estimated for the mid 1990s, Caswell et al. (1999) projected 

that the North Atlantic right whale was on a trajectory towards extinction in less than 200 yr. 

Using a full demographic population model, Fujiwara & Caswell (2001) found a significant 

decline in female life expectancy, likely attributed to the proximity of females to shipping lanes 

and fishing gear during their migration to, and time spent on, calving grounds off the coast of 

Florida and Georgia (Kraus et al. 1986). Additionally, a change in the calving interval, the mean 

interval between births for reproductive females, provided strong evidence that the conception 
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rate was declining and the frequencies of prenatal and neonatal mortalities were increasing 

(Knowlton et al. 1994, Kraus et al. 2001, Browning et al. 2010).  

In comparison, the southern right whale (Eubalaena australis) population off the coast of 

South Africa exhibits higher growth rates and shorter mean calving intervals (Knowlton et al. 

1994, Best et al. 2001). Brown et al. (1994) report that only 38% of the reproductive females in 

the North Atlantic had calved, compared to 54% in the southern population. These differences 

suggest that the North Atlantic right whale may be capable of higher growth rates and 

reproductive output under improved environmental conditions.  

Greene et al. (2003b) and Greene & Pershing (2004) hypothesized that fluctuations in 

prey availability associated with climate-associated changes in the ocean environment could 

explain the high reproductive variability observed in the population. This hypothesis is consistent 

with the high energetic costs associated with pregnancy and lactation in right whales (Fortune et 

al. 2013), and prey availability has been linked to body condition and pregnancy rate in other 

cetacean species (Lockyer 2007, Ward et al. 2009, Williams et al. 2013). In light of the 

increasing support for this prey-limitation hypothesis, a more thorough and quantitative 

investigation of the relationship between changes in prey availability and right whale 

reproduction is warranted.  

 

3.1.1 Effects of prey availability on North Atlantic right whale nutrition and reproduction  

North Atlantic right whales derive most of their nutrition from the older developmental 

stages (i.e. copepodites) of the copepod species Calanus finmarchicus (Mayo et al. 2001, 

Baumgartner et al. 2003). A conservative estimate of right whale daily energetic demand reveals 

that an average-sized right whale (40 000 kg) must consume approximately 100 million late-
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stage C. finmarchicus copepodites each day (Kenney et al. 1986). To meet this demand, right 

whales must selectively feed on high-density patches of C. finmarchicus to ensure net positive 

energy intake (Kenney et al. 1986). Consistent with this need for high prey abundance, the 

seasonal spatial distributions of right whales are significantly correlated with those of C. 

finmarchicus (Michaud & Taggart 2007, Pendleton et al. 2012). There are 4 recognized major 

feeding grounds for the North Atlantic right whale population, beginning with Cape Cod Bay 

and Massachusetts Bay during the spring, transitioning seasonally to the Great South Channel 

during the late spring and summer, and to the Bay of Fundy and Roseway Basin during the late 

summer and autumn (Hlista et al. 2009). However, the whales have also been observed to desert 

feeding grounds during periods when the abundance of this prey species becomes too low 

(Kenney 2001, Patrician & Kenney 2010).  

Owing to the extreme energetic demands of pregnancy and nursing, female mammals 

generally do not reproduce unless they are physically robust, which typically coincides with 

favorable feeding conditions (Wade & Schneider 1992). Among right whales, reproductive 

females are especially vulnerable to nutritional limitations due to the foraging hiatus pregnant 

cows must undergo during the 3-mo period spent migrating to, and residing on, the coastal 

calving grounds located in Florida and Georgia (Fortune et al. 2013). Recent analyses of blubber 

thickness in North Atlantic and southern right whales have revealed significantly thinner blubber 

layers in the North Atlantic species, suggesting that this species’ reproduction may be 

nutritionally compromised in comparison to its southern hemisphere counterpart (Miller et al. 

2011). This suggestion is consistent with findings that North Atlantic right whale blubber 

thickness is positively correlated with C. finmarchicus abundance (Miller et al. 2011), and both 



 

44 

are correlated with annual calf production (Pettis et al. 2004, Klanjscek et al. 2007, Miller et al. 

2012).  

 

3.1.2 Role of prey availability in mediating climate effects on North Atlantic right whale 

population dynamics  

The abundance of C. finmarchicus in the Gulf of Maine (GOM) has been linked to 

ecosystem regime shifts associated with decadal-scale climate forcing from the Arctic 

(MERCINA 2012, Greene et al. 2013). During the 1980s, C. finmarchicus abundance was 

elevated due to a favorable combination of high local productivity and advective supply into the 

region from upstream source regions (MERCINA 2004). Towards the end of the decade, the 

Arctic climate system underwent a regime shift that resulted in the export of large quantities of 

low-salinity water from the Arctic Ocean into the North Atlantic (Greene et al. 2008). The 

resulting salinity anomaly progressed downstream in 2 major pulses during the 1990s, leading to 

a sequential reduction of salinities in Northwest Atlantic shelf ecosystems from the Labrador Sea 

to the Middle Atlantic Bight (Greene et al. 2008). The invasion of low-salinity water altered the 

timing and extent of stratification in these ecosystems, which subsequently impacted the 

production and seasonal cycles of phytoplankton, zooplankton and higher trophic level 

consumers (Greene & Pershing 2007, Greene et al. 2008).  

This climate-driven ecosystem regime shift lasted throughout the 1990s in the GOM. 

Associated with it, the abundance of early-stage C. finmarchicus copepodites increased 

significantly, while the abundance of late-stage copepodites declined. The exact mechanism 

underlying this decline in abundance is uncertain; however, it has been hypothesized that 
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changes in the ecosystem resulted in an increase in planktivorous fish, especially herring, and 

their size-selective predation on C. finmarchicus (Greene et al. 2013).  

Correlated with the decline in late-stage C. finmarchicus abundance, right whale annual 

calf production also decreased significantly at the beginning of the 1990s (Greene & Pershing 

2003). Annual calf production remained lower throughout the decade relative to the 1980s. In 

1999 and 2000, calf production per reproductive female plummeted to an all time low since the 

start of rigorous demographic observations on the species (Fig. 1B). Greene & Pershing (2003) 

hypothesized that the reproductive failure observed during these 2 yr was driven by a crash of the 

C. finmarchicus population in the GOM during 1998 (Fig. 1A). They associated this crash with a 

decrease in the advective supply of C. finmarchicus to the GOM after the 20th century’s largest 

drop in the North Atlantic Oscillation (NAO) index during winter 1996 altered slope and shelf 

water circulation patterns in the Northwest Atlantic (Greene & Pershing 2003).  

At the end of the 1990s, the Arctic climate system underwent another regime shift, which 

persisted throughout the first decade of the 2000s (MERCINA 2012). A reduction in freshwater 

export from the Arctic Ocean led to elevated salinities over the Northwest Atlantic shelf. In the 

GOM, the plankton shifted back to resemble the assemblage characteristic of the 1980s, 

including a resurgence in the abundance of late-stage C. finmarchicus copepodites (Fig. 

3.1[Top]). Right whale annual calf production increased rapidly and remained at an elevated 

level for the remainder of the decade (Fig. 3.1[Bottom]).  

Given the North Atlantic right whale’s status as an endangered species and the large 

reproductive variability observed from one decade to the next, it is vital to determine how 

changing climate and corresponding changes in prey availability affect the population dynamics  
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Figure 3.1: [Top]: Late-stage Calanus finmarchicus annual abundance anomaly index estimated 
for the entire GOM CPR survey area and [Bottom]: female-specific annual right whale calf 
production (annual calf births/annual viable female population size). Positive values of indices 
above the climatological mean are shaded in red; negative values below the climatological mean 
are shaded in blue. A sequential t-test analysis of regime shifts (Rodionov 2004) was applied to 
each of the time series, and regime shifts that are significant at the α = 0.05 level are shown by 
black lines  
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of this species. This type of long-term, multi-species research is difficult to accomplish in any 

ecosystem, but is especially challenging in pelagic marine systems that are relatively large and 

open. Fortunately, for this particular ecosystem, over 30 yr of co-occurring, but independently 

collected, right whale demographic data and climate-associated environmental data are available 

for analysis.  

Here, we report results from an analysis of right whale reproduction, which uses a 3-state 

matrix model to explore how well a number of environmental variables, including C. 

finmarchicus abundance, perform as potential predictors of annual calf production. Within this 

modeling framework, we tested the predictive skill of these environmental variables against one 

another and against a null model that assumes a constant calving rate. In the case of C. 

finmarchicus, we compared the model’s predictive skill using abundance estimates for the late-

stage copepodites averaged over the entire year for the full GOM versus abundance estimates 

resolved into bimonthly time periods and for specific geographic subregions. Such temporal and 

spatial resolution may yield additional insights into what times of year and which geographic 

locations are most important to right whale reproduction.  

 

3.2 MATERIALS AND METHODS  

3.2.1 Right whale demographic monitoring data  

The North Atlantic Right Whale Consortium (Right Whale Consortium 2011) identifies 

right whales by using unique markings, scars and callosity patterns. The corresponding database 

of identifications has been photographically cataloged in a consistent manner since 1980. This 

database provided the foundation for our studies of right whale reproduction. First, we used the 

database to develop a time series of annual calf production. This time series included all known 
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calf births, regardless of whether the mother was known and whether the calf survived its first 

year of life. Owing to high survey effort near the calving grounds off the coasts of Florida and 

Georgia, mother/calf pairs have an especially high sighting probability, and we assumed that all 

newborn calves have been observed (Kraus & Rolland 2007). Next, we used the database to 

develop a time series of reproductively viable females. A female is considered reproductively 

viable if she has been known to give birth or has reached 9 yr of age. A female is considered 

nulliparous or senescent if she has not reproduced for 9 consecutive years while in the viable 

pool. A female is considered missing if she has not been sighted in 5 consecutive years and is 

presumed dead after the 5th yr (Knowlton et al. 1994). Females that have been categorized as 

senescent or missing were removed from the time series of reproductively viable females.  

 

3.2.2 Continuous Plankton Recorder survey data  

The Continuous Plankton Recorder (CPR) is an instrument towed behind ships of 

opportunity to collect and preserve plankton filtered through a 270-µm mesh silk gauze for 

subsequent analyses in the laboratory (Warner & Hays 1994). Since 1961, the NOAA National 

Marine Fisheries Service has operated a CPR survey of the GOM running between Boston, 

Massachusetts and Cape Sable, Nova Scotia, at approximately monthly intervals (Fig. 2.3) (Jossi 

& Kane 2013). Although the CPR is not an ideal instrument for quantitative and synoptic 

estimates of plankton species abundance due to the limited geographic, depth and temporal 

coverage of the sampling, its consistent use in long-term surveys of the region has provided an 

invaluable data set for studying relative abundance patterns on seasonal to decadal time scales 

(e.g. Greene et al. 2013). Our hypothesis that the C. finmarchicus abundance index serves as a 

good proxy for right whale prey availability is supported in studies by Pendleton et al. (2009) 
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and Pershing et al. (2009), which demonstrate that regional scale, near-surface C. finmarchicus 

abundance measured with the CPR is significantly correlated with right whale sightings in the 

GOM. We used only the abundance of late-stage C. finmarchicus copepodites (stage 5 and 

adults) as a proxy for food availability due to the importance of these stages in the diet of right 

whales (Mayo et al. 2001).  

For evaluating the model’s predictive skill when using yearly averaged C. finmarchicus 

abundance estimates for the entire GOM, we used data from samples collected along the full 

CPR transect (Fig. 2.3). Late stage C. finmarchicus abundance index anomalies were calculated 

from the seasonal climatological cycle as described by Pershing et al. (2005).  

For evaluating the model’s predictive skill when using temporally and spatially resolved 

C. finmarchicus abundance estimates, data were averaged into temporal bins spanning 2 mo to 

yield 6 seasonal indices of plankton abundance corresponding to the averages of January and 

February, March and April, May and June, July and August, September and October, and 

November and December. Bi-monthly averages provide sufficiently fine temporal resolution to 

demonstrate seasonal variations in prey abundance while still averaging over sufficient time to 

avoid data gaps in the survey time series. The C. finmarchicus abundance estimates were 

spatially resolved by breaking the CPR transect into 4 distinct subregions: Massachusetts Bay 

(MB), Western GOM (WGOM), Eastern GOM (EGOM) and Scotian Shelf (SS) (Fig. 2.3). This 

geographic breakdown coincides reasonably well with some of the most common right whale 

feeding grounds, with MB encompassing Cape Cod Bay, WGOM lying just upstream of the 

Great South Channel, EGOM lying just downstream of the Bay of Fundy and SS being 

representative of prey conditions on the shelf and in the nearby Roseway Basin. A total of 35 
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seasonal and subregion-specific variables were explored ([4 subregions + 1 full transect area] × 

[6 seasons + 1 annual average] = 35 indices).  

 

3.2.3 Other environmental variables as predictors of annual calf production  

As right whale reproduction appears to be linked to C. finmarchicus abundance, and as 

interannual to interdecadal variability in this species’ abundance has been linked to climate-

associated ecosystem changes and regime shifts in the GOM/SS region, we also explored how 

well other environmental variables might be used as predictors of annual calf production. We 

looked at environmental variables that are associated with 2 basin- to hemispheric-scale 

mechanisms hypothesized to drive these regional ecosystem changes (Greene et al. 2013).  

The first of these mechanisms is a basin-scale phenomenon associated with changes in 

the phase of the NAO. It has been hypothesized that the NAO is linked to right whale calf 

production through its affects on the Northwest Atlantic’s coupled slope water system and the 

advective supply of C. finmarchicus into the GOM/SS region (Greene & Pershing 2003, 2004, 

Caswell & Fujiwara 2004, Greene et al. 2013). The Regional Slope Water Temperature (RSWT) 

index, which is the first derived mode of a principal component analysis of 8 slope water 

temperature time series anomalies for the GOM/western SS region, serves as an indicator of the 

state of this coupled slope water system (MERCINA 2001). Negative values of the RSWT index 

are associated with increased transport of the Labrador Current around the tail of the Grand 

Banks, contributing more of the colder, fresher Labrador Subarctic Slope Water to the region and 

displacing the warmer, fresher Atlantic Temperate Slope Water further off the shelf. The 

abundance of late-stage C. finmarchicus copepodites has been correlated with the RSWT index, 

and it has been hypothesized that this correlation is the result of slope water circulation changes 
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potentially limiting the advective supply of C. finmarchicus into the region (Greene & Pershing 

2000, MERCINA 2001, 2004). To explore how this NAO/coupled slope water system 

mechanism might be linked to right whale annual calf production, the NAO index and RSWT 

index were each used to drive the reproduction model, with time lags ranging from 0 to 5 yr.  

The second of these mechanisms is hemispheric in scale and associated with decadal-

scale changes in Arctic climate that regulate freshwater export from the Arctic Ocean into the 

North Atlantic and subsequently affect stratification and plankton productivity patterns 

throughout the shelf waters of the Northwest Atlantic (Greene et al. 2008, MERCINA 2012, 

Greene et al. 2013). Shifts in the atmospheric and oceanic circulation patterns of the Arctic, as 

measured by the Arctic Oscillation (AO) index and Arctic Ocean Oscillation (AOO) index, 

respectively, have been linked to the storage and release of freshwater from the Arctic Ocean’s 

Beaufort Gyre. When the Beaufort Gyre weakens and freshwater is released, salinity anomalies 

can be traced as they exit the Arctic Ocean and propagate down the Northwest Atlantic shelf 

(Greene et al. 2008). Once they reach the GOM/SS region, such freshwater anomalies can be 

quantified with the Regional Shelf Water Salinity (RSWS) index, which is the dominant mode of 

a principal component analysis of shelf-water salinity data from the GOM/SS/Georges Bank 

region (MERCINA 2012, Greene et al. 2013). The increased buoyancy of the surface waters 

alters the seasonal patterns of stratification and primary production, which in turn can lead to a 

regime shift in the plankton assemblage (Greene & Pershing 2007, MERCINA 2012, Greene et 

al. 2013). The seasonal changes in primary production include an increase in autumn 

phytoplankton abundance, which can be quantified with an autumn phytoplankton color index 

derived from the GOM CPR survey samples (Greene & Pershing 2007). Greene et al. (2013) 

hypothesize that the length and productivity of the phytoplankton growing season affect the 
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feeding conditions and population abundances for C. finmarchicus and the smaller copepod 

species in the GOM. To explore how this stratification mechanism remotely forced from the 

Arctic might be linked to right whale annual calf production, the AO index, AOO index, RSWS 

index and autumn phytoplankton color index were each used to drive the reproduction model, 

with time lags ranging from 0 to 5 yr (only lags of 0, 1 and 2 yr were analyzed for CPR-derived 

time series due to some data gaps during the late 1970s).  

To examine the likelihood of finding spurious correlations between right whale calf 

production and the various C. finmarchicus and environmental variables, a resampling technique 

was used to examine the distribution of model Akaike’s information criterion indices (AICs) 

(Akaike 1974, Burnham & Anderson 2002) calculated using bootstrapped data. The moving-

block bootstrap method (Wilks 1997) was employed by randomly selecting 4-yr blocks of data 

with replacement from a single variable to generate a new, resampled time series of the same 

length. As the time series considered in this study is 28 yr long (from 1980 to 2007), each 

bootstrapped variable was composed of 7 blocks, with each block consisting of 4 yr of sequential 

data. This effectively randomizes the relationship between right whale reproduction and prey 

availability while preserving the short-term autocorrelation in the independent variable. The calf 

production and viable female time series were not randomized to preserve the demographic 

relationship between the number of cows and calves, as well as the long-term trend of population 

growth that can be expected in this system. Each new variable was drawn uniformly from 1 of 

the 36 genuine lagged and unlagged variables, and tested in the reproduction model. This trial 

was performed 10 000 times to produce a probability distribution for the AICs.  

This resampling scheme provides a conservative evaluation of the likelihood of finding 

spurious relationships between right whale calf production and each variable being examined. 
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With such a short time series, only 7 blocks can be randomized while still preserving relevant 

temporal autocorrelation in the data. Furthermore, given the known occurrence of regime shifts, 

and the occasional resemblance between regimes, such as that of the 1980s and the early 2000s, 

the bootstrap-generated time series will resemble the genuine variables more often than with a 

completely random resampling process.  

 

3.2.4 Reproduction model  

The reproduction model we employed assigns reproductively viable females to 3 states: 

resting, pregnant and nursing (Fig. 2.2) (Greene & Pershing 2003, 2004). The resting state 

corresponds to the period of time between nursing and when the female can be impregnated. In 

this model, the resting state lasts for a minimum of 1 yr, and can last longer depending on the 

nutritional state of the female and environmental conditions. The pregnant state in the model 

lasts 1 yr, which corresponds to the ca. 12-mo gestation period (Best 1994). If a pregnant female 

experiences a spontaneous abortion or neonatal mortality occurs before the calf is sighted, then 

the female transitions from the pregnant state back to the resting state. Otherwise, the pregnant 

female enters the nursing state. The nursing state in the model lasts 1 yr, which corresponds to 

observations of a ca. 12-mo lactation period. After the nursing state, all females return to the 

resting state (Fig. 2.2) (Hamilton et al. 1995). In our study, we equate the model-generated time 

series of nursing females with annual calf production, and model parameters are optimized to fit 

this time series with the observed calves in the population.  

This 3-state reproduction model was implemented with the following transitional 

probability matrix, A, (Caswell 2001):  
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Each element in the matrix Aij contains the probability of a reproductively viable female 

transitioning from state j to state i in a year. The projection matrix A is multiplied by the female 

abundance vector Nt-1, the number of viable females in each of the 3 reproductive states during 

year t-1, to estimate the female abundance vector Nt during the following year t: 

Nt = (A) × Nt-1 

The 3 elements in N correspond to the number of resting females, the number of pregnant 

females and the number of nursing females, respectively, and the number of nursing females is 

equated with the model-projected number of calves produced that year. Female mortalities 

(subtractions from N) and new recruits into the reproductive pool (additions to N) were manually 

added and subtracted from the population vector at each annual time step to avoid confounding 

errors in mortality rates with errors in the reproductive transitional probabilities. 

The transitions of viable females among the 3 reproductive states were estimated over the 

time period from 1980 to 2007. This range was chosen because 1980 marks the year when right 

whale population monitoring methods became standardized, and 2007 is the last year before a 

gap occurred in the CPR survey data set. 

Initial conditions were set to reflect the likely distribution of females among the 3 states 

in 1980. The 16 known reproductively viable females in 1980 were assigned to the 3 

reproductive states by setting the number of females in the nursing state equal to the number of 

calves born that year, and the number of females in the pregnant state equal to the number of 

calves born in the following year, 1981. The remaining reproductively viable females identified 

[Equation 3.1] 

[Equation 3.2] 
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in 1980 were assigned to the resting state. While assigning initial conditions always has the 

potential to introduce some bias into a model, this method performed better than other methods 

evaluated. In addition, the amount of bias introduced by fixing these initial conditions was very 

limited because of the small numbers of viable females and calves observed in 1980 relative to 

later in the time series. 

The 2 probabilities optimized in this study are φ21 and φ32, which represent the probability 

of a female transitioning from the resting state (1) to the pregnant state (2), and the probability of 

a female transitioning from the pregnant state (2) to the nursing state (3), respectively (Fig. 2.2). 

The transitional probabilities were estimated as polychotomous logistic functions, as described in 

Fujiwara & Caswell (2002), to constrain the probabilities between 0 and 1 while offering 

flexibility in the shape of the function: 

φ21 = eβ21*X / (1 + eβ21*X) 

φ32 = eβ32*X / (1 + eβ32*X) 

The parameter vectors β21 and β32 determine the contribution of the independent prey 

variable(s), X, to the transitional probabilities φ21 and φ32. These transitional probabilities were 

fitted into a demographic matrix model and the parameter vectors β21 and β32 were estimated in 

AD Model Builder (Fournier et al. 2012). Parameters were optimized to yield a predicted annual 

calf production time series that most closely resembles the observed calf time series (Right 

Whale Consortium 2011).  

 In determining the best fit for including the temporally and spatially resolved C. 

finmarchicus data into the reproduction model, the 35 C. finmarchicus abundance indices (7 time 

periods × 5 region/subregions) were tested as predictive variables, both independently and in 

combination. Each variable was treated objectively and first tested as the sole predictor in both 

[Equation 3.3] 

[Equation 3.4] 
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transitional probabilities simultaneously. The best-performing variable was then fixed as a 

constant for the first transitional probability, of a female moving from resting to pregnant, while 

each of the 35 variables was tested for the second transitional probability, of a female moving 

from pregnant to nursing. Then this process was repeated by fixing the second transitional 

probability as a constant while all 35 variables were tested for the first transitional probability. 

The best of these models was selected and the addition of a second predictor, etc., was tested in 

the same objective manner. Model complexity was increased incrementally until each instance in 

a suite of models demonstrated a higher AIC than the best-fitting, more parsimonious model. In 

this way, the temporally and spatially resolved reproduction model was built in a stepwise 

fashion to objectively select the best-fitting regional and seasonal prey variables to predict calf 

production.  

While each of the 35 regional and seasonal late-stage C. finmarchicus indices provides a 

unique signal of prey abundance in the GOM, some geographically or temporally adjacent 

variables are highly correlated, as expected. None of the 3 variables present in the best-fit model 

are strongly correlated, but caution must be applied when interpreting the relative importance of 

these temporal and regional signatures relative to those that are adjacent. However, some 

confidence in the model selection process is warranted since the best-fitting variables correspond 

with known right whale foraging habits.  

To rigorously evaluate the prey-dependent case of the reproduction model, we developed 

a null, prey-independent version of the model for comparison. In the null version, a similar 

matrix model was developed with time-invariant transitional probabilities. The reproductive 

transitional probabilities φ21 and φ32 were estimated independently using the same optimization 

method. Logistic functions were fitted as before; however, only the intercepts were estimated. 



 

57 

This method produces a single optimal probability for each transition that does not vary through 

time. The prey-dependent and prey-independent reproduction models were compared using the 

AIC, and a difference of more than 2 AIC units was the criterion used to determine an 

improvement in fitness between 2 models (Akaike 1974, Burnham & Anderson 2002).  

 

3.3 RESULTS  

The growth rate of the North Atlantic right whale population exhibited considerable 

interdecadal variability from 1980 to 2007. We hypothesize that this observed variability largely 

reflects fluctuations in annual calf production brought about as right whale reproductive 

processes respond to ecosystem changes that affect prey availability. Our model results enable us 

to examine in detail how these reproductive processes are linked to specific spatial and temporal 

changes in the feeding environment of right whales.  

 

3.3.1 Calf production null model  

The calf production null model is optimized when the transitional probability between the 

resting and pregnant states, φ21, is equal to 0.26, and the transitional probability between the 

pregnant and nursing states, φ32, is equal to 1.0 (Table 3.1). This result means that only a quarter 

of the viable resting females conceive each year, but each successful conception leads to the 

production of a calf. Because the null model is prey independent, and therefore transitions are 

constant through time, the gradual upward trend in the predicted annual calf production time 

series is driven only by the steady increase in the pool of viable females through the interaction 

of recruitment, senescence and mortality processes (Fig. 3.2[Top]). The estimated time series of 

calf production does not exhibit the interannual variability seen in the observed calf births. The  
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Table 3.1: The intercept and, in the case of the prey-dependent model, the coefficient(s) of prey 
variability estimated in the logistic equations for the probability of an adult viable female 
transitioning from the resting stage to the pregnant stage, φ21, and transitioning from the pregnant 
stage to the nursing stage, φ32. AIC values and weights for the time-invariant (no-prey) model 
and the best-fit prey-dependent model are provided. Standard errors are listed in parentheses  
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constant for the first transitional probability, of a
female moving from resting to pregnant, while each
of the 35 variables was tested for the second transi-
tional probability, of a female moving from pregnant
to nursing. Then this process was repeated by fixing
the second transitional probability as a constant
while all 35 variables were tested for the first transi-
tional probability. The best of these models was
selected and the addition of a second predictor, etc.,
was tested in the same objective manner. Model
complexity was increased incrementally until each
instance in a suite of models demonstrated a higher
AIC than the best-fitting, more parsimonious model.
In this way, the temporally and spatially resolved
reproduction model was built in a stepwise fashion to
objectively select the best-fitting regional and sea-
sonal prey variables to predict calf production.

While each of the 35 regional and seasonal late-
stage C. finmarchicus indices provides a unique sig-
nal of prey abundance in the GOM, some geograph-
ically or temporally adjacent variables are highly
correlated, as expected. None of the 3 variables pres-
ent in the best-fit model are strongly correlated, but
caution must be applied when interpreting the rela-
tive importance of these temporal and regional sig-
natures relative to those that are adjacent. However,
some confidence in the model selection process is
warranted since the best-fitting variables correspond
with known right whale foraging habits.

To rigorously evaluate the prey-dependent case of
the reproduction model, we developed a null, prey-
independent version of the model for comparison. In
the null version, a similar matrix model was devel-

oped with time-invariant transitional probabilities.
The reproductive transitional probabilities φ21 and φ32

were estimated independently using the same opti-
mization method. Logistic functions were fitted as
before; however, only the intercepts were estimated.
This method produces a single op timal probability
for each transition that does not vary through time.
The prey-dependent and prey-independent repro-
duction models were compared using the AIC, and a
difference of more than 2 AIC units was the criterion
used to de termine an im provement in fitness be -
tween 2 models (Akai ke 1974, Burnham & Anderson
2002).

RESULTS

The growth rate of the North Atlantic right whale
population exhibited considerable interdecadal vari-
ability from 1980 to 2007. We hypothesize that this
observed variability largely reflects fluctuations in
annual calf production brought about as right whale
reproductive processes respond to ecosystem changes
that affect prey availability. Our model results enable
us to examine in detail how these reproductive pro-
cesses are linked to specific spatial and temporal
changes in the feeding environment of right whales.

Calf production null model

The calf production null model is optimized when
the transitional probability between the resting and

pregnant states, φ21, is equal to 0.26, and
the transitional probability between the
pregnant and nursing states, φ32, is
equal to 1.0 (Table 1). This result means
that only a quarter of the viable resting
females conceive each year, but each
successful conception leads to the pro-
duction of a calf. Because the null model
is prey independent, and therefore tran-
sitions are constant through time, the
gradual upward trend in the predicted
annual calf production time series is
driven only by the steady increase in
the pool of viable females through the
interaction of recruitment, se ne scence
and mortality processes (Fig. 4A). The
estimated time series of calf production
does not exhibit the interannual vari-
ability seen in the observed calf births.
The average calving interval for the null
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                                               Model
                                                                 No-prey           Resolved prey-
                                                                                              dependent 

AIC                                                              99.7                        64.5
AIC weight                                                  0.0                          1.0

β21 Intercept                                              −1.063        −0.820 (1.06 × 10−1)
                                                              (1.78 × 10–1)
β21 Coefficient: WGOM Nov to Dec                            0.165 (5.61 × 10−2)
β21 Coefficient: GOM Mar to Apr                               0.345 (1.37 × 10−1)
β32 Intercept                                              13.398          108.66 (4.00 × 103)
                                                              (5.93 × 102)
β32 Coefficient: EGOM Jul to Aug                               145.74 (5.37 × 103)

Table 1. The intercept and, in the case of the prey-dependent model, the
coefficient(s) of prey variability estimated in the logistic equations for the
probability of an adult viable female transitioning from the resting stage to
the pregnant stage, φ21, and transitioning from the pregnant stage to the
nursing stage, φ32. AIC values and weights for the time-invariant (no-prey)
model and the best-fit prey-dependent model are provided. Standard errors 

are listed in parentheses
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Figure 3.2: Annual calf production for 3 models, with observed number of calf births shown in 
black. [Top]: Null, prey-independent version of the model estimates (blue), [Middle]: annually 
and spatially averaged prey-dependent version of the model estimates (green) and [Bottom]: 
seasonally and spatially resolved prey-dependent version of the model estimates (red). Pale 
bands surrounding model estimates correspond to 95% CI.  
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average calving interval for the null model lasts 6 yr, with an average of 4 yr in the resting state 

prior to conception, and then a year each in the pregnant and nursing states. These results provide 

a baseline for comparisons with versions of the model that are driven by environmental 

variables, including prey dependence.  

 

3.3.2 Versions of the calf production model driven by annually indexed environmental variables  

The results from 36 different versions of the right whale reproduction model driven by 

annually indexed environmental variables are shown in Fig. 3.3. Of the 36 versions tested, 18 

performed better than the null model, given the criteria of a decrease of at least 2 AIC units (null 

model AIC = 99.7; Table 3.1, Fig. 3.3). Models that performed comparably to or worse than the 

null model are colored in green (Fig. 3.3). The improvement in fit of many of these 

environmentally driven versions of the model relative to the null model supports the hypothesis 

that the environment plays a significant role in right whale reproduction. The unlagged, annually 

averaged late-stage Calanus finmarchicus abundance index derived from the entire CPR transect, 

which is the most direct measure of right whale prey avail ability tested, had an AIC of 88.2, 

more than 10 AIC units lower than the null model (Fig. 3.2[Middle]). Models that performed 

comparably to the annually and spatially averaged C. finmarchicus index are colored in yellow in 

the AIC heatmap, while those that performed significantly better are shown in orange and red 

(Fig. 3.3).  

In terms of model results, the best performing of the annually indexed environmental 

variables is the RSWT index lagged by 4 yr, with an AIC of 67.8 (Fig. 3.3). This result is 

consistent with the hypothesis that the Northwest Atlantic’s coupled slope water system regulates 
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Figure 3.3: AIC values of the environmentally driven versions of the model, showing the 
environmental variables and the time lag (yr). C. fin: CPR-derived Calanus finmarchicus 
annually averaged GOM transect-wide abundance index; NAO: North Atlantic Oscillation index; 
RSWT: Regional Slope Water Temperature; AO: Arctic Oscillation; AOO: Arctic Oceanic 
Oscillation; RSWS: Regional Shelf Water Salinity; Phyto: CPR-derived autumn phytoplankton 
color index. The best-performing versions of the model (lowest AICs), presented in orange/red 
boxes, are those that performed better than the version driven by the unlagged, annually averaged 
C. finmarchicus abundance index derived from the entire CPR transect (AIC = 88.2). The 
poorest-performing versions of the model (highest AICs), presented in green boxes, are those 
that performed worse than or similar to the null model (AIC = 99.7). Color key is shown in the 
upper left corner  
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prey variability in the GOM by altering the advective supply of C. finmarchicus. Specifically, 

GOM C. finmarchicus have been known to respond to changes in the coupled slope water system  

after a lag of 4 yr (Greene & Pershing 2003, Greene et al. 2003a). This version of the model 

performs especially well because it accurately captures the unusual behaviors in right whale 

calving efficiency in the late 1990s.  

The 2- and 3-yr lagged AOO index and the unlagged autumn phytoplankton color index 

also perform very well, with AICS of 76.9, 75.7 and 77.8, respectively (Fig. 3.3). These models 

support the hypothesis that the export of freshwater from the Arctic and the resulting changes in 

seasonal stratification within the GOM affect right whale calving rates via changes in prey 

availability. The hierarchy of best-fitting environmental variables associated with changes in 

seasonal stratification (AO, AOO, RSWS and autumn phytoplankton) exhibits a sequence of 

time lags consistent with the timing of events driving this phenomenon (Fig. 3.3) (Greene et al. 

2013). Interannual to interdecadal variability in late-stage C. finmarchicus abundance is most 

likely driven by a combination of advective processes linked to the Northwest Atlantic’s coupled 

slope water system and changes in seasonal stratification linked to freshwater export from the 

Arctic. However, the development of a right whale calving model that incorporates both of these 

mechanisms and their effects on prey availability are beyond the scope of this study.  

The distribution of model AICs calculated using moving-block bootstrapped data is 

shown in Fig. 3.4. When ranked from lowest (best fit) to highest (worst fit), the AIC is 86.3 at 

the 5th percentile and 90.2 at the 10th percentile. Of the 36 versions of the model fit by an 

annually indexed environmental variable, lagged or unlagged, 6 (17%) perform better (i.e. have a 

lower AIC) than the 5th percentile and 12 (33%) perform better than the 10th percentile, 

including the model driven by the unlagged, CPR-derived late-stage C. finmarchicus abundance  
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Figure 3.4: The cumulative frequency plot of AIC values from the 10,000 models run in the 
resampling test. Each model was driven by a unique, randomized 4-yr moving-block bootstrap. 
The dotted vertical red line marks the value of the 500th ranked AIC (the 5th percentile; AIC = 
86.3) and the dashed vertical red line marks the value of the 1000th ranked AIC (the 10th 
percentile; AIC = 90.2)  
 

index. The improved performance of our actual set of 36 environmental variables in comparison 

to the 10,000 randomly generated environmental variables provides confidence that the 

relationships between right whale calf production and environmentally determined prey 

availability are not spurious.  

 

3.3.3 Temporally and spatially resolved prey-dependent calf production model  

The temporally and spatially resolved prey-dependent version of the model was fitted 

through an iterative process to incorporate the optimal combination of C. finmarchicus 

abundance data resolved by subregion and bi-monthly time period. The predicted calf time series 

from this version of the model captures the largest portion of the interannual variation in calf 

production compared to all other versions of the model tested (AIC = 64.5; Table 3.1, Fig. 

3.2[Bottom]).  
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ability tested, had an AIC of 88.2, more than 10 AIC
units lower than the null model (Fig. 4B). Models that
performed comparably to the annually and spatially
averaged C. finmarchicus index are colored in yellow
in the AIC heatmap, while those that performed sig-
nificantly better are shown in orange and red (Fig. 5).

In terms of model results, the best performing of
the annually indexed environmental variables is the
RSWT index lagged by 4 yr, with an AIC of 67.8
(Fig. 5). This result is consistent with the hypothesis
that the Northwest Atlantic’s coupled slope water
system regulates prey variability in the GOM by
altering the advective supply of C. finmarchicus.
Specifically, GOM C. finmarchicus have been known
to respond to changes in the coupled slope water sys-
tem after a lag of 4 yr (Greene & Pershing 2003,
Greene et al. 2003a). This version of the model per-
forms especially well because it accurately captures
the unusual behaviors in right whale calving effi-
ciency in the late 1990s.

The 2- and 3-yr lagged AOO index and the
unlagged autumn phytoplankton color index also
perform very well, with AICS of 76.9, 75.7 and 77.8,
respectively (Fig. 5). These models support the
hypothesis that the export of freshwater from the
Arctic and the resulting changes in seasonal stratifi-
cation within the GOM affect right whale calving
rates via changes in prey availability. The hierarchy
of best-fitting environmental variables associated
with changes in seasonal stratification (AO, AOO,
RSWS and autumn phytoplankton) exhibit a se -
quence of time lags consistent with the timing of
events driving this phenomenon (Fig. 5) (Greene et
al. 2013). Interannual to interdecadal variability in
late-stage C. finmarchicus abundance is most likely
driven by a combination of advective processes lin -
ked to the Northwest Atlantic’s coupled slope water
system and changes in seasonal stratification linked
to freshwater export from the Arctic. However, the
development of a right whale calving model that
incorporates both of these mechanisms and their
effects on prey availability are beyond the scope of
this study.

The distribution of model AICs calculated using
moving-block bootstrapped data is shown in Fig. 6.
When ranked from lowest (best fit) to highest (worst
fit), the AIC is 86.3 at the 5th percentile and 90.2 at
the 10th percentile. Of the 36 versions of the model fit
by an annually indexed environmental variable,
lagged or unlagged, 6 (17%) perform better (i.e. have
a lower AIC) than the 5th percentile and 12 (33%)
perform better than the 10th percentile, including the
model driven by the unlagged, CPR-derived late-

stage C. finmarchicus abundance index. The im pro -
ved performance of our actual set of 36 environmen-
tal variables in comparison to the 10 000 randomly
generated environmental variables provides confi-
dence that the relationships between right whale calf
production and environmentally determined prey
availability are not spurious.

Temporally and spatially resolved prey-dependent
calf production model

The temporally and spatially resolved prey-
 dependent version of the model was fitted through
an iterative process to incorporate the optimal combi-
nation of C. finmarchicus abundance data resolved
by subregion and bi-monthly time period. The pre-
dicted calf time series from this version of the model
captures the largest portion of the interannual varia-
tion in calf production compared to all other versions
of the model tested (AIC = 64.5; Table 1, Fig. 4C).

In this version, the transitional probability between
the resting and pregnant states, φ21, is a logistic func-
tion dependent on C. finmarchicus abundance in the
WGOM during the November to December time
period and in the whole GOM region during the
March to April time period (Fig. 7B). All parameters
optimized for this transition are statistically signifi-
cant (Table 1). The transition between pregnant and
nursing states, φ32, is a logistic function that is exclu-
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10 000 models run in the resampling test. Each model was
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In this version, the transitional probability between the resting and pregnant states, φ21, is 

a logistic function dependent on C. finmarchicus abundance in the WGOM during the November 

to December time period and in the whole GOM region during the March to April time period 

(Fig. 3.5[Middle]). All parameters optimized for this transition are statistically significant (Table 

3.1). The transition between pregnant and nursing states, φ32, is a logistic function that is 

exclusively dependent on C. finmarchicus abundance in the EGOM during the July to August 

time period (Fig. 3.5[Bottom]). The large coefficients in this logistic function create a quasi step 

function, demonstrating that when the C. finmarchicus abundance index in the EGOM during 

July and August falls below a threshold value of −0.75, the probability of encountering nursing 

females the following year drops from 1.0 to 0.0 over a narrow range of prey abundances (Fig. 

3.5[Bottom], Table 3.1). Owing to the large coefficient size of the 2 parameters calculated for 

this transitional probability, the associated standard errors cannot be computed precisely (Pampel 

2000). However, by comparing this model with a similar one, in which the probability of 

transitioning between resting and pregnant states is prey dependent but the probability of 

transitioning between pregnant and nursing states is not, the results reveal that prey dependence 

in both transitions drastically improves the model’s fit (AIC = 64.5 vs. AIC = 96.2).  

The prey-dependent model’s predicted probabilities of conception and successful 

delivery for each year in the time series are shown in Fig. 3.5[Top]. These results indicate that 

under ideal prey conditions, a female in the resting state has a relatively low conception 

probability (mean probability = 0.314 over the 27-yr time period), but a relatively high 

probability of successfully delivering a calf once pregnant (mean probability = 0.908). For the 

time period considered in this study, summertime prey abundances in the EGOM fell below the 

threshold value of −0.75 a total of 3 times. On each of these occasions, the model predicted that a  
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Figure 3.5: [Top]: Transitional probabilities for the temporally and spatially resolved prey-
dependent reproduction model, showing φ21

 

(red) and φ32

 

(blue). [Middle & Bottom]: 
Transitional probabilities estimated in the prey-dependent reproduction model as functions of the 
associated Calanus finmarchicus abundance indices; [Middle]: φ21

 

as a function of the WGOM 
November to December index and the GOM March to April index and [Bottom]: φ32

 

as a 
function of the EGOM July to August index. Two functions are shown for φ21

 

[Middle]: the 
transitional probability as a function of the WGOM November to December prey abundance 
index while the GOM March to April prey abundance is held at the upper quartile, median and 
lower quartile abundances averaged over 1980 to 2006 (upper dashed line, solid line and lower 
dashed line, respectively) is shown in red; the transitional probability as a function of the GOM 
March to April prey abundance index while the WGOM November to December prey abundance 
is held at the upper quartile, median and lower quartile abundances averaged over 1980 to 2006 
(upper dashed line, solid line and lower dashed line, respectively) is shown in blue.  

Meyer-Gutbrod et al.: Climate impacts on right whale reproduction

sively dependent on C. finmarchicus abundance in
the EGOM during the July to August time period
(Fig. 7C). The large coefficients in this logistic func-
tion create a quasi step function, demonstrating that
when the C. finmarchicus abundance index in the
EGOM during July and August falls below a thresh-
old value of −0.75, the probability of encountering
nursing females the following year drops from 1.0 to
0.0 over a narrow range of prey abundances (Fig. 7C,
Table 1). Owing to the large coefficient size of the 2
parameters calculated for this transitional probabil-
ity, the associated standard errors cannot be com-
puted precisely (Pampel 2000). However, by compar-

ing this model with a similar one, in which
the probability of transitioning between
resting and pregnant states is prey depend-
ent but the probability of transitioning
between pregnant and nursing states is
not, the results reveal that prey depend-
ence in both transitions drastically improves
the model’s fit (AIC = 64.5 vs. AIC = 96.2).

The prey-dependent model’s predicted
probabilities of conception and successful
delivery for each year in the time series are
shown in Fig. 7A. These results indicate
that under ideal prey conditions, a female
in the resting state has a relatively low con-
ception probability (mean probability =
0.314 over the 27-yr time period), but a
 relatively high probability of successfully
delivering a calf once pregnant (mean
probability = 0.908). For the time period
considered in this study, summertime prey
abundances in the EGOM fell below the
threshold value of −0.75 a total of 3 times.
On each of these occasions, the model
 predicted that a significant percentage of
preg nancies would result in prenatal or
neonatal mortalities (Fig. 7A).

The prey-dependent model’s predicted
distribution of viable females in each of the
3 reproductive states is shown in Fig. 8A.
As expected, most females are found in the
resting state during any given year as they
recover from previous pregnancies by
restoring lost blubber. The model results
demonstrate that during years of higher
prey availability the resting and recovery
process is accelerated, leading to higher
annual calf production. In contrast, during
years of lower prey availability, females
remain in the resting state for longer, lead-
ing to lower annual calf production.

The prey-dependent model’s predicted theoretical
calving interval for each year in the time series is
shown in Fig. 8B. The theoretical calving interval
assumes that prey availability remains constant over
a complete reproductive cycle. Therefore, it does not
reflect a true calving interval, since a female requires
a minimum of 3 yr to complete her reproductive
cycle, and prey availability does not remain constant
over that length of time. Nevertheless, each pre-
dicted calving interval provides a snapshot of the
effect of that year’s feeding conditions on right whale
reproduction. A calving interval of 3 yr is the mini-
mum, given the model constraints, and it is achieved
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Fig. 7. (A) Transitional probabilities for the temporally and spatially
resolved prey-dependent reproduction model, showing φ21 (red) and φ32

(blue). (B & C) Transitional probabilities estimated in the prey-dependent
reproduction model as functions of the associated Calanus finmarchicus
abundance indices: (B) φ21 as a function of the WGOM November to
December index and the GOM March to April index and (C) φ32 as a func-
tion of the EGOM July to August index. Two functions are shown for φ21

(B): the transitional probability as a function of the WGOM November to
December prey abundance index while the GOM March to April prey
abundance is held at the upper quartile, median and lower quartile abun-
dances averaged over 1980 to 2006 (upper dashed line, solid line and
lower dashed line, respectively) is shown in red; the transitional probabil-
ity as a function of the GOM March to April prey abundance index while
the WGOM November to December prey abundance is held at the upper
quartile, median and lower quartile abundances averaged over 1980 to
2006 (upper dashed line, solid line and lower dashed line, respectively) is 

shown in blue
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significant percentage of pregnancies would result in prenatal or neonatal mortalities (Fig. 

3.5[Top]).  

The prey-dependent model’s predicted distribution of viable females in each of the 3 

reproductive states is shown in Fig. 3.6[Top]. As expected, most females are found in the resting 

state during any given year as they recover from previous pregnancies by restoring lost blubber. 

The model results demonstrate that during years of higher prey availability the resting and 

recovery process is accelerated, leading to higher annual calf production. In contrast, during 

years of lower prey availability, females remain in the resting state for longer, leading to lower 

annual calf production.  

The prey-dependent model’s predicted theoretical calving interval for each year in the 

time series is shown in Fig. 3.6[Bottom]. The theoretical calving interval assumes that prey 

availability remains constant over a complete reproductive cycle. Therefore, it does not reflect a 

true calving interval, since a female requires a minimum of 3 yr to complete her reproductive 

cycle, and prey availability does not remain constant over that length of time. Nevertheless, each 

predicted calving interval provides a snapshot of the effect of that year’s feeding conditions on 

right whale reproduction. A calving interval of 3 yr is the minimum, given the model constraints, 

and it is achieved when all viable females are reproducing as fast as physiologically possible, 

spending only 1 yr in each of the 3 reproductive states. While this minimum value is rarely 

approached over an extended time period, strong deviations from it are indicative of a bottleneck 

in right whale population growth. Calving intervals during the good feeding conditions of the 

1980s varied between 4 and 6 yr, with a decadal average of 5.0 yr. In contrast, calving intervals 

during the relatively poor feeding conditions of the 1990s were much more variable. For most of 
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Figure 3.6: [Top]: Model-estimated distribution of reproductive states for the population of 
reproductively viable right whale females. [Bottom]: Interval between births index (yr) as 
estimated from the temporally and spatially resolved, prey-dependent version of the model. The 
red dashed line shows a 3-yr calving interval, the minimum interval length constrained by the 
model, which corresponds to females spending only 1 yr in each of the 3 reproductive states. 
Blue lines show decadal averages of female-specific annual calf production and average interval 
between births. The average interval between births exceeded the lifespan of right whale females 
in 1998 and 1999 (★★), when prey abundances were unusually low. These values were not 
included in calculating the decadal average, therefore the blue dashed line is a significant 
underestimate of the 1990s average model-predicted interval between births  
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when all viable females are reproducing as fast as
physiologically possible, spending only 1 yr in each
of the 3 reproductive states. While this minimum
value is rarely approached over an extended time
period, strong deviations from it are indicative of a
bottleneck in right whale population growth. Calving
intervals during the good feeding conditions of the
1980s varied between 4 and 6 yr, with a decadal
average of 5.0 yr. In contrast, calving intervals during
the relatively poor feeding conditions of the 1990s
were much more variable. For most of the decade,
they varied between 5 and 7 yr, but low C. finmarchi-
cus abundance drove the calving interval up to
exceed the lifespan of the species during 1998 and

1999. Replacing the 1998 and 1999 calving interval
with 61 yr as an estimation of the reproductive life
span (70 yr lifespan minus 9 yr, or the age of repro-
ductive maturity) yields a decadal average calving
interval of 17.3 yr in the 1990s. When good feeding
conditions returned during the 2000s, calving inter-
vals dropped back to varying between 4 and 6 yr,
with a decadal average of 4.9 yr.

DISCUSSION

We compared the fit of multiple versions of a right
whale reproduction model using direct measures of
prey abundance (late-stage Calanus finmarchicus
abundance anomaly indices derived by the CPR) as
well as a number of environmental variables that
have been linked to regime shifts and changes in
plankton abundance in the GOM ecosystem. The
unlagged direct measures of prey abundance tested
in this study, both the annually averaged, full GOM
C. finmarchicus abundance anomaly index and the
temporally and spatially resolved abundance anom-
aly indices tested in combination, provide a very sim-
ple mechanistic method of predicting interannual
variability in right whale reproduction efficiency.

While the models driven by the lagged environ-
mental variables do not share the same level of
mechanistic parsimony as the models driven by prey
abundance, they do offer some advantages. The
environmental variables chosen for inclusion in this
study have links to large ecosystem changes and
regime shifts in the GOM and other shelf regions in
the Northwest Atlantic that are well supported in the
literature. For that reason, these variables may con-
tain more synoptic, broad-scale information on the
right whale feeding environment than data from the
CPR transect. There is also some uncertainty about
the reliability of funding for future collection and
analysis of CPR data in this region. Therefore, these
environmental variables may provide the only option
for future analyses.

The results from our modeling study provide evi-
dence that not only is the annual calf production of
the North Atlantic right whale population dependent
on prey availability, this dependence is especially
important in specific foraging areas and at specific
times. The results provide additional insights into
how various reproductive processes may be linked to
specific spatially and temporally dependant features
in the feeding ecology of right whales.

Of all reproduction models explored, the model
driven by temporally and spatially resolved C. fin-
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states for the population of reproductively viable right whale
females. (B) Interval between births index (yr) as estimated
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and 1999 (qq), when prey abundances were unusually low.
These values were not included in calculating the decadal
average, therefore the blue dashed line is a significant
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the decade, they varied between 5 and 7 yr, but low C. finmarchicus abundance drove the calving 

interval up to exceed the lifespan of the species during 1998 and 1999. Replacing the 1998 and 

1999 calving interval with 61 yr as an estimation of the reproductive life span (70 yr lifespan 

minus 9 yr, or the age of reproductive maturity) yields a decadal average calving interval of 17.3 

yr in the 1990s. When good feeding conditions returned during the 2000s, calving intervals 

dropped back to varying between 4 and 6 yr, with a decadal average of 4.9 yr.  

 

3.4 DISCUSSION  

We compared the fit of multiple versions of a right whale reproduction model using 

direct measures of prey abundance (late-stage Calanus finmarchicus abundance anomaly indices 

derived by the CPR) as well as a number of environmental variables that have been linked to 

regime shifts and changes in plankton abundance in the GOM ecosystem. The unlagged direct 

measures of prey abundance tested in this study, both the annually averaged, full GOM C. 

finmarchicus abundance anomaly index and the temporally and spatially resolved abundance 

anomaly indices tested in combination, provide a very simple mechanistic method of predicting 

interannual variability in right whale reproduction efficiency.  

While the models driven by the lagged environmental variables do not share the same 

level of mechanistic parsimony as the models driven by prey abundance, they do offer some 

advantages. The environmental variables chosen for inclusion in this study have links to large 

ecosystem changes and regime shifts in the GOM and other shelf regions in the Northwest 

Atlantic that are well supported in the literature. For that reason, these variables may contain 

more synoptic, broad-scale information on the right whale feeding environment than data from 

the CPR transect. There is also some uncertainty about the reliability of funding for future 
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collection and analysis of CPR data in this region. Therefore, these environmental variables may 

provide the only option for future analyses.  

The results from our modeling study provide evidence that not only is the annual calf 

production of the North Atlantic right whale population dependent on prey availability, this 

dependence is especially important in specific foraging areas and at specific times. The results 

provide additional insights into how various reproductive processes may be linked to specific 

spatially and temporally dependant features in the feeding ecology of right whales.  

Of all reproduction models explored, the model driven by temporally and spatially 

resolved C. finmarchicus performed the best (AIC = 64.5). In this model, the C. finmarchicus 

abundance index for the WGOM during November and December is the dominant variable 

driving the transition of reproductively viable females from the resting state to the pregnant state. 

This finding is consistent both spatially and temporally with field observations. Although the 

habits of right whales during late autumn and winter are not well known due to poor weather 

conditions and visibility, sightings and acoustic monitoring of reproductive females in this region 

between November and January suggest that the western and central GOM are likely mating 

grounds (Mussoline et al. 2012, Cole et al. 2013, Bort et al. 2015) during a time period when 

they are thought to be sexually active (Kraus & Rolland 2007, Cole et al. 2013). We hypothesize 

that C. finmarchicus abundance in this region and during this time period affects the foraging 

behavior of right whales and their probabilities of conception. For example, during years of low 

prey availability, the right whale population may disperse in search of better feeding grounds, 

thereby limiting mating opportunities. Conversely, during years of high prey availability, the 

population may converge over favorable feeding grounds, thereby fostering improved mating 

conditions.  
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The model results also indicate that the transition from resting state to pregnant state is 

secondarily driven by the C. finmarchicus abundance index for the entire GOM during March 

and April. This time frame corresponds to a period when high right whale abundance is observed 

in Cape Cod Bay (Winn et al. 1986, Mayo & Marx 1990, Pendleton et al. 2009), Massachusetts 

Bay (Schevill et al. 1986) and the Great South Channel (Kenney et al. 1995), as well as on 

Stellwagon Bank (Mussoline et al. 2012). Prey availability in the months before conception has 

been linked to calving rates in other baleen whales (Lockyer 2007), including the southern right 

whale (Leaper et al. 2006), a closely related congener of the North Atlantic right whale. In light 

of these observations, we hypothesize that prey availability throughout much of the GOM during 

spring likely determines the nutritional condition of reproductively viable females and influences 

their conception probabilities during the following winter.  

The best-fit transitional probability from the pregnant state to the nursing state, φ32, is 

driven by C. finmarchicus abundance in the EGOM during July and August. This transitional 

probability behaves like a quasi step function, indicating that right whale pregnancies tend to be 

viable except in years when prey abundance falls below a certain threshold (Fig. 3.5[Bottom]).  

As right whales are typically observed nearby in the lower Bay of Fundy during late 

summer (Kraus et al. 1982, Gaskin 1987, Mate et al. 1997), this relationship suggests that the 

EGOM subregion and the downstream Bay of Fundy may be significant feeding grounds for 

pregnant females, and C. finmarchicus abundance in these areas during summer may play a 

critical role in determining a female’s ability to sustain a pregnancy or nurse a calf.  

While each of the 35 regional and seasonal late-stage C. finmarchicus abundance indices 

tested in the temporally and spatially resolved versions of the model provides a unique measure 

of prey abundance in the GOM, some geographically and/or temporally adjacent indices are 
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highly correlated (for example, EGOM July and August, and WGOM July and August), as might 

be expected. Non-adjacent variables in the suite of regional and seasonal prey abundance indices 

are not strongly correlated, including the 3 variables chosen in the best-fit model. As there is 

some collinearity among the predictors, one might not expect such predictors to be jointly 

included in any particular model, as including them together would inflate the variance and result 

in poorer model performance as measured by standard criteria. While the stepwise regression has 

resulted in predictors that correspond well with known right whale foraging habits and result in 

good predictions of annual calf production, there may be other combinations of predictors that 

result in a comparable level of predictability.  

 

3.5 CONCLUSIONS  

Strong interannual fluctuations in calf production rate inevitably have a significant 

influence on the interdecadal variability observed in right whale population growth rate (Meyer-

Gutbrod & Greene 2014). Therefore, the ability of our prey-dependent version of the 

reproduction model to capture a large proportion of the observed variance in annual calf 

production has important implications for the management of this highly endangered species.  

During the 1990s, low prey availability significantly reduced calf production and, in 

combination with a high mortality rate, the right whale population experienced periods of 

negative growth. The impact of fewer calf births over the 1990s can be seen in the leveling off in 

recruitment of viable females in the 2000s (Fig. 3.6[Top]). Persistence of the extremely poor 

feeding conditions observed during the final years of the 1990s would have resulted in a much 

more rapid collapse of the population than that projected by Fujiwara & Caswell (2001) due to 

the near cessation of reproduction, regardless of any changes in anthropogenic sources of 
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mortality. Fortunately, the feeding conditions of the 1990s did not persist, as an ecosystem 

regime shift led to a resurgence of the C. finmarchicus in the region during the subsequent 

decade (Greene et al. 2013). In response, the right whale population underwent a notable 

recovery during the 2000s. This remarkable swing, from heading towards extinction during the 

late 1990s to being on the path towards a relatively rapid recovery during the 2000s, 

demonstrates the population’s high level of demographic volatility. In retrospect, it is now 

apparent that much of the decadal variability in the population’s recovery rate is driven by 

changes in prey availability linked to climate-associated ecosystem regime shifts (Meyer-

Gutbrod & Greene 2014). Any attempt to characterize the future fate of the right whale 

population must take these ecosystem regime shifts into account.  

The predictability of climate-driven ecosystem regime shifts in the Northwest Atlantic is 

an active area of research (Greene et al. 2013). Predicting their ecological impacts is much 

further along than predicting exactly when they will occur. These ecosystem regime shifts have 

been associated with various natural modes of climate variability; however, additional regime 

shifts and species range shifts will undoubtedly be modified and/or triggered in the future by 

anthropogenic climate change. In the context of right whale conservation and management, the 

recent prediction by Reygondeau & Beaugrand (2011) of a northward range shift of C. 

finmarchicus in response to a warming ocean should raise serious concerns. Such a range shift 

could greatly limit the availability of prey to right whales in the GOM and surrounding waters 

over the coming decades. In response, right whales may have to change their behavior to 

habituate to new foraging grounds, increase the extent of their migration route, or change the 

location of their calving grounds. Without such behavioral changes, this population may risk a 

significant decrease in its viability.  
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As the impacts of climate on right whale demography are mediated by prey availability, 

specifically the distribution and abundance of C. finmarchicus, understanding the responses of 

this species to such regime shifts will be critical to developing an ecosystem-based management 

perspective for the North Atlantic right whale population. The shift to such an ecosystem-based 

management perspective does not alter the importance of implementing policies and regulations 

that achieve the traditional conservation goals of reducing anthropogenic sources of mortality. 

After all, reducing the mortalities associated with ship strikes and entanglement in fishing gear 

will always enhance the population’s recovery rate. However, there are at least 2 additional 

benefits that an ecosystem-based management perspective introduces to developing conservation 

plans for the right whale population. First, it recognizes that the conservation goals set for 

management must be regime-dependent. The population’s recovery rate is constrained by 

environmental conditions, therefore measures of success for achieving conservation goals should 

be expected to vary from one ecosystem regime to another, even if comparable reductions in 

anthropogenic sources of mortality are achieved. Second, the uncertainty introduced by our 

limited understanding, as well as the stochastic nature of climate variability and change, will set 

limits on our ability to predict the recovery of the right whale population. Therefore, rather than 

relying on a single demographic projection based only on recently observed environmental 

conditions, an ensemble of projections based on a range of climate and anthropogenic mortality 

scenarios should be explored. Only then will we have the means to assess the likely fate of this 

species in the future.  
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CHAPTER 4 

A SPECIES ON THE BRINK: EFFECTS OF PREY-DRIVEN FECUNDITY AND 

ANTHROPOGENIC MORTALITY RATES ON DEMOGRAPHIC PROJECTIONS OF THE 

NORTH ATLANTIC RIGHT WHALE POPULATION 

Abstract 

In the critically endangered North Atlantic right whale, substantial evidence has linked 

reproductive efficiency, and consequently population growth, to food availability. Using capture-

recapture techniques, we present the demographic dynamics of the right whale population and 

test the role of prey abundance, specifically Continuous Plankton Recorder-derived late-stage 

Calanus finmarchicus abundance anomalies, on the survival and reproduction of the species. 

Prey dependence was tested in all demographic transitions for male and female maturation, 

survival and breeding, and the best model formulation occurred when female breeding 

probabilities were a function of prey availability and all other transitions remained constant. 

These results indicate that prey availability has an observable effect on interannual variations in 

right whale reproduction but not on mortality. Abundant prey has led to a period of population 

growth at the start of the new millennium, with annual growth averaging 3% in the previous 

decade (2001-2010). However, a shift in right whale distribution and decline in calving rates in 

recent years indicate that the population may have shifted back to a regime of lower growth. To 

assess future viability, right whale growth is projected into the next century under a series of 

prey and anthropogenic mortality scenarios. Using constant mortality rates averaged over 1980-

2012, right whale population size was projected under three different observed decadal prey 

regimes, with positive growth predicted under each scenario. The population was also projected 

under scenarios of increasing mortality with prey resampled from the observed annual anomalies 
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from 1980-2012, and population growth remains positive with up to five additional adult female 

mortalities annually. With six or more additional adult female mortalities each year, or an 

increase of 2% in annual mortalities across the population, the species is projected to decline to 

extinction. Under a regime of decreased prey availability, leading to suppressed breeding rates 

such as those observed during the 1990s, the population is more sensitive to an increase in 

mortality.  

 

4.1 INTRODUCTION 

The North Atlantic right whale is a critically endangered species with an estimated 

population size of 526 individuals (Waring et al. 2015, Pettis and Hamilton 2015). Following 

three centuries of intense whaling, the population was near extinction with fewer than 200 

individuals at the start of the 20th century (Reeves et al. 1992, Reeves et al. 1999). Previously 

coined the “urban whale”, right whales have faced a slow recovery from the whaling era, largely 

due to anthropogenic factors suppressing population growth (Kraus and Rolland 2007). Recent 

demographic analyses have targeted declining adult female survival probability as the primary 

threat to the species and have predicted functional extinction within 200 years (Caswell et al. 

1999, Fujiwara and Caswell 2001).  

Right whale habitat comprises the eastern coast of the United States and southeastern 

Canada, with feeding grounds in the Gulf of Maine, Bay of Fundy and Scotian Shelf and 

breeding grounds along the coasts of Florida and Georgia (Kenney et al. 2001). Whales in these 

waters face dense commercial shipping traffic, and from 1970-2006, the cause of death of 53% 

of necropsied right whales was attributed to ship strikes (Kraus et al. 2005, Campbell-Malone et 

al. 2008). This population also experiences lethal and sub-lethal effects from entanglement in 
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gear linked to non-mobile fisheries such as lobster pots and gillnets (Kraus et al. 2005, Knowlton 

and Kraus 2001). Evidence of fishing gear entanglement has been documented for 83% of the 

population, with an average annual entanglement rate of at least 16% (Knowlton et al. 2012). In 

this urbanized habitat, right whales are also subjected to high levels of anthropogenic noise and 

bioaccumulation of toxins, although the effects on population growth are not easy to measure 

directly (Hatch et al. 2012, Doucette et al. 2012).  

In addition to anthropogenic stressors, there is considerable evidence that variable feeding 

conditions influence right whale health and population dynamics. The effect of prey limitation is 

most pronounced in reproductive females, which require increased caloric inputs to support 

pregnancy and lactation (Wade and Schneider 1992, Lockyer 2007). Reproductive females 

exhibit the widest ranges of variability in individual health scores, with healthier females more 

likely to calve (Rolland et al. 2016). Fluctuations in reproduction rates concur with changes in 

adult female blubber thickness, suggesting a nutritional component to calving frequency (Pettis 

et al. 2004, Miller et al. 2011). In addition to heightened caloric requirements, reproductive 

females also face decreased access to prey during migration to and time spent on the calving 

ground (Fortune et al. 2013, Miller et al. 2012). Consequently, calving interval is lengthened in 

periods of low food availability (Klanjscek et al. 2007, Meyer-Gutbrod et al. 2015). 

The chief prey source of the North Atlantic right whale is late-stage Calanus 

finmarchicus, a lipid-rich calanoid copepod (Mayo et al. 2001). Changes in C. finmarhcicus 

distribution and abundance has been linked to basin-scale oceanographic fluctuations and 

regional climate indices through two modes of variability (Greene et al. 2013). In the first mode, 

a diminished pressure gradient in the North Atlantic, depicted by a strongly negative North 

Atlantic Oscillation index, can result in a tongue of Labrador subarctic slope water migrating 
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south, potentially blocking the advection of C. finmarhicus into the Gulf of Maine (Greene et al. 

2003). This phenomenon is hypothesized to explain the sharp decline in C. finmarchicus 

abundance during 1998 and the subsequent hiatus in right whale births during 1999 and 2000 

(Greene and Pershing 2004). In the second mode, the Gulf of Maine ecosystem undergoes a 

regime shift in response to remote climate forcing from the Arctic. Specifically, anomalously 

high Arctic sea level pressure, characterized by a positive Arctic Oscillation index, leads to an 

export of cold, fresh shelf water into the North Atlantic (Greene and Pershing 2007, Greene et al. 

2008). These salinity anomalies alter the timing and intensity of water column stratification, 

impacting shelf ecology by extending the phytoplankton growing season (MERCINA 2012).  

Previous modeling efforts demonstrate that right whale reproduction dynamics and 

calving frequency are linked to in situ late-stage C. finmarchicus abundance (Meyer-Gutbrod and 

Greene 2014, Meyer-Gutbrod et al. 2015). In this study, we incorporate these techniques into a 

full demographic capture-recapture model to test the impact of C. finmarchicus on survival and 

transition among each right whale life history stage. The demographic model is then used to 

project right whale population growth through the next century under different prey conditions 

and mortality scenarios.  

 

4.2 METHODS 

4.2.1 Right whale photographic database 

The North Atlantic right whale has been photographically catalogued in a consistent 

manner since 1980. Using unique markings such as callosity patterns and scars from 

entanglements and ship strikes, individual whales are identified or “captured” and resighted or 

“recaptured” year after year. These photographs have contributed to a database managed by the 
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North Atlantic Right Whale Consortium, providing a history of sightings and demographic 

stages for each known individual (Fig. 4.1)(Right Whale Consortium 2014).  

 

4.2.2 Continuous Plankton Recorder data 

 The Continuous Plankton Recorder (CPR) is an instrument towed behind ships of 

opportunity to collect and preserve plankton for subsequent analyses in the laboratory (Warner 

and Hays 1994). Since 1961, the NOAA National Marine Fisheries Service has operated a CPR 

survey in the Gulf of Maine running between Boston, MA and Cape Sable, NS at approximately 

monthly intervals (Jossi and Kane 2013)(Figure 2.3). Although the CPR is not an ideal 

instrument for sampling absolute abundances of plankton species due to limited geographic, 

depth, and temporal coverage, its consistent use in long-term surveys in the region has provided 

an invaluable data set for studying relative abundance patterns through time (e.g., Greene et al. 

2013). Despite the stated limitations, Pendleton et al. (2009) and Pershing et al. (2009) 

demonstrate that regional-scale, near-surface C. finmarchicus abundance measured with the CPR 

is significantly correlated with right whale sightings in the Gulf of Maine, and CPR data has 

been successfully used as a proxy for North Atlantic right whale prey abundance in multiple 

studies (e.g. Patrician and Kenney 2010, Miller et al. 2011, Meyer-Gutbrod et al. 2015).  

 In this study, we focus exclusively on the oldest stages of C. finmarchicus (copepodite 

stages 5 and 6) due to their importance in the diet of right whales (Mayo et al. 2001). Serving as 

a proxy for annual variations in prey availability, an annually averaged transect-wide index of 

late stage C. finmarchicus abundance anomalies were calculated from the seasonal climatological 

cycle as described by Pershing et al. (2005). To account for geographic and seasonal variations 

in zooplankton abundance in the Gulf of Maine, the CPR samples were assigned to four 
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Figure 4.1: Stacked bar graph showing the demographic distribution of known female [Top], 
male [Middle] and unknown sex [Bottom] right whales over the time series 1980-2012. 
Demographic stage is denoted by color: red = newborn, green = juvenile, blue = all adults (male) 
or non-breeding adults (female), purple = breeding female, yellow = post-breeding female, 
turquoise = unknown stage. 
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subregions running along a west to east transect: Massachusetts Bay (MB), Western Gulf of 

Maine (WGOM), Eastern Gulf of Maine (EGOM), and the Scotian Shelf (SS)(Fig. 2.3). Within 

each subregion and the Gulf of Maine region as a whole, the data were processed into time series 

of bi-monthly abundance anomalies using the methods described in Pershing et al. (2005). A 

yearly average time series was also produced for each subregion and the whole Gulf of Maine 

region. 

  

4.2.3 Capture-Recapture Model 

 To study the dynamics of the right whale population since 1980, we built a stage-based 

capture-recapture demographic matrix model (Fujiwara and Caswell 2002, Caswell 2001) (Fig. 

4.2). Females transition between 5 living stages: 1-newborn, 2-juvenile, 3-adult, 4-breeding, 5-

post-breeding. Males transition between 3 living stages: 1-newborn, 2-juvenile, 3-adult. The 

newborn stage accounts for the first year of life, and we assume that mortality in this stage is 

equal for both genders. Whales are classified as juveniles until they reach 9 years of age, have a 

sighting history of more than 8 years or, in the case of a female, until the year before the first 

known calving event.  

An adult female sighted on the calving grounds with a newborn enters the breeding stage, 

and in the following year she enters the post-breeding stage. Females never reproduce in 

consecutive years, and there are only 13 known instances of a female exhibiting a two-year 

spacing between births out of the 484 known calving events from 1980-2012 (Right Whale 

Consortium 2014). By adding a one-year post-breeding stage, we are able to account for this 

difference in the probability of a 2-year birth spacing vs. a longer birth spacing. Due to a lack of  
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Figure 4.2: Stage-structured model of right whale demography. State 1 (in green) is the newborn 
state for both males and females. States 2,3,4 and 5 (in pink) represent the female states of 
juvenile, adult, breeding and post-breeding, respectively. States 2 and 3 (in blue) represent the 
male states of juvenile and adult, respectively. The red circle in the center of the schematic 
represents the dead state for both genders. Numbers written next to black arrows represent the 
probability of transitioning between living states, and numbers written next to red arrows 
represent mortality rates for each state. All transitional probabilities and mortality rates shown 
are those estimated in the temporally constant, prey-independent capture-recapture model; 
however the probability of transitioning from female state 3 to state 4 is written in blue text to 
signal that in the best model, this transition is prey-dependent, and the probability of 
transitioning to the breeding state only equals 0.24 when prey are at their mean abundance. See 
Table 4.1 for confidence intervals. 
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identified mortality events in breeding and post-breeding females, all adult female stages (adult, 

breeding and post-breeding) are assumed to have equal mortality rates. 

 Time steps between demographic stages occur at 1-year intervals based off of the “right 

whale year” which begins in December rather than January. This definition allows calves born in 

December to be included with their cohort, since right whale calves are born during the winter 

months, usually December, January and February.  

Capture probabilities, or the likelihood that an individual will be sighted in a given time 

step, are estimated for each sex and demographic state. Since a newborn sighting is always the 

first sighting (or “capturing”) of an individual, capture probabilities cannot be estimated for 

newborns. Due to the high level of survey effort on the calving  

ground, we assume all calf births are recorded, so the capture probability of a breeding female is 

fixed at 1.0. The capture probability of an individual in the dead state (state 6 for females, state 4 

for males) is fixed at 0.0.  

Capture probabilities p for all remaining demographic states i are modeled as logistic 

functions with dependence on annual survey effort, which is designated as the total number of 

shipboard and aerial survey days each year (Right Whale Consortium 2014):  

 

 

The capture probability matrix P is a diagonal matrix with each diagonal element pi 

corresponding to the logistic function for that demographic state i. A separate matrix P is 

constructed for male and female whales. For example, Pf: 

€ 

pi =
exp(c1+ c 2 *effort(t))
1+ exp(c1+ c 2 *effort(t)) [Equation 4.1] 
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To reduce parameterization, capture probability functions for demographic states that are 

not significantly different are combined and re-estimated. To that effect, capture probabilities of 

juvenile males and juvenile females were combined into one function. Similarly, the effects of 

survey effort for all adult stages (adult male, adult resting female, and post breeding female) 

were not significantly different and were combined and re-estimated. Capture probabilities with 

dependence on survey effort are fixed across all transitional probability model formulations. The 

resulting time series of capture probabilities for all demographic states is shown in Figure 4.3.  

 Transitional probabilities, or the likelihood of an individual whale transitioning between 

demographic states during an annual time step, are modeled as a set of polychotomous logistic 

functions to ensure that the sum of all possible transitions for an individual between consecutive 

time steps equals 1.0 (Caswell and Fujiwara 2004). In a simple example, here is a set of 

polychotomous logistic equations in a temporally constant model for a juvenile female 

transitioning along 3 possible arcs to the following time step: remaining in the juvenile state 

(φ22), transitioning to resting adult (φ32), or dying (φ62). 

 

 

 

 

€ 

φ 22 =
exp(c1)

1+ exp(c1) + exp(c 2)

€ 

φ 32 =
exp(c2)

1+ exp(c1) + exp(c 2)

€ 

φ 62 =
1

1+ exp(c1) + exp(c 2)

Pf = 

  

€ 

p1 0 ! 0
0 p2 0
" #
0 0 p6

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

 
[Equation 4.2] 

[Equation 4.3] 

[Equation 4.4] 

[Equation 4.5] 
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Figure 4.3: Model estimated sighting probabilities for each demographic state over the time 
series 1980-2012. Sighting probabilities for breeding female state (pink) is fixed at 1.0 and dead 
states (black) are fixed at 0.0. All other states are modeled as a function of survey effort: male 
and female juveniles (green), resting adult females (red), post-breeding females (purple) and 
adult males (blue). 
 

To test for environmental dependence in any of these transitions, a linear combination of 

parameters and environmental variables, such as prey abundance, can be added into the logistic 

equation following the example shown for the capture probability pi in Equation 4.1.  

A separate transition matrix is built for males, Φm, and females Φ f, where each element 

corresponds to a possible transition φij from state i to state j, for example:  
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 [Equation 4.6] 
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Following the procedure outlined in Caswell and Fujiwara (2004) to calculate the 

likelihood of the capture history of each individual whale k over the time series t, we can 

calculate the likelihood of the capture history over the whole population as: 

    

 

The numerical estimation of all parameters in the capture-recapture model was performed 

using AD Model Builder (Fournier et al. 2012), and all subsequent analyses were carried out in R 

(R Core Team 2015). Model performance is compared using Akaike Information Criteria (AIC; 

Akaike 1974). For model-derived products such as transitional probabilities, population size and 

population growth rate, 95% confidence intervals were estimated from 10,000 parametric 

bootstrap samples generated assuming a normal distribution for all model parameters. 

 For the prey-independent model, demographic transitional probabilities are modeled as 

constant over the period 1980-2012. Then to test the impact of prey availability on population 

dynamics, each demographic transitional and survival probability is tested for dependence on 

annually averaged C. finmarchicus abundance anomalies aggregated across the entire Gulf of 

Maine CPR transect at a lag of 0-, 1- and 2-years. Finally, a series of capture-recapture models 

are built to test the effect of seasonally and geographically resolved C. finmarchicus abundance 

anomalies on right whale demographic transitions. Since temporally and geographically resolved 

prey data are not available after 2007, these models are built for the time series 1980-2007. 

  

€ 

Log(L[Φ,P]) = Log(ℓk[Φ,P | X1,...Xt])
k
∑

Φm = 

€ 

0 0 0 0
φ 21 φ 22 0 0
0 φ 32 φ 33 0
φ 41 φ 42 φ 43 1

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
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⎟ 
⎟ 
⎟ 
 

[Equation 4.7] 

[Equation 4.8] 
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Additional formulations of the prey-independent and annually averaged prey-dependent models 

were built for the 1980-2007 time series for comparison with the resolved-prey dependent model.  

 

4.2.4 Sex and State Uncertainty 

 The photographic identification of an individual right whale in a given year does not 

necessarily indicate that the sex or demographic state of that individual is discernible (Fig. 4.1). 

Nevertheless, the incorporation of all data, even incomplete sightings, is valuable in a capture-

recapture analysis (Fujiwara and Caswell 2002). Of the 679 individual right whales that have 

been photographically identified in the catalog, 63 have an unknown sex. We include the 

histories of these 63 individuals in the capture-recapture analysis by assuming a 50% likelihood 

that each individual is either a male or female. Unknown sex individuals are most commonly 

whales that died at a young age before researchers had a chance to identify the sex; therefore, it 

is essential to include these individuals in the analysis to avoid underestimating newborn and 

juvenile mortality rates. 

 Among all years that an individual was sighted, the demographic state was identified 

85% of the time (Fig. 4.1). For the other 15% of sightings, we incorporate state uncertainty into 

the model to make use of the information. A sighted individual may be classified into an 

unknown demographic state because it has an unknown birth year and a sighting history of less 

than 8 years and, in the case of a female, no known reproductive events. To include individuals 

in an unknown demographic state in the analysis, we assume that the individual is either a 

juvenile or a non-reproductive adult. We estimate the probability of the individual being either 

juvenile or adult according to the ratio of known, catalogued whales in those states over the time 

series 1980-2012, separated by sex.  The ratio of known female juveniles over all known female 
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juveniles and adults is 0.35, so unknown-state females are assumed to have a 35% probability of 

being juvenile and a 65% probability of being adult. Similarly, the ratio of known male juveniles 

over all known male juveniles and adults is 0.27, so unknown-state males are assumed to have a 

27% probability of being juvenile and a 73% probability of being adult. 

  

4.2.5 Population projections 

Forward projections can be used to demonstrate the effects of perturbations on population 

viability. Only female individuals contribute to future population growth through breeding, so 

population growth and perturbation analysis can be performed on the female portion of the 

capture-recapture model. The transition matrix Φ  estimated in the capture-recapture analysis can 

be converted to population projection matrix A following the protocol outlined in Caswell et al. 

(2004). Briefly, all mortality stages are removed from the female transition matrix, reducing the 

6x6 matrix into a 5x5 matrix. Then fertility rates are computed from the transition matrix using 

the following formulae: 

    

 

Where the probability of a resting adult female producing a female calf, A13(t) is the 

product of the probability of transitioning from resting to breeding φ43(t) multiplied by the 

probability of the mother’s survival during the first 6 months after breeding , 

since calf survival is linked to mother survival, and we assume calves must survive 6 months to 

be catalogued. Finally, the probability of breeding is multiplied by 0.5 under the assumption that 

only half of the calves produced are female (Equations 4.9). Similarly, the probability of a post-

breeding female producing a calf, A15(t) can be calculated from the probability of transitioning 

€ 

A13(t) = 0.5*φ 43(t) * (1−φ 65(t +1))

€ 

A15(t) = 0.5*φ 45(t) * (1−φ 65(t +1))

€ 

(1−φ 65(t +1))

[Equation 4.9] 

[Equation 4.10] 



 

95 

from post-breeding to breeding φ45(t) (Equation 4.10). With the creation of the matrix A, the 

right whale population can be projected from a known size and demographic distribution Nt as 

follows: 

Nt = [A(t)] × Nt-1 

To examine the effect of prey availability on future population viability, population 

growth was simulated under three different prey scenarios corresponding to the three decades 

that right whales were monitored for this study. Gulf of Maine transect-wide annually averaged 

late stage C. finmarchicus abundance anomalies were randomly sampled with replacement from 

1980-1989 in the first decadal scenario, from 1990-1999 in the second decadal scenario and from 

2000-2009 in the third decadal scenario. Prey abundance anomalies were resampled at each 

annual time step, and each run was projected over a 100-year period.  

While changing prey availability can affect population growth rates through its impact on 

calving rates, right whale mortality rates are known to fluctuate in response to changes in 

anthropogenic behavior due to ship strikes and gear entanglement. Forward projections are 

simulated under increasing lethal removal scenarios demonstrating population growth over the 

following century in the scenario of 0, 2, 4 and 6 annual lethal removals of adult females in 

addition to the currently estimated mortality rates. A second analysis is conducted under 

scenarios of 0, 4, 8 and 12 annual lethal removals taken at random from any demographic group 

in the population. Under these simulations, prey is sampled randomly from the 1979-2011 time 

series of annually averaged C. finmarchicus abundance anomalies.  

Under each projection scenario, the distribution of right whales in the initial time step is 

set to the observed population size and demographic distribution in 2012. To demonstrate 

stochasticity, 100 simulations were run for each projection scenario. 

[Equation 4.11] 
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4.3 RESULTS 

4.3.1 Constant Transitional Probabilities 

 Transitional probabilities between all states for the prey-independent, temporally constant 

capture-recapture model were estimated as constant over the time series 1980-2012 (Fig. 

4.2)(Table 4.1). The results of this model indicate that the population is growing at a rate 

λ=1.026. The demographic state with the highest mortality rate is the newborn state (φm,41=φ 

f,61=0.054). Resting adult females have a 24% chance of breeding (Fig. 4.4[Top]), however, the 

probability of a post-breeding females transitioning into a breeding state (i.e. females following a 

2 year calving cycle rather than the typical 3+ year calving cycle) is much less common at 3%.  

 The right eigenvalue of the projection matrix can be calculated to determine the stable 

stage distribution of the population. When the population is in equilibrium, the proportion of 

females that will populate the states in the order of newborn, juvenile, adult resting, adult 

breeding and adult post breeding is as follows: 

Stable stage distribution = {0.052, 0.289, 0.451, 0.106, 0.101} 

The left eigenvalue of the projection matrix can be calculated to determine the lifetime 

reproductive value of a female in each demographic stage. These values are shown below, scaled 

to the reproductive value of a female in the newborn stage: 

Reproductive value = {1.000, 1.084, 1.562, 1.417, 1.493} 

Mature adult females have the highest reproductive value because they have survived the 

newborn and juvenile stages and are able to actively reproduce.  

 Sensitivity and elasticity values of the prey-independent projection matrix are calculated 

from A and shown in Table 4.1. Sensitivities show the effects of absolute changes in transitional 

probabilities on the population growth rate. Sensitivities are computed using the stable state 
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distribution and the reproductive value of each stage, such that the most sensitive transitions are 

those that affect the largest number of individuals with the highest reproductive value. Since 

resting adults make up the largest portion of the female population and have the highest 

reproductive value, resting adult survival is the most sensitive transition, followed by the 

transition from resting to breeding and then juvenile survival (Table 4.1).  

Elasticities show the influence of a proportional change in each transitional probability on 

the population growth rate. Transitions with the highest elasticities are adult resting survival and 

juvenile survival (Table 4.1).  

 

4.3.2 Annually averaged prey-dependent models 

 Dependence on annually averaged transect-wide C. finmarchicus anomalies with a lag of 

0, 1 and 2 years was tested independently in all transitional probabilities and mortality rates for 

all demographic stages among both males and females. Only the inclusion of prey in the 

transition from adult female to breeding resulted in a significant improvement (Δ AIC > 2.0) 

compared to the temporally constant model. In the transition from adult female to breeding 

female, dependence upon 1-year lagged prey abundance, for example, occurs when the chance of 

transitioning from adult female in 1989 to calving in 1990 is driven by prey abundance in 1988. 

When adding 0, 1 and 2 year lagged prey abundance to the transition from adult female to 

breeding female, there was significant improvement in fitness of the 1-year and 0-year lagged 

prey driven models compared to the temporally constant, prey-independent model (prey 

independent: AIC=14619.5 (ΔAIC=33.9); 0-year lagged prey: AIC=14607.6 (ΔAIC=22.0); 1-

year lagged prey: AIC =14585.6 (ΔAIC=0.0); 2-year lagged prey: AIC=14621.2 (ΔAIC=35.6)). 
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Female Temporally Constant Transitional Probabilities    
 Estimate Upper C.I. Lower C.I. Sensitivity Elasticity 
Phi21 0.946 0.966 0.915 0.041 0.038 
Phi22 0.854 0.917 0.752 0.229 0.19 
Phi32 0.12 0.215 0.062 0.329 0.038 
Phi13* 0.116 0.15 0.086 0.329 0.037 
Phi33 0.73 0.802 0.664 0.514 0.37 
Phi43 0.244 0.307 0.174 0.466 0.107 
Phi54 0.974 0.979 0.968 0.116 0.11 
Phi15* 0.015 0.025 0.009 0.074 0.001 
Phi35 0.944 0.957 0.921 0.115 0.106 
Phi45 0.03 0.052 0.017 0.104 0.003 
Phi61 0.054 0.085 0.034   
Phi62 0.026 0.039 0.017   
Phi63 0.026 0.032 0.021   
Phi64 0.026 0.032 0.021   
Phi65 0.026 0.032 0.021   
Phi66 1     
Male Temporally Constant Transitional Probabilities    
  Estimate Upper C.I. Lower C.I.   
Phi21 0.946 0.966 0.915   
Phi22 0.89 0.944 0.789   
Phi32 0.095 0.191 0.045   
Phi33 0.988 0.991 0.983   
Phi41 0.054 0.085 0.034   
Phi42 0.015 0.024 0.009   
Phi43 0.012 0.017 0.009   
Phi44 1     

 

Table 4.1: Estimates and 95% confidence intervals, sensitivities and elasticities for transitional 
probabilities in the temporally constant (prey independent) capture-recapture model. *Denotes 
transitions derived from the transition matrix, Φ, to form the projection matrix, A.  
 



 

99 

 

Figure 4.4. Time series plots show the probability (with 95% confidence intervals) of 
transitioning between the female resting stage and breeding stage as a constant in the no prey 
model (blue)[Top], as a function of annually averaged C. finmarchicus (red)[Middle], and as a 
function of three geographically and seasonally specific C. finmarchicus abundance indices in 
the resolved prey model (green)[Bottom]. Also plotted in each panel is the ratio of observed 
breeding females and resting females (black lines).  
 

0.0

0.1

0.2

0.3

0.4

results$Year[c(1:32)]

B
re

ed
in

g 
Pr

ob
ab

ili
ty

Observed
No Prey Model
95% Confidence interval

0.0

0.1

0.2

0.3

0.4

results$Year[c(1:32)]

B
re

ed
in

g 
Pr

ob
ab

ili
ty

Observed
Annually Avg. Prey Model
95% Confidence interval

1990 1995 2000 2005

0.0

0.1

0.2

0.3

0.4

results$Year[c(1:32)]

B
re

ed
in

g 
Pr

ob
ab

ili
ty

Observed
Resolved Prey Model
95% Confidence interval



 

100 

The probability of a female transitioning from state 3 to state 4 in the annually averaged 

prey dependent model is shown in Figure 4.4 [Middle]. The probability of breeding over the 

1980-2012 time series ranges from a maximum value of 36% in 1988 during the period of high 

C. finmarchicus abundance in the late 1980s to a minimum value of 11% in 1999 following the 

C. finmarchicus crash in 1998 (Fig. 4.5[Top]). The annual population growth rate varies with the 

change in breeding probability, reaching a maximum of λ=1.040 in 1988 and a minimum of 

λ=1.004 in 1999 (Fig. 4.5[Bottom]).  

 

4.3.3 Spatially and temporally resolved prey-dependent models 

After testing annually averaged prey dependence in all demographic transitions, only 

prey dependence in the transition from adult female resting to breeding was a significant 

improvement over the temporally constant model. To test whether the prey-dependent capture-

recapture model could be further improved by including higher spatial and temporal resolution in 

the prey data, CPR-derived bimonthly and regional late stage C. finmarchicus abundance 

anomalies were tested independently and in combination for the transition from resting to 

breeding following the protocol outlined in Meyer-Gutbrod et al. (2015). In the best fit resolved 

prey model, the transition from female adult resting to breeding was driven by 1-year lagged, 

CPR-derived May/June anomalies in the West Gulf of Maine, September/October anomalies 

across the entire Gulf of Maine transect and March/April anomalies in the West Gulf of Maine. 

Since resolved prey data is not available after 2007, the resolved prey-dependent capture-

recapture model was fit to the 1980-2007 time series of capture probabilities, and the temporally 

constant and annually averaged prey-dependent models were reformulated to fit the 1980-2007 

time series for comparison with the resolved prey model. Both the annually averaged prey- and  
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Figure 4.5: [Top]: The probability of a female transitioning from resting to breeding as a function 
of the annually averaged C. finmarchicus abundance anomaly. [Bottom]: The population growth 
rate (λ) as a function of the annually averaged C. finmarchicus abundance anomaly. Diamonds 
mark observed annual C. finmarchicus anomalies over the time period 1979-2006.  
4.3.3 Spatially and temporally resolved prey-dependent models 
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resolved prey-dependent model formulations performed better than the temporally constant 

model, with the resolved prey model performing the best (temporally constant model 

AIC=11481.08 (ΔAIC=63.5); annually averaged prey model AIC=11455.2 (ΔAIC=37.6); 

resolved prey model AIC=11417.6 (ΔAIC=0.0)).  

 Modeled breeding probability for the temporally constant, annually averaged prey-

dependent and resolved prey-dependent 1987-2007 models is shown in Figure 4.4, plotted 

alongside the observed ratio of breeding females to resting females in the previous year (black 

lines). Years prior to 1987 are not shown because observed breeding ratios are inflated due to the 

discovery curve (Fig. 4.1[Top]). The probability of transitioning from resting to breeding in the 

temporally constant model is 0.21, which is slightly lower than in the temporally constant 1980-

2012 model (φ43=0.24). This difference arises because the poor breeding conditions driven by 

low prey in the late 1990s make up a larger portion of the modeled time series. Figure 4.4 shows 

that the inclusion of prey allows the capture-recapture model to explain a greater portion of the 

temporal variability in breeding rates.   

 

4.3.4 Projected population growth under decadal prey scenarios 

To examine the potential population trajectories of the North Atlantic right whale under 

different prey scenarios, we projected the population growth under the annually averaged prey 

dependent model using prey randomly sampled from the three different decadal prey regimes 

observed since 1980: the high prey abundance of the 1980s, low abundance in the 1990s and 

moderate abundance in the 2000s (Fig. 4.6[Top]). Under these projection scenarios, all other 

transitional probabilities were held constant at the values estimated in the annually averaged, 

prey-dependent capture-recapture model described previously. The mean, model-estimated, 
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population growth rate under each of the three decadal regimes is λ=1.032 (std=0.0064) in the 

1980s, λ=1.019 (std=0.0069) in the 1990s, and λ=1.029 (std=0.0032) in the 2000s (Fig. 

4.6[Bottom]). As evidenced by these projections, and by the annual population growth rate 

calculated under the observed annual C. finmarchicus anomalies (Fig. 4.5[Bottom]), growth is 

positive even under the worst prey conditions in the 1980-2012 time period.  

 

4.3.5 Projected population growth under increased mortality scenarios 

With evidence supporting positive future population growth under all observed prey 

conditions, we investigated what increase in mortality could lead to population decline in a new 

forward projection analysis. Population growth was projected over 100 years using the annually 

averaged prey model with prey randomly sampled with replacement from the 1979-2011 time 

series. Growth was projected using the demographic dynamics estimated in the annually 

averaged, prey-dependent, capture-recapture model with no change in mortality rates (black), 

and with 2 (red), 4 (green) and 6 (blue) additional adult female mortalities each year (Fig. 4.7). 

With the annual removal of 6 or more adult females, the population will collapse within the next 

century.  

A similar analysis was performed with increasing mortality events taken from the 

population at large rather than taken specifically from just adult females. Annually averaged prey 

anomalies were again randomly sampled from the 1979-2011 time series. In these scenarios, 

population collapse occurred within 100 years under the majority of projected simulations when 

the total additional removal was 13 whales annually (Fig. 4.8).  
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Figure 4.6. Projected population growth of the North Atlantic right whale under three different 
decadal prey regimes: 1980s (red), 1990s (green) and 2000s (blue). [Top]: Each line corresponds 
to a 100-year population projection, simulated 100 times under each decadal prey regime. 
[Bottom]: Box and whisker plots showing the median (thick black bar), first and third quartiles 
(edges of box) and maximum and minimum (ends of whiskers) values of the population growth 
rate, λ.  

2020 2040 2060 2080 2100

0

2000

4000

6000

8000

10000

12000

Projected growth under 3 decadal prey regimes

Year

Po
pu

la
tio

n 
si

ze

1980s
1990s
2000s

1980s 1990s 2000s

1.01

1.02

1.03

1.04

La
m
da



 

105 

 
Figure 4.7: Future projections [Top] and box plots of the population growth rate, λ [Bottom] of 
right whale population size in the annually averaged prey-driven model with prey sampled 
randomly from 1979-2012. At each annual time step of the projection, 2 (red lines), 4 (green 
lines), or 6 (blue lines) non-breeding adult females are removed from the population to simulate 
increased mortality rates. These increased mortality scenarios are shown alongside the current 
population trajectory (black lines).  
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Figure 4.8: Future projections [Top] and box plots of the population growth rate, λ [Bottom] of 
right whale population size in the annually averaged prey-driven model with prey sampled 
randomly from 1979-2012 at each year time step. At each annual time step of the projection, 4 
(red lines), 8 (green lines), or 12 (blue lines) whales are removed from the population at random 
to simulate increased mortality rates among all demographic stages. These increased mortality 
scenarios are shown alongside the current population trajectory (black lines). Population collapse 
occurs under the majority of simulations at annual removal counts greater than 12 whales. 
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4.3.4 Projected population growth under combined low prey and increased mortality scenarios 

 The previous analysis shows how the population growth rate will change with additional 

annual mortalities given the prey conditions present in the previous three decades. Since two of 

the previous three decades occurred during regimes of relatively high prey availability (the 1980s 

and 2000s), reproduction rates were weighted towards shorter calving intervals. However, if low 

prey conditions such as those observed in the 1990s occur in the future, population growth will 

be more sensitive to increases in mortality rates.  

  To analyze the combined effects of low prey abundance and increased mortality, 

population growth was projected over the next century using the annually averaged prey model 

with prey randomly sampled with replacement from the 1991-2000 time series and three 

scenarios of annual non-breeding adult female removals. Growth was projected using the 

demographic dynamics estimated in the annually averaged, prey-dependent, capture-recapture 

model with no change in mortality rates (black), and with 2 (red) and 4 (green) additional adult 

female mortalities each year (Fig. 4.9). Under prey conditions similar to those observed in the 

1990s and with the additional annual removal of 4 or more adult females, the population will 

begin a period of gradual decline. 

 

4.4 DISCUSSION 

When tested independently, the addition of both 0-year lagged prey and 1-year lagged 

prey to the transition from adult female to breeding female significantly improves the capture-

recapture model compared to a prey-independent model formulation. These results corroborate 

findings from a previous study of the influence of prey on right whale calving rates using a 3-

state reproduction model, where 1-year lagged prey influenced the rate of conception and 0-year 
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Figure 4.9: Future projections [Top] and box plots of the population growth rate, λ [Bottom] of 
right whale population size in the annually averaged prey-driven model with prey sampled 
randomly from the 1990s. At each annual time step of the projection, 0 (black lines), 2 (red 
lines), or 4 (green lines) non-breeding adult female whales are removed from the population at 
random to simulate increased mortality rates among all demographic stages. Gradual population 
decline occurs with an annual removal of 4 adult female whales.  
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lagged prey influenced the rate of successful calving events among pregnant females (Meyer-

Gutbrod et al. 2014). After testing prey dependence in each demographic transition, the inclusion 

of prey dependence only improved the capture-recapture model when incorporated in the 

transition from adult female resting to breeding. This indicates that starvation of juvenile and 

adult whales is not currently a realistic threat to population viability, however periods of low 

prey availability may reduce calving rates when females are not able to obtain adequate nutrition 

for breeding and lactation. Changes in visually assessed health conditions across most 

demographic groups, but most notably for resting females, correspond with interannual 

fluctuations in recruitment, providing direct evidence of the link between nutritional availability 

and breeding rates (Rolland et al. 2016).  

By incorporating prey availability into a full demographic model, we were able to project 

right whale population growth into the future and conduct a perturbation analysis. Although the 

best model fit in this study is the resolved prey model where three bimonthly values of sub-

sections of the CPR transect were used to predict breeding probability, the model incorporating 

annually averaged transect-wide prey anomalies was selected for use in the population projection 

and perturbation analysis. Right whales have been known to fluctuate between feeding grounds 

based on prey availability (Patrician and Kenney 2010), therefore the regions where whales have 

historically fed will not necessarily be utilized in future decades. Therefore, the annually 

averaged C. finmarchicus abundance anomalies across the GOM may provide a more robust 

metric for characterizing future prey fluctuations because they are more representative for a 

greater portion of the feeding habitats, both spatially and temporally. Although the annually 

averaged model was chosen for more conservative population viability assessment, this decision 

may mask the severity of prey limitation in anomalous years. For example, the low breeding rate 
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and population growth rates predicted in the late 1990s by the annually averaged prey model 

does not fully characterize the decline in reproduction that was observed and which was 

predicted by the resolved prey model (Fig. 4.4; Meyer-Gutbrod et al. 2014, Meyer-Gutbrod and 

Greene 2014).   

In the forward projections under three different prey scenarios, it is clear that the North 

Atlantic right whale population is experiencing positive growth even during the worst decadal-

scale prey conditions. These results provide an interesting update to the study by Fujiwara and 

Caswell (2001) which indicated that population growth was in decline, with projected extinction 

within 200 years. The decline estimated in the late 1990s by Fujiwara and Caswell was based 

primarily on a temporally-increasing mortality rate among breeding females. However, this 

model was based upon limited data, since there are very few well-documented instances of 

mortality among breeding females. Fujiwara and Caswell (2001) cited a mass mortality event of 

5 recovered right whale carcasses in 1996 as evidence that the modeled increase in breeding 

female mortality captures a real biological phenomenon. However, of the five dead whales 

recovered that year, two were newborns, two were males and the remaining individual was 

unidentifiable (Waring et al. 1999 Stock Assessment report). For the models presented in this 

study, all three adult female stages were assumed to have equal mortality rates because there is 

insufficient data available to accurately estimate separate mortality rates for the breeding and 

post-breeding states. Without mortality data specific to female reproductive states to populate the 

model, there is less basis for the population decline predicted by Fujiwara and Caswell (2001).  
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4.5 CONCLUSION 

 Despite a stagnation in population growth at the end of the 1990s leading to projections 

of future extinction, the North Atlantic right whale experienced a period of recovery in the early 

2000s mediated by high prey abundance and a corresponding increase in reproduction rates. 

However, following the end of this study period in 2012, right whale population growth has 

languished, partly due to an observed decline in calf births (Pettis and Hamilton 2015, Kraus et 

al. 2016). While humans exhibit control over right whale mortality, fluctuations in fecundity 

driven by changes in prey abundance create a degree of unpredictability, resulting in limited 

control over the population’s fate. Due to funding limitations, CPR data in the Gulf of Maine are 

not currently being processed. The break in this 50-year time series makes it difficult to update 

the demographic model presented here to analyze the most recent changes in population trends. 

This break in data collection comes at a most unfortunate time, with unusual warming in the Gulf 

of Maine and unprecedented change in global climate patterns.  

 There are many uncertainties regarding the assessment of recent right whale population 

performance because whales often have multiple-year gaps in sighting histories. In the past 

several years, right whale sightings have been at an all time low, dropping from a typical annual 

sighting rate of 85% of the population down to sighting rates of 74%, 56% and 68% in 2012, 

2013 and 2014, respectively (Pettis and Hamilton 2015). This decline in Gulf of Maine sightings 

combined with three right whale carcasses found in the Gulf of St. Lawrence in the summer of 

2015 provide evidence that right whale distributions may be shifting north, possibly in search of 

denser prey aggregations. This decline in sightings data leaves scientists blind during a time of 

rapid change, and when small fluctuations in vital rates have the potential to bring irreparable 

damage to a vulnerable species. 
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Analysis of population viability under increasing mortality scenarios is useful for the 

assessment of population dynamics under changing environmental conditions. Fishing gear 

entanglement remains problematic for the species, with increasing severity of entanglement 

injuries and a greater risk of mortality (Knowlton et al. 2015, Robbins et al. 2015). Research 

currently underway suggests that entanglement mortality is both severely underestimated and 

increasing, potentially as a result of shifts in right whale habitat use (Pettis et al. 2015). With 

dramatic changes in right whale distribution and increasing entanglement rates, the low prey 

abundance, high mortality scenario presented in Fig. 4.9 (2 [red] and 4 [green] additional annual 

adult female mortalities) may be a reflection of current conditions (Kraus et al. 2016). With only 

526 individuals in the population, heightened efforts to reduce anthropogenic mortality remain 

essential to protecting this endangered species. 

 The South African and Argentine populations of Southern right whales, close cousins to 

the North Atlantic right whale, have considerably higher growth rates with a 7% annual rate of 

increase (Cooke et al. 2001; Best et al. 2005) compared to the modest 2-3% rate estimated for the 

North Atlantic population here. These populations experience faster growth due to decreased 

mortality rates (annual mortality = 0.019 for Argentine adult females; 0.01 for South African 

adult females) and shorter calving intervals (mean interval = 3.35 years for Argentine population, 

3.15 years for South African population)(Cooke et al. 2001; Best et al. 2005). These vital rates 

provide further evidence that the North Atlantic right whale population may be biologically 

capable of a faster recovery if not subjected to the pressures of anthropogenic mortality and 

inadequate food availability.  
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CHAPTER 5 

CONCLUSION 

5.1 OVERVIEW AND RESULTS OF THIS DISSERTATION  

The North Atlantic right whale population has experienced net positive population 

growth over the time series considered in this study, with 255 known individuals in 1986 

(Knowlton et al. 1994) to an estimated population size of 526 individuals in 2014 (Pettis and 

Hamilton 2015). Despite this assurance of positive growth, scientists remain concerned about the 

population’s viability due to high rates of anthropogenic mortality (Campbell-Malone et al 2008, 

Knowlton et al. 2012), evidence of prey-limited reproduction (Fortune et al. 2013, Miller 2012, 

Pettis 2004) and vulnerability associated with low population size. In this dissertation, I explored 

the effects of climate-driven variations in prey abundance on the population dynamics of the 

North Atlantic right whale, with a focus on variability in breeding rates. In the previous chapters, 

I present evidence of the following: 

1) A significant portion of interannual variability in North Atlantic right whale population 

growth is caused by annual changes in right whale breeding rates. 

2) Variability in reproduction efficiency is driven by changes in prey availability, as 

measured by late-stage C. finmarchicus abundance anomalies from the Continuous 

Plankton Recorder transect across the Gulf of Maine 

3) Fluctuations in reproductive efficiency are correlated with climate indices and 

oceanographic variables, suggesting that remote forcings from the Arctic Ocean and 

Northwest Atlantic Ocean are affecting right whale reproduction through climate-

associated changes in prey availability.  
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4) Forward projections indicate that right whale population growth will remain positive 

during the next century under prey conditions characteristic of both high-prey abundance 

periods in the 1980s and 2000s as well as the low-prey abundance period of the 1990s.  

5) Forward projections under increased mortality scenarios indicate that the right whale 

population will decline to extinction if an additional 2% of the population is killed each 

year. The co-occurrence of low prey availability decreases the mortality rate associated 

with this extinction threshold.  

 

The connection between prey availability and right whale viability is plain, suggesting 

that the changes in circulation and stratification that effect C. finmarchicus abundance and 

distribution, both on a local and ocean-basin scale, should be included in future studies of right 

whale population dynamics. Forward projections currently indicate that under any of the prey 

conditions resampled over each of the three previous decades, reproduction will occur at a rate 

consistent with positive population growth. However, prey abundance anomalies have been 

recorded in a single year, such as 1998, when breeding rates contributed to a decline in 

population growth.  

As ocean temperatures warm, the corresponding dynamics of the Gulf of Maine and 

Scotian Shelf ecosystems remain uncertain. Using an ecological niche model, Reygondeau and 

Beaugrand (2011) projected a reduction in C. finmarchicus distribution at the southern range of 

their habitat, with effects most pronounced in the key right whale feeding grounds of Georges 

Bank and the Scotian Shelf. If right whale prey shifts north, right whale females will either need 

to increase the distance of their migration between winter breeding grounds and summer feeding 

grounds, or shift their winter breeding grounds north in response. Given the strong maternally 
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directed site fidelity noted in these whales (Malike et al. 1999), the former response might be 

more likely. Careful monitoring of the distribution of C. finmarchicus and the corresponding 

effects on right whale breeding rates will be an essential component to future right whale 

conservation efforts and management decisions.  

 

5.2 RIGHT WHALE CONSERVATION EFFORTS 

The recovery of the North Atlantic right whale population can be attributed to a series of 

policy changes and management decisions designed to protect this vulnerable species. Since 

1935, the last time a right whale was intentionally killed in the US, the population has been 

provided an opportunity for recovery (Kraus and Rolland 2007). In addition to the creation of 

laws preventing the harvest of right whales, a series of policies have been implemented to 

encourage population growth.  

Repeated aerial and ship surveys as well as passive acoustic monitoring are conducted to 

identify critical right whale habitats (Clark et al. 2010). A Mandatory Ship Reporting System 

developed by the National Oceanic and Atmospheric Administration’s (NOAA) National Marine 

Fisheries Service (NMFS) has collected valuable ship traffic data near right whale critical 

habitats off the Northeastern US and Southeastern US coasts (Ward-Geiger et al. 2005). 

Scientists have worked to develop shipping routes that decrease the risk of vessel collisions with 

right whales in the Southeastern US (Fonnesbeck et al. 2008) and the Northeastern US 

(Vanderlaan et al. 2008). As a result of these studies, NMFS implemented a large-vessel speed 

restriction in right whale critical habitats during seasons of heavy use (NOAA 2008). In addition, 

NOAA has issued voluntary Area To Be Avoided (ATBA) recommendations and a Traffic 

Separation Scheme outside of Boston, MA. Modeled risk assessment indicates that the 
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implementation of vessel speed restrictions has reduced the risk of fatal ship strikes by 80%-90% 

in the restricted regions and time periods (Conn and Silber 2013).  

Due to the detrimental impact of fishing gear entanglements to right whale survival and 

health, NOAA formed the Atlantic Large Whale Take Reduction Plan (ALWTRP) in 1997. 

NOAA has implemented a series of fishing gear modifications in an attempt to decrease risk and 

severity of entanglement events (see 

http://www.greateratlantic.fisheries.noaa.gov/protected/whaletrp/ for details). These gear 

modifications include adding weak links between gillnets or lobster pots and their buoy systems, 

adding weak links between gillnet panels, and implementing sinking groundlines in place of 

floating groundlines to connect buoys and gillnets. The ALWTRP has also implemented a large 

whale disentanglement program to provide training and assist in the formation of a rapid 

response network to respond to reported entanglement events. Despite these efforts to reduce the 

risk and severity of entanglement, Knowlton et al. (2012) found no change in annual 

entanglement rate and an increase in the severity of right whale entanglement events from 1980-

2009. Continued efforts to improve fishing gear, update gear modification policies and monitor 

the efficacy of existing policies are necessary to reduce future entanglements.  

While most conservation efforts focus on vessel strikes and entanglement in fishing gear 

as the largest sources of direct mortality to right whales, several additional conservation efforts 

have been implemented to improve general management of the species. The North Atlantic right 

whale has been listed as “critically endangered” under the Endangered Species Act since 1970. 

NMFS has restricted the approach by vessel, aircraft or other means within 500 feet of a right 

whale to reduce general disturbance and the risk of vessel strikes (NOAA 1997). Finally, the 

extensive undertaking of the North Atlantic Right Whale Consortium in managing the databases 
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of sightings, photo-identification, genetics, contaminants, health assessment, necropsy and 

blubber measurements has made possible both broad and deep efforts in science, management, 

education and outreach regarding this species. These conservation efforts provide hope that the 

recovery of this species, though gradual, may continue into the future. 

 

5.3 OCEAN CONSERVATION 

More generally, conservation measures being implemented in the oceans, ranging from 

local to global scale, are providing a glimmer of hope amidst the overall degradation of marine 

ecosystems. One of the most notable ocean conservation efforts in recent years has been is the 

establishment of Marine Protected Areas (MPAs) or marine reserves where different forms of 

anthropogenic activities are limited or restricted. MPAs are established to accomplish a wide 

range of goals, including the conservation of an organism or ecosystem, regulations to prioritize 

traditional or historical use by indigenous people, or the implementation of sustainable modern 

harvest (Agardy et al. 2003). Reviews of data collected from over 100 MPAs have demonstrated 

that they serve to increase the density, biomass, average organism size and diversity within the 

reserves (Halpern and Warner 2002). Currently, 2.8% of the global ocean is protected by marine 

reserves, and that figure rises each year (IUCN and UNEP-WCMC 2013).  

The Magnuson-Stevens Fishery Conservation and Management Act of 1996 mandated an 

end to overfishing practices and the rebuilding of depleted fish stocks in the US. In response, 

fisheries scientists and managers are implementing numerous techniques to address overfishing 

practices, including setting stock quotas, reducing legal fishing areas and seasons, protecting 

age- size- and sex-classes that contribute most to recruitment, and modifying fishing gear to 

reduce bycatch (Board 2013). Although progress has been slow, these techniques have already 
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led to the successful rebound of several commercially important stocks in US waters, including 

New England scallops, mid-Atlantic bluefish, Pacific whiting and Pacific lingcod (Rosenberg et 

al. 2006).  

Pollution is a much more diffuse issue and therefore not as straightforward to resolve. 

Two alternative strategies have been proposed to manage non-point-source pollution from 

agricultural use of nitrogen and phosphorous: a decrease in fertilizer application rates and the 

restoration of wetlands to filter nutrients shed from croplands (Ribaudo et al. 2001). Numerous 

approaches have been or are in the process of being developed to address the need for carbon 

dioxide emission reductions to reduce greenhouse warming and ocean acidification, including 

improvements in energy-use efficiency, development of alternative, non-fossil based energy 

sources, and development of carbon dioxide capture and storage technologies (Bille et al. 2013). 

Although implementation of these strategies has been slow, it is still possible to curb warming 

below the 2°C threshold recommended by climate scientists and policymakers (Peters et al. 

2013).  

Under mounting pressure from increased anthropogenic stressors to marine ecosystems, 

the timely implementation of conservation and management policies is critical to the health of 

the global ocean and its living inhabitants. While the conservation measures addressed here are 

promising, nearly all strategies are working too slowly. Increased funding to support science and 

management efforts will be essential to improving our understanding of these ecosystems and to 

implementing successful conservation measures. Adaptive changes to modern industry and 

human lifestyles must occur promptly to reduce anthropogenic stressors on the global ocean and 

to protect its living resources for future generations.  
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