
SOFTWARE/HARDWARE CO-DESIGN TO IMPROVE
PRODUCTIVITY, PORTABILITY, AND PERFORMANCE OF

LOOP-TASK PARALLEL APPLICATIONS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ji Yun Kim

January 2017

© 2017 Ji Yun Kim

ALL RIGHTS RESERVED

SOFTWARE/HARDWARE CO-DESIGN TO IMPROVE

PRODUCTIVITY, PORTABILITY, AND PERFORMANCE OF LOOP-TASK PARALLEL

APPLICATIONS

Ji Yun Kim, Ph.D.

Cornell University 2017

Computer architects are increasingly turning to programmable accelerators tailored for narrower

classes of applications in order to achieve high performance and energy efficiency. A continuing

challenge with accelerators is enabling the programmer to easily extract maximum performance

without intimate knowledge of the underlying microarchitecture. It is important to consider pro-

ductivity and portability, in addition to performance, as first-class metrics when developing and

evaluating modern computing platforms. Software-centric approaches to achieving 3P comput-

ing platforms are compelling, but sacrifice efficiency and flexibility by hiding parallel abstractions

from hardware and limiting the scope of the application domain. This thesis proposes a new

software/hardware co-design approach to achieving 3P platforms, called the loop-task accelerator

(LTA) platform, that provides high productivity and portability without sacrificing performance or

efficiency across a wide range of applications. The LTA platform addresses the weaknesses of ex-

isting approaches that are identified through detailed experimentation with and analysis of modern

application development. Discussion of an early attempt at a hardware-centric approach to achiev-

ing 3P platforms provides insight into area-efficient accelerator designs and highlights the need for

innovations in both software and hardware. The LTA platform focuses on exploiting loop-task par-

allelism by exposing loop-tasks as a common parallel abstraction at the programming API, runtime,

ISA, and microarchitectural levels. The LTA programming API uses the parallel_for construct

to express loop-tasks that can be exploited both across cores and within a core, the LTA runtime

distributes loop-tasks across cores, and a new xpfor instruction explicitly encodes loop-tasks as

functions applied to a range of loop iterations. This thesis introduces a novel task-coupling taxon-

omy that captures how tasks can be coupled in both space and time. The LTA engine template can

be configured at design time with variable spatial and temporal task coupling to accelerate the ex-

ecution of both regular and irregular loop-tasks within a core. The LTA platform is evaluated with

respect to the 3P’s using a vertically integrated research methodology. Compared to an in-order

multi-core baseline, the LTA platform yields average improvements of 5.5× in raw performance,

2.5× in performance per area, and 1.2× in energy efficiency, while offering high productivity and

portability.

BIOGRAPHICAL SKETCH

Ji Yun Kim was born on July 3, 1987 in Seoul, South Korea. He is the eldest son of Dae Kun

Kim and Kang In Kim, and has one younger brother, Chang Yun Kim. When he was 6 years old,

Ji and his family immigrated to the United States to pursue better education and a brighter future.

As a youth, Ji became fascinated with the electronics that his father would bring back from his

business trips in Japan. This sparked his interest in electrical and computer engineering and he

began learning how to program and building personal computers. Ji attended the University of

Pennsylvania for his undergraduate studies where he majored in electrical engineering. Although

his background was in digital circuits and his initial intent was to continue his graduate studies

researching radios and fiber optic communication systems, two serendipitous events pushed him

towards computer architecture. First, a senior-level class in computer organization broadened his

perspective on how the circuits he was designing could be utilized in a complex system. Second,

his capstone project (enhancing the resiliency of VoIP) was heavily focused on software, which

sparked an interest in application development. These events in combination fostered a deeper

interest in the software/hardware interface of computer architecture. At Cornell University, Ji

began his PhD career with his advisor, Professor Christopher Batten. Under Professor Batten’s

tutelage, Ji learned the fundamentals of computer architecture from the ground up, eventually

gaining invaluable experience in application development, software runtimes, compilers, as well

as microarchitecture and ASIC design.

In his free time Ji enjoys board games, reading, cooking, guitar, biking, and experiencing

different cultures abroad. His favorite authors include Haruki Murakami, Kurt Vonnegut, and Paul

Auster. His favorite drinks include single-malt whiskey and beers as dark as the night. One day

Ji hopes to write a novel of his own and retire to a wood cabin in the wilderness of Maine where

he hopes to spend the rest of his days building high-end wooden furniture. Ji is thankful for his

PhD experience–through the successes and the failures, the joys and the pains, sometimes it takes

seeing your best and your worst to know where to go next.

iii

This document is dedicated to my family, the source of inspiration and motivation in my life.

iv

ACKNOWLEDGEMENTS

It goes without saying that a constant source of inspiration and motivation in my PhD career

was my graduate committee consisting of three of the most brilliant people I have ever met: Prof.

Christopher Batten, Prof. Jose Martinez, and Prof. Rajit Manohar. This thesis would not be what

it is without the invaluable feedback and guidance from these advisors. I would especially like

to thank my mentor, Christopher Batten, who not only gave me an opportunity to mature as a

researcher, but as a person; for pushing me to be ceaseless in the pursuit of truly great research,

and for helping me get through some of the darkest times in my life. One day I hope to be half the

researcher he is.

The work in this thesis was built on the foundations laid by my amazing colleagues in the Batten

Research Group and I would like to extend a sincere thanks to students both past and present. The

technical contributions of each member in the group along with the detailed acknowledgements

of other technical collaborators (e.g., Yunsup Lee, Martin Burtscher, Rupesh Nasre, Sripathi Pai,

David Bindel) are in Section 1.3, so I would like to use this section for personal thanks. Derek

Lockhart guided me as a more experienced graduate student in my early years and I’m thankful

for the times that we shared. Shreesha Srinath is a dear friend who has been with me through thick

and thin–I would not be here without his council and advice. His passion for research and breadth

of knowledge never ceases to impress me. Christopher Torng is a fantastic researcher and is surely

destined for success in academia. It was because of Chris I pushed myself to be a better mentor.

Berkin Ilbeyi is one of the most gentle and polite human beings I have the pleasure of knowing (he

is also a Python wizard). Moyang Wang is a dedicated and outstanding colleague who is already

better at C++ than I am at the end of my PhD career. The two newest additions to BRG, Shunning

Jiang and Khalid Al-Hawaj, are enthusiastic and talented individuals that make me excited to see

the future of BRG. I would also like to acknowledge the tremendous work of the fantastic MEng

students I have worked with: Scott McKenzie, Alvin Wijaya, Jason Setter, and Wei Geng.

Aside from my own research group, I would like to thank my friends in the Computer Systems

Laboratory at Cornell. KK Yu has been a cherished mentor in my life since I met him, academically

and spiritually. KK was always there to listen to me complain, and without him there to give me

perspective I would probably have lost my way. Daniel Lo is another great friend who is a joy to

be around. His hundreds of hobbies and interests reflect his joy for life and gives me something to

strive toward. Ritchie Zhao is my one and only true heir to the throne and, especially in my later

v

years, was my greatest source of companionship. I will treasure my memories with him and my

only regret is not being able to spend more time together. There are many more important people

that I will not forget: Rob Karmazin, Saugata Ghose, Jon Tse, Kyle Wecker, Maya Kelner, Janani

Mukundan, and the list goes on. A special acknowledgement to the Ward 101 crew of Charles Jeon

and Ryan Lee, it was fun while it lasted and thanks for being there during the worst of times.

I would further like to extend my thanks to my undergraduate research advisors, Prof. Jan Van

der Spiegel and Prof. Andre DeHon at the University of Pennsylvania, who were willing to take in

a inexperienced student into their groups. Without the time I spent in that research environment, I

would not have decided to pursue a PhD. In addition, I would like to thank my friend and confidant,

Jefferson Wen, who I have known since freshmen year at the University of Pennsylvania, for his

support and unwaivering kindness over these many years.

Last but absolutely not least, I would like to thank my family for being loving, supportive, and

patient. From a young age, my parents, Dae and Kang Kim, instilled in me the importance of

education and pursuing my passion to help others. I hope that what I have learned and experienced

during my PhD will help me to succeed in touching people’s lives no matter where I end up. My

younger brother and best friend, Chang Kim, inspired me to believe in the best of myself and

always manages to cheer me up when I need it. Finally, I would like to extend a special thanks to

my grandfather, Hui Sok Kim, who has been my role model since I was a child and supported me

in uncountable ways my entire life. His guidance and his belief in me has shaped me into the man

I am today.

In terms of funding, this thesis was supported in part by an NDSEG Fellowship, NSF CA-

REER Award #1149464, NSF XPS Award #1337240, NSF CRI Award #1512937, NSF SHF

Award #1527065, AFOSR YIP Award #FA9550-15-1-0194, and donations from Intel Corpora-

tion, NVIDIA Corporation, and Synopsys, Inc.

vi

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vii
List of Figures . ix
List of Tables . x
List of Abbreviations . xi

1 Introduction 1
1.1 The 3P’s: Productivity, Portability, and Performance 1
1.2 Thesis Overview . 3
1.3 Collaboration, Previous Publications, and Funding 6

2 Software/Hardware Platforms for Exploiting Loop-Task Parallelism 8
2.1 CMP Platforms . 11

2.1.1 Optimizations for Successful Auto-Vectorization 11
2.1.2 Multi-Threading with Task-Based Runtime 15
2.1.3 Combining Multi-Threading with Auto-Vectorization 18

2.2 MIC Platforms . 19
2.3 GPGPU Platforms . 21
2.4 Summary and Discussion . 24

3 Fine-Grain SIMT 26
3.1 FG-SIMT Overview . 26
3.2 FG-SIMT Value Structure . 28
3.3 FG-SIMT Microarchitecture . 30
3.4 FG-SIMT Evaluation . 36

3.4.1 Performance Analysis . 36
3.4.2 Area and Cycle Time Analysis . 37
3.4.3 Energy Analysis . 38

3.5 FG-SIMT Summary . 39

4 Loop-Task Accelerator Software 41
4.1 Programming API . 42
4.2 Task-Based Runtime . 44
4.3 Instruction-Set Architecture . 47

5 Loop-Task Accelerator Hardware 50
5.1 Task-Coupling Taxonomy . 50
5.2 Loop-Task Accelerator Engine Template . 56

5.2.1 Exception Handling . 61
5.2.2 Deadlock Detection and Resolution . 62

vii

6 Loop-Task Accelerator Evaluation Methodology 64
6.1 Application Kernels . 64
6.2 Loop-Task Accelerator Runtime . 66
6.3 Performance Modeling . 67
6.4 Area Modeling . 68
6.5 Energy Modeling . 70

7 Loop-Task Accelerator Evaluation Results 71
7.1 Loop-Task Accelerator Engine: Spatial Task-Coupling 71
7.2 Loop-Task Accelerator Engine: Temporal Task-Coupling 78
7.3 Loop-Task Accelerator Platform . 82

7.3.1 Combining Inter-Core and Intra-Core Mechanisms 83
7.3.2 Productivity and Portability . 84

7.4 Loop-Task Accelerator Case Studies . 85
7.4.1 Impact of Shared LLFUs on Spatial Task-Coupling 85
7.4.2 Impact of µthread Count on Temporal Task-Coupling 87
7.4.3 Impact of Memory Latency on Temporal Task-Coupling 88

8 Related Works 90
8.1 Software-Centric Approaches . 90
8.2 Hardware-Centric Approaches . 92

9 Conclusions 95
9.1 Thesis Summary and Contributions . 95
9.2 Future Work . 98

Bibliography 101

viii

LIST OF FIGURES

1.1 Vision for Loop-Task Accelerator (LTA) Platform 4

2.1 Example Development Flow for High-Performance Applications 8
2.2 Performance Comparison of Selected SW/HW Platforms 10
2.3 Example Development Flow for rgb2cmyk Kernel 12
2.4 Using TBB in bfs-nd Kernel . 14
2.5 Combining TBB and AVX in rgb2cmyk Kernel 17
2.6 Topology- vs. Data-driven Implementations of bfs-nd 22

3.1 Example of Value Structure in SIMT Code . 29
3.2 Detailed FG-SIMT Microarchitecture . 31
3.3 FG-SIMT CP with Compact Affine Execution 34
3.4 FG-SIMT Cycle-Level Performance . 36
3.5 FG-SIMT Area Breakdown . 37
3.6 FG-SIMT Energy vs. Performance . 38

4.1 LTA Application Development Flow . 41
4.2 Anatomy of a Loop-Task . 42
4.3 LTA Programming API . 43
4.4 Example LTA Runtime Task Partitioning . 44
4.5 LTA-Aware Task Partitioning . 46
4.6 Example µtask to µthread Mapping . 48

5.1 LTA Engine with Tight Task Coupling . 51
5.2 LTA Engine with Loose Task Coupling in Space and Tight Task Coupling in Time 53
5.3 LTA Engine with Loose Task Coupling in Space and Time 53
5.4 Terminology for Task-Coupling Taxonomy . 54
5.5 Task-Coupling Taxonomy . 55
5.6 Types of Control Divergence . 56
5.7 LTA Engine Template . 57

6.1 Performance Comparison of Various Runtimes on x86 67

7.1 Performance of Single-Core LTA Engines with Variable Spatial Task-Coupling . . 72
7.2 Area Breakdown of Single-Core LTA Engines with Variable Spatial Task-Coupling 75
7.3 Spatial Task-Coupling Energy Breakdown . 76
7.4 Spatial Task-Coupling Energy Efficiency vs. Performance 76
7.5 Performance of Single-Core LTA Engine with Variable Temporal Task-Coupling . 79
7.6 Temporal Task-Coupling Energy Breakdown . 81
7.7 Temporal Task-Coupling Energy Efficiency vs. Performance 81
7.8 Performance of LTA Platform on Multi-Core System 83
7.9 Variable Spatial Task-Coupling with No LLFU Sharing 86
7.10 Variable µthread Count and Temporal Task-Coupling 87
7.11 Variable Memory Latency and Temporal Task-Coupling 87

ix

LIST OF TABLES

2.1 Application Kernels for Native Experiments . 10

4.1 LTA Instruction-Set Architecture Extensions . 47

6.1 Application Kernel Characterization for Simulator Experiments 65
6.2 Cycle-Level Simulator System Configuration . 68

7.1 Application Kernel Statistics for Simulator Experiments 73
7.2 LTA Engine Area Estimates . 75

x

LIST OF ABBREVIATIONS

CMP chip multiprocessor
MIC many integrated core
GPGPU general-purpose graphics processing unit
SIMD single-instruction multiple-data
SIMT single-instruction multiple-thread
RISC reduced instruction set computer
GPP general-purpose processor
LTA loop-task accelerator
TBB (Intel) threading building blocks
AVX (Intel) advanced vector extensions
CUDA (NVIDIA) compute unified device architecture
API application programming interface
DSL domain-specific language
IR intermediate representation
ISA instruction set architecture
CAD computer aided design
RTL register-transfer level
VLSI very-large-scale integration
ASIC application-specific integrated circuit
TMU task management unit
IMU instruction management unit
PIB pending instruction buffer
DMU data management unit
PDB pending data buffer
FU fetch unit
PC program counter
PFB pending fragment buffer
DU decode/dispatch unit
RT rename table
IU issue unit
IQ issue queue
RF register file
SLFU short-latency functional unit
LLFU long-latency functional unit
LSU load/store unit
WCU writeback/commit unit
WQ writeback queue
SRAM static random access memory
DRAM dynamic random access memory
I$ instruction cache
D$ data cache

xi

CHAPTER 1
INTRODUCTION

With Moore’s Law approaching its end [Dub05], architects are increasingly turning to pro-

grammable accelerators that can achieve high performance and energy efficiency by specializing

for narrower classes of applications. Examples include mainstays like traditional vector proces-

sors [EVS98, EV96, Oya99] and packed single-instruction multiple-data (SIMD) engines [Hug15,

SS00], but more recently include Intel’s many integrated core architectures [Kan16] (MIC), NVIDI-

A/AMD’s general-purpose graphics processing units [nvi16, amd12a] (GPGPU), Movidius’ im-

age/vision accelerators [Dem14], and Qualcomm’s mobile-focused accelerators [Gwe14]. Unfor-

tunately, the continuing challenge is how much performance and energy efficiency the programmer

can actually extract from the hardware. Extracting the highest levels of performance and energy

efficiency often requires a significant amount of optimizations based on a deep understanding of

the underlying microarchitecture [AJ88,DKH11,JR13,LZH+13,BNP12,HKOO11] and optimized

implementations of the same application can be vastly different depending on the target architec-

ture [HVS+13, LZH+13, LWH10, MLBP12]. Furthermore, current accelerators primarily address

applications with very regular control-flow and memory-access patterns. In this emerging era of

computer architecture, it is clear that performance cannot be the sole metric for developing and

evaluating computing platforms composed of software frameworks and hardware architectures.

1.1 The 3P’s: Productivity, Portability, and Performance

The challenges described above suggest that computer architects should focus on “the 3P’s” of

productivity, portability, and performance as the primary metrics in developing and evaluating

computing platforms. In fact, recent trends indicate that architects are already placing more value

on productivity and portability.

The demand for productivity is evidenced by the increasing popularity of task-based parallel

programming frameworks such as Intel’s C++ Threading Building Blocks (TBB) [Rei07, int15],

Intel’s Cilk Plus [Lei09, int13], Microsoft’s .NET Task Parallel Library [LSB09, CJMT10], Java’s

Fork/Join Framework [Lea00, jav15], and OpenMP [ACD+09, ope13]. This is in contrast to

more traditional thread-based frameworks like POSIX threads, C++11 threads, and MPI [mpi13].

Thread-based programming models require explicit thread management and static work distribu-

1

tion with no dynamic load balancing. On the other hand, task-based programming models implic-

itly manage an optimal number of threads for the system in a thread pool and dynamically schedule

fine-grain tasks across any available threads. This frees the programmer to think at a higher level

of abstraction and leaves the lower-level details to a software runtime.

Although tasks can express a wide range of parallel programming patterns, loops remain one of

the most popular targets of task-based parallelization. This thesis focuses on a subset of task par-

allelism called loop-task parallelism that is captured by the ubiquitous parallel_for construct.

Loop-task parallelism can be seen as a more general form of data parallelism, where the operator

applied to a range of loop iterations can have enough variability due to data-dependent conditionals

that loop iterations are closer to exhibiting task parallelism. Loop-task parallelism can be regular

or irregular depending on whether there are structured control-flow and memory-access patterns

across loop iterations. Note that data parallelism as exploited by traditional vector processors gen-

erally refers to regular data parallelism; loop-task parallelism captures regular data parallelism as

well as more irregular task parallelism across loop iterations. For the sake of brevity, applications

with regular or irregular loop-task parallelism may be referred to as regular or irregular applications

throughout this thesis.

The need for portability is indicated by the profusion of research on efficiently mapping both

regular and irregular applications to accelerators like Intel’s MICs [PHSJ13, HVS+13, LZH+13,

PBV+13] and NVIDIA/AMD’s GPGPUs [NBP13b, BNP12, HKOO11, LWH10]. As this trend

continues, it would be desirable to have seamless portability between a more conventional chip

multiprocessor (CMP) implementation and MIC/GPGPU implementations. This is especially true

for applications with high performance targets since it is not always possible to predict which

architecture would yield the best performance and with what cost in productivity [LKC+10].

Although software-centric approaches to achieving 3P platforms exist, they are not without

their own tradeoffs. Virtual ISAs, like in AMD’s heterogeneous system architecture [amd12b]

(HSA), leverage software frameworks like OpenCL [ope11] and C++AMP [Som11] as a com-

mon framework that are lowered to an intermediate representation that can be further lowered to

multiple hardware architectures. Domain-specific languages (DSL), like Halide [RKBA+13] and

DeLite [BSL+11], focus on expressing highly specialized abstractions for a narrow application

domain that the compiler can map to multiple hardware architectures. Unfortunately, in their cur-

rent incarnations, both of these approaches fall short of their proposed productivity and portability

2

goals. For example, a non-trivial amount of architecture-specific optimizations are still required

to yield the highest performance, and optimized implementations of the same application differ

substantially depending on the target architecture. In addition, the parallel abstractions used by

software-centric approaches are never directly exposed to the hardware (i.e., only pushed down to

the compiler level), meaning much of the information about available parallelism is never explic-

itly communicated to the hardware. If a hardware accelerator were to be fundamentally designed

to understand the same abstractions in software, there would be more opportunities to efficiently

exploit the available parallelism. It is also important to note that both of these approaches do not

support fine-grain inter-core load balancing.

1.2 Thesis Overview

This thesis proposes the loop-task accelerator (LTA) platform, a software/hardware co-design

approach for a 3P platform that seeks to maintain high productivity and high portability without

sacrificing performance or efficiency across a wide range of applications. The LTA platform ef-

ficiently exploits loop-task parallelism by exposing loop-tasks as the common parallel abstraction

at the programming API, runtime, ISA, and microarchitectural levels. Figure 1.1 illustrates the

overall vision for the LTA platform. Loop-tasks can be exploited across cores in software via a

task-based work-stealing runtime and within a core in hardware via a special accelerator, called

an LTA engine, attached to a general-purpose processor (GPP). LTA engines can be configured at

design time to be tailored for diverse loop-task parallelism and can be homogeneous or heteroge-

neous.

Chapter 2 details my personal experience developing, porting, and optimizing application ker-

nels with diverse loop-task parallelism to several platforms consisting of different software frame-

works (e.g., TBB, CUDA) and hardware architectures (e.g., CMP, MIC, GPGPU). My findings

suggest that no single platform excels at the 3P’s for both regular and irregular loop-task parallel

applications. One of the key observations from this study is that a software/hardware co-design

approach that innovates across the computing stack may offer the best chance at achieving a true

3P platform.

Chapter 3 describes an early attempt at a hardware-centric approach to achieving a 3P platform

called fine-grain SIMT (FG-SIMT). FG-SIMT is a SIMT-like programmable accelerator that is

3

LTA Runtime

LTA
EngineGPP GPP

LTA
Engine

LTA Programming API

LTA ISA

L
T

A
 S

of
tw

ar
e

L
T

A
 H

ar
d

w
ar

e

Loop-TaskLoop-Task

Loop-Task

Loop-Task

Figure 1.1: Vision for Loop-Task Accel-
erator (LTA) Platform – The goal of the
LTA platform is to efficiently exploit loop-
task parallelism both across cores and
within a core by exposing loop-tasks as the
common abstraction throughout the com-
puting stack. The LTA programming API
exposes loop tasks using the ubiquitous
parallel_for construct. The LTA run-
time generates, partitions, and distributes
loop tasks across cores. The LTA ISA is
used to explicitly encode loop tasks. The
LTA engines accelerate regular or irregu-
lar loop tasks within a core.

designed for fine-grain integration into a MIC-like architecture. FG-SIMT addresses productivity

by using threads as a common parallel abstraction (similar to CUDA) which are grouped into basic

scheduling units called warps, addresses portability by using a single ISA on both the GPP and the

accelerator, and addresses performance by focusing on exploiting intra-warp parallelism in lieu of

inter-warp parallelism like in GPGPUs as well as enabling fine-grain work offloading. Although

FG-SIMT is able to achieve impressive performance and energy efficiency on regular applications,

it struggles to do so on more irregular applications. In addition, FG-SIMT is only examined in

a single-core context and does not provide any major innovations in software. The conclusions

from the FG-SIMT study further serve to motivate the need for innovation in both software and

hardware, and inspires aspects of the LTA microarchitecture.

Chapters 4 and 5 detail the software and hardware components of the proposed LTA platform

that seeks to achieve the 3P’s for both regular and irregular loop-task parallel applications. The key

idea is to narrow the scope of the software, broaden the scope of the hardware, and marry these

layers by exposing loop-tasks as a common parallel abstraction across the computing stack. The

LTA programming API uses the familiar parallel_for construct to express loop-tasks that can be

exploited both across cores and within a core. The LTA task-based work-stealing runtime, inspired

by TBB, distributes tasks across cores in software. The LTA platform extends a RISC-V-like ISA

with a new xpfor instruction that explicitly encodes loop-tasks as a function applied over a range

of loop iterations. This instruction can be executed on either traditional GPPs or on LTA engines

that are designed to accelerate loop-task execution. I introduce a task-coupling taxonomy that

4

elegantly captures the spectrum of spatial and temporal task coupling within an LTA engine, and

describe the impacts of task coupling on performance, area, and energy efficiency when executing

regular and irregular loop-task parallel applications. Furthermore, the LTA engine template can be

configured at design time with different levels of spatial and temporal task coupling, enabling a

deep design-space exploration of this taxonomy.

Chapter 6 outlines the vertically integrated research methodology used to evaluate the LTA

platform. My colleague and I have ported 16 C++ application kernels which include a diverse mix

of regular (e.g., image/matrix processing), irregular (e.g., string processing, graph analysis), and

mixed (e.g., sorting) loop-task parallelism. The LTA runtime is validated against other popular

task-based work-stealing runtimes. For performance analysis, I use the gem5 cycle-level simula-

tor [BBB+11] and PyMTL, a Python-based hardware modeling framework [LZB14]. For area and

energy analysis, I use component/event-based modeling based on VLSI results of similar acceler-

ator designs [SIT+14, KLST13] obtained using a commercial ASIC CAD toolflow with a TSMC

40nm standard cell library.

Chapter 7 presents the cycle-level performance, area-normalized performance, and energy ef-

ficiency of the LTA platform compared to single-core and multi-core baseline architectures. The

results indicate that a moderate amount of both spatial and temporal task coupling offers the best

performance across the widest range of applications, and the resulting multi-core LTA platform

yields average improvements of 5.5× in raw performance, 2.5× in performance per area, and 1.2×

in energy efficiency compared to a in-order multi-core baseline. Compared to a more aggressive

out-of-order multi-core baseline, the LTA platform is able to achieve 3.0× improvement in raw

performance, 1.7× in performance per area, and 2.5× in energy efficiency. Both the baseline and

LTA platforms use the same LTA programming model and runtime. Productivity and portability

are improved since a single implementation of any given application can take full advantage of the

LTA engines on systems with (or without) any combination of LTA engines.

Chapter 8 catalogues the large body of related work and crystallizes the novelty of the LTA plat-

form. Chapter 9 summarizes the contributions of this thesis and highlights interesting directions

for extending this thesis.

The primary contributions of this thesis are condensed below:

• Detailed analysis of the 3P challenges in modern application development flows based on

years of computer architecture experience.

5

• The FG-SIMT architecture, an area-efficient accelerator for regular loop-task parallelism

with microarchitectural mechanisms for exploiting value structure, and a detailed evaluation

of this architecture with respect to performance, area, and energy based on RTL and gate-

level models.

• Software components of the LTA platform including a productive TBB-like LTA program-

ming API, a task-based work-stealing LTA-aware runtime and lightweight LTA ISA ex-

tensions including a new xpfor instruction that explicitly encodes loop-tasks as a common

parallel abstraction.

• A task-coupling taxonomy that describes the spectrum of how tasks can be coupled in space

and time, with appropriate terminology.

• Hardware components of the LTA platform including an elegant microarchitectural template

for the LTA engine that can be configured at design time with variable spatial and temporal

task coupling to target diverse loop-task parallelism.

• Deep design space exploration of the impacts of task coupling in the LTA engine on perfor-

mance, area, and energy, as well as a 3P evaluation of the LTA platform using a vertically

integrated research methodology.

1.3 Collaboration, Previous Publications, and Funding

This thesis would not have been possible without the immense effort and dedication of all of the

members of the Batten Research Group. My advisor Christopher Batten was the key collaborator

in iteratively evolving the concepts behind the LTA platform, such as exploring task coupling in

time as well as space, and helping to refine the narrative to how it is presented in this thesis. Derek

Lockhart is the lead developer of PyMTL, the hardware modeling framework used to model the

LTA engines, and was integral in establishing the ASIC CAD toolflow used to generate VLSI

results for area/energy modeling. Shreesha Srinath developed the gem5-PyMTL co-simulation

framework which allowed me to leverage more sophisticated memory system and network models,

and ported many application kernels to the LTA platform. Berkin Ilbeyi significantly improved the

performance of the aforementioned co-simulator, making the experiments in this thesis viable, and

also helped in the development of a couple key components of the LTA engine model. Christopher

6

Torng and Moyang Wang developed the task-based work-stealing runtime that eventually became

the LTA runtime. Chris also authored the event-based energy modeling used in this thesis and was

a tremendous resource for VLSI knowledge. Moyang also validated the LTA runtime and helped

conduct native experiments. Khalid Al-Hawaj and Shunning Jiang characterized and ported many

application kernels used in this thesis. I would also like to acknowledge Scott McKenzie and Alvin

Wijaya for their fantastic work and insights on experimenting with early versions of loose spatial

task-coupling, as well as Jason Setter and Wei Geng for their equally impressive work on modeling

a new scalar processor based on lessons learned from developing the LTA engine.

Collaborators from other research groups are also responsible for making this thesis possible.

Yunsup Lee of SiFive was a great resource during the development of early fine-grain SIMT mod-

els, especially with establishing the ASIC CAD toolflow and providing me with reference RTL.

The entire LonestarGPU benchmark suite team, especially Prof. Martin Burtscher, Prof. Rupesh

Nasre, and Sripathi Pai, generously provided additional code and insights into mapping irregular

applications to GPGPUs. In addition, Prof. David Bindel at Cornell University graciously granted

me access to several Intel Xeon Phi 5110P co-processors which were used in the experiments

described in Chapter 2.

Two previous publications have contributed significantly to this thesis. My work on fine-grain

SIMT [KLST13] (FG-SIMT) processors was the basis for the lane groups within the LTA engine.

The LTA engine implementations of chime sequencing, vector bypassing, density-time, and two-

stack reconvergence, amongst many other features, are based off of the RTL model I wrote for FG-

SIMT. This RTL model is also the basis for the VLSI results used to build the area/energy modeling

in this thesis. My work on integrating hardware worklists [KB14] (HWWL) into GPGPUs helped

me to realize the importance of the 3P’s as well as pushing software abstractions down to the

physical ISA layer. Results from the HWWL paper also revealed that work is rarely transferred

across cores (compared to work generated within a core), which was part of the motivation for

using a software inter-core work distribution mechanism in the LTA platform.

In terms of funding, this thesis was supported in part by an NDSEG Fellowship, NSF CA-

REER Award #1149464, NSF XPS Award #1337240, NSF CRI Award #1512937, NSF SHF

Award #1527065, AFOSR YIP Award #FA9550-15-1-0194, and donations from Intel Corpora-

tion, NVIDIA Corporation, and Synopsys, Inc.

7

CHAPTER 2
SOFTWARE/HARDWARE PLATFORMS FOR EXPLOITING

LOOP-TASK PARALLELISM

This chapter provides a detailed account of developing, porting, and optimizing seven applica-

tion kernels with diverse loop-task parallelism across several existing platforms. These platforms

are qualitatively evaluated with respect to productivity and portability, and quantitatively evaluated

with respect to performance. The goal here is not to exhaustively survey all existing platforms, but

rather to identify generalizable weaknesses that prevent existing platforms from achieving all 3P’s,

thereby motivating the need for a new approach for a true 3P platform.

Figure 2.1 illustrates an example development flow for high-performance applications using

platforms with various software frameworks and hardware architectures. Specifically, this study

examines AVX on CMPs, TBB on CMPs, TBB+AVX on CMPs, TBB/OpenMP+AVX on MICs,

and CUDA on GPGPUs. In general, application development begins with a single-threaded scalar

implementation on the CMP to verify functionality. At this point, the programmer can extract more

performance on a CMP by vectorizing the code on a single thread using packed-SIMD extensions

like SSE/AVX, or by parallelizing the code across multiple threads using a parallel programming

framework like TBB. In some cases, combining multi-threading across cores and vectorization

within a core can achieve multiplicative effects in performance on the CMP. However, as will be

seen later in this section, combining these techniques is not as trivial as it may seem and, in certain

cases, may actually worsen performance. If the performance target is still not met, the application

can be written for accelerators such as the MIC or GPGPU. This may require using a different

scalar

TBB

AVX

TBB+AVX

TBB/OMP
+AVX

CUDA

CMP MIC

GPGPU

Figure 2.1: Example Development Flow for
High-Performance Applications – Application
development begins with a single-threaded scalar
implementation on a CMP, before proceeding to
a single-threaded vectorized implementation us-
ing AVX or a multi-threaded non-vectorized im-
plementation. Combining multi-threading with
vectorization can sometimes improve perfor-
mance. Further performance improvements can be
achieved by porting the application to accelerators
like MICs or GPGPUs, which may require a differ-
ent software framework.

8

software framework such as OpenMP or CUDA. Even if a common software framework is used

across all architectures, target-specific optimizations and re-tuning are almost always necessary.

Both MICs and GPGPUs use multi-threading across cores, but use different mechanisms for accel-

erating execution within a core (i.e., packed-SIMD units for MICs, SIMT engines for GPGPUs).

It is also worth noting that due to the fundamental differences in programming models between

CMPs and MICs/GPGPUs, the programmer may choose to jump directly from a scalar implemen-

tation on CMPs to the MIC/GPGPU implementation. The caveat is that a careful analysis of the

type of parallelism and amount of parallelism available is necessary to ensure the application is

suitable for these accelerators.

Figure 2.2 shows the performance of five platforms described in the development flow above

on the seven application kernels listed in Table 2.1. CMP experiments were conducted on Intel

Xeon E5-2620 v3 (12 cores, 2.40GHz, AVX2, 16MB L3), MIC experiments were conducted on

Intel Xeon Phi 5110P (60 cores, 1.05GHz, AVX-512, 30MB L2), and GPGPU experiments were

conducted on NVIDIA Tesla C2075 (14 cores, 575MHz, 6GB DRAM). Application kernels are

compiled using the Intel compiler (ICC v.14.0.2) as it has been proven to have the greatest success

in auto-vectorizing code [MGG+11]. All results are normalized to an optimized scalar implemen-

tation of the application kernel on a CMP.

The following includes brief descriptions of the application kernels examined in this study.

More details can be found in Section 6.1. sgemm is a regular kernel that performs a single-precision

matrix multiplication for square matrices using a standard blocking algorithm; computation is par-

allelized across blocks. dct8x8m is a regular kernel that calculates the 8x8 discrete cosine transform

on an image; computation is parallelized across 8x8 blocks. mriq is a regular kernel that performs

image reconstruction for MRI scanning; computation is parallelized across the output magnetic

field gradient vector. rgb2cmyk is a regular kernel that performs color space conversion on an

image and computation is parallelized across the rows. bfs-nd is an irregular kernel that gener-

ates a breadth-first-search tree from a directed cyclic graph; computation is parallelized across

the frontier. maxmatch is an irregular kernel that identifies a maximal matching on an undirected

graph; computation is parallelized across edges. strsearch is an irregular kernel that implements

the Knuth-Morris-Pratt algorithm to search for a set of substrings in byte streams; computation is

parallelized across different streams.

9

Name Suite Input

sgemm Custom, CUDA SDK 2K×2K float matrix
dct8x8m Custom, CUDA SDK 518K 8×8 blocks
mriq Custom 262K-space 2K points
rgb2cmyk Custom 7680×4320 image
bfs-nd PBBS [SBF+12], LSG2.0 [BNP12] rMatG_J5_10M
maxmatch PBBS [SBF+12], Custom randLocG_J5_10M
strsearch Custom 512 strs, 512 docs

Table 2.1: Application Kernels for Native Experiments – Benchmarks suites used as the basis
for the CMP/MIC/GPGPU implementations may be necessarily different depending on availabil-
ity. Every effort was made to use the same parallel algorithm across the various implementations
unless otherwise stated in the text. Datasets used for native experiments are larger than those used
for simulator experiments to saturate hardware resources. Average execution time for the scalar
implementations is ∼60 seconds.

sgemm dct8x8m mriq rgb2cmyk bfs-nd maxmatch strsearch
0

5

10

15

20

S
p

ee
d

u
p

63

165

478

59 132 32

cmp-scalar

cmp-avx

cmp-tbb

cmp-tbb-avx

mic-tbb-avx

gpgpu-cuda

Figure 2.2: Performance Comparison of Selected SW/HW Platforms – Normalized to cmp-
scalar, the non-vectorized single-threaded implementation. cmp = Intel Xeon E5-2620 v3 (12
cores, AVX2/256b); mic = Intel Xeon Phi 5110P (60 cores, AVX-512); gpgpu = NVIDIA Tesla
C2075 (14 SMs); avx = ICC v15.0.3 with auto-vectorization [MGG+11]; tbb = TBB v4.3.3; cuda =
CUDA v7.5.17.

10

2.1 CMP Platforms

The CMP platforms examined in this study use AVX and/or TBB as software frameworks

and CMPs with packed-SIMD units as hardware architectures. To clarify, AVX as a software

framework is referring to the optimizations for successfully auto-vectorizing code in conjunction

with ICC-supported compiler hints, rather than the vector extensions themselves. One key differ-

ence between AVX and TBB as software frameworks is the parallel abstraction: AVX operates on

lower-level packed data within a core, whereas TBB operates on higher-level tasks across cores.

Therefore, one could make a reasonable argument that combining these disjoint abstractions ac-

tually changes the programming model enough that TBB+AVX should be treated as a separate

software framework.

2.1.1 Optimizations for Successful Auto-Vectorization

The cmp-avx results in Figure 2.2 show the performance of the single-threaded vectorized im-

plementation using AVX on a CMP. Vectorization is the process of generating special vector in-

structions that use packed-SIMD units to operate on packed data (e.g., eight words per vector

register in AVX2). Since packed-SIMD units require SIMD groups of packed data to be processed

in lock-step, it cannot efficiently handle control-flow or memory-access divergence. As such, ap-

plication kernels with regular loop-task parallelism (i.e., sgemm, dct8x8m, mriq) see a speedup of

at least 2.5×, whereas application kernels with irregular loop-task parallelism (i.e., bfs-nd, max-

match, strsearch) see negligible benefits.

Since a 256b-wide packed-SIMD unit increases floating-point operation throughput by a factor

of eight (not accounting for fused multiply-adds), the ideal speedup for a perfectly compute-bound

application would be 8×. Of course, no application is perfectly compute-bound, so it is very diffi-

cult to reach this upper bound. However, it is clear that more compute-bound application kernels

achieve higher speedups compared to more memory-bound application kernels. For instance, the

more compute-bound sgemm yields a speedup of 7×, whereas the more memory-bound dct8x8m

has a less pronounced speedup of 2.5×. Although both application kernels use blocking algorithms

to improve cache locality and help alleviate memory bottlenecks, dct8x8m has a lower arithmetic

intensity [WWP09] due to operating on smaller 8x8 blocks, which makes it more memory-bound

than sgemm.

11

1 void rgb2cmyk_scalar(
2 RgbPixel** src, CmykPixel** dst, int size)
3 {
4 for (int i = 0; i < size; i++) {
5 for (int j = 0; j < size; j++) {
6

7 // Calculate intermediate values
8 int tmp_c = 255 - src[i][j].r;
9 int tmp_m = 255 - src[i][j].g;

10 int tmp_y = 255 - src[i][j].b;
11 int tmp_k = std::min(
12 tmp_c, std::min(tmp_m, tmp_y));
13

14 // Store results into output array
15 dst[i][j].k = tmp_k;
16 dst[i][j].c = tmp_c - tmp_k;
17 dst[i][j].m = tmp_m - tmp_k;
18 dst[i][j].y = tmp_y - tmp_k;
19 }
20 }
21 }

(a) Single-Threaded Implementation

1 void rgb2cmyk_avx(
2 RgbPixel** src, CmykPixel** dst, int size)
3 {
4 // Restructure data into structs of arrays.
5 // Copy data to aligned arrays.
6

7 int nvecs_in_row = ceil(size / SIMD_WIDTH);
8 int aligned_size = nvecs_in_row * SIMD_WIDTH;
9

10 byte* __restrict__ aligned_r =
11 (byte*) memalign(
12 aligned_size * sizeof(byte), SIMD_WIDTH);
13 ...
14

15 for (int i = 0; i < size; i++) {
16 for (int j = 0; j < size; j++) {
17 RgbPixel pixel = src[i][j];
18 aligned_r[i*aligned_size+j] = pixel.r;
19 ...
20 }}
21

22 // Vectorize computation across rows
23 for (int i = 0; i < size; i++) {
24 #pragma simd vectorlength(SIMD_WIDTH)
25 for (int j = 0; j < aligned_size; j++) {
26 // Calculate index
27 int idx = i * aligned_size + j;
28

29 // Calculate intermediate values
30 int tmp_c = 255 - aligned_r[idx];
31 ...
32 int tmp_k = min_nobranch(
33 tmp_c, tmp_m, tmp_y);
34

35 // Store results into aligned output
36 aligned_k[idx] = tmp_k;
37 ...
38 }}
39

40 // Copy data to original output
41

42 for (int i = 0; i < size; i++) {
43 for (int j = 0; j < size; j++) {
44 CmykPixel* pixel = &dst[i][j];
45 pixel->c = aligned_c[i*aligned_size+j];
46 ...
47 }}
48 }

(b) Single-Threaded Implementation with AVX

1 void rgb2cmyk_tbb(
2 RgbPixel** src, CmykPixel** dst, int size)
3 {
4 // Flatten matrices
5 RgbPixel* flat_src, flat_dst;
6 flatten(flat_src, src, size);
7 ...
8

9 // Parallelize computation across rows
10 parallel_for(
11 blocked_range(0, size*size, TASK_SIZE),
12 [&] (blocked_range r) {
13 for (int i = r.begin();
14 i != r.end(); i++) {
15

16 // Calculate intermediate values
17 int tmp_c = 255 - flat_src[i].r;
18 ...
19

20 // Store results into output array
21 flat_dst[i].k = tmp_k;
22 ...
23 }});
24 ...
25 }

(c) Multi-Threaded Implementation with TBB

Figure 2.3: Example Development Flow for rgb2cmyk Kernel – Various implementations of
color-space conversion on sample image for CMP/MIC.

12

The preferred method of vectorization is auto-vectorization by the compiler, but this term is

a bit of a misnomer since naive attempts at auto-vectorization by only annotating loops with

#pragma simd or #pragma ivdep rarely result in any significant speedups. For example, this

naive approach yielded speedups of less than 1.10× across all seven application kernels. With cur-

rent compiler technology, maximally utilizing the packed-SIMD units requires numerous manual

optimizations [AJ88, DKH11], sometimes referred to as explicit vectorization. This is true even

for embarrassingly regular loop-task parallel application kernels like sgemm.

The key objectives of these vector-optimizations are to eliminate control flow and enable vector

memory accesses. Figure 2.3(a) and Figure 2.3(b) show the single-threaded scalar and vectorized

implementations, respectively, of the rgb2cmyk application kernel, which highlights the complex-

ities of several vector-optimizations.

Eliminating control flow requires converting branches into arithmetic, often by using bit-level

masking and shifting. For example, the expression y = (x < 0) ? -1 : 1 is equivalent to

y = 1 - (x >> 31) * 2. The tradeoff here is that this can reduce work efficiency by forcing

the same operation to be applied to all data elements regardless of whether or not useful work is

actually required. When branches are unavoidable, a less compute-efficient algorithm that is more

amenable for vectorization can be used, but there is no guarantee the benefits of vectorization will

outweigh the loss in compute efficiency. This is the case in dct8x8m, where the more compute-

efficient Loeffler-Ligtenberg-Moschytz [LLM89] algorithm had unavoidable branches, thus a more

naive algorithm was required for vectorization.

Enabling vector memory accesses means the programmer must ensure that memory accesses

will be at SIMD-width-aligned boundaries with unit-stride access patterns. This requires explicitly

allocating aligned arrays from/to which data needs to be copied before/after computation, and

converting arrays of structs into structs of arrays. Lines 4–21 in Figure 2.3(b) showcases these

vector-optimizations. Multi-dimensional arrays must be padded with ghost cells such that each

row/column, depending on which dimension computation is vectorized across, is a multiple of the

SIMD-width in order to ensure alignment persists across rows/columns. Aligning arrays can be

complicated by the use of C++ data structures like std::vector, which require custom allocators

to ensure alignment of the underlying array in memory. The tradeoff here is that allocating and

transferring aligned data can add a non-trivial performance overhead. This overhead is better

amortized as the time spent on the computation relative to the transfer increases.

13

1 void bfs_nd_tbb(Node* G, int nnodes, int nedges) {
2 vector<int> front (nedges, 0);
3 vector<int> counts (nnodes, 0);
4 ...
5

6 int front_sz = 1;
7 visited[0] = 1;
8

9 // Process nodes in frontier until frontier is empty
10 while (front_sz > 0) {
11

12 // Initialize number of neighbors for nodes in frontier
13 parallel_for(blocked_range(0, front_sz), [&] (blocked_range r) {
14 for (int i = r.begin(); i != r.end(); i++)
15 counts[i] = G[front[i]].degree;
16 });
17

18 // Parallelize computation across nodes in frontier
19 int nremain = get_remaining_nodes(counts, front_sz);
20 parallel_for(blocked_range(0, front_sz), [&] (blocked_range r) {
21 for (int i = r.begin(); i != r.end(); i++) {
22 int k = 0;
23 int v = front[ri];
24 int c = counts[ri];
25

26 // Iterate across neighbors and update if lock obtained
27 for (int j = 0; j < G[v].degree; ++j) {
28 int ngh = G[v].neighbors[j];
29 if (visited[ngh] == 0 && CAS(&visited[ngh],0,1))
30 front_next[c+j] = G[v].neighbors[k++] = ngh;
31 else
32 front_next[c+j] = -1;
33 }
34

35 G[v].degree = k;
36 }
37 });
38

39 // Determine next frontier
40 front_sz = filter_frontier(front, front_next, nremain);
41 }
42 }

Figure 2.4: Using TBB in bfs-nd Kernel – Multi-threaded implementation using TBB of non-
deterministic breadth-first search. This kernel is not suitable for vectorization due to unavoidable
control flow and memory-access divergence, as well as the atomic compare-and-swap.

14

Other vector-optimizations include annotating non-overlapping arrays with the __restrict__

keyword, using __assume_aligned hints when passing aligned array pointers to helper functions,

and the aforementioned annotation of vectorizable loops with #pragma simd/ivdep.

Note that the vector-optimizations described above only apply to regular loop-task parallel ap-

plications. More irregular loop-task parallel applications may simply have too many unavoidable

branches and unpredictable memory-access patterns (i.e., gathers, scatters) that prevent vectoriza-

tion. Figure 2.4 shows an example of this case, bfs-nd, where vectorizing across nodes in the fron-

tier fails due to the unavoidable control-flow divergence between nodes with different numbers of

neighbors as well as the memory-access divergence when accessing nodes in G. Vectorizing across

the neighbors for a given node also fails due to the data-dependent branch on visited and the

atomic compare-and-swap for which there is no vector equivalent.

In summary, although AVX on CMPs can improve performance for regular loop-task paral-

lel applications, the required vector-optimizations greatly reduce productivity as apparent from

the difference between Figure 2.3(a) and Figure 2.3(b). Implementing, testing, and tuning these

seven application kernels for AVX on CMPs took an experienced programmer several programmer-

weeks, and no amount of manual optimization significantly improved performance for irregular

loop-task parallel applications.

2.1.2 Multi-Threading with Task-Based Runtime

The cmp-tbb results in Figure 2.2 show the performance of the multi-threaded non-vectorized

implementation using TBB with 12 threads on a CMP. The CMP in this study has 12 four-way

superscalar out-of-order cores, each capable of executing two virtual threads, but in this study,

one thread is assigned per core, so that the impact of scaling can be isolated from the impact of

virtualization. Unlike vectorization, multi-threading can improve performance for both regular and

irregular loop-task parallel application kernels, as seen by the 2–11× speedup across all application

kernels. However, like vectorization, the benefits of multi-threading can be limited by memory

bottlenecks. As such, the most memory-bound application kernels (i.e., dct8x8m, rgb2cmyk, bfs-

nd, and mm) see a lower average speedup of 3×. Profiling the multi-threaded implementation of

dct8x8m reveals that it is stalled on memory accesses 71% of the execution time, whereas mriq

is only stalled on memory accesses 14% of the execution time. The memory bottlenecks of these

application kernels are partially due to the size of the datasets as well. For example, the datasets

15

required to saturate hardware resources on the MIC/GPGPU for dct8x8m and rgb2cmyk are the

largest of all the application kernels in this study. Reducing the dataset size by a factor of four

yields an average speedup of 10× with TBB. In the case of bfs-nd and mm, the memory bottleneck

is further exacerbated by their reliance on fine-grain locking via atomic memory operations.

TBB is used due to its productive task-based programming model, library-based implementa-

tion, and work-stealing runtime for fine-grain dynamic load balancing. Although there are other

task-based parallel programming frameworks, the library-based approach is preferred to improve

portability as opposed to a compiler-based approach like Cilk or OpenMP. However, preliminary

experiments showed that performance trends described below for TBB extended to OpenMP as

well.

Figure 2.3(c) shows what the multi-threaded implementation of rgb2cmyk looks like using

TBB. One strategy is to parallelize computation across the rows of the image. Although in many

cases this is sufficient, depending on the dimensions of the image, such coarse-grain parallelization

may limit load balancing, especially across a large number of cores. Instead, it is often worthwhile

to flatten any multi-dimensional arrays into a single-dimensional array to generate finer-grain tasks

that improve load balancing. For example, in rgb2cmyk, flattening the input matrix improved

performance by 14%. Note the parallel_for construct used to implement this strategy. The

blocked_range represents the range of loop iterations to which the function should be applied.

The TASK_SIZE macro represents the TBB grain size which determines the minimum number of

loop iterations in the range of executed tasks. This is an important parameter that needs to be

changed for different application kernels. Smaller tasks improve load balancing, whereas bigger

tasks introduce more runtime/loop overhead. If the cache footprint of each task is very small,

bigger tasks can improve cache locality by ensuring consecutive blocks in memory are processed

by the same core. In this study, grain sizes of 2–32 resulted in the highest performance. In general,

relatively minimal changes are required to parallelize the single-threaded implementation shown

in Figure 2.3(a).

In summary, TBB was the most productive framework in this study. Approximately one

programmer-week was required to develop relatively high-performance parallel implementations

of all the application kernels. Unfortunately, TBB is limited to exploiting loop-task parallelism

across cores and is not able to leverage packed-SIMD extensions to exploit parallelism within a

core without manual intervention.

16

1 void rgb2cmyk_tbb_avx(RgbPixel** src, CmykPixel** dst, int size)
2 {
3 // Restructure data into structs of arrays.
4 // Copy data to aligned arrays.
5

6 ...
7

8 // Parallelize computation across aligned chunks of rows
9

10 parallel_for(blocked_range(0, size * CHUNKS_IN_ROW, TASK_SIZE),
11 [&] (blocked_range r) {
12 for (int ri = r.begin(); ri != r.end(); ri++) {
13 int i = ri / CHUNKS_IN_ROW;
14 int i_offset = ri % CHUNKS_IN_ROW;
15 int j_start = i_offset * aligned_size / CHUNKS_IN_ROW;
16 int j_end = j_start + aligned_size / CHUNKS_IN_ROW;
17

18 // Vectorize computation within a chunk
19 #pragma simd vectorlength(SIMD_WIDTH)
20 for (int j = j_start; j < j_end; j++) {
21 // Calculate index
22 int idx = i * size + j;
23

24 // Calculate intermediate values
25 int tmp_c = 255 - aligned_r[idx];
26 ...
27

28 // Store results into aligned output
29 aligned_k[idx] = tmp_k;
30 ...
31 }
32 }
33 });
34

35 // Copy data to original output
36

37 ...
38 }

Figure 2.5: Combining TBB and AVX in rgb2cmyk Kernel – Code that is restructured to in-
crease the number of tasks for better load balancing without hindering auto-vectorization.

17

2.1.3 Combining Multi-Threading with Auto-Vectorization

The cmp-tbb-avx results in Figure 2.2 show the performance of a multi-threaded vectorized

implementation using TBB with 12 threads and AVX on a CMP. Ideally, one would expect to see a

multiplicative effect in performance on regular loop-task parallel application kernels by combining

multi-threading across cores and vectorization within a core. Irregular loop-task parallel applica-

tion kernels would not be expected to yield any improvements in performance from vectorization

as discussed above. Although the 63× speedup on sgemm does approach the ideal multiplicative

speedup of 77× (7× from TBB, 11× from AVX), both dct8x8m and mriq surprisingly result in a

slowdown. There are two key reasons why combining these techniques might not always yield a

multiplicative effect.

First, task partitioning with TBB can limit auto-vectorization with AVX. Recall that vector

memory accesses in AVX can only be generated when the compiler can guarantee memory accesses

are SIMD-width-aligned. As such, the grain size in TBB should presumably be set to a multiple

of the SIMD-width so that every task accesses SIMD-width-aligned memory. Unfortunately, TBB

cannot guarantee exact task sizes at compile time due to the recursive decomposition algorithm the

runtime uses to partition tasks. Since the compiler cannot guarantee tasks will access SIMD-width-

aligned memory, it cannot safely vectorize a loop which might have been vectorizable without

using TBB.

Second, vector-optimizations to enable AVX can limit load balancing with TBB. Specifically,

eliminating control-flow divergence can also eliminate opportunities for load balancing by super-

ficially equalizing the work across the SIMD group. Considering cmp-tbb, which has no vector-

ization, threads operating on tasks with less work due to control-flow divergence can more quickly

steal another task than threads operating on tasks with more work. However, with vectorization, the

entire SIMD group always does the maximum amount of work if all branches have been converted

into arithmetic.

One easy way to address how task partitioning interferes with auto-vectorization is to par-

allelize computation across rows/columns (for multi-dimensional data structures) and ensuring

SIMD-width-alignment of each row/column. However, as mentioned above, such coarse-grain

parallelization can limit load balancing. Figure 2.5 highlights an optimization that can help im-

prove load balancing when combining TBB and AVX. The key here is to split rows into SIMD-

width-aligned chunks, then parallelize computation across these chunks. The chunk index is used

18

to calculate the row and column indices into src and dst. The compiler can safely vectorize

the annotate loop because j_start is guaranteed to be a multiple of the SIMD width as long as

the chunk size is also a multiple of the SIMD width. Unfortunately, comparing this code to Fig-

ure 2.3(c) shows that combining TBB and AVX further increases the code complexity beyond a

pure AVX implementation.

In summary, combining TBB with AVX does not always guarantee improvements in perfor-

mance and negates the productivity of TBB. It took an experienced programmer another several

programmer-weeks of manual optimizations to develop the multi-threaded vectorized implemen-

tations of the application kernels.

2.2 MIC Platforms

The mic-tbb-avx results in Figure 2.2 show the performance of the multi-threaded vectorized

implementation using TBB with 60–240 threads and AVX on a MIC. The MIC in this study has

60 single-issue in-order cores, each capable of multi-threading four physical threads. MICs have

longer cache-to-cache latencies than CMPs and do not have a shared L3 cache [Rei12, Bol12].

MICs are designed to accelerate applications with immense regular loop-task parallelism. This is

evident from the many lightweight cores with very wide packed-SIMD units (512b wide). There-

fore performance on the MIC largely depends on maximally utilizing these packed-SIMD units.

The results also validate this claim as application kernels that can be successfully auto-vectorized

(i.e., shows performance improves with cmp-avx), exhibit the highest speedups on the MIC. Due

to the less aggressive memory system, some regular loop-task parallel application kernels that

are memory-bound, like dct8x8m and rgb2cmyk, may struggle to achieve resource-proportional

speedups. Resource-proportional speedups refers to performance that is reasonable for the amount

of available hardware resources (e.g., closer to achieving maximum instructions per cycle, floating-

point operations per second, memory throughput, etc.). Even irregular loop-task parallel applica-

tion kernels can achieve high performance on MICs by leveraging the significantly increased core

count, as long as they are not memory-bound. For instance, strsearch is able to achieve an impres-

sive speedup of 15× even without any vectorization.

MICs support two programming models: a native model and an offload model. The native

model is used to compile code to run directly on the MIC. This approach is generally more pro-

19

ductive but is limited by the memory available on the MIC (8GB DRAM). Since the code executes

natively on the MIC, any dependent libraries must also be cross-compiled for the MIC. Although

Intel provides MIC-optimized versions of many of their libraries, like TBB, any custom libraries

may need to be separately optimized for the MIC. The offload model is a hybrid approach that is

used to compile code to run on both the host and the MIC, where the former acts as the driver that

spawns off coarse-grain kernels to the latter. This approach is much less productive, as it requires

many manual adjustments common to all offload programming models. The challenges involved

with such models, like CUDA, will be discussed in the next section. However, there are intricacies

that are specific to the MIC offload model that further decrease productivity. A key example is

the need to manually specify which data structures should be allocated, reused, or deleted between

kernel launches. This kind of explicit memory management is essential for extracting the highest

performance out of the MIC. In this study, all MIC implementations of the application kernels

employ the native model.

Even though mic-tbb-avx uses the same software framework as cmp-tbb-avx in this study, there

is still a non-trivial amount of re-tuning necessary to yield highest performance on the MIC. For

example, due to the much higher core count, load balancing becomes even more important on the

MIC. The optimal grain size on the MIC is usually smaller than on the CMP, and optimizations as

previously shown in Figure 2.5 become even more important on the MIC. Furthermore, the optimal

number of threads is different across application kernels. In fact, specifying the maximum number

of threads per core is not always the best option, as there is a delicate balance between cache

locality and hiding microarchitectural latencies. Finally, the lighter-weight cores also mean system

calls are much more expensive on the MIC. In some cases it may be necessary to restructure code to

eliminate dynamic memory allocation and TBB thread spawns to reduce performance overheads.

As a reminder, the challenges with achieving a multiplicative effect in performance by combining

TBB and AVX applies to the MIC as well.

In summary, porting and optimizing CMP implementations for the MIC is a non-trivial pro-

cess, even when using the same software framework, and MICs may not always achieve resource-

proportional performance for both regular and irregular loop-task parallel applications due to mem-

ory bottlenecks and/or lack of vectorization.

20

2.3 GPGPU Platforms

The gpgpu-cuda results in Figure 2.2 show the performance of a multi-threaded implementa-

tion using CUDA with 448 threads on a GPGPU. GPGPUs have higher computational throughput

than CMPs/MICs, as evident by the 60–165× speedups on regular loop-task parallel application

kernels. Irregular loop-task parallel application kernels struggle to achieve resource-proportional

performance due to serialized execution and inefficient gathers/scatters. Application kernels that

require inter-thread communication, such as bfs-nd and maxmatch, experience even worse perfor-

mance degradation due to atomic memory operations and synchronization barriers.

In terms of productivity, CUDA offers a unified approach to exploiting loop-task parallelism

across and within cores, but its offload programming model requires substantial changes [nvi15]

which include: explicit allocation/copying of device memory, manual work partitioning into block-

s/grids (due to hardware scheduler), effective utilization of texture/shared memory, limitations on

kernel arguments (e.g., complex structs with pointers to pointers), and restrictions on standard C++

containers like std::vector within a kernel. The last point is addressed in part by the external

libraries like Thrust [BH12]. In addition, inter-thread communication is especially difficult to ex-

press efficiently, which may require barriers (i.e., __syncthreads). Barriers in CUDA should

only be used when all threads are guaranteed to reach the barrier, otherwise deadlock is possible.

If this condition cannot be guaranteed, it might be necessary to change the algorithm itself to avoid

this barrier, for example by breaking the kernel into multiple phases as in maxmatch.

The challenges of mapping irregular loop-task parallel applications to GPGPUs has been in-

tensively examined in my previous publication [KB14] as well as many other studies [BNP12,

NBP13a,NBP13b,HN07,LWH10,MLNP+10,MLBP12]. Many irregular loop-task parallel appli-

cations iteratively apply an operator to nodes in a graph which can modify the graph and generate

more work. When mapping such applications to GPGPUs, two common approaches are taken:

topology-driven and data-driven. The CUDA pseudo-code for the topology- and data-driven im-

plementations of bfs-nd are shown in Figure 2.6. The algorithm iteratively applies a compute

operator (i.e., compute()) on a subset of nodes at which useful work is required, in an undirected,

weighted graph. Such nodes are referred to as active nodes, whereas nodes at which no useful

work will be done are referred to as inactive nodes. The node ID of an active node is called a work

ID. A check operator (i.e., check()) determines whether a node is active or inactive. The compute

21

1 __global__ void
2 bfs_nd_topo(Node* nodes, bool* done_ptr) {
3 int tidx =
4 blockIdx.x * blockDim.x + threadIdx.x;
5 Node my_node = nodes[tidx];
6 if (check(my_node)) {
7 compute(my_node)
8 *done_ptr = false;
9 }

10 }
11

12 int main() {
13 bool done = false;
14 while (!done) {
15 done = true;
16 topo_driven<<<N>>>(nodes, &done);
17 }
18 }

(a) Topology-Driven Approach

1 __global__ void
2 bfs_nd_data(Node* nodes, WL* wl) {
3 while (widx = wl->pull()) {
4 Node my_node = nodes[widx];
5 compute(my_node);
6 for (int i = 0;
7 i < my_node.nneighbors; i++) {
8 int neighbor = my_node.neighbor(i);
9 if (check(nodes[neighbor]))

10 wl->push(neighbor);
11 }
12 }
13 }
14

15 int main() {
16 init_wl<<<N>>>(nodes, wl);
17 data_driven<<<M>>>(nodes, wl);
18 }

(b) Data-Driven Approach

Figure 2.6: Topology- vs. Data-driven Implementations of bfs-nd – Pseudo-code showing two
common approaches to mapping irregular loop-task parallel applications to GPGPUs. The check
operator determines if nodes are active and the compute operator performs work at these nodes.
This can activate previously inactive nodes in the next super-step. Execution completes when
all nodes are inactive. N = number of nodes, M = max number of hardware threads, WL = software
worklist class. In the topology-driven example, there is an acceptable race condition when updating
done_ptr. In the data-driven implementation, M threads are spawned with the kernel since every
thread will stay in the loop until no more work is in the worklist. An initialization kernel populates
the worklist with active nodes before the main kernel is called. A pull returns zero when the
worklist is empty.

operator often accesses neighboring nodes and can activate inactive nodes to be processed later.

Execution completes when all nodes are inactive and will not be activated again. Note that this ker-

nel is roughly analogous to the multi-threaded TBB implementation of bfs-nd in Figure 2.4, except

that instead using a parallel_for in software to determine node IDs, the CUDA implementation

relies on hardware-assigned thread/block indices to determine the node IDs.

Figure 2.6(a) shows the pseudo-code for the topology-driven implementation of bfs-nd. During

each super-step, every thread checks to see if the node corresponding to its thread index is active.

The compute operator is applied to active nodes and threads with inactive nodes exit without doing

any useful work. Every kernel call represents a super-step and the kernel is invoked as long as

there are active nodes in the next super-step. All nodes, both active and inactive, are visited every

super-step and the number of threads is the number of nodes.

22

Figure 2.6(b) shows the pseudo-code for the data-driven implementation of bfs-nd. The multi-

threaded TBB implementation of bfs-nd in Figure 2.4 is also data-driven. In this case, an initializa-

tion kernel pre-checks all the nodes and populates the worklist with only active nodes. Although

checking inactive nodes in the initialization is not useful, this overhead is only incurred once,

instead of at every super-step like in the topology-driven implementation. Every thread in the

main kernel pulls a work ID from the worklist with an atomic memory operation and applies the

compute operator to the corresponding active node. Newly activated nodes are pushed onto the

worklist with atomic memory operations, so that only active nodes are ever visited. Even though

the check for determining new nodes to be activated is shown separate from the compute in the

example, the check is usually combined with useful work in the compute phase. Although this can

be done on the topology-driven implementation as well, the difference is that threads operating on

inactive nodes in topology-driven implementations must pay this overhead again at the beginning

of every super-step. Notice that the super-step loop seen in the topology-driven implementation

is moved inside of the kernel in the data-driven implementation so that operations at nodes across

multiple super-steps are overlapped. It is sufficient to only spawn a number of threads equal to the

maximum number of hardware threads on the GPGPU since every thread stays in the loop until

there are no more active nodes. Special consideration must be taken to prevent threads from pre-

maturely dropping out of the computation loop. To this end, the pull() function on the worklist is

implemented to return a special wait token if there are any threads processing an active node, even

if there are no more work IDs in the worklist. More details about this mechanism can be found

in [KB14].

The data-driven implementation exposes more parallelism by overlapping operations across

multiple super-steps and increases work efficiency by avoiding useless work. However, the data-

driven implementation is not without its weaknesses, including: high memory contention from

accessing a shared worklist, and high memory-access irregularity from dynamic load balancing.

These weaknesses can be addressed to some extent using optimizations that focus on: (1) reduc-

ing memory contention on pulls, (2) reducing memory contention on pushes, (3) improving load

balancing, and (4) further increasing work efficiency. Examples of these optimizations include:

worklist double-buffering, work chunking, work donating, variable kernel configuration, and hier-

archical worklists. With aggressive software optimizations, data-driven implementations are gen-

23

erally able to outperform topology-driven implementations, but this does not mean the former is

optimal for every application.

In summary, porting CMP implementations to the GPGPU was a heavily involved process

requiring several programmer-weeks for all the application kernels. Optimizations for irregular

loop-task parallel applications are particularly difficult, and even extensive optimizations do not

guarantee improvements in performance for irregular loop-task parallel applications. Furthermore,

there are multiple approaches to mapping irregular loop-task parallel applications to GPGPUs and

it is not always clear which approach is optimal.

2.4 Summary and Discussion

The insights from this study can be condensed into four key observations. First, software

frameworks across all examined platforms have their own weaknesses with respect to productiv-

ity, with the possible exception of TBB which requires relatively modest changes from the scalar

implementation. Although TBB is highly productive, it is clear that combining TBB with AVX

can negate this productivity. Second, it can be difficult to easily port applications across different

hardware architectures, even when using the same software framework. Not only do the optimiza-

tions change with architectures, but the algorithm itself can change as well, making it necessary to

maintain multiple architecture-specific implementations of an application. Third, exploiting loop-

task parallelism across cores (e.g., multi-threading) and within a core (e.g., SIMD) do not always

yield multiplicative effects in performance. While the software frameworks for exploiting loop-

task parallelism across and within cores are composable, they are not necessarily aware of each

other, which can lead to performance-degrading interference between these frameworks. Fourth,

it is very difficult to achieve high performance on irregular loop-task parallel applications propor-

tional to the resources available on the hardware architecture, especially on accelerators like MICs

or GPGPUs. This is a consequence of these accelerators fundamentally being designed for regular

loop-task parallelism (e.g., packed-SIMD units, SIMT engines).

Although Figure 2.1 shows one example of a development flow, there are other flows that at-

tempt to address the 3P’s using a purely software solution. For example, even though adoption of

OpenCL has been limited, its original goal was to enable portable implementations across CMPs

and accelerators [ope11]. OpenCL uses an offload programming model even for CMPs and MICs

24

in native mode. As such, most of the benefits and challenges associated with a CUDA-like model

would apply to OpenCL on CMPs/MICs. For example, OpenCL provides better support for com-

bining multi-threading and vectorization on CMPs/MICs by offering explicit vector data types that

are automatically SIMD-width-aligned (albeit only for flattened arrays) and an implicit vectoriza-

tion compiler pass that allows vectorization within work-groups as long as the work-group size is

a multiple of 8 (or left to the compiler). However, this does not obviate the need for additional

vector-optimizations such as eliminating control flow or dealing with an offload model’s restric-

tions on arrays of complex structs and manually flattening multi-dimensional data structures. In

addition, optimizations and tuning parameters across CMPs, MICs, and GPGPUs will still be dif-

ferent, requiring separate architecture-specific implementations. It should be acknowledged that

OpenCL does make it easier to port a CMP implementation to the GPGPU. Finally, as with CUDA,

the lack of a work-stealing runtime can also impact the performance of irregular loop-task paral-

lel applications with high work variance across tasks. In summary, OpenCL has its own set of

tradeoffs but ultimately it still has issues with productivity and portability, and as a purely soft-

ware solution, OpenCL does not address the fact that the accelerators discussed in this study are

designed for regular loop-task parallelism. For more details, please see Chapter 8.

In conclusion, an ideal 3P computing platform would have the productivity of TBB, porta-

bility that allows a single implementation to be efficiently mapped across multiple architec-

tures, and a better guarantee of high performance on both regular and irregular loop-task

parallel applications.

25

CHAPTER 3
FINE-GRAIN SIMT

This chapter describes an early attempt at a hardware-centric approach to achieving a 3P plat-

form. The fine-grain SIMT (FG-SIMT) microarchitecture is a programmable accelerator designed

to exploit regular loop-task parallelism [KLST13]. The goal of FG-SIMT is to combine the benefits

of CMPs and GPGPUs by tightly integrating SIMT engines to GPPs and enabling fine-grain kernel

launches between them. FG-SIMT seeks to improve productivity by using threads as a common

parallel abstraction, similar to how CUDA threads are used in GPGPUs. FG-SIMT also served

as a starting point for experimenting with using a single ISA on the GPP and a tightly integrated

accelerator. Although this improves portability to a certain extent, only preliminary studies for

enabling execution of the same binary on either the GPP or FG-SIMT were performed. FG-SIMT

focuses on improving area-normalized performance in order to allow tight integration with GPPs,

thus utilizes orders of magnitude less threads per core than a conventional GPGPU. The FG-SIMT

microarchitecture inspired several aspects of the LTA engine, specifically mechanisms for effi-

ciently exploiting regular loop-task parallelism. This early work further highlighted the need for

innovation in both software and hardware to achieve a true 3P platform.

3.1 FG-SIMT Overview

General-purpose graphics-processing units (GPGPUs) are growing in popularity across the

computing spectrum [YKM+11, nvi09, amd12a]. Most GPGPUs use a single-program multiple-

data (SPMD) model of computation where a large number of independent threads all execute the

same application kernel [NBGS08,ope11,Mic09]. Although these SPMD programs can be mapped

to the scalar portion of general-purpose multicore processors (an active area of research [SGM+10,

DKYC10]), architects can improve performance and efficiency by using specialized data-parallel

execution engines to exploit the structure inherent in SPMD programs. Examples include com-

piling SPMD programs to packed-SIMD units [int12,KDY12,Col11a], to more traditional vector-

SIMD units [int11b,amd12a], or to single-instruction multiple-thread (SIMT) units [amd11,int11a,

nvi09, LNOM08].

SPMD programs can be mapped to SIMT microarchitectures using an explicit representation

of the SPMD model: a SIMT kernel of scalar instructions is launched onto many data-parallel

26

threads. Threads use their thread index to work on disjoint data or to enable different execution

paths. Threads are mapped to an architecturally transparent number of hardware thread contexts to

enable scalable execution of many kernel instances in parallel. A SIMT microarchitecture usually

includes several SIMT engines. Each engine is responsible for managing a subset of the threads,

including its own inner levels of the memory hierarchy, and is relatively decoupled from the other

engines.

SIMT microarchitectures exploit control structure and memory-access structure in SPMD pro-

grams to improve performance and area/energy efficiency. Control structure characterizes how

often multiple threads execute the same instruction in the kernel, while memory-access structure

characterizes the regularity of inter-thread addresses for the same load/store instruction. To exploit

control structure, a SIMT engine executes a set of consecutively indexed threads (usually called a

warp or wavefront) in lock-step on the SIMT engine, amortizing control overheads (e.g., instruc-

tion fetch, decode, interlocking) and hiding execution latencies. Performance and efficiency are

maximized when all threads take the same path through the kernel. SIMT engines also include

mechanisms for managing control divergence (i.e., threads within the same warp take different

paths) and for facilitating reconvergence. To exploit memory-access structure, a memory coa-

lescing unit dynamically compares memory requests made by threads and merges multiple scalar

memory requests into one wide memory request, amortizing control overheads in the memory sys-

tem (e.g., arbitration, tag check, miss management) and reducing bank conflicts. Performance and

efficiency are maximized when all threads access the same or consecutive addresses.

Fine-grain SIMT (FG-SIMT) is a variant of SIMT architectures more appropriate for compute-

focused data-parallel accelerators. The goal of FG-SIMT is to combine the benefits of CMPs

and GPGPUs. This is achieved by tightly integrating SIMT engines to GPPs and enabling fine-

grain kernel launches between them. To this end, it is necessary for FG-SIMT to focus on area

efficiency by executing one warp at a time, using highly-ported register files to better exploit

instruction-level parallelism, and relying on software-managed warp scheduling. FG-SIMT has

a simple programming model (e.g., handling complex control flow or modular function calls from

within data-parallel threads) yet still achieves much of the benefit of more traditional vector-SIMD

execution.

One of the novel features of FG-SIMT is its ability to exploit value structure, which refers to

situations where threads execute the same instruction operating on data that can be described in

27

a simple, compact form. For example, all threads might operate on the same value or on values

that can be represented with a function of the thread index. Value structure in CUDA programs

was characterized using static and dynamic analysis in previous works [CDZ09, CK11, Col11a],

and techniques to track and exploit value structure in hardware have been explored to a limited ex-

tent [CDZ09, GKS13, CK11]. FG-SIMT has mechanisms to exploit value structure using compact

affine execution of arithmetic, branch, and memory instructions.

The vision for a large-scale FG-SIMT processor includes a multi-core system with an on-

chip network and sophisticated memory system, where each GPP has a dedicated SIMT engine.

However, in this early study, the scope is limited to a detailed implementation of a single GPP with

a SIMT engine. In retrospect, broadening the scope of FG-SIMT to a multi-core system revealed

many unforeseen challenges with respect to the 3P’s that motivated significant changes to both

software and hardware which are reflected in the proposed LTA platform.

3.2 FG-SIMT Value Structure

Figure 3.1 shows an example application kernel written in C for FG-SIMT as well as the cor-

responding assembly sequence generated by the compiler. This example will be used throughout

this section to illustrate how value structure occurs and highlight the opportunities for exploiting

value structure.

Value structure occurs when values used by the same operation across threads can be repre-

sented in a simple, compact form. For example, lines 2–4 in Figure 3.1(b) load the thread index

into a register, shift it by a constant, and then add the result to the array base pointer. These

instructions operate on affine values that can be compactly represented in the following form:

V (i) = b+ i× s

where i is the thread index, b is the base, and s is the stride. Affine values with a stride of zero are a

special case in which all the numbers in the sequence are identical, and are called uniform values.

This kind of value structure can be exploited by compactly encoding affine values as a base/stride

pair.

28

1 void ex_fgsimt_kernel(int y[], int a)
2 {
3 int idx = fgsimt::init_kernel(y, a);
4 y[idx] = a * y[idx];
5 if (y[idx] > THRESHOLD)
6 y[idx] = Y_MAX_VALUE;
7 }
8

9 void ex_fgsimt(int y[], int a, int n) {
10 fgsimt::launch_kernel(
11 n, &ex_fgsimt_kernel, y, a);
12 }

(a) FG-SIMT Kernel in C

1 u lw y_ptr, y_base_addr
2 a tidx i
3 a sll i, i, 0x2
4 a addu y_ptr, y_ptr, i
5 a lw y, 0(y_ptr)
6 u lw a, a_addr
7 g mul y, y, a
8 g slti t, y, THRESHOLD
9 a sw y, 0(y_ptr)

10 g bnez t, done
11 u li y, Y_MAX_VALUE
12 a sw y, 0(y_ptr)
13 done:
14 u exit

(b) FG-SIMT Kernel in Assembly

Figure 3.1: Example of Value Structure in SIMT Code – Kernel multiplies input array by
constant and then saturates to threshold. Explicit bounds check elminated for simplicity. Assembly
instructions are manually labeled according to the ability for that dynamic instruction to ideally
exploit value structure: g: generic, cannot exploit value structure; u: uniform, affine stride is zero;
a: affine with non-zero stride.

Certain arithmetic operations can be performed directly on this compact affine representation

to produce an affine result. This is called affine arithmetic. For example, an affine addition can be

computed as follows:

V0(i) = b0 + i× s0 V1(i) = b1 + i× s1

V0(i)+V1(i) = (b0 +b1)+ i× (s0 + s1)

As another example, affine multiplication is possible if at least one of the operands is uniform:

V0(i) = b0 + i× s0 V1(i) = b1

V0(i)×V1(i) = (b0×b1)+ i× (s0×b1)

It is straightforward to develop a system of rules for affine addition, subtraction, shifts, and

multiplication (note that [CDZ09] does not consider affine multiplication). Using these rules, the

instructions in Figure 3.1 that are able to operate directly on compactly encoded affine values have

been labeled. A significant fraction of the instructions are affine in this assembly sequence. This is

a fundamental consequence of SIMT-based microarchitectures; threads likely work on structured

values to calculate the location of their input/output values (e.g., lines 2–4 in Figure 3.1) and to

compute similar intermediate values (e.g., line 11 in Figure 3.1). In addition to affine arithmetic,

value structure can also have a direct impact on control structure and memory-access structure. For

29

example, if a kernel has an inner loop where the number of iterations is the same across all threads,

then the corresponding backwards branch exhibits uniform value structure. Furthermore, the load

on line 5 in Figure 3.1 exhibits affine value structure in its source address.

3.3 FG-SIMT Microarchitecture

FG-SIMT is a SIMT variant suitable for compute-focused data-parallel accelerators with an

emphasis on area efficiency. Compared to GPGPUs, each FG-SIMT engine only executes a single

warp at a time, uses highly ported register files, includes a software programmable control proces-

sor, and lacks specialized hardware for graphics rendering. FG-SIMT still includes the ability to

exploit control and memory-access structure to efficiently execute warps of data-parallel threads.

The primary motivation for FG-SIMT was to design an area-efficient SIMT microarchitecture that

would exploit intra-warp instruction-level and data-level parallelism to hide various latencies in-

stead of relying on extreme, inter-warp temporal multithreading. Banked, shared L1 data caches

are used to increase address bandwidth for scatters and gathers and multi-ported register files are

used to better exploit instruction-level parallelism. FG-SIMT engines are also tightly integrated

with a simple control processor which grants more explicit control over the SIMT issue logic, al-

lowing fine-grain execution of general-purpose and data-parallel workloads. Figure 3.2 shows the

microarchitecture for a FG-SIMT engine with an L1 memory system. The FG-SIMT execution

engine includes the control processor (CP), FG-SIMT issue unit (SIU), eight SIMT lanes, and the

FG-SIMT memory unit (SMU).

FG-SIMT Kernel Launch – The CP is a simple RISC processor with its own program counter

(PC), register file, and integer arithmetic unit. The CP uses the following instruction to launch a

FG-SIMT kernel:

launch_kernel r_n, kernel_addr

where r_n is a CP register containing the total number of threads to execute. The instruction

saves the kernel start address and the return address in microarchitectural registers and initializes

a warp counter to n/m where n is the value in r_n and m is the number of threads per warp. The

instruction then initializes the active warp fragment register (AWFR) with a new warp fragment.

A warp fragment is simply a PC and an active thread mask indicating which threads are currently

30

SGU

SLU

SAU1

SAU0

Lane 7

SSU

SRF
124 × 32b

6r3w

SGU

SLU

SAU1

SAU0

Lane 0

SSU

Lane
Control

SAU0

SAU1

SGU

SLU

SSU

Memory Coalescing Unit

SMU

SRF
124 × 32b

6r3w

256b 256b 32b 32b 32b 32b

SIU

S
L

W
Q

S
M

R
Q

S
L

D
Q

S
M

R
Q

S
L

D
Q

B
M

R

Control
Processor

CP RF
31 × 32b

2r1w

SIQ
CP PC

Microarch
Kernel State

FG-SIMT Execution Engine

 L1 Memory System

L1 D$ Bank 0
16 KB

L1 D$ Bank 7
16 KB

L1 I$
16 KB

D$ Request and Response Crossbars

L2 Request and Response Crossbars

32b32b

256b 256b 256b 256b

PWFB

AWFR

PC Mask

SMRRQShared
Load Cache

Figure 3.2: Detailed FG-SIMT Microarchitecture – Eight-lane FG-SIMT execution engine with
L1 instruction cache and L1 eight-bank data cache. Only one branch resolution path shown for
simplicity. PWFB = pending warp fragment buffer; AWFR = active warp fragment reg; CP =
control proc; µArch Kernel State = kernel address reg, return address, warp counter reg; RF =
regfile; SIQ = SIMT issue queue; SLWQ = SIMT load-write-back queue; SRF = SIMT regfile;
SAU0/1 = SIMT arithmetic units; SGU = SIMT addr gen unit; SLU = SIMT load unit; SSU =
SIMT store unit; SMRQ/SLDQ/SMRRQ = SIMT mem-req/load-data/resp-reorder queues; BMR
= branch resolution mask register

31

executing that PC (i.e., initially the AWFR will contain the kernel address and a mask of all ones

if n >= m).

FG-SIMT Control Processor – After launching a kernel, the CP fetches scalar instructions at

the PC in the AWFR and sends them to the SIU, acting as the FG-SIMT engine’s fetch unit. Un-

conditional jumps can be handled immediately in the CP. Conditional branch instructions are sent

to the SIU, but the CP must wait for the branch resolution to determine the new active thread mask.

If all threads take or do not take the branch, then the CP proceeds along the appropriate control

flow path. If the threads diverge, then the CP creates a new warp fragment with the branch target

and a mask indicating which threads have taken the branch. The new warp fragment is pushed

onto the pending warp fragment buffer (PWFB) before continuing execution along the not-taken

path. There are a variety of techniques in the literature for managing thread divergence and re-

convergence [DAM+11,Col11b,CL08,int11a,amd11], but FG-SIMT uses a two-stack PC-ordered

scheme which separates taken forward branches from taken backward branches in the PWFB to

more effectively handle complicated control flow caused by intra-kernel loops [LAB+11]. The

first warp brings kernel parameters into a shared load cache, reducing access latency for later

warps. New warps are not scheduled until all fragments for the current warp execute to comple-

tion. Once all warps have been processed, the CP continues executing the instructions after the

launch_kernel instruction.

FG-SIMT Issue Unit – The SIU is responsible for issuing instructions in-order to the SIMT

lanes. Sophisticated scoreboarding is implemented to track various structural and data hazards and

enable aggressive forwarding of data values between functional units. Load instructions are split

into two micro-ops: address generation and SRF writeback. The former is issued to the lanes to

generate the memory request, whereas the latter is enqueued into a SIMT load writeback queue

(SLWQ). To facilitate aggressive forwarding from load instructions, writebacks are only issued to

the SLU when all load responses have been received. Even though the SIU is single-issue, it is

still possible (and very common) to keep multiple functional units busy, since each warp occupies

a functional unit for four cycles (warp size of 32, eight lanes, four threads per lane).

In order to detect data hazards, in-flight writebacks to the SRF are tracked in two scoreboards:

one for the VAUs and one for the VLU. RAW data hazards are detected by checking whether or

not any of the read operands of the current instruction depend on an in-flight writeback. WAW data

hazards are detected by checking whether or not the current instruction’s writeback will happen

32

before any existing writebacks in the scoreboard. This means that the scoreboard must know the

microarchitectural latencies of each arithmetic unit in the SAU. Structural hazards are detected with

busy counters for each of the SIMT functional units. If the counter is non-zero, the SIU cannot

issue to the corresponding functional unit due to a conflict on the SRF write port. For memory

instructions, the SIU sends the number of load responses to wait for to the SMU and only issues

the writeback to the SLU when all the load responses have returned from the memory system.

FG-SIMT Lanes – Each FG-SIMT lane is composed of five SIMT functional units: two arith-

metic units (SAU), an address generation unit (SGU), a store unit (SSU), and a load unit (SLU).

The lane control unit manages sequencing the functional units through the threads within a warp.

Both SAUs can execute simple integer operations including branch resolution. Long-latency oper-

ations are fully pipelined and distributed across the two SAU units. These long-latency functional

units include: integer multiply and divide, and IEEE single-precision floating-point add, subtract,

convert, multiply, and divide. Addresses and store data of memory requests are generated by the

SGU and SSU, respectively. The SLU manages writeback of load data and the SLWQ in the

SIU enables overlapped memory requests. Each FG-SIMT lane also includes a bank of the SIMT

register file (SRF). The SRF is a large, multi-ported register file that supports a maximum of 32

threads per warp. FG-SIMT supports density-time execution, which allows the lane control unit

to skip sequencing chimes for which there are no active threads due to control-flow divergence.

Density-time execution improves performance by effectively reducing the number of chimes for

a given instruction when there is high control-flow irregularity. Note that this does complicate

issue/bypass logic since instructions with different active chimes must stall before values can be

bypassed.

FG-SIMT Memory Unit – The SMU includes several queues for storing memory requests and

responses as well as logic for memory coalescing. Each lane has a memory request queue (SMRQ)

and a load data queue (SLDQ). The SMU has eight 32b ports to the memory system, one for each

lane, in addition to a single 256b port used for coalesced requests and responses. Requests to the

same address or consecutive addresses across lanes can be coalesced into a single wide access.

Coalescing is only possible when the requests are cache line aligned.

Every time a group of loads are sent from the SMU, a corresponding entry is pushed into the

SIMT memory response order queue (SMROQ). The SMROQ ensures that memory responses will

be written back in the order they were requested. This is necessary since although the memory

33

16b

PWFB
CP

Regfile
(read)

ASRF
(read)

16b

32b

32b

ALU

STR

ALU

imul

CP Load
Data

CP
Regfile
(write)

ASRF
(write)

base strideu a

CP Functional Unit

Stride Functional Unit

IR

To SIU for
Expansion

Fetch int

int imul

Figure 3.3: FG-SIMT CP with Compact Affine Execution – The ASRF and stride functional
units are added to the baseline CP.

system guarantees that memory requests sent on a single port will be serviced in-order, there is

no such guarantee across ports. The SMROQ also tells the SMU how and from where to write

responses back. In other words, the type of request (i.e., coalesced or scalar) of the top entry of

the SMROQ determines whether the next response to write back to the SLDQs should be from the

wide port or the eight narrow ports. Entries from the SMROQ are removed when all responses cor-

responding to the entry have been written to the SMLQs. It is important to note that stores are not

pushed into the SMROQ. This is because it is not necessary to wait for all store acknowledgements

to return as they do not write back to the SRF.

The SMU also includes an in-flight counter of all memory requests, both loads and stores,

which is used to implement a memory fence. An implicit memory fence is enforced after every

launch_kernel instruction so that all pending loads and stores sent by the SMU are committed

before the CP can issue any memory requests. The CP sends the implicit memory fence to the SIU

and waits for a signal from the SIU that the in-flight counter is zero.

FG-SIMT L1 Memory System – The L1 memory system includes a single 16KB instruction

cache along with an eight-bank 128KB data cache. Both caches are blocking, direct mapped,

and use 32B cache lines. Queued memory request/response crossbars use round-robin arbitration

and handle per-port response reordering internally. The data cache request crossbar supports nine

narrow request ports with a data size of 32b and one wide request port with a data size of 256b.

Each data cache bank is capable of servicing one 32b or one 256b read/write per cycle.

FG-SIMT Compact Affine Execution – Figure 3.3 illustrates the required modifications to

support compact affine execution in FG-SIMT. A per-warp affine SIMT register file (ASRF) is

used to track value structure. The ASRF compactly stores affine values as a 32b base and 16b

34

stride pair. The ASRF has one entry for each architectural register along with a tag indicating

whether that register is uniform, affine, or generic. Explicit uniform tags enables more efficiently

handling affine arithmetic that is only valid for such values. The ASRF can store both integer

and floating-point values, but the latter is limited to uniform values as expanding a floating-point

affine value would result in an unacceptable loss of precision. There are three ways in which a

register can be tagged as uniform or affine: (1) destination of shared loads (e.g., loads with gp as

base address), (2) destination of instructions reading the thread index (e.g., tidx instruction), or

(3) destination of affine arithmetic.

Affine arithmetic is valid for select instructions with two uniform/affine operands. Affine arith-

metic executes by reading base/stride operands from the ASRF, running the computation on the

affine functional units, and (potentially) writing the result back into the ASRF. The CP’s standard

functional unit is used for base computations, and an extra function unit is added for stride com-

putations. Affine arithmetic can improve both performance and energy efficiency by reducing the

chime to one and avoiding redundant computations.

Affine branches are branches where the operands used in the branch comparison are affine.

When the branch operand is uniform, a single comparison using the affine functional unit in the

CP sufficiently applies to all threads in a warp. Uniform branches decrease the branch resolution

latency by eliminating communication with the SIMT lanes. Energy efficiency is improved by

avoiding reading the SRF and redundant comparisons across all threads in a warp.

Affine memory operations are load instructions with an affine base address. Affine memory

operations are still sent to the SIU but are allowed to skip address generation on the SIMT lanes.

Instead, affine memory operations are issued to the SMU immediately, since the access pattern

is known from the affine base address. Like coalesced memory requests, affine memory opera-

tions use a wide request port. A full-warp affine memory operation is broken down into multiple

cache-line width memory requests. Affine memory operations improve performance by enabling

coalescing across the entire warp. More importantly, affine memory operations avoid the energy

required to redundantly compute 32 effective addresses and then dynamically detect that these are

consecutive addresses.

35

cm
ul

t

m
fil

t

bs
ea

rc
h

vi
te

rb
i

rs
or

t

di
th

er

st
rs

ea
rc

h

rg
b2

cm
yk

co
nv

km
ea

ns bf
s

sg
em

m
bi

la
t

0

2

4

6

8

10

S
p
ee

d
u
p

mcore fgsimt fgsimt+a fgsimt+ab fgsimt+abm

Figure 3.4: FG-SIMT Cycle-Level Performance – Speedup of FG-SIMT with various levels of
compact affine execution normalized to a baseline 8-core system.

3.4 FG-SIMT Evaluation

The evaluation examines the performance of the following FG-SIMT designs at the RTL level:

baseline FG-SIMT (fgsimt), FG-SIMT with a single-ASRF divergence scheme and affine arith-

metic (fgsimt+a), affine arithmetic and branches (fgsimt+ab), and affine arithmetic, branches, and

memory operations (fgsimt+abm). The results are normalized to the performance of a baseline

eight-core system with in-order, single-issue cores, private L1 instruction caches, and a shared

eight-bank L1 data cache (mcore). Cycle time, area, and energy estimates were obtained by push-

ing the RTL implementations of the baseline and the FG-SIMT microarchitecture through a com-

mercial ASIC CAD toolflow composed of Synopsys DesignCompiler, IC Compiler, and Prime-

Time PX using a TSMC 40 nm standard cell library. A total of 13 application kernels from an

in-house benchmark suite were ported to FG-SIMT.

3.4.1 Performance Analysis

Figure 3.4 shows the performance of FG-SIMT with various forms of compact affine execution

enabled (i.e., fgsimt, fgsimt+a, fgsimt+ab, fgsimt+abm) compared to the baseline eight-core sys-

tem (i.e., mcore). In general, FG-SIMT is able to achieve 2–8× speedup on application kernels with

regular loop-task parallelism. Compact affine execution further improves these speedups in several

cases. Affine arithmetic benefits application kernels that are more compute-bound with a high den-

sity of affine instructions, which increases the amount of work that is amortized across an entire

36

fgsimt+abmfgsimtmcore

2.56 ns 3.11 ns 3.10 ns
icache

dcache

dxbar

cp

siu

srf

slanes

smu

other

2.5

2.0

1.5

1.0

0.5

0.0

A
re

a
(m

m

)2

Figure 3.5: FG-SIMT Area Breakdown – (left) absolute area breakdowns of mcore, fgsimt, and
fgsimt+abm. Bars are annotated with cycle times; (right) layout of placed-and-routed fgsimt+abm
implementation in a TSMC 40nm process.

warp by executing an instruction affinely on the CP. Energy efficiency improves since operands

are read once from the ASRF instead of having every active thread read from the SRF. Affine

branches avoid the expensive branch resolution latency of the SIMT lanes which FG-SIMT cannot

hide with multithreading, attributing to the more pronounced performance increase of fgsimt+ab.

Affine memory operations reduce the total number of memory requests and reduce bank conflicts.

The results suggest that affine memory operations can further improve the efficiency gained from

coalescing. Overall, exploiting value structure using compact affine execution in fgsimt+abm im-

proves performance over fgsimt for a majority of the application kernels, with speedups ranging

from 20–65% for those with significant improvement. Unfortunately, all FG-SIMT configurations

yield minimal or no improvement compared to the baseline for application kernels with more ir-

regular loop-task parallelism (e.g., average number of active threads 13.2 and 17.1, for strsearch

and bfs, respectively). This is because warp fragments created due to control-flow divergence must

be serialized, negating the benefits of lock-step execution of threads on the FG-SIMT engine.

3.4.2 Area and Cycle Time Analysis

Figure 3.5 shows the area breakdown of the placed-and-routed baseline and FG-SIMT designs.

Overall, the total areas of all designs only vary slightly, with 2.06 mm2, 2.08 mm2, and 2.12 mm2 for

mcore, fgsimt, and fgsimt+abm, respectively. The area due to the instruction cache is dramatically

37

1.0 1.5 2.0 2.5 3.0 3.5

Task/Second

0.2

0.4

0.6

0.8

1.0

1.2

D
y

n
am

ic
 E

n
er

g
y

/T
as

k

mcore

fgsimt

Figure 3.6: FG-SIMT Energy vs. Performance – Dynamic energy and performance of fgsimt
normalized to mcore, which is annotated on (1,1). Each point represents the relative energy and
performance of a different application kernel on FG-SIMT architectures.

reduced since fgsimt only has one core as opposed to the 8 cores in mcore. However, fgsimt pays

a significant overhead for the larger, highly ported SRFs. The additional wide port for memory

coalescing and affine memory operations also adds area overhead to the crossbar. The ASRF,

stride functional unit, and expansion logic of fgsimt+abm slightly increases the area of the CP and

SIMT lanes.

The critical path of mcore is through the memory system. The critical path of both the FG-

SIMT designs are through the SRF read and address generation. The marginal difference in cycle

time of fgsimt+abm and fgsimt is within the variability margin of the ASIC CAD tools.

3.4.3 Energy Analysis

Figure 3.6 shows the dynamic energy and performance of fgsimt relative to mcore for all ap-

plication kernels in this study. fgsimt yields significant reductions in energy on regular application

kernels, with maximum reductions of up to 70%. This is primarily due to the amortization of in-

struction fetch and frontend accesses across multiple threads. Although not shown, compact affine

execution further reduces energy by eliminating redundant work to complete the same task.

38

On the other hand, fgsimt is only able to achieve energy reductions of up to 15% on irregular

application kernels, and in rare cases, may actually increase energy consumed per task. This is

because control-flow irregularity limits the number of threads across which instruction fetch and

frontend accesses can be amortized. If the average number of active threads is very low, then the

increased energy from more expensive SRF accesses and mechanisms for SIMT execution will

outweigh the benefits of this amortization.

3.5 FG-SIMT Summary

Although FG-SIMT succeeds in addressing the 3P’s to a limited extent, the minimal innovation

in software and strong focus on exploiting regular loop-task parallelism prevents it from being a

true 3P platform. FG-SIMT addresses productivity by using threads as both the inter-core and intra-

core abstraction and requires relatively sparse knowledge of the microarchitecture to yield high

performance compared to GPGPUs (e.g., no texture/shared memory, global barriers). However,

the programming model is still thread-based and does not profer the benefits of more modern task-

based programming models. In addition, it is still difficult to efficiently map irregular applications

to FG-SIMT. Furthermore, a primary weakness of FG-SIMT is that it is designed and evaluated in

a intra-core context and does not utilize runtimes for work distribution across multiple cores. As

such, it is unclear if threads are the best parallel abstraction for exploiting loop-task parallelism.

The use of a single ISA for both the GPP and SIMT engine served as a promising step towards

addressing portability, but the ability to execute the same binary on either architecture was not

completely fleshed out. In retrospect, the challenges of portability were only fully revealed in the

context of a multi-core system running a software runtime. The results certainly provide evidence

for the strengths of FG-SIMT as an accelerator for regular loop-task parallelism, but it is clear

that it is inherently ill-suited for more irregular loop-task parallelism. The novel mechanisms for

exploiting value structure are also very effective at improving performance and energy efficiency in

FG-SIMT for regular applications, but quickly lose their effectiveness in the presence of irregular

control-flow and memory-access patterns.

Overall, FG-SIMT highlights the need for innovations in both software and hardware. Ex-

amining multi-core systems with work-stealing runtimes provides a different context in which to

address the 3P’s and motivates the use of tasks, or loop-tasks, as a more natural parallel abstraction

39

for efficiently exploiting loop-task parallelism across cores and within a core. It is also clear that

the hardware needs to be fundamentally re-designed to enable acceleration of both regular and ir-

regular applications. Regardless of its flaws, FG-SIMT is capable of impressive performance and

energy efficiency for reasonable area overheads for regular applications, and the insights gained

from this work are invaluable in guiding the software/hardware co-design approach of the LTA

platform that follows in the next chapter.

40

CHAPTER 4
LOOP-TASK ACCELERATOR SOFTWARE

The observations in Chapters 2 and 3 suggest that a software/hardware co-design may offer the

best chance at achieving a true 3P platform. To this end, the scope of the software is narrowed,

the scope of the hardware is broadened, and these layers are married by exposing loop-tasks as a

common parallel abstraction across the computing stack.

One observation from other approaches to 3P platforms as well as my own previous work is

that narrowing the scope of the parallel abstraction in software enables a more efficient encoding

of exploitable parallelism to the hardware. The LTA platform focuses on exploiting loop-task

parallelism, a popular form of task parallelism that is exemplified by the parallel_for construct.

Loop-task parallelism includes traditional data parallelism with regular control-flow and memory-

access patterns across loop iterations, but also includes loop iterations that may have significant

variability to data-dependent control flow and irregular memory accesses.

This chapter describes the software component of the LTA platform, which is composed of a

productive programming API for exposing loop-tasks, a task-based work-stealing runtime for ex-

ecuting loop-tasks across cores, and ISA extensions for explicitly encoding loop-tasks so that they

can be seamlessly executed on either GPPs or LTA engines. Figure 4.1 sketches the LTA applica-

tion development flow. Development would still begin with the single-threaded scalar implemen-

tation of the application on the CMP. The LTA software framework can be used to implement the

multi-threaded implementation on the CMP, and this same implementation can be used without

modification on a variety of LTA engines, while still providing high performance on both regular

and irregular loop-task parallel applications.

scalar LTA

CMP LTA-0
LTA

LTA-N
LTA

Figure 4.1: LTA Application Development Flow – Application development still begins with a
single-threaded scalar implementation on the CMP, but the same multi-threaded implementation
using the LTA software framework can be mapped to the CMP or a variety of LTA engines.

41

func_ptr arg_ptr start_idx end_idx

lta::parallel_for(0, size, [&] (int i) {

 if (src[i] < 0)

 dest[i] = task_a();

 else if (src[i] > 0)

 dest[i] = task_b();

});

Figure 4.2: Anatomy of a Loop-Task – A loop-task is a four-tuple composed of the pointer to
the loop function, the pointer to the arguments of the function, and the start/end indices of the loop
iterations on which to apply the function. The example parallel_for is encoded into a loop-task
as shown. The argument pointer references a container of the arguments captured by the lambda
closure.

4.1 Programming API

In order to replicate the productivity of TBB that was observed in Chapter 2, the parallel_for

construct is used to express loop-tasks that can be exploited both across cores and within a core,

without the need for inter-core-specific optimizations. Figure 4.2 illustrates the anatomy of a loop-

task, which can be defined as a function that is applied to a range of loop iterations. More specifi-

cally, a loop-task is a four-tuple of a function pointer, an argument pointer, and the start/end indices

of the range.

Figure 4.3 shows different variants of the parallel_for in the LTA programming API. Fig-

ure 4.3(a) shows the lambda-based variant and Figure 4.3(b) show the macro-based variant. Notice

how the loop function has data-dependent branches that can fundamentally change the nature of the

computation. Currently only the macro-based parallel_for is available because the LTA cross-

compiler does not yet support C++11 lambdas. Figure 4.3(c) shows the special loop-task function

that is generated by the macro. All loop-task functions have a specific signature that corresponds to

the fields of the four-tuple described above. There is also an additional argument called the range

step value (i.e., step) that is hidden from the application-level programmer. The range step value

can be configured to change the stride of the loop iterations that are traversed for a given loop-task

(see Chapter 5 for details).

42

1 void kernel(int* dest, int* src, int size)
2 {
3 lta::parallel_for(0, size, [&] (int i) {
4 if (src[i] < 0)
5 dest[i] = task_a();
6 else if (src[i] > 0)
7 dest[i] = task_b();
8 });
9 }

(a) Lambda-Based parallel_for

1 void kernel(int* dest, int* src, int size)
2 {
3 LTA_PARALLEL_FOR(0, size, (dest,src), ({
4 if (src[i] < 0)
5 dest[i] = task_a();
6 else if (src[i] > 0)
7 dest[i] = task_b();
8 }));
9 }

(b) Macro-Based parallel_for

1 void lta_function(void* a, int start, int end, int step=1)
2 {
3 args_t* args = static_cast<args_t*>(a);
4 int* dest = args->dest;
5 int* src0 = args->src0;
6 int* src1 = args->src1;
7 for (int i = start; i < end; i += step) {
8 if (src[i] < 0)
9 dest[i] = task_a();

10 else if (src[i] > 0)
11 dest[i] = task_b();
12 }
13 }

(c) Loop-Task Function Generated by Macro-Based Variant

1 void lta_function(void* a, int start, int end, int step=1)
2 {
3 LambdaFunctor& func = static_cast<LambdaFunctor&>(*a);
4 for (int i = start; i < end; i += step)
5 func(i);
6 }

(d) Loop-Task Function Generated by Lambda-Based Variant

Figure 4.3: LTA Programming API – A parallel_for construct is used to express loop-tasks
that can be exploited across cores and within a core. Both lambda-based and macro-based variants
are shown, but currently only the latter is available since the LTA cross-compiler does not yet sup-
port C++11 lambdas. The macro uses preprocessor logic to generate a special loop-task function.
All loop-task functions have a specific signature containing a pointer to the arguments to the loop
function, the start and end indices of the loop iterations to which to apply the function, as well as
a range step value that is hidden to the application-level programmer.

43

0 127 *func *args

0 63 *func *args

0 31 *func *args 32 63 *func *args 64 95 *func *args 96 *func *args

64 *func *args

parallel_for

steal steal

steal

core task

task

task task

core taskcore taskcore task

GPP
1

LTA
Engine

xpfor

GPP
0

LTA
Engine

xpfor

GPP
3

LTA
Engine

xpfor

GPP
2

127

127

xpfor

Figure 4.4: Example LTA Runtime Task Partitioning – LTA runtime partitions tasks into core
tasks which are distributed across cores to exploit loop-task parallelism. Core tasks are executed
using the xpfor instruction that acts as an indirect function call to a loop-task function. If available,
an LTA engine can further exploit loop-task parallelism within a core.

Unlike the macro-based variant of the parallel_for, the lambda-based variant will require

additional modifications to the cross-compiler, aside from the minor changes to the assembler

required for both variants (see Section 4.3). Future work includes exploring the compiler changes

required to implement the lambda-based variant.

4.2 Task-Based Runtime

The LTA runtime is a task-based work-stealing runtime inspired by TBB and is responsible for

generating, partitioning, and distributing loop-tasks exposed by the LTA programming API across

the cores available on the system. It employs child-stealing, Chase-Lev task queues [CL05], and

occupancy-based victim selection [CM08]. Figure 4.4 illustrates how a work-stealing runtime

recursively partitions loop-tasks into subtasks to facilitate load balancing.

The master core, GPP 0, begins executing the application binary while all other cores spin

in the runtime’s work-stealing routine. When GPP 0 encounters a parallel_for, it generates

the initial loop-task by instantiating a loop-task object with the corresponding function pointer,

argument pointer, and start/end indices of the range 〈0,127〉. Then GPP 0 partitions this loop-

task by splitting the range in half, generating two loop-tasks with smaller ranges: 〈0,63〉 and

44

〈64,127〉. GPP 0 pushes 〈64,127〉 onto its task queue in memory, and continues to recursively

partition 〈0,63〉 into 〈0,31〉 and 〈32,63〉, and then executes the former while pushing the latter

onto its task queue. Meanwhile, the work-stealing routine on GPP 2 sees the tasks in GPP 0’s task

queue and steals 〈64,127〉. GPP 2 then partitions this task into 〈64,95〉 and 〈96,127〉, executing

the former. GPP 1 steals/executes 〈32,63〉 and GPP 3 steals/executes 〈96,127〉. As in traditional

work-stealing runtimes, tasks are always stolen in FIFO-fashion (i.e., from the top of the partition

tree) to improve locality within a given core [FLR98].

Tasks are partitioned until the range is less than or equal to a configurable core task size at

which point the loop-task is called a core task, which acts as the smallest unit of load balancing

across cores. The LTA runtime uses a default core task size of N/(k×P), where N is the size of the

initial range, k is a scaling factor, and P is the number of cores. Increasing k generates more core

tasks with smaller ranges (better load balancing, higher overhead), whereas decreasing k generates

less core tasks with larger ranges (worse load balancing, lower overhead). Sensitivity studies on

the LTA engine configurations and application kernels explored in this thesis indicate that k = 4 is

a reasonable design point for avoiding starvation due to a lack of core tasks.

One of the key differences between a traditional work-stealing runtime and the LTA runtime

is how the runtimes actually execute core tasks. A traditional runtime simply uses an indirect

function call (i.e., jalr) on the core task’s function pointer with the given argument pointer and

start/end indices. However, the LTA runtime uses a special instruction that allows a core task to be

executed on an LTA engine, if one is available. At a high level, LTA engines are able to accelerate

loop-task execution by further partitioning core tasks into micro-tasks (µtasks) and mapping these

µtasks onto micro-threads (µthreads).

The details of the ISA extensions and the mapping of µtasks to µthreads are discussed in the

next section, but the important point with respect to the LTA runtime is that an LTA-aware task

partitioning scheme allows for more efficient execution of loop-tasks. Figure 4.5 shows the dif-

ference between a default task partitioning scheme and an LTA-aware task partitioning scheme.

Each number in the abstract task partitioning tree indicates the size of the range of the loop-task

at that point in the tree. For example, the initial range in the example contains 42 loop iterations.

Assuming that the core task size is four, the default scheme recursively splits the range in half until

there is a total of 16 core tasks. Further assuming that there are four cores in the system, each with

a four-µthread LTA engine, it will take four steps to execute all core tasks. The execution time of

45

42

21 21

10 11 10 11

5 55 65 55 6

3 33 23 23 2 3 33 23 23 2
16 core tasks

42

20 22

8 12 10 12

4 46 84 44 8

4 4 4 44 2
11 core tasks

(a) Default Partitioning

(b) LTA-Aware Partitioning

T
im

e

Core 0

µt0 µt1 µt2 µt3

Core 1

µt0 µt1 µt2 µt3

Core 2

µt0 µt1 µt2 µt3

Core 3

µt0 µt1 µt2 µt3

T
im

e

Core 0

µt0 µt1 µt2 µt3

Core 1

µt0 µt1 µt2 µt3

Core 2

µt0 µt1 µt2 µt3

Core 3

µt0 µt1 µt2 µt3

Figure 4.5: LTA-Aware Task Partitioning – The abstract task partitioning tree and the corre-
sponding execution diagram for the default scheme and the LTA-aware scheme are shown. Each
number in the tree indicates the size of the range of the loop-task at that point in the tree. The
initial range in both cases has 42 loop iterations. The default scheme partitions loop-tasks by split-
ting the range in half, whereas the LTA-aware scheme partitions loop-tasks by ensuring at least
one sub-range is a multiple of the number of µthreads available on the LTA engine. The execution
diagrams show how the generated core tasks are executed on a four-core system with four-µthread
LTA engines. Each core task is executed across all available µthreads. A block represents one
loop-iteration-worth of work and, in this example, takes roughly the same amount of time to exe-
cute.

all core tasks is roughly the same because all µthreads must execute in lock-step in this example.

Note that because core tasks have ranges that are less than the total number of µthreads available on

the LTA engine, some µthreads will remain idle during core task execution. On the other hand, the

LTA-aware scheme splits the range such that at least one of the resulting sub-ranges is a multiple of

46

Instruction Description

xpfor r_s Indirect function call that acts as a hint to accelerate core task
execution on LTA engine. Same semantics as jalr.

mtuts r_d, r_s Moves values from GPP register to LTA engine register for all
µthreads.

xplock r_d, r_s, r_t Attempts to obtain binary lock with special success/failure tokens.
Same semantics as amo.xchg.

xpsync µthread barrier; forces synchronization of µthreads.

Table 4.1: LTA Instruction-Set Architecture Extensions

the number of µthreads available in a single LTA engine. Specifically, the LTA-aware scheme sets

the core task size to d(N× t)/(k×P)e× 2t, where t is the total number of µthreads available on

the LTA engine. This partitioning generates a total of 11 core tasks, most of which have a range of

four loop iterations. Executing all of these 11 core tasks will only take three steps. Note that while

LTA-aware task partitioning can increase the maximum difference in size between any two core

tasks compared to traditional task partitioning, LTA-aware task partitioning generally improves

performance on systems with LTA engines by increasing µthread utilization. The runtime deter-

mines the total number of µthreads available on the LTA engine by reading a special coprocessor

register on the GPP.

4.3 Instruction-Set Architecture

Table 4.1 outlines the ISA extensions required by the LTA platform. The LTA platform extends

a RISC-V-like [WLPA16] ISA with a new xpfor instruction that enables exploiting loop-task

parallelism within a core if there is an LTA engine attached to the GPP. The xpfor instruction

is used to execute core tasks and acts as an indirect function call with the same semantics as a

jalr, except that an xpfor can only be used to call a loop-task function pointer with the loop-

task function signature in Figure 4.3(c). The calling convention of xpfor is crafted to mirror the

arguments of the loop-task function: argument pointer in a0, range start index in a1, and range

end index in a2. More importantly, an xpfor acts as a hint to the hardware that it can potentially

accelerate core task execution on an LTA engine.

47

xpfor

step

call
$a0 $a1 $a2 $a3

*func *args 0 31

4*func *args 0 31

µtasks

4*func *args 1 31

4*func *args 2 31

4*func *args 3 31

µthread0 {0, 4, 8, 12, 16, 20, 24, 28}

µthread1 {1, 5, 9, 13, 17, 21, 25, 29}

µthread2 {2, 6, 10, 14, 18, 22, 26, 30}

µthread3 {3, 7, 11, 15, 19, 23, 27, 31}

void lta_function(

 void* a, // $a0

 int start, // $a1

 int end, // $a2

 int step=1 // $a3

) { ... }

Figure 4.6: Example µtask to µthread Mapping – The xpfor instruction acts as a hint to the
hardware that the core task can be accelerated if an LTA engine is available. LTA engines accelerate
core task execution by further partitioning core tasks into µtasks, then mapping these µtasks onto
µthreads. Each µthread is annotated with the loop iterations in the range of its assigned µtask. The
hardware is responsible for initializing the architectural state with the arguments of the loop-task
function. The range step value is used to configure the stride of the loop iterations that are traversed
within a µtask.

If an LTA engine is not available, the xpfor can be treated as a standard jalr. Serial execution

of core tasks are always valid. If an LTA engine is available, the xpfor sends the core task from

the GPP to the LTA engine to be accelerated. The LTA engine accelerates core task execution

by further partitioning the core task into µtasks which can be executed concurrently in any order

by the LTA using µthreads. The runtime can execute core tasks the same way regardless of LTA

engine availability. A single implementation of an application can be used on any architecture that

implements xpfor, greatly improving portability.

Figure 4.6 illustrates an example of how a core task is partitioned into µtasks and how these

µtasks are mapped onto µthreads. The core task containing the range 〈0,31〉 is partitioned into 4

µtasks containing subsets of this range. The start indices and the range step values are configured

by the hardware such that consecutive loop iterations are mapped across consecutive µthreads.

Note that the partitioning and mapping of µtasks can change depending on the type of LTA engine

available.

Another extension to the LTA ISA is the mtuts instruction that allows transferring of data in

architectural registers between the GPP and the LTA engine. For instance, this is how the runtime

initializes the global pointer (gp) and stack pointer (sp) on the LTA engine. With the exception

48

of this initialization, all communication between the GPP and the LTA engine occurs through

memory. xpfor semantics dictate arguments are caller-saved and only callee-saved architectural

registers are guaranteed to be valid after a call.

The LTA ISA also includes two other instructions that are meant to be used inside of a core task:

xplock and xpsync. xplock is an alternative to the amo.xchg instruction that is used for obtaining

a binary lock with special tokens for success and failure. This instruction helps the LTA engine

to avoid deadlocks due to collisions between multiple µthreads on a given LTA engine causing

continued failures. xpsync is a barrier that forces synchronization of µthreads. This instruction

is used to prevent further control divergence by halting forward progress until all µthreads have

reached the same instruction. Although not necessarily for high performance except in rare cases,

xpsync can be manually inserted by the application-level programmer to explicitly guide µthread

behavior. The vision is to eventually have the compiler generate these instructions automatically.

49

CHAPTER 5
LOOP-TASK ACCELERATOR HARDWARE

The observations in Chapter 2 suggest that existing accelerator-based 3P platforms mainly fo-

cus on exploiting regular loop-task parallelism (e.g., MICs, GPGPUs). Although achieving high

performance on irregular applications using such accelerators is certainly possible, it often requires

extensive manual, target-specific optimizations that degrade productivity and portability, and the

resulting performance may not always be proportional to the resources available in hardware. As

such, the LTA platform pursues a clean-slate design of a hardware accelerator capable of exploit-

ing a broader range of loop-task parallelism, without sacrificing productivity and portability. By

pushing the loop-task abstraction down to hardware, the same core tasks can be used to efficiently

exploit loop-task parallelism across cores and within a core, without limiting the multiplicative

effect in performance.

This chapter describes the hardware component of the LTA platform: the microarchitectural

template for the LTA engine. The LTA engine is designed to accelerate the loop tasks encoded by

the xpfor instruction within a core. A task-coupling taxonomy that describes how tasks can be

coupled in both space and time is also detailed in this chapter. LTA engines can be configured at

design time to have variable spatial and temporal task coupling to target both regular and irregular

loop tasks.

5.1 Task-Coupling Taxonomy

As mentioned in Section 4.3, an LTA engine accelerates loop-task execution by further parti-

tioning core tasks into µtasks which are then mapped to µthreads. There is a large design space in

how these µthreads are executed.

Figure 5.1(a) illustrates one approach for an eight-µthread LTA engine that tightly couples

µthread execution in both space and time. The task-management unit (TMU) acts as the primary

interface between the GPP and the LTA engine. When the TMU receives information about a core

task from the GPP, it partitions this core task into eight µtasks and assigns one µtask per µthread.

Each µthread has its own register file context which is initialized with the arguments corresponding

to the loop-task function in Figure 4.3(c) before execution. All µthreads share a common frontend

(F), and instruction/data memory accesses are managed by the instruction management unit (IMU)

50

IMU Space (Lanes)

T
im

e
(C

hi
m

es
)

TMU

F

DMU

μR
F
μR

F
μR

F

μR
F
μR

F
μR

F
μR

F

μR
F

A

B

C

D0

D1

E0

E1

A

(a) μArch
Sketch

(b) Execution

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

0 1

4 5

2 3

2 3

6 7

6 7

8 9 10 11

12 13 14 15

Figure 5.1: LTA Engines with Tight Task Coupling – 8-µthread LTA engine with 4 lanes and 2
chimes. µthreads are tightly coupled in both space and time, meaning they must execute in lock-
step. IMU = instr mgmt unit; TMU = task mgmt unit; DMU = data mgmt unit; F = fetch/dispatch
unit; µRF = µthread regfile. The execution diagram of an example kernel is shown on the right.
Each box represents a unique µthread which is annotated with the loop iteration being executed.
The letters indicate the instruction being executed at each timestep. µthreads that share the same
control flow on divergence are shown with the same color. Stalls due to microarchitectural latencies
are marked by a red X .

and the data management unit (DMU). Using terminology from traditional vector processors, the

µthreads in this example are organized into four lanes and two chimes. Each lane has a dedicated

set of short-latency and long-latency functional units.

Figure 5.1(b) details how the core task mapped to GPP 0 in Figure 4.4 might execute on this

tightly coupled LTA engine. All eight µthreads execute in lock-step in space across the four lanes

and in time across the two chimes. Notice that µthreads on neighboring lanes execute consecutive

iterations. To enable this, the LTA engine initializes each µthread’s range step value in the a3 regis-

ter to eight so that µT 0 executes iterations 0, 8, 16, and 24. Tightly coupled execution enables the

LTA engine to exploit control and memory structure by amortizing frontend and memory accesses

51

across multiple µthreads. The frontend can fetch, decode, dispatch, and issue a single instruction

before executing it across all eight µthreads, and memory addresses that are consecutive across

the µthreads can be coalesced into a single wide access. Unfortunately, tightly coupled execution

means if one µthread stalls due to a RAW dependency or cache miss then all µthreads must stall.

Furthermore, divergent control flow due to conditional branches requires serialized execution of

µthreads. In this example, the red µthreads executing loop iterations 0, 1, 4, and 5 are executed first,

then the green µthreads executing loop iterations 2 and 3, followed by the blue µthreads executing

loop iterations 6 and 7. Due to this, tightly coupled execution is best suited for regular loop-task

parallelism.

Figure 5.2(a) illustrates a different approach for an eight-µthread LTA engine that loosely cou-

ples µthread execution in space while keeping µthread execution in time tightly coupled.

There are still four lanes, but now each lane is decoupled in space with per-lane frontends, so that

they are able to execute independent instruction streams. In addition, expensive resources such

as the long-latency functional units and memory ports are shared between the lanes. As such,

accessing these shared resources requires arbitration.

Figure 5.2(b) details how the same core task from the previous example might execute on

an LTA engine with loosely coupled execution in space and tightly coupled execution in time.

Loosely coupled execution enables the LTA engine to better tolerate irregular control-flow and

memory-access patterns at the cost of less amortization of frontend and memory access across

µthreads. In this example, µthreads within a lane can independently fetch, decode, dispatch, and

issue instructions with respect to µthreads in other lanes. Notice how the stall when executing

loop iteration 5 is now isolated to a single lane while the other lanes can continue execution.

Similarly, µthreads that are diverged due to irregular control flow can be executed concurrently.

The tradeoff with loosely coupled execution in space is that conflicts at the shared resources may

cause additional stalls within a lane. µthreads that are tightly coupled in time within a lane must

still execute in lock-step, meaning that a stall on one µthread can cause other µthreads mapped to

the same lane to stall as well, as seen when executing loop iteration 0 on the first lane.

Figure 5.3(a) illustrates the next logical step of an eight-µthread LTA engine that loosely cou-

ples µthread execution in both space and time. In this example, not only are the lanes decoupled

in space, but the chimes are decoupled in time as well. This means that each µthread within a lane

also has its own frontend capable of sustaining an independent instruction stream.

52

Space (Lanes)

T
im

e
(C

hi
m

es
)

A

B

C

A

A

B

C

A

A

B

D0

D1

E0

E1

A

A

B

D0

D1

E0

E1

A

(a) μArch
Sketch

(b) Execution

0 1 2 3

4 5 6 7

0

1

2 3

4

5

6 7

0

14

5

2 3

2

3

6

7

6

78

9

10

11
12

13

14

15

IMU

TMU

DMU

F F F F

μR
F

μR
F

μR
F

μR
F

μR
F

μR
F

μR
F

μR
F

Figure 5.2: LTA Engine with Loose Task Coupling in Space and Tight Task Coupling in Time
– See Figure 5.1 for details.

Space (Lanes)

T
im

e
(C

hi
m

es
)

A

B

C

D

A

B

C

A

A

B

D0

E0

D1

E1

A

A

B

D0

E0

D1

E1

A

A

B

C

D

A

B

C

A

A

B

A

A

B

A

0 1 2 3

4

5 6 7

0

1 2 3

4

5

6

7

4

1

0 5

2

36

72

3

6 7
8 9

10 11

12 13

14 15

IMU

TMU

DMU

F F F F

μR
F

μR
F

μR
F

μR
F

μR
F

μR
F

μR
F

μR
F

F F F F

(a) μArch
Sketch

(b) Execution

Figure 5.3: LTA Engine with Loose Task Coupling in Space and Time – See Figure 5.1 for
details.

53

0 1

2 3

4 5

6 7 Lane Group

4 Lanes
(execution in space)

2 Chimes
(execution in time)

Chime Group

μThread Task Group (or μThread,
 μTask Group)

Figure 5.4: Terminology for Task-Coupling Taxonomy – Example of 8-µthread LTA engine
with 4 lanes (l) and 2 chimes (c). 8 µthreads are divided into 4 task groups (gt), also called µthread
groups or µtask groups, which execute in lock-step in both space and time. The four lanes are
partioned into two lane groups (gl); the two chimes are partitioned into two chime groups (gc).
Configurations named as l/gl x c/gc, so this configuration is 4/2x2/2.

Figure 5.3(b) details how the core task might execute on an LTA engine with loosely coupled

execution in space and time. Loosely coupled execution in time further improves the LTA engine’s

ability to tolerate irregular control-flow and memory-access patterns by allowing µthreads within

the same lane to hide microarchitectural latencies with fine-grain vertical multithreading. For

instance, the stall when executing loop iteration 0 on the first lane from the previous example is

hidden by executing loop iteration 4 on the same lane. The tradeoff with loosely coupled execution

in time is an increased pressure on the shared instruction memory port. This is a consequence of

each instruction fetch keeping functional units busy for less cycles. These additional conflicts

can introduce new stalls across the µthreads. Since all µthreads are loosely coupled, there is no

amortization of frontend and memory accesses, which can negatively impact both area and energy

efficiency.

The microarchitectures in Figure 5.1 and Figure 5.3 represent opposite extremes of how µthreads,

or the µtasks that are mapped to µthreads, can be coupled in both space and time. However, there

is a wide spectrum of spatial and temporal task coupling that can vary from loose to moderate to

tight coupling. Figure 5.4 uses a more abstract diagram to illustrate an intermediate design point

where the eight µthreads are divided into four task groups that execute in lock-step in both space

and time. The task-coupling terminology defines groups of lanes that are tightly coupled as lane

groups, and groups of chimes that are tightly coupled as chime groups. Lane groups are loosely

coupled with respect to other lane groups, and chime groups are loosely coupled with respect to

other chime groups. This example has two lane groups and two chime groups. A specific task-

coupling configuration can then be defined as l/gl x c/gc, where l is the total number of lanes,

54

4/1x8/1 4/2x8/1 4/4x8/1

4/1x8/2 4/2x8/2 4/4x8/2

4/1x8/4 4/2x8/4 4/4x8/4

4/1x8/8 4/2x8/8 4/4x8/8

8/1x4/1 8/2x4/1 8/4x4/1 8/8x4/1

8/1x4/2 8/2x4/2 8/4x4/2 8/8x4/2

8/1x4/4 8/2x4/4 8/4x4/4 8/8x4/4

2/1x4/1 2/2x4/1

2/1x4/2 2/2x4/2

2/1x4/4 2/2x4/4

4/1x2/1 4/2x2/1 4/4x2/1

4/1x2/2 4/2x2/2 4/4x2/2
Te

m
po

ra
l T

as
k-

C
ou

pl
in

g

Spatial Task-Coupling

(c) 8 Lanes x 4 Chimes (d) 4 Lanes x 8 Chimes

(b) 2 Lanes x 4 Chimes

(a) 4 Lanes x 2 Chimes

Figure 5.5: Task-Coupling Taxonomy – All possible spatial and temporal task-coupling config-
urations for: (a) four lanes, two chimes; (b) two lanes; four chimes; (c) eight lanes, four chimes;
(d) four lanes, eight chimes. For given subfigure, most-coupled configuration is bottom left and
least-coupled configuration is top right. Configurations used in Chapter 7 are highlighted.

gl is the number of lane groups, c is the total number of chimes, and gc is the number of chime

groups. Furthermore, l x c yields the total number of µthreads, and gl x gc yields the number of

task groups. The task-coupling configuration in this example can thus be denoted as 4/2x2/2.

Given this terminology, it is possible to describe all spatial and temporal task-coupling config-

urations for a given number of lanes and chimes using a task-coupling taxonomy. Figure 5.5(a)

shows the six configurations for the 8-µthread LTA engine discussed above, and Figure 5.5(b)

shows an alternative eight-µthread LTA engine with two lanes and four chimes. The task-coupling

taxonomy can easily be extended to 32-µthread LTA engines with four lanes and eight lanes. Al-

though LTA engines with 8–128 µthreads were explored, the primary evaluation of this thesis will

focus on the 12 configurations of the 32-µthread LTA engines highlighted in Figures 5.5(c) and (d).

55

Space (Lanes)
T

im
e

(C
h
im

es
)

Pure Spatial Divergence

Mixed Divergence

Pure Temporal Divergence

0 1

4 5

2 3

6 7

0 1

4 5

2 3

6 7

0 1

4 5

2 3

6 7

Figure 5.6: Types of Control Divergence –
µthreads within a task groups can be diverged
in space and/or time. Examples of spatial, tem-
poral, and mixed divergence for 8 µthreads on
a 4-lane 2-chime LTA engine are shown. Pure
spatial divergence means all µthreads mapped
to a given lane share the same control flow,
whereas pure temporal divergence means all
µthreads in the same chime share the same con-
trol flow.

Now that the task-coupling terminology and taxonomy has been established, the different types

of control divergence that can occur within a task group can be described in more detail. Figure 5.6

shows how eight µthreads can be diverged in space and/or time. µthreads that share the same

control flow are called task group fragments and are shown with the same color. When there is

pure spatial divergence, all µthreads mapped to the same lane are in the same task group fragment.

Loose spatial task coupling specifically helps tolerate spatial control divergence. When there is

pure temporal divergence, all µthreads within a chime are in the same task group fragment. Loose

temporal task coupling specifically helps tolerate temporal control divergence. Note that density-

time, discussed in Section 3.3, is another technique that helps tolerate temporal control divergence

by eliminating chimes with no active µthreads. Note that it is more common to have a mix of both

spatial and temporal divergence.

5.2 Loop-Task Accelerator Engine Template

Figure 5.7 shows the detailed microarchitectural diagram of the LTA engine template, an ele-

gant microarchitectural template designed to enable flexible design-space explorations of spatial

and temporal task coupling. This template can be configured at design time with any number of

µthreads, lanes, lane groups, chimes, and chime groups.

The LTA engine template has a configurable number of lanes that are aggregated into lane

groups. A lane group is a collection of lanes with a common frontend that is capable of sustaining

independent instruction streams. A lane group is decoupled in space with respect to other lane

56

IMem Xbar

Lane
Group

PIB

DMem Xbar

FPU
Group

Lane
Group

Lane
Group

MDU
Group

FPU
Xbar

μTask
Queue

MDU
Xbar

PDB

Mem
Ports

IM
U

T
M
U

D
M
U

L1 Instruction Cache

Task Distributer

L1 Data
Cache

Coalescer

IU Seq

MD Interface FPU Interface

IU Seq IU Seq

Writeback Arbiter

WQ

WCU

DU

FU

FPU Xbar

D
M

U

IMUTMU

From
GPP

Lane
Group

4B

32B

y

y

SLFU LSU

y

IQ

y y y

y y

z chimes per
chime group

y lanes per lane group

gc
chime
groups

μRF

μRF

μRF

μRF

μRF

μRF

μRF

μRF

μRF

MDU Xbar

gc

gcgc gc

g
l

y SLFU y

gc

RT PFB

PC

(a) Top-Level LTA Engine Microarchitecture (b) Detail of Lane Group

Figure 5.7: LTA Engine Template – IMU = instr mgmt unit; TMU = task mgmt unit; DMU =
data mgmt unit; PIB = pending instr buffer; FPU = floating-point unit; MDU = integer mult/div
unit; PDB = pending data buffer; FU = fetch unit; DU = dispatch unit; IU = issue unit; Seq =
chime sequencer; SLFU = short-latency integer functional unit; LSU = load-store unit; WCU =
writeback/ commit unit; PC = program counter; RT = rename table; PFB = pending fragment
buffer; IQ = issue queue; WBQ = writeback queue; µRF = µthread regfile. l = tot num lanes; gl =
num lane groups; y = num lanes per lane group (l/gl); c = tot num chimes; gc = num chime groups;
z = num chimes per chime group (c/gc). Thick green arrows indicate channels that can transfer y
worth of data in a single cycle.

groups. Each lane group manages a subset of the µthreads available in the LTA engine. These

µthreads are mapped across the lanes within a lane group and multiple µthreads can be mapped to

a single lane, but each µthread always has its own architectural register file. Furthermore, µthreads

within a lane group are always tightly coupled in space, but can have variable coupling in time. A

lane group is composed of a fetch unit (FU), a decode/dispatch unit (DU), issue units (IUs), short-

latency functional units (SLFU), a load-store unit (LSU), and a writeback-commit unit (WCU).

These units are connected by latency-insensitive interfaces, enabling a highly elastic pipeline that

helps tolerate microarchitectural latencies.

57

Expensive resources are shared across lane groups so lane groups must dynamically arbitrate

for access to these resources. Shared resources include the instruction memory port, which is

managed by the instruction management unit (IMU), the long-latency functional units (LLFUs)

like the floating-point unit (FPU) and the integer multiply-divide unit (MDU), which are organized

into a FPU group and an MDU group, and the data memory ports, which are managed by the data

management unit (DMU). There is always a single instruction memory port per LTA engine, but the

number of FPUs, MDUs, and data memory ports are equal to the number of lanes per lane group.

IMUs consist of per-task-group pending instruction buffers (PIBs) that amplify the instruction

memory bandwidth by storing a cache-line-worth (32B) of instructions that can be amortized over

multiple accesses, as well as a crossbar with round-robin arbitration. The instruction memory

bandwidth is 32B per cycle. DMUs consist of per-task-group pending data buffers (PDBs) that

can facilitate access/execute decoupling by storing a task group’s worth of 4B words loaded from

memory, as well as a crossbar with round-robin arbitration. The data memory bandwidth is 4B

per cycle per port, but the bandwidth across all ports in the DMU can be combined to enable one

wide coalesced access per cycle. FPU/MDU groups have grant-and-hold round-robin arbitration

that prioritizes one lane-group until an entire task-group is processed.

While resource sharing is orthogonal to spatial task coupling, the intuition here is that increas-

ing the number of lane groups improves the performance on irregular applications which tend

to have low LLFU instruction density (based on the application kernels examined in this thesis).

This observation, along with the fact that the lane group’s elastic pipeline helps tolerate latencies

due to conflicts at shared resources, motivates coupling resource sharing and spatial task coupling

together to improve area efficiency.

The task management unit (TMU) is the primary interface between the GPP and LTA engine.

The TMU is responsible for dividing the core tasks sent by the GPP into µtasks, then dynamically

scheduling these µtasks across lane groups by injecting them into per-lane-group µtask queues.

Load balancing across lane groups occurs naturally as lane groups that finish µtasks faster will

obtain more µtasks from the TMU. The range of the µtasks is set to be a multiple of the number of

µthreads in a lane group. The reason for this is the same as why ranges of core tasks are sized to be

a multiple of the total number of µthreads in the entire LTA engine. Empirical data suggests that

using a multiple of two or three achieves a good balance between load balancing and loop overhead.

Upon receiving a new core task, the TMU initializes a pending µtask counter with the number of

58

generated µtasks. Lane groups assert a completion bit when they finish executing a µtask. The

TMU aggregates the completion bits and decrements the pending µtask counter accordingly. The

TMU acknowledges the completion of a core task once the counter is zero by sending a completion

message to the GPP. Currently, the GPP stalls until it receives this completion message.

When a lane group dequeues a µtask from its µtask queue, it first initializes the architectural

state of all of the µthreads that it manages so that the argument registers match the loop-task

function arguments: argument pointer in a0, start index in a1, end index in a2, and the range step

value in a3 (always set to be the number of µthreads in a lane group). It does this by injecting

four micro-ops that encode the fields of the µtask as an immediate value and write this value to

the proper register. The start index must be initialized with a special micro-op that offsets the

start index with the µthread index, which effectively partitions the µtask even further and maps the

resulting µtasks onto µthreads.

A lane group begins executing µtasks using its µthreads once this initialization is complete.

The FU initializes the per-chime-group program counters (PC) to the function pointer of the µtask

and begins fetching instructions from this address. Fixed-priority arbitration is used to determine

which of the chime groups can fetch an instruction every cycle. Fetched instructions are forwarded

to the DU via per-chime-group dispatch queues.

The DU is able to decode and dispatch one instruction to each of the three IUs available in

the LTA engine every cycle. Instructions to be dispatched are selected from the dispatch queues

based on round-robin arbitration. Only instructions ready to execute are eligible for dispatch.

Dependency checking is performed on a per-chime-group basis. Note that the entire chime group

must stall on conditional branches until all µthreads in the chime group have resolved the branch.

Instructions are dispatched in-order with respect to its chime group to an IU that manages the

functional unit required by the instruction type. Simple register renaming via the rename table

(RT) and writeback queues (WQ) is used to allow out-of-order writeback. Entries in the WQ are

reserved by the DU at chime-group granularities. The DU also tags dispatched instructions with

the total number of valid chimes (i.e., chimes with at least one active µthread) corresponding to

each instruction.

Divergent branch resolutions within a chime group are handled by executing the not-taken

µthreads (active) first and pushing a task group fragment representing the taken µthreads (inactive)

into a pending fragment buffer (PFB) to be executed later. Fragments in the PFB can reconverge

59

with other fragments (including the active fragment) with matching PCs. A two-stack PFB is

implemented as described in [LAB+11,KLST13], which prioritizes fragments in current loop iter-

ations.

Dispatched instructions wait in the IU’s in-order issue queue (IQ) until its operands are ready

to be bypassed from the functional units or the WQ, or read from the register file. Operands

are read for the entire chime group from 6r3w register file banks. The relatively high number

of ports is necessary to allow all three IUs to read two operands and write one result per cycle.

Each IU manages a separate set of functional units. By default, two IUs manage SLFUs and

one IU manages LSUs. The IU sequences the chimes of instructions that have read all of their

operands. The instruction is not dequeued from the IQ until all chimes in the corresponding chime

group have been issued to the appropriate functional units. Lane groups also support density-

time execution [SFS00], which allows the sequencer to skip scheduling chimes that have no active

µthreads.

Since µthreads within a task group execute in lock-step, the frontend operations discussed thus

far are amortized across all µthreads in the chime group. However, chime groups are loosely cou-

pled in time with respect to each other, meaning instructions from a given chime group are fetched,

decoded, and dispatched independent of other chime groups within the same lane group. This al-

lows instructions from different chime groups to be multiplexed in time to hide microarchitectural

latencies.

Sequenced chimes of an instruction are issued to a group of functional units organized into

lanes. The µthreads of a given chime are executed in parallel across the number of lanes in the lane

group. SLFUs handle integer operations and branches, while LSUs handle memory operations.

The LSU can generate one memory request per lane per cycle, and supports coalescing of memory

requests across µthreads within the same chime. As mentioned before, LLFUs are shared across

lane groups so chimes of an LLFU instruction must arbitrate for access to the shared LLFUs with

other lane groups.

The WCU arbitrates writes from functional units to the WQ at chime granularities. The write-

back arbiter uses grant-and-hold round-robin arbitration that prioritizes one chime group until an

entire chime group has written back to the WQ. Each entry in the WQ can store a chime group’s

worth of data and has a counter that is incremented every time a chime for the corresponding in-

struction writes back to the WQ. The WCU knows that the entire chime group’s worth of data

60

is ready to be written back to the register files once this counter is equal to the number of valid

chimes for the instruction. Entries in the WQ that are ready to be written back are committed to

the register files in program order one chime at a time.

The lane group knows that all µtasks have been executed to completion when all µthreads have

returned from the loop-task function. Explicitly, this is known when the jr instruction is decoded

and there are no more fragments in the PFB. At this point, the lane group asserts a completion bit

to the TMU and is ready to dequeue another µtask from its µtask queue.

Note that the LTA engine supports function calls within a µtask. In order to differentiate be-

tween such a function call and the end of the µtask, the return address register (ra) is initialized

to a special token at the beginning of every µtask execution. The LTA engine knows that it has

completed the µtask when the return address of a jr instruction is this special token, otherwise it

will treat it as a normal function call return. The return address with the special token is saved on

the stack before a function call and restored upon return according to standard calling convention.

In terms of exploring the task-coupling taxonomy, the level of spatial task coupling can be

configured by varying the number of lane groups, while the level of temporal task coupling can be

configured by varying the number of chime groups that can be multiplexed within a lane group.

5.2.1 Exception Handling

The LTA engine supports precise exceptions within a µthread but not between µthreads. When

a µthread raises an exception, an exception task fragment is pushed onto the PFB with the PC

of a special LTA exception handler (different from the OS-level exception handler) and a mask

specifying the µthread which caused the exception. This exception task fragment is only allowed

to reconverge with other exception fragments and will remain in the PFB until all other µthreads

have run to completion. When the exception task fragment finally executes, only the µthreads that

raised an exception will begin executing the LTA exception handling routine. The LTA exception

handling routine saves the architectural state into the per-µthread stack and sends a pointer to the

saved state to the TMU using the coprocessor interface. The TMU sends an exception handling

request to the GPP with this saved state pointer, processing one µthread at a time across all lane

groups. When the GPP receives an exception handling request, it initializes its architectural state

with the data referenced by the saved state pointer, then jump to the OS-level exception handler.

Once the exception has been handled, the GPP sends a confirmation to the LTA engine. In addition,

61

the GPP streams any updated architectural state back to the LTA engine for the current µthread.

When all the µthreads that raised an exception within a given lane group have been processed,

the TMU signals that the lane group can continue executing the exception fragment from the loop

iteration index that raised the exception. At this point, the lane group continues processing the

rest of the µtask to completion. All the argument registers stay valid on each µthread’s register file

context throughout this entire process.

5.2.2 Deadlock Detection and Resolution

The LTA engine also has a mechanism to dynamically detect and resolve deadlocks on irregular

applications with significant inter-thread synchronization. To understand when this may occur,

consider a graph algorithm that needs to obtain the lock on all of its neighbors before being able to

apply an operator to its neighborhood. It is possible for the graph to have a cycle between several

nodes and for all of the nodes in the cycle to be assigned to µthreads in the same task group. Now,

assume that each µthread checks its left neighbor first then its right neighbor. In this case, all

µthreads will obtain the first lock and succeed. However, all µthreads will fail to obtain the second

lock, thereby sending the µthreads back to the top of the loop to try again and again, resulting in

a deadlock. This happens because µthreads in the same task group must execute in lock-step. If

a subset of the µthreads were allowed to run to completion before the others, the cycle would be

broken and the deadlock avoided.

The LTA engine alleviates this problem by dynamically detecting this deadlock scenario and

forcing control divergence. To support this mechanism, the LTA ISA must be further extended with

a new xplock instruction that has the same semantics as an amo.xchg except that it is only used

for obtaining a binary lock with special tokens for success and failure. If an xplock instruction

returns a failure token for all active µthreads, the LTA increments a deadlock counter in the DU.

When the next xplock instruction is decoded, the DU forces divergence by creating a task group

fragment with half of the active µthreads and pushing this fragment into the PFB, thereby reducing

the number of active µthreads that can trigger the deadlock. Task group fragments are pushed into

the PFB in this manner every time the deadlock counter is incremented, until there is only one

active µthread. The counter is only reset when at least one µthread returns a success token on a

xplock instruction, signaling forward progress. To prevent reconvergence, task group fragments

generated in this way are tagged with a special no-reconverge bit. Although this mechanism is not

62

guaranteed to solve every deadlock scenario, it was effective in preventing deadlock in a couple of

the application kernels examined in the evaluation.

63

CHAPTER 6
LOOP-TASK ACCELERATOR EVALUATION

METHODOLOGY

This chapter describes the vertically integrated research methodology used to evaluate the LTA

platform, which spans applications, runtime, architecture, and VLSI. Applications kernels from di-

verse application domains are selected to represent both regular and irregular loop-task parallelism.

To build confidence in the performance of the LTA runtime, a native port of the LTA runtime is

validated against other popular task-based work-stealing runtimes. Details of the cycle-level per-

formance, area, and energy modeling of the LTA platform is also provided in this chapter.

6.1 Application Kernels

The 16 C++ application kernels used to evaluate the LTA platform were ported from the

problem-based benchmark suite [SBF+12] (PBBS) and an in-house benchmark suite. Applica-

tion kernels are selected from a diverse range of application domains including those with more

regular loop-task parallelism like scientific computing (e.g., N-body simulation, MRI gridding,

dense matrix multiplication) and image processing (e.g., bilateral filter, color space conversion,

discrete cosine transform), as well as application domains with more irregular loop-task parallelism

like graph algorithms (e.g., breadth-first search, maximal matching, maximal independent set) and

search/sort algorithms (e.g., radix sort, substring matching, dictionary). Table 6.1 catalogues the

datasets used with each of the application kernels in the evaluation, and Table 7.1 provides useful

simulation statistics for select LTA engines running these application kernels. Application kernels

are cross-compiled using GCC-4.4.1, Newlib-1.17.0, and the GNU standard C++ library with a

MIPS-derived backend. Note that because this version of GCC does not support C++11 lambdas,

the macro-based parallel_for is used in all of the ported application kernels. As such, only the

assembler needs to be extended to support the LTA ISA, and no further modifications to the cross-

compiler are necessary. All application kernels are parallelized using the LTA software framework

and minimal LTA-specific optimizations are applied.

Brief descriptions of the application kernels ported from PBBS follow, but the reader should

refer to [SBF+12] for more detailed descriptions. bfs-d and bfs-nd generate a breadth-first-search

tree from a directed cyclic graph. Computation is parallelized across nodes in the frontier. Con-

64

DynInst (M) Avg Size Intensity

Name Suite Input S P T% Task Iter slfu llfu mem

nbody pbbs 3DinCube_1000 92 93 99% 1000 31K 18% 43% 33%
bilateral custom 256×256 image 26 27 99% 66K 409 25% 51% 16%
mriq custom 100-space, 256 points 11 11 99% 256 23K 53% 20% 21%
sgemm custom 256×256 FP matrix 75 76 99% 576 131K 47% 19% 21%
rgb2cmyk custom 1380×1080 image 43 43 99% 1380 31K 47% 0% 39%
dct8x8m custom 782 8x8 blocks 55 55 99% 50K 1096 4% 64% 30%
knn pbbs 2DinCube_10K 35 43 33% 9867 716 17% 32% 37%
bfs-nd pbbs randLocalGraph_J_5_150K 23 55 81% 36K 99 56% 0% 26%
radix-2 pbbs exptSeq_500K_int 57 69 81% 46 92K 59% 0% 33%
radix-1 pbbs randomSeq_1M_int 93 104 94% 229 74K 57% 0% 33%
rdups pbbs trigramSeq_300K_int 36 56 99% 508K 23 56% 0% 21%
sarray pbbs trigramString_200K 68 75 86% 76K 50 56% 0% 29%
strsearch custom 210 strings, 210 docs 20 20 99% 210 49K 57% 0% 19%
bfs-d pbbs randLocalGraph_J_5_150K 23 35 95% 50K 75 56% 0% 26%
dict pbbs exptSeq_1M_int 39 51 99% 451K 25 66% 0% 19%
mis pbbs randLocalGraph_J_5_400K 14 32 99% 400K 27 52% 0% 25%
maxmatch pbbs randLocalGraph_E_5_400K 23 49 94% 1.7M 19 58% 0% 19%

Table 6.1: Application Kernel Characterization for Simulator Experiments – DynInsts =
dynamic instruction count in millions (S for serial impl, P for parallel impl); T% = percent of total
dyn. insts in tasks; Avg Task Size = average number of dyn. insts per task; Avg Iter Size = average
number of dyn. insts per iteration; { slfu, llfu, mem } Intensity = percent of total dyn. insts that are
{short-latency arithmetic, long-latency arithmetic, memory operation}.

flicts are resolved either deterministically with priority writes (by ID) or non-deterministically

using compare-and-swap operations. bfs-d and bfs-nd use deterministic and non-deterministic al-

gorithms respectively, and capture the impact of deterministic execution for the same problem.

Determinism is a desirable trait that can mitigate the difficulties of reasoning about both correct-

ness and performance in complex systems [SBF+12]. dict measures performance of batch opera-

tions on a dictionary data structure. Computation is parallelized across batch inserts, deletes, and

searches of sequences of values and accommodates repeated keys. radix executes a stable sort of

fixed-length unsigned integer keys in ascending order. Two datasets for radix are examined (i.e.,

radix-1, radix-2), since this application kernel exhibits strong data-dependent variability. knn

finds the nearest neighbor to each point in a 2D space. A quad-tree is built to speed up neigh-

bor lookups, and computation is then parallelized across the nodes to find the nearest neighbors.

mis finds the maximal independent set of an undirected graph. Computation is parallelized across

65

nodes and conflicts are resolved using atomic compare-and-swap operations. maxmatch finds a

maximal matching on an undirected graph. Computation is parallelized across edges. Endpoints

are claimed using atomic compare-and-swap operations. nbody computes the net 3D force vector

on each particle when subject to forces arising from other particles. The Barnes-Hut (BH) approx-

imation is used with a traditional divide-and-conquer approach. An oct-tree is used to organize

particles and approximate the center of mass of particle groups. rdups uses a parallel loop to insert

elements into an internally deterministic hash table. sarray is a parallel variant of the Karkkainen

and Sanders algorithm that generates the suffix array of a sequence of strings.

Descriptions for the application kernels ported from the in-house benchmark suite follow. bilat-

eral performs a bilateral image filter with a lookup table for the distance function and an optimized

Taylor series expansion for calculating the intensity weight. Computation is parallelized across

output pixels. dct8x8m calculates the 8x8 discrete cosine transform on an image. Computation is

parallelized across 8x8 blocks. mriq is an image reconstruction algorithm for MRI scanning. Com-

putation is parallelized across the output magnetic field gradient vector. rgb2cmyk performs color

space conversion on an image and computation is parallelized across the rows. strsearch imple-

ments the Knuth-Morris-Pratt algorithm with a deterministic finite automata to search a collection

of byte streams for a set of substrings. Computation is parallelized across different streams. sgemm

performs a single-precision matrix multiplication for square matrices using a standard blocking al-

gorithm. Computation is parallelized across blocks.

6.2 Loop-Task Accelerator Runtime

The goal of this section is to validate that the LTA runtime described in detail in Section 4.2 is

competitive with other popular task-based work-stealing runtimes when all of these runtimes (in-

cluding the LTA runtime) are executed on traditional CMPs. Figure 6.1 compares the performance

of the x86 port of the LTA runtime (using a standard indirect function call instead of xpfor), In-

tel Cilk++, and Intel TBB running six application kernels using the same experimental setup as

in Chapter 2. Results are normalized against the performance of the optimized single-threaded

implementation of each application kernel. The results show that the LTA runtime indeed has

comparable performance to Intel TBB and Cilk++. In fact, the LTA runtime is slightly faster in

some cases, like mriq and maxmatch, because it does not support C++ exceptions nor task cancel-

66

sgemm dct8x8m mriq bfs-nd maxmatch strsearch
0
1
2
3
4
5
6
7
8
9

10
11

S
p
ee

d
u
p

scalar cilk++ tbb lta

Figure 6.1: Performance Comparison of Various Runtimes on x86 – Speedup over optimized
single-thread implementation of various work-stealing runtimes using 12 threads on a Linux server
with two Intel Xeon E5-2620 v3 processors. Cilk++ = uses Cilk++’s cilk_for; TBB = uses TBB’s
parallel_for; LTA = uses x86 port of the LTA runtime. All apps are compiled with Intel C++
Compiler 15.0.3.

lations, and is more specialized for a narrower subset of task parallelism, making the LTA runtime

relatively lighter weight compared to the alternatives.

6.3 Performance Modeling

For cycle-level performance modeling, a co-simulation framework with gem5 [BBB+11] and

PyMTL [LZB14] is utilized. The cycle-level models of the GPPs, system interconnect, and mem-

ory system were adopted from gem5, a popular C++-based computer architecture simulator. Ta-

ble 6.2 lists the specific gem5 configurations used for the experiments in the evaluation. Changes

to the gem5 framework include: modifications to the in-order processor model to support co-

simulation with the PyMTL-based LTA engine models, and an implementation of the xpfor in-

struction for sending core tasks to the LTA engine. The cycle-level models of the LTA engines

were developed using PyMTL, a productive Python-based hardware modeling framework. This

co-simulation framework leverages the C-embedding features of PyPy [pyp14], which allow a

PyPy interpreter to be dynamically linked against a C/C++ program providing very fast communi-

67

Technology TSMC 40nm LP, 500MHz nominal frequency

ALU 4/10-cycle Int Mul/Div, 6/6-cycle FP Mul/Div, 4/4-cycle FP
Add/Sub

IO 1-way, 5-stage in-order, 32 Phys Regs

O3 4-way, out-of-order, 128 Phys Regs, 32 Entries IQ and LSQ, 96
Entries ROB, Tournament Branch Pred

Caches 1-cycle, 2-way, 32KB L1I, 1-cycle 4-way 32KB L1D per core with
16-entry MSHRs; 20-cycle, 8-way, shared 1MB L2; MESI protocol

OCN Crossbar topology, 2-cycle fixed latency

DRAM 200ns fixed latency, 12.8GB/s bandwidth SimpleMemory model

Table 6.2: Cycle-Level Simulator System Configuration

cation between the two languages. gem5 is used as the main driver to start the simulation, load the

program, and tick the PyMTL simulation.

The evaluation uses two baseline architectures in gem5 to compare the performance, area, and

energy of the LTA platform. IO denotes the baseline scalar five-stage in-order processor, and O3

describes the baseline four-way superscalar out-of-order processor. IO is also used as the GPP to

which LTA engines are attached. Multi-core experiments use a four-core system with private L1

caches and a shared L2 cache. MC-IO denotes four IO cores and MC-O3 denotes four O3 cores.

A bare-metal system is simulated with syscall emulation in gem5.

As mentioned before, the evaluation focuses on the 12 LTA engines highlighted in Figure 5.5.

LTA engines are denoted according to the task-coupling terminology defined in Section 5.1 with

the LTA- prefix. For example, a 32-µthread LTA engine with eight lanes, four lane groups, four

chimes, and two chime groups is denoted as LTA-8/4x4/2.

6.4 Area Modeling

Area and energy are estimated using component/event-based modeling backed by VLSI results

obtained from synthesizing comparable accelerator designs. Specifically, the RTL implementa-

tions of the FG-SIMT microarchitecture [KLST13] (see Chapter 3) and the XLOOPS microarchi-

tecture [SIT+14] were synthesized and placed-and-routed using Synopsys DesignCompiler and IC

68

Compiler with a TSMC 40 nm LP standard-cell library characterized at 1 V. SRAMs were modeled

using CACTI [MBJ09] since a memory compiler was not available for the target process.

Component-based area modeling estimates area by using an area dictionary containing the area

of various hardware components and a list of comparable components in the target microarchitec-

ture. In order to reduce complexity, only the dominant contributors to area are defined in the area

dictionary. For example, the dominant contributors to area in the FG-SIMT and XLOOPS models

are the L1 caches (33%), regfiles (26%), LLFUs (20%), SLFUs (10%), and assorted queues (7%).

Components from the FG-SIMT model are used to estimate the area of the lane-group, DMU,

and D$ crossbar network. The area of each lane group is based on the FG-SIMT vector unit with a

scaled number of µthreads and lanes, which affects the number of regfiles and functional units. The

bit-width of the PDBs and PFBs were scaled down accordingly from the similar VLU/VSU queues

and PVFBs in FG-SIMT. Because the D$ crossbar in FG-SIMT has a fixed number of eight ports,

the area of crossbars with less ports is estimated by applying a scaling factor that assumes the area

increases roughly quadratically with the number of ports. Components from the XLOOPS model

are used to estimate the area of the IMU and TMU. The area of the IMU and TMU were based

on the XLOOPS area corresponding to the L0 instruction buffers (except modeled as flop-based

registers for PIBs) and the lane-management unit.

The area of the dominant contributors above were broken down to µthread, lane, and chime

granularities (e.g., area of regfile context per µthread) to better match the configurability of LTA

engines. Components in the LTA engines that had no direct analog in either the FG-SIMT or

XLOOPS models were estimated using a reasonable combination of integer ALUs, muxes, and

1r1w registers. For example, the area of the dynamic arbiter in the WCU is estimated as a number

of 3-to-1 muxes equal to the number of writeback ports in the WQ, with a bitwidth equal to the

bitwidth of an entire chime, along with an ALU and a register for each output port to model the

grant-and-hold round-robin arbitration logic. Other components that have no equivalent include

the RT and the WQ, which were simpler to estimate since they are essentially regfiles.

Since no RTL implementations of microarchitectures comparable to O3 were available, a rea-

sonable scaling factor of ≈3×, based on rough McPAT area estimates [LAS+09], was applied to

the area of IO to estimate the area of O3.

69

6.5 Energy Modeling

Event-based energy modeling estimates energy by using an energy dictionary containing the

energy of various microarchitectural events (e.g., regfile read/write) and a list of events with the

corresponding number of occurrences generated from cycle-level simulations of the target microar-

chitecture. In order to reduce complexity, only the dominant contributors to energy are defined in

the energy dictionary. The dominant contributors to energy in the FG-SIMT and XLOOPS models

are the same as the dominant contributors to area (e.g., caches, regfiles, SLFUs/LLFUs).

Gate-level simulations with energy microbenchmarks were used to extract per-access energies

of the dominant contributors. A suite of 70+ energy microbenchmarks were developed to measure

per-event energy in the in-order core and the FG-SIMT/XLOOPS microarchitectures. For example,

the addiu energy microbenchmark warms up the instruction cache and then executes 100 addiu

instructions in sequence. These microbenchmarks are used to generate bit-accurate activity factors

that are then combined with post-place-and-route layout using Synopsys PrimeTime PX for total

power estimates and breakdowns. In conjunction with the cycle time, it is possible to calculate

per-component energy for each event stressed in the microbenchmark.

Again, due to a lack of access to an O3-like RTL implementation, McPAT’s component-level

models are used to derive energy scaling factors for events in O3 relative to a comparable compo-

nent in IO and McPAT (e.g., scalar register file and integer ALU). Events in the LTA engine with no

analog in FG-SIMT/XLOOPS are also estimated using McPAT’s component-level models. Note

that the energy microbenchmarks running on IO gate-level models, IO cycle-level simulation, and

O3 cycle-level simulation were carefully analyzed to ensure that the McPAT component models

matched general intuition and correlated well with the other VLSI-based component models. In

some cases, additional RTL was written and gate-level simulations performed to obtain a more ac-

curate energy estimate. For instance, different configurations of the D$ crossbar was synthesized

to determine a roughly linear increase in energy per crossbar access access with varying number

of ports.

70

CHAPTER 7
LOOP-TASK ACCELERATOR EVALUATION RESULTS

This chapter begins by exploring the design space for a single LTA engine in order to identify

a set of suitable configurations that can efficiently accelerate both regular and irregular loop-task

parallelism. A 32-µthread LTA engine is the basis for the evaluation, and both four-lane and eight-

lane configurations are analyzed. The design space is narrowed by first examining the impact

of spatial task coupling on performance, area, and energy efficiency, then doing the same for

temporal task coupling. Based on these studies, the LTA engines with the most promising spatial

and temporal task coupling configurations are identified. Next, the most promising LTA engines

are used to evaluate the multiplicative effect of exploiting loop-task parallelism across cores using

the LTA runtime and within a core using these LTA engines. To determine the success of the LTA

platform in achieving the ultimate goal of the 3P’s, a qualitative evaluation of the productivity and

portability is provided. Finally, the end of this chapter contains a set of case studies with deeper

examinations of the impact of the LTA engine’s other microarchitectural parameters.

7.1 Loop-Task Accelerator Engine: Spatial Task-Coupling

Figure 7.1 shows the single-core performance of LTA engines with a single chime group and

varying spatial task coupling. On average, the LTA engines achieve speedups of 4–5× compared

to IO and 2–2.5× compared to O3. Table 7.1 contains many useful statistics from running the

application kernels used in this study on various LTA engine configurations. The discussions that

follow will reference numbers from this table to help understand the observed trends.

In general, tighter spatial task coupling improves the performance on regular application

kernels with high LLFU instruction density. Examples include nbody, bilateral, mriq, sgemm,

and dct8x8m. This is due to the higher LLFU bandwidth available when there are more lanes per

lane group. Because the LLFUs are pipelined, a higher bandwidth is only useful for bursty access

patterns, which are more likely to occur with regular control flow and high LLFU instruction

density. Regular control flow means more µthreads are likely to access the LLFU on a given LLFU

instruction, and high LLFU instruction density means the distance between LLFU instructions is

likely to be shorter. For example, increasing spatial task coupling from LTA-8/4x4/1 to LTA-8/1x4/1

reduces the percent of time stalled waiting on LLFUs from 27% to 19% on nbody, 26% to 17%

71

nbody

bila
te

ra
l
m

riq

sg
em

m

rg
b2cm

yk

dct
8x8m

knn

bfs
-n

d

ra
dix

-2

ra
dix

-1
rd

ups

sa
rra

y

str
se

ar
ch

bfs
-d dic

t
m

is

m
ax

m
at

chav
g

av
g/a

re
a

0

2

4

6

8

10

12

S
p

ee
d

u
p

13 15 16

IO

O3

LTA-4/1x8/1

LTA-4/2x8/1

LTA-4/4x8/1

LTA-8/1x4/1

LTA-8/2x4/1

LTA-8/4x4/1

LTA-8/8x4/1

Figure 7.1: Performance of Single-Core LTA Engines with Variable Spatial Task-Coupling
– Speedups of various 32-µthread LTA engines with variable spatial task coupling are normalized
against the baseline scalar in-order core for each application kernel. Both 4-lane and 8-lane config-
urations are shown, as well as the speedup of the baseline four-way superscalar out-of-order core.
Application kernels are ordered such that those with regular loop-task parallelism are on the left
and those with irregular loop-task parallelism are on the right.

on bilateral, and 19% to 12% on mriq. Increasing the number of lanes will improve performance

because of the higher LLFU bandwidth with tighter spatial task coupling, but also because of the

increased SLFU and LSU bandwidth.

Tighter spatial task coupling does not improve the performance on application kernels that have

high LLFU instruction density but irregular control flow, like knn which has 32% LLFU instruction

density but an average of only five active µthreads per cycle on LTA-8/1x4/1, nor on application

kernels that have regular control flow but low LLFU instruction density, like rgb2cmyk which has

an average of 29 active µthreads per cycle on LTA-8/1x4/1 but no LLFU instructions.

However, tighter spatial task coupling can increase stalling due to cache misses. This is

a consequence of having more µthreads in a task group. Since task groups execute in lock-step,

the entire task group must wait for all of its loads to be ready before a dependent instruction can

be issued. The likelihood of at least one µthread in a task group missing in the cache increases

with the number of µthreads in a task group. Furthermore, if multiple µthreads miss in the cache

and the corresponding refills are serialized, the entire task group must wait for the last refill to be

handled. The degree of this behavior’s impact on performance depends on several factors such

as the memory bottleneck and variability in memory-access patterns of the application, as well

72

MC
-IO

MC
-O3

LTA-8/1x4/1 LTA-8/4x4x1 LTA-8/4x4/2

Name IO I A S% M I A S% M I A S% M

nbody 239.7 3.6 3.6 0.04 30 19.0 0.4 0.14 31 26.5 0.2 0.32 25 18.5 1.0
bilateral 61.9 4.3 3.8 0.03 31 17.0 2.1 0.14 31 25.5 1.2 0.26 31 14.5 1.2
mriq 13.9 4.0 4.1 0.04 32 12.0 0.0 0.14 32 19.2 0.0 0.27 32 7.5 0.0
sgemm 113.3 3.8 3.9 0.03 32 5.0 3.4 0.13 32 16.0 0.9 0.26 32 7.0 0.8
rgb2cmyk 57.1 3.3 2.5 0.04 29 1.0 9.7 0.15 30 1.0 4.4 0.27 31 0.0 7.1
dct8x8m 81.4 4.0 3.9 0.03 31 0.0 24.6 0.13 32 0.0 18.4 0.25 32 0.0 18.2
knn 57.3 1.5 1.3 0.21 5 35.0 10.7 0.41 11 40.0 10.6 0.57 15 22.0 10.6
bfs-nd 88.6 1.5 1.1 0.07 17 0.0 23.5 0.22 21 0.0 16.4 0.36 24 0.0 16.1
radix-2 102.3 1.1 1.1 0.04 30 0.0 49.5 0.14 31 0.0 48.9 0.27 30 0.0 48.7
radix-1 175.1 3.4 3.6 0.05 26 2.0 35.9 0.18 28 1.0 34.5 0.30 29 1.0 34.7
rdups 87.1 3.0 2.0 0.12 11 0.0 30.5 0.28 18 0.0 22.5 0.41 22 0.0 22.5
sarray 203.9 2.5 1.7 0.10 11 5.0 60.5 0.22 20 2.0 41.1 0.35 24 1.0 42.2
strsearch 30.0 3.3 3.7 0.20 6 3.0 0.5 0.51 10 1.0 0.6 0.49 18 0.0 0.6
bfs-d 88.6 2.4 1.5 0.11 10 1.0 13.7 0.29 16 1.0 10.0 0.41 21 0.0 9.8
dict 82.1 3.4 1.7 0.06 20 0.0 23.4 0.17 27 0.0 13.1 0.29 29 0.0 13.0
mis 79.4 3.4 1.6 0.25 5 0.0 20.1 0.49 10 0.0 13.9 0.61 15 0.0 14.2
maxmatch 154.3 3.4 1.3 0.05 25 0.0 16.3 0.17 28 0.0 12.2 0.30 29 0.0 12.3

Table 7.1: Application Kernel Statistics for Simulator Experiments – IO = number of cycles
(in millions) of optimized single-threaded implementation on in-order core; MC-IO = speedup of
multi-threaded implementation on 4 in-order cores over single in-order core; MC-O3 = speedup of
multi-threaded implementation on 4 out-of-order cores over single out-of-order core; I = ratio of
total inst fetches to total dyn. insts; A = average active µthreads in LTA engine per dyn. inst; S% =
percent of execution time stalled due to non-memory microarchitectural latencies; M = misses in
L1 D$ per thousand dyn. insts.

as the µtask to µthread mapping. For example, sgemm and dct8x8m see noticeable performance

degradations with tighter spatial task coupling even though they both have relatively high LLFU

instruction densities. Comparing LTA-8/4x4/1 to LTA-8/1x4/1, the percent of time when stalled

waiting on D$ misses increases from 26% to 52% on sgemm and 35% to 60% on dct8x8m.

On the other hand, looser spatial task coupling improves the performance on irregular

application kernels with spatial control divergence. Examples include rdups, sarray, strsearch,

bfs-d, and mis. Spatial control divergence causes lanes executing inactive µthreads to be idle until

reconvergence or the completion of the task group fragment. By increasing the number of lane

groups, more (smaller) task groups can be executed concurrently, which in turn can increase the

average number of active µthreads per cycle. To better understand why this happens, consider the

73

perfect spatial control divergence case in Figure 5.6. Using one lane group with four lanes would

result in only one of the fragments being executed concurrently, for instance the red fragment.

Then imagine spatially splitting the task group in half and mapping these smaller task groups onto

two lane groups with two lanes each: now two of the fragments can be executed concurrently,

for instance the red and the green fragments. Splitting the task groups even further and mapping

them onto four lane groups with one lane each will allow all of the fragments to be executed

concurrently. Decreasing spatial task coupling from LTA-8/1x4/1 to LTA-8/4x4/1 increases the the

average number of active µthreads per cycle across all lanes from 11 to 18 on rdups, 11 to 20 on

sarray, 6 to 10 on strsearch, 10 to 16 on bfs-d, and 5 to 10 on mis.

Note that this does not address temporal control divergence since density-time already com-

presses chimes that have no active µthreads. However, this effect can still improve performance

even when there is mixed control divergence (which is the more realistic scenario) precisely be-

cause density-time is able to compress inactive chimes. For example, Figure 5.6 with one lane

group would yield only one active µthread per cycle, but four lane groups would yield four active

µthreads per cycle because three of the four chimes would be inactive on every lane group.

One tradeoff of increasing the number of lane groups is an increase in I$ conflicts, which can

partially offset the benefit of better tolerating control divergence. Fortunately, this rarely impacts

performance since instruction fetches are amortized across the entire task group. For example, the

only case of a tangible slowdown due to I$ conflicts is in rgb2cmyk, where decreasing spatial task

coupling from LTA-8/4x4/1 to LTA-8/8x4/1 increases the percent of time when stalled due to I$

misses/conflicts from 7% to 38%. However, the I$ port may become the bottleneck as the number

of µthreads in a task group decreases.

The estimated area of the LTA engines examined in this chapter are shown in Table 7.2 and the

area breakdowns by component are shown in Figure 7.2. Overall, LTA engines consume a factor

of 2–3× more area than IO. Figure 7.1 also shows the average area-normalized performance of

LTA engines with varying spatial task coupling. Table 7.2 shows that a four-lane LTA engine is

roughly twice the area of IO (including the I$ and D$), and a eight-lane LTA engine is roughly

triple the area of IO. As such, the average raw speedups of 4× for four-lane LTA engines and 5×

for eight-lane LTA engines are adjusted to average area-normalized speedups of 2× compared

to IO. Although the area-normalized speedup of the LTA engines are only marginally higher than

the area-normalized speedup of O3 in a single-core context, the true area efficiency of the LTA

74

Area LTA Area LTA Area LTA Area LTA Area

IO 0.61 4/1x8/1 1.34 4/2x8/2 1.23 8/1x4/1 1.74 8/8x4/1 1.27
O3 0.76 4/2x8/1 1.23 4/2x8/4 1.24 8/2x4/1 1.46 8/4x4/2 1.33

4/4x8/1 1.17 4/2x8/8 1.24 8/4x4/1 1.32 8/4x4/4 1.34

Table 7.2: LTA Engine Area Estimates – Area is shown in mm2 for single-core configurations
and includes the L1 I$ and D$. Area is estimated using the component-based model described in
Section 6.4.

IO 4/1x8/1 4/2x8/1 4/4x8/1 8/1x4/1 8/2x4/1 8/4x4/1 8/8x4/1
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

A
re

a
(m

m
^
2
)

pib

tmu

rf

slfu

llfu

lsu

wq

dcache

icache

gpp

Figure 7.2: Area Breakdown of Single-Core LTA Engines with Variable Spatial Task-
Coupling – Absolute area breakdowns of various 32-µthread LTA engines with variable spatial
task coupling are shown. Both four-lane and eight-lane configurations are shown. In general, the
area of LTA engines are 2–3× larger than the baseline in-order core.

platform will be made clear in a multi-core context later in this chapter. In addition, looser spatial

task coupling improves area-normalized performance as sharing resources reduces absolute

area while not severely impacting average performance. Shared resources include the LLFUs

and D$ memory ports, the latter of which impacts how the cache is banked and ported, as well as

the crossbar network used to access cache banks. Figure 7.2 shows that for the largest LTA engine

in this study, LTA-8/1x4/1, the area of the LLFUs and the D$ crossbar network is 30% of the total

area, which decreases as more resources are shared. However, this is partially offset by an increase

in area from per-lane-group PIBs and frontend units (i.e., FU, DU, IU).

75

io o3
4/1x8/1

4/2x8/1
4/4x8/1

8/1x4/1
8/2x4/1

8/4x4/1
8/8x4/1

0.0

0.5

1.0

1.5

2.0

2.5
bilateral

io o3
4/1x8/1

4/2x8/1
4/4x8/1

8/1x4/1
8/2x4/1

8/4x4/1
8/8x4/1

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

sgemm

io o3
4/1x8/1

4/2x8/1
4/4x8/1

8/1x4/1
8/2x4/1

8/4x4/1
8/8x4/1

0.0

0.5

1.0

1.5

2.0
strsearch

io o3
4/1x8/1

4/2x8/1
4/4x8/1

8/1x4/1
8/2x4/1

8/4x4/1
8/8x4/1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

mis

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
n
er

g
y
 (

m
J)

icache

pib

tmu

front

rf

rt/rob

slfu

llfu

lsu

dcache

Figure 7.3: Spatial Task-Coupling Energy
Breakdown

2 4 6 8 10 12 14

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

bilateral

2 4 6 8 10

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

sgemm

1 2 3 4 5 6

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

strsearch

1 2 3 4 5 6 7

0.4

0.6

0.8

1.0

mis

0.0 0.2 0.4 0.6 0.8 1.0

Performance

0.0

0.2

0.4

0.6

0.8

1.0

E
n

er
g

y
 E

ff
ic

ie
n

cy

io

o3

4/1x8/1

4/2x8/1

4/4x8/1

8/1x4/1

8/2x4/1

8/4x4/1

8/8x4/1

Figure 7.4: Spatial Task-Coupling Energy Ef-
ficiency vs. Performance

76

Figure 7.3 shows the absolute energy breakdowns of LTA engines with varying spatial task cou-

pling for two regular application kernels, bilateral and rgb2cmyk, and two irregular application ker-

nels, strsearch and mis. In general, tighter spatial task coupling improves energy efficiency by

amortizing the memory-access and frontend energy across more µthreads. This amortization

is limited to active µthreads, thus the energy reduction is more significant on regular application

kernels. Because I$ and D$ access energy are the dominant contributors to total energy in the LTA

engines, the primary energy savings are derived from amortizing memory accesses. Specifically,

the instruction fetch amortization offers the biggest energy savings. For example, comparing LTA-

8/4x4/1 to LTA-8/1x4/1, the ratio of instructions fetched to total dynamic instructions decreases

from 0.14 to 0.03 on bilateral, 0.13 to 0.03 on sgemm, 0.51 to 0.20 on strsearch, and 0.49 to 0.25

for mis. The PIBs further reduce instruction fetch energy by providing less expensive accesses to

a given cache line. For all four application kernels, the combined I$ and PIB energy consistently

decreases with tighter spatial task coupling. Increasing the number of lane groups increases en-

ergy due to redundant accesses for the same instruction, for irregular application kernels as well as

regular application kernels with low spatial control divergence. Tighter spatial task coupling also

facilitates memory coalescing across more lanes, but this is offset by the increased energy from

higher-ported D$ crossbar networks. This is why some regular application kernels like sgemm

only see marginal D$ energy savings in LTA-8/1x4/1 compared to LTA-8/8x4/4 even though 35%

of all loads are coalesced. The frontend energy is less dominant, but the savings are tangible in

more irregular application kernels. In regular application kernels, amortization across as few as

four µthreads makes the frontend energy negligible.

Figure 7.4 shows the energy efficiency vs. performance of LTA engines with varying spatial

task coupling for the same subset of application kernels in the energy breakdown. Each point rep-

resents the energy efficiency and performance of a different configuration in the LTA task-coupling

taxonomy normalized to the baseline scalar in-order core. On average, the LTA engines achieve

improvements in energy efficiency of 1.2–1.5× compared to IO and 2.6–3.1× compared to O3.

One important point here is that regular application kernels that suffer from the aforementioned

increase in D$-related stalls, like sgemm, still have higher energy efficiency with tighter spatial

task coupling even though performance may decrease. All regular application kernels in this study

have higher performance and energy efficiency than both IO and O3. Also, most irregular appli-

cation kernels in this study have higher performance than both IO and O3. However, although all

77

irregular application kernels have higher energy efficiency than O3, not all of them have higher

energy efficiency than IO. For example, in application kernels like mis, increasing the number of

concurrent µthreads can exacerbate aborts from failing to obtain fine-grain locks as well as conflict

misses in the cache. The resulting increase in D$ energy outweighs the reduction in I$ and frontend

energy. Comparing IO to LTA-8/1x4/1, the number of total D$ accesses increases by 59% and the

miss rate increases from 23% to 54%.

Although the average performance in Figure 7.1 does not significantly change with varying

spatial task coupling, the key point here is that the extreme levels of spatial task coupling are

specialized for either regular or irregular loop-task parallelism. For a true 3P platform, reducing

the performance variance across applications with diverse loop-task parallelism is just as important

as high average performance. These results suggest that moderate spatial task coupling is ideal

for achieving a reasonable compromise across both regular and irregular loop-task parallel

applications in terms of performance, area, and energy. As such, LTA-4/2x8/1 and LTA-8/4x4/1

can be identified as the most promising configurations for spatial task coupling in LTA engines.

7.2 Loop-Task Accelerator Engine: Temporal Task-Coupling

Figure 7.5 shows the single-core performance of LTA engines with varying temporal task cou-

pling. Moderate temporal task coupling can improve performance on some regular applica-

tion kernels by reducing stalling due to cache misses. Examples include bilateral, mriq, and

sgemm. The reason for this is that increasing the number of chime groups creates smaller task

groups, which as discussed before, means less µthreads will stall on a cache miss. For example,

decreasing temporal task coupling from LTA-8/4x4/1 to LTA-8/4x4/2 reduces the percent of time

when stalled waiting on D$ misses from 10% to 4% on bilateral, 20% to 11% on mriq, and 26%

to 9% on sgemm.

However, as the number of chime groups increases, this benefit can quickly become out-

weighed by increased I$ conflicts and decreased IU utilization. Recall that I$ conflicts caused

by increasing the number of lane groups, as discussed in the previous section, was rarely prob-

lematic because instruction fetches could be amortized across a relatively large task-group within

each lane group. Smaller chime groups limit this amortization and further inflate the number of

redundant accesses for the same instruction, thereby putting more pressure on the shared I$ port.

78

nbody

bila
te

ra
l
m

riq

sg
em

m

rg
b2cm

yk

dct
8x8m

knn

bfs
-n

d

ra
dix

-2

ra
dix

-1
rd

ups

sa
rra

y

str
se

ar
ch

bfs
-d dic

t
m

is

m
ax

m
at

chav
g

av
g/a

re
a

0
1
2
3
4
5
6
7
8
9

10

S
p

ee
d

u
p

11 12

IO

O3

LTA-4/2x8/1

LTA-4/2x8/2

LTA-4/2x8/4

LTA-4/2x8/8

LTA-8/4x4/1

LTA-8/4x4/2

LTA-8/4x4/4

Figure 7.5: Performance of Single-Core LTA Engine with Variable Temporal Task-Coupling
– Speedups of various 32-µthread LTA engines with variable temporal task coupling are normalized
against the baseline scalar in-order core for each application kernel. 4-lane and 8-lane configura-
tions with moderate spatial task coupling selected based on the study in Section 7.1 are used as
the starting point for exploring the impact of temporal task coupling. As before, the speedup of
the baseline four-way superscalar out-of-order core is also shown. Application kernels are ordered
such that those with regular loop-task parallelism are on the left and those with irregular loop-task
parallelism are on the right.

Furthermore, if the number of chimes per chime group is less than the number of IUs in a lane

group, the DU will not be able to keep all of the IUs busy unless there is back-pressure. Even

though the DU is capable of dispatching an instruction to each IU per cycle, the number of in-

structions it can dispatch is limited by the instruction fetch. For example, comparing LTA-8/4x4/1

to LTA-8/4x4/4, the average IU utilization decreases by 35% on mriq. Another subtle tradeoff of

increasing the number of chime groups is that the average number of active µthreads per cycle may

decrease. This is because chime groups operate on separate PFBs and reconvergence across chime

groups are not supported, thus some control-flow patterns can actually cause µthreads that would

stay converged with one chime group to become diverged with more chime groups. nbody exhibits

this behavior as evident from the decrease in the average number of active µthreads per cycle from

31 to 25 when comparing LTA-8/4x4/1 and LTA-8/4x4/2.

Similarly, moderate temporal task coupling can improve performance on irregular appli-

cation kernels with temporal control divergence. The only example where this can be observed

is strsearch. Density-time helps tolerate temporal control divergence by compressing chimes with

no active µthreads. This improves lane utilization, but it can also expose microarchitectural laten-

79

cies if the distance between dependent instructions is relatively short. To better understand why

this happens, consider the perfect temporal control divergence case in Figure 5.6. Using one chime

group would result in only one of the fragments being executed until completion or reconvergence.

A back-to-back dependency on an LLFU instruction that takes four cycles would cause a stall of

four cycles. Using two chime groups would allow one fragment from each chime group to be mul-

tiplexed in time, reducing the stall to two cycles on the same back-to-back dependency. Using four

chime groups would completely hide this microarchitectural latency. In addition, fewer chimes

per chime group reduce the branch resolution latency since LTA engines wait for all µthreads to

resolve the branch before proceeding. Decreasing temporal task coupling from LTA-8/4x4/1 to

LTA-8/4x4/2 decreases the percent of time when stalled waiting on all branches/LLFUs/D$ from

38% to 13% on strsearch.

The same issues with increasing the number of chime groups apply to irregular application

kernels as well. For example, comparing LTA-8/4x4/1 to LTA-8/4x4/4 on strsearch, the percent of

time when stalled waiting on I$ misses/conflicts increases from 37% to 55%, and the average IU

utilization decreases by 60%.

Figure 7.5 also shows the average area-normalized performance of LTA engines with varying

temporal task coupling. Table 7.2 shows that increasing the number of chime groups in both the

four-lane and eight-lane LTA engines adds a negligible area overhead of <1%. The only contribu-

tors to this area overhead are the additional per-chime-group PIBs as well as the more sophisticated

logic for multiple dispatch in the DU. Moderate temporal task coupling only slightly decreases

average raw speedups, so the area-normalized speedup remains around 2–2.5× compared to IO.

However, the performance degradation of using extremely loose temporal task coupling more

tangibly degrades area-normalized performance as well.

Figure 7.6 shows the absolute energy breakdowns of LTA engines with varying temporal task

coupling for two regular application kernels, bilateral and rgb2cmyk, and two irregular application

kernels, strsearch and mis. The results indicate that looser temporal task coupling diminishes

energy efficiency by inflating redundant instruction fetches and frontend processing, while

only marginally improving performance. This is true for both regular and irregular application

kernels. For example, comparing LTA-8/4x4/1 to LTA-8/4x4/4, the ratio of instructions fetched to

total dynamic instructions increases from 0.14 to 0.51 on bilateral, 0.13 to 0.50 on sgemm, 0.51 to

0.67 on strsearch, and 0.49 to 0.55 for mis.

80

io o3
4/2x8/1

4/2x8/2
4/2x8/4

4/2x8/8
8/2x4/1

8/2x4/2
8/2x4/4

0.0

1.0

2.0

bilateral

io o3
4/2x8/1

4/2x8/2
4/2x8/4

4/2x8/8
8/2x4/1

8/2x4/2
8/2x4/4

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

sgemm

io o3
4/2x8/1

4/2x8/2
4/2x8/4

4/2x8/8
8/2x4/1

8/2x4/2
8/2x4/4

0.0

1.0

2.0
strsearch

io o3
4/2x8/1

4/2x8/2
4/2x8/4

4/2x8/8
8/2x4/1

8/2x4/2
8/2x4/4

0.0

1.0

2.0

3.0

mis

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

E
n
er

g
y
 (

m
J)

icache

pib

tmu

front

rf

rt/rob

slfu

llfu

lsu

dcache

Figure 7.6: Temporal Task-Coupling Energy
Breakdown

1 2 3 4 5 6 7 8 9

0.6

0.8

1.0

1.2

1.4

bilateral

1 2 3 4 5 6 7 8 9 10 11 12

0.6
0.8
1.0
1.2
1.4
1.6
1.8

sgemm

1 2 3 4 5 6

0.6
0.8
1.0
1.2
1.4
1.6
1.8

strsearch

1 2 3 4

0.4

0.6

0.8

1.0

mis

0.0 0.2 0.4 0.6 0.8 1.0

Performance

0.0

0.2

0.4

0.6

0.8

1.0

E
n

er
g

y
 E

ff
ic

ie
n

cy

io

o3

4/2x8/1

4/2x8/2

4/2x8/4

4/2x8/8

8/4x4/1

8/4x4/2

8/4x4/4

Figure 7.7: Temporal Task-Coupling Energy
Efficiency vs. Performance

81

Figure 7.7 shows the energy efficiency vs. performance of LTA engines with varying temporal

task coupling for the same subset of application kernels in the energy breakdown. Each point repre-

sents the energy efficiency and performance of a different configuration in the LTA task-coupling

taxonomy normalized to the baseline scalar in-order core. The average improvement in energy

efficiency for LTA engines with moderate temporal task coupling is 1.1–1.3×, whereas the im-

provement for LTA engines with extremely loose temporal task coupling is only 1.03–1.04×. The

key point here is that, in a few cases, moderate temporal task coupling can non-trivially improve

performance in both regular and irregular application kernels (e.g., bilateral, sgemm, strsearch)

with a minimal energy overhead. Unfortunately, application kernels with inter-thread communica-

tion and fine-grain locking still exhibit lower energy efficiency regardless of the level of temporal

task coupling.

These results seem to suggest that using a single chime group might be the most promising

approach, but these benchmarks mostly fit within the L2 cache. Looser temporal task coupling

will likely result in improved performance with irregular memory accesses that miss in the L2

cache or with longer L1/L2 cache miss penalties. Furthermore, these experiments were based on

a 32-µthread LTA engine. Increasing the total number of µthreads might motivate looser temporal

task coupling. The case studies in Section 7.4.2 and 7.4.3 validate these hypotheses. Overall,

the conclusion of this study is that moderate spatial and temporal task coupling can achieve

high performance on both regular and irregular benchmarks with relatively high area and

energy efficiency. As such, LTA-4/2x8/2 and LTA-8/4x4/2 can be identified as the most promising

configurations for both spatial and temporal task coupling in LTA engines.

7.3 Loop-Task Accelerator Platform

Based on the detailed design-space exploration of spatial and temporal task coupling thus far,

a promising LTA engine configuration for accelerating both regular and irregular applications was

identified in a single-core context. This section provides a more holistic evaluation of the LTA plat-

form with respect to the 3P’s. To this end, the LTA engine is examined in a multi-core context to

ascertain if exploiting loop-task parallelism both across cores and within a core yields multiplica-

tive effects in performance. In addition, a qualitative analysis of the productivity and portability of

the LTA platform is offered.

82

nb
od

y

bi
la

te
ra

l

m
riq

sg
em

m

rg
b2

cm
yk

dc
t8

x8
m

kn
n

bf
s-

nd

ra
di

x-
2

ra
di

x-
1

rd
up

s

sa
rr
ay

st
rs

ea
rc

h
bf

s-
d

di
ct

m
is

m
ax

m
at

chav
g

0
4
8

12
16
20
24
28
32

S
p
ee

d
u
p

34 37 42

IO MC-IO MC-O3 MC-LTA-4/2x8/2 MC-LTA-8/4x4/2

Figure 7.8: Performance of LTA Platform on Multi-Core System – Speedups of the most
promising 4-lane and 8-lane 32-µthread LTA engines in a 4-core system normalized against a
single in-order core for each application kernel. The speedups of the in-order and out-of-order
baseline cores in a 4-core system are also shown for reference.

7.3.1 Combining Inter-Core and Intra-Core Mechanisms

Figure 7.8 shows the performance of a quad-core system with either an LTA-4/2x8/2 or LTA-

8/4x4/2 LTA engine per core. The results confirm that the LTA platform is able to achieve mul-

tiplicative effects from exploiting loop-task parallelism both across cores and within a core

on both regular and irregular loop-task parallel applications. Referring back to Figure 7.5,

the average speedup of the most promising LTA engines is 4.2–5.3× over IO, and using the LTA

runtime on MC-IO yields an average speedup of 3.1× (see Table 7.1). Both MC-LTA-4/2x8/2 and

MC-LTA-8/4x4/2 are able to achieve ideal multiplicative speedups of 13–16×. Compared to MC-

IO, the LTA platform is able to achieve average improvements of 5.5× in raw performance, 2.5×

area-normalized performance, and 1.2× in energy efficiency. Even compared to a more aggressive

MC-O3, the LTA platform improves raw performance by 3.0×, performance per area by 1.7×, and

energy efficiency by 2.5×.

Recall that in Section 7.1, the single-core LTA engines were only marginally more area efficient

than O3. This was because compared to IO, O3 only increases area by 1.25× while achieving an

average speedup of 2×, whereas the LTA engines increase area by 2–3× while achieving average

speedups of 4–5×. However, the LTA engines in a multi-core system are noticeably more area

efficient than O3. Although the area scales at the same rate for both baselines and the LTA engines,

83

the performance of the LTA engines scales at a significantly higher rate than either IO or O3

because of the aforementioned multiplicative effect.

The results thus far suggest that the eight-lane configuration, LTA-8/4x4/2, is a better final

LTA engine candidate than the four-lane configuration, LTA-4/2x8/2. Although LTA-8/4x4/2

has 8% more area and is 4% less energy efficient than LTA-4/2x8/2, the increase in average speedup

from 13× to 17× is well worth the relatively minor overheads. In fact, the area-normalized per-

formance of LTA-8/4x4/2 is 18% higher than LTA-4/2x8/2.

7.3.2 Productivity and Portability

In terms of productivity, the application kernels used in the evaluation were ported from the

corresponding TBB implementations with minimal LTA-specific optimizations. Since the LTA

platform uses loop-tasks as the common abstraction across software and hardware, porting the

benchmarks was a simple matter of replacing TBB’s parallel_for constructs with LTA-specific

own macros and linking in the proper libraries.

In terms of portability, a single implementation of the benchmark can be written and com-

piled once, then executed using the LTA platform on a system with any combination of GPPs

and homogeneous or heterogeneous LTA engines. Of course, a limitation is that existing ar-

chitectures would have to decode the xpfor instruction as a conventional jalr instruction to be

compatible with the LTA platform.

Let us revisit the challenges with productivity and portability in the application development

flow discussed in Chapter 2. AVX was dependent on eliminating control flow and aligning data

structures to enable coalesced memory accesses. The LTA engine is designed to handle control

divergence within a task group and memory accesses can be coalesced regardless of alignment.

TBB required manually setting a grain size to determine an optimal task size. The LTA runtime

and TMU in the LTA engine work together to dynamically determine the optimal task size for the

available LTA engine. Combining TBB with AVX resulted in interference between the disjoint

abstractions for exploiting loop-task parallelism across and within cores. The LTA platform uses

loop-tasks as the common abstraction. MIC had different tuning parameters from TBB even when

using the same software framework and struggled to achieve resource-proportional performance

for both regular and irregular applications. The LTA platform can use the same implementation for

GPPs or any LTA engine, and is capable of achieving resource-proportional speedups for diverse

84

loop-task parallelism. GPGPU had a vastly different offload programming model and required

extensive manual optimizations for irregular applications. The LTA platform uses a native pro-

gramming model, loop-task functions have no limitations on argument types (e.g., array of structs

are supported), and does not require different optimizations for irregular applications to achieve

high performance. Although further LTA-specific optimizations might improve performance, the

key point is that they are not necessary to extract high performance from the LTA platform

for both regular and irregular loop-task parallel applications.

7.4 Loop-Task Accelerator Case Studies

The following case studies are meant to provide deeper insights into the impact of several con-

figurable parameters in the LTA engine template. To this end, the results presented here will focus

on smaller subsets of LTA engine configurations and application kernels that serve to highlight

these insights.

7.4.1 Impact of Shared LLFUs on Spatial Task-Coupling

The task coupling taxonomy presented in this thesis assumed that looser spatial task coupling

would always be accompanied by more sharing of LLFUs across lane groups, but resource sharing

is in fact a dimension that is orthogonal to task coupling.

Figure 7.9 shows the performance of eight-lane 32-µthread LTA engines in a single-core system

with variable spatial task coupling without any sharing of LLFUs across lane groups normalized

to the performance of the baseline IO core for each application kernel. Note that the memory

port sharing is unchanged from before (i.e., single I$ port, scaling D$ ports). The results show

that looser spatial task coupling generally yields better performance on both regular and

irregular application kernels when each lane always has a dedicated set of LLFUs. This is not

surprising, since the primary performance benefit of tighter spatial task coupling seen in Section 7.1

was the increased LLFU bandwidth. Although looser spatial task coupling without LLFU sharing

certainly limits the corresponding savings in area, the performance benefits are great enough that

the average area-normalized performance is still slightly higher than tighter spatial task coupling.

85

nbody

bila
te

ra
l
m

riq

sg
em

m

rg
b2cm

yk

dct
8x8m

knn

bfs
-n

d

ra
dix

-2

ra
dix

-1
rd

ups

sa
rra

y

str
se

ar
ch

bfs
-d dic

t
m

is

m
ax

m
at

chav
g

av
g/a

re
a

0
2
4
6
8

10
12
14

S
p

ee
d

u
p

IO O3 LTA-8/1x4/1 LTA-8/2x4/1 LTA-8/4x4/1 LTA-8/8x4/1

Figure 7.9: Variable Spatial Task-Coupling with No LLFU Sharing – Speedups of 8-lane
32-µthread LTA engines with variable temporal task coupling and no LLFU sharing normalized
against the baseline scalar in-order core for each application kernel. This means that there is
always a dedicated LLFU for each lane regardless of the level of spatial task coupling.

For instance, not sharing LLFUs increases the area of LTA-8/8x4/1 by 23% but also increases the

average raw performance from 5× to 7×.

This may seem to suggest that looser spatial task coupling without LLFU sharing is a more

promising direction for LTA engines, but energy efficiency remains as the key weakness of looser

spatial task coupling. Not sharing LLFUs does not change the fact that looser spatial task cou-

pling reduces the number of µthreads across which the instruction fetch and frontend access are

amortized. Even without LLFU sharing, tighter spatial task coupling is able to achieve the

same performance as looser spatial task coupling with substantially higher energy efficiency

on regular applications. Furthermore, looser spatial task coupling in conjunction with looser

temporal task coupling is still more susceptible to bottlenecks at the shared I$ port. Separating I$

port sharing from task coupling by provisioning per-lane-group I$ ports can address this issue at

the cost of higher area and energy due to the more complex I$ crossbar networks.

A separate experiment with no D$ port sharing, but standard I$ port and LLFU sharing was also

conducted. In this case, the performance benefits of using a dedicated D$ port per lane regardless

of spatial task coupling was minimal. Specifically, using dedicated D$ ports yielded a maximum

improvement of 5% compared to sharing D$ ports, which was not enough to offset the increase in

area and energy due to the more complex D$ crossbar network.

86

IO O
3

8
/4

x
4

/1
8

/4
x

4
/2

8
/4

x
4

/4

8
/4

x
8

/1
8

/4
x

8
/2

8
/4

x
8

/4
8

/4
x

8
/8

8
/4

x
1

2
/1

8
/4

x
1

2
/2

8
/4

x
1

2
/4

8
/4

x
1

2
/6

8
/4

x
1

2
/1

2

8
/4

x
1

6
/1

8
/4

x
1

6
/2

8
/4

x
1

6
/4

8
/4

x
1

6
/8

8
/4

x
1

6
/1

6

0

1

2

3

4

5

6

7

S
p
ee

d
u
p

IO

O3

32-uthread LTA

64-uthread LTA

96-uthread LTA

128-uthread LTA

Figure 7.10: Variable µthread Count and
Temporal Task-Coupling – Speedups of 8-lane
LTA engines with 32, 64, 96, and 128 total
µthreads with variable temporal task coupling
normalized against the baseline scalar in-order
core for strsearch.

20 cycles 100 cycles 200 cycles 500 cycles
0

1

2

3

4

5

6

7

S
p
ee

d
u
p

IO

O3

LTA-8/4x8/1

LTA-8/4x8/2

LTA-8/4x8/4

LTA-8/4x8/8

Figure 7.11: Variable Memory Latency and
Temporal Task-Coupling – Speedups of 8-lane
64-µthread LTA engines with variable temporal
task coupling normalized against the baseline
scalar in-order core for strsearch using L1 miss
latencies ranging from 20–500 cycles.

7.4.2 Impact of µthread Count on Temporal Task-Coupling

The conclusions form the design space exploration in Section 7.2 was that moderate temporal

task coupling was desirable to balance the benefits of hiding more microarchitectural latencies with

the overheads of I$ conflicts and decreased IU utilization. However, only a few application kernels

exhibited any benefit from temporal task coupling and the resulting speedups were relatively minor.

The goal of the next two case studies is to examine reasonable scenarios in which these overheads

can be minimized in order to ascertain the true potential of looser temporal task coupling.

One way to address the overhead of I$ conflicts is to increase the total number of µthreads in an

LTA engine. The performance impact of I$ conflicts was not readily apparent when only exploring

looser spatial task coupling. The bottleneck only manifested when looser temporal task coupling

was also introduced. This was a consequence of having many, smaller task groups. Assuming the

same number of lane groups, having many chime groups is theoretically preferable. It provides

more opportunities to hide microarchitectural latencies. The problem is that when the number of

87

chimes in each chime group is too small, redundant instruction fetches both across and within a

lane group increases the pressure on the shared I$ port.

Figure 7.10 shows the performance of single-core LTA engines with 32, 64, 96, and 128 total

µthreads, each with varying temporal task coupling, on strsearch. In the spirit of a deeper dive,

strsearch is used to understand the trends across a much larger number of configurations since it

yielded the most benefit from looser temporal task coupling in the main evaluation. All LTA en-

gines have eight lanes and four lane groups to reflect the same spatial task coupling configuration

selected in Section 7.1. The results show that increasing the total number of µthreads allows for

a degree of temporal task coupling that achieves a more optimal balance between the number

of task groups and the size of the task group. Comparing the best temporal task coupling config-

uration within each group of same-µthread-count LTA engines, from LTA-8/4x4/2 to LTA-8/4x8/4

to LTA-8/4x12/6 to LTA-8/4x16/8, the percent of execution time stalled due to I$ misses/conflicts

decreases from 49% to 40% to 30% to 22%, respectively. Compared to more tightly coupled con-

figurations, these configurations are also able to reduce the percent of execution time stalled due

to LLFU or D$ misses/conflicts from 15% to 3%. Note that in most cases, extreme loose temporal

task coupling is not desirable, as a single-chime chime group makes it very difficult to keep all

IUs busy unless there is significant back-pressure on the frontend. Of course, increasing the total

µthread count comes at the cost of a notable increase in area from adding more register file contexts

to the LTA engine.

7.4.3 Impact of Memory Latency on Temporal Task-Coupling

Even though LTA engines are able to dispatch an instruction to each of the three IUs within

a lane group every cycle, it can be difficult to saturate the dispatch bandwidth since LTA engines

can only fetch one instruction per cycle. Tighter temporal task coupling can more easily keep all

of the IUs busy in spite of this because each dispatched instruction keeps a single IU busy for

multiple cycles. However, looser temporal task coupling may not be able to keep all the IUs busy

unless there is significant back-pressure on the frontend that causes instructions to be queued up for

simultaneous dispatch at a later time. Because the datasets used in the evaluation are small enough

that they do not cause many misses in the L2 cache, thus reducing opportunities for instructions

to be queued up due to back-pressure, the corresponding results may not be capturing the full

88

potential of looser temporal task coupling. As such, the goal of this case study is to examine the

impact of longer memory latencies on the efficacy of looser temporal task coupling.

Figure 7.11 shows the performance of the single-core eight-lane 64-µthread LTA engines with

variable temporal task coupling examined in the previous case study normalized to the performance

of the baseline in-order core on strsearch, using an L1 D$ with increasing miss penalties ranging

from 20 (nominal) to 500 cycles. Obviously this is not realistic, but the hope is to emulate the

impact of using larger datasets. The results do not seem to indicate that increasing the memory

latency improves the efficacy of looser temporal task coupling, at least on the surface. For instance,

the relative speedup of LTA-8/4x8/1 compared to LTA-8/4x8/4 is roughly the same regardless of

the memory latency. However, a deeper comparison of LTA-8/4x-8/1 to LTA-8/4x8/4 reveals that

the percent of execution time stalled due to D$ misses/conflicts decreases from 10% to 2% for a

memory latency of 20 cycles, 12% to 3% for 100 cycles, 15% to 2% for 200 cycles, and 25% to

4% for 500 cycles. These numbers seem to suggest that looser temporal task coupling is indeed

able to reduce the sensitivity of the LTA engine to longer memory latencies. Despite these benefits,

the performance is ultimately bottlenecked by the instruction fetch which is exacerbated by looser

temporal task coupling. For the same comparison, the percent of execution time stalled due to I$

misses/conflicts increases from 34% to 40% for a memory latency of 20 cycles, 33% to 39% for

100 cycles, 33% to 39% for 200 cycles, and 26% to 34% for 500 cycles. It is also interesting to

note that compared to the baselines, IO and O3, LTA engines are generally less sensitive to longer

memory latencies due to multiple chimes hiding microarchitectural latencies for both tight and

loose temporal task coupling.

Given these insights, for systems more prone to D$ bottlenecks, it may be preferable to have

slightly tighter spatial task coupling (but still moderate) to offset the instruction fetch bottleneck

while still being able to reap the benefits of moderate temporal task coupling. Another possibility

is to increase the instruction fetch bandwidth at the cost of increased area and energy due to the

I$ crossbar network. In fact, these case studies shed some light on why GPGPUs have very large

µthread counts (e.g., over a thousand CUDA threads per SIMT engine vs. tens of µthreads per LTA

engine), wider instruction fetch, and wider dispatch. This is especially important on GPGPUs,

where the extreme temporal warp multithreading tends to thrash the cache and generate inefficient

DRAM accesses, both of which create significant data memory bottlenecks.

89

CHAPTER 8
RELATED WORKS

This chapter describes a subset of the large body of related work on building 3P platforms.

As mentioned before, the proposed LTA platform is certainly not the first attempt at addressing

the 3P’s, although it may be the first software/hardware co-design approach to address the 3P’s

by focusing on exploiting loop-task parallelism. Existing works have mainly focused on software-

centric or hardware-centric to addressing the 3P’s.

8.1 Software-Centric Approaches

Software-centric approaches innovate at the runtime, language, and compiler levels to enable

some or all of the 3P’s across multiple architectures, but are designed to be layered on top of ex-

isting hardware architectures. Such approaches do not directly advocate for any changes to the

underlying hardware, thus they may struggle with performance on both regular and irregular appli-

cations, or lose efficiency due to a reliance on software translation to map the parallel abstraction

to hardware.

Two popular examples include OpenCL [ope11] and C++ AMP [Som11], which expose work-

groups/tiles as common abstractions at the programming API and runtime levels. These frame-

works use offload programming models that introduce many of the challenges associated with

CUDA described in Chapter 2. For instance, both C++ AMP and OpenCL operate at relative coarse

granularities of parallelism (i.e., kernel launches) for GPGPUs as well as CMPs/MICs. However,

C++ AMP makes kernel argument transfers easier (e.g., implicit data transfer using array classes)

and OpenCL provides better support for combining multi-threading and vectorization on CMP-

s/MICs (e.g., automatically SIMD-aligned flattened vector classes, implicit vectorization compiler

pass for eligible work-group sizes) [Rot11]. Unfortunately, successful auto-vectorization on both

C++ AMP and OpenCL still requires dealing with eliminating control flow and restrictions on data

transfer types. Although these frameworks make it easier to port between CMPs and GPGPUs

compared to TBB, other architecture-specific optimizations are necessary to yield the highest per-

formance. It is also worth noting that neither OpenCL nor C++ AMP have built-in support for

dynamic work-stealing which can limit load balancing compared to alternatives such as TBB or

Cilk++.

90

AMD’s Heterogeneous System Architecture (HSA) [amd12b] builds off of OpenCL and C++

AMP to push the common abstraction of work-groups down to a virtual ISA layer called the HSA

intermediate language (HSAIL). Unifying the abstraction at higher levels in the computing stack

trades off efficiency for flexibility. In addition to the translation overhead, HSA still relies on

multiple physical ISAs that map to different architectures, which can further hinder fine-grain dy-

namic work-stealing across heterogeneous resources beyond the coarse-grain parallelism exposed

by OpenCL and C++ AMP. Although the HSA vision allows room to incorporate diverse accel-

erator architectures (like LTA engines), it does not specify a standard microarchitectural template

that natively interprets the common abstraction, but rather requires external modifications to the

compiler backend to translate this abstraction to a given architecture.

Domain-specific languages (DSLs), such as Halide [RKBA+13], OptiML [SLB+11], and

Delite [BSL+11], represent another class of software-centric 3P platforms. DSLs use higher lev-

els of abstraction specific to an application domain (e.g., image processing for Halide, machine

learning for OptiML) to achieve high productivity and performance, at the cost of generality at the

application level. Internal DSLs expose these abstractions at the programming API and runtime

levels by using libraries to wrap domain-specific abstractions. They are generally easier to imple-

ment and do not require modifications to the compiler, but limit static analysis and optimizations

on internal representations (IR) of applications. External DSLs further push these abstractions

down to the compiler level by essentially implementing a truly separate programming language for

the domain with its own compiler. They are much more difficult to implement but significantly

improve performance. A hybrid approach uses language virtualization to generate a wide range

of internal DSLs [LBS+11, CDM+10] that leverage meta-programming to perform static analysis

and optimizations on IR to achieve high performance on multiple hardware architectures without

requiring per-DSL compiler modifications. It should be noted that even DSLs sometimes require

target-specific implementations that reduce portability. For example, Halide code for GPUs is often

quite different than Halide code for CMPs.

External CUDA libraries, such as Theano [AAAea16] and Thrust [BH12], address the chal-

lenge of productivity on specifically on GPGPUs. Theano is a Python library to enable efficient,

fast mathematical operations on matrices, that generates CUDA code. Theano is popular for map-

ping deep neural networks to GPGPUs and is a part of NVIDIA’s cuDNN [cud16]. Thrust is

essentially a port of the C++ standard template library for CUDA, and provides a useful selection

91

of parallel algorithms and data structures compatible with CUDA. Although both libraries indeed

improve productivity, they do not address portability and primarily focus on mapping regular ap-

plications to GPGPUs. The LonestarGPU benchmark suite [BNP12] includes a shared worklist li-

brary that helps mapping of irregular applications such as graph algorithms to GPGPUs, but it still

requires many programmer-months of manual optimizations to achieve the highest performance

on a handful of applications.

As discussed earlier, work-stealing runtimes [BL99, BJK+96, FLR98, ACR13, CM08] are

software-centric approaches to exploiting inter-core task parallelism, but do not extend the same

abstraction to the inter-core level. Work-stealing runtimes can be language-based or library-based,

and utilize continuation stealing or child stealing. Cilk++ is an example of a language-based

continuation-stealing runtime, and TBB is an example of a library-based child-stealing runtime.

Existing work-stealing runtimes are generally unaware of mechanisms for exploiting parallelism

within a core, like vectorization on packed-SIMD units, which can often cause interference when

combining both techniques. However, continuing work on vectorizing compilers [MGG+11] could

help mitigate the challenges with successful auto-vectorization.

8.2 Hardware-Centric Approaches

Hardware-centric approaches innovate at the ISA and microarchitectural levels to enable high

performance for diverse loop-task parallelism, but generally rely on existing software frameworks

to expose parallel abstractions. Such approaches do not significantly change the overarching soft-

ware, which can lead to low productivity and portability.

The LTA platform was inspired by many existing accelerators for exploiting regular loop-

task parallelism. MICs [Kan15, Kan16] (which rely on packed-SIMD units [Hug15]) and GPG-

PUs [nvi16], as well as their challenges with respect to the 3P’s, were discussed at length in Chap-

ter 2. Other SIMT-like architectures like FG-SIMT [KLST13] and vector-threading [KBH+04] use

tighter integration of GPPs and SIMT engines to enable finer-grain parallelism to be exploited, as

well as focus on exploiting intra-warp parallelism rather than inter-warp parallelism (as in GPG-

PUs). The LTA engine is indeed a SIMT architecture like GPGPUs but have many key differ-

ences, including: configurable task-coupling in both time and space, significantly less threads per

core (32 vs. 1536), elastic pipeline with out-of-order writeback, density-time execution, program-

92

counter-based reconvergence, tight integration with GPP, hosted task-based programming model

(as opposed to offload), and software runtime. Of course, inspiration was taken from traditional

vector-SIMD processors like the Cray [Rus78,cra93] and Tarantula [EAE+02] as well, which tend

to be more efficient but at substantial cost to productivity and portability due to the use of explicit

vector instructions.

Other hardware-centric approaches focus on mechanisms or architectures to better tolerate ir-

regular loop-task parallelism. The XLOOPS accelerator [SIT+14] uses lanes that are loosely cou-

pled in space with no coupling in time (only one thread per lane), and are tightly integrated with

the GPP similar to FG-SIMT. Conservation cores [VSG+10] focus on improving energy efficiency

rather than performance by attaching application-specific circuits specialized for executing com-

mon “hot spots” to GPPs in a multi-core system. There are a plethora of microarchitectures for

SIMT architectures to more efficiently handle control-flow and memory-access divergence by dy-

namically changing the size of the warps [MTS10, FSYA09, RE12, FA11], or improving reconver-

gence of diverged warp fragments [DAM+11, Col11b]. Unfortunately, none of these approaches

directly address productivity and portability concerns.

There are also hardware-centric approaches that are capable of adapting to different forms of

loop-task parallelism by dynamically changing the degree of task coupling. For example, vari-

able warp sizing [RJOK15] on GPGPUs leverages a similar intuition about task coupling in

space to dynamically gang smaller warps into a bigger warp via the hardware scheduler to effi-

ciently adapt to different forms of loop-task parallelism. Similarly, temporal SIMT [KDK+11] is

a GPGPU-inspired architecture with eight latency-optimized cores (i.e., out-of-order superscalar

GPPs) and dozens of throughput-optimized cores (i.e., SIMT engines), where each throughput-

optimized core can dynamically configure the spatial task coupling of its eight lanes to adapt to

control and memory-access divergence. In loosely coupled mode, each lane is capable of exe-

cuting 64 threads that are tightly coupled in time, whereas in tightly coupled mode these threads

are aggregated to one large task group. Another example of an architecture that can dynamically

reconfigure spatial task coupling is AMD’s Bulldozer [BBSG11]. Although capable of impressive

speedups on a wide range of loop-task parallel applications, these architectures do not explore

task coupling in time and do not address the productivity and portability concerns associated with

CUDA/OpenCL. Another key challenge with such architectures is the dynamic reconfiguration

overhead in performance, area, and energy.

93

Architectural support for fine-grain work distribution is another topic that pushes software

abstractions down to hardware to specifically accelerate the distribution of tasks more than the

execution of tasks. Carbon [KHN07] and asynchronous direct messages [SYK10] (ADM) provide

special instructions to generate and steal tasks in a CMP. Both focus on more efficiently exploiting

inter-core parallelism without addressing intra-core parallelism. ADM improves upon Carbon by

allowing for software-programmable work distribution algorithms which improves productivity,

but neither address the challenges of portability across different architectures. Hardware work-

lists in GPGPUs [KB14] exposes a shared worklist abstraction often used in graph algorithms to

hardware, allowing for more efficient distribution of work both across cores and within a core.

However, this abstraction is specific to irregular applications, and although productivity is better

than default software worklists, this thesis does not address challenges with portability either.

94

CHAPTER 9
CONCLUSIONS

This thesis proposed the LTA platform, a software/hardware co-design approach to address-

ing the challenge of improving productivity, portability, and performance in modern application

development. Although some may argue that performance is what ultimately determines the suc-

cess of a platform, an impressive potential performance may not be as attractive if extracting this

performance on a single application requires many programmer-months of optimizations by an ex-

perienced programmer. Focusing solely on performance is further complicated by the fact that it is

often difficult to predict which architecture will yield the best performance on a given application.

Existing software-centric approaches that specifically seek to address the 3P’s are promising, but

their reliance on additional layers of software translation to map parallel abstractions to hardware

leave room for improvement in terms of efficiency. Some of the information about the parallelism

exposed in software will be lost during translation. As such, the LTA platform presented in this

thesis sought to provide the 3P’s without sacrificing efficiency by pushing a common parallel ab-

straction from software down the computing stack to the hardware.

The rest of this chapter summarizes the key points and primary contributions of this thesis, as

well as discuss avenues for future work on this topic.

9.1 Thesis Summary and Contributions

This thesis began by describing an in-depth account of my personal experience developing,

porting, and optimizing application kernels for an example application development flow spanning

multiple software frameworks and hardware architectures. This case study suggested that although

some existing platforms may provide one or two of the 3P’s, only a few of them provide all of

the 3P’s, especially for both regular and irregular loop-task parallel applications. Furthermore,

attempting to extract the highest performance out of a hardware substrate by exploiting parallelism

across cores and within a core can unintuitively hurt the 3P’s. Even platforms that specifically seek

to address the 3P’s unfortunately sacrifice efficiency by relying on software translation to map the

abstractions exposed in software to hardware.

The thesis then discussed an early attempt at a hardware-centric approach to a 3P platform,

the FG-SIMT architecture. FG-SIMT addresses productivity and portability by using data-parallel

95

threads as the common parallel abstraction in software and hardware, and a single ISA that can be

executed on GPPs or FG-SIMT engines. Unfortunately, although FG-SIMT is able to achieve high

performance and efficiency on regular applications, it struggled to achieve resource-proportional

performance on more irregular applications. In addition, FG-SIMT was only explored in a single-

core context and does not use a software runtime, so it is unclear how FG-SIMT would fare in a

multi-core context with respect to the 3P’s.

The core of the thesis detailed the software and hardware components of the LTA platform. In

order to make it possible to efficiently encode the parallel abstraction in software and hardware, the

LTA platform exploits a narrower form of task parallelism, called loop-task parallelism, and uses

loop-tasks as the common parallel abstraction. Loop-tasks are exposed at the programming API,

runtime, ISA, and microarchitectural levels. The LTA programming API and runtime are meant to

replicate the productivity of TBB, while using loop-tasks to exploit parallelism both across cores

and within a core. The LTA ISA allows the same implementation of an application to be mapped

to either a GPP or any LTA engine to improve portability, without requiring major modifications

to the compiler. The task-coupling terminology and taxonomy were introduced, which describes

the spectrum of spatial and temporal task coupling. The LTA engine template is a clean-slate

microarchitectural design that can be configured at design-time with variable spatial and temporal

task coupling to target a diverse range of loop-task parallelism. LTA engines can accelerate loop-

task execution by leveraging information about available loop-task parallelism explicitly encoded

into the xpfor instruction.

A detailed evaluation of the LTA platform with respect to the 3P’s was provided, which in-

cluded a deep exploration of the impacts of spatial and temporal task coupling in the LTA engine

on performance, area, and energy. The results indicated that moderate task coupling in both space

and time is the most promising for guaranteeing high performance on both regular and irregular

applications. Overall, the LTA platform in a multi-core system is able to achieve average improve-

ments of 5.5× in raw performance, 2.5× in performance per area, and 1.2× in energy efficiency

compared to a in-order multi-core baseline, and equally impressive improvements compared to a

more aggressive out-of-order multi-core baseline. The LTA platform is able to achieve high per-

formance and efficiency without sacrificing productivity and portability. For example, the same

multi-threaded implementation for the CMP using the LTA software framework can be used with-

out target-specific optimizations on systems with LTA engines.

96

The primary contributions of this thesis are reiterated below:

• Detailed analysis of the 3P challenges in modern application development flows based on

years of computer architecture experience.

• The FG-SIMT architecture, an area-efficient accelerator for regular loop-task parallelism

with microarchitectural mechanisms for exploiting value structure, and a detailed evaluation

of this architecture with respect to performance, area, and energy based on RTL and gate-

level models.

• Software components of the LTA platform including a productive TBB-like LTA program-

ming API, a task-based work-stealing LTA-aware runtime and lightweight LTA ISA ex-

tensions including a new xpfor instruction that explicitly encodes loop-tasks as a common

parallel abstraction.

• A task-coupling taxonomy that describes the spectrum of how tasks can be coupled in space

and time, with appropriate terminology.

• Hardware components of the LTA platform including an elegant microarchitectural template

for the LTA engine that can be configured at design time with variable spatial and temporal

task coupling to target diverse loop-task parallelism.

• Deep design space exploration of the impacts of task coupling in the LTA engine on perfor-

mance, area, and energy, as well as a 3P evaluation of the LTA platform using a vertically

integrated research methodology.

This thesis explores a subset of the larger, more difficult question of how computer architects

can build and program parallel heterogeneous systems. On one hand, the application landscape

is rapidly evolving and becoming more complex, necessitating more productive, general software

programming frameworks. On the other hand, the architecture trends are pointing to hardware

specialization for mitigating power limits at the physical level. What is not clear is these seemingly

disparate trends can be reconciled. Regardless of what the answer might be, the best chance of

success will require innovations across the entire computing stack, driving down from applications,

to runtimes, to compilers, to ISAs, to microarchitectures, and to circuits.

97

9.2 Future Work

The LTA platform is a promising first step towards a true 3P platform, but as always, there is

room for improvement. This section discusses several of the most interesting avenues for future

work on the LTA platform.

Extending the parallel abstraction – Currently the LTA platform only exploits loop-task par-

allelism, but it may be possible to broaden the scope of the parallel abstraction without losing too

much efficiency. For example, nested parallelism could be supported by allowing loop-tasks to

dynamically generate more loop-tasks (i.e., parallel_for inside parallel_for). A naive way

to achieve this might be to have each µthread execute the task-stealing routine in the runtime but

the increase in concurrent task queue accesses may cause unnecessary memory contention as seen

in [KB14]. Alternatively, the LTA engine could be modified to allow lane groups to inject newly

generated loop-tasks into separate µtask queues that the TMU could access to partition and dis-

tribute more µtasks across the lane groups. The challenge here is in maintaining portability, as

the parallel_for inside of the loop-task function needs to be compiled such that it can still be

executed serially on the GPP. Another example would be supporting concurrent execution of loop-

tasks for different parallel regions (i.e., “true” task parallelism). Of course this would require the

GPP to continue execution after an xpfor instruction instead of stalling, and only parallel_for’s

with no dependencies would be eligible for concurrent execution.

Heterogeneous LTA engines – One of the conclusions of this thesis is that LTA engines with

moderate spatial and temporal coupling are the most promising for guaranteeing high performance

on a diverse range of loop-task parallelism. Based on this insight, a homogeneous set of LTA en-

gines with moderate task coupling were used to evaluate the LTA platform in a multi-core context.

However, assuming that the LTA platform is extended to support a broader range of task parallelism

as described above, more complex applications with multiple kernels that exhibit different forms

of loop-task parallelism may benefit from a heterogeneous mix of LTA engines in a multi-core

context. The idea here is that the LTA runtime would be able to adaptively schedule loop-tasks to

the LTA engines for which they are most suited based on heuristics collected from the hardware.

For instance, hardware counters in the LTA engines could keep track of the average number of

active µthreads per cycle when executing loop-tasks, then this information could be aggregated by

the runtime and used to schedule loop-tasks with a history of high control-flow irregularity to LTA

98

engines with more loose task coupling, and those with a history of low control-flow irregularity to

LTA engines with more tight task coupling. In the ideal case, the LTA platform as a whole would

be able to achieve close to the maximum speedups seen across all LTA engines in the evaluation

for applications with sufficient diversity of loop-task parallelism.

Reconfigurability of the LTA Engine – Another interesting direction for future work is ex-

ploring the viability of dynamically reconfiguring LTA engines at boot time or run time, as opposed

to a static configuration at design time. Dynamic reconfiguration is certainly an attractive idea that

would ideally allow the LTA platform to achieve the maximum speedup possible on an LTA engine

by configuring the spatial and temporal task coupling to be best suited for a given application.

Reconfiguring the total number of µthreads would be more difficult since each µthread requires

its own register file. However, there are several tradeoffs with this approach including resource

over-provisioning and reconfiguration overheads. To enable reconfiguration at either boot time or

run time, the LTA engine would need to be provisioned to support the maximum number of lane

groups, the maximum number of chime groups, the maximum number of shared LLFUs, and a D$

crossbar that supports the maximum number of memory ports. This means that even if the LTA

engine was configured with looser task coupling, it would not reap the benefits in area-normalized

performance that was seen in the evaluation. The additional reconfiguration logic (e.g., crossbar to

allow a single frontend to manage multiple lanes/chimes, RT/WQ/PFB with dynamic partitioning,

reconfigurable bitwidth of bypass network, etc.) would not only further increase the area overhead

of LTA engines, but could also increase the cycle time due to the increased hardware complexity.

Depending on how fast reconfiguration can occur (e.g., 10s of cycles, 100s of cycles, 1000s of

cycles) and how often reconfiguration is triggered (e.g., between loop-tasks, between parallel re-

gions, between application kernels), reconfiguration may further offset the maximum speedup of

a statically configured LTA engine as well. In order to prevent impacts on productivity by forcing

reconfiguration decisions at the programmer level, dynamic reconfiguration will likely require an

LTA runtime that can schedule loop-tasks based on heuristics similar to the one that would be used

with a heterogeneous mix of statically configured LTA engines.

Multiple LTA Engines in a Single-Core System – An interesting design point in terms of

area efficiency is a single GPP connected to multiple LTA engines. In this case, the GPP would act

as a dedicated core task generator that offloads core tasks to available LTA engines for accelera-

tion. This is a compelling alternative since it would ideally yield similar speedups of a comparable

99

multi-core system with LTA engines without needing the overhead of extra GPPs, system intercon-

nect, and private L1 caches. However, the key tradeoff here is precisely the lack of cache capacity:

multiple LTA engines sharing the same L1 cache system will likely cause significant thrashing.

This could be addressed by allocating per-LTA-engine L1 caches (perhaps only necessary for the

D$, assuming core tasks are from the same parallel region with the same form of loop-task paral-

lelism), but this would greatly offset the area reductions since a majority of the area in a multi-core

system is due to the caches. There is also no reason multiple LTA engines could not be connected

a GPPs within a multi-core context as well. For instance, a two-core system with two LTA engines

per core might be competitive with an four-core system with one LTA engine per core.

100

BIBLIOGRAPHY

[AAAea16] R. Al-Rfou, G. Alain, A. Almahairi, and et al. Theano: A Python framework for fast
computation of mathematical expressions. CORR, abs/1605.02688, 2016.

[ACD+09] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel, P. Un-
nikrishnan, and G. Zhang. The Design of OpenMP Tasks. IEEE Trans. on Parallel
and Distributed Systems (TPDS), 20(3):404–418, Mar 2009.

[ACR13] U. A. Acar, A. Chargeéraud, and M. Rainey. Scheduling Parallel Programs by Work
Stealing with Private Deques. Symp. on Principles and practice of Parallel Program-
ming (PPoPP), Feb 2013.

[AJ88] R. Allen and S. Johnson. Compiling C for Vectorization, Parallelization, and Inline
Expansion. ACM SIGPLAN Conf. on Programming Language Design and Imple-
mentation (PLDI), Jun 1988.

[amd11] HD 6900 Series Instruction Set Architecture, Rev 1.1. AMD Reference Guide, Nov
2011.

[amd12a] AMD Graphics Cores Next Architecture. AMD White Paper, 2012. http://www.
amd.com/us/Documents/GCN_Architecture_whitepaper.pdf.

[amd12b] Heterogeneous System Architecture: A Technical Review. AMD White Paper,
2012. http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/
10/hsa10.pdf.

[BBB+11] N. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,
M. D. Hill, and D. A. Wood. The gem5 Simulator. SIGARCH Computer Architecture
News (CAN), 39(2):1–7, Aug 2011.

[BBSG11] M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas. Bulldozer: An Approach to
Multithreaded Compute Performance. IEEE Micro, 31(2):6–15, Mar/Apr 2011.

[BH12] N. Bell and J. Hoberock. Thrust: A Productivity-Oriented Library for CUDA. Mor-
gan Kaufmann, 2012.

[BJK+96] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. Journal of Parallel and
Distributed Computing, 37(1):55–69, Aug 1996.

[BL99] R. D. Blumofe and C. E. Leiserson. Scheduling Multithreaded Computations by
Work Stealing. Journal of the ACM, 46(5):720–748, Sep 1999.

[BNP12] M. Burtscher, R. Nasre, and K. Pingali. A Quantitative Study of Irregular Programs
on GPUs. Int’l Symp. on Workload Characterization (IISWC), Oct 2012.

101

[Bol12] J. Bolaria. Xeon Phi Targets Supercomputers. Microprocessor Report, Sep 2012.

[BSL+11] K. J. Brown, A. K. Sujeeth, H. Lee, T. Rompf, H. Chafi, M. Odersky, and K. Oluko-
tun. A Heterogeneous Parallel Framework for Domain-Specific Languages. Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT), Oct 2011.

[CDM+10] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. Sujeeth, P. Hanrahan, M. Odersky,
and K. Olukotun. Language Virtualization for Heterogeneous Parallel Computing.
Conf. on Object-Oriented Programming Systems Languages and Applications (OOP-
SLA), Oct 2010.

[CDZ09] S. Collange, D. Defour, and Y. Zhang. Dynamic Detection of Uniform and Affine
Vectors in GPGPU Computations. Workshop on Highly Parallel Processing on a
Chip (HPPC), Aug 2009.

[CJMT10] C. Campbell, R. Johnson, A. Miller, and S. Toub. Parallel Programming with Mi-
crosoft .NET: Design Patterns for Decomposition and Coordination on Multicore
Architectures (Patterns & Practices). Microsoft Press, 2010.

[CK11] S. Collange and A. Kouyoumdjian. Affine Vector Cache for Memory Bandwidth
Savings. Technical Report ENSL-00622654, ENSL, Dec 2011.

[CL05] D. Chase and Y. Lev. Dynamic Circular Work-stealing Deque. Symp. on Parallel
Algorithms and Architectures (SPAA), Jun 2005.

[CL08] B. W. Coon and J. E. Lindholm. System and Method for Managing Divergent
Threads in a SIMD Architecture. US Patent 7353369, Apr 2008.

[CM08] G. Contreras and M. Martonosi. Characterizing and Improving the Performance of
Intel Threading Building Blocks. Int’l Symp. on Workload Characterization (IISWC),
Sep 2008.

[Col11a] S. Collange. Identifying Scalar Behavior in CUDA Kernels. Technical Report HAL-
00622654, ARENAIRE, Jan 2011.

[Col11b] S. Collange. Stack-less SIMT Reconvergence at Low Cost. Technical Report HAL-
00622654, ARENAIRE, Sep 2011.

[cra93] CRAY T3D System Architecture Overview. Cray Research Inc. Referece Manual,
1993.

[cud16] NVIDIA cuDNN–GPU Accelerated Deep Learning. Online Webpage, 2016 (ac-
cessed Sep, 2016). https://developer.nvidia.com/cudnn.

[DAM+11] G. Diamos, B. Ashbaugh, S. Maiyuran, A. Keer, H. Wu, and S. Yalamanchili. SIMD
Re-Convergence at Thread Frontiers. Int’l Symp. on Microarchitecture (MICRO),
Dec 2011.

102

[Dem14] M. Demler. Movidius Eyes Computational Vision. Microprocessor Report, The Lin-
ley Group, Sep 2014. http://www.linleygroup.com/mpr/article.php?id=
11279.

[DKH11] N. Dickson, K. Karimi, and F. Hamze. Importance of Explicit Vectorization for
CPU and GPU Software Performance. Journal of Computational Physics (JCP),
230:5383–5398, Jun 2011.

[DKYC10] G. Diamos, A. Kerr, S. Yalamanchili, and N. Clark. Ocelot: A Dynamic Compiler
for Bulk-Synchronous Applications in Heterogenous Systems. Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), Sep 2010.

[Dub05] M. Dubash. Moore’s Law is Dead, Says Gordon Moore. Techwold, Apr 2005.

[EAE+02] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T. Juan,
G. Lowney, M. Mattina, and A. Seznec. Tarantula: A Vector Extension to the Alpha
Architecture. Int’l Symp. on Computer Architecture (ISCA), Jun 2002.

[EV96] R. Espasa and M. Valero. Decoupled Vector Architectures. Int’l Symp. on High-
Performance Computer Architecture (HPCA), Feb 1996.

[EVS98] R. Espasa, M. Valero, and J. E. Smith. Vector Architectures: Past, Present, and
Future. Int’l Symp. on Supercomputing (ICS), Jul 1998.

[FA11] W. W. Fung and T. M. Aamodt. Thread Block Compaction for Efficient SIMT Con-
trol Flow. Int’l Symp. on High-Performance Computer Architecture (HPCA), Feb
2011.

[FLR98] M. Frigo, C. E. Leiserson, and K. H. Randall. The Implementation of the Cilk-5
Multithreaded Language. ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI), Jun 1998.

[FSYA09] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic Warp Formation:
Efficient MIMD Control Flow on SIMD Graphics Hardware. ACM Trans. on Archi-
tecture and Code Optimization (TACO), 6(2):1–35, Jun 2009.

[GKS13] S. Z. Gilani, N. S. Kim, and M. Schulte. Power-Efficient Computing for Compute-
Intensive GPGPU Applications. Int’l Symp. on High-Performance Computer Archi-
tecture (HPCA), Feb 2013.

[Gwe14] L. Gwennap. Qualcomm Tips Cortex-A57 Plans: Snapdragon 810 Combines Eight
64-Bit CPUs, LTE Baseband. Microprocessor Report, Apr 2014.

[HKOO11] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun. Accelerating CUDA Graph
Algorithms at Maximum Warp. Symp. on Principles and practice of Parallel Pro-
gramming (PPoPP), Feb 2011.

103

[HN07] P. Harish and P. Narayanan. Accelerating Large Graph Algorithms on the GPU Using
CUDA. Int’l Conf. on High-Performance Computing (HIPC), Dec 2007.

[Hug15] C. J. Hughes. Single-Instruction Multiple-Data Execution. Synthesis Lectures on
Computer Architecture, 2015.

[HVS+13] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov, G. Henry,
A. Shet, G. Chrysos, and P. Dubey. Design and Implementation of the Linpack
Benchmark for Single and Multi-node Systems Based on IntelÂő Xeon Phi Copro-
cessor. Int’l Parallel and Distributed Processing Symp. (IPDPS), May 2013.

[int11a] Intel OpenSource HD Graphics Programmer’s Reference Manual, Vol 4, Part 2, Rev
1.0. Intel Reference Manual, May 2011.

[int11b] Introducing Intel Many Integrated Core Architecture. Intel Press Release, 2011.
http://www.intel.com/technology/architecture-silicon/mic.

[int12] Intel SDK for OpenCL Applications: Optimization Guide. Intel Reference
Manual, 2012. http://software.intel.com/sites/landingpage/opencl/
optimization-guide.

[int13] Intel Cilk Plus Language Extension Specification, Version 1.2. Intel Reference
Manual, Sep 2013. https://www.cilkplus.org/sites/default/files/open_
specifications/Intel_Cilk_plus_lang_spec_1.2.htm.

[int15] Intel Threading Building Blocks. Online Webpage, 2015 (accessed Aug 2015).
https://software.intel.com/en-us/intel-tbb.

[jav15] Java API: ForkJoinPool. Online API Documentation, 2015 (accessed
Aug 2015). http://docs.oracle.com/javase/7/docs/api/java/util/
concurrent/ForkJoinPool.html.

[JR13] J. Jeffers and J. Reinders. Intel Xeon Phi coprocessor high-performance program-
ming. Newnes, 2013.

[Kan15] D. Kanter. Knights Landing Reshapes HPC, Sep 2015.

[Kan16] D. Kanter. Xeon Phi 7200 Boots Up for HPC. Microprocessor Report, The Linley
Group, Jul 2016. http://www.linleygroup.com/mpr/article.php?id=11641.

[KB14] J. Kim and C. Batten. Accelerating Irregular Algorithms on GPGPUs Using Fine-
Grain Hardware Worklists. Int’l Symp. on Microarchitecture (MICRO), Dec 2014.

[KBH+04] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Pharris, J. Casper, and
K. Asanović. The Vector-Thread Architecture. Int’l Symp. on Computer Architecture
(ISCA), Jun 2004.

104

[KDK+11] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and the
Future of Parallel Computing. IEEE Micro, 31(5):7–17, Sep/Oct 2011.

[KDY12] A. Kerr, G. Diamos, and S. Yalamanchili. Dynamic Compilation of Data-Parallel
Kernels for Vector Processors. Int’l Symp. on Code Generation and Optimization
(CGO), Apr 2012.

[KHN07] S. Kumar, C. J. Hughes, and A. Nguyen. Carbon: Architectural Support for Fine-
Grained Parallelism on Chip Multiprocessors. Int’l Symp. on Computer Architecture
(ISCA), Jun 2007.

[KLST13] J. Kim, D. Lockhart, S. Srinath, and C. Torng. Microarchitectural Mechanisms to
Exploit Value Structure in Fine-Grain SIMT Architectures. Int’l Symp. on Computer
Architecture (ISCA), Jun 2013.

[LAB+11] Y. Lee, R. Avizienis, A. Bishara, R. Xia, D. Lockhart, C. Batten, and K. Asanović.
Exploring the Tradeoffs between Programmability and Efficiency in Data-Parallel
Accelerator Cores. Int’l Symp. on Computer Architecture (ISCA), Jun 2011.

[LAS+09] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore
and Manycore Architectures. Int’l Symp. on Microarchitecture (MICRO), Dec 2009.

[LBS+11] H. Lee, K. J. Brown, A. K. Sujeeth, H. Chafi, T. Rompf, M. Odersky, and K. Oluko-
tun. Implementing Domain-Specific Languages for Heterogeneous Parallel Comput-
ing. IEEE Micro, 31(5):42–53, Sep/Oct 2011.

[Lea00] D. Lea. A Java Fork/Join Framework. Java Grade Conference, Jun 2000.

[Lei09] C. E. Leiserson. The Cilk++ Concurrency Platform. Design Automation Conf.
(DAC), Jul 2009.

[LKC+10] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,
M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. De-
bunking the 100X GPU vs. CPU Myth: An Evaluation of Throughput Computing on
CPU and GPU. Int’l Symp. on Computer Architecture (ISCA), Jun 2010.

[LLM89] C. Loeffler, A. Ligtenberg, and G. S. Moschytz. Practical Fast 1-D DCT Algorithms
with 11 Multiplications. Int’l Conf. on Acoustics Speech and Signal Processing, May
1989.

[LNOM08] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A Unified
Graphics and Computer Architecture. IEEE Micro, 28(2):39–55, Mar/Apr 2008.

[LSB09] D. Leijen, W. Schulte, and S. Burckhardt. The Design of a Task Parallel Library.
Conf. on Object-Oriented Programming Systems Languages and Applications (OOP-
SLA), Oct 2009.

105

[LWH10] L. Luo, M. Wong, and W. Hwu. An Effective GPU Implementation of Breadth-First
Search. Design Automation Conf. (DAC), Jun 2010.

[LZB14] D. Lockhart, G. Zibrat, and C. Batten. PyMTL: A Unified Framework for Verti-
cally Integrated Computer Architecture Research. Int’l Symp. on Microarchitecture
(MICRO), Dec 2014.

[LZH+13] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, Y. Liang, B. He, R. S. M. Goh, and R. Huynh.
Optimizing the MapReduce framework on Intel Xeon Phi coprocessor. IEEE Int’l
Conf. on Big Data (BIGDATA), Oct 2013.

[MBJ09] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A Tool to
Model Large Caches, 2009.

[MGG+11] S. Maleki, Y. Gao, M. Garzaran, T. Wong, and D. Padua. An Evaluation of Vector-
izing Compilers. Int’l Conf. on Parallel Architectures and Compilation Techniques
(PACT), Oct 2011.

[Mic09] Graphics Guide for Windows 7: A Guide for Hardware and System Manufactur-
ers. Microsoft White Paper, 2009. http://www.microsoft.com/whdc/device/
display/graphicsguidewin7.mspx.

[MLBP12] M. Mendez-Lojo, M. Burtscher, and K. Pingali. A GPU Implementation of
Inclusion-Based Points-to Analysis. Symp. on Principles and practice of Parallel
Programming (PPoPP), Feb 2012.

[MLNP+10] M. Mendez-Loj, D. Nguyen, D. Prountzos, X. Sui, M. A. Hassaan, M. Kulka-
rni, M. Burtscher, and K. Pingali. Structure-Driven Optimizations for Amorphous
Data-Parallel Programs. Symp. on Principles and practice of Parallel Programming
(PPoPP), Feb 2010.

[mpi13] Message Passing Interface (MPI) Standard. Online Webpage, 2013 (accessed Nov
17, 2013). http://www.mcs.anl.gov/research/projects/mpi/standard.
html.

[MTS10] J. Meng, D. Tarjan, and K. Skadron. Dynamic Warp Subdivision for Integrated
Branch and Memory Divergence Tolerance. Int’l Symp. on Computer Architecture
(ISCA), Jun 2010.

[NBGS08] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Programming
with CUDA. ACM Queue, 6(2):40–53, Mar/Apr 2008.

[NBP13a] R. Nasre, M. Burtscher, and K. Pingali. Data-driven versus Topology-driven Irregular
Computations on GPUs. Int’l Parallel and Distributed Processing Symp. (IPDPS),
Apr 2013.

106

[NBP13b] R. Nasre, M. Burtscher, and K. Pingali. Morph Algorithms on GPUs. Symp. on
Principles and practice of Parallel Programming (PPoPP), Feb 2013.

[nvi09] NVIDIA’s Next Gen CUDA Compute Architecture: Fermi. NVIDIA White Paper,
2009. http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_
fermi_compute_architecture_whitepaper.pdf.

[nvi15] CUDA C Best Practices Guide. NVIDIA White Paper, 2015. http://docs.
nvidia.com/cuda/cuda-c-best-practices-guide.

[nvi16] NVIDIA Tesla P100. NVIDIA White Paper, 2016. https://images.nvidia.com/
content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf.

[ope11] OpenCL Specification, v1.2. Khronos Working Group, 2011. http://www.
khronos.org/registry/cl/specs/opencl-1.2.pdf.

[ope13] OpenMP Application Program Interface, Version 4.0. OpenMP Architecture Review
Board, Jul 2013. http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[Oya99] Y. Oyanagi. Development of Supercomputers in Japan: Hardware and Software.
Parallel Computing, 25(13–14):1545–1567, Dec 1999.

[PBV+13] J. Park, G. Bikshandi, K. Vaidyanathan, P. T. P. Tang, P. Dubey, and D. Kim. Tera-
scale 1D FFT with low-communication algorithm and Intel Xeon Phi coprocessors.
Int’l Conf. on High Performance Networking and Computing (Supercomputing), Nov
2013.

[PHSJ13] S. Pennycook, C. Hughes, M. Smelyanskiy, and S. Jarvis. Exploring SIMD for
Molecular Dynamics Using Intel Xeon Processors and Intel Xeon Phi Coprocessors.
Int’l Parallel and Distributed Processing Symp. (IPDPS), May 2013.

[pyp14] PyPy. Online Webpage, 2014 (accessed Sep 26, 2014). http://www.pypy.org.

[RE12] M. Rhu and M. Erez. CAPRI: Prediction of Compaction-Adequacy for Handling
Control-Divergence in GPGPU Architectures. Int’l Symp. on Computer Architecture
(ISCA), Jun 2012.

[Rei07] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Proces-
sor Parallelism. O’Reilly, 2007.

[Rei12] J. Reinders. An Overview of Programming for Intel Xeon Proces-
sors and Intel Xeon Phi Coprocessors. Intel White Paper, 2012.
https://software.intel.com/sites/default/files/article/330164/
an-overview-of-programming-for-intel-xeon-processors.pdf.

[RJOK15] T. G. Rogers, D. R. Johnson, M. O’Connor, and S. W. Keckler. A Variable Warp Size
Architecture. Int’l Symp. on Computer Architecture (ISCA), 2015.

107

[RKBA+13] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe.
Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Re-
computation in Image Processing Pipelines. ACM SIGPLAN Conf. on Programming
Language Design and Implementation (PLDI), Jun 2013.

[Rot11] N. Rotem. Intel OpenCL Implicit Vectorization Module. Presentation Slides, 2011.
http://llvm.org/devmtg/2011-11/Rotem_IntelOpenCLSDKVectorizer.
pdf.

[Rus78] R. M. Russel. The Cray-1 Computer System. Communications of the ACM,
21(1):63–72, Jan 1978.

[SBF+12] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, and H. V. Simhadri.
Brief Announcement: The Problem Based Benchmark Suite. Symp. on Parallel Al-
gorithms and Architectures (SPAA), Jun 2012.

[SFS00] J. E. Smith, G. Faanes, and R. Sugumar. Vector Instruction Set Support for Condi-
tional Operations. Int’l Symp. on Computer Architecture (ISCA), Jun 2000.

[SGM+10] J. A. Stratton, V. Grover, J. Marathe, B. Aarts, M. Murphy, Z. Hu, Z. Hu, and W.-
M. W. Hwu. Efficient Compilation of Fine-Grained SPMD-Threaded Programs for
Multicore CPUs. Int’l Symp. on Code Generation and Optimization (CGO), Apr
2010.

[SIT+14] S. Srinath, B. Ilbeyi, M. Tan, G. Liu, Z. Zhang, and C. Batten. Architectural Special-
ization for Inter-Iteration Loop Dependence Patterns. Int’l Symp. on Microarchitec-
ture (MICRO), Dec 2014.

[SLB+11] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H. Chafi, M. Wu, A. R. Atreya,
M. Odersky, and K. Olukotun. OptiML: An Implicitly Parallel Domain-Specific
Language for Machine Learning. Int’l Conf. on Machine Learning (ICML), Jun
2011.

[Som11] S. Somasegar. Targeting Heterogeneity with C++ AMP and PPL. MSDN
Blog, Jun 2011. http://blogs.msdn.com/b/somasegar/archive/2011/06/
15/targeting-heterogeneity-with- c-amp-and-ppl.aspx.

[SS00] N. Slingerland and A. J. Smith. Multimedia Instruction Sets for General Purpose
Microprocessors: A Survey. Technical report, EECS Department, University of Cal-
ifornia, Berkeley, Dec 2000.

[SYK10] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible Architectural Support for Fine-
Grain Scheduling. Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Mar 2010.

108

[VSG+10] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor. Conservation Cores: Reducing the Energy of Mature
Computations. Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Mar 2010.

[WLPA16] A. Waterman, Y. Lee, D. Patterson, and K. Asanovic. The RISC-V Instruction Set
Manual, Volume I: Base User-Level ISA version 2.1. UCB EECS Technical Report,
2016. https://riscv.org/specifications/.

[WWP09] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful Visual Perfor-
mance Model for Multicore Architectures. Communications of the ACM, 52(4):65–
76, Apr 2009.

[YKM+11] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts. A Fully Integrated Multi-
CPU, GPU, and Memory Controller 32 nm Processor. Int’l Solid-State Circuits Conf.
(ISSCC), Feb 2011.

109

