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Four thousand years ago, maize began migrating out of Mexico and into the
geographically diverse Southwestern US (7, 2). Maize spread quickly through the
lowland deserts, but full maize agriculture in the uplands lagged for another 2,000
years (/, 3). Why did maize agriculture fail to fully develop, despite the persistent
presence of maize in the uplands? I tested the hypothesis that early maize in the
Southwest US was not adapted to the uplands, specifically testing archaeological
maize from the uplands at the beginning of agricultural intensification for early
flowering.

To better understand temperate adaptation in maize, I led a project to generate
tools for accurate imputation and projection of maize inbred haplotypes onto related
individuals. We then projected whole genome sequence onto five diverse modern
inbred maize populations to further elucidate the genetic architecture of maize
flowering through mapping, machine learning and cross population predictions. We
find that the genetic architecture of flowering is tightly linked to the temperate-tropical
differentiation in American germplasm for four of the five populations, and suggest an
independent temperate adaptation occurred in China after 1500. We also find that
populations with individuals across the North American temperate adaptation predict

others well. We further test that good cross population prediction extends to modern



Southwestern landraces by developing a mapping population for flowering time, and
show that modern inbred populations can predict divergent modern landraces with
high prediction accuracy for days to flowering. We extend flowering predictions to
archaeological maize samples dating to the early period of agricultural adoption, and
find that this population was already adapted. Using SNPs with the greatest population
differentiation over the extremes of temperate-tropical adaptation, we find that
temperate adaptation happened in situ in the Southwest, and early southwestern
peoples selected on primarily standing variation.
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INTRODUCTION

Motivation for study

The objective of my dissertation work addresses this question: why did it take
so long for maize (Z. mays ssp. mays) agriculture to establish in temperate regions of
the southwestern United States? Maize archaeological remains first appear just over
4000 years ago across the modern Southwest United States (/—6), but full agriculture,
defined by increased storage and processing capacity, establishes rapidly in the
lowlands of S. Arizona, but not in the uplands of the Colorado Plateau, less than 250
miles away, for another 2000 years. My dissertation addresses this problem by (1)
developing tools for increasing power of genome-wide association and genomic
prediction, (2) dissecting the biological basis and genetic architecture of early
flowering, which is highly correlated with population structure in inbred temperate
adapted maize, and (3) predicting flowering time, a complex trait critical for temperate
adaptation, in archaeological maize samples from Turkey Pen Shelter, a 2,000-year-

old archaeological site in the uplands of southeastern Utah.

Imputation tools for increasing power in association mapping and prediction
Because control of flowering time is highly quantitative, controlled by

hundreds of loci, it is desirable to have as many high coverage markers across the

genome as possible to detect and differentiate signals in highly recombinant

populations. Much of the effort in imputation had been undertaken by the human
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genetics community, who ethically cannot simplify populations through the
development of controlled mating designs, which require fewer markers to analyze.
The most effective of the human designed software with respect to imputation
accuracy and computational capacity is Beagle v.4 (7—11), but Beagle assumes that the
population is outcrossing, as is always the case for humans, and phases haplotypes
before imputation. This approach is computationally intensive and does not take
advantage of inbreeding, which biologically phases haplotypes.

I led an effort to develop an imputation algorithm, Fast Inbred Line Library
ImputatioN (FILLIN), to increase power in genome-wide association studies (GWAS)
and genomic prediction (GP). Inbreeding in crop plants generates a source of phased
haplotypes not available in human research and FILLIN leverages inbred lines and
segments for fast and accurate genotypic imputation in inbred lines and populations
(R*=0.99 in diverse inbreds). FILLIN identifies and collapses identical segments to
generate higher coverage haplotypes, then matches these to low coverage target
sequences and models recombination between haplotypes with a Hidden Markov
Model. Imputation increases power for GWAS by maximizing the sample size for
each test while allowing low-coverage, low-cost genotyping. FILLIN can also use this
approach to model expensive whole-genome haplotypes onto phenotyped, lower-
coverage genotypes. GWAS and GP on whole-genome data break the reliance on
linked markers in populations with sufficient recombination, allowing for more precise

identification of causal loci and accurate prediction.
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Reanalysis of modern inbred populations for flowering time

Before I could hope to address flowering adaptation in southwestern
archaeological samples, 2,000 years diverged from any modern samples, I conducted a
large-scale analysis of diverse modern mapping populations to understand the genetic
architecture of maize in a global context. Flowering time, typically through the metric
of days to flowering, is well studied in maize (/2-18, 18—24), Arabidopsis (15, 25—
30), and other crop plants and models (13, 27, 31-35) due to high heritabilities (up to
0.96 in maize (/2)) and the importance for adaptation and transferring alleles between
tropical and temperate germplasm in a breeding context. Only a handful of loci,
mostly in the autonomous flowering pathway, have confirmed effects for
modulating flowering time either through mutagenesis or positional cloning, (15,
18, 20, 36-40), but very few of these have common standing variation and have
been mapped in the tens of structured and unstructured populations that have
mapped flowering time in maize (12, 13, 19, 22, 41, 42). These studies have all
confirmed that the genetic basis for flowering in maize is quantitative and
dominantly additive in inheritance.

Comparative population and synteny studies found moderate overlap
between significant loci between maize populations (19, 22), but also between
maize and other grasses (13, 35). Although cross-population predictions using
genomic prediction models are common in animal breeding (43-45), there has
been only one instance in maize (42). Lehermeier et al looked at the cross-
population prediction accuracy between the two European heterotic groups, the

Dent and Flint populations in the European NAM, and found negative cross
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population prediction accuracy. This is unsurprising, since by definition the two
heterotic groups have been bred in complementary and opposite directions. In
order to predict the archaeological samples, [ needed to establish the validity and
parameters necessary for good cross-population prediction for flowering time,
which I did in a joint analysis of five previously published populations from
across the world.

To detect loci responsible for flowering in maize, I reanalyzed published
flowering phenotypes from two mapping populations, a diversity panel and a linked
biparental population (Nested Association Mapping, or NAM), focused on maize
germplasm from the Americas, two European NAM populations, and a Chinese NAM
population using FILLIN projected whole-genome genotypes. Whole genome
projected data allows for detection of causal or nearly causal loci when recombination
is sufficient, which can be used for stable prediction of unrelated, or archaeological,
maize since recombination cannot disassociate a marker when it is the causal variant.

I analyzed these populations using four different methods for detecting
association between phenotypes and genotypes; these include two single marker
approaches, genome-wide association studies (GWAS) and resampling mean inclusion
probabilities (RMIP), and two regional approaches, Regional Heritability Mapping
(RHM) (46, 47) , and a novel method developed for this study, Boosted Regional
Heritability Mapping (BRHM). None of these methods found substantial overlap in
significant regions between populations, indicating on the surface a lack of shared
genetic architecture, or lack of segregating variants. However, I also performed cross-

population predictions (using RR-BLUP) across the five populations, and many of the
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populations were able to predict each other with high accuracy, especially training on
the diversity panel; additionally, for those populations predicted with low accuracy,
using subsets of the results significant in most of the populations could increase
prediction accuracy. This suggested that there was in fact a shared genetic architecture
across four of the populations (the Chinese population did not accurately predict, nor
was it well predicted by any of the other populations). Machine learning (with a
random forest classifier) using the GWAS results as the response and other mapping
results or Fgr statistics for population structure could accurately cross-predict all of the
populations except for the Chinese NAM. Fgr estimates between tropical and
temperate maize germplasm from the Americas were especially good predictors of
flowering time, except in Chinese NAM, which we suggest carries alleles from a
distinct temperate adaptation that took place in China after 1500.

These results suggest that the lack of consistency in mapping results can be
primarily attributed to differences in the structure of linkage equilibrium and diversity
in the parents among the mapping populations, rather than lack of shared genetic
architecture. Because distant cross-population prediction worked in inbreds, these
results suggested that it should be possible to predict the archaeological maize samples
from Turkey Pen, especially since they were located at the juncture between temperate

and tropical N. America.

Prediction for temperate adaptation in Turkey Pen
Prediction in ancient DNA has traditionally focused on traits controlled by one

or a few genes, such as pigmentation in humans (48). Ancient DNA extraction
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methodology is improving rapidly (49), and now genomic (50-54) and increasingly
whole-genome (55, 56) DNA is readily available. Adaptation traits such as flowering
time are quantitatively inherited, increasing the complexity of prediction.
Additionally, prediction in ancient DNA cannot be verified, and the argument for
accurate prediction must be built from modern proxies. In this study, I establish cross-
population prediction accuracies from the modern inbred populations in the flowering
time study and from a population of modern descendant landraces.

Turkey Pen Shelter is a dry cave site in upland southeastern Utah, and the
study samples date to the time period when people first began to intensify agricultural
production in the upland regions, including at Turkey Pen (57). The preservation at
Turkey Pen was exceptional, and 14 samples had greater than 80% endogenous maize
DNA, allowing for 5-20X coverage whole genome resequencing. Population genetic
analysis of Turkey Pen genotypes, in conjunction with over 1000 low-density
genotypes from landraces and the wild progenitor, teosinte (Z. mays ssp. parviglumis
and Z. mays ssp. mexicana), showed that Turkey Pen was most closely related to
modern temperate Southwest samples.

Because it is not possible to validate flowering time in archaeological samples,
I assembled a modern landrace mapping population that spans the tropical germplasm
from Northern Mexico to temperate adapted germplasm from the upland Southwest.
These individuals are outcrossing landraces, and only distantly related to the inbred
germplasm used in the reanalysis for flowering time. Because they are also closely
related to the Turkey Pen samples, prediction accuracies should be comparable to

those of the modern mapping population. Turkey Pen flowers comparably early to
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modern temperate Southwest germplasm, suggesting that Turkey Pen maize was in
fact sufficiently adapted with respect to flowering time. We also find that Turkey Pen
shared temperate adapted SNPs with Southwestern populations, but not with those in
north Mexico, suggesting an in situ temperate adaptation. Additionally, the top SNPs
associated with temperate adaptation are segregating in teosinte, suggesting that
selection for temperate adaptation relied on standing variation.

We additionally predicted less complex, but culturally informative, traits for
yellow kernel color (y/) and flour endosperm (su/). Maize is central to the culture of
indigenous southwestern peoples (58), and different varieties are required for both
cuisine and, critically, for the proper performance of ritual. We find that Turkey Pen
mostly contained the ancestral flint or pop type endosperm at the su/ locus, but one
individual was segregating for the flour type allele, prized by modern southwestern
people. Vitamin A is a critical dietary nutrient for human health in the developing
world (59), and would have also been important for ancient farmers. Vitamin A
accumulates in the endosperm of yellow corn (60), and we looked at the recently
selected y/ gene in Turkey Pen to determine the presence of yellow kernel color in
Turkey Pen (61). At yI, we find that Turkey Pen segregates for yellow kernel color,
and neighbor-joining trees also suggest that yellow color may have originated in the
Southwest. This is intriguing, as yellow is one of the six color directions (including
zenith and nadir) that organize ritual space and is part of a pan-New World cosmology
(62); in the Southwest today, indigenous groups require the full complement of maize
kernel colors for ritual performance. I was not able to predict red or blue color in

Turkey Pen, as described in Appendix A.
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Discussion of outcomes and further directions

My dissertation began with the question: Why did it take so long for maize
agriculture to establish in the temperate regions of the Southwestern United States?
After building the tools to increase power in GWAS and GP with FILLIN, further
elucidating the genetic architecture underlying flowering in the largest combined
mapping panel, and demonstrating the accuracy of distant cross population prediction
for flowering time in maize, the short answer is because it took 2,000 years to select
the right combination of standing variants for maize agriculture to succeed in the
uplands. While the Turkey Pen results are well supported, additional questions remain.
Turkey Pen is only one location; how adapted was maize at contemporaneous sites
across the Southwest? How quickly did the temperate germplasm travel, and by what
routes? How adapted was maize in the period just before the introduction of
agriculture in the uplands? As sequencing becomes increasingly affordable, and
ancient DNA methods continue to improve, the answers to these questions are
increasingly in reach. More pressing questions refer to the future of maize, and maize
adaptation to a rapidly changing climate. The lessons from Turkey Pen are that it
happened once, and primarily from standing variation. Maintaining germplasm

diversity should enable further maize adaptation going forward.
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CHAPTER 2
FSFHAP (FULL-SIB FAMILY HAPLOTYPE IMPUTATION) AND FILLIN (FAST,
INBRED LINE LIBRARY IMPUTATION) OPTIMIZE GENOTYPIC
IMPUTATION FOR LOW-COVERAGE, NEXT-GENERATION SEQUENCE
DATA IN CROP PLANTS

Abstract

Next-generation sequencing technology such as Genotyping-by-Sequencing
(GBS) made low-cost, but often low-coverage, whole-genome sequencing widely
available. Extensive inbreeding in crop plants provides an untapped, high quality
source of phased haplotypes for imputing missing genotypes. We introduce Full-Sib
Family Haplotype (FSFHap), optimized for full-sib populations, and a generalized
method, Fast Inbred Line Library ImputatioN (FILLIN), to rapidly and accurately
impute missing genotypes in GBS-type data. FSFHap and FILLIN impute missing
genotypes with high accuracy in GBS-genotyped maize inbred lines and breeding
populations, while Beagle v.4 is still preferable for diverse heterozygous populations.

FILLIN and FSFHap are implemented in TASSEL 5.0.

Background

The number of genotyped individuals available to researchers has vastly
increased in recent years due to the advent of low-cost, genome-wide genotyping
platforms, such as Genotyping-by-Sequencing (/) (GBS). GBS provides a reduced
representation of the genome by targeting sequences adjacent to restriction enzyme cut

sites, enabling parity in read location across samples. By adding barcoded adapter
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sequences to the restriction-digested DNA, up to 384 samples can be multiplexed in
one flowcell lane. However, the resulting GBS data may have high rates of
missingness and heterozygote undercalling, depending on genome size, genome
structure, and the number of samples combined. To effectively use GBS sequence
data while maintaining low costs, we thus need a mechanism to impute these missing
genotypes.

Missing data is often a function of genome size and degree of multiplexing,
where some sequences are simply not sampled when the genome size is large or many
samples are combined in a flowcell. Heterozygote undercalling is also a function of
low coverage sampling; to call a heterozygote for a given genotype, that genotype
must be covered by at least two reads, and those reads must be from different
chromosomes. In the case of maize, an organism with a genome size of approximately
2.3 Gbp (2), in GBS data with an overall coverage of 0.6X we expect only 12% of
heterozygous sites to be called correctly based on binomial sampling from a Poisson
distribution.

Missing data can also reflect true biologically missing sequence due to small
insertions or deletions or larger structural variants in the genome. Because these
missing data provide a real biological signal, it is desirable to capture this type of
missing data in imputation. In maize, for example, not only is allelic diversity high (3),
but 70% of genes and 90% of the genome shows structural variation in a panel of only
103 diverse inbred maize and teosinte lines (4). Maize is not unique in this respect;
many agronomically important crop plants show a similar pattern of high structural

variation and allelic diversity (5—9). Accurate imputation of missing sequence data
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increases power and can improve for the results of downstream applications such as
genetic mapping and genomic prediction (/0).

Imputation benefits genome-wide association and linkage mapping studies by
accurately identifying rare variants, which in turn increases the power to detect
statistical associations (/7). Imputation is expected to provide the greatest benefit for
mapping studies when linkage disequilibrium between markers is low. This is often
the case in natural populations or primarily outcrossing species, since fewer markers
are present on each haplotype to tag a statistical genotype-phenotype association. (/1/)
Even crop species, which because of recent breeding efforts often have extended
linkage disequilibrium, only share short haplotypes when comparing distantly related
individuals. Accurate imputation is thus critical for effectively using the output of low-
coverage, low-cost genotyping platforms such as GBS.

While, for the reasons stated above, accurate imputation increases the value of
low-cost, low-coverage genotyping, much of the available software for imputation has
been tailored for humans (. Humans are a highly heterozygous outcrossing species
with no controlled mating designs, little inbreeding, and much less structural variation
than that observed in crop plants. Because of this, the available implemented
algorithms are not optimized to accurately impute, or leverage unique information
from, crop systems. While there are crop specific algorithms that have been been
developed for unordered markers, (1/5) for known pedigrees, (/6) and in the context of
genomic prediction (/7, 18) most of these are not publically implemented, and here we

present a solution.
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A number of agronomically important systems use inbred lines extensively,
(e.g., maize, rice, wheat, soybean, barley, sorghum), and many of these have
structured population resources for mapping traits of interest (/9-217). Very accurately
mapping the recombination break points in these populations is desirable for fine
mapping studies and for appropriately assigning effect estimates to the proper parent
in association studies. We present here Full Sib Family Haplotype Imputation
(FSFHap), a fast and accurate imputation algorithm optimized for full-sib families.
FSFHap is intellectually similar to methods published for detecting recombination
breakpoints in Drosophila. (22, 23)

Researchers and breeders in the public sector have increased access to
genotyping at large scale, but most of the resulting sequence is low coverage (e.g.,
GBS at 0.5X to 2X coverage per site). Since most of the available algorithms are for
genomic prediction in crops and do not output genotype estimates (/7, 18), or are
tailored for human populations (13, /4, 24), we developed a genotype imputation
algorithm that allows for missing data in the imputed file and leverages information
from inbred segments. Additionally, populations in crop plants are often large, so
computational time should scale linearly to enable fast breeding decisions. The
algorithm should also tolerate high amounts of missing data in the unimputed set, as
crop plants are often sequenced at lower depth than human populations.

We present FILLIN (Fast, Inbred Line Library ImputatioN) here, a fast and
accurate generalized imputation strategy built on the FSFHap algorithm that leverages
inbred segments from large but sparse genotypic datasets to identify parental

haplotypes and impute missing genotypes. FILLIN was optimized for crop plants,
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typically outcrossing species with high structural diversity and rapid LD decay but
with widely shared alleles, tolerance of inbreeding, and low to moderate inbreeding
coefficients even in heterozygous accessions. (4, 25, 26) The biology of most crop
plants suggests a different model for genotype imputation than those developed for
humans, since we can reasonably assume phase for inbred lines and inbred segments
to impute rapidly and accurately. Both the FSFHap and FILLIN algorithms are
implemented in TASSEL 5.0. (27)

We compare the speed and accuracy of our novel algorithms on inbred and
outbred maize (Zea mays) genotyped using GBS (/) with Beagle v.4. (24) Beagle v.4
was chosen because in early tests we found it to be the most powerful and comparable
published algorithm available: it does not require an external haplotype library, it
accepts high levels of missing data, and it has the computational speed to impute
whole genomes or chromosomes. We also compare accuracy between FSFHap,

FILLIN, and Beagle v.4 in a full-sib family recombinant inbred line (RIL) population.

Materials and Methods

Algorithms

Viterbi Algorithm: Both FSFHap and FILLIN rely on a Hidden Markov Model
(HMM) to detect recombination break points between haplotypes. HMMs define
genotype as the true, unobserved genotype and the SNP or sequence variant calls
made by the sequencing pipeline as the observations. Using this formulation, the
problem of imputation can be restated as the problem of determining the unobserved

genotype that best explains the observed data. If for a given sample, y is a vector of
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the observed SNP calls, g is a vector of unknown, unobserved genotypes, and M is a
probability model describing the data and the genotypes, then one approach is to seek
to maximize the likelihood L (y|g, M). In general, maximizing L for genotypes of n
sites requires evaluating this likelihood for each of 2" possible genotypes, an
impossible task for 100 markers, let alone for the hundreds of thousands of markers in
the data described here. Fortunately, because nucleotides are arranged sequentially on
a chromosome, the problem can be modeled as a Markov chain. Doing so allows the
use of the Viterbi algorithm (28) to identify the genotype, g, that maximizes the
likelihood of the observed data. The Viterbi algorithm only needs to evaluate a small,
tractable subset of the potential genotypes in order to maximize the likelihood.

Applying the Viterbi algorithm requires defining two separate probability
matrices. Taken together these two probability matrices determine M, the probability
model. The first is a transition probability matrix, which describes the probability of
each possible genotype at a site given the genotype at the previous site for all possible
genotypes at the previous site. The second is an emission probability matrix, which
describes the probability of observing each possible allele call, given each possible
genotypic state. This probability matrix has to capture the both the probability of a
genotyping error and the probability that only one of the two possible alleles was
observed at a heterozygous site, which results in that site being incorrectly scored as
homozygous. In a classic hidden Markov chain, both probability matrices are constant
across all sites. In our application, we treat the emission probabilities as constant, but
allow the transition probability to vary depending on distance between sites and

location in the genome.
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Both the transition and emission matrices are estimated from the data set being
imputed, which is known to contain errors. An EM method is used to improve that
estimate. Because the imputed data provides a better indication of the actual genotypes
than the original data, after the initial imputation, the imputed states can be used to
make new estimates of the probability matrices. This process is repeated to
convergence. Estimating the probability matrices is the expectation step. Applying the

Viterbi algorithm constitutes the maximization step.

Initializing the matrices: Many of the DNA samples in our data (as is common with
other crop studies) were created by bulking DNA from several plants. Most were
presumed to be homozygous but often had residual heterozygosity or heterogeneity.
Typically, the bulked plants were progeny of a single self-pollinated plant. In that
case, the progeny represented a random sample of 2n gametes from the parent, where
n is the number of progeny bulked. As a result, for a single bulked sample, the minor
allele frequency at a heterozygous site, instead of being 0.5 as it would have been for a
DNA sample of a singleparent plant, ranged from 0 to 0.5 with probabilities equal to
2n draws from a binomial distribution with p=0.5. Within a sample the allele
frequencies at adjacent segregating sites will be expected to be the same, since they all
represent the same sample. To accommodate chromosome segments with different
allele frequencies, we allow for 5 genotype states, representing homozygous A,
3A:1B, 1A:1B, 1A:3B, and homozygous B. The initial emission probabilities were set

as shown in Table 1.
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Table 1. The Viterbi Algorithm initial emission probability matrix, P (Allele
Call|State). Note that all of the rows sum to 1.

Allele Call
State A H B
AA 998 .001 .001
3A:1B 0.6 0.2 0.2
1A:1B 0.4 0.2 04
1A:3B 0.2 0.2 0.6
BB .001 .001 998

The transition probabilities between states at adjacent sites are calculated
differently for the two algorithms we present here. For FILLIN, the transition matrix is
fixed (Table 2). For FSFHap, the transition matrix is dependent on the expected rate of
recombination and the distance between the sites. The transition probability between
the different states was estimated using all intervals between non-missing markers,
then adjusted based on the ratio of the actual interval to the average interval length. An
initial estimate was based on expected recombination rates. Convergence of the EM

algorithm is not dependent on the initial estimate as long as it is reasonable.

Table 2. The Viterbi Algorithm transition probability matrix for FILLIN.

State AA 3A:1B 1A:1B 1A:3B BB
AA 0.999 0.0001 0.0003 0.0001 0.0005
3A:1B 0.0002 0.999 0.00005 0.00005 0.0002
1A:1B 0.0002 0.00005 0.999 0.00005 0.0002
1A:3B 0.0002 0.00005 0.00005 0.999 0.0002
BB 0.0005 0.0001 0.0003 0.0001 0.999

FSFHap: As with most imputation methods, FSFHap begins by identifying
haplotypes. In the case of a bi-parental population when the objective is to find
recombination breakpoints, the interest is in determining which chromosome segments
are identical by descent (IBD) from which parent. Alternatively one could also look

for segments IBD from the grandparents. If the population descends from homozygous
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inbred parents, as is the case for many crop populations, it makes sense to restrict our
attention to segments IBD from the parents. The algorithm thus attempts to identify
two parental haplotypes, ignoring any sites that happen to be heterozygous in either of
the parents. The algorithm as written has not been tested for families derived from a
cross between outbred, heterozygous parents but handles segments that are
heterozygous in one parent by using only the homozygous sites in those segments.

One assumption of the Viterbi algorithm is that the probability of an error at
one site is independent of other sites, which is not necessarily the case for sites in the
same GBS sequence read. Consequently, before identifying parental haplotypes, if
any SNP pair came from the same tag, one of the pair is deleted from the dataset.
Next, within each bi-parental family, the algorithm clusters lines in a window of 50
variant sites at the beginning of a chromosome using a custom clustering method
(described below). Large clusters identify parental haplotypes while small clusters are
generally heterozygous or contain individuals with genotyping errors. If the first
window tested has more than two large clusters, the next adjacent window is checked
until a window with only two large haplotype clusters is found. Once a window is
found meeting that criterion, it serves as an anchor for determining the next haplotype
block. Starting immediately after the anchor window, the allele calls for subsequent
sites are evaluated one at a time. Labeling the two anchor haplotypes A and B, if a
site’s allele calls for RILs in haplotype A are mostly the same and the allele calls for
the RILs in haplotype B are mostly different from the haplotype A majority allele, the
site is assigned to the correct haplotype. Otherwise the site is removed from the

dataset. The majority allele within the respective haplotypes is recorded and the next
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adjacent site evaluated. Once alleles have been assigned to A and B for 50 additional
sites, these 50 sites become the new anchor window. Two clusters are formed of lines
that are within a minimum distance of each of the two new haplotype sequences. The
entire process is repeated to extend each haplotype another 50 sites until the end of the

chromosome is reached.

Once the parental haplotypes are identified, the progeny are scored as parent
A, parent B, or heterozygous at each site. Then for each of the progeny individually
the Viterbi algorithm is applied to the non-missing sites to determine the most likely
genotype given the observations. The missing sites are then imputed based on the
flanking non-missing markers. If the flanking markers match (both are A, B, or H),
then the missing site is imputed to the same value as the flanking markers; otherwise it
is left missing. Finally, the sites are converted back to nucleotides by examining the

original nucleotide calls of all the individuals in the A and B classes at each site.

Custom clustering method: Because of data scarcity, standard hierarchical
clustering methods perform inadequately for classifying haplotypes formed from a
limited number of sites. Of these, the “complete” method, which calculates distance
between clusters as the maximum pairwise distance gives the most useful results. The
algorithm described here modifies that method by defining distance between two
haplotypes as the sum of the differences across sites, where a site difference is 2 for
different homozygotes, 1 if one site is homozygous and the other heterozygous, or 0 if
either haplotype had a missing value. Further, each cluster contains all of the
individuals less than a given distance from all the other individuals in the cluster.

Because of missing data, this means some individuals could belong to more than one
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cluster. Each cluster is interpreted as all the individuals that could have the same
genotype for the entire window. Because heterozygous sites are often called as one of
the possible homozygotes at random, heterozygous individuals do not form large
clusters. A useful measure of cluster size is the sum of 1/ (the number of clusters to

which an individual belonged) over the individuals in a cluster.

FILLIN: FILLIN (Fast, Inbred Line Library ImputatioN) is optimized to leverage
inbred segments for fast imputation in very large, sparse datasets. Like other
algorithms, we separate haplotype generation and imputation. (/3, /4) FILLIN first
generates high coverage haplotypes from inbred lines and inbred segments by dividing
the genome into non-overlapping windows. Within each window, the Hamming
distance is used to cluster sequences that share highly similar genotypes, and these
clusters are then collapsed to generate higher-coverage haplotypes. To calculate
distance, sites with a missing genotype call in either taxon are ignored and the distance
between a heterozygous and homozygous genotype is considered to be half the
distance of one homozygous genotype to the alternate homozygote. To best represent
high levels of structural variation, we do not require complete coverage for the
resulting haplotypes. Additionally, a small amount of residual heterozygosity
propagates to the resulting haplotype donor files, as the algorithm makes no effort to
phase residual heterozygous genotypes. This approach results in very fast haplotype
generation (Figure 8), but is less sensitive than other algorithms if the samples are
highly heterozygous, since we make no effort to phase. (24, 29, 30) The haplotype
generation step should always be performed with all of the samples available, as (1)

small-scale haplotype windows may be replicated across even genetically distant
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individuals, and (2) the algorithm requires at least two samples to generate a
haplotype.

To impute these higher coverage haplotypes back to the target samples,
FILLIN takes an iterative approach to imputation. First it selects possible donors based
on shared minor alleles within each window. Shared minor alleles are particularly
informative, since most of the minor allele states derive from more recent mutation
and when two taxa share these alleles it suggests recent common ancestry. FILLIN
then ranks haplotype donors by genetic distance to the taxon being imputed (again,
looking only within the current window); if the distance falls below a user-specified
threshold, it then imputes one haplotype to the entire window (Figure 1-1a). If this
fails, the algorithm looks for two donors that can together adequately explain the
minor alleles in the entire window (Figure 1-1b). This is functionally like assuming
that this represents a recombination break point between two known haplotypes, and it
uses the above Viterbi Hidden Markov algorithm to decide where to switch. The
Viterbi is run in both directions, with disagreements defaulting to the genotype with
the longest path length (i.e., highest likelihood).

If one or two donors cannot be found to explain the entire window, the
algorithm repeats this process for smaller, 64-site windows within the larger window.
Each 64-site window serves as a focus, and the algorithm extends out right and left
until this window (the “focus block”) contains a minimum number of minor alleles to
calculate Hamming distance. FILLIN then attempts to impute based on single
haplotype (Figure 1-2a) and the two-haplotype (Figure 1-2b) Viterbi imputation, if

distance between the donor and target falls below a threshold. If these attempts fail to
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explain sufficient minor alleles, the algorithm will then find two haplotypes that
explain the minor alleles at a higher error threshold, combine these two haplotypes,
and impute using this combined haplotype sequence, modeling the region as
heterozygous (Figure 1-2c¢). If this search fails, that 64-site window will not be
imputed. Because low-coverage sequence data often results in undercalling
heterozygotes, an option to resolve homozygotes predicted to be heterozygous is
available for all imputation types except 2c.

The maximum genetic distance thresholds for the focus block are customizable
by the user, but by default are set more stringently than those for the entire window
since the focus blocks are shorter and are expected to contain fewer sequencing errors
if the haplotype is truly IBD to the target. These thresholds are also different for
outbred versus inbred taxa, since when two haplotypes explain the minor alleles of a
target sequence in an outbred taxon, it is more probable that the target sequence is
heterozygous rather than a segment containing a recombination between two inbred
haplotypes. For a taxon that falls above a user-defined per taxon heterozygosity
threshold (is outbred), the threshold for using Viterbi (2b) is set to 0. If a taxon is
considered generally inbred, any discrepancy between the two combined haplotypes

that generates a heterozygous genotype (2c¢), is set to missing.
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Comparison with existing algorithms: FILLIN differs from other available

algorithms, most of which have been designed for human-derived sequence data,

primarily in its approach to haplotype generation, phasing, and inbreeding

assumptions. (/2—14, 24) Imputation algorithms either generate haplotypes de novo or

rely on a densely genotyped reference panel, such as 1000 Genomes in humans, which

are not available for most species. The public algorithms that generate de novo

haplotypes implicitly assume that the unimputed individuals have significant

heterozygosity and must be phased. (12, 24) In the case of Beagle v.4, this increases

runtime exponentially by the number of samples (Figure 8). However, if haplotypes

really do only exist in the heterozygous state, Beagle’s refinedIBD (24) algorithm

should find these segments better than FILLIN and thus make the extra computation
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worthwhile. In contrast, FILLIN allows for significant inbreeding in the target
population and saves computation by first checking for high similarity between one of
the haplotypes and the target sequence. FILLIN and Beagle v.4 both differ from many
other algorithms (/3, 74, 31),in that they can impute whole genomes or chromosomes

1n one run.

Test datasets and analysis optimizations

We tested the FILLIN and FSFHap algorithms against Beagle v.4 (24), which
we found in preliminary tests to be the most comparable available algorithm: it can
generate haplotypes, tolerate high levels of missing data, and impute entire
chromosomes with tens of thousands of markers in one run. We also compare against
a naive imputation method, which imputes missing genotypes based solely on allele
frequencies in the unimputed data. We compare results from three distinct maize
datasets genotyped using maize GBS build version 2.7 (32): 1) 429 replicate samples
representing 287 temperate inbred Ex-PVP and lowa breeding lines (Temperate
Inbreds) (33), 2) 467 replicate samples from a panel of well-studied 282 diverse inbred
lines from around the globe (34) (Diverse Inbreds), and 3) 366 outbred (highly
heterozygous) landraces where one half originate from the American Southwest, one
quarter from the rest of the Americas (35), and one quarter from Spain (36) (Diverse
Landraces).

A fourth dataset, a recombinant inbred line (RIL) population of full-sib
families from the maize Nested Association Mapping (NAM) panel, (/9) is used to

compared FSFHap to FILLIN and Beagle v.4. Each dataset is genome-wide and
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filtered so that only polymorphic sites with 10% minimum coverage and taxa with
10% sites present are retained. Because each of the individual NAM full-sib families
was derived from three distinct F1 ears and because some parents had residual
heterozygosity, any given site might be polymorphic in one sub-family and
monomorphic in another. To deal with this after the parental haplotypes were
identified for each family, the individual subpopulations were checked to make sure
each site was more likely to be segregating 1:1 than to be monomorphic. Any site
determined to be monomorphic in a subpopulation was set to missing within that
subpopulation. At the same time each site was checked to make sure it was in LD with
all its neighbors within a 30-site window. Because of occasional contamination by
foreign pollen during the inbreeding process, a few individual RILs carry substantial
amounts of non-parental DNA. To find individuals containing significant amounts of
non-parental DNA, after an initial imputation, individuals that were more than 30%
heterozygous were removed from the data set and the families re-imputed from the
original data.

Haplotype generation: FILLIN generates haplotypes using a GBS-derived dataset of
40,992 samples, one-eighth of which are outbred landrace accessions, and the rest are
made up of diverse inbred maize lines, inbred teosinte, and biparental mapping and
breeding populations. Beagle v.4 could not generate haplotypes from such a large
dataset, and for all Beagle runs, Beagle generates haplotypes internally from the target
samples. To make a more fair comparison, Beagle is given all replicate samples for

lines in the Temperate Inbred and Diverse Inbred panels.
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Masking and calculating accuracy

To calculate accuracy, we masked a subset of known genotypes with high
read-depth (exactly 7 reads per site) and with a physical position divisible by 7. If
GBS can be expected to sample either diploid chromosome equally, the probability
that a heterozygous genotype with a read depth of seven is called as a homozygote for
either the major or minor allele is Pr (AA|Het)+Pr (BB|Het) = 0.5+0.5"=0.0157.
Additionally, only heterozygote calls supported by at least two reads for both alleles
were masked to exclude calls based on potential sequencing errors.

We calculate accuracy between known masked sites and imputed sites using
the coefficient of determination, R?, as an overall statistic for accuracy. The minor
allele is coded as 0, the major allele as 1, and heterozygotes as .5. This implies that a
major or minor allele imputed to a heterozygote is half correct, and vice versa for
known heterozygotes. We chose this statistic because, by definition, the major allele is
the most commonly masked allele in a dataset and the easiest to impute, and also the
least useful in downstream applications that associate genotype to phenotype. By
using R* to calculate accuracy, we reduce the major allele bias present if one takes

only the absolute accuracy.

Computational time and algorithm parameters

FILLIN and Beagle v.4 were run on two 6-core Intel Xeon E5 2620 with 2
GHz CPU, 4TB SATA HD, 1TB SSD HD, and 128GB RAM. Beagle v.4 was run
using the default parameters, with no external pedigree information or reference panel.

FILLIN was run with a window size of 8,000 sites. Haplotypes were required to have
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a minimum site presence of 0.6, and the maximum genetic divergence between
samples to generate haplotypes was set to 0.01. For imputing haplotypes to the target
sequences, 20 informative minor sites were required within a search window and up to
20 haplotype donor hypotheses were explored for a given window. The maximum
genetic distance between the haplotype donor and target taxon to impute one
haplotype for the entire sites window (Figurel-1a) was set to 0.01, and the maximum
distance to impute two haplotypes was set to 0.003 (Figurel-1b). To impute donors to
the smaller focus windows (64-site focus, but extended so that the focus window
covers 20 informative sites) when the whole-block imputation thresholds were
breached, the settings for imputing two haplotypes to inbred lines (with heterozygosity
below .02) with Viterbi (Figurel-2b), one haplotype (Figurel-2a), or the combined
hybrid haplotype (Figurel-2c) were set to .001, .003, and .01. For heterozygous
genotypes, these thresholds were set to 0, .001, and .01. Genotypes were not imputed

if these thresholds were not met.

Results

The NAM RILs consist of 25 biparental families with around 200 F6 progeny
each. (Table 3) They have an average of .3X coverage per site, are polymorphic in at
least one family at 556,000 sites across the genome, and are highly inbred. Average
heterozygosity per line is about 0.001, which is lower than reality due to heterozygote
undercalling. While for each family we expect minor allele frequencies of .5, across
the whole population minor alleles frequencies are very low (Figure 2). To test

FILLIN versus Beagle we test three maize datasets differing in degree of inbreeding
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and haplotype diversity. All have approximately .5X coverage per site and range in

average heterozygosity from 0.001-0.029 (Table 3). The number of polymorphic sites

across the genome ranges from 433,000-600,000. As the datasets become more

diverse, there is an increased skew towards rare alleles (Figure 2).

Table 3. Raw datasets used for analysis

Avg Prop
N Filtered N Filtered Avg Prop Heterozygous
Dataset Taxa Sites Present (£ std error)
Temperate
Inbreds 429 443036 0.431 .003 +.004
Diverse
Inbreds 467 545154 0.462 .003 £ .005
Diverse
Landraces 366 600724 0.509 052 +.017
NAM RILs 4776 556001 0.301 .003 £.002
Minor Allele Frequency for Unimputed Datasets
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Figure 2. Minor allele frequency densities for the unimputed datasets used for this
study.

40



Because we only masked a subset of genotypes with a read depth of seven, we can
compare the distribution of read depths at sites where seven-read depth sites are
masked versus sites where they are not. Figure 3 shows that the sites that contain
masked genotypes have the same read depth distribution relative to sites without
masked genotypes. For all of the datasets tested, we chose to quantify accuracy using
the coefficient of determination, Rz, versus a more simplistic measure, such as total
percent accuracy where known genotypes are coded as categorical variables. We did
this because the great majority of genotypes masked are of the major allele, skewing
the accuracy calculation towards imputation accuracies for this genotypic class (Table
4). Because minor alleles are actually of most interest for imputing correctly in
downstream applications and the harder allele to predict, we chose to use R to better

represent the capabilities of the different methods.
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Figure 3. Sites that contain masked genotypes show the same read depth distribution
as sites without masked genotypes.

Table 4. R?, absolute proportion correct, and accuracies by known genotype. Note that
the absolute proportion correct mirrors the accuracy for the major allele.
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R’ Absolute | Minor Het Major

Temperate Inbreds

Naive 0.046 0.642 0.116 0348 |  0.748

VBjagle 0.942 0.984 0.956 0452  0.993

FILLIN 0.991 0.997 0.996 0.149 |  0.999
Diverse Inbreds

Naive 0.04 0.641 0.105 0.334 0.75

VBZagle 0.883 0.97 0.905 0484 |  0.986

FILLIN 0.992 0.996 0.995 0228 |  0.999
Diverse Landraces

Naive 0.064 0.643 0.116 0358 | 0.762

VBZagle 0.662 0.892 0.698 0.656 |  0.957

FILLIN 0.522 0.827 0.518 0.674 |  0.889
NAM RILs

FSFHap 0.974 0.99 0.968 0.846 |  0.995

FILLIN 0.988 0.996 0.988 0.675| 0.999

Beagle

v.4 0.987 0.996 0.988 068| 0998

For the full-sib NAM RILs, FSFHap and FILLIN performed very similarly,
but FSFHap imputed more heterozygous sites. Both algorithms outperformed Beagle
v.4 (Figure 4). All algorithms performed far better than the naive allele frequency
imputation for all datasets tested with FILLIN and Beagle v.4 (Figure 5). FILLIN
outperformed Beagle v.4 for closely related and diverse inbred lines (Figure 5-A,B),

but Beagle v.4 outperforms FILLIN for heterozygous landraces (Figure 5C), as well as

the few residual heterozygous sites in inbred lines (Figure 6).
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Figure 4. Accuracy comparison between FSFHap, FILLIN, and Beagle v.4 for full-sib
NAM RILs. The diameter of each circle represents the proportion within each known

genotype class. Triangles mark proportion imputed by each known class; Beagle
imputes 100% of missing genotypes
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44



Change in Accuracy By Masked Genotype Class
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Figure 6. Accuracy for diverse inbreds. The diameter of each circle represents the
proportion within each known genotype class. Triangles mark proportion imputed by
each known class; Beagle and the naive allele frequency imputation impute 100% of
missing genotypes.

For all of the inbred datasets (diverse, temperate, and RILs) FILLIN most often
imputed the whole site window with one haplotype or two, using the Viterbi algorithm
to model recombination breakpoints (Table 5). The temperate inbreds, although they
are more closely related, use the focus block imputation more often than the diverse
inbreds and this may explain their slightly decreased accuracy and suggests more
residual heterozygosity in these lines. The landraces almost never impute using the
whole site window, which is expected given their high heterozygosity and increased
historical recombination. The landraces also use the two combination haplotype mode

more often, and set more focus blocks to missing, reflecting a lack of accurate

haplotypes.
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Table 5. Method of imputation for windows averaged across taxa (+ one standard
deviation) and proportion of each method for those site windows that go into focus
block imputation. Number of windows (N) change per dataset based on number of

segregating sites.

Mode for window Proportion of focus block

Site Focus

Window | Block Inbred | Viterbi | Combo | Missing
Temperate Inbreds | 38.85+ | 16.14+ | 048+ |0.09+ |04+ 0.03 +
(N=55) 13.97 13.96 0.17 0.07 0.15 0.04
Diverse Inbreds 6156+ | 6.44=+ 034+ [0.14+ 049+ |0.03x
(N=175) 12.77 12.77 0.24 0.13 0.26 0.04
NAM RILs (N= 59.7+ 10.18+ | 036+ |0.12+ |041+ |O0.11+
70) 5.66 5.55 0.12 0.08 0.14 0.06
Diverse Landraces | 10.52+ |63.17+ | 028+ |0.02+ |043+ |0.28=+
(N=68) 22.92 25.52 0.09 0.06 0.14 0.13

The stringency settings chosen for FILLIN, which are also the defaults for the
algorithm, were decided empirically based on these data, and were optimized for
accuracy in inbred and breeding populations. Changing these thresholds leads to an
increased number of genotypes imputed, but at the cost of accuracy. For the landrace
populations especially, loosening the requirements rapidly leads to decreased
accuracies while never imputing more than 60% of the minor alleles.

The gain in accuracy for FILLIN derived from more accurate imputation of
minor alleles (Figure 6). Figure 7 suggests that the increase in accuracy for minor
alleles derives from FILLIN’s insensitivity to the minor allele frequency (MAF). Gain
in accuracy from accurate imputation of minor alleles is especially true for inbred lines
(Figure 6) and suggests that MAF insensitivity results from imputing one haplotype
onto the inbred regions of the target taxon. For Beagle v. 4 and FILLIN in
heterozygous populations, imputation accuracy is otherwise a function of the MAF,

where lower frequency variants are imputed less accurately (Figure 7).
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Figure 7. Accuracy for diverse landraces. The diameter of each circle represents the
proportion within each known genotype class. Triangles mark proportion imputed by
each known class; Beagle and the naive allele frequency imputation impute 100% of
missing genotypes.

These tests suggest that Beagle’s advantage in heterozygous populations lies in
their haplotype generation and phasing RefinedIBD (24) algorithm. FILLIN only
draws haplotypes from inbred segments, implicitly assuming that the haplotypes
present in heterozygous lines are present as inbred regions in the dataset. This is not

necessarily true, either because the inbred line or segment containing that haplotype

may not have been sampled, or because it may not exist in a homozygous state
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because it contains a fatal deleterious allele. To test whether FILLIN was actually
generating haplotypes from inbred lines, we trained haplotypes on only the data
submitted for imputation and found that, when given no external information, FILLIN
could not generate any haplotypes from the landraces until 3000 samples were input
and with these resulting R accuracies are less than 0.1 (Figure 8). FILLIN achieves
accuracies of around 0.5 when given information from inbred lines and segments in
the 40,000 sample dataset (Figure 6). This suggests that only half of the haplotypes
present in the landraces are present as inbred segments in GBS genotyped maize
samples, and highlights FILLIN’s inability to phase heterozygotes. However, we
found that FILLIN performed very well for inbred lines and biparental families, albeit
not as well as when provided additional information. For inbred lines and families,
accuracy as well as proportion of minor alleles imputed increased with sample size

(Figure 8).
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Figure 8. FILLIN at different sample sizes for NAM RILs, diverse inbred lines, and
heterozygous, diverse landraces using no external data to generate haplotypes. Each
data set is a random sub-sample of the larger data set.

Another feature of FILLIN is that it requires at least two taxa in a given block
to share a haplotype to generate a donor. This is done to increase haplotype coverage,
and to increase the robustness of the donor haplotypes, but means that diverse taxon at
low coverage may not be represented in the donor file well (5.68% of masked,
unimputed polymorphic sites are monomorphic in the donor file for the diverse
landraces). Figure 8 shows that the more diverse the dataset, the more samples are
required to adequately generate haplotypes.

For all tested datasets, imputation accuracy improved when only the consensus

genotypes from both imputation methods were accepted (Table 6). A consensus

49



approach gains from the strengths in each imputation method: FILLIN’s sensitivity to
inbred segments and Beagle’s to highly heterozygous regions. While it is very difficult
to accurately identify and mask structurally missing variation in GBS data, the lower
R” for Beagle at sites that FILLIN chooses not to impute suggest that FILLIN does
provide sensitivity to structural variation by allowing for residual missing data in the
haplotypes. The consensus approach also reduces the potential for overimputation,
which is important in species with high structural variation such as crop plants. (4)

Table 6. Accuracy (R?) for both imputations separately, the consensus imputation, and
the accuracy for Beagle when the inbred imputation chooses not to impute.

R2

Diverse Landraces [Diverse Inbreds [Temperate Inbreds

FILLIN 0.522 (154162)  10.992 (368814) |0.991 (147082)
Beagle 0.737(352033)  |0.891 (397163)  0.949 (166097)
Both agree

0.772 (128028)  [0.996 (359905) [0.996 (145599)

Beagle, when inbred
does not impute 0.607 (199572) 0.776 (28391)  [0.845 (19049)

Tests with different sized datasets suggested that the gain in computational
time by FILLIN relative to Beagle increased with sample number: where FILLIN
scales linearly with sample size, while Beagle runtime increases exponentially (Figure
9). Here again, Beagle performs better on heterozygous taxa than inbreds, and vice
versa for FILLIN, as shown by the change in rank between heterozygous and inbred

datasets by method.
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Figure 9. Computational time for FILLIN and Beagle v.4. Only one chromosome
(chromosome 10) was compared, since computing the whole genome with >1000
samples using Beagle v.4 is intractable unless parallelized. Each subset is a random
sample of the larger taxa set.
Discussion

FILLIN and FSFHap produce highly accurate imputed genotypes, especially
for closely related populations with replicated inbred segments. Cross contamination is
difficult to completely exclude in even controlled crosses and a number of maize GBS
genotyped lines contain errors in pedigree. Because FILLIN and FSFHap do not
require known parental genotypes, these algorithms provide a pedigree independent
imputation method. If imputing full-sib families, FSFHap is optimized for modeling

recombination, which allows it to more accurately impute heterozygotes. Beagle v.4

provides more accurate imputation for highly heterozygous populations.
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Accurate and complete haplotype generation is critical to high accuracies in
both Beagle v.4 and FILLIN imputed datasets. Results in Figure 7 suggest that the
relative gain in accuracies for the two algorithms for different types of datasets
directly reflects the strengths of the two algorithms in haplotype generation. It is
impossible in both algorithms to impute a minor allele correctly if that variant does not
exist in the haplotypes. Beagle is better able to phase and extract haplotypes from
heterozygous taxa, and consequently imputes heterozygous datasets better for both
heterozygous genotypes and genotypes homozygous for the minor allele. FILLIN
focuses on extracting phased haplotypes from inbred segments, and imputes minor
alleles better for homozygous datasets.

Overall, FILLIN provides rapid imputation of large N, low-coverage, whole-
genome sequence data from predominantly inbred or breeding populations with high
overall accuracy. For full-sib families where the objective is to find recombination
breakpoints or to do linkage analysis, which requires IBD information, FSFHap
provides sensitive and accurate imputation. For highly heterozygous samples with
unknown segregating parental haplotypes, we recommend at this time that researchers
use Beagle v.4. (24) If highly accurate imputation is required, taking a consensus
imputation will provide the most accurate results.

Together, these three algorithms, Beagle v.4, FILLIN and FSFHap, provide
robust imputation of low coverage GBS data from diverse populations. High quality
haplotypes are required for accurate imputation by any of the algorithms presented
here. Thus, if genotyping unrelated inbred lines or heterozygous populations in a

species without available haplotype panels, resources should be expended to genotype
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a subset of individuals covering the diversity of haplotypes at higher coverage to
ensure accurate haplotype generation and subsequent imputation. These results
suggest that even one generation of selfing, in species where that is possible, can aid in
accurate imputation of low coverage genotyped populations. For breeders or
researchers desiring to use GBS for genotyping highly related breeding populations,
these results suggest that very low coverage genotyping, combined with FILLIN or
FSFHap imputation, will provide highly accurate results at low cost. This is true even
if the parents have not been sampled elsewhere, since numerous low coverage
replicates of each haplotype are expected within the population. Well thought out
experimental design can help keep genotyping costs low (<$20 per sample), which

enables efficient breeding and conservation biology decisions to be made.
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A LARGE SCALE JOINT ANALYSIS OF FLOWERING TIME REVEALS
INDEPENDENT TEMPERATE ADAPTATIONS IN MAIZE
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Abstract

Modulating days to flowering is a key mechanism in plants for adapting to new
environments, and variation in days to flowering drives population structure by
limiting mating. To elucidate the genetic architecture of flowering across maize, a
quantitative trait, we mapped flowering in five global populations, a diversity panel
(Ames) and four half-sib mapping designs, Chinese (CNNAM), US (USNAM), and
European Dent (EUNAM-Dent) and Flint (EUNAM-Flint), together totaling over ten
thousand individuals, using whole-genome projected SNPs to increase the resolution
of associations. We tested for joint association using GWAS, resampling GWAS and
two regional approaches; Regional Heritability Mapping (RHM) (1, 2) and a novel
method, Boosted Regional Heritability Mapping (BRHM). Direct overlap in
significant regions detected between populations and previously published flowering
candidate gene lists was limited, but whole-genome cross-population prediction
accuracies were up to 0.78. Poor prediction accuracy was correlated with increased
population differentiation (r = 0.41), unless the parents were broadly sampled from
across the North American temperate-tropical germplasm gradient; uncorrected
GWAS results from populations with broadly sampled parents were well predicted by
temperate-tropical population differentiation in machine learning. Machine learning
of the diversity panel GWAS results also suggested shared architecture between the
American panels and, more distantly, the European panels, but not the Chinese panel.

Machine learning approaches provide a way to reconcile non-linear relationships
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between populations and other predictors, but the combined predictive ability of all of
the populations did not significantly enhance prediction of candidate genes. While the
North American-European temperate adaption is well studied, this study suggest
substantially independent temperate adaptation evolved in the Chinese panel, most
likely in China after 1500, also supported by differential gene ontology term

enrichment for top genes in each population.

Background

This study sought to refine our understanding of the genetic architecture
underlying maize flowering by combining diverse populations genotyped using whole
genome resequencing data. One of the easiest ways for a plant to adapt to a new
environment is to modulate the time until flowering, avoiding obstacles to
reproductive success. However, changes in flowering lead to reproductive isolation,
structuring populations and generating strong pleiotropic associations with other traits
(3, 4). This makes days to flowering an excellent trait to study the biological

mechanism of adaptation, but confounds association mapping approaches.

Flowering traits and population structure

Flowering time traits have received much attention in maize due to the
quantitative nature of inheritance, high heritabilities (up to 0.96 for days to silking in
the USNAM (5) population) and easy scoring (5—/8). Only a handful of loci, mostly
in the autonomous flowering pathway, have confirmed effects for modulating days to

flowering either through mutagenesis or positional cloning, including Rap2.7 and the
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MITE insertion at the Vgtl locus (7, 19),ZCN8 (20),1D1 (21, 22), conzl (23), dfl
(24), zfl1 and zfI2 (25) and the major photoperiod locus, ZmCCT (10). However,
independent days to flowering QTL have been mapped in tens of biparental, RIL, and
other structured population designs (8, 12), including four NAM populations (5, 26,
27) and in diversity populations (the largest being the Ames Diversity Panel (11));
and of the list above, only Vgtl, ZCN8, and ZmCCT have common standing variation
and are routinely detected in mapping populations (5, 8, 13). Flowering time is also of
interest for breeding, as shifting days to flowering is one of the easiest ways to combat
the effects of climate change (28-317), and is important for moving traits such as
disease resistance or yield between tropical and temperate germplasm.

Previous studies (5, 8, 12, 15, 26, 32, 33) have confirmed that days to
flowering is quantitative and highly additive in maize, and that many of the effects
target common loci, with allelic series present at many loci; a meta-analysis of 22
linkage mapping and ANOVA studies record a total of 313 QTL that collapsed in 62
consensus regions of the genome (12). Synteny mapping to rice and Arabidopsis
resulted in 19 overlapping associations (12), and synteny mapping with sorghum
revealed that 92.5% of QTL found in sorghum were less than 10Mbp from a
corresponding QTL in USNAM (33). A later meta-analysis including 29 studies (8),
found 441 significant QTL could be collapsed into 59 genomic regions. Similarly,
days to flowering in the first NAM population, USNAM, found over 50 genomic
regions with significance, and additionally confirmed the existence of allelic series at
common loci. A recent, large multi-environment evaluation of maize flowering in the

USNAM, Ames diversity panel and a newly developed Chinese NAM (CNNAM)
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(27) population using low-density GBS markers identified 130 QTL from linkage
mapping in USNAM and CNNAM, of which 40 overlapped between the two
populations (32). Cross heterotic pool predictive accuracy in the two EUNAM panels
was typically close to zero or even negative in most families (26). This suggests that
genetic control for flowering is at least partially differentiated across populations.

The quantitative basis for days to flowering in maize results from the long and
complex history of adaptation to new environments. Adaptation to climate was under
selection pre-domestication, as the wild progenitor teosinte contended with restricted
range during the last glacial period before subsequent expansion as temperatures
started to rise 12,000 years ago (34, 35). Altitudinal variation also preadapted maize to
range expansion; the direct progenitor, Z. mays ssp. parviglumis, ranges from 400-
1,500m elevation in central Mexico, and the closely related upland teosinte, Z. mays
ssp. mexicana specializes in the higher and drier uplands, 1,600-2,700m (36), and has
contributed substantial variation to domesticated maize(37, 38).

Domestication of maize took place early during the mid-Holocene maximum
(9,000-5,000 BP) (39, 40), where annual temperatures were higher than any time
before the industrial era (35). After domestication, humans moved maize across the
Americas, reaching the southern Andes by at least 3,600 BP (41) and moving
northward to southern Ontario, Canada by 1,500 BP (42). After Spanish contact with
the Americas in the late 1,400s, maize was quickly established across the world (43—
47). Modern breeding in the last 100 years has further complicated these histories with
the development of inbred lines, heterotic groups, and the intentional introgression of

exotic germplasm into global maize, particularly the historical US Dent germplasm
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(48). The resulting global modern maize germplasm is highly diverse, and days to

flowering in inbred lines varies from 35-120 days (49).

Meta-analysis and population structure in human and plant literature

Meta-analysis of GWAS results, or combining p-values from independent
studies to increase the significance of common, marginally significant loci, has been
routinely applied in human studies since the 1980s, namely because of the problems
associated with direct access to human disease data (50). Numerous methods exist for
combining results (50), both Bayesian and Frequentist, but all balance generalizability
against power to control for between dataset heterogeneity with respect to study size,
phenotypic measurements, or population structure (e.g., MANTRA (51)). Human
studies tend to be underpowered compared with crop plants due to the inability to
replicate phenotypes, and meta-analysis approaches are very effective at increasing
power to detect variants in human studies (1, 52, 53). One of the reasons for these
successes is the reasonably high resolution in human studies (54), due to the
outcrossing nature of human populations and researchers ability to capitalize on this
advantage due to the widespread availability of (imputed) high-density markers (55).
Additionally, the recent and exponential expansion of human populations has
generated an overabundance of rare alleles (56), which mapping studies have low
power to detect alone, but can be boosted to significance in aggregate (50).

Historically in crop plants, researchers have focused more on biparental (14,
57,58) or more recently Nested Association Mapping (NAM) populations (59). This

is because, unlike in humans, inbreeding is tolerated and ethics allow for structured
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mating designs and highly replicated phenotypic estimates. Structured populations
require only sparse markers because recombination events are limited, decreasing
genotyping costs but also limiting resolution. In return for limited resolution,
structured populations control for historical population structure, allowing for accurate
effect estimates of even rare variants, which can be a source of novel breeding
variation. NAM designs link multiple biparental populations with a common parent,
allowing for the estimation of allelic effect estimates across the parents. Most meta-
analyses to date in structured populations combine linkage mapping studies rather than
GWAS (8, 12). In this analysis, we combined the high resolution of diversity panels,
whole-genome SNP coverage, and decreased effects of population structure and
accurate effect estimates of structured designs to further resolve the genetic basis for
flowering.

The motivating purpose of this study is whether combining populations at
whole-genome coverage can enable us to detect more associations, with more
resolution, in a complex trait like days to flowering. We reanalyzed five mapping
populations for association with flowering traits, days to silking and days to anthesis,
using both single marker tests and regional approaches. We introduce a novel method,
Boosted Regional Heritability Mapping or BRHM, for regional mapping that controls
for population structure and extended linkage disequlibrium in mapping populations
and that easily integrates results from populations. Because days to flowering is
confounded with population structure and adaptation to new environments, we also
tested these populations for cross-validation based on population structure captured in

similarity matrices, and used a Random Forest Classifier machine learning framework
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to understand the basis for predictions. We test for differences in the mechanisms for
adaptation in different environments by comparing GO term enrichment across
populations, and testing mapping results against genome annotations and Fsrestimates

in a machine learning framework.

Methods
Datasets

Five publically available maize datasets were reanalyzed for this analysis, four
Nested Association Mapping (NAM) designs (US (59), Chinese (27), and two
European panels based on the major European heterotic groups, Flint and Dent (26))
and one diversity panel (Ames) (11) (Table 1). Phenotypes used were field-corrected
BLUPs from the original studies. All of the populations were genotyped at low density
in their original study, which we used to anchor whole genome projection for all
individuals. The EUNAM panels were genotyped using an [llumina MaizeSNP50
BeadChip (60), and the other panels were genotyped with Genotyping-By-Sequencing
(GBS) (61). Whole genome genotypes from maize Hapmap3.2.1 (62) were imputed
using K-Nearest Neighbor imputation (KNNi) (63) with an overall accuracy of 0.988
and a minor allele imputation accuracy of 0.94 for imputed genotypes, then haplotypes
projected onto all populations. Hapmap 3.21(62) was called on 1,268 inbred
genotypes from across the world, with highly variable depth of coverage, and
paralogous sites were retained, as they provide signal in GWAS. Because paralogous
sites were retained, we used KNNi (63) to impute, which was robust to high error

rates in genotype calling, but KNNi over-imputes missing data to the major allele.
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GBS-genotyped populations were projected using FILLIN (64), and EUNAM
was projected using a custom implementation of FSFHap (64). KNNi, FILLIN, and
FSFHap all use implementations in TASSEL (65). For GBS populations, projection
was anchored by 465,085 consensus sites between Hapmap3 and GBS, where the
physical positions match and the major/minor alleles are shared — projection accuracy
was r = 0.99 overall between masked and subsequently imputed genotypes (0.96 for
minor alleles). For EUNAM, the parental haplotype breakpoints were imputed for
each of the progeny using FSFHap. TASSEL used those breakpoints to project the
Hapmap 3.21 genotypes of the parents onto the progeny. While most of the parents of
these NAM populations were completely inbred, there were a minority that had
residual heterozygosity, which can produce families with three haplotypes segregating.
Projected datasets were then filtered using appropriate parameters for the family
structure of each population, to ensure a minimum of at least 10 minor alleles for any
given site in a population; NAM populations were filtered so that one family must
have a minimum minor allele frequency of 0.1 (which controls for the parental
residual heterozygosity), giving a minimum minor allele frequency of 0.02 for the
population as a whole, and Ames was filtered for minimum MAF of 0.015. Any sites
with a maximum heterozygosity above 0.02 or coverage below 0.3 were removed.
Before calculating kinships, any residual missing genotypes were assigned a
homozygous genotype randomly drawn from the genotypic frequency distribution at

each site, by family if appropriate.
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Table 1. Population statistics for KNN imputed-projected and filtered genotypes

Pop Type N Filt KNNi  Ntaxa Ntaxa
Population (N families) Sites DTA DTS
USNAM NAM (25) 39,302,149 4,758 4,758
Ames Diversity 34,967,601 2,312 2,279
CNNAM NAM (11) 27,047,718 1,928 1,928
EUNAM-Dent NAM (10) 23,766,799 841 841
EUNAM-Flint NAM (11) 25,388,592 811 811

Multidimensional Scaling (MDS) of American landraces and NAM parents

It is often unclear how inbred lines fit within an adaptive evolutionary context,
since breeding programs cross and select on progeny from unrelated individuals. We
performed joint MDS analysis with American landraces from Takuno et al (66)
spanning the two American temperate-tropical gradients with the parents of the four
NAM populations to understand the distributions of the parents across American
temperate adaptation. Each landrace individual was included ten times in the IBS
distance matrix used to calculate the MDS coordinates so that the first two coordinates
reflect the relatedness within the landrace populations. Landraces and parents for
CNNAM were natively genotyped using GBS, and EUNAM and USNAM projected
in Hapmap3.21 coordinates. MDS was based on 465,085 consensus sites between
Hapmap3 and GBS (cmdscale () in R, using an IBS distance matrix generated in

TASSEL)

Cross population prediction

Cross population prediction were performed to better understand how
populations were related to each other with respect to shared genetic architecture for

days to flowering. Cross population prediction was performed using RR-BLUP as
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implemented in TASSEL (65). The training and test populations were combined in a
single kinship (similarity) matrix, calculated using Centered-IBS (after Van Raden
(67), Endelman and Jannink (68)), and phenotypes for the test population masked so
that the model was trained solely from the training population phenotypes. Predictions
from the resulting model for the test phenotypes were then correlated with the true
phenotypes (the “prediction accuracy”) in R using the Pearson method in cor.test() in
the stats package. Genomic subsets were calculated following Rodgers-Melnick et al

(69).

Genome-wide Association Study (GWAS)

A GLM was conducted in TASSEL on two sets of phenotypes. One was the
unmodified phenotypes, uncontrolled for population structure, because flowering is
not only correlated with population structure, but it acts to differentiate populations.
Thus, many of the regions that differentiate populations may also control regions
important for temperate adaptation and we captured these in the uncorrected model.
We also controlled for population structure by fitting 5 MDS coordinates calculated
from an IBS distance matrix in TASSEL for the Ames panel, or fitting a family term
for the structured populations in a TASSEL GLM for the NAM populations. We
additionally tested a mixed linear model framework, calculating residuals in the
TASSEL MLM from models incorporating only a kinship matrix as a random effect,
or both a kinship matrix and MDS coordinates as fixed, before testing SNPs against
the residuals in the TASSEL GLM context for computational efficiency. We do not

include these results because we found that, due to the high correlation between
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population structure and flowering time, fully controlling for population structure

reduced power to detect even well-known flowering loci such as Vgtl or ZmCCT.

Resample Marker Inclusion Probability (RMIP)

The RMIP (70) approach is a resampling model selection procedure that can
help identify the most informative SNPs. RMIP was first applied to maize to analyze
leaf architecture traits by calculating residuals for each chromosome from a model that
included terms from a joint linkage model for all other chromosomes; this was the
method used to calculate residuals for Ames and USNAM (3). For CNNAM and the
EUNAMEs, instead of using joint linkage, the residuals were calculated from a mixed
model fit with a leave-one-out relationship matrix for each chromosome, which was
based on the markers from all other chromosomes except the target chromosome. The
residuals were then used to fit a stepwise model to 100 random subsamples of 80% of
the data. The RMIP for a SNP was set to the number of times it appeared in any model
divided by 100. Tests found that RMIP is insensitive to rare alleles, and only works
well when an allele is present in at least three families; because of the limited number
of parents in the EUNAM and CNNAM populations, we found that this approach had
limited power to identify SNPs and did not focus on the RMIP results in subsequent
analyses (but see Figures S9-S18 for RMIP results in context of the other mapping

methods).

Regional Heritability Mapping (RHM)
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Regional mapping approaches should be better at detecting globally rare alleles
present in parents of mapping populations, as those alleles are brought up in frequency
in the progeny. Because of the variability in population structure and consequently
MAF and SNP overlap between the populations, we first used a regional variance
partitioning approach to identify regions that could be jointly analyzed between the
populations. We follow the approach in Nagamine et al (2), testing each region of the
genome using a model with two kinships, one derived from the region of interest and
the other from the rest of the genome, fit as random effects Additionally, family is fit
as a fixed effect for the NAM populations (Figure 1). The same model is also tested
without the regional kinship, and the likelihood of the reduced model is divided by the
likelihood of the full model to produce a likelihood ratio test statistic for the region.
Following Nagamine et al, the test statistic is compared against a mixed chi-squared
(0,1) distribution for significance. For this study, we used 10,024-site kinships,
because preliminary tests indicated that this was the smallest number of SNPs to
generate reasonably stable variance estimates in this dataset. Before metaanalysis, the
resulting p-values are adjusted for multiple testing using the Benjamini-Hochberg
method in the p.adjust method in the R package “stats”.

Prelimary tests found the RHM mapping approach was only successful in
identifying associations in the larger populations (Figures S1-2). While this method
has been successful in humans, and located numerous regions of the genome in the
Ames diversity panel, and in the large USNAM panel, very few regions were
identified in the smaller NAM designs, and meta-analysis did not identify new regions

of the genome. The lack of power in the RHM is a symptom of reduced recombination
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inherent to especially the smaller NAM designs (71), and stimulated development of
the BRHM method. In RHM, if LD extends beyond the target region, even if the
causal signal is located in the region, including the region may not increase the

likelihood of the model since the signal is also represented in the “rest of the genome”
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Figure 1. Regional Heritability Mapping (RHM)
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Boosted Regional Heritability Mapping (BRHM)

Because the rest of the genome kinship can capture signal from the target
region when LD is high, as is common in NAM designs, we developed an extension of
RHM, BRHM, to increase power to detect associations, especially in the smaller NAM
panels. The BRHM algorithm iteratively samples randomly placed regions on the
target chromosome as random effects, controlling for the rest of the genome, in a
mixed linear model framework using the REML solver implemented in LDAK against
response phenotypes (Figure 2) (71). Each iteration randomizes the distance between
each of the kinships in a model, and thus the degree of LD shared by any two kinships,
generating a distribution of estimated heritabilities by any given region in the genome.
We used 30,000 site kinships computed using the “Centered-IBS”(67, 68) method for
structured populations or “Normalized-IBS”(72) for the Ames diversity panel as
implemented in TASSEL(61). The value thirty thousand was determined empirically
to maximize resolution while retaining stable relationships between kinships. The
number of chromosomal kinships was scaled for one kinship per 50Mbp, to ensure a
consistent probability that any two kinships would be in close physical proximity. For
each iteration of the model, kinships were established at random start sites (in
increments of 512 site blocks for computational efficiency in the final models), using a
uniform random generator, with the caveat that they cannot overlap and any kinship
established less than 30,000 sites from the end of the chromosome was adjusted to
30,000 sites before the end.

BRHM determines significance for regions by comparing the resulting

distribution to an empirical null distribution of estimated heritabilities, representing
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the signal for the region resulting from global population structure. The null variances
are estimated using the same genomic kinships and models, but replace the true
phenotypes with a null phenotype as the response. The null phenotypes randomly
scramble the residuals from the model y = X8 + Zu, where the random effects
include the kinship calculated from the untested chromosomes and the error term, by
adding the error estimate from another randomly chosen individual to the true BLUP
estimate for the kinship for each taxon. This generates a null to test the hypothesis that
the heritability estimated by the target kinships from the chromosome tested are
identical to that expected from population structure as detected from the rest of the
genome. Models were run with random starts for all kinships for the number of
iterations expected to cover the genome to 40X coverage; after these iterations, the
start site of the first kinship assigned to each model was chosen to ensure that a
minimum of 40 models covered each SNP.

Paired real and null results were aggregated into regions based on unique
model coverage. Models that did not converge (ran more than 25 iterations, or had a
difference in the model likelihoods greater than 0.1 between the last 2 iterations) were
excluded, rendering a small number of regions with less than 40X coverage. Because
the resulting distributions of null and real results were not always normally distributed,
significance for each region was evaluated using the non-parametric Wilcoxon signed
rank paired two-sample one-sided test implemented in the R method “wilcox.test()”.
The null hypothesis for this test is that the median of the real population is not greater
than the median of the null population. To control for differences in power across

regions, model results were randomly downsampled to 30 models per test, and the
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average p-value for thirty tests reported. If the distributions were identical — usually in
the case that the null and real values were all zero — the p-value was set to 1. Before
meta-analysis, the resulting p-values are adjusted for multiple testing using the

Bonferroni method in the p.adjust() method in the R package “stats”.
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Figure 2. Boosted Regional Heritability Mapping (BRHM)

Meta-analysis for variance component methods

We combine p-values for regions of the genome with unique population-
specific region overlap using Fisher’s method for combining p-values (73), using the

formula,
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where p; is the p-value for ith hypothesis in 1...k populations. The resulting test
statistics are x? (2k, distributed, and the mean false discovery rate is calculated as a
(k+1)/2k. While this method is not appropriate for combining GWAS results because
it does not account for the direction of effects or heterogeneity between populations,
this is not a constraint in variance mapping approaches because p-values are generated
against internal controls and heritability is unidirectional. Meta-analysis for
resampling GWAS entails directly combining results from each population; a meta-
analysis for GWAS results was not conducted because of limited shared SNPs and
because initial tests indicated that the structure of the populations and extended LD in

the NAMs generated no positive associations for the Vgt/ locus.

Machine learning analyses with GWAS results as the response

We employ the RandomForestClassifier method in Spark (74) in a Databricks
environment, classifying additive p-values such that the top 1% of results are
classified as 1, or true positives, the next 4% of results are skipped, and 2 million
random SNPs from the remaining 95% are classed as 0, or true negatives. We employ
a classifier rather than a regression based approach, because we are only interested in
how the top regions rank relative to all the others, and a regression approach gives
more weight to the insignificant results because they vastly outnumber the top hits. P-

values for SNPs not reaching filtering criteria in a given dataset were assigned to 1.
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We cross-validated by using the other nine chromosomes to predict the tenth.
Accuracy is reported as area under the curve (AUC), the integration of the momentary
false positive rate against the true positive rate at each unique observed raw predicted
value. Overall AUC is simply the average AUC for the 10 chromosomal tests. Top
predictors were reported as the average mean ranking across all 10 tests. Within a
given tests, predictors are ranked by which splits they participate in for a given tree,
averaged across all trees. Mapping predictors for the within population test were the
Bonferroni corrected p-values and median heritabilities for BRHM results, the
Benjamini-Hochberg corrected p-values and heritabilities for RHM results, and the
proportion of models selected and a smoothing spline (smooth.spline () in R, with a

spar value of 0.05) for RMIP results.

Combined GWAS

Genotypes and phenotypes were directly combined together for combined
GWAS analysis to test the efficacy of directly testing phenotypes derived from non-
overlapping research designs together. Genotypes were only minimally filtered for
polymorphic sites, leaving 70 million genotypes in the dataset. Phenotypic variances
for each population were shrunk using a mixed linear model (the Imer package in R)
where population was fit as a random effect. To control for differences in heat units
across different studies, phenotypes were then centered by shifting the mean of each
individual of the population by the difference between the value predicted for B73 for
the population and the value for B73 observed in the Ames diversity panel. All

populations were run as a single analysis in a GLM framework using the
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FixedEffectsLMPlugin in TASSEL, controlling for population structure using a
dataset term and 5 MDS coordinates calculated from an IBS distance matrix in

TASSEL(65).

Candidate gene lists

We extend the time to flowering candidate gene list from Dong et al(75),
adding all of the genes from the CENTRORADIALIS (ZCN) gene family, after
Danilevskya et al(76) (Table S1), as the 79 candidate gene list. We additionally use
unmodified the 918 candidate gene list from Li et al (32). We also generate five new
lists of candidate genes, one from the combined GWAS DTA results and two each
from Ames GWAS results, with and without population structure correction for DTS
and DTA, based on adding unique genes from a 100kbp window around top GWAS
results sorted by p-value (Table S2). The Ames candidate lists, while confounded with
true flowering pathway genes, should be more enriched for temperate adaptation

alleles than the physiological candidate lists.

Machine learning analyses for candidate genes

We also use Random Forest classifiers to provide insight into the attributes of
variants that explain top gene regions based on candidate genes for days to flowering
and GWAS results from this study. SNPs from within candidate gene regions and
100kbp on either side are set as class 1, and set the rest to class 0. Tests are done the
same way as with GWAS as the response. Mapping results, per-site Fsr estimates and

power considerations such as MAF and coverage for Hapmap 3.21 SNPs provide
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machine learning variables (the total list of predictors used in models is provided in
Table S3). Fsr was calculated on a per-site basis between populations in vcftools (77),
missing and negative values set to 0. Additional Fsy calculations were derived from

sets of thirty Hapmap 3.21 taxa representing temperate US germplasm, tropical

germplasm and Northern Flint germplasm (Table S4).

GO term comparison between populations

To better understand which classes of gene function are enriched in the BRHM
mapping results for the five populations, we calculated enrichment across the top
1,000 significant genes. The top genes were chosen by iterating through the BHRM
results ordered by the downsampled Wilcoxon-signed rank p-values for each
population, adding genes from these regions until 1,000 genes were returned so that
the genes surveyed for each population were balanced. The top 1,000 gene list was
submitted to Agrigo (78) for singular enrichment analysis (SEA) against the complete
GO database using Fisher’s test for significance, no FDR correction, and a minimum
of 5 mapping entries, using the Zea mays AGPv3.30 reference. The resulting GO
terms were aggregated by the authors based on GO definitions (Table S5). A chi-
square goodness of fit was calculated in Excel (CHITEST) from the sum for each

category.

Results
This study combines five populations, four NAM designs and a diversity

panel, totaling over ten thousand individuals (Table 1). These populations were
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previously genotyped using GBS or an Illumina array and imputed with whole
genome resequencing using FILLIN and FSFHap, respectively. This resulted in 70
million segregating markers across all populations (Table 1). The populations have
variable genetic overlap based on the first two MDS coordinates, where Ames, as
expected of a diversity panel, shows the greatest genetic diversity and CNNAM is the
most isolated (Figure 3). Only half of the SNPs that survive filtering are shared
between study populations (Figure S3), and the allele frequencies at those loci are

highly variable (Figure S4).
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Evaluation of relatedness between populations by MDS analysis and phenotypic
comparison
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Figure 3. MDS of study populations from 70 million projected Hapmap 3.21
segregating SNPs (cmdscale () in R, using an IBS distance matrix generated in

TASSEL).

To better understand the global genetic relationships between the founders of
the four NAM populations, Figure 4 shows the genetic relatedness of the NAM-type
population parents to a panel of GBS-genotyped landraces from across the Americas
(Ames includes all of the USNAM parents). In this context, the NAM founders
overwhelmingly cluster on the North American temperate-tropical gradient, rather

than the South American-Andean gradient. CNNAM and EUNAM-Dent panel show a
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more restricted geographic origin for the founder germplasm, while the other

populations contain parents with a greater mix of American tropical and temperate

origins.
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Figure 4. MDS of GBS genotypes American landraces from Takuno et al(66),
replicated 10X each to drive the first two coordinates, and NAM population parents.
The closest US-NAM parents to EUNAM-Dent are the temperate US Dents, including
B73,B97,0Oh7B, Ky21, and MS71, while the nearest US inbreds to CNNAM parents
are South African inbreds M162W, M37W, and the Texas US line, Tx303. All of
these are more proximal to the tropical Mexican landraces.
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The five populations vary with respect to both the mean and the total variance
for flowering (Figure 5). This is the result of both genetic variance within the
populations, and environmental effects of the growing regions. Shifting the
populations by the difference between the predicted value of B73 in the population
relative to the measured value of B73 in the Ames population allows for comparison
of the days to flowering of the different populations in the same environmental
context. The EUNAM populations, which were grown in exclusively European
locations, shift to the short flowering end of the distribution, and CNNAM shifts to a
later flowering average relative to Ames. Problematically, the EUNAM-Dent
population shifts to the earliest flowering position, earlier than EUNAM-Flint which
flowered slightly earlier in Europe. This is likely due the increased relatedness
between the EUNAM-Dent and B73, relative to EUNAM-Flint, giving a better

estimate of the true flowering.
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Figure 5. Distribution of reported field-corrected phenotypes for days to anthesis.
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Cross population prediction of days to flowering

We performed cross-population prediction to better understand how the genetic
basis for flowering is structured across these populations. Cross-population predictions
were generated pairwise with RR-BLUP in TASSEL across all genomic SNPs (Figure
6). Ames has the best cross population prediction accuracies (given throughout as the
Pearson correlation between observed and predicted, conservatively) overall, and
unsurprisingly given the close relationship between Ames and USNAM, the best
prediction accuracy is when the model is trained on Ames and predicting USNAM (r =
0.78 for DTA; 0.67 for the reverse). Ames predicted all of the populations better than
the others, with the exceptions of CNNAM, which might be expected since Ames is a
diversity panel and suggests that Ames is a superset to everything but CNNAM
(Chinese lines are present, but poorly represented in Ames (/7)). The EUNAM-Dent
population has the worst overall cross population prediction with all of the populations
in the study, and is predicted poorly by everything but Ames. We also looked at
predictions using only SNPs significant in mapping, and using SNPs from the
functionally annotated regions of the genome, and found that subsets can sometimes
improve predictions if genomic prediction accuracy was low, but never if the accuracy
was already high (Figures S5 and S6). An exception where a well predicted population
is further improved by a subset is when the EUNAM-Flint population is predicting
Ames or USNAM; in both of these cases prediction accuracy is already high, and

genic or open chromatin subsets further increased accuracy.
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Prediction Accuracy for WGS DTA
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Figure 6. RR-BLUP cross population prediction accuracies for DTA using all 70
million segregating SNPs in Hapmap3.21. Genetic similarity matrix generated using
the Centered-IBS method in TASSEL.

Because prediction accuracy is a function of relatedness, we calculated Fq;
statistics for all pairs of populations. Figure 7 shows a correlation of -0.41 for Fg; and
prediction accuracy for DTA across all markers, confirming a relationship between
close relatedness and high prediction accuracy, but there are outliers that do not fit the
expected pattern. Figure 7 shows that CNNAM and EUNAM-Dent generally have
lower cross-population predictions than expected by population relatedness, with the
exception that EUNAM-Dent is predicted similar to expectation by Ames. In contrast,

EUNAM-Flint has higher than expected prediction accuracy with USNAM.
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Fst and Cross—population prediction, DTA
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Figure 7. Fg; and cross-population predictions (Pearson correlation), DTA.

Mapping days to flowering loci across the genome by population, and combining
results in meta-analysis

We mapped SNPs and regions of the genome for populations individually,
comparing overlap of significant mapping results between the populations, and with
published candidate gene lists. We performed GWAS and resampling GWAS (RMIP)
to identify important SNPs, and two regional variance component approaches, RHM
and the novel BRHM extension, so that populations with minimal SNP overlap can be
compared on a regional basis. We found the RMIP and RHM approaches to be
inappropriate for the smaller NAM populations, and did not pursue further analyses.

GWAS results were run for each population, and because changes in flowering
time generate population structure, we performed GWAS with no population structure
correction and minimal population structure correction (a family term for NAM
populations, and 5 MDS coordinates for Ames). GWAS results generally tracked with

major findings from other methods (Figure S7, S9-S18), with the NAM populations
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tracking large regions of the genome, consistent with lower rates of recombination
reducing resolution. Family control in the NAM populations exacerbated this pattern,
removing peaks from all but the highest variance regions by BRHM or RHM,
especially in the EUNAMSs, which have less recombination (Figure S8). In Ames, the
only population with resolution for GWAS, population structure control changes the
significance of regions, but still identifies regions as significant that BRHM or RHM
do not.

GWAS results were not comparable across populations in meta-analysis due to
lack of shared segregating SNPs (Figures S3 and S4). As expected, the NAM
populations did not gain resolution on their own from marker-level testing, due to high
local LD resulting from minimal recombination inherent to the NAM designs (Figure
S7). To assess overlapping significant loci, despite lack of overlap of SNPs between
filtered sets in each population, we used a random forest classifier machine learning
approach, where additive p-values for excluded SNPs for a given population were
imputed to 1 (Figures 8, S19). Without population structure control the results are
similar to the cross-population predictions, Ames and USNAM are well predicted,
mostly by each other. EUNAM-Flint is predicted to a lesser extent by Ames, followed
by NAM, and EUNAM-Dent is predicted equally well, but by EUNAM-Flint.
CNNAM is predicted less well than by chance. After accounting for population
structure, no population is well predicted by the others, and only Ames have a positive

predictability.
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Between population GWAS additive p-values

Field BLUPs
Ames USNAM CNNAM EUNAM-Dent EUNAM-Flint
Avg AUC: 0.85 Z Avg AUC: 0.87 Avg AUC: 0.41 Avg AUC: 0.61 Avg AUC: 0.64
1 USNAM 1 Ames 1 EUNAM-Flint 1 EUNAM-Flint 1 Ames
2 EUNAM-Flint 2 EUNAM-Flint 2 USNAM 2 CNNAM 2 USNAM
3 EUNAM-Dent 3 EUNAM-Dent 3 EUNAM-Dent 3 USNAM 3 EUNAM-Dent
4 CNNAM 4 CNNAM 4 Ames 4 Ames 4 CNNAM
Population structure-corrected BLUPs
Ames USNAM CNNAM EUNAM-Dent EUNAM-Flint

Avg AUC: 0.55 Avg AUC: 0.66 Avg AUC: 0.48) Avg AUC: 0.38 Avg AUC: 0.48

2 USNAM 1 EUNAM-Dent 1 EUNAM-Dent 1 CNNAM 1 EUNAM-Dent
2 EUNAM-Flint 2 CNNAM 2 USNAM 2 EUNAM-Flint 2 CNNAM

2 EUNAM-Dent 3 EUNAM-Flint 3 EUNAM-Flint 3 USNAM 3 USNAM

4 CNNAM 4 Ames 4 Ames 4 Ames 4 Ames

Figure 8. Average AUC (in bold) and predictor rankings across all chromosomes from
random forest classifier for GWAS results between populations to evaluate overlap in
GWAS results between populations. The red line represents the mean of the
chromosomal ROC curves, sampled at 0.01 intervals. Predictors are equivalent GWAS
(with or without population structure correction) for the other populations. Trained on
nine chromosomes and tested on the 10". Not all chromosomes for the population
structure corrected results have top predictors, and are excluded from overall AUC
calculations.

Because the GWAS results contain signal from population structure as well as
from underlying flowering loci, we also tested the GWAS results against measures of
population differentiation between three different N. American germplasm pools,
tropical, temperate, and Northern Flint; the temperate germplasm results from the
admixture between the southern Dent and N. Flint pools (Figures 9, S20). Confirming
the inference from the cross population predictions, Ames is predicted very well

(overall AUC of 0.89) by the tropical contrasts, followed closely by USNAM, with

EUNAM-Flint well predicted at 0.67, EUNAM-Dent rather poorly predicted at 0.59
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and CNNAM slightly negatively predicted with an AUC score of 0.47. Population
structure control with a family term for the NAMs and 5 MDS coordinates for Ames
reduced prediction accuracy by population differentiation, but did not eliminate the

effects, confirming that flowering time is closely tied to population structure.

GWAS results with N.American FSTs as predictors
Field BLUPs

Ames USNAM CNNAM EUNAM-Dent EUNAM-Flint
Avg AUC: 0.89 [ Avg AUC: 0.85] Avg AUC: 0.47 Avg AUC: 0.59 Avg AUC: 0.67

1 Fst: Tropical v. N. Flint 1 Fst: Tropical v. N. Flint 1 Fst: Tropical v. Temperate 1 Fst: Tropical v. Temperate 1 Fst: Tropical v. N. Flint
2 Fst: Tropical v. Temperate 2 Fst: Temperate v. N. Flint 2 Fst: Temperate v. N. Flint 2 Fst: Temperate v. N. Flint 2 Fst: Tropical v. Temperate
3 Fst: Temperate v. N. Flint 3 Fst: Tropical v. Temperate 3 Fst: Tropical v. N. Flint 3 Fst: Tropical v. N. Flint 3 Fst: Temperate v. N. Flint

Population structure-corrected BLUPs

Ames USNAM CNNAM EUNAM-Dent EUNAM-Flint
Avg AUC: 0.64 Avg AUC: 0.77 | Avg AUC: 0.5 Avg AUC: 0.45
1 Fst: Tropical v. Temperate 1 Fst: Tropical v. Temperate 1 Fst: Tropical v. Temperate 2 Fst: Tropical v. Temperate 1 Fst: Temperate v. N. Flint
2 Fst: Temperate v. N. Flint 2 Fst: Tropical v. N. Flint 2 Fst: Tropical v. N. Flint 2 Fst: Tropical v. N. Flint 2 Fst: Tropical v. N. Flint
3 Fst: Tropical v. N. Flint 3 Fst: Temperate v. N. Flint 2 Fst: Temperate v. N. Flint 3 Fst: Temperate v. N. Flint 3 Fst: Tropical v. Temperate

Figure 9. Average AUC and predictor rankings across all chromosomes from random
forest classifier with GWAS additive p-values as the response, and N. American Fgys
as the predictors. Trained on nine chromosomes and tested on the 10™. The red line
represents the mean of the chromosomal ROC curves, sampled at 0.01 intervals. Not
all chromosomes for the population structure corrected results have top predictors, and
are excluded from overall AUC calculations.

BRHM succeeds in detecting associations, even when LD is high, while still
controlling for false associations. Figure 10 shows extended LD around ZmCCT, as
indicated by a bimodal distribution of estimated heritabilities for a linked region

upstream, where heritability is high when no kinships are more proximal to ZmCCT,

and near zero when they are. Both the RHM and BRHM methods successfully control
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for this downstream linked region, as it is not significant in either (although it is
possible there is real signal from this region, as a candidate gene is nearby, but it is not
detectable due to genome structure near ZmCCT). Although false association is well
controlled in both, the RHM method is more conservative than BRHM, with lower
resolution; BRHM is significant for a smaller region than RHM around ZmCCT, and
identifies additional regions across the chromosome, many nearby flowering
candidates. BRHM also controls for false association due to population structure,
which is a problem for association mapping in diversity panels when the trait is highly

correlated with population structure (Figure 3).
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Figure 10. RHM and BRHM results for chromosome 10, and the variances explained
for all models in BRHM that contain a kinship that falls on the region downstream of
ZmCCT, and has the greatest difference between the median and mean variance
estimated. This figure illustrates how large haplotype blocks can generate high
variances explained based on variance in sampling, and also how the BHRM model
correctly determines significance for such regions, with more power than RHM to
detect candidates.
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Overlap in significant regions between populations is low in BRHM. The
greatest overlap within significant regions for both populations is between the
EUNAM-Flint and USNAM populations, followed by Ames and USNAM (Table 4,
Figures S6-7).

Table 4. Overlap between significant BRHM results at Bonferroni corrected alpha =
0.01 between populations. Calculated as the shared overlap/total number significant in

either population. The top diagonal is for DTS, and the bottom is for DTA.
EUNAM- EUNAM-

Ames CNNAM Dent Elint USNAM
Ames 0.07 0.038 0.085 0.116
CNNAM 0.062 0.064 0.079 0.096
EUNAM-Dent 0.048 0.061 0.079 0.089
EUNAM-Flint 0.083 0.101 0.04 0.134
USNAM 0.109 0.091 0.104 0.131
Combined GWAS

Directly combining populations for joint GWAS analysis, bypassing the need
for meta-analysis, is desirable to avoid the loss of power inherent in meta-analysis.
Combining populations was challenging, however, because the phenotypic variances
between populations are due to both the different environments in which the samples
were grown, but also due to differences in genetic diversity of the datasets (Figure 5).
We shrunk population variances using dataset as a random effect, then predicted the
value of the reference line, B73, in each population and shifted each value for the
population by the difference between B73 in Ames and the predicted B73 for the
population. This was done because the heat units in the different studies vary, so this
method centers the data on genotypes rather than a grand mean. This shift better

standardizes taxa genetically similar to B73 than those more distant, creating another

89



bias reflected in the rank change between EUNAM-Flint and EUNAM-Dent before
and after correction, a known error because the populations were grown in the same
environments (Figure 5). The biases from combining datasets add to known biases for
GWAS conducted for flowering time, and GWAS for populations with extended
linkage such as found in the NAMs, resulting in extreme deviation from uniform for
p-values (Figure 11). Despite this, the well-known Vgtl locus and ZmCCT, which is
significant in 4 of the 5 populations (Figure 10), shows clear and locally dominant
signals (Figure 11, inset). However, genome-wide these signals are not especially
notable, inconsistent with previous studies (the highest signal is on chromosome 1, in
a region not noted for high effect days to flowering loci, but that is a high-linkage

region of high effect in many of the populations (Figure 11)).
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Combined GWAS normalized to Ames
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Figure 11. Combined GWAS analysis where traits are shifted by the differences
between the predicted value of B73 in the population and the value of B73 in Ames,
and the populations shrunken to account for variable GDD in the different study
ennvironments. Population structure is controlled by 5PCs and a dataset term. Top
300,000 points by additive p-value plotted. Y-axis tick marks every 50. Vertical
yellow lines represent Dong et al/Danilevskya et al candidate genes (Table S2). QQ-
plot for combined GWAS results downsampled to 0.0001 (but including the top 10
values). The top flowering time loci in Ames and USNAM are highlighted.
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Candidate gene enrichment

We looked at enrichment for the Dong et al days to flowering candidate genes
focusing on the BRHM method. Most of the populations show slight enrichment for
flowering candidate genes, between 1-2X (Table 5, Table S7). Candidate overlap
between populations is also concentrated among the top few, previously identified,
flowering loci, namely ZCN8 and the Vgtl locus on chromosome 8 and ZmCCT on
chromosome 10 (Table S1).

Table 5. Proportion of Dong et al candidate genes in significant regions relative to
random genes within significant regions. Significance based on Bonferroni corrected
significance for BRHM method, Benjamini-Hochberg for RHM, and for SNPs

selected in at least a certain number of models for the RMIP method. Random genes in
significant regions are the average of 100 samples.

DTA DTS
BRHM 0.001 0.01 0.05 0.001 0.01 0.05
Ames 0.968 (6) 1.316(10) 1.22(11) |1.297(8) 1.282(9) 1.424(13)

CNNAM 1.579(6) 1.777(11) 1.31(11) |2.174(8) 2.609 (15) 1.724(16)
EUNAM-Dent|1.019 (7) 1.046 (8) 1.012(12) [1.372(9) 1.171(10) 1.033(14)
EUNAM-Flint|1.156 (8) 0.937(8) 0.915(13) | 1.441(10) 1.202(12) 0.904 (13)

NAM 1.146 (28) 1.095(32) 1.044(38) | 1.139(29) 1.16(36) 1.164 (42)
*Candidates in significant regions/Average over 100 samples of non-candidate genes
from the maize v3 gene models in significant regions (Number of candidates in
significant regions)

Comparison of GWAS results for SNPs around physiological candidate genes
to random matched subsets shows only enrichment for EUNAM-Dent and, marginally,
USNAM without population structure correction in the short candidate list, but in the
long list is enriched for Ames, EUNAM-Flint and USNAM (Table 6). With population
structure correction, only Ames is significantly enriched for p-values in the short list,

but all populations are enriched for genes in the long list. Candidate lists were also
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generated for the top Ames results and combined GWAS results, based on the sizes of
the flowering time candidate lists both with and without population structure
correction. Ames is the population with the highest resolution and for which top hits
should capture temperate adaptation loci that may or may not be related to flowering
explicitly. P-values from around the short 79 Ames gene list is enriched for all
populations, but more so for EUNAM-Flint and USNAM without population structure
control; with the population term only EUNAM-Flint and CNNAM (DTS) are
enriched. Based on the top 918 genes for Ames, only EUNAM-Flint is enriched
without population correction, and EUNAM-Flint and CNNAM and USNAM for for
DTS only. The p-values from SNPs associated with candidates culled from the
combined analysis (Ames-centered DTA) were enriched in all populations, which
suggests that the combined analysis does tag regions with enriched signal shared

across populations.
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Table 6. Enrichment for low p-values within 2kbp of candidate gene regions
derived from the 79 and 918 flowering candidate gene lists, and matched sized lists
from the Ames and combined GWAS candidate lists (Table S2). P-values from within
the candidate gene region are compared with a matched set of p-values from outside
the regions using a one-sided Wilcoxen signed rank test in R. Only results from the
Ames candidate list matching the GWAS source file by trait and population structure
correction are presented.

GWAS  Candidate EUNAM-  EUNAM-
source source Trait Ames CNNAM Dent Flint USNAM
Based on Dong et al + Danilevskya et al gene list (79)
uncorr.  Ames DTA | <1.0E-324  1.95E-03 0.965 6.93E-156 1.38E-135
uncorr. DTS | <1.0E-324  1.08E-29 1 1.61E-176  4.30E-56
Combined DTA | 7.90E-173  3.67E-21  5.36E-12 9.14E-123  3.53E-45
DTS | 3.39E-162  1.24E-43  2.49E-13  4.73E-86  8.13E-41
Phys.cand DTA 1 1 1.86E-13 1 7.10E-12
DTS 1 1  8.66E-05 1 1.69E-04
Q-corr.  Ames DTA | 4.06E-83 1 1 <1.0E-324 1
corr. DTS 4.77E-66  3.90E-166 1 1.69E-170  8.65E-01
Combined DTA 2.08E-50 3.97E-279  8.93E-31  7.34E-77 <1.0E-324
DTS 1.09E-55 4.73E-142  7.16E-10  5.75E-78 <1.0E-324
Phys.cand DTA 0.063 1 1 1 9.67E-02
DTS 2.83E-06 0.153 0.818 0.78 1
Based on Li et al gene list (918)
uncorr.  Ames DTA | <1.0E-324  5.31E-09  7.90E-08 3.72E-307 <1.0E-324
uncorr. DTS | <1.0E-324 2.71E-237  1.26E-14 <1.0E-324 <1.0E-324
Combined DTA | <1.0E-324  4.52E-30  6.30E-18 1.58E-284 <1.0E-324
DTS | <1.0E-324  1.41E-26  2.81E-03 1.61E-242 2.80E-269
Phys.cand DTA 0.031 0.012  5.71E-06  2.53E-02  6.60E-21
DTS 0.149  1.73E-04  5.15E-03  1.91E-04  7.12E-31
Q-corr.  Ames DTA | <1.0E-324 1 1 <1.0E-324 1
corr. DTS | <1.0E-324 7.73E-164 1 <1.0E-324  1.44E-25
Combined DTA | <1.0E-324 <1.0E-324 1.12E-163 <1.0E-324 <1.0E-324
DTS | <1.0E-324 1.02E-171  3.79E-08 <1.0E-324 <1.0E-324
Phys.cand DTA 0.063 1 1 2.19E-06 0.924
DTS 1.28E-03 1 1 2.83E-15 1

We used machine learning at candidate genes (Li et al, Dong et al plus

Danilevskya et al, and Ames without population structure correction) to determine if

non-linear combinations of BRHM and GWAS results, power considerations such as
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MAF and coverage, and measures of population differentiation between populations
and on the temperate-tropical gradient could better explain results (Figures 12, S23).
We expected this might be the case if differential segregation at candidate genes
within different populations generated the observed pattern of minimal overlap within
a given population. The ability to predict physiological candidate genes is only slightly
enriched above baseline (an AUC of 0.5) when BRHM, GWAS, power and population
differentiation are taken into account, suggesting that even non-linear combinations of
these predictors cannot explain the candidate lists. Interestingly, in addition to
mapping results, coverage statistics also rank high as predictors, suggesting that
structural variation may be diagnostic for candidate genes. Prediction of the Ames
candidates used Ames BRHM results as the top predictors, unsurprisingly, and were
followed by mapping results for other populations, with EUNAM-Dent and CNNAM
as the least important predictors among the top BRHM results. That BRHM results,
rather than population differentiation scores or even GWAS results, are the best
predictors for Ames suggests that the top hits in Ames are generally shared across
populations, with EUNAM-Flint and NAM as the most important and EUNAM-Dent

and CNNAM sharing less.
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ROC Curves for all predictors against candidate gene lists

Dong et al/
Ames_top79 Ames_top918  Danilevskya et al Li et al
Avg AUC: 0.88 Avg AUC: 0.74 Avg AUC: 0.59 Avg AUC: 0.59
Top Predictor rankings
Ames_top79 Ames_top918 Dong et al/Danilevskya et al Lietal
1 Ames BRHM median h2 1 Ames BRHM median h2 1 USNAM BRHM bon-corr p-value 1 USNAM BRHM bon-corr p-value
4 Ames BRHM bon-corr p-value 2 Ames BRHM bon-corr p-value 4 CNNAM BRHM median h2 4 CNNAM BRHM median h2
4 EUNAM-Flint BRHNM an h2 4 EUNAM-Flint BRHM median h2 4 Ames coverage 4 Ames coverage
5 USNAM BRHM median h2 4 EUNAM-Dent BRHM median h2 5 USNAM BRHM median h2 5 EUNAM-Flint BRHM median h2
5 CNNAM BRHM median h2 6 CNNAM BRHM median h2 5 EUNAM-Flint BRHM median h2 5 USNAM BRHM median h2
6 EUNAM-Dent BRHM median h2 7 USNAM BRHM median h2 6 CNNAM coverage 6 CNNAM coverage
7 EUNAM-Flint BRHM bon-corr p-value 7 EUNAM-Flint coverage 6 EUNAM-Dent BRHM median h2 7 EUNAM-Dent BRHM median h2
8 EUNAM-Flint coverage 9 EUNAM-Dent BRHM bon-corr p-value 8 EUNAM-Dent coverage 8 EUNAM-Dent coverage
10 CNNAM BRHM bon-corr p-value 9 CNNAM BRHM bon-corr p-value 11 Ames N major allele 10 EUNAM-Dent BRHM bon-corr p-value
11 USNAM BRHM bon-corr p-value 10 Ames uncorrected GLM add-p 11 EUNAM-Flint BRHM bon-corr p-value 11 EUNAM-Flint BRHM bon-corr p-value

Figure 12. Machine learning using candidate genes as the response, and GWAS and

BRHM mapping, power estimators, and Fqps as the predictors. The red line represents
the mean of the chromosomal ROC curves, sampled at 0.01 intervals. Candidate genes
were classified as 1, with a 20kbp buffer around the gene start and end position (maize
AGP v3). AUCs of 0 result when no candidates are found on the chromosome tested.
Not all chromosomes for the Ames top 79 candidates have top predictors, and are
excluded from overall AUC calculations.

Go term enrichment from top genes from BRHM analysis

The limited overlap in significant regions and candidate lists across all of the
methods is not consistent with previous findings (8, 27) using lower density SNP sets,
and not supported by the generally high cross-population prediction accuracies. The
discrepancy could be due to truly different underlying genetic architecture that had
previously been collapsed due to limited marker coverage, which should generate low
cross-population prediction accuracies, differential allelic series at common genes
across populations as was found in the USNAM population (5), or it could be due to
differences in population structure, both historical and recent, shifting the signal from

or differentially segregating for the same causal variant within populations. We looked
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at GO term enrichment for top BRHM results to see if association regions share a
functional enrichment to help reconcile the disparities between the limited overlap
observed in the mapping results, and the broadly shared genetic basis for flowering in
most populations implicated in the cross population prediction results.

We focus on the top 1,000 genes from the BRHM analysis for each of the
populations to see if differences in mapping results are also related to differences in
function (Table 7). A chi-square goodness of fit test for equal representation within
biological functional categories reports a highly significant deviation from equal
representation across populations, with a p-value of 7.54e-17 for DTA. All of the
populations show similar levels of enrichment for gene models related to
housekeeping, biotic response and macromolecules, a catchall category for
macromolecule biosynthesis, metabolism, and catabolism (Table S5). Reproduction,
signaling, development and biotic response are the classes with the largest deviations
from expected. Ames and USNAM, which have the greatest genetic overlap, have
distinctly different enrichment profiles, likely reflecting differences in resolution

between the populations, and absolute variance in days to flowering.
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Table 7. GO term enrichment against expectation of even representation for each
population, based on the top 1,000 genes from the most significant regions of the
genome for DTA, as determined by BRHM analysis. Chi-square goodness of fit p-
value for test of deviation from the null hypothesis that there are no differences
between populations for annotated function is 7.54E-17

Ames CNNAM EUNAM-Dent EUNAM-Flint USNAM

AbioticResponse  1.026 0.982 0.765 1.002 1.224
BioticResponse 0.993 1.034 0.938 1.072 0.969
Development 1.016 0.894 0.866 0.935 1.28
Housekeeping 1.014 0.994 1.02 1.005 0.97
MacroMolecules = 0.974 1.017 1.042 0.994 0.97
Regulation 0.958 1.05 1.107 0.978 0.903
Reproduction 1.159 0.937 0.83 1.156 0.952
Signalling 1.267 0.885 0.869 0.946 1.059
Discussion

Complex traits, such as yield, are well known to aggregate fitness effects
across all pathways and systems of a plant, but this study highlights that this is also
true for days to flowering (see also Li et al(32)). When a plant is induced to flower
depends on the alleles present at ZmCCT, ZCN8, and Vgtl, but it also depends on the
pleiotropic response of hundreds of other loci responding to signals for heat, circadian
signaling, light quality, moisture availability, starch accumulation, and others (3, 4).
Functional biological constraints ensure some overlap across populations for high
effect genes in the autonomous flowering pathway; this is supported by the increase in
genome-wide prediction accuracy for poorly predicted populations when the top
significant SNPs from any population are used. Candidate gene enrichment suggested
around ten genes may be universally important and segregating. However, limited
overlap in mapping results and differential GO term enrichment suggest that, as maize

spread across the world during improvement and modern hybrid breeding, complex
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population dynamics may have led to differential selection for secondary pathways
implicated in temperate adaptation.

That some populations, namely EUNAM-Flint and CNNAM, do not predict
Ames as expected based on population differentiation suggests more complicated
population dynamics than simple relatedness (Figure 7). What better explains the
patterning in prediction accuracy is the spread of the population founders on North
American temperate / tropical gradient (Figure 4). The two populations with a
localized geographic origin on this gradient, CNNAM and EUNAM-Dent, are the two
populations with more limited cross-population prediction accuracy, and low
prediction accuracy for GWAS results in machine learning. In contrast, EUNAM-
Flint, which has higher than expected cross-population prediction accuracy when
predicting USNAM, has parents spanning the tropical / temperate North American
gradient, and Fgy;s between Northern Flints and tropical American germplasm are top
predictors in machine learning against uncorrected GWAS results. Lower than
expected prediction accuracy relative to population differentiation could be interpreted
in two ways; a narrow germplasm base or, if the population has high variance for
flowering time, that these populations contain novel temperate adaptation not captured
on either American temperate / tropical axis.

The history of germplasm introduction can shed light on the discrepancies
between prediction accuracy and population differentiation especially for the
EUNAM-Dent and CNNAM. The earliest germplasm in Europe was Caribbean in
origin, and subjected to selection for early flowering upon entry into Spain, but it was

only after the introduction of the Northern Flint varieties in the mid-1600s from the
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northeast of the modern US that maize agriculture spread to European climates north
of the Pyranees (43, 46, 47, 80). Genetic evidence from European maize suggests that
most of the early flowering adaptation was acquired from the North American
Northern Flint germplasm introduced in the 1600s (43, 46), but also that there are
unique rare alleles in the Southern European (Spanish and Portuguese) germplasm
(47). Finally, in the past century, the development of the European heterotic groups
introduced primarily American lIodent, Stiff Stalk, Lancaster, and Minnesota
germplasm into Europe, captured primarily in the Dent panel (46, 81, 82). Although
Chinese maize now contains both early and late flowering varieties, the most likely
first point of entry for maize to China was by Spanish and Portuguese traders through
the Port of Macau, and these are reported to be humid, tropical adapted varieties(44,
45). A regular trading route between Acapulco and Manila, which started in CE 1565,
could have introduced western lowland Mexican maize to Asia (83).. This panel of
Chinese lines is dominated by lines whose origins likely predate modern hybrids of the
20™ Century, suggesting an indigenous temperate adaptation to China based on a very
different germplasm source.

The recurrent parent of the EUNAM-Dent population is representative of the
agronomically important Iodent germplasm, and the additional lines in the dent panel
derive from the US Stiff Stalk, US Lancaster, and Hohenheim Dent populations (84,
85). The Hohenheim Dents were bred from US temperate germplasm, and especially
the early flowering Minnesota lines (82), which result from crosses between the US
Southern Dents and Northern Flints, followed by selection for extreme temperate

adaptation, with early flowering contributed by the Northern Flints (81). EUNAM-
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Dent is well predicted by Ames, but not NAM; Ames is enriched for temperate US
germplasm, including Iodent and Minnesota lines (11), while NAM is not (59). It is
not surprising that Ames then predicts the Dent panel, as it is a superset, but it is
perhaps surprising that the Ames GWAS results predict the EUNAM-Dent germplasm
so poorly in machine learning, given that the pedigree suggests that temperate
adaptation in the EUNAM-Dent panel is Northern Flint in origin. The lack of overlap
in significant regions and poor cross-population prediction suggests that the Dent
germplasm base is so narrow that there is little variance for flowering time or
temperate adaption. This is possible, given the good prediction of Dent germplasm by
Ames, and moderately supported by the reasonable, but lower than Ames or USNAM,
narrow-sense heritability for the EUNAM-Dent panel, 0.7 (DTS) and 0.61 (DTA).
Alternately, poor overlap and machine learning prediction could be a result of recent
selection for temperate adaptation in the development of the Minnesota germplasm
and subsequent selection in Europe.

Almost all of the CNNAM parents derive from Chinese sources across
heterotic groups, and the recurrent parent is a derivative of the temperate Chinese
landrace TangPiSingTou (86). While most of the CNNAM parents are temperate
(32), they are significant at the major photoperiod locus ZmCCT confirming that the
population contains tropical alleles. Additionally, broad sense heritabilities for
CNNAM were high (0.91 and 0.90 for DTA and DTS respectively) so the genetic
basis for days to flowering is not narrow. High heritability and lack of overlap in
significant regions and poor cross-population prediction across all populations

suggests that the CNNAM population does not suffer from a narrow germplasm base
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but rather contains novel alleles for temperate adaptation, suggesting an independent
origin relative to the other four populations.

The minimal enrichment for physiological candidate genes, even in a machine
learning framework that can incorporate information from all of the predictors in a
non-linear framework, suggest that days to flowering is primarily mapping temperate
adaptation. If temperate adaptation is a suite of traits that incorporates more loci than
those associated with the autonomous flowering time pathway, and independent
adaptations for these traits from China and the US/Europe are relevant in NAM
germplasm, genes in significant regions should be enriched for different non-
autonomous flowering loci. The CNNAM and Dent panels show different patterns of
enrichment in the top 1,000 genes from the other panels, tentatively supporting this
hypothesis. In contrast, Ames and the EUNAM-Flint population are the most enriched
of all the populations for reproductive GO terms, perhaps helping explain how these
populations have good cross-population prediction, despite high population
differentiation.

However, questions remain as to why Ames, USNAM, and EUNAM-Flint,
which all share parents across the temperate tropical gradient, have high cross-
population prediction accuracy, and can predict each others” GWAS results reasonably
well (EUNAM-Flint) or very well (Ames and USNAM) do not share more significant
loci in the mapping results. The good cross-population predictions and machine
learning results suggest that these three populations share or partially share a common
genetic architecture, and that the lack of overlap is an artifact of our inability to isolate

signals within the data. Differences in population structure, and how LD shifts the
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signal in mapping results from true causal loci, certainly contribute to lack of overlap
in these structurally diverse populations. Environment, and genotype-by-environment
interactions in the testing environments may also explain some of this discrepancy.
The construction of the NAM designs reduce the spread of days to flowering across
the population to those that can be crossed, reducing the total variance in ways which
may be subjected to similarly unique pressures, even across multi-year/location
studies. Likewise, the EUNAM trials were all located in Europe, much colder and
further north than most of the NAM or Ames environments; the EUNAM populations
predict B73 to flower a full two weeks later than in Ames, due to reduced GDD
accumulation, and systemic genotype by environment interactions may affect
associated regions. Finally, it is possible that some of the differences between
EUNAM-Flint and the USNAM result from partially different genetic architecture
derived from early Spanish selection for temperate adaption in early-introduced
Caribbean germplasm.

These results raise the question of the suitability of simple threshold values for
detecting similarity in complex, population structure confounded traits like flowering
time (88).. Significance or heritability thresholds are modulated by population
diversity, population allele frequency, LD with neighboring SNPs, population
structure of the founders, and the unique set of environments the populations were
evaluated in. This almost guarantees that there will not be a simple threshold to look
for meaningful overlap. Machine learning provides an opportunity to look for site
overlap in much more rigorous way, by allowing threshold values to vary we can

better model non-linear relationships between power, true causal variants and
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population structure to understand genetic architecture and target causal variation
more precisely for breeding. Finally, this study highlights in CNNAM a unique set of
germplasm not extensively utilized outside of China, which may provide a new source

of novel alleles for breeding programs.
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Figure S1. Significant regions and meta-analysis results for RHM method, DTA
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Figure S3. SNP overlap between populations in filtered projected Hapmap3.21
genotypes
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Figure S4. Density of the difference between the minimum and maximum Hapmap
3.21 major allele frequencies in shared filtered projected Hapmap3.21 genotypes
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Increase in prediction accuracy for DTA using significant mapping subset
over all WGS SNPs (a=0.01)
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Figure S5. Increase in prediction accuracy for DTA using subsets of SNPs from
significant regions in BRHM results. Whole genome accuracies reported in red.
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Increase in prediction accuracy for DTA using
genomic annotation subset over all WGS SNPs
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Figure S6. Increase in prediction accuracy for DTA using subsets of SNPs based on
genomic annotations.
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Figure S7. Combined results for all methods (GWAS (no population structure
control), resampling GWAS (RMIP), RHM, and BRHM) for 50 Mbp region on
Chromosome 10. RHM and BRHM variance estimates are unmodified. GWAS —log10
p-values and the proportion of models for which a SNP was chosen in resampling
GWAS rescaled to the maximum value of the variances in the window, and only the
top 5,000 SNPs across the genome plotted in a window. Both the median estimated
heritability for the null phenotypes (light blue) and the real estimated heritability (blue
to red) is shown for BRHM. RMIP bars in orange represent the proportion of models
in which that SNP was chosen. Candidate genes (based on Dong et al./ Danilevskya et
al) are noted with a yellow asterisk and listed across the top.
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Figure S8. Combined results for all methods (GWAS (Family term or 5PCs for
Ames), resampling GWAS (RMIP), RHM, and BRHM) for 50 Mbp region on
Chromosome 10. RHM and BRHM variance estimates are unmodified. GWAS —log10
p-values and the proportion of models for which a SNP was chosen in resampling
GWAS rescaled to the maximum value of the variances in the window, and only the
top 5,000 SNPs across the genome plotted in a window. Both the median estimated
heritability for the null phenotypes (light blue) and the real estimated heritability (blue
to red) is shown for BRHM. RMIP bars in orange represent the proportion of models
in which that SNP was chosen. Candidate genes (based on Dong et al./ Danilevskya et
al) are noted with a yellow asterisk and listed across the top.
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Figure S9. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for Ames, DTA. RHM and BRHM variance
estimates are unmodified. GWAS —log10 p-values and the proportion of models for
which a SNP was chosen in resampling GWAS rescaled to the maximum value of the
variances in the window, and only the top 5,000 SNPs across the genome plotted in a
window. Both the median estimated heritability for the null phenotypes (light blue)
and the real estimated heritability (blue to red) is shown for BRHM. RMIP bars in
orange represent the proportion of models in which that SNP was chosen. Candidate
genes (based on Dong et al./ Danilevskya et al) are noted with a yellow asterisk and
listed across the top.
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Figure S10. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for Ames, DTS. RHM and BRHM variance
estimates are unmodified. GWAS —log10 p-values and the proportion of models for
which a SNP was chosen in resampling GWAS rescaled to the maximum value of the
variances in the window, and only the top 5,000 SNPs across the genome plotted in a
window. Both the median estimated heritability for the null phenotypes (light blue)
and the real estimated heritability (blue to red) is shown for BRHM. RMIP bars in
orange represent the proportion of models in which that SNP was chosen. Candidate
genes (based on Dong et al./ Danilevskya et al) are noted with a yellow asterisk and
listed across the top.
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Figure S11. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for USNAM, DTA. RHM and BRHM variance
estimates are unmodified. GWAS —log10 p-values and the proportion of models for
which a SNP was chosen in resampling GWAS rescaled to the maximum value of the
variances in the window, and only the top 5,000 SNPs across the genome plotted in a
window. Both the median estimated heritability for the null phenotypes (light blue)
and the real estimated heritability (blue to red) is shown for BRHM. RMIP bars in
orange represent the proportion of models in which that SNP was chosen. Candidate
genes (based on Dong et al./ Danilevskya et al) are noted with a yellow asterisk and
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Figure S12. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for USNAM, DTS. RHM and BRHM variance
estimates are unmodified. GWAS —log10 p-values and the proportion of models for
which a SNP was chosen in resampling GWAS rescaled to the maximum value of the
variances in the window, and only the top 5,000 SNPs across the genome plotted in a
window. Both the median estimated heritability for the null phenotypes (light blue)
and the real estimated heritability (blue to red) is shown for BRHM. RMIP bars in
orange represent the proportion of models in which that SNP was chosen. Candidate
genes (based on Dong et al./ Danilevskya et al) are noted with a yellow asterisk and
listed across the top.
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Figure S13. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for CNNAM, DTA. RHM and BRHM variance
estimates are unmodified. GWAS —log10 p-values and the proportion of models for
which a SNP was chosen in resampling GWAS rescaled to the maximum value of the
variances in the window, and only the top 5,000 SNPs across the genome plotted in a
window. Both the median estimated heritability for the null phenotypes (light blue)
and the real estimated heritability (blue to red) is shown for BRHM. RMIP bars in
orange represent the proportion of models in which that SNP was chosen. Candidate
genes (based on Dong et al./ Danilevskya et al) are noted with a yellow asterisk and
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Figure S14. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for CNNAM, DTS. RHM and BRHM variance
estimates are unmodified. GWAS —log10 p-values and the proportion of models for
which a SNP was chosen in resampling GWAS rescaled to the maximum value of the
variances in the window, and only the top 5,000 SNPs across the genome plotted in a
window. Both the median estimated heritability for the null phenotypes (light blue)
and the real estimated heritability (blue to red) is shown for BRHM. RMIP bars in
orange represent the proportion of models in which that SNP was chosen. Candidate
genes (based on Dong et al./ Danilevskya et al) are noted with a yellow asterisk and
listed across the top.

116



0-0.137

Figure S15. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for EUNAM-Dent, DTA. RHM and BRHM
variance estimates are unmodified. GWAS —log10 p-values and the proportion of
models for which a SNP was chosen in resampling GWAS rescaled to the maximum
value of the variances in the window, and only the top 5,000 SNPs across the genome
plotted in a window. Both the median estimated heritability for the null phenotypes
(light blue) and the real estimated heritability (blue to red) is shown for BRHM. RMIP
bars in orange represent the proportion of models in which that SNP was chosen.
Candidate genes (based on Dong et al./ Danilevskya et al) are noted with a yellow
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Figure S16. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for EUNAM-Dent, DTS. RHM and BRHM
variance estimates are unmodified. GWAS —log10 p-values and the proportion of
models for which a SNP was chosen in resampling GWAS rescaled to the maximum
value of the variances in the window, and only the top 5,000 SNPs across the genome
plotted in a window. Both the median estimated heritability for the null phenotypes
(light blue) and the real estimated heritability (blue to red) is shown for BRHM. RMIP
bars in orange represent the proportion of models in which that SNP was chosen.
Candidate genes (based on Dong et al./ Danilevskya et al) are noted with a yellow
asterisk and listed across the top.
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Figure S17. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for EUNAM-Flint, DTA. RHM and BRHM
variance estimates are unmodified. GWAS —log10 p-values and the proportion of
models for which a SNP was chosen in resampling GWAS rescaled to the maximum
value of the variances in the window, and only the top 5,000 SNPs across the genome
plotted in a window. Both the median estimated heritability for the null phenotypes
(light blue) and the real estimated heritability (blue to red) is shown for BRHM. RMIP
bars in orange represent the proportion of models in which that SNP was chosen.
Candidate genes (based on Dong et al./ Danilevskya et al) are noted with a yellow
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Figure S18. Combined results for all methods (GWAS (uncorrected), resampling
GWAS (RMIP), RHM, and BRHM) for EUNAM-Flint, DTS. RHM and BRHM
variance estimates are unmodified. GWAS —log10 p-values and the proportion of
models for which a SNP was chosen in resampling GWAS rescaled to the maximum
value of the variances in the window, and only the top 5,000 SNPs across the genome
plotted in a window. Both the median estimated heritability for the null phenotypes
(light blue) and the real estimated heritability (blue to red) is shown for BRHM. RMIP
bars in orange represent the proportion of models in which that SNP was chosen.
Candidate genes (based on Dong et al./ Danilevskya et al) are noted with a yellow
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ROC Curves for between population GWAS results with other populations as predictors Qyerall
Field BLUPs AUC
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Population structure-corrected BLUPs
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Figure S19. Random forest classifier for GWAS results between populations to
evaluate overlap in GWAS results between populations. Predictors are equivalent
GWAS (with or without population structure correction) for the other populations.
Trained on nine chromosomes and tested on the 10™. Not all chromosomes for the
population structure corrected results have top predictors, and are excluded from
overall AUC calculations.
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ROC Curves for GWAS results with N.American Fsts as predictors Overall
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Figure S20. Random forest classifier with GWAS additive p-values as the response,
and N. American Fg;s as the predictors. Trained on nine chromosomes and tested on
the 10™. Not all chromosomes for the population structure corrected results have top
predictors, and are excluded from overall AUC calculations.
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ROC Curves for all predictors against candidate gene lists
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Figure S23. Machine learning using candidate genes as the response, and GWAS and

BRHM mapping, power estimators, and Fqps as the predictors. Candidate genes were

classified as 1, with a 20kbp buffer around the gene start and end position (maize AGP
v3). AUCs of 0 result when no candidates are found on the chromosome tested. Not all
chromosomes for the Ames top 79 candidates have top predictors, and are excluded
from overall AUC calculations.

Supplemental tables

Table S1. Number of populations significant for autonomous flowering time

candidates (after Dong et al) based on Bonferroni corrected significance for

BRHM method

Gene Model

GRMZM2G381691
GRMZM2G171365
GRMZM2G092174
GRMZM2G095727
GRMZM2G179264
GRMZM2G700665

i
Locus 8_
Name °

Chr Start End

ZmCCT 10 94262291 94264845 3
ZMM5 9 154082657 154102449 2
PhyB2 9 135245567 135251882 2
ZmPRR73 9 138861929 138870925 3
ZCN8 8 123030387 123032175 3
ZmRAP2.7 8 131576889 131580316 3
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Table S2. New candidate genes derived from Ames and combined GWAS analysis,
based on genes found within 100kbp of the top GWAS hits sorted by additive p-value.

The ranking within each subset is given. The first 79 by rank are used in comparison

to the shorter Dong et al/ZCN list and the full 918 by rank for each results list are
compared with Li et al.

= = = = = =

- Sl el S 18 |2
GRMZM2G000129 88 67 260 | GRMZM2G140082 881
GRMZM2G000209 704 | GRMZM2G140083 75 | 173 96
GRMZM2G000219 705 | GRMZM2G140298 151 | 213 44
GRMZM2G000326 334 | 507 GRMZM2G140448 477
GRMZM2G000353 | 600 | 474 GRMZM2G140500 483
GRMZM2G000376 | 599 | 473 GRMZM2G140755 518 | 458
GRMZM2G000380 407 | 189 GRMZM2G140758 515 | 455
GRMZM2G000471 1 11 | 309 | GRMZM2G140811 514 | 454
GRMZM2G000481 2 12 | 310 | GRMZM2G140824 674 | 612
GRMZM2G000632 | 627 | 548 GRMZM2G141241 797
GRMZM2G000781 | 321 | 326 251 | GRMZM2G141256 796
GRMZM2G000801 | 320 | 325 250 | GRMZM2G141288 795
GRMZM2G001004 715 | 244 GRMZM2G141355 273 94
GRMZM2G001139 325 | GRMZM2G141383 943
GRMZM2G001145 | 635 | 612 GRMZM2G141605 891
GRMZM2G001205 393 163 | GRMZM2G141618 894
GRMZM2G001243 481 | 250 GRMZM2G141665 872
GRMZM2G001247 893 | GRMZM2G141667 922
GRMZM2G001297 894 | GRMZM2G141723 871
GRMZM2G001541 | 937 | 905 GRMZM2G141784 226 | 168
GRMZM2G001645 161 | GRMZM2G142043 951
GRMZM2G001648 791 | GRMZM2G142334 891
GRMZM2G001816 54 | GRMZM2G142352 191
GRMZM2G001895 14 10 GRMZM2G142366 818
GRMZM2G001930 12 9 GRMZM2G142390 192
GRMZM2G002115 | 496 | 545 GRMZM2G142507 959
GRMZM2G002149 135 | 114 GRMZM2G142565 816
GRMZM2G002173 104 90 GRMZM2G142597 961
GRMZM2G002199 790 | 647 GRMZM2G142620 815
GRMZM2G002240 965 | 646 GRMZM2G142649 12
GRMZM2G002297 | 732 | 571 GRMZM2G142660 14
GRMZM2G002559 175 | 725 GRMZM2G142667 837 | 662
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GRMZM2G002626 547 | 481 GRMZM2G142718 | 731 | 663

GRMZM2G003096 704 GRMZM2G142743 | 726 | 664

GRMZM2G003186 605 | 903 GRMZM2G142757 | 727 | 665

GRMZM2G003318 | 311 | 293 GRMZM2G142802 | 728 | 666

GRMZM2G003488 900 GRMZM2G142820 | 730 | 668

GRMZM2G003530 | 452 | 268 GRMZM2G142922 | 758

GRMZM2G003595 124 | 362 GRMZM2G142927 | 759

GRMZM2G007475 832 | GRMZM2G142932 | 760

GRMZM2G007514 831 | GRMZM2G143025 | 180 | 170 385
GRMZM2G007530 974 | 574 GRMZM2G143075 92 | 117 383
GRMZM2G007587 973 | 573 GRMZM2G143082 93 | 118 384
GRMZM2G003607 | 906 | 846 GRMZM2G143202 | 666 | 685

GRMZM2G003631 264 | 594 GRMZM2G143210 | 251 | 270 1
GRMZM2G003640 | 907 | 847 GRMZM2G143473 810
GRMZM2G003734 652 GRMZM2G143747 910 | 374
GRMZM2G003755 937 GRMZM2G144088 336 | 188
GRMZM2G003979 68 58 GRMZM2G144155 | 505 | 285 152
GRMZM2G004298 | 199 | 150 GRMZM2G144173 297
GRMZM2G004500 502 | GRMZM2G144398 430 22
GRMZM2G004511 501 | GRMZM2G144451 607
GRMZM2G004732 | 163 | 244 GRMZM2G144480 608
GRMZM2G004898 549 | 504 | 584 | GRMZM2G144742 377
GRMZM2G004959 | 935 GRMZM2G144821 976

GRMZM2G005163 696 | 132 | GRMZM2G144843 975

GRMZM2G005205 | 756 | 623 GRMZM2G144890 973

GRMZM2G005253 517 GRMZM2G145012 921
GRMZM2G005350 695 | 131 | GRMZM2G145027 879 | 381
GRMZM2G005353 298 | 689 GRMZM2G145054 878 | 380
GRMZM2G005419 978 GRMZM2G145104 415 | 502
GRMZM2G005480 | 285 | 353 104 | GRMZM2G145346 900
GRMZM2G005499 561 GRMZM2G145374 899
GRMZM2G005552 694 | 130 | GRMZM2G145390 897
GRMZM2G005680 | 508 GRMZM2G145412 87 | 755
GRMZM2G005710 693 | 129 | GRMZM2G145458 88| 756
GRMZM2G005732 325 | 182 GRMZM2G145573 766
GRMZM2G005771 927 | 678 GRMZM2G145579 68 60
GRMZM2G006121 339 | GRMZM2G145752 | 955

GRMZM2G006429 199 | GRMZM2G145951 912
GRMZM2G006672 883 GRMZM2G145972 911
GRMZM2G006704 976 | GRMZM2G146108 689
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GRMZM2G006714 | 735 | 875 200 | GRMZM2G146143 691
GRMZM2G006721 671 | GRMZM2G146449 925
GRMZM2G006727 820 GRMZM2G147158 688
GRMZM2G006830 | 738 | 878 203 | GRMZM2G147475 259
GRMZM2G006884 | 737 | 877 202 | GRMZM2G147534 327
GRMZM2G006953 991 GRMZM2G147671 328
GRMZM2G006977 404 GRMZM2G147683 | 335 | 392

GRMZM2G007130 403 GRMZM2G147712 592
GRMZM2G007288 691 GRMZM2G147724 731
GRMZM2G007404 922 GRMZM2G147756 740 | 329
GRMZM2G007590 830 | GRMZM2G147775 329
GRMZM2G007630 115 | GRMZM2G147787 330
GRMZM2G007633 981 GRMZM2G147819 | 794 | 605

GRMZM2G007848 114 | GRMZM2G147891 | 793 | 604

GRMZM2G007953 865 GRMZM2G147908 | 795 | 606

GRMZM2G007981 972 | 572 GRMZM2G147937 | 157 | 174

GRMZM2G008273 853 | 570 GRMZM2G148074 | 205 | 406 66
GRMZM2G008287 792 GRMZM2G148355 552
GRMZM2G008316 946 GRMZM2G148400 421 | 558
GRMZM2G008482 852 | 569 GRMZM2G148485 563
GRMZM2G008583 793 GRMZM2G148561 420 | 197
GRMZM2G008622 791 GRMZM2G148695 920
GRMZM2G008714 864 GRMZM2G148867 | 805

GRMZM2G008751 672 | GRMZM2G148896 | 804

GRMZM2G009019 733 GRMZM2G149038 163 | 850
GRMZM2G009114 888 | GRMZM2G149153 732
GRMZM2G009214 391 | 617 GRMZM2G149211 79 83 257
GRMZM2G009344 857 GRMZM2G149216 | 136 | 114

GRMZM2G009365 515 | GRMZM2G149224 | 437 | 558 56
GRMZM2G009435 | 193 | 192 138 | GRMZM2G149236 | 135 | 113

GRMZM2G009571 528 GRMZM2G149286 78 82 256
GRMZM2G009724 847 | GRMZM2G149681 935
GRMZM2G009876 529 GRMZM2G149903 | 258 | 490 429
GRMZM2G009888 503 | 350 GRMZM2G150024 577 | 500
GRMZM2G010017 908 | GRMZM2G150474 397
GRMZM2G010095 82 75 GRMZM2G150485 | 812 | 688

GRMZM2G010136 530 GRMZM2G150688 | 557 | 580

GRMZM2G010338 139 | 475 GRMZM2G150772 | 556 | 579

GRMZM2G010406 60 | 61 GRMZM2G151041 105 | 663
GRMZM2G010490 909 | GRMZM2G151230 491
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GRMZM2G010518 723 GRMZM2G151319 314 | 438
GRMZM2G010628 | 182 | 154 GRMZM2G151496 | 617 917
GRMZM2G010640 | 351 | 312 GRMZM2G151519 351 | 235
GRMZM2G010714 | 352 | 313 GRMZM2G151542 | 606 | 671
GRMZM2G011071 468 | GRMZM2G151656 774 840
GRMZM2G011422 632 | 473 GRMZM2G151668 859
GRMZM2G011491 363 | GRMZM2G151706 639
GRMZM2G011518 | 192 | 203 GRMZM2G151717 673
GRMZM2G011590 598 GRMZM2G151992 | 763 | 837
GRMZM2G011592 313 | 437 GRMZM2G152051 698
GRMZM2G011622 282 | GRMZM2G152417 902
GRMZM2G011998 161 | 773 GRMZM2G152549 276
GRMZM2G012041 280 | GRMZM2G152573 457 | 328 | 635
GRMZM2G012176 59| 60 GRMZM2G152631 35 32| 215
GRMZM2G012306 | 191 | 202 GRMZM2G152655 36 33| 216
GRMZM2G012342 802 279 | GRMZM2G152661 570
GRMZM2G012412 549 GRMZM2G152663 277
GRMZM2G012434 927 GRMZM2G152708 517
GRMZM2G012546 | 254 | 367 GRMZM2G152764 470
GRMZM2G012631 | 563 | 442 GRMZM2G152777 | 896 | 841
GRMZM2G012756 50 53 GRMZM2G152808 | 897 | 842
GRMZM2G012874 304 | GRMZM2G152877 | 165 | 138 348
GRMZM2G012932 43 | GRMZM2G152925 561
GRMZM2G013002 656 | GRMZM2G152975 918
GRMZM2G013079 683 | 298 GRMZM2G152981 321 | 263
GRMZM2G013100 423 | 333 GRMZM2G153240 | 969 | 814
GRMZM2G013324 | 540 | 697 GRMZM2G153359 | 581 | 516
GRMZM2G013331 | 371 | 498 GRMZM2G153368 | 580 | 515
GRMZM2G013650 657 | GRMZM2G153438 | 879 | 734
GRMZM2G013671 943 | GRMZM2G153454 | 878 | 684
GRMZM2G013814 962 GRMZM2G153488 | 579 | 514
GRMZM2G013848 769 GRMZM2G153552 | 903

GRMZM2G013981 763 GRMZM2G154114 | 734 | 855
GRMZM2G013987 | 447 | 613 92 | GRMZM2G154165 606
GRMZM2G014089 270 | GRMZM2G154169 | 957

GRMZM2G014233 729 | 415 GRMZM2G154216 519
GRMZM2G014356 408 | 168 GRMZM2G154290 | 100 | 103 87
GRMZM2G014444 643 | 448 GRMZM2G154366 | 959

GRMZM2G014705 883 GRMZM2G154394 | 960

GRMZM2G014839 368 | GRMZM2G154414 | 961
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GRMZM2G014902 | 683 GRMZM2G154487 56 73 50
GRMZM2G015190 821 | 465 GRMZM2G154549 | 323 | 283

GRMZM2G015568 520 GRMZM2G154565 55 72 49
GRMZM2G015610 693 GRMZM2G154578 81 41
GRMZM2G015844 692 GRMZM2G154580 54 71 2
GRMZM2G015967 777 GRMZM2G154830 | 939

GRMZM2G015972 873 GRMZM2G155252 | 806 | 557

GRMZM2G016020 | 643 | 748 GRMZM2G155274 378
GRMZM2G016275 897 | 630 GRMZM2G155380 | 558 | 578 571
GRMZM2G016318 652 | 252 GRMZM2G155491 699 | 787
GRMZM2G016393 806 | 423 GRMZM2G155675 192 | 355
GRMZM2G016734 | 820 | 891 GRMZM2G155816 975
GRMZM2G016890 | 553 | 757 GRMZM2G155931 59 20
GRMZM2G017011 | 741 | 881 GRMZM2G155974 | 238 | 161 170
GRMZM2G017044 | 821 | 892 GRMZM2G155998 | 240 | 160 169
GRMZM2G017142 623 | GRMZM2G156013 | 400 | 531

GRMZM2G017321 65 22 GRMZM2G156105 790
GRMZM2G017400 | 641 | 746 GRMZM2G156145 | 399 | 530

GRMZM2G017405 | 424 | 519 620 | GRMZM2G156174 | 398 | 529

GRMZM2G017486 619 | GRMZM2G156392 | 636 | 483 | 977 23
GRMZM2G017533 186 96 GRMZM2G156451 | 637 | 484 | 978 24
GRMZM2G017536 | 640 | 745 GRMZM2G156470 | 638 | 485 | 979 25
GRMZM2G017671 982 GRMZM2G156803 593 | 233
GRMZM2G018059 182 | GRMZM2G157016 61 | 108
GRMZM2G018223 183 | GRMZM2G157019 60 | 107
GRMZM2G018372 756 GRMZM2G157127 450
GRMZM2G018593 755 GRMZM2G157164 | 317 | 470

GRMZM2G018619 742 | GRMZM2G157207 84
GRMZM2G018770 564 680 | GRMZM2G157252 565 | 777
GRMZM2G018782 462 GRMZM2G157306 185 | 217 10
GRMZM2G019090 971 GRMZM2G157343 611 | 302
GRMZM2G019358 563 679 | GRMZM2G157357 612 | 303
GRMZM2G019468 905 | 932 GRMZM2G157456 | 365 | 263

GRMZM2G019562 | 222 | 258 GRMZM2G157458 566
GRMZM2G019971 946 GRMZM2G157470 | 364 | 262

GRMZM2G020081 622 GRMZM2G157677 521 | 405
GRMZM2G020131 | 777 | 831 GRMZM2G157722 202 | 169
GRMZM2G020196 562 678 | GRMZM2G157824 | 294 | 238 18
GRMZM2G020302 201 | 176 | 176 | GRMZM2G157878 | 343 | 298 20
GRMZM2G020468 | 183 | 286 GRMZM2G157925 869 | 294
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GRMZM2G020523 | 653 | 678 GRMZM2G158328 | 918

GRMZM2G020610 | 717 | 744 GRMZM2G158616 | 523 | 508

GRMZM2G020620 812 | GRMZM2G158629 126
GRMZM2G020676 | 184 | 287 GRMZM2G158679 127
GRMZM2G020721 | 185 | 288 GRMZM2G158682 | 663 | 563 303
GRMZM2G020828 71 65 GRMZM2G158998 980
GRMZM2G021225 16 28 GRMZM2G159016 979
GRMZM2G021243 344 | 532 GRMZM2G159028 978
GRMZM2G021256 679 | 288 GRMZM2G159049 672
GRMZM2G021378 85 38 94 | GRMZM2G159145 356
GRMZM2G021410 343 | 531 GRMZM2G159285 934
GRMZM2G021427 | 742 26 | GRMZM2G159475 888

GRMZM2G021471 53 24 46 | GRMZM2G159691 722
GRMZM2G021621 | 124 | 251 100 | GRMZM2G159700 637
GRMZM2G021879 760 | 749 | 481 | GRMZM2G159811 711
GRMZM2G022061 | 107 | 149 GRMZM2G159849 532 | 516
GRMZM2G022095 | 268 | 317 GRMZM2G160174 733
GRMZM2G022120 | 231 | 184 627 | GRMZM2G160178 | 119 88 508
GRMZM2G022634 590 | GRMZM2G160454 | 221 | 171

GRMZM2G022694 270 | 248 GRMZM2G160609 329 | 223
GRMZM2G022740 812 GRMZM2G160730 454 | 498
GRMZM2G022915 816 GRMZM2G160738 15 17

GRMZM2G023003 786 GRMZM2G160770 16 18

GRMZM2G023325 3 4 GRMZM2G160862 47 25 47
GRMZM2G023811 53 98 | 621 | GRMZM2G160990 82
GRMZM2G024038 269 | 247 GRMZM2G161087 856 | 845
GRMZM2G024109 483 | 307 GRMZM2G161293 845
GRMZM2G024641 931 GRMZM2G161459 26 47 51
GRMZM2G024811 380 | GRMZM2G161787 823

GRMZM2G024823 | 350 | 277 559 | GRMZM2G162356 | 360 | 401 549
GRMZM2G024838 39| 178 | 57 | GRMZM2G162388 331 | 214
GRMZM2G025026 262 | 511 GRMZM2G162426 495 | 657 | 461
GRMZM2G025157 | 236 | 194 668 | GRMZM2G162451 494 | 656 | 460
GRMZM2G025175 949 GRMZM2G162460 493 | 655 | 459
GRMZM2G025303 | 235 | 193 667 | GRMZM2G162467 492 | 654 | 458
GRMZM2G025396 | 783 | 907 GRMZM2G162486 491 | 653 | 457
GRMZM2G025458 | 664 | 566 121 | GRMZM2G162497 | 375 | 340

GRMZM2G025480 742 GRMZM2G162537 | 303 | 405 80
GRMZM2G025579 | 381 | 437 GRMZM2G162623 886
GRMZM2G025640 | 825 | 766 GRMZM2G162637 207 | 125
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GRMZM2G025748 283 | GRMZM2G162670 208 | 126
GRMZM2G025895 | 675 | 539 GRMZM2G162917 961

GRMZM2G025903 550 | 505 | 809 | GRMZM2G163045 | 909 | 781

GRMZM2G025954 419 | GRMZM2G163095 | 911 | 783

GRMZM2G026098 | 243 | 201 774 | GRMZM2G163189 | 207 | 374 30
GRMZM2G026135 | 339 | 255 GRMZM2G163193 958
GRMZM2G026147 | 179 | 211 GRMZM2G163233 | 822 | 787

GRMZM2G026447 | 510 | 475 GRMZM2G163297 | 823 | 788

GRMZM2G026490 989 GRMZM2G163307 | 824 | 789

GRMZM2G026641 | 549 | 408 GRMZM2G163398 707
GRMZM2G026767 | 288 | 275 GRMZM2G163519 527
GRMZM2G026900 953 GRMZM2G163798 | 273 | 241

GRMZM2G027472 34| 31 GRMZM2G163841 | 947 | 803 173
GRMZM2G027476 95 46 GRMZM2G163843 | 946 | 802 172
GRMZM2G027551 603 GRMZM2G163848 | 945 | 801 171
GRMZM2G027563 927 GRMZM2G163905 540 | 806
GRMZM2G027571 937 GRMZM2G164263 800 | 925
GRMZM2G027594 754 | GRMZM2G164696 582
GRMZM2G027673 268 | 196 GRMZM2G164735 426 | 192
GRMZM2G027972 | 771 GRMZM2G164759 425 | 191
GRMZM2G028033 | 684 | 815 GRMZM2G165011 | 518

GRMZM2G028089 | 770 GRMZM2G165308 | 465 | 924 366
GRMZM2G028114 466 | GRMZM2G165351 629 | 668
GRMZM2G028139 229 | 522 GRMZM2G165387 587 | 162 | 781
GRMZM2G028258 228 | 521 GRMZM2G165506 | 900 509
GRMZM2G028306 41 | 46 GRMZM2G165511 | 687 | 729

GRMZM2G028386 | 357 | 790 GRMZM2G165567 434 | 929
GRMZM2G028389 | 888 48 | GRMZM2G165734 969
GRMZM2G028543 672 | 863 GRMZM2G165778 545 | 716
GRMZM2G028608 226 | 519 GRMZM2G165867 252
GRMZM2G028640 225 | 518 GRMZM2G165930 393
GRMZM2G028665 407 | GRMZM2G166537 | 363 | 358

GRMZM2G028745 923 GRMZM2G166572 | 362 | 357

GRMZM2G028766 267 | 195 GRMZM2G166671 367 | 266
GRMZM2G028834 864 GRMZM2G166686 604
GRMZM2G029001 710 | GRMZM2G166701 368 | 267
GRMZM2G029048 | 661 | 732 GRMZM2G166711 992 | 888
GRMZM2G029151 18 6 GRMZM2G166745 371 | 270
GRMZM2G029184 578 | 255 GRMZM2G166753 370 | 269
GRMZM2G029223 | 395 | 511 GRMZM2G166889 907
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GRMZM2G029300 | 173 | 148 GRMZM2G166979 | 289 | 163 564
GRMZM2G029356 711 | GRMZM2G167088 | 916 | 818

GRMZM2G029518 737 GRMZM2G167613 110 | 122
GRMZM2G029519 985 | GRMZM2G167658 111 | 123
GRMZM2G029527 591 | GRMZM2G167941 587
GRMZM2G029536 197 | 408 GRMZM2G168299 673
GRMZM2G029690 721 | GRMZM2G168392 785
GRMZM2G030128 871 | 427 GRMZM2G168849 | 471 | 463 748
GRMZM2G030426 713 | GRMZM2G168886 | 533 | 576

GRMZM2G030436 529 | GRMZM2G168890 824
GRMZM2G030688 | 944 GRMZM2G168893 | 470 | 462 747
GRMZM2G030717 | 943 GRMZM2G168920 823
GRMZM2G030831 117 79 GRMZM2G168987 87 | 119

GRMZM2G031331 253 | 431 GRMZM2G169064 | 201 | 212

GRMZM2G031394 935 GRMZM2G169080 | 175 | 176

GRMZM2G031447 934 GRMZM2G169149 938

GRMZM2G031560 753 GRMZM2G169167 | 509 | 496

GRMZM2G031591 | 304 | 274 GRMZM2G169173 | 624 | 632

GRMZM2G031607 | 891 | 869 GRMZM2G169270 746
GRMZM2G031724 | 893 | 871 GRMZM2G169301 251 | 397
GRMZM2G031941 473 | GRMZM2G169593 968
GRMZM2G031954 460 | 285 GRMZM2G169726 129 | 338
GRMZM2G032024 758 | GRMZM2G169734 876
GRMZM2G032821 61 62 GRMZM2G169812 94 74

GRMZM2G032847 656 | 763 GRMZM2G169848 794 | 383
GRMZM2G033175 950 | GRMZM2G169931 | 181 | 242 558
GRMZM2G033228 | 611 | 399 GRMZM2G170201 346
GRMZM2G033236 | 608 | 396 GRMZM2G170232 303 | 741
GRMZM2G033406 655 | 762 GRMZM2G170262 304 | 742
GRMZM2G033478 | 282 | 292 8 | GRMZM2G170628 557
GRMZM2G033489 136 | GRMZM2G170632 558
GRMZM2G033519 | 234 | 425 GRMZM2G170727 959
GRMZM2G033612 137 | GRMZM2G170766 851
GRMZM2G033653 233 | 748 GRMZM2G170798 277
GRMZM2G033665 797 GRMZM2G170826 112 | 171
GRMZM2G033767 261 | 840 GRMZM2G170842 113 | 172
GRMZM2G033785 448 | GRMZM2G170969 | 450 | 538

GRMZM2G033820 449 | GRMZM2G170975 | 448 | 536

GRMZM2G033871 333 | GRMZM2G171028 | 376 | 341

GRMZM2G033876 | 493 | 362 538 | GRMZM2G171031 258
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GRMZM2G034015 869 | GRMZM2G171078 | 377 | 342

GRMZM2G034083 149 | 286 GRMZM2G171080 32 26
GRMZM2G034511 150 | 287 GRMZM2G171367 156 | 110
GRMZM2G034551 688 | GRMZM2G171507 | 159 | 134

GRMZM2G034563 198 | GRMZM2G171600 | 242 | 110 868 34
GRMZM2G034623 750 GRMZM2G171616 | 262 | 243

GRMZM2G034645 196 | GRMZM2G171622 | 105 40 5 3 15
GRMZM2G034690 195 | GRMZM2G171650 | 106 41 6 4 16
GRMZM2G034697 703 GRMZM2G171702 826
GRMZM2G034727 89| 91 GRMZM2G171781 882 167
GRMZM2G034797 705 GRMZM2G172081 808
GRMZM2G034804 704 GRMZM2G172139 931
GRMZM2G035134 906 | GRMZM2G172153 932
GRMZM2G035189 488 | 460 GRMZM2G172581 922
GRMZM2G035285 781 | 809 | 418 | GRMZM2G172794 | 402 | 543 17
GRMZM2G035444 | 561 | 624 GRMZM2G172834 119 77
GRMZM2G035506 474 | 271 GRMZM2G173030 | 123 | 198

GRMZM2G035557 | 257 | 235 GRMZM2G173137 308
GRMZM2G035563 362 | 207 GRMZM2G173198 553
GRMZM2G035701 | 530 | 552 GRMZM2G173209 | 146 | 124

GRMZM2G035826 | 789 GRMZM2G173344 817
GRMZM2G035839 435 | GRMZM2G173479 172 | 139
GRMZM2G036502 654 | 254 GRMZM2G173668 499 | 466
GRMZM2G036619 452 GRMZM2G173674 498 | 514
GRMZM2G036980 | 198 | 153 GRMZM2G173747 116 74
GRMZM2G037204 193 | GRMZM2G173763 79 | 194 59
GRMZM2G037255 | 429 | 742 65 | GRMZM2G174255 462
GRMZM2G037286 889 761 | GRMZM2G174517 | 968 | 834 518
GRMZM2G037334 562 | GRMZM2G174650 11 1

GRMZM2G037343 888 760 | GRMZM2G174708 | 587 | 591

GRMZM2G037350 315 | GRMZM2G174719 960
GRMZM2G037413 576 GRMZM2G174732 70 83 | 530
GRMZM2G037496 441 | 229 GRMZM2G174757 | 326 | 394

GRMZM2G037685 181 | 421 GRMZM2G174860 217 | 156 | 179
GRMZM2G037781 372 | 282 GRMZM2G174938 | 693 | 631

GRMZM2G037910 180 | 420 GRMZM2G174984 882
GRMZM2G038034 | 715 41 | GRMZM2G175134 | 869

GRMZM2G038243 326 | GRMZM2G175188 569
GRMZM2G038340 776 GRMZM2G175236 199 | 131
GRMZM2G038449 | 910 | 782 GRMZM2G175549 822

136




GRMZM2G038811 25 16 GRMZM2G175661 779
GRMZM2G038846 227 | GRMZM2G175761 7 3

GRMZM2G038988 | 718 | 963 GRMZM2G175827 380 | 372
GRMZM2G039106 | 463 | 620 GRMZM2G176595 | 757 | 863 105
GRMZM2G039711 893 GRMZM2G177052 373 | 206
GRMZM2G039845 953 GRMZM2G177061 880 | 539
GRMZM2G039870 567 | GRMZM2G177104 784 | 962
GRMZM2G039934 130 | 101 | 134 | GRMZM2G177284 601 | 325
GRMZM2G039968 807 GRMZM2G177391 | 591 | 681 39
GRMZM2G040052 808 GRMZM2G177400 | 785 | 839 38
GRMZM2G040094 | 690 | 687 GRMZM2G177447 | 977

GRMZM2G040121 809 GRMZM2G177461 476
GRMZM2G040158 | 803 | 912 GRMZM2G177866 83
GRMZM2G040236 82 | 155 | 632 | GRMZM2G177883 580
GRMZM2G040320 | 689 | 686 GRMZM2G177929 | 849 | 942 578
GRMZM2G040326 624 | 719 GRMZM2G177940 | 848 | 941 577
GRMZM2G040508 586 | 161 GRMZM2G177970 | 847 | 940 576
GRMZM2G040555 971 GRMZM2G178025 915
GRMZM2G040587 388 | GRMZM2G178079 | 293 | 356

GRMZM2G040630 391 | GRMZM2G178102 | 765 | 524

GRMZM2G040706 701 GRMZM2G178356 874
GRMZM2G040750 | 368 | 452 GRMZM2G178435 446
GRMZM2G040838 716 GRMZM2G178576 254
GRMZM2G041028 | 500 | 403 GRMZM2G178801 482
GRMZM2G041050 123 | GRMZM2G178886 885

GRMZM2G041068 651 | GRMZM2G178894 | 195 | 303

GRMZM2G041167 | 887 | 713 GRMZM2G179253 | 932 | 587

GRMZM2G041344 870 | 346 GRMZM2G179264 604 | 261
GRMZM2G041497 475 | GRMZM2G179268 | 934 | 589

GRMZM2G041554 122 | GRMZM2G179274 606 | 263
GRMZM2G041561 560 | GRMZM2G179758 513
GRMZM2G041613 | 356 | 617 GRMZM2G179789 | 348 | 300 862
GRMZM2G041831 | 488 | 555 795 | GRMZM2G179792 | 548 | 575 861
GRMZM2G041963 123 | 464 GRMZM2G179976 582 | 443
GRMZM2G041980 473 | 225 GRMZM2G179984 581 | 442
GRMZM2G042006 | 457 | 795 GRMZM2G180408 91
GRMZM2G042118 | 739 | 806 GRMZM2G180775 241 | 141 81
GRMZM2G042181 463 | GRMZM2G180909 | 140 | 229 35
GRMZM2G042442 80 58 GRMZM2G180916 | 142 | 231 37
GRMZM2G042443 | 933 | 588 GRMZM2G180983 802
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GRMZM2G042538 209 | GRMZM2G181491 | 610 | 398

GRMZM2G042712 | 646 | 476 68 | GRMZM2G181566 444
GRMZM2G042741 | 648 | 478 70 | GRMZM2G181568 445
GRMZM2G042765 | 649 | 479 71 | GRMZM2G300163 706
GRMZM2G042776 290 | GRMZM2G300258 506 | 291
GRMZM2G042855 908 GRMZM2G300348 | 598 | 472

GRMZM2G042865 | 966 | 848 GRMZM2G300692 | 626 | 547

GRMZM2G043069 | 967 | 849 GRMZM2G300916 126 64
GRMZM2G043162 509 | 335 GRMZM2G300924 215 | 174
GRMZM2G043477 539 | GRMZM2G301853 | 529 | 551

GRMZM2G043855 783 | GRMZM2G302160 | 725 | 570 | 306 | 579
GRMZM2G043983 946 | GRMZM2G302259 | 724 | 569 | 307 | 580
GRMZM2G044246 478 | 842 | 317 | GRMZM2G302322 746
GRMZM2G044481 | 430 | 382 GRMZM2G302373 | 291 | 354

GRMZM2G044548 | 550 | 445 GRMZM2G302701 174 | 724
GRMZM2G044684 702 GRMZM2G302712 176 | 726
GRMZM2G044744 820 | GRMZM2G302866 533
GRMZM2G044771 819 | GRMZM2G302876 638
GRMZM2G044797 818 | GRMZM2G303241 | 904 | 753

GRMZM2G044832 574 | 238 GRMZM2G303752 705
GRMZM2G044866 817 | GRMZM2G303909 615
GRMZM2G044882 744 | 805 | GRMZM2G304010 307
GRMZM2G044902 | 113 | 217 GRMZM2G304049 551 | 506 | 585
GRMZM2G044908 | 432 | 384 GRMZM2G304132 | 283 | 351 128
GRMZM2G045005 | 629 GRMZM2G305154 | 160 | 131

GRMZM2G045435 785 GRMZM2G305400 | 261 | 228 575
GRMZM2G045668 351 | GRMZM2G306172 107 | 308
GRMZM2G045944 706 | 700 GRMZM2G306412 338
GRMZM2G045971 394 164 | GRMZM2G306482 | 736 | 876 201
GRMZM2G046326 957 | GRMZM2G306851 921

GRMZM2G046480 | 287 | 221 GRMZM2G307262 504 | 351
GRMZM2G046520 709 | 548 | GRMZM2G307437 358 | 183
GRMZM2G046537 950 GRMZM2G308799 952
GRMZM2G046743 777 GRMZM2G308860 | 702 | 715

GRMZM2G046804 778 GRMZM2G308944 851 | 568
GRMZM2G046848 | 762 | 762 60 | GRMZM2G309248 96 99 27
GRMZM2G046947 | 324 | 332 GRMZM2G309495 514
GRMZM2G047167 527 | GRMZM2G310652 548
GRMZM2G047187 | 187 | 204 347 | GRMZM2G310944 637
GRMZM2G047208 526 | GRMZM2G311036 33 20
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GRMZM2G047434 18 14 GRMZM2G311401 461
GRMZM2G047533 354 | 280 GRMZM2G311465 | 644 | 749

GRMZM2G047607 | 390 | 561 GRMZM2G312026 752
GRMZM2G047715 74 | 84 GRMZM2G312806 761 | 312
GRMZM2G047763 730 GRMZM2G313009 506
GRMZM2G047813 | 714 GRMZM2G313305 306
GRMZM2G047867 259 | 433 GRMZM2G313327 972 807
GRMZM2G047894 724 | GRMZM2G313341 160 | 772
GRMZM2G047968 | 245 | 205 GRMZM2G313643 | 353 | 314

GRMZM2G048136 | 704 | 717 GRMZM2G313672 | 354 | 315

GRMZM2G048140 441 | GRMZM2G313703 644 | 449
GRMZM2G048297 525 | 221 GRMZM2G313707 645 | 499
GRMZM2G048324 403 | GRMZM2G313750 644
GRMZM2G048665 | 589 | 960 GRMZM2G314297 653 | 253
GRMZM2G048672 | 889 | 861 GRMZM2G314647 970
GRMZM2G048800 | 881 | 856 GRMZM2G314692 969
GRMZM2G049070 83 97 859 | GRMZM2G315506 890
GRMZM2G049091 657 | 764 GRMZM2G315786 | 560 | 773

GRMZM2G049127 299 | 779 GRMZM2G316275 | 686 | 721

GRMZM2G049173 300 | 780 GRMZM2G316447 353 | 279
GRMZM2G049185 302 | 782 GRMZM2G316595 | 456 | 493

GRMZM2G049424 846 GRMZM2G316827 868
GRMZM2G049549 141 | 477 GRMZM2G316904 269
GRMZM2G049568 140 | 476 GRMZM2G316907 272
GRMZM2G049672 | 535 | 638 GRMZM2G317262 885
GRMZM2G049895 | 536 | 639 GRMZM2G317267 886
GRMZM2G049921 994 | 980 GRMZM2G317270 | 564 | 443

GRMZM2G049952 | 538 | 641 GRMZM2G317386 | 196 | 359 31
GRMZM2G049954 | 539 | 642 GRMZM2G317900 | 483 | 826

GRMZM2G049990 864 221 | GRMZM2G321020 627

GRMZM2G050089 | 573 | 657 GRMZM2G321023 626

GRMZM2G050268 637 GRMZM2G321753 | 818 | 889

GRMZM2G050305 635 GRMZM2G321839 926
GRMZM2G050561 | 389 | 308 GRMZM2G321870 | 819 | 890

GRMZM2G050705 | 388 | 307 GRMZM2G321940 811
GRMZM2G050851 | 813 | 882 GRMZM2G322672 88
GRMZM2G050867 | 248 | 191 GRMZM2G323925 280 | 439 | 913
GRMZM2G050912 | 247 | 190 GRMZM2G323936 52 23 45
GRMZM2G050961 292 | GRMZM2G323971 761
GRMZM2G051311 13 8 GRMZM2G324340 489 | 339
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GRMZM2G051367 | 569 | 573 GRMZM2G324643 792 | 589
GRMZM2G051697 584 | 614 GRMZM2G324671 200 | 175 | 197
GRMZM2G051787 583 | 613 GRMZM2G325008 948
GRMZM2G051795 918 GRMZM2G325131 712
GRMZM2G051879 | 775 | 567 GRMZM2G325580 19 42
GRMZM2G051917 796 GRMZM2G326223 722
GRMZM2G051974 797 GRMZM2G326227 | 310 | 348

GRMZM2G052111 618 | 525 GRMZM2G326631 | 148 | 143

GRMZM2G052129 619 | 526 GRMZM2G326783 | 407 | 494

GRMZM2G052178 800 GRMZM2G327427 | 892 | 870

GRMZM2G052344 | 177 | 177 GRMZM2G327907 | 217 | 233

GRMZM2G052357 248 89 GRMZM2G329559 228
GRMZM2G052442 345 | 533 GRMZM2G329962 484 | 177
GRMZM2G052619 | 616 GRMZM2G330095 | 244 | 222 775
GRMZM2G052630 | 971 GRMZM2G330218 196 | 407
GRMZM2G052666 428 | GRMZM2G330379 | 744

GRMZM2G053066 | 511 | 542 GRMZM2G330430 938
GRMZM2G053397 | 614 | 597 GRMZM2G330772 865

GRMZM2G053531 557 | GRMZM2G330792 878
GRMZM2G053639 491 | GRMZM2G331614 231 | 524
GRMZM2G053652 492 | GRMZM2G331701 227 | 520
GRMZM2G053720 | 104 | 81 217 | GRMZM2G332412 487 | 459
GRMZM2G053742 | 103 80 265 | GRMZM2G332703 | 215 | 172

GRMZM2G053757 | 425 | 409 GRMZM2G332809 | 607 | 395

GRMZM2G053790 493 | GRMZM2G332829 96 47
GRMZM2G053908 494 | GRMZM2G333049 725
GRMZM2G053925 944 GRMZM2G333083 700
GRMZM2G053952 511 | GRMZM2G333183 774 | 468
GRMZM2G053991 669 | 676 | 275 | GRMZM2G333377 | 917

GRMZM2G054023 945 GRMZM2G333641 364
GRMZM2G054040 394 | GRMZM2G334165 901

GRMZM2G054247 224 | GRMZM2G334628 387
GRMZM2G054507 | 249 | 296 244 | GRMZM2G334660 | 662 | 733

GRMZM2G054588 767 797 | GRMZM2G334722 156
GRMZM2G054658 854 | GRMZM2G334740 389
GRMZM2G054689 226 | GRMZM2G334741 495
GRMZM2G055141 832 GRMZM2G335604 401 | 685
GRMZM2G055309 833 GRMZM2G336824 28 32

GRMZM2G055437 522 | 575 GRMZM2G336839 453
GRMZM2G055499 378 | 310 | 849 | GRMZM2G336962 451
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GRMZM2G055520 377 | 309 | 848 | GRMZM2G337621 731 | 923
GRMZM2G055782 384 | 163 GRMZM2G337633 811
GRMZM2G056039 937 GRMZM2G338049 157 | 121
GRMZM2G056078 218 | 366 | 146 | GRMZM2G339151 245 | 142
GRMZM2G056093 | 328 | 380 GRMZM2G339367 822
GRMZM2G056120 | 842 | 750 GRMZM2G339725 629
GRMZM2G056151 | 815 | 887 GRMZM2G340224 | 908 | 964
GRMZM2G056166 | 327 | 379 GRMZM2G340279 | 405 | 334
GRMZM2G056224 603 GRMZM2G340286 | 404 | 333
GRMZM2G056270 | 929 | 526 GRMZM2G341723 | 369 | 453
GRMZM2G056350 602 GRMZM2G341957 803
GRMZM2G056442 875 GRMZM2G342246 | 188 | 347 9
GRMZM2G056573 868 | 293 GRMZM2G342738 | 408 | 525 796
GRMZM2G056686 | 467 GRMZM2G343048 272 | 432
GRMZM2G056851 72 51 GRMZM2G343351 | 647 | 477 69
GRMZM2G056884 982 GRMZM2G343360 | 650 | 480 72
GRMZM2G056889 981 GRMZM2G343365 | 651 | 481 73
GRMZM2G056903 980 GRMZM2G343688 | 431 | 383
GRMZM2G056961 | 522 | 646 GRMZM2G344279 | 709 | 438
GRMZM2G057000 159 | 771 GRMZM2G345155 | 296 | 375
GRMZM2G057026 | 521 | 645 GRMZM2G345493 | 681 | 503
GRMZM2G057091 | 520 | 644 GRMZM2G345544 | 682 | 504
GRMZM2G057186 916 GRMZM2G345717 985
GRMZM2G057258 | 519 | 643 GRMZM2G346278 745 | 806
GRMZM2G057412 | 772 | 725 GRMZM2G346639 956
GRMZM2G057466 | 491 | 328 GRMZM2G346750 339 | 956
GRMZM2G057571 158 | 770 GRMZM2G346837 | 882 | 857
GRMZM2G057611 992 GRMZM2G347583 | 122 | 197
GRMZM2G057768 | 393 | 501 GRMZM2G347808 | 286 | 220 839
GRMZM2G057841 | 886 | 712 GRMZM2G347983 19 15
GRMZM2G057959 636 | GRMZM2G348780 442
GRMZM2G058081 | 941 GRMZM2G348956 798
GRMZM2G058149 | 588 7 | GRMZM2G348959 799
GRMZM2G058374 771 | GRMZM2G349185 | 412 | 413
GRMZM2G058472 751 | GRMZM2G349352 237 | 145
GRMZM2G059138 | 490 | 499 GRMZM2G349556 628 | 667
GRMZM2G059167 58 27 GRMZM2G349709 405
GRMZM2G059179 812 GRMZM2G350210 | 612 | 599
GRMZM2G059266 813 GRMZM2G350399 | 572 | 656
GRMZM2G059325 815 GRMZM2G350410 | 571 | 655
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GRMZM2G059393 794 | GRMZM2G350633 568 | 384
GRMZM2G059445 836 GRMZM2G351018 | 575 | 709
GRMZM2G059538 837 GRMZM2G351373 761 740
GRMZM2G059556 838 GRMZM2G351382 760 739
GRMZM2G059618 64 55 GRMZM2G351505 395
GRMZM2G059643 122 69 GRMZM2G351775 873
GRMZM2G059663 401 | GRMZM2G351921 | 975

GRMZM2G059700 399 | GRMZM2G351937 | 973

GRMZM2G060023 710 | 731 GRMZM2G351941 | 972

GRMZM2G060045 424 | 334 GRMZM2G352042 | 537 | 640
GRMZM2G060118 931 GRMZM2G353250 670 | 677 | 276
GRMZM2G060170 674 GRMZM2G353313 863 220
GRMZM2G060206 106 | 106 GRMZM2G353734 661 | 344
GRMZM2G060213 917 | 536 GRMZM2G353967 | 615 | 598
GRMZM2G060290 73 | 220 GRMZM2G354618 681 | 283
GRMZM2G060319 987 | 671 GRMZM2G355389 510
GRMZM2G060324 675 GRMZM2G355610 225
GRMZM2G060357 936 GRMZM2G355636 965
GRMZM2G060373 | 699 | 621 GRMZM2G355667 966
GRMZM2G060464 841 | 387 GRMZM2G356321 741
GRMZM2G060720 187 | 230 GRMZM2G356556 | 426 | 410
GRMZM2G060723 666 | GRMZM2G358009 586
GRMZM2G060937 266 | 186 GRMZM2G358050 585
GRMZM2G060977 | 307 | 225 204 | GRMZM2G358667 866 | 916
GRMZM2G061099 | 914 | 958 268 | GRMZM2G359102 243 | 170
GRMZM2G061184 859 | 819 GRMZM2G359142 73 52
GRMZM2G061283 930 GRMZM2G359589 640
GRMZM2G061287 | 807 | 735 GRMZM2G359986 63 54
GRMZM2G061398 | 808 | 736 GRMZM2G360352 814
GRMZM2G061403 | 308 | 226 205 | GRMZM2G360374 220 | 595
GRMZM2G061485 825 | GRMZM2G360389 448 | 242
GRMZM2G061495 222 | 597 GRMZM2G360519 | 809 | 737
GRMZM2G061695 664 GRMZM2G360529 | 810 | 738
GRMZM2G061723 663 GRMZM2G360541 696
GRMZM2G061890 662 GRMZM2G360615 90 92
GRMZM2G062009 543 | 887 | GRMZM2G360794 | 864 | 935
GRMZM2G062042 775 GRMZM2G361398 730 | 416
GRMZM2G062091 544 | 425 | GRMZM2G361423 860 | 820
GRMZM2G062391 414 | GRMZM2G361688 | 309 | 227 206
GRMZM2G062425 415 | GRMZM2G361718 | 884 | 934
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GRMZM2G062706 153 | 527 | 187 | GRMZM2G361855 | 334 | 451

GRMZM2G062844 828 GRMZM2G361896 | 441 | 535 | 732 141
GRMZM2G062996 | 436 | 269 709 | GRMZM2G361902 | 332 | 449

GRMZM2G063188 256 | 118 GRMZM2G361917 | 333 | 450

GRMZM2G063394 889 | GRMZM2G363535 | 567

GRMZM2G063478 805 GRMZM2G363540 785
GRMZM2G063492 804 GRMZM2G363554 | 566

GRMZM2G063688 440 GRMZM2G363583 865
GRMZM2G063792 753 GRMZM2G364285 69 59

GRMZM2G063850 951 GRMZM2G365134 | 346 | 722 4
GRMZM2G063875 843 | GRMZM2G365319 | 300 | 291

GRMZM2G064008 | 630 | 669 GRMZM2G365423 616
GRMZM2G064133 783 GRMZM2G365888 838
GRMZM2G064145 967 GRMZM2G366485 182 97
GRMZM2G064533 801 GRMZM2G366532 842
GRMZM2G064584 416 | 137 GRMZM2G366659 458 | 226
GRMZM2G064605 823 GRMZM2G367023 24 13

GRMZM2G064715 792 | GRMZM2G367483 | 844 | 830

GRMZM2G065021 240 | 154 GRMZM2G368632 876
GRMZM2G065050 | 867 | 944 264 | GRMZM2G369069 | 954

GRMZM2G065168 | 169 | 144 GRMZM2G369149 | 623 | 652

GRMZM2G065174 | 171 | 146 GRMZM2G369799 469 | 618
GRMZM2G065205 | 554 | 845 214 | GRMZM2G369987 7 29
GRMZM2G065225 296 | 129 GRMZM2G370519 | 712 | 897

GRMZM2G065244 179 86 GRMZM2G370529 57 76 319
GRMZM2G065374 738 GRMZM2G370693 | 618 | 509

GRMZM2G065478 541 | GRMZM2G371137 | 802 | 911

GRMZM2G065496 540 | GRMZM2G371229 691 | 402
GRMZM2G065718 | 409 | 416 GRMZM2G372171 410 | 132
GRMZM2G065908 712 | 482 GRMZM2G372200 420
GRMZM2G065939 947 GRMZM2G372633 916 | 546
GRMZM2G066171 | 314 | 500 64 | GRMZM2G373329 | 528 | 534 948
GRMZM2G066326 219 | 320 GRMZM2G373341 | 492 | 455 545
GRMZM2G066480 258 | 181 GRMZM2G373607 | 544 | 523 973
GRMZM2G066551 257 | 180 GRMZM2G374313 567
GRMZM2G066618 103 62 GRMZM2G374475 355 | 686
GRMZM2G066683 497 | GRMZM2G374574 357 | 688
GRMZM2G067225 770 | GRMZM2G375302 128 | 143
GRMZM2G067257 291 | GRMZM2G375733 359 | 330
GRMZM2G067277 203 80 GRMZM2G376074 | 603 | 653
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GRMZM2G067298 695 | GRMZM2G376282 954
GRMZM2G067320 | 120 | 129 GRMZM2G376927 499
GRMZM2G067388 769 | GRMZM2G377131 643
GRMZM2G067402 768 | GRMZM2G377161 904
GRMZM2G067426 767 | GRMZM2G377217 32
GRMZM2G067555 | 768 GRMZM2G377887 595 | 620
GRMZM2G067587 | 769 GRMZM2G377889 975
GRMZM2G067964 957 GRMZM2G379375 670
GRMZM2G067984 804 GRMZM2G379550 | 476 | 607

GRMZM2G068239 | 305 | 304 342 | GRMZM2G379835 | 577 | 512

GRMZM2G068294 776 GRMZM2G380247 862 | 948 | 694
GRMZM2G068479 | 186 | 289 GRMZM2G380738 | 964

GRMZM2G068506 708 GRMZM2G380777 | 475 | 336

GRMZM2G068510 673 | 680 GRMZM2G381168 543 | 757
GRMZM2G068547 777 GRMZM2G381691 305 184
GRMZM2G068590 898 GRMZM2G382077 573 | 887
GRMZM2G068701 17 | 22 GRMZM2G382557 185
GRMZM2G068826 35 37 GRMZM2G382717 66 65

GRMZM2G069025 | 631 | 608 GRMZM2G382774 | 811 | 967 864
GRMZM2G069082 | 632 | 609 GRMZM2G383303 | 755

GRMZM2G069126 | 633 | 610 GRMZM2G383594 | 485 | 370

GRMZM2G069146 | 634 | 611 GRMZM2G383631 | 796 | 520 300
GRMZM2G069176 74 | 116 GRMZM2G384564 837 | 803
GRMZM2G069177 701 | GRMZM2G384762 993
GRMZM2G069201 | 621 | 650 GRMZM2G384884 | 499 | 378

GRMZM2G069274 | 622 | 651 GRMZM2G384972 547
GRMZM2G069476 | 773 | 660 GRMZM2G385050 | 970

GRMZM2G069542 771 | 413 GRMZM2G385428 954

GRMZM2G069594 | 774 | 661 GRMZM2G385619 316 | 200
GRMZM2G069606 80 70 GRMZM2G387471 526 | 607
GRMZM2G069664 614 | 971 GRMZM2G387485 594 | 619
GRMZM2G069672 | 601 | 752 GRMZM2G387576 877
GRMZM2G069678 399 | 224 GRMZM2G388371 | 854 | 779

GRMZM2G069765 285 | 585 GRMZM2G388420 | 468 | 614

GRMZM2G069773 613 | 970 GRMZM2G388778 66 23
GRMZM2G069928 | 355 | 316 GRMZM2G388915 168 | 593
GRMZM2G070271 | 698 | 731 GRMZM2G389240 | 306 | 305

GRMZM2G070295 910 | GRMZM2G389462 630 | 774
GRMZM2G070343 876 | 354 GRMZM2G389625 732
GRMZM2G070442 284 | 584 GRMZM2G389878 36 43 233
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GRMZM2G070462 | 211 | 167 599 | GRMZM2G389880 37 44 234
GRMZM2G070620 86 | 96 GRMZM2G390096 926 | 525
GRMZM2G070693 | 920 GRMZM2G390150 395 | 272 | 523
GRMZM2G070716 283 | 583 GRMZM2G390489 748 | 342
GRMZM2G070865 615 GRMZM2G390691 884
GRMZM2G070943 149 | GRMZM2G391312 841
GRMZM2G071042 332 | 215 GRMZM2G391833 604
GRMZM2G071059 | 421 | 391 GRMZM2G392037 468 | 645
GRMZM2G071101 | 691 | 600 GRMZM2G392477 | 495 | 675 838
GRMZM2G071157 | 479 | 465 413 | GRMZM2G392524 | 494 | 674 837
GRMZM2G071172 | 478 | 464 412 | GRMZM2G392863 912
GRMZM2G071208 | 527 | 533 947 | GRMZM2G392956 915
GRMZM2G071268 621 | 721 GRMZM2G393039 31 99 | 106
GRMZM2G071307 609 GRMZM2G393057 633 | 305
GRMZM2G071322 610 GRMZM2G393146 286
GRMZM2G071396 872 GRMZM2G393843 561 | 504
GRMZM2G071448 669 GRMZM2G394403 | 613 | 393
GRMZM2G071575 | 919 GRMZM2G394410 | 417 | 361
GRMZM2G071688 63 86 GRMZM2G394500 819
GRMZM2G071928 411 | 133 GRMZM2G394747 211
GRMZM2G072041 211 | 983 GRMZM2G394827 | 584 | 635
GRMZM2G072088 212 | 984 GRMZM2G394945 47 78
GRMZM2G072115 23 53 GRMZM2G395039 658
GRMZM2G072117 | 658 | 704 944 | GRMZM2G395094 699
GRMZM2G072292 389 GRMZM2G395236 | 834 | 702
GRMZM2G072350 759 | 375 | 219 | GRMZM2G395244 | 833 | 701
GRMZM2G072371 | 659 | 705 408 | GRMZM2G395534 361 | 844
GRMZM2G072388 798 GRMZM2G395853 813
GRMZM2G072589 169 | 257 GRMZM2G396212 | 166 | 139 349
GRMZM2G072909 333 | 590 GRMZM2G396418 305
GRMZM2G072939 255 | GRMZM2G397948 321
GRMZM2G073044 496 | GRMZM2G398731 959
GRMZM2G073826 538 | 274 GRMZM2G398795 444 | 231
GRMZM2G073836 560 GRMZM2G398825 | 655 | 680 756
GRMZM2G073842 159 | GRMZM2G399098 955
GRMZM2G073860 857 GRMZM2G399433 929
GRMZM2G073908 | 545 | 553 GRMZM2G399541 | 902 148
GRMZM2G073954 430 | GRMZM2G399584 | 766

GRMZM2G074087 727 | 479 GRMZM2G400005 | 570 | 574
GRMZM2G074094 | 733 | 854 GRMZM2G400129 28 14
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GRMZM2G074138 75 94 GRMZM2G400135 968 | 728 | 480
GRMZM2G074173 438 | GRMZM2G400173 940
GRMZM2G074211 485 | 855 | 320 | GRMZM2G400197 984
GRMZM2G074280 726 | 478 GRMZM2G401561 858
GRMZM2G074282 356 | 687 GRMZM2G401997 650 | 905
GRMZM2G074300 955 GRMZM2G402368 659
GRMZM2G074331 | 531 | 433 GRMZM2G402564 | 269 | 346

GRMZM2G074377 | 532 | 434 GRMZM2G402653 143 | 120
GRMZM2G074436 779 | 701 GRMZM2G402708 727
GRMZM2G074501 718 | 576 GRMZM2G403712 678 | 485
GRMZM2G074514 953 | GRMZM2G403915 255 76
GRMZM2G074648 919 | 538 GRMZM2G404121 825
GRMZM2G075000 976 | 189 | GRMZM2G404377 625
GRMZM2G075058 | 301 | 245 GRMZM2G404426 902
GRMZM2G075092 | 302 | 246 GRMZM2G404530 390 | 292 | 884
GRMZM2G075101 954 GRMZM2G405307 | 214 | 224

GRMZM2G075294 222 | GRMZM2G405387 213
GRMZM2G075456 863 | GRMZM2G405622 32 66 155
GRMZM2G075715 900 GRMZM2G406101 964
GRMZM2G075851 33 38 GRMZM2G406119 919
GRMZM2G075892 | 131 | 179 GRMZM2G406376 334
GRMZM2G075921 312 | GRMZM2G407119 789
GRMZM2G076157 793 GRMZM2G407406 722 | 665
GRMZM2G076392 596 | 621 GRMZM2G407522 | 277 | 454

GRMZM2G076468 | 162 | 214 964 | GRMZM2G407913 | 639 | 467 | 904 | 611
GRMZM2G076683 895 GRMZM2G407969 336
GRMZM2G076747 893 GRMZM2G407996 936 | 301
GRMZM2G076936 846 | 394 GRMZM2G408038 205 | 510
GRMZM2G076962 442 | 245 GRMZM2G408598 | 838 | 601

GRMZM2G077045 | 620 | 654 GRMZM2G408875 | 761

GRMZM2G077258 905 | GRMZM2G409265 | 828 | 726

GRMZM2G077316 76 | 90 750 | GRMZM2G409343 555
GRMZM2G077317 189 | 148 GRMZM2G409430 155 | 738
GRMZM2G077486 190 | 149 GRMZM2G409473 684
GRMZM2G077488 669 | GRMZM2G409753 476 | 318
GRMZM2G077757 827 | GRMZM2G411216 322
GRMZM2G077897 | 118 79 GRMZM2G411653 328 | 683
GRMZM2G077960 | 117 78 GRMZM2G411668 327 | 682
GRMZM2G077991 | 484 | 306 GRMZM2G412161 | 602 | 689

GRMZM2G078252 642 | GRMZM2G412426 | 349 | 301
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GRMZM2G078275 644 | GRMZM2G412430 | 155 | 132
GRMZM2G078283 12 7 GRMZM2G413226 | 265 | 278
GRMZM2G078294 599 | 487 GRMZM2G413996 719
GRMZM2G078297 | 176 | 215 GRMZM2G414007 718
GRMZM2G078368 | 108 | 120 GRMZM2G414225 294
GRMZM2G078382 564 GRMZM2G414278 | 487 | 560 649
GRMZM2G078806 | 200 | 151 GRMZM2G414331 | 925

GRMZM2G078876 | 139 | 106 GRMZM2G414639 111
GRMZM2G079031 | 272 | 784 6 | GRMZM2G414866 | 444 | 280
GRMZM2G079470 | 474 | 568 318 | GRMZM2G414995 | 267 | 339
GRMZM2G079487 | 133 | 209 424 | GRMZM2G415012 | 266 | 338
GRMZM2G079559 664 | GRMZM2G416156 | 128 | 158 617
GRMZM2G079568 | 134 | 210 426 | GRMZM2G416184 | 178 | 200
GRMZM2G079730 | 965 GRMZM2G416308 | 374 | 400
GRMZM2G079754 | 963 GRMZM2G416652 | 927

GRMZM2G079774 | 798 GRMZM2G417402 600 | 324
GRMZM2G079817 513 GRMZM2G418258 214 | 111
GRMZM2G079954 500 | 399 GRMZM2G419104 239 | 147
GRMZM2G080169 889 GRMZM2G419563 737
GRMZM2G080178 461 | 336 GRMZM2G420619 478
GRMZM2G080191 544 | 758 GRMZM2G420684 982
GRMZM2G080281 462 | 337 GRMZM2G420926 438
GRMZM2G080530 752 | GRMZM2G421779 | 233 | 424
GRMZM2G080537 | 578 | 513 GRMZM2G421866 675
GRMZM2G080689 861 | 947 | 693 | GRMZM2G422641 | 672 | 850
GRMZM2G080731 | 197 | 152 GRMZM2G423025 944
GRMZM2G080816 445 GRMZM2G423413 484
GRMZM2G080839 119 | GRMZM2G423486 188
GRMZM2G080843 | 676 | 592 GRMZM2G423669 | 174 | 196
GRMZM2G080851 | 722 | 672 97 | 551 GRMZM2G423851 914
GRMZM2G080858 191 | 213 GRMZM2G423861 147
GRMZM2G080906 649 GRMZM2G423886 | 336 | 468 232
GRMZM2G080907 120 | GRMZM2G423975 148
GRMZM2G080930 | 677 | 593 GRMZM2G424075 | 298 | 377
GRMZM2G081158 340 | GRMZM2G424595 | 125 | 121
GRMZM2G081350 | 546 | 364 GRMZM2G424625 901
GRMZM2G081359 459 | 185 GRMZM2G424628 902
GRMZM2G081441 510 | 205 GRMZM2G425719 75
GRMZM2G081486 856 | GRMZM2G425736 | 931

GRMZM2G081536 651 GRMZM2G425774 560 236
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GRMZM2G081538 | 337 | 329 GRMZM2G426150 | 694 | 711

GRMZM2G081582 628 | GRMZM2G426511 | 711 | 896

GRMZM2G081583 48 5 GRMZM2G426888 45 39
GRMZM2G081626 650 GRMZM2G427635 313
GRMZM2G081712 680 | 289 GRMZM2G427685 | 167 | 128

GRMZM2G081808 | 434 | 407 341 | GRMZM2G427932 145
GRMZM2G081928 822 GRMZM2G428071 175
GRMZM2G081935 31 21 GRMZM2G428197 290 | 277
GRMZM2G081943 858 | GRMZM2G429045 | 751 | 695

GRMZM2G082180 829 | 486 GRMZM2G429540 641 | 446
GRMZM2G082189 738 | GRMZM2G429611 858

GRMZM2G082362 | 515 | 420 GRMZM2G429992 91 49
GRMZM2G082372 | 514 | 419 GRMZM2G430029 733 | 364
GRMZM2G082376 | 513 | 418 GRMZM2G430463 | 901

GRMZM2G082390 | 512 | 417 GRMZM2G430482 381
GRMZM2G082608 | 252 | 157 | 183 | 167 | 125 | GRMZM2G430501 382
GRMZM2G082709 1 12 GRMZM2G430710 | 604 | 426

GRMZM2G082836 65 64 GRMZM2G431006 928
GRMZM2G082916 | 716 42 | GRMZM2G431524 | 153 | 105 609
GRMZM2G082940 345 | GRMZM2G431691 15 35| 685
GRMZM2G083091 569 GRMZM2G433528 986
GRMZM2G083128 | 246 | 206 GRMZM2G433624 | 446 | 321

GRMZM2G083156 570 GRMZM2G433731 | 788

GRMZM2G083182 571 GRMZM2G433795 437 | 493
GRMZM2G083301 784 | GRMZM2G433855 974
GRMZM2G083309 | 936 | 904 GRMZM2G434839 951
GRMZM2G083367 785 | GRMZM2G435244 616
GRMZM2G083402 786 | GRMZM2G435290 879
GRMZM2G083411 | 565 | 444 GRMZM2G435294 878
GRMZM2G083642 736 | GRMZM2G435824 758
GRMZM2G083841 866 | GRMZM2G436299 | 168 | 135

GRMZM2G084063 48 56 GRMZM2G436593 809

GRMZM2G084440 49 57 GRMZM2G437683 | 695 | 835

GRMZM2G084463 873 GRMZM2G437711 195 | 406
GRMZM2G084587 | 345 | 423 GRMZM2G437827 924
GRMZM2G084791 165 | GRMZM2G440259 | 729 | 667

GRMZM2G084825 969 GRMZM2G440831 517 | 457
GRMZM2G085825 | 232 | 189 GRMZM2G440866 516 | 456
GRMZM2G085836 315 | 199 GRMZM2G441670 | 524 | 867 101
GRMZM2G086190 877 | GRMZM2G441722 759 | 828
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GRMZM2G086669 | 313 | 257 GRMZM2G441888 960
GRMZM2G086750 | 385 | 373 505 | GRMZM2G441903 962
GRMZM2G086869 | 384 | 372 853 | GRMZM2G442129 892
GRMZM2G086940 725 | 922 GRMZM2G442523 667
GRMZM2G087032 724 | 921 GRMZM2G442546 668
GRMZM2G087063 | 719 | 819 GRMZM2G442551 528
GRMZM2G087117 | 950 GRMZM2G443111 | 325 | 178 153
GRMZM2G087243 | 721 | 821 GRMZM2G443332 544
GRMZM2G087323 469 | GRMZM2G443340 966 248
GRMZM2G087350 651 | 906 GRMZM2G443345 13
GRMZM2G087484 856 GRMZM2G443447 177 | 727
GRMZM2G087679 830 GRMZM2G443762 502 | 349
GRMZM2G088443 | 754 GRMZM2G443776 501 | 348
GRMZM2G088487 95| 115 GRMZM2G443785 488
GRMZM2G088511 747 | 341 GRMZM2G444533 | 873 | 582

GRMZM2G088524 | 845 85 | GRMZM2G444540 | 872 | 581

GRMZM2G088613 90 | GRMZM2G444543 | 875 | 584

GRMZM2G088765 622 | GRMZM2G444560 974

GRMZM2G089056 542 GRMZM2G444715 | 279 | 236 61
GRMZM2G089086 749 | 343 GRMZM2G445423 | 862 | 432

GRMZM2G089092 559 GRMZM2G445689 | 489 | 723

GRMZM2G089106 29 59 GRMZM2G446047 402
GRMZM2G089147 | 460 | 309 GRMZM2G446189 913
GRMZM2G089285 593 | GRMZM2G446858 976
GRMZM2G089291 592 | GRMZM2G447151 690
GRMZM2G089355 | 853 | 778 GRMZM2G447176 692
GRMZM2G089517 737 | GRMZM2G447447 901
GRMZM2G089618 793 | 382 GRMZM2G447542 898
GRMZM2G090018 | 547 | 517 GRMZM2G447989 157
GRMZM2G090029 | 127 | 123 GRMZM2G448456 631 | 418
GRMZM2G090034 | 861 | 431 GRMZM2G448895 953
GRMZM2G090087 | 859 | 429 GRMZM2G449085 | 164 | 195

GRMZM2G090100 | 126 | 122 GRMZM2G449355 728
GRMZM2G090245 | 858 | 428 GRMZM2G449558 936
GRMZM2G090266 | 380 | 436 GRMZM2G449779 416
GRMZM2G090675 523 GRMZM2G450717 776
GRMZM2G090904 844 | 659 GRMZM2G450863 696
GRMZM2G091020 899 | 550 GRMZM2G451187 735 | 859
GRMZM2G091226 603 | GRMZM2G451746 110
GRMZM2G091233 602 | GRMZM2G451769 903
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GRMZM2G091243 81 | 112 | 247 | 166 GRMZM2G451856 938
GRMZM2G091285 601 | GRMZM2G452084 930
GRMZM2G091592 916 | GRMZM2G452935 471
GRMZM2G091653 839 | 470 GRMZM2G453225 516
GRMZM2G091811 92 | 151 | 243 | GRMZM2G453684 | 958

GRMZM2G091995 689 | 400 GRMZM2G453832 | 322 | 282

GRMZM2G092223 | 895 | 556 GRMZM2G455407 534
GRMZM2G092363 | 280 | 271 GRMZM2G456149 | 697 | 435

GRMZM2G092379 622 GRMZM2G456357 925
GRMZM2G092391 596 GRMZM2G456422 760
GRMZM2G092432 710 GRMZM2G456547 | 401 | 532

GRMZM2G092451 275 | 228 GRMZM2G456578 | 295 | 239 19
GRMZM2G092525 612 | GRMZM2G456603 | 344 | 299 21
GRMZM2G092535 274 | 227 GRMZM2G456618 | 397 | 528

GRMZM2G092550 611 | GRMZM2G456626 | 422 | 363

GRMZM2G092590 | 158 | 173 207 | GRMZM2G456644 | 801

GRMZM2G092804 430 | 554 | 311 | GRMZM2G456756 317 | 164
GRMZM2G092895 948 GRMZM2G456757 318 | 165
GRMZM2G092916 913 GRMZM2G456835 983 | 625
GRMZM2G092923 914 GRMZM2G457147 | 190 | 141 3
GRMZM2G092968 338 | 360 GRMZM2G457193 418 | 237
GRMZM2G093020 606 | GRMZM2G457357 | 367 | 265

GRMZM2G093121 911 | 445 GRMZM2G457370 | 366 | 264

GRMZM2G093291 285 | GRMZM2G457415 299
GRMZM2G093312 284 | GRMZM2G458084 754 | 474
GRMZM2G093441 | 586 | 637 GRMZM2G458200 813 | 452
GRMZM2G093503 | 585 | 636 GRMZM2G458448 981
GRMZM2G093524 398 | GRMZM2G458538 977
GRMZM2G093580 883 GRMZM2G458659 928
GRMZM2G093598 623 GRMZM2G458718 | 194 | 311 472
GRMZM2G093731 | 656 | 564 GRMZM2G458824 451
GRMZM2G093838 | 657 | 565 GRMZM2G459230 50 56
GRMZM2G093900 959 GRMZM2G459370 | 938 | 874

GRMZM2G093962 | 780 GRMZM2G459474 768
GRMZM2G094077 932 GRMZM2G459645 665
GRMZM2G094083 811 GRMZM2G459828 636
GRMZM2G094168 | 206 | 126 GRMZM2G459861 359
GRMZM2G094241 641 | GRMZM2G460422 27 48 52
GRMZM2G094390 | 112 98 GRMZM2G460684 114 | 184
GRMZM2G094452 9 11 GRMZM2G462080 | 132 | 107 507
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GRMZM2G094526 640 | 393 GRMZM2G462422 496 | 658 | 759
GRMZM2G094639 253 | GRMZM2G464469 | 517

GRMZM2G094781 51 33 GRMZM2G464539 54 13
GRMZM2G094871 89 50 GRMZM2G464709 | 464 | 923 365
GRMZM2G094884 | 583 | 634 GRMZM2G464794 | 948 | 804 174
GRMZM2G094892 | 582 | 633 GRMZM2G464846 598
GRMZM2G094990 | 559 | 772 GRMZM2G464885 | 284 | 352 103
GRMZM2G095020 | 976 GRMZM2G465771 | 688 | 730

GRMZM2G095141 827 GRMZM2G466428 872 | 361
GRMZM2G095144 | 541 | 698 GRMZM2G466517 566
GRMZM2G095326 828 GRMZM2G466519 662
GRMZM2G095384 | 453 | 507 62 | GRMZM2G466743 933

GRMZM2G095397 840 | 359 GRMZM2G466769 546 | 679
GRMZM2G095411 | 278 | 320 63 | GRMZM2G466931 874
GRMZM2G095631 40 54 | 43 51 GRMZM2G467123 365 | 264
GRMZM2G095643 142 | 323 | 147 | GRMZM2G467134 366 | 265
GRMZM2G096171 30 52 GRMZM2G467147 369 | 268
GRMZM2G096365 387 | 862 GRMZM2G467212 977

GRMZM2G096367 659 | 808 GRMZM2G468929 699
GRMZM2G096422 723 GRMZM2G469371 | 827 | 920

GRMZM2G096553 552 | GRMZM2G469414 | 534 | 577

GRMZM2G096600 551 | GRMZM2G469697 58 69

GRMZM2G096680 914 GRMZM2G469795 | 411 | 335

GRMZM2G096996 739 | 281 GRMZM2G469839 702
GRMZM2G097040 673 GRMZM2G469873 138 70
GRMZM2G097068 | 817 | 853 GRMZM2G469898 749
GRMZM2G097089 950 GRMZM2G470723 400 | 684
GRMZM2G097122 949 GRMZM2G471051 | 449 | 537

GRMZM2G097170 939 GRMZM2G471080 210
GRMZM2G097277 | 835 | 703 GRMZM2G471348 958
GRMZM2G097316 322 | GRMZM2G471357 386
GRMZM2G097340 323 | GRMZM2G471525 954 | 390
GRMZM2G097404 76 | GRMZM2G471529 | 241 | 109 867 33
GRMZM2G097468 789 GRMZM2G471635 178 | 124
GRMZM2G097568 | 832 | 700 GRMZM2G472234 | 502 | 385 945
GRMZM2G097926 883 | GRMZM2G472453 834
GRMZM2G097995 | 503 | 505 860 | GRMZM2G472903 | 667

GRMZM2G098042 928 GRMZM2G474113 816 | 706
GRMZM2G098331 | 753 | 461 GRMZM2G474211 | 871

GRMZM2G098397 880 GRMZM2G474658 537
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GRMZM2G098434 879 GRMZM2G474726 40 | 179 58
GRMZM2G098900 | 482 | 825 GRMZM2G475647 783 | 796
GRMZM2G099109 690 GRMZM2G475678 933
GRMZM2G099328 | 423 | 518 535 | GRMZM2G476515 556 | 361
GRMZM2G100005 | 568 | 572 GRMZM2G476902 | 692 | 630
GRMZM2G100121 945 GRMZM2G477161 881
GRMZM2G100225 848 GRMZM2G477200 | 846 | 939
GRMZM2G100328 348 | 222 GRMZM2G477238 881 | 540
GRMZM2G100381 949 | GRMZM2G477741 374
GRMZM2G100457 507 | 377 GRMZM2G477847 198 | 130
GRMZM2G100492 470 | 314 GRMZM2G478212 | 219 | 175 5
GRMZM2G100583 956 | 428 | 331 GRMZM2G479340 | 149 | 136
GRMZM2G101053 728 | GRMZM2G479804 483
GRMZM2G101069 206 | 542 GRMZM2G479987 605 | 262
GRMZM2G101080 729 | GRMZM2G480106 121 | 436 | 589
GRMZM2G101511 658 | 395 GRMZM2G480439 | 292 | 355
GRMZM2G101745 4 5 GRMZM2G481163 | 141 | 230 36
GRMZM2G101875 899 | GRMZM2G481222 | 382 | 284
GRMZM2G101900 | 210 | 186 GRMZM2G481311 | 330 | 273
GRMZM2G101926 898 | GRMZM2G481531 26 | 150
GRMZM2G101932 897 | GRMZM2G481605 804
GRMZM2G102021 677 | 484 GRMZM2G481904 | 609 | 397
GRMZM2G102156 | 414 | 487 GRMZM2G482256 543
GRMZM2G102161 533 | GRMZM2G483622 715
GRMZM2G102218 534 | GRMZM2G483624 714
GRMZM2G102322 649 | 904 GRMZM2G486868 | 723 | 739
GRMZM2G102447 370 | GRMZM2G487359 833
GRMZM2G102580 260 | 839 GRMZM2G489288 450
GRMZM2G102674 977 | 190 | GRMZM2G490278 766
GRMZM2G102720 | 264 | 232 GRMZM2G493946 | 358 | 791
GRMZM2G102915 966 GRMZM2G495234 432 | 240
GRMZM2G102923 965 GRMZM2G496319 | 894 | 872
GRMZM2G103050 427 | 892 GRMZM2G496821 281 | 440 | 914
GRMZM2G103166 901 GRMZM2G502467 775 | 469
GRMZM2G103186 991 | 434 GRMZM2G507533 652
GRMZM2G103245 887 | 379 GRMZM2G508530 301 | 781
GRMZM2G103266 963 GRMZM2G512617 638
GRMZM2G103721 347 | 374 GRMZM2G513273 | 413 | 290
GRMZM2G103847 675 GRMZM2G515456 952
GRMZM2G103939 204 | 193 GRMZM2G519736 581
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GRMZM2G104074 224 | 368 | 302 | GRMZM2G522468 961
GRMZM2G104078 736 GRMZM2G523621 286 | 586
GRMZM2G104092 223 | 367 | 301 | GRMZM2G524711 64 87
GRMZM2G104176 870 | GRMZM2G524978 690 | 401
GRMZM2G104262 254 75 GRMZM2G525605 388
GRMZM2G104353 568 | GRMZM2G526668 909 | 666
GRMZM2G104632 | 905 | 754 GRMZM2G527250 918 | 537
GRMZM2G104739 463 | 201 GRMZM2G528010 894
GRMZM2G104741 464 | 202 GRMZM2G533031 836 | 802
GRMZM2G104768 968 GRMZM2G534888 406 | 357
GRMZM2G104843 278 | 697 GRMZM2G537407 340 | 157 | 890
GRMZM2G104907 319 | 210 | 503 | GRMZM2G538829 | 416 | 360
GRMZM2G104942 320 | 211 | 841 | GRMZM2G539790 | 781

GRMZM2G105229 602 GRMZM2G540732 | 674 | 852
GRMZM2G105542 279 | 698 GRMZM2G541103 | 504 | 506 554
GRMZM2G105571 | 855 | 913 572 | GRMZM2G542847 799 | 571
GRMZM2G105579 482 | 304 GRMZM2G548261 422 | 559
GRMZM2G105787 788 | GRMZM2G549274 949
GRMZM2G105834 787 | GRMZM2G556522 709 | 880
GRMZM2G105869 938 GRMZM2G558078 870
GRMZM2G105901 555 | GRMZM2G559088 291 | 278
GRMZM2G105933 244 | 234 GRMZM2G562569 436 | 492
GRMZM2G105935 | 419 | 388 GRMZM2G563662 | 161 | 162
GRMZM2G105954 580 | 353 GRMZM2G567739 921
GRMZM2G106026 | 418 | 387 GRMZM2G568636 816
GRMZM2G106099 686 GRMZM2G568912 810
GRMZM2G106108 687 GRMZM2G570109 765
GRMZM2G106143 865 | 417 GRMZM2G570989 586
GRMZM2G106165 466 GRMZM2G574858 497 | 261
GRMZM2G106618 572 | 300 GRMZM2G575809 39 39
GRMZM2G106650 811 GRMZM2G578411 831
GRMZM2G106741 137 | 116 GRMZM2G580536 22| 105
GRMZM2G106752 136 | 115 GRMZM2G587543 596
GRMZM2G106781 918 GRMZM2G589696 757
GRMZM2G106792 917 GRMZM2G590450 120 | 435 | 588
GRMZM2G106834 | 156 | 133 GRMZM2G590792 | 239 | 111 826 | 763
GRMZM2G106836 920 GRMZM2G700034 | 764 | 838
GRMZM2G107021 798 GRMZM2G700239 | 930 | 952
GRMZM2G107121 292 | 419 GRMZM2G700275 829
GRMZM2G107129 824 GRMZM2G700655 392
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GRMZM2G107199 939 GRMZM2G700659 | 974

GRMZM2G107289 20 | 103 GRMZM2G700662 589 | 609 | 113
GRMZM2G107336 917 GRMZM2G700664 588 | 608 | 112
GRMZM2G107388 297 | 541 GRMZM2G700665 76 | 190 99
GRMZM2G107395 133 | 411 GRMZM2G700673 950
GRMZM2G107406 352 | GRMZM2G700828 794
GRMZM2G107437 | 890 | 862 GRMZM2G701349 773
GRMZM2G107440 132 | 410 GRMZM2G701352 772
GRMZM2G107473 600 | GRMZM2G701585 849
GRMZM2G107484 | 516 | 421 GRMZM2G701704 833
GRMZM2G107495 500 | GRMZM2G701883 289
GRMZM2G107499 427 | GRMZM2G702390 456
GRMZM2G107504 | 740 | 807 GRMZM2G702397 891
GRMZM2G107575 536 | GRMZM2G702403 486 | 389 | 135
GRMZM2G107591 663 | GRMZM2G702406 398 | 426
GRMZM2G107741 687 | GRMZM2G702422 409 | 140
GRMZM2G107774 287 | 587 GRMZM2G702426 213 | 501
GRMZM2G107805 288 | 588 GRMZM2G702476 736 | 858
GRMZM2G107815 744 | 847 GRMZM2G702483 118 91
GRMZM2G107854 745 | 848 GRMZM2G702498 352 | 236
GRMZM2G107867 | 949 GRMZM2G702499 843 | 412
GRMZM2G107872 746 | 849 GRMZM2G702502 986 | 670
GRMZM2G107896 376 | GRMZM2G702516 846
GRMZM2G108016 475 | 369 GRMZM2G702522 729
GRMZM2G108103 55| 159 GRMZM2G702564 77 71
GRMZM2G108149 56 | 160 GRMZM2G702602 769
GRMZM2G108180 650 | GRMZM2G703132 490 | 340
GRMZM2G108272 | 498 | 619 GRMZM2G703281 826
GRMZM2G108309 | 497 | 618 GRMZM2G703586 646
GRMZM2G108416 | 486 | 559 648 | GRMZM2G703624 653
GRMZM2G108501 | 392 | 302 GRMZM2G703625 951 417
GRMZM2G108597 | 707 | 765 GRMZM2G703634 874
GRMZM2G108619 | 830 | 728 GRMZM2G703658 | 720 | 820
GRMZM2G108668 | 829 | 727 GRMZM2G703670 178
GRMZM2G108780 910 GRMZM2G703671 343
GRMZM2G108861 332 | GRMZM2G703677 | 526 | 719 241
GRMZM2G108904 | 665 | 616 GRMZM2G703688 | 383 | 371 852
GRMZM2G109271 | 885 | 602 GRMZM2G703691 44 26
GRMZM2G109354 714 | 988 GRMZM2G703697 | 260 | 250
GRMZM2G109425 | 831 | 699 GRMZM2G703701 724

154




GRMZM2G109830 627 GRMZM2G703704 | 501 | 404

GRMZM2G110027 237 | GRMZM2G703706 | 814 239
GRMZM2G110067 896 | GRMZM2G703749 431
GRMZM2G110076 895 | GRMZM2G703755 614
GRMZM2G110369 2 2 GRMZM2G703769 231
GRMZM2G110381 436 | GRMZM2G703783 912
GRMZM2G110553 | 671 | 629 | 376 | 735 GRMZM2G703790 324
GRMZM2G110582 474 | GRMZM2G703846 943
GRMZM2G110584 | 670 | 628 | 375 | 734 GRMZM2G703995 | 713 | 780

GRMZM2G110681 620 | 720 GRMZM2G704212 350
GRMZM2G110932 555 GRMZM2G704220 908
GRMZM2G111015 855 | 601 GRMZM2G704222 717
GRMZM2G111028 685 | 376 GRMZM2G704224 741
GRMZM2G111045 363 87 GRMZM2G704265 | 469 | 365

GRMZM2G111117 750 GRMZM2G704270 455
GRMZM2G111208 70 | 84 900 | GRMZM2G704277 | 628 | 658 | 312 | 643 | 780
GRMZM2G111228 988 GRMZM2G704345 630
GRMZM2G111247 | 685 | 466 | 903 | 610 GRMZM2G704475 246
GRMZM2G111261 989 GRMZM5G800429 298
GRMZM2G111300 990 GRMZM5G800751 496
GRMZM2G111306 410 | GRMZM5G801241 | 115 | 181 10 2
GRMZM2G111324 326 | 681 GRMZM5G801875 833 | 640
GRMZM2G111529 987 GRMZM5G802384 | 915

GRMZM2G112154 | 473 | 763 247 | GRMZM5G802941 825 | 315
GRMZM2G112228 836 | GRMZM5G803275 249 | 370
GRMZM2G112278 22 31 GRMZM5G803381 158
GRMZM2G112769 | 347 | 254 GRMZM5G803949 | 921 | 770

GRMZM2G113098 229 | GRMZM5G804816 957
GRMZM2G113139 | 116 | 108 GRMZM5G805675 94 | 153
GRMZM2G113203 703 | GRMZM5G806839 13 30 55
GRMZM2G113415 717 | GRMZM5G806947 30 35

GRMZM2G113761 | 237 | 216 595 | GRMZM5G807619 | 645 | 690

GRMZM2G113790 52 36 GRMZM5G807791 232 | 117
GRMZM2G113883 216 | 363 GRMZM5G808652 831
GRMZM2G113990 720 GRMZM5G809546 | 912 | 930

GRMZM2G114119 | 851 GRMZM5G809663 | 213 | 261

GRMZM2G114356 794 GRMZM5G811022 | 379 | 344

GRMZM2G114667 99 | 102 89 | GRMZM5G811034 647
GRMZM2G114672 | 924 GRMZM5G811095 | 433 | 554 447
GRMZM2G114702 755 | 718 GRMZM5G811373 | 270 | 414 238
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GRMZM2G114706 | 406 | 670 GRMZM5G812126 814 | 714 | 422
GRMZM2G114707 98 | 101 118 | GRMZM5G812228 511
GRMZM2G114772 97 | 100 117 | GRMZM5G812265 29 34

GRMZM2G114788 | 923 GRMZM5G812326 895 | 628
GRMZM2G114893 | 791 | 827 97 | GRMZM5G812891 | 224 | 252

GRMZM2G114906 | 792 | 828 98 | GRMZM5G812923 597
GRMZM2G115049 | 857 | 427 GRMZM5G813343 295
GRMZM2G115077 86 68 GRMZM5G813556 414 | 136
GRMZM2G115260 | 274 | 247 GRMZM5G813670 | 870

GRMZM2G115424 | 480 | 447 | 975 GRMZM5G813892 230
GRMZM2G115766 83 | GRMZM5G814035 818
GRMZM2G115828 84 | GRMZM5G814904 775
GRMZM2G115855 | 776 | 707 GRMZM5G815736 532
GRMZM2G115875 | 202 | 155 GRMZM5G815757 85 67
GRMZM2G115909 772 | 823 GRMZM5G816304 411
GRMZM2G115960 | 203 | 156 GRMZM5G816582 541 | 807
GRMZM2G115961 773 | 824 GRMZM5G817035 | 680 | 502

GRMZM2G116010 | 341 | 648 GRMZM5G817255 145
GRMZM2G116133 970 GRMZM5G817301 924
GRMZM2G116204 71| 42 GRMZM5G817651 822
GRMZM2G116292 166 | 853 GRMZM5G817777 | 255 | 368

GRMZM2G116517 | 143 | 127 GRMZM5G817839 | 319 | 324 249
GRMZM2G116626 933 | GRMZM5G817854 800
GRMZM2G116638 439 | GRMZM5G818126 | 250 | 297 245
GRMZM2G116689 | 227 | 199 GRMZM5G818776 682 | 284
GRMZM2G117007 375 | GRMZM5G819500 813
GRMZM2G117153 892 | GRMZM5G819965 | 361 | 402 550
GRMZM2G117222 | 396 | 549 86 | GRMZM5G820650 519
GRMZM2G117329 21 | 104 GRMZM5G821611 | 114 | 180 9 1
GRMZM2G117360 676 | GRMZM5G821787 335 | 508
GRMZM2G117513 | 129 | 159 618 | GRMZM5G822137 829
GRMZM2G117755 236 | 144 GRMZM5G822237 866

GRMZM2G117776 | 443 | 279 GRMZM5G823135 369
GRMZM2G117804 | 454 | 495 143 | GRMZM5G824236 911
GRMZM2G117822 238 | 146 GRMZM5G824597 494
GRMZM2G118063 | 218 | 237 778 | GRMZM5G825987 931 | 577
GRMZM2G118409 | 574 | 708 GRMZM5G826416 631
GRMZM2G118453 | 928 | 945 GRMZM5G826984 124
GRMZM2G118462 | 951 GRMZM5G827042 454
GRMZM2G118495 165 | 852 GRMZM5G827611 824

156




GRMZM2G118497 164 | 851 GRMZM5G828284 46 89

GRMZM2G118717 552 | 218 GRMZM5G828488 62 85

GRMZM2G118766 553 | 219 GRMZM5G828630 857
GRMZM2G118957 692 GRMZM5G828945 379 | 311 | 850
GRMZM2G119483 591 | 317 | 741 | GRMZM5G829396 | 208 | 248

GRMZM2G119496 154 GRMZM5G830085 99 92
GRMZM2G119527 590 | 316 | 740 | GRMZM5G830457 799
GRMZM2G119696 24 17 GRMZM5G830983 708
GRMZM2G119717 25 18 GRMZM5G831135 221 | 596
GRMZM2G119766 | 542 | 521 GRMZM5G831408 358
GRMZM2G120069 432 | GRMZM5G831486 | 340 | 647

GRMZM2G120079 817 433 | GRMZM5G831712 894

GRMZM2G120132 337 GRMZM5G832381 | 466 | 925 367
GRMZM2G120246 717 GRMZM5G833253 574
GRMZM2G120373 428 GRMZM5G833563 896 | 629
GRMZM2G120414 | 230 | 183 GRMZM5G833760 84 63

GRMZM2G120563 | 229 | 182 GRMZM5G834260 144
GRMZM2G120587 67 | 68 GRMZM5G834605 | 172 | 147

GRMZM2G120592 832 | 424 GRMZM5G835704 271
GRMZM2G120619 907 | GRMZM5G836190 309 | 386
GRMZM2G120839 234 | 112 GRMZM5G837058 | 420 | 390

GRMZM2G120975 440 GRMZM5G837538 | 154 | 185

GRMZM2G120987 439 GRMZM5G837869 767
GRMZM2G121083 713 | 664 GRMZM5G838152 289 | 276
GRMZM2G121117 983 | GRMZM5G838196 756 | 509
GRMZM2G121128 | 826 | 886 512 | GRMZM5G838226 960
GRMZM2G121143 815 | 715 | 423 | GRMZM5G838352 | 299 | 319 610
GRMZM2G121354 935 GRMZM5G838414 513
GRMZM2G121374 934 GRMZM5G838435 920 437
GRMZM2G121418 480 | GRMZM5G838496 79
GRMZM2G121494 57 73 GRMZM5G839014 308 | 385
GRMZM2G121510 814 | GRMZM5G840762 10 19

GRMZM2G121631 928 | 529 GRMZM5G840885 271 | 429
GRMZM2G122076 173 | 204 GRMZM5G841594 139
GRMZM2G122231 | 678 | 594 GRMZM5G841743 829
GRMZM2G122284 | 679 | 595 GRMZM5G842103 | 276 | 327

GRMZM2G122290 674 | GRMZM5G842306 537 | 909
GRMZM2G122330 | 481 | 448 GRMZM5G842556 830
GRMZM2G122965 | 856 | 840 GRMZM5G842686 899

GRMZM2G123140 | 372 | 331 GRMZM5G842766 | 552 | 381
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GRMZM2G123305 43 55 800 GRMZM5G842855 726
GRMZM2G123418 316 | GRMZM5G843237 | 876

GRMZM2G123585 | 275 | 337 11 | GRMZM5G843446 77
GRMZM2G123607 | 228 | 330 GRMZM5G843972 | 703 | 716
GRMZM2G123625 77 | 125 GRMZM5G844309 562 | 177
GRMZM2G123776 | 555 | 764 485 | GRMZM5G845080 898 | 631
GRMZM2G123872 452 | GRMZM5G845296 38 45 235
GRMZM2G123987 354 | GRMZM5G846071 565 681
GRMZM2G124059 355 | GRMZM5G846082 372
GRMZM2G124115 835 GRMZM5G846140 | 440 | 546
GRMZM2G124313 467 | GRMZM5G847100 798
GRMZM2G124421 453 | GRMZM5G847159 456 | 327 | 634
GRMZM2G124466 144 GRMZM5G847387 965
GRMZM2G124557 170 | 638 GRMZM5G847923 843
GRMZM2G124638 171 | 639 GRMZM5G848365 471 | 661
GRMZM2G125001 903 | GRMZM5G848435 382 | 251
GRMZM2G125149 146 GRMZM5G848692 250 | 371
GRMZM2G125162 412 | 134 GRMZM5G848739 834 | 641
GRMZM2G125201 | 784 | 469 GRMZM5G848942 958
GRMZM2G125314 | 710 | 895 GRMZM5G849471 | 877

GRMZM2G125436 385 | 860 GRMZM5G850848 | 373 | 759
GRMZM2G125476 386 | 861 GRMZM5G850924 140
GRMZM2G125529 210 | 128 GRMZM5G851617 963
GRMZM2G125556 209 | 127 GRMZM5G851815 101 | 208
GRMZM2G125668 827 GRMZM5G852170 6 8
GRMZM2G125777 964 | 489 GRMZM5G852177 | 562 | 625
GRMZM2G125853 | 101 | 187 625 | GRMZM5G852338 556
GRMZM2G125867 | 315 | 491 GRMZM5G852396 512
GRMZM2G125923 293 | GRMZM5G852533 | 359 | 792
GRMZM2G125943 697 | GRMZM5G853202 274
GRMZM2G125954 | 800 GRMZM5G854901 941
GRMZM2G125991 698 | GRMZM5G855094 93 | 152 | 242
GRMZM2G126128 41 19 GRMZM5G855629 909
GRMZM2G126264 46 | 40 GRMZM5G855672 767 | 142
GRMZM2G126447 942 | 528 GRMZM5G855853 955 | 100 | 102
GRMZM2G126603 665 GRMZM5G856067 702
GRMZM2G126900 556 | GRMZM5G856180 490
GRMZM2G127029 666 | 358 GRMZM5G856583 109 82
GRMZM2G127067 | 144 | 165 654 | GRMZM5G856653 | 850 | 943 579
GRMZM2G127087 23 28 GRMZM5G856795 896
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GRMZM2G127139 942 | GRMZM5G857770 | 378 | 343

GRMZM2G127168 | 145 | 166 655 | GRMZM5G858165 357
GRMZM2G127173 941 | GRMZM5G858653 193 | 296
GRMZM2G127184 940 | GRMZM5G859786 | 212 | 260

GRMZM2G127266 323 | 635 GRMZM5G860072 | 256 | 369

GRMZM2G127336 | 866 | 805 GRMZM5G860176 78
GRMZM2G127720 885 GRMZM5G860399 842 | 388
GRMZM2G127945 790 | GRMZM5G861617 | 331 | 323

GRMZM2G128219 592 | 232 GRMZM5G861659 821
GRMZM2G128319 287 | GRMZM5G861678 | 940 | 915

GRMZM2G128399 208 | GRMZM5G862016 615 | 258
GRMZM2G128445 984 | 535 GRMZM5G862109 956 | 472
GRMZM2G128504 585 | 260 GRMZM5G862276 | 455 | 527

GRMZM2G128641 | 386 | 276 GRMZM5G862467 | 271 | 415 707
GRMZM2G128648 | 121 | 130 GRMZM5G862565 | 779 | 786 331
GRMZM2G128809 | 576 | 884 GRMZM5G863229 711
GRMZM2G129019 | 593 | 456 GRMZM5G863420 | 860 | 430

GRMZM2G129031 890 762 | GRMZM5G864266 | 109 | 207

GRMZM2G129090 429 | 332 GRMZM5G865550 108 81
GRMZM2G129108 | 594 | 457 133 | GRMZM5G865943 | 922 | 771

GRMZM2G129154 | 595 | 458 107 | GRMZM5G866758 | 451 | 267

GRMZM2G129157 | 596 | 459 108 | GRMZM5G866843 | 461 | 310

GRMZM2G129234 | 750 | 694 GRMZM5G867642 639 | 392
GRMZM2G129247 | 749 | 693 GRMZM5G867768 | 223 | 259

GRMZM2G129288 | 748 | 692 GRMZM5G868296 392 162
GRMZM2G129304 757 | 545 GRMZM5G868423 479 | 623
GRMZM2G129344 | 747 | 691 GRMZM5G868757 | 130 95 168
GRMZM2G129361 927 | GRMZM5G869321 | 797

GRMZM2G129444 929 | GRMZM5G869572 751
GRMZM2G129543 867 | 515 GRMZM5G869587 893
GRMZM2G129585 324 | 262 GRMZM5G870572 396 | 273 | 524
GRMZM2G129713 642 | 447 GRMZM5G870932 961
GRMZM2G129815 489 | GRMZM5G871297 | 110 | 208

GRMZM2G129872 | 642 | 747 GRMZM5G871463 780 | 765
GRMZM2G129973 | 880 | 683 GRMZM5G871995 | 439 | 295

GRMZM2G130018 90 | 48 GRMZM5G872264 350 | 979
GRMZM2G130232 154 | GRMZM5G872568 844
GRMZM2G130305 743 | GRMZM5G873519 | 111 77 542
GRMZM2G130356 744 | GRMZM5G874112 235 | 113
GRMZM2G130375 745 | GRMZM5G876022 267
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GRMZM2G130586 | 329 | 266 GRMZM5G876434 314
GRMZM2G131155 721 | 974 GRMZM5G876450 265 95
GRMZM2G131177 720 | 973 GRMZM5G877110 | 782 | 906

GRMZM2G131202 719 | 972 GRMZM5G877316 | 836

GRMZM2G131309 | 152 | 104 608 | GRMZM5G877590 364 88
GRMZM2G131329 970 | 627 | 404 GRMZM5G877941 | 253 | 366

GRMZM2G131378 969 | 626 | 403 GRMZM5G878257 661
GRMZM2G131473 877 | 633 GRMZM5G878322 400
GRMZM2G131595 782 | 634 GRMZM5G878561 | 708 | 540 11 9| 116
GRMZM2G132144 | 507 | 488 40 | GRMZM5G878732 223
GRMZM2G132607 789 GRMZM5G878913 | 899 | 844

GRMZM2G132623 788 GRMZM5G878970 835
GRMZM2G132704 787 GRMZM5G879116 535 | 907
GRMZM2G132748 786 GRMZM5G879527 942
GRMZM2G132751 14 | 34 | 684 | GRMZM5G879872 765
GRMZM2G132857 671 | 444 GRMZM5G880508 349 | 978
GRMZM2G132880 985 GRMZM5G881088 | 778 | 832

GRMZM2G132898 | 428 | 322 GRMZM5G881779 | 852 218
GRMZM2G132958 869 GRMZM5G881961 617
GRMZM2G133050 686 | GRMZM5G883760 | 150 | 137

GRMZM2G133394 42 25 GRMZM5G885706 495
GRMZM2G133428 | 458 | 349 GRMZM5G886835 | 170 | 145

GRMZM2G133444 754 GRMZM5G886952 707 | 810
GRMZM2G133483 | 459 | 350 GRMZM5G887922 531
GRMZM2G133563 660 | 299 GRMZM5G889013 242
GRMZM2G133568 414 GRMZM5G889372 546
GRMZM2G133652 924 | GRMZM5G889418 281
GRMZM2G133718 860 GRMZM5G890473 252 | 398
GRMZM2G133806 446 GRMZM5G890820 455 | 326 | 633
GRMZM2G133941 850 | 503 GRMZM5G890938 613
GRMZM2G133969 | 952 GRMZM5G891098 498
GRMZM2G134049 152 | 295 GRMZM5G891196 | 942

GRMZM2G134402 752 GRMZM5G891247 799
GRMZM2G134563 38| 45 GRMZM5G891739 536 | 908
GRMZM2G134752 582 GRMZM5G892094 636
GRMZM2G135045 166 | GRMZM5G892991 5 7

GRMZM2G135300 967 | GRMZM5G893851 932 | 578
GRMZM2G135314 | 787 GRMZM5G893936 | 525 | 868 102
GRMZM2G135320 404 | GRMZM5G894031 434
GRMZM2G135354 | 786 GRMZM5G894109 | 370 | 497
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GRMZM2G135366 405 | GRMZM5G894916 764
GRMZM2G135378 910 GRMZM5G895150 | 956 440
GRMZM2G135387 | 839 GRMZM5G895573 293 | 713
GRMZM2G135396 | 840 GRMZM5G895899 | 962

GRMZM2G135410 | 841 GRMZM5G896252 421
GRMZM2G135530 396 | GRMZM5G896756 | 700 | 622

GRMZM2G135588 554 | 591 GRMZM5G896883 20 49 180
GRMZM2G135770 885 | 467 GRMZM5G896901 | 220 | 169

GRMZM2G136300 834 | GRMZM5G897825 616 | 259
GRMZM2G136395 810 GRMZM5G898259 648 | 453
GRMZM2G136443 808 GRMZM5G898740 464
GRMZM2G136765 | 868 | 769 GRMZM5G899123 310 | 599
GRMZM2G136769 | 394 | 422 GRMZM5G899428 | 204 | 240

GRMZM2G136998 990 GRMZM5G899506 | 435 | 486 346
GRMZM2G137151 | 391 | 562 GRMZM6G174411 676 | 871
GRMZM2G137293 273 | GRMZM6G178175 | 654 | 679 755
GRMZM2G137326 | 767 GRMZM6G445841 708 | 879
GRMZM2G137435 419 | 547 GRMZM6G508461 | 427 | 550

GRMZM2G137715 | 913 GRMZM6G577626 812

GRMZM2G138259 548 | 345 GRMZM6G617209 | 701 | 714

GRMZM2G138370 472 | 662 GRMZM6G685663 | 189 | 140 594
GRMZM2G138419 573 | GRMZM6G790713 | 898 | 843

GRMZM2G138710 8 6 782 | zma-MIR1432 855
GRMZM2G138809 397 | 425 zma-MIR156g 102 | 188 626
GRMZM2G138829 45 29 zma-MIR159d 886
GRMZM2G139324 583 | zma-MIR166¢ 433 | 241
GRMZM2G139391 | 745 | 768 379 | zma-MIR169d 246 | 290
GRMZM2G139431 929 | 530 zma-MIR169e 295 | 322 | 735
GRMZM2G139434 751 188 | zma-MIR169h 294 | 321 | 734
GRMZM2G139513 480 | 624 zma-MIR169i 44 61
GRMZM2G139517 49 | 44 zma-MIR172b 770
GRMZM2G139550 360 | 243 | 522 | zma-MIR2118c 505 | 352
GRMZM2G139574 | 137 | 218 520 | zma-MIR394b 296
GRMZM2G139670 926 | 626 zma-MIR399a 566 682
GRMZM2G139680 697 | 422 zma-MIR399g 567 683
GRMZM2G139878 486 | zma-MIR39%9h 646 | 450
GRMZM2G139973 880 | zma-MIR399i 647 | 451
GRMZM2G140016 3 15

Table S3. Complete list of non-redundant predictors using in machine learning

161




Label

Fst: Ames v. CNNAM

Fst: Ames v. EUNAM-Dent

Fst: Ames v. EUNAM-Flint

Fst: Ames v. USNAM

Fst: CNNAM v. EUNAM-Dent

Fst: CNNAM v. EUNAM-Flint

Fst: CNNAM v. USNAM

Fst: EUNAM-Dent v. EUNAM-Flint
Fst: EUNAM-Dent v. EUNAM-Flint
Fst: EUNAM-Dent v. USNAM

Fst: Temperate v. N. Flint

Fst: Tropical v. N. Flint

Fst: Tropical v. Temperate

Ames BRHM DTA bon-corr p-value
Ames BRHM DTA median h2
Ames BRHM DTS bon-corr p-value
Ames BRHM DTS median h2

Ames GWAS DTA add. p-value (-log10) - 5PCs
Ames GWAS DTA add. p-value (-log10) - No

covariates

Ames GWAS DTS add. p-value (-log10) - 5PCs
Ames GWAS DTS add. p-value (-log10) - No

covariates

Ames RHM DTA BH-corr p-value
Ames RHM DTA region h2

Ames RHM DTS BH-corr p-value
Ames RHM DTS region h2

Ames RMIP DTA Density

Ames RMIP DTA Prop Models

Ames RMIP DTS Density

Ames RMIP DTS Prop Models
CNNAM BRHM DTA bon-corr p-value
CNNAM BRHM DTA median h2
CNNAM BRHM DTS bon-corr p-value
CNNAM BRHM DTS median h2

CNNAM GWAS DTA add. p-value (-log10) - Family

term

CNNAM GWAS DTA add. p-value (-log10) - No

covariates

CNNAM GWAS DTS add. p-value (-log10) - Family

term

Class

Fst

Fst

Fst

Fst

Fst

Fst

Fst

Fst

Fst

Fst

Fst

Fst

Fst
Mapping
Mapping
Mapping
Mapping
Mapping

Mapping
Mapping

Mapping
Mapping
Mapping
Mapping
Mapping
Mapping
Mapping
Mapping
Mapping
Mapping
Mapping
Mapping
Mapping

Mapping
Mapping

Mapping

Subclass
popFst
popFst
popFst
popFst
popFst
popFst
popFst
popFst
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No covariates

EUNAM-Dent GWAS DTS add. p-value (-log10) -
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Table S4. Hapmap 3.21 taxa included in the North American Fst subsets.

N. Flint Temperate Tropical
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Table S5. GO term classification for top 1,000 gene models by BRHM

GO_acc Term Class -
5| £
Q1w
= 2| 2| =
AEAEIEIE
g2 23
G0:0009408 | response_to_heat AbioticResponse 0 9| 0| 0| 6
G0:0009267 | cellular_response_to_starvation AbioticResponse 0 6| 0| 6| 6
G0:0051716 | cellular_response_to_stimulus AbioticResponse | 21| 26|20 | 21 | 26
G0:0033554 | cellular_response_to_stress AbioticResponse 8| 16| 8| 11| 16
G0:0009628 | response_to_abiotic_stimulus AbioticResponse | 35| 30| 30| 33 | 48
G0:0046686 | response_to_cadmium_ion AbioticResponse 8 8113 (11| 11
G0:0009409 | response_to_cold AbioticResponse 9| 10| 6| 8| 12
G0:0010035 | response_to_inorganic_substance | AbioticResponse 10| 141512 | 13
G0:0009416 | response_to_light_stimulus AbioticResponse | 13 9| 914 | 19
G0:0010038 | response_to_metal_ion AbioticResponse 8| 12|14 |11 | 11
G0:0031667 | response_to_nutrient_levels AbioticResponse 6| 0| 6| 6
G0:0010033 | response_to_organic_substance AbioticResponse | 30| 22|27 | 25| 38
G0:0006970 | response_to_osmotic_stress AbioticResponse 13| 11| 9|15| 17
G0:0006979 | response_to_oxidative_stress AbioticResponse 10 7 6 7 9
G0:0009314 | response_to_radiation AbioticResponse | 14 9| 914 | 19
G0:0009651 | response_to_salt_stress AbioticResponse | 11| 11| 9| 13| 13
GO:0006950 | response_to_stress AbioticResponse | 49| 66 | 51 | 51 | 59
G0:0009266 | response_to_temperature_stimul | AbioticResponse 10| 18| 8| 10| 15
us
G0:0009415 | response_to_water AbioticResponse 8 8 6| 8 9
G0:0009414 | response_to_water_deprivation AbioticResponse 8 8 6| 8 9
G0:0009639 | response_to_red_or_far_red_light | AbioticResponse 5 0| 0| 0| 7
G0:0031669 | cellular_response_to_nutrient_lev | AbioticResponse 0 6| 0| 6| 6
els
G0:0009629 | response_to_gravity AbioticResponse 5 0| 0 0| O
G0:0042594 | response_to_starvation AbioticResponse 5 6| O 6 6
G0:0009606 | Tropism AbioticResponse 5 0| 0 0| O
G0:0016036 | cellular_response_to_phosphate_ | AbioticResponse 0 0| 0| 0| 5
starvation
G0:0071214 | cellular_response_to_abiotic_stim | AbioticResponse 0 0| 0| 0| 5
ulus
G0:0009411 | response_to_UV AbioticResponse 0 0| 0| O
G0:0009743 | response_to_carbohydrate_stimul | AbioticResponse 0 0| 0] O
us
G0:0010646 | regulation_of_cell_communicatio | BioticResponse 5 0| 5] 5| 0

n
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G0:0009966 | regulation_of signal transduction | BioticResponse 0 o 5({ 5, 0

G0:0023051 | regulation_of_signaling_process BioticResponse 0 o 5({ 5, 0

G0:0009733 | response_to_auxin_stimulus BioticResponse 8 o 7 9 0

G0:0048583 | regulation_of response_to_stimul | BioticResponse 0 O 5/ 0| 5
us

G0:0051704 | multi-organism_process BioticResponse 16 | 30|23 (28|21

G0:0048523 | negative_regulation_of cellular_p | BioticResponse 6 7110 0| 7
rocess

G0:0042742 | defense_response_to_bacterium BioticResponse 0| 16 6| O

G0:0050832 | defense_response_to_fungus BioticResponse 0 71 51 6| 0

G0:0009611 | response_to_wounding BioticResponse 0| 0] 13 0

G0:0070887 | cellular_response_to_chemical_sti | BioticResponse 15| 15|13 |12 | 15
mulus

G0:0071496 | cellular_response_to_external_sti | BioticResponse 0 8| 0| 7| 8
mulus

G0:0031668 | cellular_response_to_extracellular | BioticResponse 0 8| 0| 7| 8
_stimulus

G0:0071310 | cellular_response_to_organic_sub | BioticResponse 12 811 9| 10
stance

G0:0006952 | defense_response BioticResponse 8| 30|19 | 14| 13

G0:0009737 | response_to_abscisic_acid_stimul | BioticResponse 11| 12 (10| 10| 12
us

G0:0009617 | response_to_bacterium BioticResponse 5| 20| 6| 8 6

G0:0009607 | response_to_biotic_stimulus BioticResponse 12| 29 (19|18 | 21

G0:0042221 | response_to_chemical_stimulus BioticResponse 51| 43|53 |47 |62

G0:0009719 | response_to_endogenous_stimulu | BioticResponse 26| 19|24 | 22| 25
s

G0:0009605 | response_to_external_stimulus BioticResponse 16| 12|11 23| 18

G0:0009991 | response_to_extracellular_stimulu | BioticResponse 5 8| 0| 7| 8
s

G0:0009620 | response_to_fungus BioticResponse 6 9| 8 7 5

G0:0009725 | response_to_hormone_stimulus BioticResponse 23| 17| 23| 22| 22

G0:0051707 | response_to_other_organism BioticResponse 11| 28 (17|17 | 16

G0:0009753 | response_to_jasmonic_acid_stimu | BioticResponse 5 0| 0| O 6
lus

G0:0050896 | response_to_stimulus BioticResponse 85| 90| 87 | 83 | 98

G0:0071365 | cellular_response_to_auxin_stimu | BioticResponse 8 o o 5, 0
lus

G0:0071495 | cellular_response_to_endogenous | BioticResponse 12 7110 9| 6
_stimulus

G0:0032870 | cellular_response_to_hormone_st | BioticResponse 11 6|10 9| O
imulus

G0:0009755 | hormone- BioticResponse 11 6| 9 8 0

mediated_signaling_pathway
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G0:0002376 | immune_system_process BioticResponse 0 5 0| O 5
GO0:0006955 | immune_response BioticResponse 0 5 0| O 5
G0:0009624 | response_to_nematode BioticResponse 0 0| 0| O 5
G0:0009814 | defense_response, incompatible_ | BioticResponse 0 O o 0| 5
interaction
G0:0045087 | innate_immune_response BioticResponse 0| 0| O 5
G0:0009751 | response_to_salicylic_acid_stimul | BioticResponse o o o| 7
us
G0:0010150 | leaf _senescence Development 0 6| 0| 0| O
G0:0010260 | organ_senescence Development 0 6| 0| 0O O
G0:0010149 | Senescence Development 0 6| 0| 0O O
G0:0008219 | cell_death Development 5 6| 5| 0| O
G0:0016265 | Death Development 5 6| 5| 0| O
G0:0048869 | cellular_developmental_process Development 15| 11|12 |16 | 21
G0:0009793 | embryonic_development_ending_ | Development 7 of o 0| 9
in_seed_dormancy
G0:0048507 | meristem_development Development 5 o o 0| 8
G0:0009909 | regulation_of flower_developme | Development 0 5( 5| 0| 7
nt
G0:0010016 | shoot_morphogenesis Development 0 5/ 0
G0:0051093 | negative_regulation_of_developm | Development 0 5( 0| O
ental_process
G0:0010015 | root_morphogenesis Development 9| 0| O
G0:0060560 | developmental_growth_involved_ | Development o| 8| 8
in_morphogenesis
G0:0000902 | cell_morphogenesis Development 10 o 9| 9| 8
G0:0048366 | leaf development Development 0 O 5/ 0| 5
G0:0009790 | embryonic_development Development 8 71 7| 0|11
G0:0009887 | organ_morphogenesis Development 0 51 6| 0| 7
G0:0048580 | regulation_of post- Development 0| 10| 7| 0] 10
embryonic_development
G0:0016049 | cell growth Development 13 0 13 | 15
G0:0000904 | cell_morphogenesis_involved _in_ | Development 0 0 71 0
differentiation
G0:0009932 | cell_tip_growth Development 0 o 5( 8|, 0
G0:0048589 | developmental_growth Development 11 o 9| 9|12
G0:0009826 | unidimensional_cell_growth Development 8 o 8| 8| 7
G0:0032502 | developmental_process Development 40| 49| 44| 48 | 58
G0:0040007 | Growth Development 14 11| 14 | 17
G0:0007568 | Aging Development 0 0o 0| O
G0:0048646 | anatomical_structure_formation_i | Development 0 0| 0| O

nvolved_in_morphogenesis
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G0:0009886 | post-embryonic_morphogenesis Development 0 6| 0| O
G0:0048468 | cell_development Development 6 5 8| 8| 7
G0:0030154 | cell_differentiation Development 7 7110 |13 | 15
G0:0032989 | cellular_component_morphogene | Development 10 51 9(11| 9
sis
G0:0007275 | multicellular_organismal_develop | Development 37| 45|43 |43 | 51
ment
G0:0009791 | post-embryonic_development Development 23| 2922|1928
G0:0048569 | post- Development 5 5( 0 7| O
embryonic_organ_development
G0:0022622 | root_system_development Development 8| 11| O 11
G0:0048367 | shoot_development Development 8 6| 9| 5| 9
G0:0048731 | system_development Development 19| 23 (19|21 | 25
G0:0009888 | tissue_development Development 10 9 6| 16
G0:0048588 | developmental_cell_growth Development 0 0 8| O
G0:0048364 | root_development Development 8| 11 8|11
G0:0048856 | anatomical_structure_developme | Development 36| 37|34|37]| 43
nt
G0:0009653 | anatomical_structure_morphogen | Development 17| 16 |15 | 16| 23
esis
GO0:0007010 | cytoskeleton_organization Development 5 o of 0| O
G0:0048513 | organ_development Development 19| 23 (19|21 | 25
G0:0007389 | pattern_specification_process Development 5 0 0| O
G0:0048827 | phyllome_development Development 0 O 5/ 0| 6
G0:0071669 | plant- Development 6 o of 0| O
type_cell_wall_organization_or_bi
ogenesis
G0:0022621 | shoot_system_development Development 8 6| 9 5| 9
G0:0001708 | cell_fate_specification Development 0 0| 0| 0] 6
G0:0045165 | cell_fate_commitment Development 0 0| 0| 0] 6
G0:0048765 | root_hair_cell_differentiation Development 0 0| 0| 0| 5
G0:0048764 | trichoblast_maturation Development 0 0| 0| 0| 5
G0:0010054 | trichoblast_differentiation Development 0 0| 0| 0| 5
G0:0021700 | developmental_maturation Development 0 O o 0| 5
G0:0010053 | root_epidermal_cell_differentiatio | Development 0 O o 0| 5
n
G0:0009913 | epidermal_cell_differentiation Development 0 o o 0| 7
G0:0008544 | epidermis_development Development 0 o o 0| 7
G0:0007398 | ectoderm_development Development 0 o o 0| 7
G0:0009965 | leaf_morphogenesis Development 0 O o 0| 5
G0:0051301 | cell_division Housekeeping 7 o of 0| O
G0:0007049 | cell_cycle Housekeeping 7| 10| 5| 6| 7
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G0:0048469 | cell_maturation Housekeeping 0 O o 0| 5
G0:0042546 | cell_wall_biogenesis Housekeeping 0 o 5(1 0| O
G0:0071555 | cell_wall_organization Housekeeping 7 O o 0| 6
G0:0071554 | cell_wall_organization_or_biogen | Housekeeping 11 9| 6| 0| 8
esis
G0:0051726 | regulation_of cell _cycle Housekeeping 0 5( 0 0| O
G0:0009987 | cellular_process Housekeeping 25| 28|29 | 25| 29
9 2| 4 7] 1
G0:0051179 | localization Housekeeping 56| 56| 65| 50| 63
G0:0015031 | protein_transport Housekeeping 15| 12|16 | 13| 12
GO0:0006605 | protein_targeting Housekeeping 7 5 0 6 5
G0:0055114 | oxidation_reduction Housekeeping 34| 49|30 |41 | 42
G0:0015979 | photosynthesis Housekeeping 0 o 9 7
G0:0019684 | photosynthesis, light_reaction Housekeeping 0 ol O 0
G0:0009657 | plastid_organization Housekeeping 6 o 7 7
G0:0022607 | cellular_component_assembly Housekeeping 8| 11|12 | 16| 13
G0:0044085 | cellular_component_biogenesis Housekeeping 12| 18 |22 |17 | 17
G0:0016043 | cellular_component_organization | Housekeeping 36| 25|37 |41 | 35
G0:0065003 | macromolecular_complex_assemb | Housekeeping 5 7111 (14| 11
ly
G0:0043933 | macromolecular_complex_subunit | Housekeeping 5 9114 |15 | 11
_organization
G0:0006996 | organelle_organization Housekeeping 22| 13|18 | 21| 19
G0:0006461 | protein_complex_assembly Housekeeping 0 9|13 | 8
G0:0070271 | protein_complex_biogenesis Housekeeping 0 9|13 | 8
G0:0034613 | cellular_protein_localization Housekeeping 11| 10|12 (10| 7
G0:0015672 | monovalent_inorganic_cation_tra | Housekeeping 7 0| 5 0| O
nsport
G0:0006812 | cation_transport Housekeeping 9| 13|16 | 11| 15
G0:0051641 | cellular_localization Housekeeping 20| 1915|1711
G0:0070727 | cellular_macromolecule_localizati | Housekeeping 11| 12 (12|10 | 8
on
G0:0051234 | establishment_of_localization Housekeeping 56| 55|62 |50| 62
G0:0051649 | establishment_of_localization_in_ | Housekeeping 20| 17|13 |17 | 10
cell
G0:0046907 | intracellular_transport Housekeeping 17| 1513 (13| 9
G0:0006811 | ion_transport Housekeeping 12| 15|20 12| 17
G0:0033036 | macromolecule_localization Housekeeping 17| 15|20 | 16 | 16
G0:0030001 | metal_ion_transport Housekeeping o| 12| 9| 7|12
G0:0008104 | protein_localization Housekeeping 15| 12|18 |14 | 13
GO0:0055085 | transmembrane_transport Housekeeping 20| 20|24 | 12| 15
GO0:0006810 | transport Housekeeping 56| 55|62 | 50| 62
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G0:0016192 | vesicle-mediated_transport Housekeeping 9 7110 5

G0:0019725 | cellular_homeostasis Housekeeping 6 71 0| 6|14

G0:0048518 | positive_regulation_of biological | Housekeeping O 5| 8| 6
process

G0:0090066 | regulation_of anatomical_structu | Housekeeping 13 0| 9|14 15
re_size

G0:0008361 | regulation_of cell_size Housekeeping 13 0| 91|14 15

G0:0032535 | regulation_of cellular_component | Housekeeping 13 0| 9|14 15
_size

G0:0010556 | regulation_of _macromolecule_bio | Housekeeping 35| 46| 47 | 34 | 35
synthetic_process

G0:0061024 | membrane_organization Housekeeping 0 o o 5, 0

G0:0043085 | positive_regulation_of catalytic_a | Housekeeping 0 o o 6| O
ctivity

G0:0048522 | positive_regulation_of cellular_pr | Housekeeping 0 o o 6| O
ocess

G0:0044093 | positive_regulation_of molecular | Housekeeping 0 o o 6| O
_function

G0:0031326 | regulation_of cellular_biosyntheti | Housekeeping 35| 46| 48 | 36 | 35
C_process

G0:0045454 | cell_redox_homeostasis Housekeeping 6 5|11

G0:0042592 | homeostatic_process Housekeeping 9| 5| 9|15

G0:0048519 | negative_regulation_of_biological | Housekeeping 11 | 12 12
_process

G0:0050789 | regulation_of biological process Housekeeping 68| 86| 76 | 73 | 85

G0:0065008 | regulation_of _biological_quality Housekeeping 19| 17 |17 | 24| 33

G0:0009889 | regulation_of biosynthetic_proce | Housekeeping 35| 47|48 | 36 | 35
ss

GO0:0050790 | regulation_of catalytic_activity Housekeeping 6| 10| 7| 9| 8

G0:0031323 | regulation_of cellular_metabolic_ | Housekeeping 38| 50|49 |39 | 40
process

G0:0050794 | regulation_of cellular_process Housekeeping 66| 75| 70| 65| 75

G0:0010468 | regulation_of gene_expression Housekeeping 34| 49|49 | 32| 38

G0:0060255 | regulation_of _macromolecule_me | Housekeeping 35| 51|49 | 36| 38
tabolic_process

G0:0019222 | regulation_of metabolic_process | Housekeeping 38| 55| 514143

G0:0065009 | regulation_of molecular_function | Housekeeping 6| 10 9| 8

G0:0051239 | regulation_of multicellular_organ | Housekeeping 5| 10 6| 11
ismal_process

G0:0051171 | regulation_of nitrogen_compoun | Housekeeping 35| 44 | 45| 34| 35
d_metabolic_process

G0:0019219 | regulation_of nucleobase, nucleo | Housekeeping 35| 44 |44 |32 | 34

side, _nucleotide_and_nucleic_aci
d_metabolic_process

172




G0:0080090 | regulation_of primary_metabolic | Housekeeping 35| 48 |47 | 36| 36
_process
G0:0006200 | ATP_catabolic_process Housekeeping 0 ol O
G0:0046034 | ATP_metabolic_process Housekeeping 0 5( 0| O
G0:0044106 | cellular_amine_metabolic_process | Housekeeping 10| 15|10 | 16| 15
G0:0044257 | cellular_protein_catabolic_proces | Housekeeping 0 71 0| 6| 6
s
G0:0006778 | porphyrin_metabolic_process Housekeeping 0 5( 0 0| O
G0:0033013 | tetrapyrrole_metabolic_process Housekeeping 0 5( 0 0| O
G0:0006818 | hydrogen_transport Housekeeping 6 o of 0| O
G0:0034220 | ion_transmembrane_transport Housekeeping 5 0| 0| 0] O
G0:0015992 | proton_transport Housekeeping 6 0| 0| 0] O
G0:0022900 | electron_transport_chain Housekeeping 0 o o 0| 7
G0:0022402 | cell_cycle_process Housekeeping 0 71 0| 0| 6
G0:0006886 | intracellular_protein_transport Housekeeping 11| 10|11 (10| 7
G0:0009165 | nucleotide_biosynthetic_process MacroMolecules 5 o o 0| 7
G0:0044264 | cellular_polysaccharide_metabolic | MacroMolecules 6 0O(11| 6| 8
_process
G0:0019438 | aromatic_compound_biosynthetic | MacroMolecules 0 51 0| 9| 8
_process
G0:0006260 | DNA _replication MacroMolecules 0 5/ 0
G0:0043632 | modification- MacroMolecules 0 0| 0| 5
dependent_macromolecule_catab
olic_process
G0:0005996 | monosaccharide_metabolic_proce | MacroMolecules 5 71 0| 0| 6
ss
G0:0006457 | protein_folding MacroMolecules 7 0| 0| 5
G0:0051603 | proteolysis_involved_in_cellular_p | MacroMolecules 0 0| 6| 6
rotein_catabolic_process
G0:0009309 | amine_biosynthetic_process MacroMolecules 5 5 8|10
G0:0051188 | cofactor_biosynthetic_process MacroMolecules 0 0 o 7
G0:0065007 | biological_regulation MacroMolecules | 77 | 96 | 88 | 87 | 99
G0:0009058 | biosynthetic_process MacroMolecules | 98| 10| 11 | 95| 10
3] 1 7
G0:0005975 | carbohydrate_metabolic_process | MacroMolecules | 20 | 27 | 28 | 29 | 27
G0:0043170 | macromolecule_metabolic_proces | MacroMolecules | 15| 15| 17 | 15| 15
s 1 71 1] 3| 7
G0:0009056 | catabolic_process MacroMolecules | 17 | 37| 25| 21 | 18
G0:0044255 | cellular_lipid_metabolic_process MacroMolecules | 11 | 22| 14 | 14 | 18
G0:0006631 | fatty acid_metabolic_process MacroMolecules 7|1 10| 0| 6| 7
G0:0044275 | cellular_carbohydrate _catabolic_p | MacroMolecules 0 o 6 0| O
rocess
G0:0016052 | carbohydrate_catabolic_process MacroMolecules 0 6| 6| 0| O
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G0:0044249 | cellular_biosynthetic_process MacroMolecules | 94| 99| 10 | 90 | 10
8 3
G0:0044260 | cellular_macromolecule_metaboli | MacroMolecules | 13 | 13| 16 | 13 | 13
C_process 2 9| 4| 8 9
G0:0006259 | DNA_metabolic_process MacroMolecules 6| 12| 8| 910
G0:0009059 | macromolecule_biosynthetic_proc | MacroMolecules | 65| 72| 82 | 67 | 67
ess
G0:0043412 | macromolecule_modification MacroMolecules | 50 | 43 | 65| 51 | 54
G0:0034660 | ncRNA_metabolic_process MacroMolecules 0 5|/ 5| 5| 5
G0:0019538 | protein_metabolic_process MacroMolecules | 95| 86| 96 | 89 | 99
G0:0016070 | RNA_metabolic_process MacroMolecules | 43 | 58 | 58 | 51 | 49
G0:0034637 | cellular_carbohydrate_biosyntheti | MacroMolecules 8 o 7 7| 5
C_process
G0:0006073 | cellular_glucan_metabolic_proces | MacroMolecules 6 o 7| 5| 7
s
G0:0044042 | glucan_metabolic_process MacroMolecules 6 o 7| 5| 7
G0:0044237 | cellular_metabolic_process MacroMolecules | 18 | 21|23 | 19| 21
6 6| 0| 3| 5
G0:0051186 | cofactor_metabolic_process MacroMolecules 5 9| 7| 6|11
G0:0006793 | phosphorus_metabolic_process MacroMolecules | 52 | 42 | 60 | 42 | 49
G0:0006725 | cellular_aromatic_compound_met | MacroMolecules 6| 12| 0|10| 8
abolic_process
G0:0046483 | heterocycle_metabolic_process MacroMolecules | 13 | 23| 20| 10| 17
G0:0006091 | generation_of precursor_metabol | MacroMolecules 7 7111 9| 14
ites_and_energy
G0:0044036 | cell_wall_macromolecule_metabo | MacroMolecules 0 5( 0 0| O
lic_process
G0:0006006 | glucose_metabolic_process MacroMolecules 0 0| 0| O
G0:0043414 | macromolecule_methylation MacroMolecules 0 0| 6| O
G0:0016051 | carbohydrate_biosynthetic_proce | MacroMolecules 8 7| 8| 5
ss
G0:0044262 | cellular_carbohydrate_metabolic_ | MacroMolecules | 16 | 11 | 17 | 15| 20
process
G0:0000271 | polysaccharide_biosynthetic_proc | MacroMolecules 5 5( 7| 6| 0
ess
G0:0005976 | polysaccharide_metabolic_proces | MacroMolecules 8 6|11 | 7| 8
s
G0:0044271 | cellular_nitrogen_compound_bios | MacroMolecules 8 81012 | 13
ynthetic_process
G0:0044267 | cellular_protein_metabolic_proce | MacroMolecules | 78 | 69 | 90 | 76 | 83
ss
G0:0043687 | post- MacroMolecules | 44 | 38 | 57 | 44 | 45

translational_protein_modificatio
n
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G0:0006468 | protein_amino_acid_phosphorylat | MacroMolecules | 38 | 29 | 45| 34 | 34
ion

G0:0006464 | protein_modification_process MacroMolecules | 48 | 38 | 62 | 46 | 49

G0:0030163 | protein_catabolic_process MacroMolecules 0 8| 0| 7| 6

G0:0008152 | metabolic_process MacroMolecules | 24 | 29| 28 | 27 | 27

7 5| 3| 4| 4

G0:0006807 | nitrogen_compound_metabolic_p | MacroMolecules | 71| 10| 94 | 82 | 88
rocess 1

G0:0006576 | cellular_biogenic_amine_metaboli | MacroMolecules 0 0| 0| 5| 0
C_process

G0:0005984 | disaccharide_metabolic_process MacroMolecules 0 0| 0 0

G0:0009311 | oligosaccharide_metabolic_proces | MacroMolecules 0 ol O 0
s

G0:0006066 | alcohol_metabolic_process MacroMolecules 6 9 8| 9| 9

G0:0042180 | cellular_ketone_metabolic_proces | MacroMolecules | 21 | 28 | 18 | 24 | 30
s

G0:0034641 | cellular_nitrogen_compound_met | MacroMolecules | 15| 23| 17 | 21 | 23
abolic_process

G0:0046486 | glycerolipid_metabolic_process MacroMolecules 0 0 7

G0:0006650 | glycerophospholipid_metabolic_pr | MacroMolecules 0 0 6
ocess

G0:0006629 | lipid_metabolic_process MacroMolecules | 17 | 29| 20 | 19 | 23

G0:0006139 | nucleobase, nucleoside, nucleoti | MacroMolecules | 56 | 83 | 79 | 65 | 69
de_and_nucleic_acid_metabolic_p
rocess

G0:0006730 | one-carbon_metabolic_process MacroMolecules 6| 12 12| 6

G0:0006644 | phospholipid_metabolic_process MacroMolecules 0 5 8| 6

G0:0044283 | small_molecule_biosynthetic_pro | MacroMolecules | 15| 16 | 12 | 20 | 23
cess

G0:0044281 | small_molecule_metabolic_proces | MacroMolecules | 43 | 64 | 47 | 52 | 56
s

G0:0008652 | cellular_amino_acid_biosynthetic | MacroMolecules 5 5/ 0| 6| 8
_process

G0:0006575 | cellular_amino_acid_derivative_m | MacroMolecules 0 6| 0|12| 7
etabolic_process

G0:0046394 | carboxylic_acid_biosynthetic_proc | MacroMolecules | 10 | 11| 7| 12| 14
ess

G0:0006720 | isoprenoid_metabolic_process MacroMolecules 0 o 6 0| O

G0:0008610 | lipid_biosynthetic_process MacroMolecules 9| 14|13 | 8| 12

G0:0008654 | phospholipid_biosynthetic_proces | MacroMolecules 0 o 6 0| O
s

G0:0046777 | protein_amino_acid_autophospho | MacroMolecules 0 of 5(1 0| O
rylation

G0:0009207 | purine_ribonucleoside_triphospha | MacroMolecules 0| 10| 7| 0] O
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te_catabolic_process

G0:0009205 | purine_ribonucleoside_triphospha | MacroMolecules 6| 10| 9| 0| O
te_metabolic_process

G0:0019748 | secondary_metabolic_process MacroMolecules 5 71 5| 0| 8

G0:0009308 | amine_metabolic_process MacroMolecules | 13| 18 | 10 | 16 | 16

G0:0019752 | carboxylic_acid_metabolic_proces | MacroMolecules | 21 | 27 | 17 | 23 | 29
s

G0:0006520 | cellular_amino_acid_metabolic_pr | MacroMolecules | 10 | 14| 9| 11| 12
ocess

G0:0044248 | cellular_catabolic_process MacroMolecules | 16 | 34 | 25| 19 | 18

G0:0044265 | cellular_macromolecule_catabolic | MacroMolecules 7| 11|11|10| 9
_process

G0:0046700 | heterocycle_catabolic_process MacroMolecules 5|/ 13|10 0| O

G0:0009057 | macromolecule_catabolic_process | MacroMolecules 8| 14|11 |11| 9

G0:0032787 | monocarboxylic_acid_metabolic_ | MacroMolecules | 10 | 12| 5| 10| 14
process

G0:0055086 | nucleobase, nucleoside_and_nucl | MacroMolecules 9| 15|14 6| 9
eotide_metabolic_process

G0:0006753 | nucleoside_phosphate_metabolic | MacroMolecules 7| 14|12 5| 9
_process

G0:0009141 | nucleoside_triphosphate_metabol | MacroMolecules 6| 10| 9| 0| O
ic_process

G0:0009117 | nucleotide_metabolic_process MacroMolecules 7| 14|12 5| 9

G0:0016053 | organic_acid_biosynthetic_proces | MacroMolecules | 10 | 11| 7| 12| 14
s

G0:0006082 | organic_acid_metabolic_process MacroMolecules | 21| 27| 17 | 23 | 30

G0:0019637 | organophosphate_metabolic_proc | MacroMolecules 0 5( 7| 8| 6
ess

G0:0043436 | oxoacid_metabolic_process MacroMolecules | 21| 27| 17 | 23 | 29

G0:0006796 | phosphate_metabolic_process MacroMolecules | 52 | 42 | 60 | 42 | 49

G0:0016310 | phosphorylation MacroMolecules | 50 | 38 | 56 | 39 | 47

G0:0006163 | purine_nucleotide_metabolic_pro | MacroMolecules 6| 10|11| 0| 6
cess

G0:0009150 | purine_ribonucleotide_metabolic_ | MacroMolecules 6| 10|10| 0| 5
process

G0:0044282 | small_molecule_catabolic_process | MacroMolecules 5 9 ol O

G0:0022613 | ribonucleoprotein_complex_bioge | MacroMolecules 0 0 ol O
nesis

G0:0042254 | ribosome_biogenesis MacroMolecules 0 o 5({ 0| O

G0:0044238 | primary_metabolic_process MacroMolecules | 19 | 22|22 | 20| 21

2 71 4] 7| 2

G0:0006519 | cellular_amino_acid_and_derivati | MacroMolecules | 14 | 17 | 12 | 22 | 18
ve_metabolic_process

G0:0070882 | cellular_cell_wall_organization_or | MacroMolecules 5 o 5(1 0| 0
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_biogenesis

G0:0034622 | cellular_macromolecular_complex | MacroMolecules 0 5| 8(10| 8
_assembly

G0:0034621 | cellular_macromolecular_complex | MacroMolecules 0 7111 (11| 8
_subunit_organization

G0:0016044 | cellular_membrane_organization MacroMolecules ol O 0

G0:0033692 | cellular_polysaccharide_biosynthe | MacroMolecules o 7 0
tic_process

G0:0043623 | cellular_protein_complex_assemb | MacroMolecules 0 o 6| 9| 5
ly

G0:0045184 | establishment_of protein_localiza | MacroMolecules | 15| 12 | 16 | 13 | 12
tion

G0:0009250 | glucan_biosynthetic_process MacroMolecules o of 0| O

G0:0019318 | hexose_metabolic_process MacroMolecules 5 6| 0| 0| O

G0:0019941 | modification- MacroMolecules 0 0| 0| 5| 5
dependent_protein_catabolic_pro
cess

G0:0009143 | nucleoside_triphosphate_cataboli | MacroMolecules 0| 10| 7| 0] O
C_process

G0:0009166 | nucleotide_catabolic_process MacroMolecules 0| 10 ol O

G0:0009146 | purine_nucleoside_triphosphate_ | MacroMolecules 0| 10 ol O
catabolic_process

G0:0009144 | purine_nucleoside_triphosphate_ | MacroMolecules 6| 10| 9| 0| O
metabolic_process

G0:0006195 | purine_nucleotide_catabolic_proc | MacroMolecules 0| 10| 7| 0] O
ess

G0:0009154 | purine_ribonucleotide_catabolic_ | MacroMolecules 0| 10| 7| 0] O
process

G0:0009203 | ribonucleoside_triphosphate_cata | MacroMolecules 0| 10| 7| 0] O
bolic_process

G0:0009199 | ribonucleoside_triphosphate_met | MacroMolecules 6| 10| 9| 0| O
abolic_process

G0:0009261 | ribonucleotide_catabolic_process | MacroMolecules 0| 10| 7| 0] O

G0:0009259 | ribonucleotide_metabolic_process | MacroMolecules 6| 10|10| 0| 5

G0:0044272 | sulfur_compound_biosynthetic_pr | MacroMolecules o of 0| O
ocess

G0:0006790 | sulfur_metabolic_process MacroMolecules 6 o of 0| O

G0:0006511 | ubiquitin- MacroMolecules 0 O o 5| 5
dependent_protein_catabolic_pro
cess

G0:0006721 | terpenoid_metabolic_process MacroMolecules 0 of 5/ 0

G0:0043648 | dicarboxylic_acid_metabolic_proc | MacroMolecules 0 O o 0| 5
ess

G0:0006164 | purine_nucleotide_biosynthetic_p | MacroMolecules 0 O o 0| 5

rocess
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G0:0016567 | protein_ubiquitination MacroMolecules 0 O o 0| 6

G0:0032446 | protein_modification_by_small_pr | MacroMolecules 0 O o 0| 6
otein_conjugation

G0:0018130 | heterocycle_biosynthetic_process | MacroMolecules 0 O o 0| 6

G0:0070647 | protein_modification_by_small_pr | MacroMolecules 0 O o 0| 6
otein_conjugation_or_removal

G0:0006732 | coenzyme_metabolic_process MacroMolecules 0 o o 0| 7

G0:0006508 | proteolysis MacroMolecules | 20| 23| 10| 18 | 23

G0:0034645 | cellular_macromolecule_biosynth | MacroMolecules | 65| 72| 81 | 66 | 67
etic_process

G0:0006633 | fatty acid_biosynthetic_process MacroMolecules 0 6| O 5

G0:0042398 | cellular_amino_acid_derivative_bi | MacroMolecules 0 o o 7| 6
osynthetic_process

G0:0009451 | RNA_modification Regulation 0 0 5| 5

G0:0034470 | ncRNA_processing Regulation 0 0| 5 0| O

G0:0010467 | gene_expression Regulation 61| 79|78 |69 | 66

G0:0006396 | RNA_processing Regulation 111110 10

G0:0071103 | DNA_conformation_change Regulation 0 5| 0

G0:0006413 | translational_initiation Regulation o 5({ 0| O

GO0:0006350 | transcription Regulation 35| 44|48 | 35| 34

G0:0006325 | chromatin_organization Regulation 0

G0:0051276 | chromosome_organization Regulation 0

G0:0006412 | translation Regulation 19| 20|21 |23 22

G0:0032259 | methylation Regulation 6| 12| 7|11| 5

G0:0032501 | multicellular_organismal_process | Regulation 41| 45| 44 | 44 | 56

G0:0051252 | regulation_of RNA_metabolic_pr | Regulation 34| 42|44 |30 | 34
ocess

G0:0006355 | regulation_of transcription, DNA- | Regulation 34| 42|44 | 30| 33
dependent

G0:0032774 | RNA_biosynthetic_process Regulation 35| 44 |48 |36 | 34

G0:0006351 | transcription, DNA-dependent Regulation 35| 44|48 | 35| 34

G0:0050793 | regulation_of developmental_pro | Regulation 6| 12| 8| 6| 12
cess

G0:0045449 | regulation_of transcription Regulation 34| 42|44 | 30| 33

G0:0019953 | sexual_reproduction Reproduction 6 O o 0| 6

G0:0048608 | reproductive_structure_developm | Reproduction 18| 22|17 | 14| 22
ent

G0:0048316 | seed_development Reproduction 8 6 0|10

G0:0009856 | pollination Reproduction 6 0 10| O

G0:0003006 | reproductive_developmental_pro | Reproduction 20| 2321|2122
cess

G0:0048610 | reproductive_cellular_process Reproduction 0 of o 7| O
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G0:0010154 | fruit_development Reproduction 9 8| 6| 5|12
G0:0048229 | gametophyte_development Reproduction 6 9| 5| 6| 6
G0:0009555 | pollen_development Reproduction 6 8| 5| 5| 5
G0:0048438 | floral_whorl_development Reproduction 6 5( 5 7| 0
G0:0048868 | pollen_tube_development Reproduction 0 of of 9| 0
G0:0035295 | tube_development Reproduction 0 of of 9| O
G0:0000003 | reproduction Reproduction 31| 27|28 26| 33
G0:0022414 | reproductive_process Reproduction 27| 26|24 | 26| 29
G0:0048437 | floral_organ_development Reproduction 5 5( 0 7| O
G0:0009908 | flower_development Reproduction 9| 11| 9|10 10
G0:0048467 | gynoecium_development Reproduction 5 o of 0| O
G0:0009860 | pollen_tube_growth Reproduction 0 of o 7| O
G0:0010817 | regulation_of hormone_levels Signalling 0 O o 0| 5
G0:0007154 | cell_ communication Signalling 9| 11| 8| 12| 17
G0:0007165 | signal_transduction Signalling 24| 21|20|17 | 20
G0:0007264 | small_GTPase_mediated_signal_tr | Signalling 7 5( 8 7| O
ansduction
G0:0009734 | auxin_mediated_signaling_pathw | Signalling 8 0| 0| 5| 0
ay
G0:0023060 | signal_transmission Signalling 24| 21|21|17 | 24
G0:0023052 | signaling Signalling 30| 29|24 | 25| 38
G0:0007242 | intracellular_signaling_cascade Signalling 20| 16|19 | 13| 17
G0:0023033 | signaling_pathway Signalling 9 o o 8| 6
G0:0023046 | signaling_process Signalling 24| 21|21|17 | 24
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Table S6. Proportion of candidate genes in significant regions relative to random
random genes within significant regions. Significance based on Bonferroni corrected
significance for BRHM method, Benjamini-Hochberg for RHM, and for SNPs
selected in at least a certain number of models for the RMIP method. Random genes in
significant regions are the average of 100 samples. BRHM results duplicated from

Table 5.

DTA DTS
RMIP 3 2 1 3 2 1
Ames 1.953(5) 1.759(7) 1.497(14)|1.24(3) 0.75(3) 1.086(11)
CNNAM 1.404 (4) 1.931(9) 1.304(17) |2.214(6) 1.709(8) 1.239(17)
EUNAM-Dent[5.556 (4) 4.167 (5) 2.353(8) |2.02(2) 2(2) 2.141 (7)
EUNAM-Flint |0 (0) 0(0) 0.943(3) |0(0) 0(0) 0.356 (1)
NAM 1.339(3) 1.016(5) 0.84(10) |1.688(4) 0.899 (4) 1.227(14)
RHM 0.001 0.01 0.05 0.001 0.01 0.05
Ames 12 (3) 6.25 (3) 2.013(3) |2.548(8) 1.224(10) 1.364 (16)
CNNAM 0 (0) 5.882 (4) 2.844(6) |0(0) 1.235(1) 2.315(5)
EUNAM.Dent|0 (0) 0(0) 0(0) 0(0) 0(0) 0(0)
EUNAM.Flint |2 (2) 1.653(2) 1.117(2) |1.471(1) 1.19(1) 1.55(2)
NAM 3.704 (3) 2.5 (6) 1.621(16) | 1.432(6)  1.332(23) 1.166 (35)
BRHM 0.001 0.01 0.05 0.001 0.01 0.05
Ames 0.968 (6) 1.316(10) 1.22(11) [1.297(8) 1.282(9) 1.424(13)
CNNAM 1.579(6) 1.777(11) 1.31(11) |2.174(8) 2.609 (15) 1.724 (16)
EUNAM-Dent[1.019 (7) 1.046 (8) 1.012(12)|1.372(9) 1.171(10) 1.033(14)
EUNAM-Flint|1.156 (8) 0.937(8) 0.915(13) | 1.441(10) 1.202 (12) 0.904 (13)
NAM 1.146 (28) 1.095 (32) 1.044 (38) | 1.139(29) 1.16(36) 1.164 (42)

*Candidates in significant regions/Average over 100 samples of non-candidate genes
from the maize v3 gene models in significant regions (Number of candidates in
significant regions)
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Table S7. Significance for downsampled Bonferroni corrected BRHM regions
containing candidate gene midpoint

Locus Ames
CNNAM EUNAM-Dent EUNAM-Flint NAM

CONZz1 1/0.031 1/1 1/1 0.269/0.45 0.28/1

D8 1/1 1/1 0.278/1 0.474/1 0.952/0.366

D9 1/1 0.005/0.002 1/1 1/1 1/1

DLF1 1/1 0.494/0.007 1/1 0.034/0.073 0.014/0.009

FCA 1/1 1/1 1/1 0.144/1 0.019/1

GA2ox1 1/1 1/1 0.076/0.205 0.137/4.62E-05 | 0.113/0.035

GA2ox1 1/1 0.415/0.044 1/1.10E-04 0.335/0.481 0.07/1.00E-04

1/0.002

GA2ox1 1/1 0.228/1 1/1 0.059/1.02E-04

GIGZ1A 1/0.038 1/1 1/1 0.237/1 1/1

GIGZ1B 1/1 1/1 1/1 1/1 7.15E-05/0.023

GL15 1/1 0.823/1 0.423/1 1/1 1.10E-04/0.045

ID1 1/1 0.996/1 1/0.036 0.091/0.161 0.081/9.94E-04

KN1 1/1 1/1 4.32E-05/1 1/1 1.29E-04/7.15E-
05

LDL1 1/1 1/0.099 1/1 1/1 1.67E-04/6.39E-
04

LDL1 0.219/0.078 | 1/1 0.959/1 4.62E- 0.094/7.15E-05

05/9.85E-05
LDL1 1/1 1/0.069 0.403/1 0.482/1 0.05/0.132
LUX 6.36E-05/1 7.38E- 0.025/1 0.182/0.063 7.15E-05/0.503
05/1.46E-04
miR156 1/1 1/1 1/1 1/1 0.153/1.14E-04
miR172 1.06E- 0.892/1 0.632/1 0.247/0.368 0.62/1
04/0.293
MITE 1/6.36E-05 1/1.38E-04 1/1 1/0.464 1/7.15E-05
PhyA1l
1/1 1/1 0.026/1 1/1 8.37E-04/7.15E-

05
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PhyA2 1/1 0.39/0.001 0.126/1 1/1 1/1

PhyB1 1/1 1/1 0.21/0.965 1/1 7.15E-05/1.02E-
04

PhyB2 0.001/0.023 | 1/1 0.075/0.045 0.04/4.62E-05 7.15E-05/7.15E-
05

PhyC1 0.766/0.015 | 1/1 0.765/1 1/1 7.15E-05/7.15E-
05

PhyC2 1/1 1/1 9.08E-04/1 1/1 0.005/0.276

ZAP1 0.004/8.42E | 1/1 1/1 1.94E- 0.045/1

-04 04/4.62E-05

ZAP1b 1/1 1/1 1/2.74E-04 1/1 0.317/1

ZCN1 9.12E-05/1 1/1 1/1 1/1 1/1

ZCN10 0.086/6.36E | 1/1 1/1 1/1 0.163/0.116

-05

ZCN10 1/1 1/1 0.113/0.026 1/1 0.341/1

ZCN11 1/1 1/1 1/1 0.075/1 1/1

ZCN12 1/1 1/1 0.138/0.163 1/0.096 0.005/7.15E-05

ZCN13 1/1 1/1 0.288/1 1/1 0.089/0.034

ZCN14 1/1 1/1 1/0.107 1/1 1/1

ZCN15 1/1 1/1 0.322/0.466 1/1 0.416/1

0.144/0.065

ZCN16 1/1 1/1 1/1 0.199/1

ZCN17 1/1 1/1 1/1 1/1 1/1

ZCN18 1/1 1/1 1/0.059 0.345/1 1.81E-04/0.002

ZCN19 1/1 0.363/0.206 6.34E-05/0.006 | 5.50E- 0.058/7.15E-05

04/5.63E-04

ZCN2 1/1 1/1 1/1 1/0.075 0.118/0.06

ZCN20 1/1 1/1 1/1 1/1 1.36E-04/7.15E-
05

ZCN21 1/1 1/1 1/1 0.256/1 0.039/0.002

ZCN24 1/1 0.004/0.002 0.108/0.077 0.019/0.002 1/0.266

ZCN25 0.271/1 1/1 1/0.181 0.066/0.114 1.48E-04/7.15E-
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05

ZCN26 1/1 0.002/9.18E- | 0.571/0.829 1/1 0.037/1.53E-04
05
ZCN3 1/1 4.69E-04/1 0.301/1 1/1 0.301/0.811
ZCN4 1/1 1/1 1/1 1/1 1/1
ZCN5 1/0.307 1/0.005 2.10E- 0.993/1 0.004/0.244
04/4.32E-05
ZCN6 1/0.428 1/1 1/1 1/1 1.29E-04/1.05E-
04
ZCN7 1/1 1/0.06 1/1.27E-04 0.741/1 1.07E-04/9.53E-
05
ZCN8 6.36E- 0.003/4.92E- | 0.033/0.161 2.17E-04/0.259 | 7.15E-05/1.95E-
05/6.36E-05 | 05 04
ZCN9 1/1 1/1 1/1 1/1 1/1
ZFL1 1/1 1/1 1/1 1/0.3 0.061/0.005
ZFL2 1/1 1/5.46E-04 1/1 1/1 1.76E-04/9.06E-
05
ZmCCA1 1/1 1/1 1/0.487 0.131/0.672 9.15E-04/0.004
ZmCCT 0.021/6.36E | 7.71E- 1/1 4.62E- 1.33E-04/7.15E-
-05 05/0.003 05/4.62E-05 05
ZmFKF1la 1/1 1/1 1/1 1/1 0.272/1
ZmFKF1b 0.479/0.583 | 0.366/0.898 1/1 9.39E- 9.53E-05/0.184
05/2.02E-04
ZmHD6 1/1 1/1 0.091/6.79€-04 | 1/1 9.29E-05/1.36E-
04
ZmHD6 0.004/8.67E | 1/1 1/1 1.28E- 0.054/1
-04 04/4.62E-05
ZmHD6 1/1 0.125/0.139 0.002/0.129 1/1 1.17E-04/0.136
ZmHD6 1/1 1/1 1/1.23E-04 1/1 0.435/1
ZmHy2 1/1 4.92E- 1/1 1/0.077 1/5.70E-04
05/0.356
ZmLD 1/1 0.154/4.92E- | 4.32E-05/0.052 | 0.133/0.307 1/0.003
05
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ZmLHY1 1/1 0.373/0.084 1/1 1/0.117 0.73/1
ZmLHY2 1/1 1/1 1/1 1/0.877 0.419/1
ZMMA4 0.002/0.001 | 1/1 0.636/1 1/1 7.15E-05/0.042
ZMM5 1/1 0.002/0.005 1/1.34E-04 4.62E- 1.72E-04/0.013
05/8.47E-05
ZmPRR37 1/1 1/0.364 1/1 0.017/0.055 0.007/0.002
ZmPRR37.1 | 1/1 4.92E- 0.891/1 0.149/0.034 7.15E-05/7.15E-
05/2.59E-04 05
ZmPRR59 0.162/1 1/0.204 1/0.196 1/1 0.336/1
ZmPRR73 1/1 1/1 4.32E- 0.022/4.62E-05 | 7.15E-05/7.15E-
05/2.31E-04 05
ZmRAP2.7 6.36E- 7.05E- 0.041/1 0.164/0.641 7.15E-05/7.15E-
05/6.36E-05 | 05/2.79E-04 05
ZmTOC1.1 1/1 1/1 5.91E-05/0.021 | 0.418/1 1.02E-04/7.15E-
05
ZmTOC1.2 1/1 1/1 1/1 0.094/1 0.028/1
ZmTOC1.3 1/0.127 1/1 0.324/4.34E-04 | 1/1 1.38E-04/0.055
Z/mTOC1.4 1/1 1/1 1/1 1/1 0.077/1.24E-04
ZmTOC1.5 6.36E- 1/1 1/1 1/1 1/0.082
05/6.36E-05
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WHOLE GENOME PREDICTION OF FLOWERING TIME IN
ARCHAEOLOGICAL MAIZE INDICATES ANCESTRAL PUEBLOANS
ADAPTED MAIZE TO TEMPERATE NORTH AMERICA 2,000 YEARS AGO
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Abstract

Maize (Zea mays ssp. mays) appears across the southwest US by 4,000 years ago, and
people quickly established maize agriculture in the lowland deserts, but full adoption
was delayed in the temperate uplands for 1,500-2,000 years. Reduced days to
flowering characterizes modern temperate maize and we test the hypothesis that early
flowering was a requirement for full agricultural adoption in the uplands. Using
diverse modern germplasm to train whole-genome predictions and validated in related
modern landraces, we confidently predict that 2,000 year old maize from Turkey Pen
Shelter in southeast Utah was already adapted to the uplands. Our results suggest that
ancestral southwestern peoples selected for temperate adaptation in situ, primarily
from standing variation in the lowland S. Arizona deserts. That prehistoric adaptation
in maize relied on even older diversity highlights the importance of standing genetic

variation in light of today’s unprecedented climate change.

Summary of Results

Archaeological maize from Turkey Pen shelter was adapted to temperate

environments by 2,000 years ago
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Introduction

The temperate US maize landraces known as Northern Flint are one of two
maize germplasm pools that contributed to the development of the agronomically
dominant “Cornbelt Dent” of the US (1, 2), and were critical for adapting maize to
Europe (3, 4). Morphological similarity (5, 6) and early genetic evidence (7, 8)
support the origin of the Northern Flints in the southwestern US. The geography of the
Americas, constricted through much of the tropics before widening at the
environmentally diverse modern border between Mexico and the United States, also
points to the Southwest US as a logical context of selection for temperate adaptation in
North America by prehispanic agriculturalists. Maize in the Southwest US today is
tremendously important culturally to indigenous peoples (9), morphologically distinct
yet diverse (5), and early genetic evidence suggests complex demographic histories,
with waves of introduced germplasm (8).

The earliest evidence for maize in the archaeological record of the Southwest
dates to just before 4,000 BP (before present). This evidence comes from multiple
roughly contemporaneous sites situated in the lowland Sonoran desert floodplains of
southern Arizona (10-13) and also from upland sites (both open air seasonal camps
(14) and rockshelters (15) located in the temperate highlands of the Colorado Plateau,
approximately 200 miles from the southern locations. Recent genetic evidence
suggests that this early maize took an interior, rather than coastal, route to the
Southwest US (16). Despite widespread experimentation with maize agriculture in the

uplands (14, 15, 17-21), maize agriculture was not fully adopted as a primary
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subsistence system (inferred from changes in material culture and architectural
features and botanical, faunal and bone isotopic analysis) until sometime between
2,000-1,500 BP (22, 23). In contrast, people in the southern lowlands rapidly adopted
maize agriculture (11, 13, 24) and by 3,100 BP peoples in the southern deserts were
constructing large, labor intensive irrigation canals (12, 13) and terraced gardens (24)
that imply residential stability, social complexity sufficient to organize a workforce,
and a commitment to agricultural production.

The Tucson basin has, on average, 283 frost-free days whereas Blanding, Utah,
450 miles from Tucson and geographically and elevationally proximal to early
temperate sites with archaeological maize, has an average of 149 frost-free days, or
2605 average growing-degree days from an April 15" (25, 26). In contrast, planting in
the Tucson Basin on February 1* generates over 7000 growing-degree says of heat.
However, microsite variation is substantial across the Southwest and has been
exploited by indigenous farmers since antiquity (9, 27, 28). We suspect the delay in
full agricultural adoption in the uplands was due to lack of adaptation to temperate
environments in the earliest introduced germplasm and that agricultural adoption in
the uplands transitioned with the introduction of early-flowering, adapted varieties.

Turkey Pen Shelter is a dry-cave shelter in temperate Southeast Utah (near
Blanding) occupied at the cusp of agricultural adoption in the uplands (1,800-2,000
years ago) (29, 30). We test the hypothesis of insufficient adaptation in early maize by
predicting days to flowering in archaeological Turkey Pen maize from a diverse

modern inbred panel, validated in a landrace panel from the southwestern US, and
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situate the evolution of Turkey Pen maize in the larger temperate adaptation of maize

to the Americas.

Results

Preservation in Turkey Pen maize was excellent, and 14 of the 21 samples
tested contained greater than 80% endogenous maize DNA, with an average fragment
length of approximately 65bp. In-vitro molecular repair of post-mortem degradation
followed by whole genome sequencing the 14 high-endogenous samples to 5-20X
coverage allowed us to call SNPs on the 81 million maize SNPs discovered as part of
Hapmap3.21 with 10-50% missing data in 14 highly preserved samples.

To situate Turkey Pen in the Southwest US and the Americas, we GBS-
genotyped 1,316 individual teosintes and landraces, with a focus on the southwestern
US. We clustered these based on geographic location, altitude, and cultural affiliation
for subsequent analysis (Table S1). Multidimensional Scaling Analysis (MDS),
Admixture, and FST estimates strongly implicate affiliation between Turkey Pen with
the temperate Southwest (Puebloan) samples, with a greater measured contribution
from teosintes, either Z. mays ssp. parviglumis (Parviglumis), the wild ancestor of

maize, or Z. mays ssp. mexicana, a closely related upland teosinte. (Figures 1-3).
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0.4

PY ® Turkey Pen

® Gaspe Flint
Colorado River
Puebloan

° Athabaskan

’ Desert SW

Texas Low

North Mexican

C. Mexican Plateau

C. Mexican Lowland

S. American Lowland

Andean

Z. mays parviglumis

Z. mays mexicana

0.2

‘f"’

Coordinate 2 (11.1%)
0.0
|
?
Qe
1 %
}

I I I
-0.5 0.0 0.5

Coordinate 1 (54.7%)

Figure 1. Metric MDS of Turkey Pen and modern landraces and teosinte from 446,999
polymorphic sites shared by GBS and Hapmap 3.21. Groups are defined in Table S1.
Geographic/Cultural subsets. The first coordinate separates teosintes from
domesticated maize and the second separates domesticated maize geographically
across the Americas, with Andean South American maize at one extreme and Gaspe
Flint from Quebec, Canada at the other. Turkey Pen maize clusters together, and with
modern temperate adapted maize from the Southwest US on the second coordinate, the
first coordinate shows that Turkey Pen is pulled towards the modern teosintes, relative
to most modern samples with the exception of the Mexican highland samples that
contain extensive introgression from Z. mays ssp. mexicana.
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Ancesty for Taxawith Elevation
Landraces ordered by elevation within geographic region
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Figure 2. Admixture analysis organized by elevation within groups, K = 7 gave the
lowest cross-validated error rate (31). Gaspe Flint and Texas samples shown
separately for clarity. Turkey Pen is dominated by the dark blue component, similar to
the other Puebloan landraces where the dark blue component is dominant. This
component is also present as a minor component in North Mexican middle and low
elevation samples, but not at high elevation. It is also the dominant component of
Gaspe Flint, the Northern Flint landrace from Canada. What is most distinct about the
Turkey Pen models with respect to the rest of the landraces is the primarily yellow
component, which predominantly maps to Parviglumis, the progenitor teosinte. The
light blue component, which is minor in some Mexicana samples, which increases in
frequency in the Central Mexican highlands, and is dominant in the North Mexican
germplasm, is a minor component in much of the modern Puebloan germplasm, with
the exception of the Lower Colorado River, representing primarily fast-cycle sweet
corn, and is also less prevalent in the Turkey Pen samples.
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Figure 3. F; estimates of population differentiation. For the contrast with Mexicana,
the Parviglumis samples were excluded to highlight upland teosinte’s relatedness with
domesticated maize. Turkey Pen is mostly closely related to the Puebloan samples,
but, in contrast with modern Puebloan samples, most distant from Mexicana,
suggesting the the highland germplasm contributed less to Turkey Pen than to modern
Southwestern landraces.

Highland teosinte commonly introgresses into domesticated maize (32—34),
and chromosomal inversions have been implicated in highland adaptation and early
flowering (35). With respect to Z. mays ssp. mexicana (Mexicana), the modern
landrace Fg;s show a clear pattern where higher elevation populations show reduced
differentiation relative to lower elevation samples which is indicative of introgression.
(Figure 3) While this pattern holds for modern Puebloan samples, Turkey Pen shows a
lowland pattern of relatedness to Mexicana, suggesting that the introgression was not
common at Turkey Pen.

The greater contribution from Parviglumis to Turkey Pen but none of the

modern landraces cannot be explained by drift, because under drift alone you would

expect the least amount of drift near the center of origin, where population sizes have
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always been high, and the most in the periphery. Turkey Pen was at the front edge of

expansion, and under this model should show the most divergence from Parviglumis.

Modern Landraces v. Balsas Parviglumis
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Figure 4. Recombination rate by population differentiation for Balsas Parviglumis vs.
all modern landraces and Turkey Pen samples. Recombination rate is the corrected
estimates from Rodgers-Melnick et al (2015) (36), and Fg; is calculated on a per-site
basis in vcftools (Weir and Cockerham estimates), where negative values are set to
zero (37). SNPs contributed by Mexicana (high frequency in Mexicana and modern
maize, and low frequency in Parviglumis) excluded to control for differentiation
introgression from Mexicana between sample sets.
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Purifying selection is efficient in genic regions of maize (38), but large
pericentromeric regions of low recombination (36) limit recombination and Turkey
Pen samples would have less time to purge these alleles than all modern samples. We
compared Fg; between Balsas Parviglumis and both Turkey Pen and all modern
samples to recombination rates estimated from the maize NAM population (36), and
found a small but significant negative correlation for modern samples but not Turkey
Pen across all Parviglumis-derived SNPs, suggesting that Turkey Pen samples have
purged fewer deleterious SNPs than modern samples (Figure 4). However, both were
significant when SNPs private to domesticated maize were excluded, suggesting that
most of these mutations arose after domestication, likely during post-domestication
demographic expansion, and do not explain the increased relatedness of Turkey Pen

samples to Parviglumis.
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Figure 5. Proportion of shared major alleles with Parviglumis and Mexicana (to
control for differential Mexicana introgression) at domestication and improvement
loci, relative to matched SNPs iteratively drawn 1000 times with replacement from the
whole genome. The test statistic is the distance from the measured value in the
selected region to the mean of the sampled distribution, in standard deviations
estimated from the sampled distribution. Enrichment is calculated as the difference
between Turkey Pen and modern maize for the test statistic. Site frequency spectra
were polarized against Balsas Parviglumis.

Patterns in positive selection leading towards modern maize better explain the
increased affiliation between Turkey Pen and Parviglumis. We examined the relative

abundance of major alleles shared with teosinte at putative improvement and
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domestication regions from Hufford et al. (2012) (39) and found that modern maize
landraces were 2.12-fold enriched for derived SNPs in domestication regions and
3.76-fold enriched for improvement regions, and allele frequencies for improvement

loci are higher in modern landraces than in Turkey Pen (Figure 5).

Days to flowering is a complex additively inherited trait (40), and critical for
temperate adaptation (40-42). We generated days to flowering predictions for Turkey
Pen and a subset of the landraces representing 80 southwest landrace accessions,
phenotyped in nine replicate/environments (Figure S1). Broad-sense heritability for
days to silking (DTS) was 0.90 and 0.89 for days to anthesis (DTA) in the phenotyped
landrace panel. Predictions from RR-BLUP were generated from the inbred Ames
diversity panel (43), which was shown to have good cross predictive ability in
American germplasm (Figure S2). Ames predicts the landrace panel with a Pearson
correlation of 0.68 (prediction accuracy 0.72) for both DTS and DTA between
predicted and observed values (Figures 6, S3-4). The predictions for Turkey Pen from
Ames, which cannot be evaluated directly for accuracy but should have similar
prediction accuracy to the equally diverged and closely related modern landraces, fall
near the mean of the Puebloan germplasm, and are equivalent to modern temperate
lines, but not as early as the modern Northern Flint inbred lines. Turkey Pen and the
Puebloan samples flower within one day of each other and one week earlier than
average for southwestern desert samples (Figure S5). The only subgroup that flowers
earlier than Turkey Pen is fast-cycle sweet corn from the Lower Colorado River, and

the sample of Athabaskan germplasm included in the trial. The mean DTS for Turkey
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Pen is 73.6 days as predicted by Ames (103 days in Blanding); assuming 55 days to
physiological maturity (44), Turkey Pen maize would take 158 days from planting to
full dry-down. At 149 average frost-free days, Turkey Pen maize was marginally
adapted, and probably would have been harvested and dried off the plant to avoid

frost.
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Figure 6. Predicted flowering for Turkey Pen and phenotyped southwestern landraces
using the SNPs that overlap between Hapmap 3.21 and GBS. Predictions generated
from RR-BLUP in TASSEL (45) by masking test phenotypes, and Pearson correlation
between observed and masked test phenotypes (landraces only) generated using
cor.test() in R. Prediction accuracy in parentheses. Landraces split according to gross
group classifications in Table SX. Geographic/Cultural subsets. Turkey Pen flowers at
an equivalent time to the temperate NAM founders B97 and Oh43, but not as early as
the northern Flints, I114H and P39. 60-85 days in Ames phenotypes corresponds to
1,284-2,018 growing degree days, and 65-95 days corresponds to 1,320-2,099
growing degree days.
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The most selected alleles associated with temperate adaptation should be
tagged by the SNPs with the highest Fg;s between domesticated maize from the
Central Mexican Lowlands and Gaspe Flint, a northern Flint landrace from Quebec.
We used the top 1,000 of these high Fg; SNPs to understand relatedness between
populations, specifically at SNPs associated with temperate adaptation. High Fg;s at
these sites relative to random matched subsets from background SNPs imply different
haplotypes between these populations at temperate loci. (Figure 7) Turkey Pen does
not show elevated F;s against Sonoran desert lowland or the temperate southwestern
samples, Puebloan and Athabaskan, but it does against all of the Mexican samples,
and also the fast-cycle Lower Colorado River samples, suggesting an in sifu temperate

adaptation in the Southwest US.
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Figure 7. Fqrs between Turkey Pen and other populations at the top 1,000 Fg; SNPs
from the contrast between the Central Mexican Lowlands and Gaspe Flint. These
SNPs should carry the greatest signal for temperate adaptation. If Fg; at these SNPs
falls within the expectation from background SNPs, the population in question shares
alleles with Turkey Pen.

Fqs relative to Gaspe Flint show the degree to which the landrace populations
are differentiated from the modern Northern Flints (Figure 8). Genomic Fg; estimates
show a gradual increase in relatedness moving north from Mexico, with an increase in
relatedness in the modern southwestern populations. Turkey Pen does not show this

pattern, but is one of the most diverged samples, suggesting that Turkey Pen

germplasm was not on its own directly ancestral to Gaspe Flint. However, looking at
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the top differentiated SNPs for temperate adaptation, Turkey Pen is as equally
differentiated as the southwestern desert samples but less so than the modern Puebloan

samples.

Fsts relative to Gaspe Flint
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Figure 8. Weighted Fg.s relative to Gaspe Flint across all SNPs (circle fill) and at the
top 1,000 Fy; SNPs from the contrast between the Central American Lowlands and
Gaspe Flint (circle outline). None of the southwestern populations are very closely
related to Gaspe at the top temperate adaptation SNPs, but the modern Pueblos are the
closest. Turkey Pen and the southwestern desert samples are equally distantly related
at the top SNPs. At genomic SNPs, all modern southwestern samples are most closely
related to Gaspe, and Turkey Pen is one of the most differentiated.

To evaluate the age of high F; temperate variants, we also looked at the
proportion of the top temperate adaptation SNPs that segregate in teosinte and find
that 94% segregate in Balsas Parviglumis and 91% in the highland teosinte, Mexicana,

suggesting that temperate adaptation was selected from very old standing variation.

This result is reinforced by case studies at major flowering and photoperiod loci,

207



ZmCCT, ZCN8 and the Vgtl locus (including Rap2.7 and the upstream regulatory
MITE insertion) where early flowering variants are segregating in teosinte. (Figure S6,
Table S2). Additionally, the genome-wide estimate of nucleotide diversity in Turkey
Pen is 0.0044, is comparable to estimates of diverse modern landraces of 0.0049 (39),
and suggests a minimal population bottleneck, consistent with long-term in situ
adaptation.

Our evidence suggests that Turkey Pen was adapted with respect to flowering,
but we also wanted to investigate if Turkey Pen maize could have played a similar role
to modern southwestern maize with respect to culture and nutrition. Maize is
foundational to life for modern southwestern cultures, and it is critically important for
the proper performance of religious ritual to have the correct types of maize (9). It
would also have been important to maintain sufficient nutrients as maize increased in
the diet and, especially in the more temperate regions of the Southwest, in the winter
months when alternative foraged plant foods would have been more limited.

Flour-type maize is culturally important in the modern Southwest (9) and
sugaryl is a starch pathway locus that others have suggested may have driven the
introduction of novel Mexican germplasm evidence in modern samples but not Turkey
Pen into the Southwest US (8, 16, 46). We looked at this locus in Turkey Pen and
modern landraces and inbred lines for evidence of influence of this germplasm
introduction (Figure 9). The low-diversity, selected haplotype contains dent and flours,
which are good for tortilla, and includes the modern Puebloan flour variety from Santo
Domingo; however, Turkey Pen does not cluster with this pool and probably had flint

or pop-type endosperm. The floury haplotype is present as a heterozygote in one
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sample, so the presence of this haplotype, previously noted in contemporaneous

Southwest US samples (46), is confirmed at Turkey Pen, but at low frequency. We
also confirmed that Turkey Pen does not have either the North Mexican (N561S) or
the Southwestern (W578R) mutation that confers a sweet endosperm type (47), but

Turkey Pen haplotypes are basal to modern sweet corn.
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Figure 9. Neighbor-joining tree at the su/ locus for Turkey Pen, US NAM founders,
inbred landraces and teosintes in Hapmap 3.21 based on 227 SNPs(45, 48). Most of
the Turkey Pen samples fall outside of the selected haplotype, suggesting Turkey Pen
maize has a pop or flint endosperm type. One individual is heterozygous for the
selected haplotype, and other is heterozygous for a teosinte haplotype so the selected
haplotype was present at Turkey Pen, consistent with previous results for
contemporaneous sites(46), but in Turkey Pen it is segregating at very low frequency.
Turkey Pen samples are basal to modern sweet corn represented in the dataset.

Kernel color is very important for indigenous groups in the modern Southwest

US, as it is critical for the proper performance of religious rituals(9); while there are
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insufficient comparative samples in Hapmap3.21 to robustly evaluate flavonoids for
blue and red kernel color, we evaluated Turkey Pen haplotypes for the gene yellowl
(vl), YI codes for phytoene synthase and controls flux into the carotenoid pathway; a
recent gain of function mutation leads to the accumulation of carotenoids (49). Yellow
color is caused by the accumulation of carotenoids in the endosperm, which are also
vitamin A precursors critical for human development (50), making the evolution of
yellow corn an important adaptation for human nutrition. Turkey Pen is clearly
segregating for the conserved yellow-producing haplotype, suggesting that some of the
maize from Turkey Pen was yellow (Figure 10). Additionally, a subset of Turkey Pen
samples cluster directly basal to the selected yellow haplotype, suggesting that the

mutation for yellow kernel color may have originated in the Southwest US.
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Figure 10. Neighbor-joining tree(45, 48) at the y/ locus, including the upstream
region that contains previously implicated transposon insertions (49), for Turkey Pen,
US NAM founders, inbred landraces and teosintes in Hapmap 3.21 based on 216
SNPs. Four Turkey Pen samples fall within the selected yellow haplotype at the y/

locus.

Discussion
MDS, admixture, and population statistics confirm that Turkey Pen maize is

most closely related to modern Puebloan maize and at least partially ancestral to the

agronomically important Northern Flint germplasm, allowing for good whole genome
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prediction of flowering in modern southwestern landraces from, and high-confidence
prediction of Turkey Pen itself. This is true even though the maize in the southwest
has undergone additional selection and demographic shifts not observed in Turkey
Pen, as indicated by the lack of a highland Mexican component in Turkey Pen (based
on admixture components and FST with Mexicana). Advances in ancient genomics
and excellent preservation at Turkey Pen allowed us to predict previously unknowable
traits from archaeological samples, from both well-known biosynthetic pathways such
as carotenoids and starch but also complex traits such as days to flowering that are
critical for understanding adaptation. Widespread archaeological evidence for upland
maize in the temperate regions before the adoption of full agriculture suggests that
ancestral Puebloan people selected for temperate adapted maize for millennia before
assembling the proper combination of alleles. Analysis of SNPs important for
temperate adaptation supports the archaeological interpretation that temperate
adaptation was selected for in situ in the southwestern US, and, additionally, that
temperate adaptation was selected from standing variation present in teosinte. This
case study suggests that maize has an outstanding adaptive capacity, which will be

important going forward in the face of unprecedented climate change.

Methods
Turkey Pen extraction and sequencing

Isolation of DNA from archaeological specimens of maize was carried out in
clean laboratory facilities using stringent precautions typical for working with aDNA:

UV-treatment of reagents and equipment, employment of contamination prevention
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gear such as masks, full-body suits and laminar flow hoods. Samples were ground in
2.0 ml tubes with metal pestle.

DNA isolation followed the protocol from Yoshida et al (57), following a
similar protocol from Rohland et al (52). Each tube with ground tissue was filled with
1.2 ml of freshly prepared PTB lysis buffer (1% SDS, 10 mM Tris, 10 mM EDTA, 0.4
mg/ml Proteinase K, 5 mM NaCl, 2.5 mM PTB and 50 mM DTT), sealed with
parafilm and incubated at 37°C overnight in the vertical rotor (12 rpm). On the next
day the lysate was centrifuged (10 min, 14000 rpm), supernatant was mixed with 325
ul of DNEasy® Plant Mini kit P3 buffer in a fresh 2 ml tube and incubated on ice for 5
minutes. After another centrifugation step (5 min, 14000 rpm) the supernatant was
transferred to QIAshredder spin column. From that step isolation was carried out
according to the QIAgen DNEasy® Plant Mini kit protocol with following
modifications:

a) Due to large volume of DNA solution in column binding step, reservoir extension is
recommended. To that end, a sterile funnel has been forced onto DNeasy® Mini spin
column and placed into 50 ml Falcon tube. The whole volume of DNA isolate was
transferred onto the funnel and centrifuged for 10 minutes at 1300 rpm.

b) After washing the columns with AW?2 buffer we introduced 2 consecutive steps of
I-minute dry spin (14000 rpm).

¢) DNA was eluted from the columns in two steps of centrifugation (1 min, 14000
rpm) with 50 pl of AE buffer each.

Two independent genomic libraries were constructed from 20 pl of DNA

extract for each sample; 1) libraries without enzymatic removal of cytosine to thymine
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(C-to-T) substitutions typical of ancient DNA (aDNA) associated damage. These
libraries were used to present positive evidence of the authenticity of the reads derived
from archaeological specimens; i1) libraries treated with uracil glycosylase, which
remove the excess of C-to-T substitutions. These libraries are devoid of aDNA-
associated damage and were used for deep sequencing (53). Shotgun libraries were
constructed following published protocol (54) with modifications suggested in (55).
Libraries were amplified for 10 cycles with unique combination of two indexing
primers (56). The quality of libraries was tested in two consecutive RT-qPCR
reactions (prior to and after indexing amplification step) and in Bioanalyzer. Non-
UDG treated libraries were sequenced on Illumina MiSeq instrument. UDG-treated
libraries were modified by addition of USER™ enzyme at blunting step and
sequenced.

The 15 samples with >60% endogenous maize were selected for further
sequencing, where half of them were sequenced three times in Tuebingen on an
Illumina HiSeq 3000 platfor, and the remainder were sequenced at Cornell, once on an
Illumina HiSeq 3000, and once on an Illumina NextSeq platform. SNPs were called

from the resulting reads against 81 million variants discovered as part of Hapmap 3.21

57).

Modern landrace and teosinte accessions and sequencing

All modern landraces and teosintes were genotyped using GBS at the Genomic
Diversity Facility at Cornell University (58). Ninety-five landraces from across the

Americas were chosen in the laboratory of Dr. Jeffery Ross-Ibarra (UC-Davis), and
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were previously published in Takuno et al (59). The modern teosintes were
contributed by Dr. Jesus Sanchez, and were collected from wild populations. The
Northern Flints were contributed by Dr. Jason Wallace, and were genotyped as part of
the mini-maize project (60). Ninety-five of the landraces from the Southwest US
derive from publically available USDA accessions. The remaining 391 landraces from
the Southwest US and North Mexico were part of the maize core collection held by
Native Seeds/SEARCH in Tucson, Arizona, chosen to represent the diversity of the
accessions. 446,999 GBS sites that overlap with Hapmap 3.21 positions and
major/minor allele (to merge the GBS and Turkey Pen datasets) were used for

population genetic analysis and genomic prediction.

MDS

MDS generated using cmdscale() in R from an IBS distance matrix calculated
in TASSEL (45) where Hapmap 3.21 matches the major and minor allele with GBS
2.7. Before distance calculations, all heterozygotes were set to either homozygote with
a probability of 0.5 to control for uneven taxon coverage. Sites are additionally filtered
for a minimum of 10 called genotypes for each site. Taxa are filtered so that only one
individual per named accession remains and filtered for 0.2 minimum site coverage

after site filtering, resulting in 838 taxa.

Admixture
Ancestry estimates were generated from 2.7 GBS SNPs that overlap positionally

with Hapmap 3.1 using the software package Admixture 1.23 (37). Admixture
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generates similar results to the commonly used software STRUCTURE, but is faster

due the use of log-likelihood estimation for ancestry estimation, and additionally

provides cross-validated error estimates for each K-populations tested. The dataset

begins with all Mexicana and Parviglumis, modern landrace and Turkey Pen

genotypes (1,008 taxa); other teosinte genotypes are not included because they fall

outside of the coalescent. Before running admixture:

1.

2.

Third allele states were removed due to constraints of the admixture software.
Only the highest coverage individual from each accession was retained. If
possible (in all but two cases), this individual was representative in that 60% of
the accession is represented in closest individuals, when ranked by genetic

distance.

. Sites are filtered for Hardy-Weinburg equilibrium using a chi-squared test for

equality at alpha = .05, based only on modern landrace genotypes with a read
depth of 9-300 to mitigate heterozygote-undercalling.

Monomorphic sites and those with a site coverage of 0.5 are removed.

. Taxa are filtered for taxon coverage of 0.3 (resulting in 1,000 taxa) and the

lower coverage individual is removed for any pair of individuals with a genetic

distance less than 0.15.

These filters result in 533 taxa and 14,885 sites. K = 7 was used because it had the

lowest cross-validated error rate.
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Landrace Hybrid design and phenotyping

Landrace hybrids were generated at the Native Seeds/SEARCH farm in
Patagonia, AZ in the summer of 2013 by crossing as many individuals as possible
from 108 landrace accessions onto the inbred line PHZS51, chosen for good agronomic
performance and disease resistance. PHZ51 plantings were staggered once a week for
a month to encourage nicking, and the earliest estimated landrace accessions were
planted in the second planting. These are the same individuals that were genotyped for
population genetic analysis.

In the summer of 2015, the progeny from 111 hybrid individuals representing
80 accessions and 10 PhZ51xB73 checks were grown in an 11x11 alpha lattice
incomplete block design (using agricolae() in R), replicated three times each in three
separate locations, Aurora, NY, Clayton, NC, and Native Seeds/SEARCH research
farm in Patagonia, AZ for a total of nine replicates. Because the landrace parent is
heterozygous, the hybrid progeny are segregating for the landrace parent individual’s
genotype. Thus, we phenotyped days to anthesis and days to flowering on a modified
individual rather than a plot basis. Each day, from the day the first individual in a plot
flowered to the last day, the number of plants flowering was recorded, giving a plot-
level variance for anthesis and silking respectively, but not for anthesis-silking
interval. Field-corrected phenotypes were calculated using the Imer() package in R,
according to the model;

Days to flowering ~ 1 + (1 | Genotype) + (1 | Location) + (1 |

Genotype:Location) + (1 | Rep:Location) + (1 | Block:(Rep:Location))
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Broad-sense heritability was calculated as H = 62¢/( 06+ 0% /e+ 0% /re).
Prediction accuracies for the landrace hybrid panel was calculated as the Pearson
correlation, conservatively, and the Pearson correlation divided by the square-

root of the broad-sense heritability

Cross-population prediction for days to flowering

Cross population prediction were performed to better understand how
populations were related to each other with respect to shared genetic architecture for
days to flowering. Cross population prediction was performed using RR-BLUP as
implemented in TASSEL (45). The training and test populations were combined in a
single kinship (similarity) matrix, calculated using Centered-IBS (after Van Raden
(61), Endelman and Jannink (62)), and phenotypes for the test population masked so
that the model was trained solely from the training population phenotypes. Predictions
from the resulting model for the test phenotypes were then correlated with the true
phenotypes (the “prediction accuracy”) in R using the Pearson method in cor.test()
(stats).

Conversion of predicted days to flowering in Ames to days to flowering in
Blanding, Utah was made based on conversion through the Growing Degree Days
(GDD) for the Ames population (43). For conversion of GDDs to days to anthesis in
Blanding, we assume a planting date of April 15" (63), and found the “normal”
number of days to achieve the Ames GDD using

https://www .pioneer.com/home/site/ca/agronomy/tools/gdu/
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FSTs
Weighted FSTs were generated in vcftools from 464,432 consensus sites

between Hapmap 3.21 and GBS, with a minimum per-site taxa count of 50.

Neighbor-joining trees

Neighbor-joining trees generated on Hapmap 3.21 SNPs in Turkey Pen, US
NAM founders, inbred landraces and teosintes for SNPs within the canonical coding
sequence. SNPs filtered for polymorphic sites, taxa filtered for minimum 0.3 taxon
coverage. Heterozygous genotypes randomly set to either homozygote at probability
0.5 before generation of IBS distance matrix and neighbor-joining tree in TASSEL

(45) to account for differential coverage.

Nucleotide diversity calculation

Per-site nucleotide diversity (pi) was calculated from the Hapmap 3.21 SNPs
in vcftools (37), and total number of variant and invariant sites were called from the
merged and sorted bam files in samtools. The 0.0044 figure reported is the sum of per-

site nucleotide diversity divided by the total number of invariant and variant sites.
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Predictions generated from RR-BLUP in TASSEL (45) by masking test phenotypes,
and Pearson correlation between observed and masked test phenotypes generated
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Figure S5. Average days to flowering for landrace hybrid parent lines as predicted by
Ames and translated to Blanding, Utah though growing-degree days. Assumes first
planting on April 15",

Predicted | Predicted | Predicted | Predicted | DTA DTS

DTA Ames | DTS Ames | GDD_DTA | GDD_DTS | Blanding | Blanding
Lower Colorado
River 65 70 1421 1558 91 98
Athabaskan 65.9 70.7 1447 1583 93 99
Puebloan 69.3 74.7 1542 1704 97 105
Turkey Pen 68.2 73.6 1496 1670 95 103
Mean Landraces 73.1 78.8 1649 1815 101 109
Desert SW 73.4 78.9 1663 1874 103 111
North Mexican 75.2 80.9 1700 1882 105 112
Texas 76.3 82.4 1754 1940 106 114
C. Mexican
lowland 80.9 87.8 1882 2067 112 120

Days to Anthesis

ZmCCT ZCN8 7 Rap2.7
Figure S6. Neighbor-joining trees (45, 48) for cloned flowering loci; ZCNS (64),
ZmCCT (65), and Rap2.7 of the Vgtl locus (66). Teosinte does not form a
monophyletic clade in any of these loci, suggesting that selection at these loci
primarily acts on standing variation.

Table S1. Geographic/Cultural subsets

Turkey_Pen Southeast Utah, Colorado Plateau (RGM/MB)

Gaspe_Flint Northeastern landrace form Quebec, Canada (JW)

Lower_CO_River Mostly sweet corn from the western colorado river (NSS)
Athabaskan Navajo and Apache germplasm from all environments (NSS)
E_SW_US_High Tiwa, Tewa, Towa or Keresan cultural affiliation above 2,000m (NSS)
E_ SW_US_ Mid Tiwa, Tewa, Towa or Keresan cultural affiliation below 2,000m (NSS)
W_SW_US_Mid Hopi and Zuni cultural affiliation (NSS)

Desert_ SW_Low O'odham culture, South Arizona deserts (NSS)

N_Mex_Unk Elevation unknown, Northern Mexican origin (NSS/JRI)
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N_Mex_High

N_Mex_Mid
N_Mex_Low
Texas_Low
C_Mex_High
C_Mex_Low
SA_High
SA_Low
Mexicana
Parviglumis

Table S2. Presence of MITE insertion in Hapmap 3.21 samples tested and Turkey Pen.

Northern Mexico, above 2,000m (Sierra Madres) (NSS/JRI)
Northern Mexico, 1,000-2,000m (Elevation comparable to southern
Arizona) (NSS/JRI)
Northern Mexico, below 1,000m (coastal) (NSS/JRI)
Sub-tropical Texas (NSS)
Below 1500m, below 23N (used in Takuno et al) (JRI)
Above 1500m, below 23N (used in Takuno et al) (JRI/NSS)
Andean material (used in Takuno et al) (JRI)

Lowland South American (used in Takuno et al) (JRI)
Upland teosinte. Multiple collection areas (JGS)
Progenitor teosinte. Multiple collections (JGS)

We BLASTed(67) the tightly conserved sequence surrounding the MITE insertion at
the Vgtl locus(66, 68), which confers early flowering and is not present in the
reference sequence B73. We found that it is segregating in Turkey Pen (71% of tested
individuals) and teosinte (18%), and common in inbred landraces from Northern

Mexico northward (47% overall, and 71% Northern Mexico northward). It is also
present in South America, but Cristalino Norteno from South America is considered to
derive from a North American Flint(69)) .

Insertion

Nolnsertion

NoReads

BKNO014(Assiniboine)
BKNO016(Longfellow Flint)
BKN022(Reventador)
BKNO026(Pisankalla)
BKNO027(Cristalino Norteno)
BKNO30(Zapalote Chico)
BKNO33(Chapalote)
BKNO035(Tabloncillo)
114H

JK1692

JK1695

JK1704

JK1706

Mo1l7

Ms71

P39
RIMMAOQ438.1(Maranon)
TILO6-260(Parviglumis)
TILO6-496(Parviglumis)
BKNO017(Santa Domingo)
TIL10(Parviglumis)

BKNOO9(Chullpi)
BKNO010(Poropo)
BKNO11(Pollo)
BKNO15(Havasupai)
BKN018(Shoe Peg)
BKN020(Cuban Flint)
BKNO23(Araguito)
BKNO025(Tuxpeno)
BKN031(Comiteco)
BKNO034(Costeno)
Hp301

JK1703

JK1703

JK1705

TILO1

TILO3

TILOS

TILO7

TILO8

TILO9

TIL11

BKN019(Cateto)
BKN029(Bolita)
BKNO032(Cravo Riogranense)
BKNO40(Hickory King)
JK1690

TDD39103

TILO2

TILO4-TIP454

TIL15
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TIL12
TIL14
TIL16
TIL17
TIL25
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APPENDIX A

FAILED EXPERIMENTS

Long-range PCR for detailed modern comparative haplotypes in diverse modern

landraces

A project to which I devoted considerable time, but which did not produce
usable results, was in generating de novo haplotypes for carotenoid, tocochromanol,
flavonoid, and major, known flowering time and starch loci. I started this project
because these traits are important in the Southwest for the regions stated above, and
because Buckler Laboratory whole genome sequenced inbred lines contained no blue-
kerneled lines and few red kernels. These haplotypes could be compared with Turkey
Pen to predict kernel color and other traits in a diverse panel, enriched for
Southwestern samples.

Significant structural variation in maize (/) makes it challenging to find
conserved regions for which to design primers. To increase the chance of placing
primers in conserved regions, I designed a java plugin to integrate the Primer3
program with custom blasts to four de novo genomes available at the time. The plugin
pulled the gene region in question, with additional flanking sequence, and queried
Primer3 for primer targets. Following this, these targets were checked for conservation
with the de novo genomes using the BLAST algorithm, and finally a list of the best
targets was output for primer ordering.

I used the Q5 (NEB) system, which can amplify regions up to 10kb, and I was
by chance successful for the first few regions that I attempted to amplify 56 gene
regions in a test set of 8 diverse temperate and tropical inbreds, and two Southwestern
landraces. Table 1 shows the reaction conditions, Table 2 the thermocycler conditions,

and Table 3 the gene regions tested and the outcomes. Only about a third of the gene
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regions successfully amplified in all of the test set, about a third never amplified, and

the rest would amplify in some test individuals but not others.

Table 1. Reaction conditions

Q5 (no GC)
1 33 rxn 50 rxn 66 rxn 100 rxn
rxn 8.2 rxn (4x8) (6x8) (8x8) (12x8)
QS5 buffer 2 16.4 66 100 132 200
10mM dNTP 0.2 1.64 6.6 10 13.2 20
10mM primersFR 1 8.2 variable variable variable variable
10ng/ul DNA 1 variable variable variable variable variable
QS5 polymerase 0.1 0.82 3.3 5 6.6 10
H20 to 10ul 5.7 46.74 188.1 285 376.2 570
65.6ul master mix to each primer specific master tube
1ul DNA in each rxn
Table 2. Thermocycler conditions
Table 3. Gene regions and success rate for amplicon sequencing
Gene Name Chr v3Start v3End Pathway Success
GRMZM2G179147  ABA8HO 5 200705194 200707991 Carotenoid yes
GRMZM2G493395 dxs2 7 14086686 14089909 Carotenoid yes
GRMZM5G837869 lut5 5 215877677 215882183 Carotenoid yes
GRMZM2G410515 pds 1 17660122 17666235 Carotenoid yes
GRMZM2G300348 y1 6 82180486 82184217 Carotenoid yes
GRMZM2G164318  bohase2 2 15877183 15879464 Carotenoid no
GRMZM2G150363 CCD4 5 200743141 200745544 Carotenoid no
GRMZM2G152135 crtRB1 10 136081567 136084686 Carotenoid no
GRMZM2G173641 dxs3 9 20471360 20476373 Carotenoid no
GRMZM2G137409 HDS 5 182174564 182181190 Carotenoid no
GRMZM2G012966 lIcyE 8 138416903 138424121 Carotenoid no
GRMZM2G143202 Lutl 1 86848122 86858514 Carotenoid no
GRMZM5G849107 lycB 5 100737438 100739288 Carotenoid no
GRMZM2G014392 vpl4 1 250953388 250956063 Carotenoid no
GRMZM2G057243 wcl 9 152353213 152359196 Carotenoid no
GRMZM2G454952 zds1 7 17481578 17490013 Carotenoid no
GRMZM2G127139 zepl 2 45068944 45077882 Carotenoid no
GRMZM2G026930 al 3 216386230 216387972 flavenoid yes
GRMZM2G345717 a2 5 66136522 66139360 flavenoid yes
GRMZM2G172795 b1 2 19041697 19046154 flavenoid yes
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RMZM2G016241

GRMZM2G422750
GRMZM2G058292
GRMZM2G701063
GRMZM2G031859
GRMZM2G165390
GRMZM2G005066
GRMZM2G155329
GRMZM2G042733
GRMZM2G084799
GRMZM2G025832
GRMZM5G822829
GRMZM2G144744
GRMZM2G067921
GRMZM2G179264

GRMZM2G129889
GRMZM2G160730
GRMZM2G011357

GRMZM2G381691
GRMZM2G171365

GRMZM2G057935

GRMZM2G700665
GRMZM2G089713
GRMZM2G032628
GRMZM2G068506
GRMZM2G429899
GRMZM2G138060
GRMZM2G024993
GRMZM2G173358
GRMZM2G112728
GRMZM2G082998
GRMZM2G377115
GRMZM2G088396
GRMZM2G084942
GRMZM2G035213

bz2
c2
pacl
pll
BCHO1
bz1
cl
chil
inl
pl
prl
rl
ds
DLF1

ZCN8
ZmPHYC
2

GL15
ID1
MITE
ZmCCT

ZMM5
ZmPHYC
1
ZmRap?2.
7

shl

ael

bt2

sh2

sul
waxy1
HGGT
sps2
VTE3
ABC1K1
HPPD
PrepdHO
vte4

Ul = =R O O =R O Ul B =

[uny
Ul 3N kL O

R V=L O Ul

[uny
O O

[uny

g U1 U1 D R RO O R W U1 O

241430827
192758391
196661199
108491299
6347072
11779648
9746518
293118119
19360149
48118788
180084037
138489998
266160101
175583965
123538197

7129937
96744684
239667869
131517973
94261581
154082657

277059620

131576889
11500945
168492139
58979526
216495981
41396390
23267684
93489726
11107901
174010201
12946774
83895923
59318968
200419844

234

241431829
192761788
196666224
108492380
6348308
11781406
9747591
293119647
19366043
48129338
180086107
138498818
266163168
175585451
123539985

7134953
96748027
239671192
131520473
94264581
154102449

277064623

131580316
11506749
168509225
58985265
216505345
41405179
23271612
93493445
11112061
174012244
12961838
83898077
59326934
200423666

flavenoid
flavenoid
flavenoid
flavenoid
flavenoid
flavenoid
flavenoid
flavenoid
flavenoid
flavenoid
flavenoid
flavenoid
FT

FT

FT

FT
FT
FT
FT
FT
FT

FT

FT
starch
starch
starch
starch
starch
starch
Toco
Toco
Toco
Toco
Toco
Toco

Toco

yes
yes
yes
yes
no
no
no
no
no
no
no
no
yes
yes

yes

yes
no
no
no
no

no

no

no
yes
no
no
no
no
no
yes
yes
no
no
no
no

no
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