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Exciting and unexpected patterns can emerge when systems are highly connected,

even when they are composed of the simplest objects. In this thesis we investigate how

networks of people, oscillators, apps, and nodes can be better understood through the

behavior of the communities that emerge from their close interactions. Work in this the-

sis first examines how recent advances in dynamical systems have shed new light on the

macrobehavior of networks of coupled oscillators. The dimensionality of the system is

greatly reduced by viewing the system not as one of individual coupled oscillators, but

as one of a smaller number of interacting groups. We demonstrate that the correspond-

ing governing equations can be solved exactly. This thesis then investigates the seed

set expansion problem, or how to uncover the local community structure hidden around

nodes, in social and other real-world networks. We explore how topological properties

of communities and seed sets correlate with algorithm performance, and explain these

empirical observations with theoretical ones. We then turn our focus back to a theo-

retical setting and develop a principled framework for evaluating ranking methods by

studying seed set expansion applied to the stochastic block model. We derive the op-

timal gradient for separating the two classes of nodes in a stochastic block model, and

find, surprisingly, that it is asymptotically equivalent to personalized PageRank. This

connection provides a novel formal motivation for the success of personalized PageR-

ank in seed set expansion and node ranking generally. We then leverage this framework

to develop several theoretically motivated heuristics that incorporate higher moments of

landing probabilities, and show that these techniques yield much stronger performance

on seed set expansion for stochastic block models. Work in the second part of this thesis

discusses two other highly connected networks, the Facebook social network, and the

network of communication between researchers in a series of massive collaborations.

In the first case we develop a retention model that accurately models users’ tendencies

to continue using apps, and at the social level we organize apps along two fundamental



axes – popularity and sociality – and show how a user’s probability of adopting an app

depends on properties of both the local network structure and the match between the

user’s attributes, their friends’ attributes, and the dominant attributes within the app user

population. We show how our models give rise to compact sets of features with strong

performance in predicting app success. In the second case we study a series of massive

online collaborations of professional and amateur mathematicians, who collectively at-

tempt to solve open problems in mathematics research. We identify interesting patterns

in the linguistic structure and social reactions that distinguish important research con-

tributions from less important ones. We also observe distinct changes in the language

behavior, and the structure and timing of interactions between the same group of con-

tributors depending on whether they are working on a research problem, or simply a

very difficult but solved problem taken from the International Math Olympiad.
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CHAPTER 1

INTRODUCTION

Networks are a powerful lens for understanding and modeling complex interactions

in the natural world. Their power comes from the balance they offer between complexity

and simplicity: on one hand, they enable us to model in detail very large systems with

many components interacting in non- trivial ways; and on the other hand, insights from

the rich mathematical study of networks provide us with a means for characterizing

them in simple but important ways. Data are useful only insomuch as we can understand

them. This thesis is a quest for gleaning insight from data, and in the quest we will find

that networks are an invaluable lens for doing so. We will also find that there are many

mirages in this quest for insight. And thus we will continually turn to statistics and

machine learning for counsel and objective frameworks for evaluating the significance

of our observations. The quest is long and the path is not lain, but therein lies the

adventure, and we are well provided for.

Networks have been used to model systems from almost every academic discipline:

• Physicists use networks to model the interactions between atoms in crystals and

other materials;

• Neuroscientists use them to model neurons and neuronal pathways in the brain;

• Computer scientists use them to model network flow for routing;

• Economists use them to model the relationships between businesses and institu-

tions in the economy;

Node behavior Usually in a network, scientists are interested in studying the behavior

and connections among a set of objects; these objects are called the nodes. For exam-

ple, if we have a network of neurons, we are interested in understanding and modeling

whether or not a given neuron is going to fire. In this case the neuron is the node in the

network.
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Interactions on edges The network edge is then the pathway via which the behavior

of nodes interact with each other. In the network of neurons, the edges may represent

neuronal pathways, which are the physical connections that cause a neuron that has just

fired to instigate firing in its neighbors.

Community structure When a subset of nodes share some common characteristics

we say they form a community, for example by all being more densely connected to

each other than to other nodes. A community of nodes may be characterized by their

all sharing some common role in the network. For example, in a network of neurons,

we might find that there is a community of neurons that all have the role of controlling

some aspect of an organism’s behavior, such as vision. Communities are a lens that help

bring a large, apparently tangled mess of a network into focus. In this thesis we will

take a broad view of communities, at times interchanging our reference to them with

references to groups and types of objects within a system or dataset, though in some

contexts we note that a community may a more specialized connotation.

Throughout this thesis we will take an interest in viewing a system through the right

lens of community and group behavior, and see that when we do so patterns emerge that

were otherwise hidden in a tangled mess.

This thesis is comprised of five works, each of which is inspired by questions about

how a large system with many individual components can be better understood by view-

ing the system as comprised of a smaller number of interacting groups.

In the spirit of identifying simple patterns in large systems, let’s begin by considering

a few of the questions that inspired this thesis:

• How can identifying subpopulations in a system of N >> 1 fully connected cou-

pled oscillators help us exactly describe an otherwise intractable system?

• How should we use network structure to identify the other members of a node’s

community?

• How does local social network structure in behavior adoption predict long-term

success of web-services?
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• How do communication patterns in a collaboration help distinguish contributions

that are meaningful from those that aren’t?

1.1 Oscillators

1.1.1 Collective Synchronization

Have you ever heard crickets chirping in synchrony on a late summer’s evening? If you

have, then you have borne witness to the beauty of collective synchronization [118]. You

also have collective synchronization to thank for getting a good regular night’s sleep as

the circadian pacemaker cells in your brain help synchronize and unify the period of your

bodily functions [78]. Collective synchronization is a ubiquitous natural phenomenon

whereby the interactions in a system of many individual, independent oscillators give

rise to their synchronization and collective oscillation at a common frequency. We’ll see

in this thesis is how a notion of community structure can help us understand complex

sets of synchronizing units.

1.1.2 The Kuramoto Model

The history of studying collective synchronization is marked by the contributions of

Kuramoto [70] when he showed that for a system of nearly identical, weakly coupled

oscillators the long term dynamics are given by:

θ̇i = ωi +
N

∑
j=1

Γi j
(
θ j−θi

)
, i = 1, . . . ,N. (1.1)

In this case, the system contains N oscillators, where their states are described by their

phases on the unit circle {θi}N
i=1, for θi ∈ [0,2π). Each oscillator has a natural frequency

ωi, which would be its phase velocity in the absence of interactions or coupling with the

other oscillators. Typically these natural frequencies are assumed to have a normal or
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Lorentzian distribution with mean 0, and thus are symmetrically distributed such that

g(ω) = g(−ω). Oscillator i is coupled to oscillator j via some interaction function Γi j

defined on the difference in phases between the oscillators: θ j − θi. When Γi j(θ j −
θi) < 0, it means that the interaction between j and i is slowing i down beyond its

natural frequency ωi. Finally, (1.1) indicates that the effect of the other oscillators on

the phase velocity of i, θ̇i, is the sum of the individual interactions between i and the

other oscillators.

The rich history of coupled oscillators is told in depth by Strogatz in [109], but

here we briefly summarize the context. The mathematical study of coupled oscillators

begins with Wiener in the late 1950s [27, 28] but his formulation was intractable and

little progress was made. That is until Winfree motivated a key assumption, that the

coupling between oscillators is weak and the oscillators are nearly identical. Winfree’s

assumption and the corresponding simplification about the relation between an oscillator

and the mean-field of a system paved the way for Kuramoto’s result in (1.1). But as

Strogatz observes in [109], (1.1) was still too complex to be analyzed generally. Thus

Kuramoto took the simplification further. He focused on the even simpler system in

which all oscillators are coupled to all the other ones with equal weights via the sine of

the difference in their phases:

θ̇i = ωi +
K
N

N

∑
j=1

sin
(
θ j−θi

)
, i = 1, . . . ,N. (1.2)

This all-to-all and equally weighted coupling corresponds to the view of the oscillators

being connected by a complete graph with equal edge weights. Note that with sinusoidal

coupling, when θ j > θi, sin(θ j−θi)> 0 and thus the coupling between i and j tends to

bring i closer to j.

The Order Parameter

Each of the N oscillators are identically distributed in the Kuramoto model, (1.2). Thus

it is useful to define the following order parameter, which represents the mean position
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of all N oscillators as they oscillate about the unit circle in the complex plane [109]:

reiψ =
1
N

N

∑
j=1

eiθ j . (1.3)

Here we can interpret r as the average radius of oscillators from the center of the unit

circle, and ψ as their average phase. Without loss of generality we can assume that we

are analyzing the system in the rotating frame of the oscillator’s average position, in

which case ψ = 0.

Kuramoto used this order parameter describing the average behavior to rewrite (1.2).

To see this, begin by multiplying both sides of (1.3), continue be equating the imaginary

parts of this expression, and conclude by observing the connection with the governing

equations in (1.2):

rei(ψ−θi) =
1
N

N

∑
j=1

ei(θ j−θi) (1.4)

r cos(ψ−θi)+ ir sin(ψ−θi) =
1
N

N

∑
j=1

(
cos(θ j−θi)+ i sin(θ j−θi)

)
(1.5)

r sin(ψ−θi) =
1
N

N

∑
j=1

sin(θ j−θi) (1.6)

θ̇i = ω +Kr sin(ψ−θi). (1.7)

With the interpretation of r and ψ mentioned above, we can see that the pull on i from

the rest of the population increases as the mean population position r is further from the

unit circle. Further, we can observe that when θi < ψ we have sin(ψ−θi)> 0; that is,

when oscillator i trails behind the population average, the effect of the average on i is to

speed it up.
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1.1.3 The Van Hemmen Model: Contributions

In the previous paragraphs we have considered a system of N coupled oscillators, each

of which has natural frequencies drawn from the same population, and between each of

which there is uniform coupling of some strength K. In this case, the introduction of an

order parameter reiψ enabled us to view the interactions in the system as one between

an oscillator and the population average.

In other cases we may need to model oscillators that are connected in a grid, or

where the coupling between oscillators tends to push them away from one other. While

some of these systems may not be describable with an order parameter, in some cases

we may be able to describe the system in terms of a small number of order parameters,

corresponding to the different types of oscillators.

In Chapter 2 of this thesis we consider the Van Hemmen model, a system of coupled

oscillators in which each oscillator falls into one of four subpopulations. Van Hemmen’s

model has two coupling parameters, and depending on the values of J and K it was ob-

served numerically that there were four stable states of the system. For Van Hemmen’s

model we will utilize the ansatz first suggested by Ott and Antonsen in [89] and intro-

duce an order parameter for each of the four types of oscillators. This combination of

techniques will enable us to exactly describe the evolution of the order parameters of

the four subpopulations.

The low-dimensional reduction is powerful. We have a system of N oscillators, each

with their own random natural frequency ω , but the coupling that connects them with

other nodes in the graph means that oscillators are more usefully thought of not as indi-

viduals, but as members of a group. The macrobehavior of the system can be described

exactly in terms of the dynamics between the groups, and because the number of groups

is small, the equations describing these dynamics can be solved exactly. In Chapter 4 we

will see that an analogous simplification involving communities of densely connected

nodes on a graph will be crucial to learning how to identify those communities.

Chapters 3 and 4 of this thesis will again focus on graphs but from a new perspective

than the one in Chapter 2. In Chapter 2 our graphs were fully connected and the state of
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each node was described by a phase in the complex plane. The weights on the edges that

connected nodes were determined by a static property of the node (which community

it was in). In the Kuramoto model, each node was in the same community, and in the

Van Hemmen model, nodes could be one of four types, and thus their type determined

the sign of their coupling relative to the remaining nodes. In Chapters 3 and 4 we

consider graphs that are dense but not fully connected: the likelihood of there being an

edge connecting two nodes will depend on the (hidden) community affiliations of those

nodes. Our goal will be to learn how to identify which nodes constitute the community

of a particular node of interest, given just the network.

1.2 Networks with Community Structure

College friends, family friends, summer camp friends, work friends: our personal social

networks are a reflection of the variety of our experiences. Identifying the source of

our connections with people helps us understand what otherwise would appear to be

a tangle of relationships and mutual friendships. In many applications a researcher

may be able to observe those friendships without understanding why those connections

arose. Community detection has arisen as a means to uncovering those hidden macro

structures around which a network is arranged, enabling us to bring info focus what

otherwise would appear as a tangled mess.

Communities of revolutionaries

Let us pause to consider a concrete example of a social network. In 2011 Jon Kleinberg

and I were studying activism in Egypt via twitter, in collaboration with Michael Macy,

a sociologist, Silvana Toska, a government Ph.D. student, and Shaomei Wu, a Cornell

Information Science alumna. At the time Egypt was in the midst of a revolution, popu-

larly associated with the string of revolutionary movements in the Middle East dubbed

the “Arab Spring”. Most people involved in the political revolution were either secu-

lar, Salafi, or Islamicist. From previous research on twitter networks and interactions

we knew that users tended to retweet messages from people to whom they were ide-
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ologically close. Thus to identify people who were ideologically close to one another

amounted to finding groups of users clustered in the network of retweets. Each tweet in

the data has the following structure1:

• user: the user id of the tweet’s author,

• text: the text of the tweet (up to 140 characters),

• retweeted: the user id of the original author if text is a retweet.

To construct the network of retweets G = G(V,E), we need to identify the nodes and

edges that comprise that graph: in this case, the set of nodes V is the union of all users

and all retweeted users in the data. For each pair of nodes (u,v) ∈V ×V , (u,v) ∈ E if

there is some tweet where user u retweeted user v.

Each node in V has some hidden label, corresponding to whether that user is a secu-

lar, Salafi, Islamicist, or none of the above. How should we use the network of retweets

to understand to which ideological group each user belongs?

1.2.1 Community Detection

This simple question is intimately related to a more general one about nodes in a graph:

how should we partition nodes in the network such that nodes within the same partition

are close to one another?

With this question we open the door to an expanse of possibilities and a rich literature

that sits at the intersection of computer science, mathematics, biology, and sociology.

The wide ranging and sustained interest in the community detection, or graph parti-

tioning, problem is a reflection of the ubiquity of networks with community structure

in industrial and academic disciplines, and the corresponding diversity of network and

community structures therein. As a computer scientist we may be interested in deciding

1

In reality the tweets had additional metadata not relevant to this discussion, such as the time stamp of
when the tweet was authored, and in some cases location data indicating where the tweet author is from,
and where they were when the tweet was authored.

8



how to parallelize our code and so need an approximately balanced partition that min-

imizes communication between machines [49]. Meanwhile a sociologist may be less

interested in community structure defined by some mathematical objective, and more

interested in identifying a robust algorithm that accurately reconstructs partitions that

correspond to real world groups, however they are structured.

This variety of needs means that a solution to one partitioning problem may be inef-

fective when applied to another. With this caveat in mind, we should always be careful

to identify a plan for benchmarking our solution, aware that it may not be robust to

other notions of quality. Here we will entertain our curiosity in considering a handful

of intuitive and powerful approaches to community detection, each of which has been

successful in a distinct variety of domains, though not necessarily the same ones. We

point the interested reader to Community detection in graphs by Santo Fortunato [41],

which is a thorough review of the methods and motivations up to the year 2010, and is

accessible to boot.

Balanced partitions

A natural starting objective for graph partitioning is to identify balanced cuts in a graph.

In our motivating example, identifying a balanced minimum cut on the retweet network

corresponds to figuring out how to split the two sets of users in half, such that a minimal

number of users had been retweeted by someone from the other side. The number of

retweets going from one side to the other is thought of as the cost of the partition. More

generally we can denote a partition of the nodes V into k sets by S where S = {Si}k
i=1

(for our example, k = 4). The cost of a partition on an unweighted graph is the number

of edges that go between the sets. Formally, we would say that the cost of that partition

is:

cost(S ) =
k

∑
i=1

k

∑
j=1,i

∣∣∣Si×S j
⋂

E
∣∣∣ (1.8)

where |S| denotes the number of elements in set S.
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It is usually of interest to introduce a constraint that forces the partitions to be nearly

balanced. We might fix a parameter v ≥ 1 and require that each set Si of the partition

contains no more than v ∗ n/k nodes. This approach to balanced graph partitioning is

intuitive and powerful. However, it has a couple of limitations:

• It’s expensive! In general (and even in special cases of graphs such as trees or

grids) there is not even a polynomial time approximation algorithm that guaran-

tees a finite approximation ratio for this problem (unless P = NP) [9, 38, 39].

• Is it really getting us what we want? Minimizing the number of edges to be cut is

intuitive and in many utilitarian applications makes sense. But in social networks,

is there some other graph metric that would better capture real-world community

structure?

Practitioners who only have the computational complexity issue to deal with have

developed many flexible solutions to it. One of the most popular is to iteratively create a

coarsened analogue to the graph of interest by collapsing nodes and edges, partitioning

that much smaller graph, and then mapping that partition back onto the original, larger

one. METIS is one example of a “multilevel” method that has been very successful and

which quickly returns very high quality partitions [62].

But for many community detection problems a minimal cost balanced partition may

not be the right objective, so the first issue and its solutions are less germane. Instead we

would want to consider alternative metrics that better reflect the community structure of

interest.

Modularity

In 2004 Newman and Girvan [87] introduce a new metric for community structure: they

asked how the number of edges between two sets compared to the number one would

expect in a similar but random graph. They refer to this quantity as modularity. Nodes

have the same degree distribution in the random graph as in the original one, but in

the random graph the edges are randomly rewired so that in expectation there is no

community structure.
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Newman and Girvan offer a modularity-maximizing algorithm, and demonstrate that

it identifies partitions which closely resemble the true partitions in real-world networks,

such as the network of co-authorships (where communities are scientific disciplines), or

the interactions between characters in the novel Les Miserables, where the communities

correspond to the novel’s numerous subplots. In our network of retweets, if we sought

to maximize modularity that would mean we were trying to identify some grouping of

Twitter users such that there were many fewer retweets between groups than we should

naively expect.

Newman later demonstrated that the modularity-optimizing partition could be com-

puted in time O([n+m]n) where m and n are the number of edges and nodes in the graph

[86]. In order to understand how his method works, we first need to recall the definition

of the adjacency matrix of a graph, G(V,E). We will see throughout our exploration

of networks that the adjacency matrix will be a powerful starting point for computing

many important and useful graph metrics. Let’s refer to the nodes u ∈V by their (arbi-

trary but fixed) index i: {i}n
i=1 =V , where n = |V |. Then the adjacency matrix A of an

unweighted graph G(V,E) is:

Ai j =
{

1 if (i, j) ∈ E0 else. (1.9)

The degree vector k of the graph G is then ki = ∑
n
j=1 Ai j. Newman’s method then has

us compute the leading eigenvector of the modularity matrix B = A− kT k
2m

, where A is

the adjacency matrix of the graph and k is the vector of degrees.

Conductance

Modularity as a metric of community structure pairs well with our intuitive notions, but

it is not the only metric that does so. Modularity captures the extent to which nodes

inside their own set are less well connected to nodes outside the set than if the graph

were random. An alternative concept is the conductance of a cut (S,T ), which is the

ratio of edges between S and T and the total number of edges landing in the smaller of
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the two sets. We can define the conductance of a cut (S,T ) formally:

c(S,T ) =
∑i∈S, j∈T Ai j

min(a(S),a(T ))
(1.10)

where Ai j are the entries of the adjacency matrix A, and a(S) = ∑i∈S ∑ j∈V Ai j. To guide

your intuition, you can quickly confirm that conductance is 1 when edges only go be-

tween the two sides, and is 0 when edges only stay within their respective side. In

general conductance tends to be lower for “good cuts” (cuts with few edges between the

two sides), and higher for bad cuts.

Enter PageRank And how can one identify cuts with good (low) conductance? In the

early 2000s, in papers concurrent to those on modularity maximization and community

detection, Andersen, Chung, and Lang observe that we can recover sets with theoret-

ical guarantees of minimal conductance around seed nodes of interest by computing

the Personalized PageRank of a seed node [7, 8]. The Personalized PageRank vector

was at that point less than 10 years old but already widely recognized as a heuristic of

great value. Along with Rajeev Motwani and Terry Winograd it was introduced by the

founders of Google, Larry Page and Sergey Brin, in their seminal paper The PageRank

citation ranking: Bringing order to the web [91]. PageRank in general is the steady

state solution of a random walk on a graph starting from any seed node. In the coming

section we will dive more deeply into what PageRank represents, and how it relates to

other graph diffusions. These connections are meant to help the reader more deeply

understand PageRank as it used in Chapter 3 of this thesis, and the motivation for the

questions in Chapter 4. The starting point for understanding these quantities is to think

about random walks on graphs.
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1.2.2 Random walks and Graph Diffusions

PageRank

Page Rank was originally designed as a means of ranking the relevance of web pages

on the web. Formulated by the founders of Google, Larry Page and Sergey Brin, along

with their colleagues Rajeev Motwani and Terry Winograd, it was identified as a fast

and accurate way of identifying pages that were both important and relevant to search

topics.

Let’s begin by considering a very simple ranking r defined on a graph G for each

node i ∈V :

r j = c ∑
i∈N

ri
Ai j

∑k=1 Aik
(1.11)

where Ai j are the entries of G’s adjacency matrix A, and

Ai j =





1 if (i, j) ∈ E

0 else.
(1.12)

We will see that PageRank is often computed iteratively, and if some nodes only have

edges into them this leads to an overall loss of PageRank. Here we use c as a factor

for normalization, so that the rank of all nodes in the graph is constant. In fact, we will

assume throughout this discussion that all ranks x are normalized such that ∑
n
i=1 xi = 1.

What is the intuition behind this rank, r? To compute the rank of node j it takes the

rank of j’s neighbors (the i for which Ai j , 0,) and passes a fraction of each of those

ranks ri onto j. The fraction of ri allocated to j is 1/∑
n
k=1 Aik: this denominator is

precisely the out-degree of node i. In other words, i distributes its rank evenly over its

neighbors. As a result, r j will be large when j has lots of neighbors with high rank (large

ri), who don’t have too many neighbors themselves (otherwise j will have to share too

much).

13



We can write (1.11) even more concisely if we view this process as a random walk.

We can define what we will call the transition matrix T:

Ti j =





1/di if (i, j) ∈ E

0 else.
(1.13)

where di = ∑
n
k=1 Aik are the entries to the degree vector d. To think about a random

walk on a graph envision a surfer who starts at some node in the graph, and randomly

follows edges. We call T the transition matrix for a random walk because each entry Ti j

describes the probability of our random surfer transitioning from node i to node j. In

some applications the graph may have “weighted edges”, in which case we may want to

redefine the transition matrix more generally as Ti j = Ai j/di.

Returning to our equation for the rank, we see that (1.11) can be usefully rewritten

in terms of T:

r j = c
n

∑
i=1

Ti jri→ r = c T · r (1.14)

where · denotes the inner product. In this last step we can see that r is the eigenvector of

the transition matrix, T, with eigenvalue c. As Page et al say in [91], this rank is nearly

the target rank, but it suffers one small but important issue: if there is a set of nodes S

with no outbound edges but with inbound edges, S will become a “rank sink”. That is,

the random surfer, in this model, would eventually end up only surfing around within S.

This process “unfairly” disfavors nodes not in S. To counterbalance the unfair effects

of rank sinks, Page et al suggest an alternative ranking ρ , computed using the transition

matrix and a new (democratic) rank source e:

ρ(e) = c T ·ρ(e)+(1− c)e, (1.15)

where ∑
n
i=1 ei = 1. At last we have nothing less than the infamous PageRank. Taking e

to be the uniform vector of 1/n, we effectively alter the random walk process such that

our random surfer follows a random edge with probability c, or jumps to any random
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node in the graph with probability 1− c.

The rank sink motivation for introducing the rank source e is, while important, po-

tentially underwhelming. But in reality, by tuning the vector e we unlock the real power

of PageRank: personalization. Tuning e to quantities other than 1/n allows us to identify

the rank of pages “as seen by” some particular node or nodes of interest. For example,

say we place all the weight of e on a single node, s ∈ V , so that es = 1 and ei = 0 for

all i , s. In the corresponding walk, at each step the random surfer either follows an

edge with probability c or jumps back to the seed node s with probability 1− c. The

walk’s steady state distribution, ρ(s), is interpretable as a ranking of node importance

and proximity to s. The parameter c allows us to tune the relative contribution of each

metric, where larger c emphasizes overall node importance, and smaller c emphasizes

proximity to the seed node.

Representations of PageRank Now that we have begun to appreciate what PageRank

represents, let’s consider several alternative views of (1.15). For simplicity we will drop

the source vector argument, ρ = ρ(e).

ρ = c T ·ρ +(1− c)e (1.16)

Note that ∑ j ρ j and thus for any vector x we have

((x×1) ·ρ)i = ∑
j
(x×1)i jρ j = ∑

j
xiρ j = xi ∑

j
ρ j = xi. (1.17)

This leads to an alternate view of (1.15):

ρi = c ∑
j

Ti jρ j +(1− c)ei (1.18)

= c ∑
j

Ti jρ j +(1− c)∑
j

ei(1) jρ j (1.19)

→ ρ = c Tρ +(1− c)(e×1) ·ρ (1.20)

= (c T+(1− c)(e×1)) ·ρ. (1.21)
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From this point of view ρ(e) is the eigenvector of the matrix (c T+(1−c)(e×1)) with

eigenvalue 1.

Let us now revisit the interpretation that PageRank, ρ , is the stationary distribution

of a random walk. The random walk, we asserted, that leads to PageRank, was the one

in which a random surfer with probability c followed a random edge from whichever

node it started on, or with probability 1− c jumped to a node with probability specified

by the source rank vector e. At step 0 of the random walk the surfer is at a node i with

probability x0
i which is the ith coordinate of the starting vector x0. Then at step 1 the

surfer will be at node i according to x1
i , where:

x1 = cTx0 +(1− s)e. (1.22)

And at step k,

xk = cTxk−1 +(1− s)e = (cT+(1− s)(e×1)) ·xk−1 = T̃ ·xk−1 (1.23)

Here let us make an observation: in the last step we see something closely resembling

our equation for PageRank: for very large k if xk is converging, we would have that

xk = xk−1, and thus from (1.23) we have xk = T̃xk−1xk = T̃xk. While we cannot al-

ways guarantee that repeated multiplication by any generic matrix T will converge, we

do know that if T has a nonnegative dominant eigenvalue, this repeated multiplication

would converge to an eigenvector associated with that eigenvalue. Fortunately, from the

Perron-Frobenius theorem for nonnegative matrices, which applies to T̃, we can guaran-

tee that T̃ has a positive, dominant eigenvalue whose associated eigenvector is positive.

If T̃ has strictly positive entries then a stricter version of the Perron-Frobenius theorem

applies, and this version guarantees that the eigenvector corresponding to the dominant

eigenvalue is unique. Positivity of T̃ is guaranteed if, for example, the rank source e dis-

tributes some positive amount of rank to every node. In both cases (nonnegativity and

positivity), we have ∑ j T̃i j = 1 for all i and so the Perron-Frobenius theorem guarantees

that the dominant eigenvalue is 1. It follows then that as k→ ∞ we can guarantee the

convergence of T̃kx0 to the eigenvector ρ with eigenvalue 1.

16



Personalized PageRank With this result in hand, we return to the recursive, iterative

form for xk in (1.23), and focus on a special case: the starting vector for our iteration

x0 will be the rank source vector e. We will refer to this special case of PageRank

as Personalized PageRank, or PPR, and the source vector s. In the corresponding ran-

dom walk interpretation, the surfer’s starting probability distribution is equal to the rank

source distribution. This connection allows us to neatly rewrite ρ:

ρ = lim
k→∞

xk (1.24)

where xk = cTxk−1 +(1− c)s (1.25)

= cT(cTxk−2 +(1− c)s)+(1− c)s (1.26)

= ck+1(T)ks+(1− c)
k

∑
k′=0

(cT)k′s (1.27)

and thus

ρ = (1− c)
∞

∑
k=0

ck Tk · s =
∞

∑
k=0

wk Tk · s (1.28)

for wk = (1− c)ck and c ∈ (0,1). (1.29)

Here we can see that Personalized PageRank is an infinite weighted sum of the

quantities Tks with weights {wk}∞
k=0 as specified such that ∑

∞
k=0 wk = 1. The quantities

{Tk · s}∞
k=0 are length-n vectors interpretable as the expected probability of being at a

node i on the k-th step of a random walk with starting probability distribution s and

transition matrix T.

In Equation (1.29) it becomes clear that Personalized PageRank vector is just one

of a large class of graph diffusions, where the diffusion’s defining property is the set of

weights {wk}∞
k=0 used to weight each step in the random walk. Note that for Personal-

ized PageRank the weight contributed by the kth random walk vector strictly decreases

with k. The rate at which they decrease is clearly controlled by the choice of parame-

ter, c, where as we increase c we place increasing importance on longer walks, which

inherently carry less information about the original seed set, s. This is intuitive, as c
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corresponds to the probability that a surfer should follow a random edge rather than a

graph, meaning that it places more weight on nodes’ “importance” in the network than

their proximity to the seed set. Indeed, with c = 1 we place no importance on the seed

set and instead recover the original ranking vector introduced in (1.11).

The heat kernel and beyond

The heat kernel is another well known diffusion is this family of graph diffusions:

h = e−t

(
∑
k=0

tk

k!
(TT )ks

)
(1.30)

where wk = e−t tk

k!
. There are efficient algorithms for computing the heat kernel rapidly

[66], or it can be approximated by computing only the first few steps of the random

walk. Unlike Personalized PageRank whose weights strictly decrease with k, the heat

kernel has the property that its weights {wk}∞
k=0 have an interior maximum for some

k > 0, the position of which is determined by the diffusion parameter t.

The seed set expansion problem

We now return our focus to the motivating problem, seed set expansion: given a graph,

and a handful of known group members, i.e. the “seed set”, how should you use the

graph to identify the remaining group members? This problem is distinct from the

global partitioning problem in that we seek an algorithm that identifies local community

structure around a prescribed group of nodes, S ⊂ V . Both of these graph diffusions,

the heat kernel and Personalized PageRank, offer a way to compute the importance of

nodes in a network relative to a seed set of interest, and their parameters allow us to

tune the emphasis that we place on importance versus proximity. And both have been

shown to accurately recover communities in real world settings [66, 67], as we discuss

at length in Chapter 3. However, neither has been able to achieve performance near the

theoretical optimum. This begs the question, are PageRank and heat kernel utilizing the

18



full power of graph diffusions, or is there a set of weights {wk}∞
k=0 (or w) that would

recover communities more accurately?

To explore this question we will introduce another frame for our approach to seed

set expansion. We are given a graph G with nodes V and edges E. Nodes fall into one

of two sets: S and V −S, and our seed set contained within S. We then assert that nodes

in S have, on average, empirical walk count vectors of the form a, while nodes in V −S

have, on average, empirical walk count vectors of the form b. For seed set expansion,

we seek a vector of weights w so that when we rank nodes according to y = w ·a−w ·b
we will correctly rank nodes in the in-class above those in the out-class. Note here that

the weights w that we use to weight each entry in the walk count vectors are analogous

to those that we identified for the heat kernel and Personalized PageRank. That is, the

heat kernel and PPR are both maps of random walk count vectors to a score, which can

then be used to rank nodes according to their likelihood of being in the in-class.

1.2.3 Seed set expansion: Contributions

This brings us to Chapter 3 of this thesis. In Chapter 3 we identify several real-world

web-scale data sets consisting of graphs, where nodes in the graph represent people and

are labeled as being members of some social group. The availability of this ground truth

data enables us to mathematically explore the question of how which heuristics are most

robust in identifying real world social communities. In particular, since we have the

ground truth labels associated with each node, we can check the performance of any

algorithm by computing how close its output is to the “true” answer. Now that we have

a robust framework that will enable us to test and validate a variety of methods, we are

left now to identify which methods should be tested.

In Chapter 4 we explore the seed set expansion problem in a more controlled setting.

We observe that random walk based methods are consistently the most powerful, scal-

able techniques in the literature, with some variation in their performance in different

settings. The difference between competing random walk based methods amounts to

varying the proportional weight that each walk count number contributes to the overall
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infinite sum. We then ask, for a stochastic block model, what are the optimal coeffi-

cients to use in this weighting? Here, we refer to optimal in the sense of those being

the geometric discriminant function. We observe that, in fact, the weights of the optimal

geometric discriminant vector correspond to Personalized PageRank. With this geomet-

ric point of view, we also observe that corrections to those weights via the covariance

matrices can also yield substantial improvements.

1.3 Social Interactions and Data Mining

1.3.1 Learning from Data and Predicting the Future

In Part 2 of this thesis we turn our focus to the computational study of social interactions

on the web. The digital traces that people leave on the web provide an unprecedented

view into the rhythms and patterns of daily life, patterns in our interactions and commu-

nication, and the social circles with which we associate. With this data we are presented

with opportunities and challenges. The challenges are where the most interesting ques-

tion arise.

In the first part of this thesis we focused on questions about classification and pre-

diction problems on graphs. In this second part we will leverage graphs as tools to help

us understand how people’s interactions are related to each other, and to identify inter-

esting patterns of behavior in social networks. We will move beyond thinking about

classification of nodes in networks, and instead think about more general data: we will

ask questions like,

• how can we identify when an app will be successful or not?

• will this person adopt this app?

• what’s the difference between important contributions to a group discussion and

unimportant ones?

As in the first part, our we are often faced with a similar task when studying social
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interactions: �what is the best way to tell the difference between things in these groups?

That is, how should I use the information available to me to classify my data?

But predicting the future accurately is, to say the least, a very hard problem. If

anyone promises they can predict the future for you with perfect accuracy, they are most

surely a snake oil salesman. We can, however, often do better than a snake oil salesman

by carefully learning from past data, evaluating at the present, and formulating careful

estimates of likelihood of how future events will play out. Our ability to do this, one

could say, is the great success of science itself.

There are many competing and successful frames for learning to predict and for

learning the causal relationships between events. In part two of this thesis we will focus

on prediction problems related to observational (i.e. not experimental) data.

To learn how to predict future labels from this data, we will leverage a suite of tools

from machine learning and statistics, and in particular will focus on problems that uti-

lize techniques from supervised learning. Here we provide background on the learning

framework that we utilize extensively throughout Chapters 5 and 6 of this thesis. Often

we will find that the exercise in learning to predict is a powerful tool for learning about

the structure and relationship between entities.

1.3.2 Machine Learning

Let us start with an example: we are given a Yelp data set, where entry xi is a restaurant

review, along with a label yi that tells us whether the restaurant review is favorable or

critical. We think that the data xi encodes information about the review’s label, but we

do not necessarily know how to use or interpret that information. We want to learn from

our data so that we can know which features, such as the number of occurrences of the

phrase good or the average sentiment of words in the review, will help us distinguish in

the future restaurant reviews of the two types. In general each entry in our data xi may

contain a large number of features, which have unknown relationships with the target

label.
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Matchmaking Problems with Models What is the best way to learn to predict yi

based on an input xi?

This depends on a number of things about the problem and motivation:

• Are the labels yi binary? discrete? continuous? non-scalar?

• How does the dimensionality of xi compare to the number of labeled examples

you have to train?

• What is an acceptable amount of memory and time for training? For evaluation?

• Is it important to do feature analysis?

We can formulate this question more precisely. Let’s say that our examples {xi}n
i=1

are in X , and our labels {yi}n
i=1 are in y. How should we learn an unknown function

f (X)→ y given our examples {xi,yi}n
i=1 and a set of possible functions f ? This set of

possible functions that we can learn is called our “hypothesis space,” and their domain

is X .

When we choose a machine learning algorithm, such as logistic regression, support

vector machines, or random forests, we are also choosing a hypothesis space. Some

algorithms share the same hypothesis space, but are optimizing different objectives when

picking the best function.

For example, logistic regression, linear support vector machines, and naive Bayes

all seek to find the “best” separating hyperplane in X such that the two classes fall on

opposite sides of the plane. But each algorithm has its own indications of what “best” is

and its own approach to finding the “best” solution.

In this work we will mainly focus on moderately sized (dim(xi)< 104 and n < 105)

data sets, where we are interested in predicting binary or discrete labels. Accordingly

this means that we will tend to utilize logistic regression, support vector machines,

naive Bayes, or aggregation based prediction methods such as random forests or gra-

dient boosted decision trees.

In many cases we will find that a simple model such as support vector machines or

logistic regression are complex enough to accurately model the structure and separation

22



in our data. We expect that the best approach, and the one we have learned to take, is

to start with a simple model (such as a regression), and introduce additional levels of

complexity as necessary.

Overfitting In some cases we will be able to identify that the model is actually “over-

fitting” the data: when the data are high dimensional, so is the separating hyperplane.

With insufficient data points one can perfectly or nearly perfectly model the separation,

while learning nothing that generalizes beyond the training step. In such cases we must

restrict our search space, either by pruning features, tuning a parameter in our algorithm,

or identifying a different algorithm less prone to overfitting.

Feature selection and importance It will, in some cases, be important that we can

later identify which features are “important” in helping to predict correct outcomes, and

to more deeply understand why certain examples were classified as they were. Some

algorithms, such as logistic regression, offer a natural source for this evaluation in their

output: the coefficients in logistic regression can be used to compute the odds of a pos-

itive classification versus any one of the predictor variables. Support vector machines,

while having other benefits such as flexibility, indicate coefficients that have limited

interpretability.

Unsupervised learning We have implicitly narrowed our exploration and discussion

of algorithms by deciding to focus on supervised learning, where the data is labeled. But

in many applications the data may be unlabeled and the researcher may be interested in

identifying a natural clustering. In chapter 5, for example, we will observe the variety of

login time series for a set of several thousand web-applications. Individually, the variety

in volume and time scale, and the apparently random variations, make it difficult to

interpret them. But by scaling each time series and “clustering” the data using k-means

clustering, we are able to see that the data tend to fall into one of two categories: a sharp

incline followed by a sharp decline, or a steady unchanging state. This statistically

meaningful reduction of what is otherwise appears to be thousands of noisy curves,

into two simple and interpretable ones, demonstrates the power and value of machine

23



learning.

In the case of seed set expansion and community detection we assume, a priori, that

nodes in the in-class are closer to the seed set. The question then is to identify a notion

of close that is accurate and can be computed in a reasonable amount of time.

Here, in contrast, we do not assume to know the relationship between any given

feature and the label of interest. For example, if an app has a majority teen population

in 2014, does that mean it is more, less, or equally likely to be successful one year into

the future? Rather than assume anything about the relationship, instead we introduce a

framework for learning from the data itself.

1.3.3 Structure of Interactions and Success Prediction: Contribu-

tions

In Chapter 5 we study adoption and retention of a thousands of apps through the lens

of how over 1.4 billion people connected to them with their Facebook accounts. The

connection between the app ecosystem and the underlying social network that connects

people who use those apps offers us an unprecedented window into the competitive and

fast paced world of apps. We find that a simple model motivated by the physics literature

is able to accurately describe retention patterns. But we find that adoption behavior is

much more nuanced. Depending on the app in question, the local social network of your

friends who have adopted an app has an important relationship with whether you are

likely to adopt the app in the future. We also observe interesting patterns in the demo-

graphic relationships between friends who use apps, and how those relationships relate

to whether you adopt the same app as your friends. Finally, we leverage all these inter-

esting features (adoption rates, retention rates, local social network adoption structure,

and demographic information) to build a success predictor, that can distinguish between

apps that will be successful a year into the future from ones that aren’t.

In the sixth and final chapter we study how amateur and professionals mathemati-

cians joined fores on the web to collaboratively solve open research problems in math-

24



ematics. We observe substantial differences in the important versus unimportant con-

tributions made by contributors, and are thus able to predict whether or not a comment

is important or not based on its sentence structure alone or the local responses it re-

ceives. We also observe interesting variations in the timing of communication and the

reply structure between mathematicians, depending on whether they are collaborating to

solve an open research problem, or a very challenging but non-research problem taken

from a mathematical olympiad competition.
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Part I

Group dynamics
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CHAPTER 2

PHASE DIAGRAM FOR THE KURAMOTO MODEL WITH VAN HEMMEN

INTERACTIONS

This chapter is written in collaboration with Ian Lizaragga and Steven Strogatz, and

was published in Physical Review E, Volume 89, Issue 1 in 2014.

We consider a Kuramoto model of coupled oscillators that includes quenched ran-

dom interactions of the type used by van Hemmen in his model of spin glasses. The

phase diagram is obtained analytically for the case of zero noise and a Lorentzian distri-

bution of the oscillators’ natural frequencies. Depending on the size of the attractive and

random coupling terms, the system displays four states: complete incoherence, partial

synchronization, partial antiphase synchronization, and a mix of antiphase and ordinary

synchronization.

2.1 Introduction

In 1967, Winfree [122] discovered that synchronization in large systems of coupled

oscillators occurs cooperatively, in a manner strikingly analogous to a phase transition.

In this analogy, the temporal alignment of oscillator phases plays the same role as the

spatial alignment of spins in a ferromagnet. Since then, Kuramoto and many other

theorists have deepened and extended this analogy [2, 70, 97, 109, 110].

Yet one question has remained murky. Can a population of oscillators with a ran-

dom mix of attractive and repulsive couplings undergo a transition to an “oscillator

glass” [28], the temporal analog of a spin glass [16]? Daido [27] simulated an oscilla-

tor analog of the Sherrington-Kirkpatrick spin-glass model [104] and reported evidence

for algebraic relaxation to a glassy form of synchronization [29, 107, 108], but those

results are not yet understood analytically. Others have looked for oscillator glass in

simpler models with site disorder (where the randomness is intrinsic to the oscillators

themselves, not to the couplings between them) [17, 28, 51, 55, 92]. Even in this setting

the existence of an oscillator glass state remains an open problem.
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In this paper we revisit one of the earliest models proposed for oscillator glass

[17]: a Kuramoto model whose attractive coupling is modified to include quenched

random interactions of the form used by van Hemmen in his model of spin glasses

[116]. The model can now be solved exactly, thanks to a remarkable ansatz re-

cently discovered by Ott and Antonsen [90]. Their breakthrough has already cleared

up many other longstanding problems about the Kuramoto model and its offshoots

[19, 51, 54, 55, 68, 72, 80, 83, 89, 96]. For the Kuramoto-van Hemmen model examined

here, the Ott-Antonsen ansatz reveals that the model’s long-term macroscopic dynamics

are reducible to an eight-dimensional system of ordinary differential equations. Two

physically important consequences are that the model does not exhibit algebraic relax-

ation to any of its attractors, nor does it have the vast number of metastable states one

would expect of a glass. On the other hand, the frustration in the system does give rise

to two states whose glass order parameter is non-zero above a critical value of the van

Hemmen coupling strength. Our main results are exact solutions for the model’s macro-

scopic states, their associated order parameters, and the phase boundaries between them.

The governing equations of the model are

θ̇i = ωi +∑
N
j=1 Ki j sin(θ j−θi) (2.1)

for i = 1, . . . ,N� 1, where

Ki j =
K0

N
+

K1

N
(ξiη j +ξ jηi). (2.2)

Here θi is the phase of oscillator i and ωi is its natural frequency, randomly chosen from a

Lorentzian distribution of width γ and zero mean: g(ω) = γ/[π(ω2+γ2)]. By rescaling

time, we may set γ = 1 without loss of generality. The parameters K0, K1 ≥ 0 are the

Kuramoto and van Hemmen coupling strengths, respectively. The random variables ξi

and ηi are independent and take the values ±1 with equal probability.

Simulations of the model (Fig. 2.1) show four types of long-term behavior. (1)

Incoherence (Fig. 2.1(a)): When K0 and K1 are small, the oscillators run at their natural

frequencies and their phases scatter. (2) Partial locking (Fig. 2.1(b)): If we increase K0
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while keeping K1 small, oscillators in the middle of the frequency distribution lock their

phases while those in the tails remain desynchronized. (3) Partial antiphase locking

(Fig. 2.1(c)): If instead we increase K1 while keeping K0 small, the system settles into a

state of partial antiphase synchronization, where half of the central oscillators lock their

phases 180 degrees apart while the other half behaves incoherently. (4) Mixed state

(Fig. 2.1(d)): If both K0 and K1 are sufficiently large and in the right proportion, we find

a mixed state that combines aspects of the partially locked and antiphase locked states.

But note two changes—the central oscillators that behaved incoherently in Fig. 2.1(c)

now lock as in Fig. 2.1(b), and the antiphase locked oscillators of Fig. 2.1(c) are now

less than 180 degrees apart.

These four states are not new. They were found and analyzed by Bonilla et al. [17]

for a variant of Eq. (2.1) with a white noise term and a uniform (not Lorentzian) distri-

bution of natural frequencies. The advantage of the present system is that the stability

properties and phase boundaries of the four states can be obtained analytically. Fig-

ure 2.2 shows the resulting phase diagram.

We turn now to the analysis. As mentioned above, the Ott-Antonsen ansatz [90]

has become standard, so we suppress the intermediate steps in the following derivation

(but see [90] for details). The ansatz applies to (2.1) in the continuum limit and restricts

attention to an invariant manifold that determines the system’s long-term dynamics [89].

On this manifold the time-dependent density ρ(θ , t,ω,ξ ,η) of oscillators at phase θ

with natural frequency ω and van Hemmen parameters ξ ,η is given by

ρ =
1

2π

{
1+

[
∞

∑
n=1

(α∗eiθ )n + c.c.

]}
(2.3)

where α = α(t,ω,ξ ,η) and the asterisk and c.c. denote complex conjugation. This

density evolves according to

∂ρ

∂ t
+

∂

∂θ
(ρv) = 0 (2.4)
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Figure 2.1: Statistical steady states for the Kuramoto-van Hemmen model. Equa-
tion (2.1) was integrated numerically for N = 1000 oscillators with
Lorentzian distributed frequencies and random initial phases, using a
fourth-order Runge-Kutta method with a fixed step size of 0.05. Pa-
rameter values: (a) Incoherence: K0 = 1,K1 = 1; (b) Partial locking:
K0 = 2.5,K1 = 1; (c) Partial antiphase locking: K0 = 1,K1 = 2.75; (d)
Mixed state: K0 = 2.5,K1 = 2.75. Only oscillators with −3 ≤ ω ≤ 3
are shown.
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Figure 2.2: Phase diagram for (2.1), (2.2) with g(ω) = 1/[π(1+ω2)].

where v = v(t,ω,ξ ,η) denotes the velocity field in the continuum limit,

v = ω + Im[e−iθ (K0Z +K1ξWη +K1ηWξ )+ c.c.] (2.5)

and the complex order parameters Z, Wξ , and Wη are

Z = 〈eiθ 〉,
Wξ = 〈ξ eiθ 〉,
Wη = 〈ηeiθ 〉. (2.6)

The angle brackets 〈·〉 denote integration with respect to the probability measure

ρ(θ)dθ g(ω)dω p(ξ )dξ p(η)dη . The distribution p is normalized so that ξ and η

equal ±1 with equal probability 1
2 .
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When (2.3) and (2.5) are inserted into (2.4), one finds that the dependence on θ is

satisfied identically if α(t,ω,ξ ,η) evolves according to:

α̇ = −α2

2

[
K0Z∗+K1

(
ξW ∗η +ηW ∗

ξ

)]
+ iωα

+
1
2
[K0Z +K1(ξWη +ηWξ )]. (2.7)

This system is infinite-dimensional, since there is one equation for each real ω . But

its macroscopic dynamics are governed by a much smaller, finite-dimensional set of

ODEs. The reduction occurs because the different α(t,ω,ξ ,η) in (2.7) are coupled

only through the order parameters Z, Wξ , and Wη . Those order parameters in turn are

expressible, via (2.6), as integrals involving ρ and therefore α itself. Under the usual

analyticity assumptions [90] on α , the various integrals can be expressed in terms of a

finite set of α’s, and these obey the promised ODEs, as follows.

Consider Z =
∫

eiθ ρ(θ)dθ g(ω)dω p(ξ )dξ p(η)dη . To calculate this multiple

integral, first substitute (2.3) for ρ and perform the integration over θ to get Z =
∫

α g(ω)dω p(ξ )dξ p(η)dη . Second, evaluate the integral
∫

∞

−∞
α g(ω)dω by consid-

ering ω as a complex number and computing the resulting contour integral, choosing

the contour to be an infinitely large semicircle closed in the upper half plane. The

Lorentzian g(ω) = 1/[π(1+ω2)] has a simple pole at ω = i, so the residue theorem

yields

∫
∞

−∞

α g(ω)dω = α(t, i,ξ ,η). (2.8)

Third, integrate over ξ and η . Since these variables take on the values ±1 with

equal probability, Z receives contributions from four subpopulations: (ξ ,η)=(+1,+1),

(+1,−1), (−1,+1), and (−1,−1). If we define the sub-order parameters for these

32



subpopulations as

A(t) = α(t, i,+1,+1)

B(t) = α(t, i,−1,−1)

C(t) = α(t, i,+1,−1)

D(t) = α(t, i,−1,+1), (2.9)

we find that Z is given by

Z =
1
4
(A+B+C+D). (2.10)

Similar calculations show that the glass order parameters can also be expressed in terms

of A,B,C,D:

Wξ =
1
4
(A−B+C−D),

Wη =
1
4
(A−B−C+D). (2.11)

The sub-order parameters A,B,C,D have physical meanings. For example, A can be

thought of as a giant oscillator, a proxy for all the microscopic oscillators with (ξ ,η) =

(+1,+1). Likewise, B,C and D represent giant oscillators for the other subpopulations.

The equations of motion for these giant oscillators are obtained by inserting (2.10),

(2.11) into (2.7) and analytically continuing to ω = i. The result is the following closed
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system:

Ȧ = −1
2

A2[K0Z∗+
K1

2
(A∗−B∗)]−A

+
1
2
[K0Z +

K1

2
(A−B)]

Ḃ = −1
2

B2[K0Z∗+
K1

2
(B∗−A∗)]−B

+
1
2
[K0Z +

K1

2
(B−A)]

Ċ = −1
2

C2[K0Z∗+
K1

2
(D∗−C∗)]−C

+
1
2
[K0Z +

K1

2
(D−C)]

Ḋ = −1
2

D2[K0Z∗+
K1

2
(C∗−D∗)]−D

+
1
2
[K0Z +

K1

2
(C−D)]. (2.12)

Since A,B,C, and D are complex numbers, the system (2.12) is eight-dimensional.

The four steady states shown in Fig. 2.1 correspond to four families of fixed points

of (2.12), each of which is characterized by a simple configuration of A,B,C,D in the

complex plane. Figure 2.3 plots those four families schematically on the phase diagram,

showing where each exists and is linearly stable. We discuss them in turn.

The incoherent state of Fig. 2.1(a) corresponds to the fixed point at the origin, A =

B =C = D = 0, with order parameters Z =Wξ =Wη = 0. It exists for all K0, K1 ≥ 0 but

is linearly stable iff (if and only if) K0 < 2 and K1 < 2. This stability region is shown as

the square in the lower left of Fig. 2.3.

The partially locked state (Fig. 2.1(b)) corresponds to a configuration where A,B,C

and D all equal the same nonzero complex number, as shown in the lower right panel

of Fig. 2.3. By rotational symmetry, we can assume that A = B = C = D = RPL > 0.

Such a state is a fixed point of (2.12) iff K0 > 2 and RPL =
√

1−2/K0, in which case

it is linearly stable iff K1 < K0. (There is a trivial zero eigenvalue associated with the

rotational symmetry, so what we really mean is that the state is linearly stable to all

perturbations other than rotational ones. Likewise, there is a whole circle of partially
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Figure 2.3: Stable fixed points A,B,C,D for the four states. In each panel, the
axes show the region of the complex plane with −1 ≤ Re(z) ≤ 1
and −1 ≤ Im(z) ≤ 1. Rotationally equivalent fixed points lie on the
dashed circles.

locked states, all equivalent up to rotation, as indicated by the dashed circle in the lower

right panel of Fig. 2.3.) The order parameters are Z =
√

1−2/K0 and Wξ =Wη = 0.

The antiphase state (Fig. 2.1(c)) corresponds to a fixed point where A=−B=RA > 0

and C = D = 0. It exists iff K1 > 2 and RA =
√

1−2/K1. When it exists it is linearly

stable iff

K0 < 4K1/(2+K1). (2.13)

Finally, the mixed state (Fig. 2.1(d)) corresponds to a configuration where A = B∗

and C = D = RM > 0. It exists iff K1 > 2 and 4K1/(2+K1) < K0 < K1 (the wedge in
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the upper right of Fig. 2.3) and satisfies

Re(A) =
K0

2K1−K0

√
1+

2
K1
− 4

K0

Im(A) = 2

√
(K1−K0)(K1(K1−2)+K0)

K1(2K1−K0)2

RM =

√
1+

2
K1
− 4

K0
. (2.14)

We were unable to find the eigenvalues analytically in this final case, but we verified

linear stability numerically for a sample of mixed states up to K1 = 105.

All the transitions in Fig. 2.3 are continuous (Fig. 4). In particular, the mixed state

morphs into the antiphase state on the left side of its stability region, and into the par-

tially locked state on the right side. To verify this, observe that the configuration of

A,B,C,D in the mixed state, as parametrized by Eq. (2.14), continuously deforms into

the states on either side of it as (K0,K1) approaches the relevant stability boundary.

The glass order parameters Wξ and Wη are nonzero for the antiphase and mixed

states, so in that specific sense the model can be said to exhibit a glassy form of syn-

chronization [17]. Moreover, Wξ =Wη for all four states, which confirms a conjecture

of Bonilla et al. [17]. On the other hand, the oscillator model (2.1), (2.2) lacks other

defining features of a glass, such as a large multiplicity of metastable states and non-

exponential relaxation dynamics; the same is true of the original van Hemmen spin-glass

model [20].

Experimental tests of the phase diagram predicted here may be possible in a variety

of oscillator systems with programmable coupling. Prime candidates are optical arrays

[47] or populations of photosensitive chemical oscillators [114] in which the interactions

are mediated by a computer-controlled spatial light modulator.
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Figure 2.4: Theory vs. simulation for order parameters. Solid line, exact results;
circles, simulations for N=50,000 oscillators. For K1=4, Eq. (2.1) was
integrated using an Euler method with step size 0.01. Each combina-
tion of (ξ ,η) = (±1,±1) was assigned N/4 oscillators, with natural
frequencies taken from a deterministic Lorentzian distribution: ωi =
tan [(π/2)(2i−n−1)/(n+1)], for i = 1, . . . ,n and n=N/4. The val-
ues of the order parameters are shown at t = 200, by which time con-
vergence to a statistical steady state has occurred.
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CHAPTER 3

COMMUNITY MEMBERSHIP IDENTIFICATION FROM SMALL SEED

SETS

This chapter is written in collaboration with Jon Kleinberg and was published in

Proceedings of the 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining in 2014.

In many applications we have a social network of people and would like to identify

the members of an interesting but unlabeled group or community. We start with a small

number of exemplar group members – they may be followers of a political ideology or

fans of a music genre – and need to use those examples to discover the additional mem-

bers. This problem gives rise to the seed expansion problem in community detection:

given example community members, how can the social graph be used to predict the

identities of remaining, hidden community members? In contrast with global commu-

nity detection (graph partitioning or covering), seed expansion is best suited for iden-

tifying communities locally concentrated around nodes of interest. A growing body of

work has used seed expansion as a scalable means of detecting overlapping communi-

ties. Yet despite growing interest in seed expansion, there are divergent approaches in

the literature and there still isn’t a systematic understanding of which approaches work

best in different domains.

Here we evaluate several variants and uncover subtle trade-offs between different

approaches. We explore which properties of the seed set can improve performance,

focusing on heuristics that one can control in practice. As a consequence of this sys-

tematic understanding we have found several opportunities for performance gains. We

also consider an adaptive version in which requests are made for additional membership

labels of particular nodes, such as one finds in field studies of social communities. This

leads to interesting connections and contrasts with active learning and the trade-offs of

exploration and exploitation. Finally, we explore topological properties of communities

and seed sets that correlate with algorithm performance, and explain these empirical

observations with theoretical ones.
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We evaluate our methods across multiple domains, using publicly available datasets

with labeled, ground-truth communities.

3.1 Introduction

There are many settings in which we are interested in accessing or studying a group of

people in a social network, but instead of the full membership of the group we know only

a few examples. A natural goal in this case is to expand these examples into a larger set

that approximates the full extent of the group, and this goal has been the focus of recent

work on seed set expansion in networks. Phrasing the problem slightly informally for

purposes of this discussion, we are given a graph G that contains a group of nodes C

whose identities we’d like to uncover, and we are told the identities of a small subset S

of C. Given a budget k, can we find k additional nodes such that as many of them as

possible come from C?

Examples of the seed set expansion problem are numerous. For example, recent

work studying political activism has started from a small set of representative of each

competing ideology, collected through detailed field work, and then attempted to expand

these representatives into the larger groups that they come from [119]. Recommendation

tools for forming on-line groups have the potential to collect a few initial suggestions

from a user and then produce a longer list of recommended group members. Similarly,

a marketer may want to expand a set of a few interested consumers of a product into a

longer list of people who might also be interested in the product. Seed set expansion has

also been used to infer missing attributes in user profile data [82] and to detect e-mail

addresses of spammers [123]. Nor are the applications limited to social networks; as we

will see below, we could ask similar questions in which we start with a few items such

as products for sale, and we then attempt to use a co-purchase network to expand these

items into a product category that contains all of them.

It is useful to note a few properties of the seed set expansion problem, consistent

with these sources of motivation. First, we focus on cases in which the expansion is

guided by an underlying graph structure — the basic premise is that if a person or item
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v is “tightly linked” in the graph to many members of the group C, then this provides

evidence that v may also be a member of the group. Second, the goal in the seed set

expansion problem as it has been studied in prior work — and the goal we pursue here

— is neither to find the full extent of the group C nor to sample uniformly from it, but

instead to “collect” a fixed number of members from it with as little error as possible.

The present work: Principles for seed set expansion The number of approaches to

seed set expansion has proliferated rapidly, but there is still very little understanding

of the principles through which we can reason about trade-offs between different ap-

proaches or the types of instances on which we can expect good performances. In this

work we seek to begin developing some of the principles underlying the seed set expan-

sion problem. Among the questions that guide our study, we consider the following. Do

certain approaches to seed set expansion produce consistently better results than others,

across a range of domains? Can characteristics of the initial seed set S help us under-

stand when seed set expansion will be effective? And how do structural characteristics

of the group C affect the quality of the solution?

We can go further in our analysis by taking into account the following issue. If

we think about many of the applications that motivate the seed set expansion problem,

there is a potentially rich interaction available between the expansion algorithm and

the “expert” who can recognize members of the group C. Consider for example the

problem of identifying members of political movements noted earlier [119]. Here there

is a domain expert who has provided the initial representatives of a group, and if we

are trying to expand these representative members into a larger set, we may well have

the ability to adaptively query the expert — a few nodes at a time — and make future

choices based on the result of this feedback. There is thus an opportunity to incorporate

such interaction between the algorithm and the domain expert into the formalism of seed

set expansion. Such interaction clearly has a structure similar to work in active learning,

although we should emphasize that unlike traditional work in that domain, we are not

seeking a classification of the full underlying graph, nor do we have a subset of the data

available for training; rather, we want to collect a set of nodes from C based only on the

initial examples S.
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The present work: Overview of results We first consider a wide range of tech-

niques that have been used in prior work for seed set expansion, applying them to three

main datasets: two social networks (a co-authorship network among researchers and the

YouTube social network among its users), and a product co-purchase network in which

the groups are product categories. We find that measures based on PageRank are by far

the most effective. Moreover, almost all of the performance gains from PageRank come

from running just two or three iterations of the PageRank update rule — a finding that

is novel to the best of our knowledge, and consistent with our analysis of where PageR-

ank is achieving most of its relative performance gains over more local neighbor-based

methods, on nodes that are outside the immediate vicinity of the seed set S.

We then consider how properties of the seed set affect performance. In thinking

about trade-offs here, it is useful to consider the interaction between the expansion al-

gorithm and the domain expert discussed above: in that context, our motivation is to

identify how a domain expert should best use their knowledge to compile a seed set of

members. In practice we are highly constrained by those community members of which

a domain expert has knowledge. One natural question is to ask whether performance is

better when S consists of the highest-degree nodes in C or a uniformly random subset

of C. In choosing a large degree seed set, we model a domain expert who returns a

list of the most popular or most famous nodes in the network. In choosing a random

seed set, we model a domain expert who returns a seed set that is representative of the

community, to wit, one potentially consisting of high and low degree nodes. We also

consider the effect of seed set size, exploring a basic trade-off: if the seed set is too large

a fraction of the group, it can be hard to find the remaining members, but if it is too

small, then it is not providing a sufficiently useful set of examples for the full extent of

the group.

We similarly look at trade-offs in the structural properties of the group C, finding

that denser groups — those with a higher ratio of edges to nodes — tend to result in

better performance for seed set expansion.

Finally, we look at different ways of managing the interaction between the algo-

rithm and the domain expert. We find contexts in which regularly interspersing expan-
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Dataset Nodes Edges Communities
DBLP 317080, 1049866, 13477,

authors co-authorship conferences
Amazon 334863, 925872, 151037,

products co-purchased product categories
YouTube 1134890, 2987624, 8385,

users friendship user-defined groups

Table 3.1: The number and substantive interpretation of nodes, edges, and com-
munities in each network. All sourced from [128].

sion steps with queries to the expert can outperform approaches in which the queries

are batched in larger blocks. We also find that for our objective function of collecting

members of C as quickly as possible, asking the expert about nodes on the “margin” of

C can be effective in finding the boundaries of the group, but this benefit is more than

offset by the downside of querying the expert about a greater number of nodes that turn

out not to be in C.

3.2 Setup: data, performance,

algorithms

Data We use network data with ground-truth community membership from the Stan-

ford Network Analysis Project (snap.stanford.edu). Table 6.1 gives a summary of the

datasets used in this paper; see Yang & Leskovec [128] for additional background on

these datasets.

Seed Sets and Performance We are given a graph G that contains a collection of po-

tentially overlapping communities C , and we have an interest in a particular community

C ∈ C . We are given a set of labeled community members S ⊂C. Thus C−S consists

of the unlabeled, not-yet-discovered community members. We have a budget to make a

prediction of size k, and we will call the prediction P. We wish to maximize the recall,
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Figure 3.1: Recall averaged over C 600
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DBLP. The envelopes represent two standard errors centered about the
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|P∩C|/|C−S|, i.e. the fraction of the unlabeled community recovered by the algorithm.

Unless otherwise specified we choose S to be a random subset of C of size |C|/10.

Communities From Table 6.1 we see that there are roughly 104-105 labeled, ground-

truth communities in each dataset. These communities vary in size from 6 to roughly

104. In this paper we focus on the 600 communities closest in size to m3/4, where m is

the size of the largest community; let us call this set C 600
3/4 .1

Stopping criteria Here we model the scenario in which a researcher knows that there

are approximately k community members, and so they select the top k results from their

choice algorithm, A, as the predicted community. That is, we choose a simple stopping

criterion of a fixed number of guesses equal to the size of the central value; for example

on C600
3/4 we fix k = m3/4 and set our prediction P to be the k top nodes according to A’s

ranking. As we will see in Figures 3.1, 3.3.3, and 3.5, the relative performance rankings

are not very sensitive to the choice of k.

This stopping rule has the advantage that it is not sensitive to the topology of the

prediction P, which would be undesirable given that the algorithms we compare produce

communities with a variety of typical topologies (this is discussed in detail in [1]). We

discuss alternate stopping criteria in §3.7.

1

Given the same number of guesses, it would be unfair to compare the recall of an algorithm on a
community of size 10000 with one of size 100. We find that there are 600 communities centered about
this log-space third-quartile all close enough in size that such biases do not taint our results. Rather,
thanks to the large number of moderately sized communities, we are able to estimate performances with
good standard error estimates. In point of fact, good statistical convergence that distinguishes the various
algorithms can be achieved with only 20 communities, and so our consideration of all 600 provides a
large extra margin.
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3.3 Results: prediction algorithms

3.3.1 PageRank’s success

Figure 3.1 shows the recall values for a wide range of algorithms detailed in §3.7 and

the appendix. Variants of PageRank — in which we rank by the stationary probability

of a random walk with restarts originating at the seed set — are the clear winners.

This is consistent with PageRank’s success in other applications, but it is nonetheless

perhaps surprising that it is so much more powerful than other methods that have been

used for this problem. We also note that in two of our three domains, pure unnormalized

PageRank significantly outperforms variants such as degree-normalized PageRank (DN-

PageRank); this poses an interesting contrast to the fact that DN-PageRank rather than

pure PageRank has typically been the preferred method for seed set expansion.

We now consider three questions that suggest insights into the structure of the prob-

lem and how to the use these approaches in practice.

1. Why does PageRank outperform other methods such as neighbor counting?

2. In computing PageRank with the power method, how many iterations (random

walk steps) does it need to take to achieve this high performance?

3. Could variations beyond DN-PageRank and PageRank achieve even better perfor-

mance?

3.3.2 Whom does PageRank find?

In addition to the success of PageRank and its variants in Figure 3.1, it is also striking to

see how PageRank climbs smoothly with k in contrast with neighbor-counting methods

that flatten abruptly as we increase.

Looking into this behavior helps us understand where PageRank gets some of its

power. In particular, we ask which true positives are found by PageRank compared

to Neighbors, categorizing based on whether they belong to ego(S), the set of nodes
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directly adjacent to the seed set S. Neighbor-counting methods cannot effectively use

information about nodes outside ego(S). Is this hindrance the sole factor underlying

PageRank’s advantage over Neighbors?

Figure 3.2 untangles this issue: first, we see that PageRank’s rate of discovery of

members within ego(S) is significantly higher than that of Neighbors; second, we see

that it finds true positives outside the ego at a constant linear rate. So in addition to

having this broad reach beyond the ego, which we expected, PageRank is even better

at identifying which members of the seed set’s immediate neighbors are true positives.

PageRank’s success over neighbor-counting is thus both inside and outside ego(S).

3.3.3 How many steps does it take to get to the community?

Next we consider a question regarding PageRank itself: in computing PageRank with

the power method, how many random walk steps are needed for PageRank to realize its

maximum performance? This is a basic question about PageRank’s iterative nature, and

the concrete performance measures underlying our problem formulation make it natural

to evaluate the question in this context.
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The results in Figure 3.3.3 indicate that after only three random walk steps PageR-

ank’s performance has converged to its upper limit, and it is already close to this limit

after two steps. It is striking that most of PageRank’s power on these networks comes

from just its first few iterations. To appreciate this we consider PageRank’s interpre-

tation at each step and the corresponding performance. 0-step PageRank represents

random guessing. 1-step PageRank is closely related to DN-Neighbors2 — and indeed

the performance curve of 1-step PageRank has the same “flattening out” that stood out

in the performance curve for neighbor-counting, as well as a comparable final perfor-

mance value. 2-step PageRank reaches one step beyond ego(S) and in Figure 3.3.3 we

see that in the transition from 1 to 2 steps PageRank’s performance exhibits a dramatic

increase, nearly reaching its full potential. This indicates that most of the members

found by PageRank are within 2-steps of the seed set. Finally, 3-step PageRank yields

PageRank’s full potential, and t-step PageRank continues at this level as t→ ∞.

3.3.4 Variations on PageRank

To normalize or not to normalize Not to normalize. As mentioned, essentially the

only PageRank-derivative used in the literature for community detection by seed set

expansion has been DN-PageRank [8, 100, 121, 128]. Yet PageRank yields much higher

performance than degree-normalized PageRank in DBLP and Youtube and they reach a

tie on the Amazon network.

In Figure 3.1 we find that in DBLP and Youtube (not pictured) unnormalized PageR-

ank, or simply PageRank, find true community members with greater accuracy than

degree-normalized PageRank does. This performance increase is robust after control-

ling for and considering all community sizes, and it is true in both “easy to detect” and

“hard to detect” communities. Indeed, PageRank is best or tied for best on roughly 80%

of the communities, on an instance-by-instance basis.

On the Amazon product network, in contrast, PageRank and DN-PageRank reach a

2

But instead of normalizing by the target’s user degree, the normalization happens with respect to the
outgoing nodes
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Figure 3.3: Comparison of PageRank performance for a variety of walk lengths.
For each community the same random seed set was used as the walk
length was varied. Results are averaged over C 600

3/4 and the envelopes
represent two standard errors centered about the mean.

statistical tie. It would be interesting to understand the differences in domain that lead

to this, including the natural contrast that Amazon is a network on items for purchase,

rather than a social network on people as in both DBLP and YouTube.

A continuum: degree-normalization to amplification Finally we note that DN-

PageRank and PageRank are two special cases of using the sorting metric ρ · dx with

x = −1 for normalization and x = 0 for pure PageRank. It’s therefore natural to con-

sider the performance for all values of x, and we show this for all three datasets in Figure

3.4.

As we see there, the optimal exponents for DBLP and YouTube are both close to 0,

indicating the power of unnormalized PageRank on these two social networks, whereas

in Amazon the results were statistically indistinguishable for exponents x ∈ [−1,0]. It

is interesting to note that the optimal exponent x in DBLP is in fact slightly positive —

in other words, rather than normalizing PageRank, the optimal strategy is to inflate it
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slightly. This can perhaps be motivated by the fact that many of the false positives being

recovered by the algorithm are low degree nodes.3

3.3.5 Combining Multiple Measures

A natural extension of the current framework is to treat each of these network measures

as a feature, and to choose nodes for C by training a classifier on the labeled examples

and classifying the remaining nodes each according to their corresponding feature vec-

3

Who are the false positives?
Note that because the communities in these datasets are overlapping, the nodes recovered by the algo-

rithm should really be classified as being one of three types: true positives, false positives, and neutral
positives. Neutral positives are nodes that are in some community together with the seed node, simply not
in the community of interest C. In that sense, when the algorithm recovers a neutral positive it is accu-
rately discovering information about the graph’s community structure. If we relabel the original group of
false positives into neutral positives or false positives, we find that in DBLP the ‘real’ false positives have
a much lower average degree and very low variance in degree compared to the neutral or true positives.
This distinction is not evident if one only considers the original binary labeling of being in the target
community or not. That PageRank is making most of its big mistakes on low-degree nodes motivates the
slight degree-amplification that we see is optimal for DBLP in Figure 3.4.

49



tor. We tried this using a support vector machine (SVM) on a feature in which node v’s

features are the values of the network measures (PageRank, Neighbors, etc.) evaluated

on v. For example, for a simple classifier that combines Neighbors and PageRank, the

feature vector for a node u was [ego(u),ρ(u)] and the feature matrix used to train the

classifier was (|S|+ |N|)×2. The result is interesting in the negative direction: we were

not able to realize any performance gains by combining multiple measures. Rather,

the higher-dimensional classifiers performed only as well as its best-performing single-

dimensional classifier submember. For example, the 2D SVM consisting of PageRank

and Neighbors performed as well as PageRank, and the 2D SVM consisting of Neigh-

bors and BinomProb performed as well as Neighbors.

To construct the classifier we build a feature vector for each of the PageRank-based

and Neighbor-based methods, e.g. all the algorithms except Conductance and Modular-

ity. (The latter were excluded because they do not assign attributes for every node in the

graph – only for ones local to the seed set.) We build the feature vectors by seeding each

of the algorithms with 25% of the input nodes; we reserve such a large fraction so as

to emphasize teaching the algorithm about the attributes of ‘hidden’ positive members,

rather than seeded ones (which will typically have much larger values of, for example,

PageRank). To choose the C value for the SVM classifier we perform 3-fold cross vali-

dation with a 75/25 train/test split. We consider linear and radial basis function kernels

and normalize all features to have unit ||L2|| norm before training.

Negative examples and information Note that to train the SVM we require both pos-

itive and negative examples, and so for the learning framework we introduce the notion

of a negative seed set, T . Much like S, the seed set of known community members,

T consists of nodes that are known from the outset (e.g. thanks to a domain expert’s

knowledge) to be non-members. To choose the negative seed set we tested the same

heuristics as we did for the positive seed set, namely random nodes as in §3.2 and higher

degree nodes as in see §3.4.1.

The introduction of the negative examples lead us to consider the possibility that the

information about their non-membership could help improve classification. For exam-

ple, just as we expect nodes tightly knit with the positive seed set S to more likely be
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members themselves, we expect nodes tightly knit to the negative seed set T to be less

likely to be members.

We used SVMs to empirically verify both of these intuitions. That is, we seed

PageRank with the negative seed set T and call the resulting metric on the nodes

Negative-PageRank. For the purposes of this discussion, we call the original PageR-

ank seeded with S Positive-PageRank. We then train an SVM using these two attributes

as node features, and find that the SVM’s weight vector has a positive coefficient for the

Positive-PageRank feature and a negative coefficient for the Negative-PageRank feature,

as expected.

However, the introduction of Negative-PageRank ultimately had no significant ef-

fect, neither improving nor hurting the performance of the classifier. The same is true

regarding analogous versions of Negative-Neighbors and Negative-BinomProb).

3.4 Results: seed sets

Having looked at the relative performance of different algorithms for seed set expansion,

we now consider the effect that different structural properties of the seed set itself can

have on performance.

3.4.1 Heuristics for seed set selection

We begin by considering the effect of the node degrees in the seed set. In Figure 3.5

we see that for seeding PageRank it is highly advantageous to use a random positive

seed set compared with one consisting of high-degree nodes. Though we have not pic-

tured it here, this result holds for all domains, community sizes, and high-performing

algorithms. It is true for the neighbor counting metrics as well (with the exception of

binomial probability), however for the neighbor counting metrics the improvement is

not as striking.

In many settings we should expect to have relatively little control over which mem-
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bers are in the seed set: the community is hidden to us and the seed set consists of those

members for whom we happen to have labels. However, the particular contrast we ana-

lyze here, between random and high-degree nodes, corresponds naturally to two distinct

scenarios for interacting with a domain expert: if the expert knows the most popular or

most famous nodes in the community, this would lead to a high-degree seed set, while if

the expert returns a more representative seed set, this would be modeled by a set consist-

ing of random nodes. Some experience indicates that experts will often have a tendency

to identify high-degree members, which, we see here, is not in fact the most effective

way to gather a seed set for further expansion.

This lesson is an important heuristic to consider. Given that our recommendation is

to use PageRank over more local methods when possible, it would also be advantageous

for domain experts to heuristically search for nodes with a more diverse degree distri-

bution, rather than searching for and validating the membership of those with highest

degree. Note that even when this is not possible, and PageRank is seeded with a large

degree seed set, it still outperforms Neighbors as a method.
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3.4.2 Seed set size and performance

In Figure 3.6 we examine the algorithm’s performance as a function of the fraction of

the community C used in the seed set S, |S|/|C|. We evaluate performance using two

measures of recall: the relative recall |P∩C|/|C−S|, and the absolute recall |P∩C|/|C|.
We find that the relative recall eventually plateaus as |S|/|C| is increased whereas the

absolute recall has an interior maximum.

Intuitively we expect this interior maximum in absolute performance: by starting

off with very little of the community C we will be lacking sufficient information about

C and will find it difficult to accurately characterize and identify additional members.

In the other extreme, if we begin with all but a few of the members, we are inherently

limited in the number of additional members we can discover. Thus we expect there to

be some internal maximum in absolute performance, as we see at |S|/|C|= 0.1 in Figure

3.6.
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For relative recall, in contrast, we find that performance simply plateaus after a cer-

tain point, meaning that the additional information is neither helping nor hindering our

relative rate of discovery.

3.4.3 Internal seed set structure

Finally, we consider how well the seed set is connected both internally and to the (un-

observed) remainder of the community. Although we have seen that seed nodes with

overall high degree point to reduced performance, we find here that performance is sig-

nificantly higher when a large fraction of the seed nodes’ edges are to nodes that lie in

the community. Figure 3.7 (right panel) shows the performance in terms of this fraction;

the left panel of the figure establishes a related point, that performance is better when

the community C has a high ratio of internal edge density to external edge density.

These findings highlight several points. First, it suggests that in practice one can

form an a priori estimate of the success of seed set expansion on a per-instance basis,

based on structural properties of the seed set and/or the community, if one has estimates

about these edge density parameters. Second, the strong relation to performance forms

an interesting connection to mathematical work on community detection. The literature

has emphasized that a good mathematical definition of a community is a set of nodes

whose internal edge density is higher than its external one. It is interesting then that in

these communities which are defined only by a shared qualitative property of member

nodes that this canonical metric emerges as being correlated with high performance.

Finally, as with some of our earlier findings about seed set structure, we cannot

necessarily control the seed set properties with which we make our prediction. But it

does suggest a heuristic in which one can try to elicit from the domain expert a set of

seed nodes that have good internal connectivity into the rest of the community, relative

to their connectivity to the rest of the graph. The community results are a reminder

that when searching for nodes in a community we should only expect high prediction

accuracy if we can also expect that the members for whom we are searching form a

densely connected subset of the graph.
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3.5 Richer Interactions for

Producing Labels

We have been thinking about seed set expansion in terms of interaction with a domain

expert who is able to provide us with an initial set of examples. In this section we enrich

this interaction by asking the expert to initially label some number of selected nodes

beyond the seed set before we make further guesses about nodes likely to belong to

the community. Thus, there are three types of nodes here, in order: (i) the initial seed

set; (ii) the nodes explored in the interactive phase, when the expert is being actively

queried; and (iii) the nodes explored in the non-interactive phase, when a set of nodes is

guessed and only evaluated afterward for membership in C.

This second, additional round of interaction introduces several further questions. (1)

How many nodes should be labeled in the interactive phase? We’ll call this quantity the

query budget. (2) Which nodes should be labeled in the interactive phase? We’ll call

this function the strategy. (3) Should the nodes in the interactive phase be labeled all at

once? Or is there a performance gain to be had by introducing a feedback loop, in which
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at every iteration b nodes (strictly fewer than the query budget) are chosen according to

the strategy, labeled, and used to refine the strategy input on the next round?

Finally, there are two ways of evaluating the algorithm, and we will consider both.

One approach, in keeping with the initial motivation for seed set expansion, is to say

that all nodes after the initial seed set count toward the performance of the algorithm,

including those in the interactive phase. The other approach, more akin to a training/test

split, is to say that the nodes in the interactive phase are purely for calibration, and

the performance of the algorithm is only evaluated by its success in the non-interactive

phase.

The former case is natural for settings where the goal is simply to collect members

of the community — for example, in the case of a marketer who simply wants as large a

set of likely purchasers as possible. In this case, there is an interesting trade-off between

collecting nodes likely to belong to C in the interactive phase versus asking the expert

about nodes that are less likely to belong to C, but which will help refine the boundary

of C. This will be one of the main trade-offs we explore in this section.

Computational experiments We fix the size of the query budget to be that of the size

of the seed set, that is, 10% the size of the community. We now focus on questions (2)

and (3) above.

We consider four heuristics for choosing which nodes to query based on the values

of one of our classifiers for membership in C: (1) nodes on the boundary of the decision

function; (2) nodes most likely to be positive, as predicted by the classifier; (3) nodes

most likely to be negative, as predicted by the classifier; (4) random nodes. We model

this selection process by viewing (1)-(4) as having the associated probabilities (p0, p+,

p−, p∗) = p, and in each step of the interactive phase selecting, for example, b+ = p+b

nodes predicted to be positive. We measure performance throughout this 3-dimensional

parameter space (p0 + p++ p−+ p∗ = 1). We start with two observations that allow us

to simplify our discussion and exploration of this parameter space:

1. It is never advantageous to have p∗ > 0, that is, there is no benefit to querying
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random nodes instead of putting that probability mass on some other dimension.

This is not surprising and in fact this parameter was introduced as a baseline.

2. It is never advantageous to have p− > 0, that is, there is no benefit to querying

nodes that are most certainly not in the community. While this is not very surpris-

ing we did find it worth considering the possibility that having very clear examples

of what community members do not look like could improve the classifier.

These observations imply that, for the scenarios we have defined, p− > 0 and p∗ > 0

are both dominated by strategies with p− = p∗ = 0. Thus we are left with a one-

dimensional parameter space, 1 = p++ p0. In Figure 3.8 we explore how the perfor-

mance is affected by labeling boundary nodes (via p0), positive nodes (via p+), or some

combination thereof. We find that the optimal strategy depends on how performance is

being measured:

1. If nodes found in both the interactive and non-interactive phases are counted to-

wards performance, then p+ = 1 is optimal.

2. If only nodes from the non-interactive phase count towards performance , then

querying all nodes on the classifier boundary is optimal (p+ = 0).

In the next section, we will see how the trade-off between these two results is re-

flected in the contrast between two different ways of formulating the problem of identi-

fying nodes in a community.

Note, however, that when the interactive phase does not count towards performance,

only a small performance gain is had by p0 = 1 compared to p0 = 0, though the gain

is statistically significant (compare the performance of the lower curve on the left and

right extremes in Figure 3.8). In contrast, when the goal is to maximize the number

of community members collected (the upper curves in Figure 3.8), p+ = 1 is a clearly

dominant strategy.

Finally we address question (3), whether there is a performance gain to be had by

introducing a feedback loop in the labeling stage. We find that it is advantageous to use
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the classifier, not including any positive examples recovered during
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include true positives recovered during both the interactive and non-
interactive phases.

smaller block sizes when nodes found in the interactive phase count toward performance

and the strategy p+ = 1 is used (which is the optimal one for this case). In all other cases

we find that the performances are statistically indistinguishable. The performance gain

in the first case is all had in the interactive phase; that is, smaller block sizes do not

improve the final classifier, but they do yield improved likelihood of finding positive

nodes in the interactive stage. For the other scenarios there are either few positive nodes

to be found by that strategy (i.e. querying on the boundary) or the nodes found in this

stage do not count towards performance and so are irrelevant for evaluation purposes.

This is also true in both cases that we discussed above: querying the most positive nodes

(p+ = 1) and querying on the boundary (p0 = 1).
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3.6 Seed Set Expansion: Theoretical Results

If we abstract beyond the specific methods used for seed set expansion, our discussion

thus far has highlighted a number of themes implicit purely in the formulation of the

problem itself — the difference between collecting a fixed number of nodes from a

group C and finding the full set C; the trade-off, as in the previous section, between

exploring in the vicinity of nodes known to be in C versus exploring near the estimated

boundary of C; and the role of negative information, about non-membership in C.

We now consider a theoretical framework that seeks to highlight how these trade-

offs and contrasts work across the different problem formulations. At the top level, it

will be based on the distinction between the following two problems: enumeration, in

which we want to find the full set C; and seed set expansion, in which we want to collect

“many” members of C but not the full set.

Basic Set-up To set up these problems, let us assume we are given an undirected n-

node graph G = (V,E), and a subset C ⊆ V is specified by a membership oracle that

takes a node v ∈V and reports whether or not v ∈C. We are also given a seed set S⊆C

of nodes that we know at the outset to belong to C. Finally, we will make the assumption

that C is a connected set of nodes in G.4

In these terms, enumeration is now the problem of finding all the nodes of C using

as few queries as possible to the membership oracle. Seed set expansion, in contrast is

the problem in which, given a “budget” k, we want to find as many nodes of C− S as

possible using at most k queries to the membership oracle.

A Motivating Example To get an initial picture of the contrasts between these two

problem formulations, let’s consider them on an extremely simple graph, the n-node

4

We view this as a reasonable approximation to the real problem in practice, since many of the groups C
we are interested in studying will have a giant component C̃⊆C. Unless we have seed notes in the smaller
components, it is not reasonable in any case to try discovering them; thus, we can view our problem as
operating on this giant component. Indeed, some formulations of the seed set expansion problem have
explicitly described it as searching for a specific component of the group.
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cycle, which just consists of nodes v0,v1, . . . ,vn−1 such that vi is connected to vi−1 and

vi+1 (addition modulo n). The group C we are trying to discover is a connected subset

of the cycle (and hence a contiguous interval of nodes on it).

Suppose we are given a single seed node v j ∈C. Then the optimal algorithm for the

seed set expansion problem it to begin querying nodes for membership in C starting at

v j and moving in a clockwise direction. The first time we come to a node v` < C, we

know we have fallen off one end of the interval defined by C. We then go back to v j and

do the same thing in the counter-clockwise direction. In this way, either we discover all

of C (if our budget k is large enough), or else we collect nodes at almost full efficiency;

aside from the node v`, every node we query is in C, and so we collect at least k− 1

nodes with our budget of k.

An efficient algorithm for the enumeration problem has a quite different structure.

First, for the enumeration problem it is natural to make an extra assumption that we

didn’t need for the seed set expansion problem — that we also know a node z < C.

(Otherwise, we would have to begin with an essentially brute-force search for a non-

member of C.) Given s ∈C and z <C, there are two paths of C that run between them:

one clockwise from s to z, and the other one counter-clockwise from s to z. We perform

binary search on the first of these paths to find a pair of adjacent nodes (v,w) such that

v ∈C and w <C. We do the same on the other path, and thus find the two endpoints of

the interval defining C in O(logn) queries to the membership oracle.

Contrasting algorithms Let us now contrast the approaches to these two problems.

When k� logn, seed set expansion collects nodes of C with almost no waste (i.e. almost

no querying of non-members of C), while the efficient algorithm for enumeration could

spend its first Ω(logn) without ever identifying another member of C. On the other

hand, when k� logn, seed set expansion is collecting nodes of C one-by-one, whereas

after the initial investment of O(logn) probes, the algorithm for enumeration implicitly

knows all of C even though it hasn’t visited all of its nodes explicitly.

These two contrasting strategies also relate to some other themes from earlier sec-

tions. As in the previous section, the seed set expansion algorithm does well by focusing
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attention near the nodes of C that it already knows about, whereas the enumeration al-

gorithm focuses attention on farther-away nodes as it attempts to find the boundary of

C. And negative information is not particularly relevant for the seed set expansion algo-

rithm, whereas it is crucial for the efficiency of the enumeration algorithm — a reflection

of the role that negative information played in our empirical results as well.

Thus far, however, these insights are all based on an extremely simple instance of

the problem — finding a contiguous interval on the cycle. Do the same contrasts apply

in other graphs? We now prove two theorems establishing that in fact they do, in a

very strong sense: for every graph G, one can obtain contrasting and asymptotically

optimal bounds for seed set expansion and enumeration that naturally extend the results

we obtained for the simple case of the cycle.

We stress that in this theoretical analysis, we are focusing on comparing the conse-

quences of the two problem formulations, seeking algorithms for each that are asymp-

totically optimal in the worst case, rather than trade-offs among specific heuristics for

the problems.

General theorems We continue with the set-up defined at the outset, with an arbitrary

graph G = (V,E), a connected set of nodes C ⊆V that we want to discover, and a given

seed set S ⊆ C. A key structure for analyzing our algorithms will be the set of edges

δ (C), consisting of all edges that have one end in C and the other end not in C; a central

quantity for parametrizing the performance of the algorithms will be c = |δ (C)|.

We begin with the generalization for the seed set expansion problem, essentially

showing that there is an algorithm that can collect at least k− c nodes of C. This is the

same sense in which the algorithm on the cycle was collecting nodes a perfect efficiency

except for the queries in which it fell off the end of C.

Theorem 1. Given a budget of k queries to the membership oracle, there is an algorithm

that finds at least min(k− c, |C− S|) nodes in C− S. (In other words, it either finds at

least k−c nodes of C−S, or else it finds all of C−S.) This is asymptotically tight in the

worst case.
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Proof. We show that the guarantee in the statement of the theorem will be achieved

by any algorithm with the following structure: for k iterations, look for a node v ∈ C

connected by an edge to a node w whose membership in C is not yet known, and query

w. If at any point before the k iterations are over, there are no such pairs (v,w), then the

algorithm can stop and declare that it has found all of C.

Let us first verify why the algorithm is correct when it concludes it has found all of

C. Since G[C] is connected, as long as some nodes of C have not yet been found, there

must exist an edge (v,w) such that v,w ∈C, with node v already known to belong to C

and node w not yet known to belong to C. Hence as long as all of C has not yet been

found, the algorithm can execute another iteration.

Now, in each of the k iterations for which the algorithm does not discover a new

node in C− S, it instead finds an edge (v,w) ∈ E for which v ∈ C and w < C. Thus

(v,w) ∈ δ (C). Since there are only c edges in δ (C), there can be at most c iterations

in which the algorithm does not find a new node in C− S; in the remaining iterations,

at least k− c in total, it must discover a new node in C− S, and this establishes the

performance guarantee of the algorithm.

To see why the bound of k− c is tight in the worst case, consider the star graph,

equal to a tree with a central node v connected to n−1 other nodes w1,w2, . . . ,wn−1. If

S = {v} and C consists of v plus all but c of the leaf nodes, then in the worst case the

algorithm will discover all c nodes not in C before moving on to any nodes in C−S.

We now give the contrasting generalization for the enumeration problem — that all

of C can be found with O(c logn) queries. For this algorithm, as in the case of the cycle,

we need to assume the presence of negative information; in particular, we assume there

is a set of nodes Z ⊆ V −C that is rich enough in its coverage that Z contains at least

one node from each component of G−C.

Theorem 2. Given seed set S ⊆ V and negative set Z ⊆ V satisfying the assumptions

above, there is an algorithm to find all the nodes of C using at most O(c logn) queries

to the membership oracle. This is asymptotically tight in the worst case.

Proof. The algorithm works as follows. Let s be any node in the given set S ⊆ C; we
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say that an s-Z path is any path whose first node is s and whose last node belongs to Z.

Edges will get marked during the execution of the algorithm; initially all edges start out

unmarked. While there is an s-Z path P in G consisting entirely of unmarked edges, we

perform binary search over the ordered sequence of nodes on P to find an edge (v,w) on

P for which v ∈C and w <C. We then mark this edge (v,w). This is one iteration of the

algorithm, and it uses O(logn) queries to the membership oracle in order to perform the

binary search.

How many iterations can there be? Each iteration marks an edge in δ (C) that was

previously unmarked; since |δ (C)|= c, there can be at most c iterations. It follows that

in total the algorithm performs at most O(c logn) queries.

Let F be the set of marked edges when the algorithm terminates, and let U ⊆ V

be the connected component of G−F that contains the node s. We claim that U = C.

Indeed, suppose there were a node u ∈C such that u <U . Then since G[C] is connected,

there is an s-u path consisting entirely of nodes in C, and hence using no marked edges.

This contradicts the assumption that u <U . Conversely, suppose there were a node u∈U

such that u <C. Let z be a node of Z that belongs to same component of G−C that u

does. There is a u-z path Q such that all nodes belong to V −C; since each marked edge

contains a node of C, there are no marked edges on Q. Concatenating Q with an s-u

path using no marked edges, we get an s-z path using no marked edges, contradicting

the termination of the algorithm.

These arguments show that C ⊆U and U ⊆ C, so U = C and hence the algorithm

produces the correct output set C.

Finally, we argue that there exist instances with a graph G = (V,E) and a set C ⊆V

for which Ω(c logn) queries are required. One such graph is a collection of c parallel

paths each of length n/c, that each run from s to z, but which otherwise have no nodes

or edges in common. Any set C obtained by choosing a prefix of each s-z path, and

taking the union of these c prefixes, will have s ∈C and z <C, with δ (C) = c. There are

Ω(nc) such sets C, and hence any algorithm that uniquely identifies one of them through

a sequence of yes/no questions to an oracle must make at least Ω(lognc) = Ω(c logn)

queries in the worst case.
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3.7 Related Work

The seed set expansion problem has its roots in a number of overlapping areas, including

the problem of identifying central nodes in social networks [53, 63] and finding related

and/or important Web pages from an initial set of query results [65, 91].

In particular, the PageRank algorithm broadened from its initial focus on Web search

[91] to also include methods for finding nodes “similar” to an initial root, by starting

short random walks from the root and seeing which other nodes were likely to be reached

[56]. Spielman & Teng developed methods that started with a seed node and sorted all

other nodes by their degree-normalized PageRank with respect to this seed [106]; they

also introduced ideas based on truncation of small values, leading to a method known

as PageRank-Nibble. Anderson & Lang and Andersen et al. built on these methods to

formulate an algorithm for detecting overlapping communities in networks [7, 8]; in

our evaluation, their method serves as our version of DN-PageRank, short for degree-

normalized, personalized PageRank. DN-PageRank was adopted by Leskovec et al.[77]

and Yang & Leskovec for global and local community detection. In a large comparison

study they established DN-PageRank as competitive with METIS [61], a sophisticated

and popular graph partitioning algorithm. Finally, Abrahao et al. observe that from

among approximately ten popular community detection algorithms, ground-truth com-

munities are structurally most similar to the communities discovered by random walk

methods [1].

In parallel with the development of PageRank-based methods, another line of work

explored methods for seed set expansion by adding nodes to a growing community (or

removing them) if a target measure such as conductance or modularity is improved by

doing so. Clauset [23] used this idea by adding single nodes to increase modularity; Luo

et al.[79] allowed for addition and deletion of larger sets; and Mislove et al.[82] used

greedy node addition to reduce conductance.

Finally, a number of approaches evaluated nodes based on the number of neighbors

they had in and out of the community, adding nodes to the community when they op-

timized a function of these two quantities. Bagrow [11] did this for a measure called
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outwardness, defined as the degree-normalized difference between neighbors inside and

outside the community. Mehler & Skiena [81] used several variations of neighbor count-

ing methods for seeded community detection, the main ones being pure neighbor count,

neighbor ratio, and binomial probability of neighbor distribution. More recently in 2013

Weber et al. used another variation of a neighbor-counting metric to infer the political

ideology of Twitter users, based on which community a user retweeted more frequently.

In an analysis of the effect of seed-set structure, Whang, Gleich, & Dillon [121]

systematically compared several sophisticated approaches for choosing the seed sets

with which to seed PageRank-based measures for community detection. Their methods

outperform existing sophisticated methods, but do not significantly outperform the use

of random nodes.

Finally, essentially all seed set expansion algorithms need to make a decision about

the choice of stopping criterion — when does one stop expanding the set? Such a

criterion can be treated relatively independently from the choice of expansion rule. An-

dersen & Lang [8] and Yang & Leskovec [77] choose the first nodes that represent a set

with a locally minimal conductance (given that additions happen in the order induced

by sorted, DN-PageRank). Mehler & Skiena continue until the mining rate of reserved

labeled nodes passes below a certain threshold; Bagrow [11] looks for transitions and

cusps in the modularity that one expects at a community border. Others such as Mis-

love et al. [82], Luo et al. [79], and Clauset[23] greedily add and subtract nodes from

the predicted community until a local maximum is reached. In 2012 Yang & Leskovec

used PageRank-type measures to empirically compare different topological parameters

to identify community boundaries in real-world data sets. They found that the result was

somewhat domain dependent, but that either the set’s conductance or its triad participa-

tion ratio were, most reliably, high accuracy stopping rules.

3.8 Conclusion

The seed set expansion problem has been gaining visibility as a general-purpose frame-

work for identifying members of a networked community from a small set of initial
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examples. But subtle trade-offs in the formulation and underlying methods can have a

significant impact on the way this process works, and in this paper we have identified

several such principles about the relative power of different expansion heuristics, and

the structural properties of the initial seed set. Our investigations have involved analy-

ses of datasets across diverse domains as well as theoretical trade-offs between different

problem formulations.

There are a number of interesting directions for further work. In particular, the power

of PageRank-based methods raises the question of whether these are indeed the “right”

algorithms for seed set expansion, or whether they should be viewed as proxies for a

richer set of probabilistic approaches that could yield strong performance. Second, the

contrast between seed sets consisting of random nodes versus those consisting of high-

degree nodes suggests that deeper structural contrasts may be present as well; a richer

understanding of the seed sets that lead to the most effective expansions to a larger com-

munity could provide useful insights for the application of these methods. And finally,

as noted earlier in the paper, nodes in a network tend to belong to multiple communi-

ties simultaneously, and a robust way of expanding several overlapping communities

together is a natural question for further study.

3.9 Summary of algorithms

Here we provide brief summaries of the algorithms used in the main text; for more

details see citation. We distinguish between three types of algorithms:

Neighbor counting (a) Outwardness, the degree-normalized difference between the

number of edges a node has within and without of the labeled community [11];

(b) Neighbors, the number of neighbors one has in the labeled community [81];

(c) DN-Neighbors, the degree-normalized version of Neighbors [81];

(d) BinomProb, the binomial probability that a node is in the community, given the

number of neighbors it has in the labeled community [81].
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Greedy structural optimization (e) Modularity, greedy algorithm: in each step add

the node that yields the highest increase in the set modularity of the predicted commu-

nity, [23];

(f) SetModularity, greedy algorithm: in each step add the nodes that yield a positive

increase in set modularity, then remove the set of all nodes whose removal precipitates

an increase, [79];

(g) Conductance, greedy algorithm: in each step add the node that yields the most neg-

ative change in conductance, [82].

PageRank (h) PageRank, implemented here with personalization and computed using

the power method and jumpback probability α = 0.10, see [56] or 5 for implementation

details. For comparison with [7, 128] we also implemented a version with ε truncation

(semi-accurate estimate of PageRank), however we found that below a ε ≈ 1/|G|) there

were no significant differences in performance, and past this ε , the performance steeply

plummets to approach that achieved by random guessing.

(i) DN-PageRank, the degree-normalized version of PageRank, [106], also see footnote
5.

5

Let ρ t be the tth random walk vector given that the initialization set S is the set of known community
members.

Let χ(S) be an indicator vector where χi(S) = 1 if i ∈ S and 0 otherwise. Let A be the adjacency
matrix, where Ai j = 1 if j links to i and 0 otherwise. The degree of node j is given by d j = ∑i Ai j.
The random walk is initialized with ρ0 = χ(S)/|S|. In step t +1 each node i distributes αρ t

i probability
mass uniformly over the seed set S and (1−α)ρ t

i probability mass over its neighbors. The corresponding
probability transition matrix M(S) is:

Mi j(S) = α
χi(S)
|S| +(1−α)

Ai j

d j
.
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CHAPTER 4

BLOCK MODELS AND PERSONALIZED PAGERANK

This chapter is written in collaboration with Johan Ugander and Jon Kleinberg and is

currently in preparation for publication.

Methods for ranking the importance of nodes in a network have a rich history in

machine learning and broadly across domains that analyze structured data. A recent

line of work has formalized the evaluation of these ranking methods though the seed

set expansion problem in networks: given a seed set S of nodes from a community of

interest in an underlying graph, can we expand it to find the rest of the community? In

this work we start from the recent observation that the most powerful techniques for

this problem, personalized PageRank and heat kernel methods, operate in the space of

landing probabilities of a random walk rooted at the seed set, ranking nodes according

to different weighted sums of the landing probabilities. However, both weight schemes

have previously lacked an a priori relationship to the actual seed set objective. In this

work we develop a principled framework for evaluating ranking methods by studying

seed set expansion applied to the stochastic block model. We derive the optimal gradient

for separating the landing probabilities of the two classes in a stochastic block model,

and find, surprisingly, that it is asymptotically equivalent to personalized PageRank for

a specific choice of the personalized PageRank parameter α that depends on the param-

eters of the stochastic block model. This connection provides a novel formal motivation

for the success of personalized PageRank in seed set expansion and node ranking gen-

erally. We use this connection to propose more advanced techniques that incorporate

higher moments of landing probabilities; we show that this strengthening yields much

better results for stochastic block models, and for real-world data it is competitive with

and in some cases outperforms the strongest available heuristics for the problem.

The challenge of contextually ranking nodes in a network has emerged as a problem

of canonical significance in many domains, with a particularly rich history of study in

social and information networks. An active line of work has recently focused on the

problem of seed set expansion in networks [8, 11, 67, 81, 100, 121, 128], providing a

particularly clean version of this general challenge.
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The premise underlying the seed set expansion problem is a natural one: We are

given a graph G representing some form of social or information network, and there is a

hidden community of interest that we would like to find, corresponding to an internally

well-connected set of nodes. We know a small subset S of the nodes in this community,

and from this “seed set” S we would like to expand outward to find the rest of the com-

munity. This problem arises in a wide range of domains, including settings where we are

trying to rank web pages in relation to other web pages, to identify a social group from

a set of example members provided by a domain expert, or to help a user automatically

populate a group they are defining in an online social-networking application.

A recent focus in the work on this problem has been the power of approaches based

on random-walk methods, including versions of personalized PageRank [48, 56, 67] and

physical analogues based on the heat equation for graphs [21, 66]. These techniques can

be viewed as operating on the following quantities: for each node v in the graph, and

each number of steps k, we let rv
k denote the probability that a random walk on the graph

ends up at v after exactly k-steps, starting from a particular seed node in S (or a node

chosen uniformly at random from S). Methods based on PageRank and heat kernels then

combine these values {rv
k} using particular functional forms as discriminant functions:

they produce a “score” for each node v, with the structure score(v) = ∑
∞
k=1 wkrv

k for co-

efficients {wk}, and the seed set is expanded by considering nodes in decreasing order of

their scores [66, 67]. Geometrically, these rankings amount to sweeps through the space

of landing probabilities with hyperplanes normal to some vector, where personalized

PageRank and heat kernel amount to two different choices of normal vectors.

These methods are elegant in their formulation and also appear to be both quite

powerful as well as scalable [59, 66, 67]. At the same time, their success leaves open

a number of very basic questions. In particular, if we think of the landing probabili-

ties {rv
k} over nodes v and steps k as providing us with a rich set of features relevant

to membership in the community of interest, then it becomes clear that personalized

PageRank and heat kernel formulations are simply specific, and apparently arbitrary,

ways of combining these features using hand-constructed coefficients {wk}.
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Motivations for the specific form of these measures have come from several domains.

For personalized PageRank, the random surfer model [91] proposes a justification in the

context of Web page ranking by arguing that it agrees with the landing probabilities of a

user who navigates the Web by randomly clicking on links and returning to their starting

point with some probability. Closer to the current context, both personalized PageRank

and heat kernel methods have been the subject of Cheeger-type results [7, 22] relating

their output to the structure of sparse cuts in the underlying graph; and recent work has

related personalized PageRank to solutions of problems with min-cut objectives [44].

Even here, however, there has not been an argument that any of these measures are

optimally combining the random walk landing probabilities under a specific objective,

nor a direct connection between any of the these measures and the problem that seed

expansion seeks to solve.

Is there a principled reason why the expressions for PageRank or the heat kernel

represent the “right” way to combine the information coming from random walks, or

could there be better approaches? And is there a formal framework available for deriving

or at least motivating effective ways of combining random walk probabilities? Given the

diverse and important applications where PageRank and heat kernel methods have seen

successes, we consider a broader examination of the space of methods for combining

available random walk information, appreciating that the approaches in existing work

are simply particular points in that space.

The pivotal observation we pursue in this work is that a basic model of separable

structure in graphs known as the stochastic block model [50] can be used to derive

principled methods for ranking nodes in the space of landing probabilities. We focus our

attention on a two-block stochastic block model, where one block of nodes corresponds

to the community of a labelled seed set, while the other block of nodes corresponds to

its complement, the remainder of the graph. In this setting the problem of finding the

hidden community of interest has a correct answer with respect to an underlying graph

generation model, and hence methods for combining landing probabilities of random

walks can be evaluated according to their ability to find this answer.
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For this two-block stochastic block model we make the surprising observation that

the optimal weights for sweeping between the centroids of the landing probabilities for

the two blocks is asymptotically concentrated (for large graphs) on the weights of per-

sonalized PageRank, for a specific choice of the PageRank parameter corresponding to

parameters of the stochastic block model. This connection between personalized PageR-

ank and stochastic block models is a novel bridge between two otherwise disconnected

literatures, and gives a strong motivation for using personalized PageRank in contextual

ranking and seed set expansion problems.

Beyond merely geometric rules, we observe block models can be used to propose

more advanced scoring methods in the space of landing probabilities, and our analysis

points to important ways in which personalized PageRank can be strengthened. Al-

though its geometric gradient is optimally oriented with regards to the landing probabil-

ity centroids, personalized PageRank does not account for the variance or covariance of

these landing probabilities, e.g. how the 2-hop landing probabilities from a given seed

correlate with the 3-hop landing probabilities. We derive weights that correctly incor-

porate these variances and covariances and we show that relative to the stochastic block

model benchmark, this new family of measures significantly outperforms personalized

PageRank and the other techniques (including heat kernel methods).

Finally, we take our new methods to real-world data with known community struc-

ture. We find that the performance of our more advanced methods is closely comparable

to PageRank and heat kernel methods for identifying small fractions of the seed com-

munity, and we outperform these heuristics for finding large fractions of the community.

This success suggests that methods based on principled foundations can match and, for

some important parts of the problem space, outperform the leading heuristics for seed

set expansion.

4.1 Discriminant Functions for Stochastic Block Models

In this section we present principled derivations for how to score nodes of a graph in the

space of random walk landing probabilities when the underlying graph comes from a
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stochastic block model. We term the scoring functions we derive discriminant functions,

a phase coined by Fisher to describe functions for dichotomous classification [40].

The stochastic block model [50], also known as the planted partition model [24,

36], is a distribution over graphs that generalizes the Erdős-Rényi random graph model

G(n, p) [37] to include a planted block structure. It can be described in terms of the

following process for constructing a random graph G = (V,E). There is a partition of

the nodes into k disjoint sets (blocks) V1, ...,Vk, where |Vi| = ni, together with a a k× k

matrix P whose entries are in [0,1]. The entry Pi j of matrix P describes the independent

probability of a node in Vi being connected to a node in Vj: Pr((u,v) ∈ E|u ∈ Vi,v ∈
Vj) = pi j.

A stochastic block model is thus completely described by the parameters N =

(n1, ...,nk) and P, and we let G(N,P) denote the distribution over graphs with given

parameters. We allow self-loops and derive results for both directed and undirected

graphs, where the latter case implies that P is a symmetric matrix. The Erdős-Rényi

random graph model G(n, p), with n and p scalars, is an undirected one-block special

case.

Let G((na,nb),P) denote a two-block block model, where block Va denotes the com-

munity of the seed set (the seed community) and block Vb denotes the remainder of the

graph. Our key insight regarding this model is that even though it is very simple, the

nodes in block Va will tractably differ from nodes in block Vb in terms of their random

walk landing probabilities. As a result, basic discriminant functions in the space of

landing probabilities can be used to classify whether or not nodes belong to the seed

community.

A discriminant function is a function that assigns a score to each point in a feature

space, and these scores can be used for classifying or ranking points as belonging to one

of two underlying binary classes. We will focus on two particular classes of discriminant

functions: geometric discriminant functions and Fisher discriminant functions. Geomet-

ric discriminant functions perform an intuitive linear sweep through the feature space

from one centroid a to the other centroid b, f (r) = wT r for w = (a−b), scoring points

based on their inner product with the vector connecting the two centroids. Points closer
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to the centroid a then have a higher score. Fisher discriminant functions employ a de-

scriptive model where the two classes of points are described by their first two moments

using multivariate Gaussians N(a,Σa) and N(b,Σb) in the feature space, scoring points

based on their relative probabilities of belonging to the two Gaussians. The special case

of Σa = Σb = I is equivalent to a geometric discriminant function, but in general the

Fisherian approach is capable of accounting for heterogeneous variance across features

and covariance between features to make a more principled discrimination.

Geometric discriminant functions

Recall that rv
k, the k-step landing probability of a node v given a seed node in an under-

lying graph, is the probability that a random walk beginning at that seed node will be at

v after exactly k steps. We are interested in mapping each node v to a vector of its first K

landing probabilities (rv
1,r

v
2, . . . ,r

v
K), and asking what these vectors look like in graphs

generated by a stochastic block model.

Let (a1, ...,aK) denote the centroid of the landing probabilities for nodes in block

Va, and let (b1, ...,bK) denote the centroid of the landing probabilities for nodes in block

Vb. The geometric discriminant function f (r) = (a− b)T r then amounts to a sweep of

the space of landing probabilities, and will let us rank each node v ∈ V in terms of its

propensity for belonging to the seed community based on purely geometric arguments

regarding the node’s landing probabilities (rv
1, . . . ,r

v
K) ∈ [0,1]K . In this notation person-

alized PageRank assigns scores according to the infinite sum ∑
∞
k=1 αkrv

k, for a parameter

α ∈ (−1,1), and the heat kernel method assigns scores by ∑
∞
k=1

e−t tk

k! rv
k for a parameter

t > 0. Truncating these methods to a finite walk length K, both methods then amount

to linear discriminant functions for particular weight vectors wPPR(α) = (α,α2, ...,αK)

and wHK(t) = (e−1t, e−2t2

2 , ..., e−t tK

K! ). Note that the PageRank parameter α is often inter-

preted as the teleportation probability of a teleporting random walk, which assumes that

α is non-negative, but under the above interpretation the Personalized PageRank score

function is well-defined for −1 < α < 0 as well.

We now establish the following asymptotic equivalence between personalized
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PageRank and geometric classification of stochastic block models in the space of ran-

dom walk landing probabilities, the main theoretical result of our work.

Proposition 1. Let Gn be any n-node graph generated from a stochastic block model

G((na,nb),P) with na = λn and nb = (1−λ )n, λ ∈ (0,1) fixed and pi j > 0, ∀i, j. Let ŵ

be the geometric discriminant weight vector in the space of landing probabilities (1-step

through K-step, K fixed) between the two block classes of Gn.

For any ε > 0, δ > 0, there exists an n sufficiently large such that

||naŵ−naΨ||1 ≤ ε

with probability at least 1− δ , where Ψ is a vector with coordinates specified by the

solution to a two-dimensional linear homogeneous recurrence relation.

Corollary 1. Let Gn be generated from a stochastic block model that is either undirected

and with equal expected degree for all nodes or directed with equal expected in-degrees

and out-degrees for all nodes. Then Proposition 1 holds for naΨ = wPPR(α∗), the Per-

sonalized PageRank weight vector with α∗ =
nb pbb−nb pout
nb pbb+na pout

.

The bulk of the heavy lifting for the above proposition and corollary is delivery by

the following lemma, a proof of which is given in the supplementary material.

Lemma 1. For any ε > 0, δ > 0, there is an n sufficiently large such that the random

landing probabilities (â1, ...., âK) and (b̂1, ..., b̂K) for the two blocks of a stochastic block

model on n nodes with na = λn and nb = (1−λ )n, λ ∈ (0,1) fixed and matrix P fixed

with pi j > 0, ∀i, j satisfy the following conditions with probability at least 1−δ for all

k > 0:

naâk ∈
[
(1− ε)

fk
fk +gk

,(1+ ε)
fk

fk +gk

]
and (4.1)

nbb̂k ∈
[
(1− ε)

gk
fk +gk

,(1+ ε)
gk

fk +gk

]
, (4.2)
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where fk and gk are given by

fk =
−λ k

1 u f 1ug2 +λ k
2 u f 2ug1

−u f 1ug2 +u f 2ug1
, gk =

(−λ k
1 +λ k

2 )u f 2ug2

−u f 1ug2 +u f 2ug1
, (4.3)

with

u f =




(daa−dbb)−
√

(daa−dbb)2 +4dabdba

2dba

1


 , (4.4)

ug =




(daa−dbb)+
√

(daa−dbb)2 +4dabdba

2dba

1


 , (4.5)

λ1 =
1
2

(
(daa +dbb)−

√
(daa−dbb)2 +4dabdba

)
, (4.6)

λ2 =
1
2

(
(daa +dbb)+

√
(daa−dbb)2 +4dabdba

)
, (4.7)

and di j = ni pi j.

With this lemma in hand, we now prove Proposition 1.

Proof (of Proposition 1). First we will use the lemma to show that the coordinates of

the weight vector ŵ = â− b̂ are concentrated as specified. From Lemma 1 we have that

for any ε1 > 0,δ > 0 there exists an n sufficiently large such that

(1− ε1)
fk

fk +gk
< naâk < (1+ ε1)

fk
fk +gk

(4.8)

(1− ε1)
gk

fk +gk
< nbb̂k < (1+ ε1)

gk
fk +gk

. (4.9)

with probability at least 1−δ and fk and gk are specified by (4.27)–(4.31). As a result,

whenever this containment holds we have that the coordinates of the geometric weight
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vector ŵ = â− b̂ obeys

|ŵk−Ψk | ≤ ε1Φk, (4.10)

where

Ψk =
1
na

fk
fk +gk

− 1
nb

gk
fk +gk

, (4.11)

and

Φk =
1
na

(
fk +

na
nb

gk

fk +gk

)
≤ 1

na

λ

1−λ
. (4.12)

The inequality comes from the fact that na = λn and nb = (1−λ )n, and the bound is

independent of k. Notice also that Φk is clearly positive. Setting C = λ

1−λ
, we see that

(4.10) becomes

|naŵk−naΨk|<Cε1. (4.13)

This last expression furnishes us with a coordinate-wise bound for each of the K coor-

dinates, and under the containment event of Lemma 1 we have that they all hold jointly

with probability 1− δ . Choosing ε1 < ε/(CK) achieve the requisite bound on the 1-

norm of the vector, proving the proposition.

In the special case of all nodes in the graph having equal expected degrees, the

following corollary establishes that the optimal geometric classifier is asymptotically

equivalent to personalized PageRank for a particular choice of α .

Proof (of Corollary 1). To consider the special case of all nodes have equal expected

degree, we note that for undirected graphs:

na paa +nb pab = na pba +nb pbb (4.14)
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and pab = pba, while for directed graphs:

na paa +nb pab = nb pbb +na pba (4.15)

na paa +nb pba = nb pbb +na pab (4.16)

and thus again pab = pba. For both cases we can then rewrite pab = pba = pout . Un-

der these conditions the eigenvectors and eigenvalues, stated generally in (4.28)–(4.31),

simplify to the following:

u f =

(
−1

1

)
, ug =

(
na
nb

1

)
,





λ1 = nb(pbb− pout),

λ2 = nb pbb +na pout .
(4.17)

The solution to the recurrence relations in (4.27) then simplifies to:

fk =
nbλ k

1 +naλ k
2

na +nb
, gk =

−nbλ k
1 +nbλ k

2
na +nb

. (4.18)

Notice that fk +gk = λ k
2 . Finally, we have that naΨk simplifies to

naΨk =

(
1

fk +gk

)(
fk−

na

nb
gk

)
=

λ k
1

λ k
2
=

(
nb pbb−nb pout

nb pbb +na pout

)k

. (4.19)

Personalized PageRank with α∗=
nb pbb−nb pout
nb pbb+na pout

employs precisely the weights (α∗)k.

A few remarks are in order. First, the scalar factor na that differs between ŵ and

wPPR(α∗) does not change the relative ranking of the nodes, since ranking according to

the discriminant function f1(r) = wT r and f2(r) = nawT r is equivalent. Second, the

criteria that the stochastic block model be dense (pi j > 0 and fixed) is a necessary part

of the proof, and it is unclear if a similar result holds for a sparse model.

In the special case of balanced blocks where na = nb = n, paa = pbb = pin, and pab =

pout , sometimes known as the affiliation model [42], we succinctly obtain α∗ =
pin−pout
pin+pout

.

This simple expression provides a useful interpretation of the choice of α in personalized

PageRank: α close to 0 is ideal for identifying the seed community where the planted
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partition surrounding the seed node is very good, meaning pin� pout . Meanwhile, α is

close to 1 is best for when the planted partition is very weak.

In Figure 1 we see that the theoretical coefficients show near-perfect agreement with

the empirical coefficient means for an example block model on n = 500 nodes. Our cen-

troid derivations have not assumed that the block model be assortative, and the deriva-

tions are equally accurate for disassortative block models where nodes in the two blocks

are more strongly connected across blocks than within blocks. From Figure 1 we also

see that the empirical variance of the coefficients can be highly non-uniform, with the

1-step landing probabilities showing much greater variation than the landing probabil-

ities after subsequent steps. This observation motivates our next approach, where we

explicitly consider these heterogeneous variances, as well as covariances between the

landing probabilities of different step lengths.

Fisher discriminant functions

The above geometric approach can be viewed as a special case of a more general prob-

abilistic approach to deriving discriminant functions proposed by Fisher, and we will

now derive such functions that consider both the centroids and covariances of the sets

of landing probabilities.

We derive Fisher discriminant functions in which the landing probabilities for the

two communities are described by multivariate Gaussians N(a,Σa) and N(b,Σb) for the

seed community and remainder community, respectively. Here a and b are the same

centroids as we derived earlier. Note that we are not assuming these point sets are

actually multivariate Gaussian, but simply using the Gaussians to capture the first two

moments (mean and covariance) of the point sets.

What follows are standard derivations for Fisher discriminant functions. Let zu ∈
{0,1} be the assignment of each node u ∈ V to one of of the two blocks, with zu = 1

denoting the seed node block. The probabilities of a given r = (r1, ...,rK) belonging to
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Figure 4.1: Left: theoretical (dotted lines) and empirical centroids (a1, ...,aK)
(blue) and (b1, ...,bK) (red) for a stochastic block model with na =
nb = 250, paa = pbb = 0.6, pab = 0.1, shown with empirical [5%,
95%] quantiles. Right: the same illustration for a disassortative block
model where paa = pbb = 0.1, pab = 0.6.

each block are then:

p(r|z = 1) ∝ |Σa|−
1
2 exp

(
−1

2
(r−a)T

Σ
−1
a (r−a)

)
, (4.20)

p(r|z = 0) ∝ |Σb|−
1
2 exp

(
−1

2
(r−b)T

Σ
−1
b (r−b)

)
. (4.21)

Let us introduce the parameter π = p(z = 1) to denote the probability that a given node

is in the seed community. When the parameters of the stochastic block model are known

it is clear that π = na/(na +nb). The log of the likelihood ratio then becomes:

g(r) = ln
p(r|z = 1)p(z = 1)
p(r|z = 0)p(z = 0)

= (Σ−1
a a−Σ

−1
b b)T

︸                 ︷︷                 ︸
w

r+ rT (
1
2

Σ
−1
b −

1
2

Σ
−1
a )

︸                ︷︷                ︸
W

r

+−1
2

(
aT

Σ
−1
a a−bT

Σ
−1
b b+ ln

|Σa|
|Σb|

)
+ ln

π

1−π︸                                                          ︷︷                                                          ︸
w0

= wT r+ rTWr+w0, (4.22)

where we’ve identified the vector w, matrix W , and scalar w0 to simplify notation. In

ranking contexts we we can safely ignore w0, which is constant for all nodes. Equa-

tion (4.22) thus provides a quadratic discriminant function for ranking seed community

membership in a manner that accounts for the covariance structure of the different land-

ing probabilities, e.g. how the landing probability at a node u after k steps covaries with

the landing probability after k+1 steps.
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Special case discriminant functions

If we assume Σa = Σb = σ2I, we recover the earlier geometric discriminant function

g1(r) = σ
−2(a−b)T r+C, (4.23)

up to an arbitrary additive constant C, and observe that the earlier geometric approach

corresponds to a uniform and independent variance assumption on the two point clouds

in the space of landing probabilities. In a slightly more general setting assuming Σa =

Σb = Σ, meaning that the two covariance matrices are identical but otherwise arbitrary,

Equation (4.22) reduces to

g2(r) = [Σ−1(a−b)]T r+C, (4.24)

again up to an arbitrary additive constant C. This discriminant function is still linear, but

can have a very different form than g1(r).

While we have shown that personalized PageRank takes a principled approach to

ranking seed community membership, accounting for the covariance structure of the

landing probabilities suggests that much better linear discriminant functions with the

form of Equation (4.24) rather then Equation (4.23) — let alone quadratic functions

with the form of Equation (4.22) — exist for graphs where the structure can reasonably

be motivated as coming from a two-block stochastic block model.

Learning model parameters

The above theoretical derivations assumed known parameters, but in practice the param-

eters of the stochastic block model that inform the choice of α as well as the covariance

matrices must be learned. Recent results have developed consistent estimators for the

parameters of stochastic block models for an observed graph, with two separate estima-

tion regimes relevant to our work. In the first regime, a string of results have culminated

in a tidy closed-form consistent estimator for the parameters of a two-block stochastic
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block model with known block size [4, 5, 42]. In a second regime where the block

sizes are unknown, results have been derived that show the consistency of the maxima

of a tractable composite likelihood function [6]. We will focus on the former regime

of known block sizes, and will further focus on the special case of paa = pbb = pin,

pab = pout known as the affiliation model, for which consistent estimators p̂in and p̂out

[5] are reproduced in the supplementary material.

Given the parameter estimates p̂in, p̂out and na = nb known, we can also estimate the

covariance matrices of the random walk landing probabilities, Σa and Σb, from simula-

tions of an adequate number of stochastic block models with the learned parameters.

4.2 Results for Stochastic Block Models and Real-world Networks

We now evaluate the results of our approach to contextual ranking by testing our dis-

criminant functions against the widely used personalized PageRank and heat kernel

heuristics. Our evaluation is two-fold: we first evaluate the performance at seed set

expansion on graphs that have been generated by stochastic block models, the domain

where our principled approach has sound theoretical foundations, and then evaluate our

performance on real-world networks.

To start with the first mode of evaluation, in Figure 4.2A we show the cumulative

recall for a stochastic block model with na = nb = 64 nodes and pin = 0.6, pout = 0.4.

The curves measure the recall of the classification methods when attempting to return

a seed block of m nodes, as a function of m. We see that our quadratic discriminant

function has considerably improved recall, identifying the first 64 nodes with nearly

perfect precision. In contrast we see that personalized PageRank (with α = 0.85, a

standard choice) and heat kernel (with t = 2) perform the task with comparable recalls.

The “linear” classification is a classification according to (a−b)T r, akin to a choice of

α of pin−pout
pin−pout

= 0.2, which performs slightly better than α = 0.85. We also see that our

intermediate method that utilizes a single covariance matrix for the two classes exhibits a

recall that is nearly identical to the fully quadratic method, but achieves this performance

with a linear discriminate function.
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Continuing with our analysis of generated networks, we examine how well classifi-

cations based on our discriminant functions correlate with the underlying true partition-

ing of the stochastic block models being considered. While exact recovery of planted

partitions has been shown possible in regimes where the the two blocks are well sep-

arated (where |pin− pout | is large enough) [24, 36, 105], recent work has shown that

recovering a partition that is correlated with the underlying partition is still possible

even in some contexts when exact recovery is impossible, up to a recently identified

resolution limit [34, 84]. For a sparse graph with na = nb nodes and average degree

〈d〉, recovering a partition correlated with the ground truth partition is possible in the

limit of large graphs if and only if: pout/pin < (〈d〉−
√
〈d〉)/(〈d〉+

√
〈d〉). In Fig-

ure 4.2B, we show the Pearson correlation r between the recovered partition and the

ground truth partition for various discriminant functions on a stochastic block model

with n = 128 nodes, na = nb, and average degree 〈d〉 = 16. The asymptotic resolution

limit for these parameters is pout/pin < 0.6, and we see that our covariance-adjusted

methods are capable of recovering a correlated partition up to this limit. Meanwhile we

see that personalized PageRank and heat kernel perform very poorly by comparison.

As a further illustration of the improved performance of our algorithm for recovering

partitions correlated with the ground truth, the remainder of Figure 4.2 shows heat maps

of the Pearson correlation of various methods as a function of pin and pout . We clearly

see that our normalized linear classification performs significantly better through the

space of stochastic block model parameters; the quadratic classification (not shown in

this figure) produces a heat map that’s very similar to the one for the normalized linear

classification, though with even slightly higher performance. We note that all these

methods require knowledge or estimation of the underlying parameters – in Figure 4.2C

we see that when the discriminant function is configured with a fixed set of parameters

that are far from the true values the classification can be quite poor.

These performance results above show that when studying networks that originate

from a stochastic block model our principled discriminant functions significantly out-

perform the heuristics of personalized PageRank and heat kernel methods. Next we

consider the extent to which our methods also perform well on real-world graphs that

do not originate from stochastic block models but instead feature real-world community
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Figure 4.2: (a) The cumulative recall of a stochastic block model (with na = nb =
64 nodes and pin = 0.6, pout = 0.4). Here Quad-SBMRank is our
quadratic discriminant classifier and Lin-SBMRank is our normalized
linear discriminant classifier. (b) The Pearson correlation r between
the recovered model labeling and the true labeling for a stochastic
block model on n= 128 nodes, with na = nb = 64 and expected degree
〈d〉 = 16, as a function of the out/in balance pout/pin. The vertical
dashed line shows the asymptotic resolution limit (pout/pin = 0.6) of
this stochastic block model. We measure the bootstrapped p-values
for the correlation r and indicate p ≤ 0.01 with a solid line and p >
0.01 with a dotted line. (c)-(e) Heatmaps: r as a function of paa =
pbb = pin and pab = pout in four settings. Red is high (r = 1) and blue
is low (r = 0). Using a personalized PageRank discriminant function
ranking based on (c) a fixed choice of pin = 0.6, pout = 0.1 and (d)
true values of pin and pout . (e) Using our normalized linear function
g2(r) = Σ−1(a−b)T r for the true values of pin and pout . The quadratic
discriminant function, not shown, is similar to the linear function.

structure.

We consider three publicly available network datasets possessing ground truth com-

munity labelings: a political blog network exhibiting a partition into two dense clus-

ters of liberal and conservative bloggers [3]; the Berkeley-Stanford host graph [59], the
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link network between hosts from the UC Berkeley and Stanford University web do-

mains; and the co-authorship network of DBLP [128], a database of computer science

papers. The political blogs network contains 1493 blogs of which 758 are liberal and

732 are conservative; the DBLP graph contains 317,080 researchers and 1,049,866 co-

authorships, with a total of 13,477 ground truth communities in the dataset. In the case

of the political blog and Berkeley-Stanford host network, we investigate performance

using 50 different seed sets from each of the two communities; for DBLP, we select a

collection of communities of an approximately fixed intermediate size and evaluate per-

formance using seed sets from each of these communities. As in [67], we focus on the

100 communities closest to (Cmax)
3/4 = 385 in size, where Cmax is the size of the largest

community. For each dataset we average our results over 100 recall curves, the number

of nodes identified in the target community as a function of the total number m of nodes

reported.

The political blog and Berkeley-Stanford host networks are closer to the set-up of the

stochastic block model, in that they consists of two principal clusters with high internal

density. We note, of course, that it differs from the assumptions of the stochastic block

model in that the links are far from randomly generated. For both of these networks

we observe (Figure 4.3) the interesting property that our quadratic classification method

outperforms personalized PageRank and heat kernel for approximately the latter half of

possible m values — roughly once the goal is to find at least half the members of the

target community. It is an interesting open question to find a deeper theoretical basis

for the relative shapes of the cumulative recall curves, in that the quadratic methods gets

off to a slower start than the personalized PageRank and heat kernel heuristics, but the

heuristics lose their advantage with increasing m, and are eventually overtaken.

The DBLP dataset has a fairly different structure, in that it contains many overlap-

ping communities, and each community is very small relative to the size of the full

graph. As a result, many of the assumptions on which our principled methods are based

do not really hold for DBLP. Despite this, we see in Figure 4.3 that our methods are

equal in power, to within the threshold of statistical significance, to personalized PageR-

ank and heat kernel. This equivalence holds across the full range of values of m. Thus,

even in settings that are quite distant from the assumptions that motivate our methods,
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Figure 4.3: The cumulative recall of various discriminant functions on (a) the
political blog network, (b) the Berkeley-Stanford host network, and
(c) the DBLP co-authorship network. Here Quad-SBMRank is our
quadratic discriminant classifier and Lin-SBMRank is our normalized
linear discriminant classifier. Tables of values for the recall at specific
target expansion sizes and 5%/95% confidence intervals can be found
in the supplementary material. For the political blogs network and
the Berkeley-Stanford host network we see performance gains from
using the quadratic discriminant function classifier at various target
expansion sizes.
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they provide performance that is comparable to the strongest known heuristics for the

problem.

4.3 Discussion

This work contributes a principled motivation for the established success of personal-

ized PageRank as an approach to contextually ranking nodes in graphs. Specifically, we

show that it arises as the optimal geometric discriminant function for classifying nodes

belonging to a hidden seed community in a stochastic block model. Personalized PageR-

ank and heat kernel based methods both approach contextual ranking by forming linear

discriminant functions in the space of random walk landing probabilities. Building on

our observed connection between stochastic block models and personalized PageRank,

we contribute advanced principled approaches to classification in the space of random

walk landing probabilities. Our most advanced classifier uses a quadratic discriminant

function that accounts for the full covariance structure of the landing probabilities. We

see that it dramatically outperforms personalized PageRank and heat kernel methods

for recovering seed sets of synthetic networks generated from stochastic block models,

while also matching or slightly outperforming these heuristics in real world networks.

Both the connection between personalized PageRank and stochastic block models

and the competitive performance of our advanced principled classifiers on real-world

data are genuinely surprising, and we view both the connections and principled av-

enue for improvements as opening the door on a wide range of new research questions.

Can the recent rigorous results for the resolution limit of stochastic block models [84]

provide insights into a broader class of contextual ranking problems? Are there other

spaces of random walk landing probabilities — such as the landing probabilities of non-

backtracking random walks [69] — that can provide additional new approaches to rank-

ing on graphs? Is there a graph model for which heat kernel methods emerge as some

optimal choice of discriminant function? There are also a host of further questions that

would serve to improve the details of the specific approach we outline here. Can the

joint distribution of random walk landing probabilities be modeled more explicitly than
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by a multivariate Gaussian that approximates just the first two moments? The potential

application of our quadratic discriminant classifier to diverse contextual ranking prob-

lems also suggests revisiting the broad range of applied problems where personalized

PageRank has found previous successes.

4.4 Proof of Lemma 1

Lemma 2. For any ε > 0, δ > 0, there is an n sufficiently large such that the random

landing probabilities (â1, ...., âK) and (b̂1, ..., b̂K) for the two blocks of a stochastic block

model on n nodes with na = λn and nb = (1−λ )n, λ ∈ (0,1) fixed and matrix P fixed

with pi j > 0, ∀i, j satisfy the following conditions with probability at least 1−δ for all

k > 0:

naâk ∈
[
(1− ε)

fk
fk +gk

,(1+ ε)
fk

fk +gk

]
and (4.25)

nbb̂k ∈
[
(1− ε)

gk
fk +gk

,(1+ ε)
gk

fk +gk

]
, (4.26)

where fk and gk are given by

fk =
−λ k

1 u f 1ug2 +λ k
2 u f 2ug1

−u f 1ug2 +u f 2ug1
, gk =

(−λ k
1 +λ k

2 )u f 2ug2

−u f 1ug2 +u f 2ug1
, (4.27)
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with

u f =




(daa−dbb)−
√

(daa−dbb)2 +4dabdba

2dba

1


 , (4.28)

ug =




(daa−dbb)+
√

(daa−dbb)2 +4dabdba

2dba

1


 , (4.29)

λ1 =
1
2

(
(daa +dbb)−

√
(daa−dbb)2 +4dabdba

)
, (4.30)

λ2 =
1
2

(
(daa +dbb)+

√
(daa−dbb)2 +4dabdba

)
, (4.31)

and di j = ni pi j.

Proof. We first introduce some useful notation. Let us define the following walk counts

from the seed to each node, which are random variables under the randomness of the

block model:

Âu
k = # paths from s to u ∈Va of length k,

B̂u
k = # paths from s to u ∈Vb of length k.

The seed node s is given and fixed, and therefore suppressed in our notation. We denote

the number of walks of length k originating at s and ending in Va and Vb, respectively,

as:

Âk = ∑u∈Va Âu
k , B̂k = ∑u∈Vb

B̂u
k . (4.32)

We see that the random aggregate landing probabilities, respectively the probabilities

that a k-step walk starting at a seed node in Va ends in Va, and the probability that it ends
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in Vb, are then:

âk =
1
na

Âk

Âk + B̂k
, b̂k =

1
nb

B̂k

Âk + B̂k
, (4.33)

where ŵk = âk− b̂k are the coordinates of the weight vector we seek to characterize.

Our proof strategy is to show that these two quantities concentrate around expres-

sions given in terms of the solutions fk and gk of a recurrence. The values fk/( fk +gk)

and gk/( fk + gk) that we will show that they concentrate around are notably not their

expectations.

An obstruction to simply taking the expectations of the walk counts Âk and B̂k (and

showing concentration around the ratio of expectations) is that counting length-k walks

for k > 1 requires counting walks that possibly revisit edges, creating a dependence

between walk counts of different lengths. The recurrence solutions fk and gk that we

will analyze can in fact be thought of as the expected walk counts on a slightly different

random graph model, where the edges are independently resampled after each walk

step. What our analysis effectively shows is that the walk counts on the stochastic block

model, our model of interest, concentrate on the expected walk counts of that alternative

model. This connection between models is mentioned only as an optional pedagogical

tool, and is not essential to understanding our proof.

In Lemma 3 we introduce the recurrence relations:





fl = daa fl−1 +dabgl−1

gl = dba fl−1 +dbbgl−1

(4.34)

f0 = 1,g0 = 0.

and demonstrate that when di j > 0,∀i, j we have the general closed-form solutions for

fk and gk specified by (4.27)–(4.31).

We use Lemma 3 with di j = ni pi j. As required by the lemma, the matrix R to

be diagonalizable since ni > 0, pi j > 0 for i, j ∈ {a,b} under the assumptions of our
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proposition statement.

We now return to the walk count random variables Âk and B̂k in a graph G drawn

from the stochastic block model. Suppose we are given ε > 0 and δ > 0 as in the

statement of the lemma, and we seek bounds for a specific walk length k ≤ K. We

choose γ2 > 0 small enough that (1−γ2)/(1+γ2)≥ 1−ε and (1+γ2)/(1−γ2)≤ 1+ε;

we then choose γ small enough that (1− γ)k ≥ 1− γ2 and (1+ γ)k ≤ 1+ γ2.

Let M̂uv be a matrix of independent Bernoulli random variables, indicating the edge

event when (u,v) is an edge in the graph G. Notice that ∑u∈V M̂uv is the random out-

degree of node v. We observe that for each j∈{a,b}, each node v∈Vj has in expectation

a total of di j edges to nodes in Vi, where

di j = E

[
∑

u∈Vi

M̂uv

]
= ∑

u∈Vi

pi j = ni pi j.

When the expectations pi j are fixed in n we can use standard multiplicative Chernoff

bounds to bound the probabilities of 4n bad events. We have that for any γ > 0 and any

i, j ∈ {a,b}:

Pr

(
∑

u∈Vi

M̂uv < [(1− γ)di j,(1+ γ)di j]

)
≤Ce−n (4.35)

for some constant C for any v ∈Vj. Across all i, j pairs there are 4n bad events, and we

want to lower bound the probability of there being no bad event. By the union bound

we have that

Pr

(
∑

u∈Vi

M̂uv ∈ [(1− γ)di j,(1+ γ)di j],∀v ∈Vj,∀i, j

)
≥ 1−4Cne−n. (4.36)

Thus, it is clear that for any γ > 0 and any δ > 0, there exists an n sufficiently large such

that the probability that none of the degrees exceed a multiplicative factor of (1± γ) is

at least 1− δ . Assuming this containment succeeds, the rest of the proof argument is
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deterministic, under the assumption that

∑
u∈Vi

M̂uv ∈ [(1− γ)di j,(1+ γ)di j],∀v ∈Vj,∀i, j. (4.37)

The next step of our proof strategy is to show that we also have

Âk ∈ [(1− γ2) fk,(1+ γ2) fk] and B̂k ∈ [(1− γ2)gk,(1+ γ2)gk] (4.38)

whenever the stated containment event holds.

We offer a proof by induction. First we define a new set of variables:

Ĥu
k =





Âu
k if u ∈Va,

B̂u
k if u ∈Vb.

(4.39)

We then begin with the base case, furnishing an upper bound on Â1:

Â1 = ∑
u∈Va

Ĥu
1 = ∑

u∈Va

∑
v∈V

M̂uvĤv
0 (4.40)

= ∑
v∈Va

Ĥv
0 ∑

u∈Va

M̂uv + ∑
v∈Vb

Ĥv
0 ∑

u∈Va

M̂uv (4.41)

≤ ∑
v∈Va

Ĥv
0(1+ γ)daa + ∑

v∈Vb

Ĥv
0(1+ γ)dab (4.42)

=(1+ γ)daa = (1+ γ) f1. (4.43)

Using a similar set of steps one can easily see that (1− γ) f1 ≤ Â1 and (1− γ)g1 ≤ B̂1 ≤
(1+ γ)g1 also hold.

Next, for our induction we assume that

Âk ∈ [(1− γ)k fk,(1+ γ)k fk], (4.44)

B̂k ∈ [(1− γ)kgk,(1+ γ)kgk], (4.45)
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and want to show that the above implies that

Âk+1 ∈ [(1− γ)k+1 fk+1,(1+ γ)k+1 fk+1], (4.46)

B̂k+1 ∈ [(1− γ)k+1gk+1,(1+ γ)k+1gk+1]. (4.47)

We upper-bound Âk+1:

Âk+1 = ∑
u∈Va

Ĥu
k+1 = ∑

u∈Va

∑
v∈V

M̂uvĤv
k (4.48)

= ∑
v∈Va

Ĥv
k ∑

u∈Va

M̂uv + ∑
v∈Vb

Ĥv
k ∑

u∈Va

M̂uv (4.49)

≤ Âk(1+ γ)daa + B̂k(1+ γ)dab (4.50)

≤ (1+ γ)k+1 fkdaa +(1+ γ)k+1gkdab (4.51)

=(1+ γ)k+1 fk+1, (4.52)

where in the last inequality we use the induction hypothesis. We observe that Âk+1 ≤
(1+ γ)k+1 fk+1, and similar steps furnish the lower bound (1− γ)k+1 fk+1 ≤ Âk+1 and

that (1− γ)k−1gk+1 ≤ B̂k+1 ≤ (1− γ)k+1gk+1, completing the proof by induction. As a

result, we have:

Âk ∈ [(1− γ)k fk,(1+ γ)k fk] and B̂k ∈ [(1− γ)kgk,(1+ γ)kgk]. (4.53)

Since γ and γ2 were chosen such that (1−γ)k ≥ 1−γ2 and (1+γ)k ≤ 1+γ2 we then

have that

Âk ∈ [(1− γ2) fk,(1+ γ2) fk] and B̂k ∈ [(1− γ2)gk,(1+ γ2)gk], (4.54)

as desired in (4.38). We also have that for Âk + B̂k,

Âk + B̂k ∈ [(1− γ2)( fk +gk),(1+ γ2)( fk +gk)]. (4.55)

92



Finally, since ε satisfies (1− γ2)/(1+ γ2)≥ 1− ε and (1+ γ2)/(1− γ2)≤ 1+ ε , we

have

Âk

Âk + B̂k
∈ [(1− ε)

fk
fk +gk

,(1+ ε)
fk

fk +gk
],

B̂k

Âk + B̂k
∈ [(1− ε)

gk
fk +gk

,(1+ ε)
gk

fk +gk
].

This final containment holds whenever the original containment in (4.37) holds, with

probability at least 1−δ , completing the proof.

4.5 Proof of Lemma 2

Lemma 3. Suppose that the matrix R =

(
daa dba

dab dbb

)
, where di j ≥ 0, is diagonalizable

and that u f and ug are the eigenvectors that correspond to eigenvalues λ1 and λ2 of R:

R =UDkU−1 for D =

(
λ1 0

0 λ2

)
; U =

(
u f ug

)
. (4.56)

Then

u f =




(daa−dbb)−
√

(daa−dbb)2 +4dabdba

2dba

1


 , (4.57)

ug =




(daa−dbb)+
√

(daa−dbb)2 +4dabdba

2dba

1


 , (4.58)

λ1 =
1
2

(
(daa +dbb)−

√
(daa−dbb)2 +4dabdba

)
, (4.59)

λ2 =
1
2

(
(daa +dbb)+

√
(daa−dbb)2 +4dabdba

)
, (4.60)
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Further, the closed-form solution to the two-dimensional, first-order recurrence rela-

tions,





fl = daa fl−1 +dabgl−1

gl = dba fl−1 +dbbgl−1

(4.61)

f0 = 1,g0 = 0.

is given by

fk =
−λ k

1 u f 1ug2 +λ k
2 u f 2ug1

−u f 1ug2 +u f 2ug1
, gk =

(−λ k
1 +λ k

2 )u f 2ug2

−u f 1ug2 +u f 2ug1
. (4.62)

Proof. We begin with the original recurrence relations:

fk = na paa fk−1 +nb pbagk−1, (4.63)

gk = na pab fk−1 +nb pbbgk−1. (4.64)

These recurrences form a first-order homogeneous matrix recurrence:

[
fk

gk

]
=

[
na paa nb pba

na pab nb pbb

][
fk−1

gk−1

]
. (4.65)

Letting R =

[
daa dba

dab dbb

]
and Ck =

[
fk

gk

]
we have the simple recursion Ck = R Ck−1. By

induction we have that hk = Rkh0, where h0 are the initial conditions.

We seek to diagonalize R. When R is diagonalizable we have Rk = (UDU−1)k =

UDkU−1, where D is a diagonal matrix with the eigenvalues of R, λ1 and λ2, along the

diagonal, and U is a matrix with the corresponding eigenvectors of R, u f and ug , as its

columns. We will derive U and D exactly (below) and thus can derive hk exactly for all

k.

When the parameters are such that u f and ug are linearly dependent, U−1 does not
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exist and diagonalization is not possible. In Table 4.1 we describe the parameter sets for

which diagonalization is not possible, noting that no such parameter sets exist when all

the entries of R are positive. As long as the parameter values do not satisfy the conditions

described in Table 4.1, diagonalization is possible and the recurrence has the following

general solution:

fk =
λ f u f 1(g0ug1− f 0ug2)−λgug1(g0u f 1− f0u f 2)

u f 2ug1−u f 1ug2
(4.66)

gk =
λ f u f 2(g0ug1− f 0ug2)−λgug2(g0u f 1− f0u f 2)

u f 2ug1−u f 1ug2
. (4.67)

By plugging in the initial conditions f0 = 1 and g0 = 0 we can check that Equations

(4.66) and (4.67) reduce to the Equations in (4.62).

na paa nb pbb na pab nb pba
≥ 0 na paa > 0 0
≥ 0 na paa 0 > 0

Table 4.1: Parameter values for which R is not diagonalizable. Note that these
parameters are ruled out if nodes have the same expected degree , as in
the case of interest, or if the graph is undirected. The first two columns
indicate that the expected in-degree of nodes in the two communities
must be equal. The last two columns indicate that there must be a
strictly positive expected number of edges going from one community
to the other, whilst there are strictly no edges going in the reverse di-
rection. Note that these parameter values cannot be achieved for undi-
rected graphs. Assuming that na > 0 and nb > 0 the first set of values
correspond to all probabilities but pab being 0and pab > 0, or all but
pba being strictly positive and pba being 0.

4.6 SBM Parameter estimation

The following consistent estimators for the parameters of a stochastic block model

G((na,nb),P) where paa = pbb = pin, pab = pout , also known as the affiliation model,
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are due to Allman et al. [5]:

p̂out =
(s3− s2s3)m3

1 +(s3
2− s3)m2m1 +(s3s2− s3

2)m3

(m2
1−m2)(2s3

2−3s3s2 + s3)
, (4.68)

p̂in =
m1 +(s2−1)p̂out

s2
, (4.69)

where

s2 = n2
a +n2

b, (4.70)

s3 = n3
a +n3

b, (4.71)

m1 =
1

n(n−1)

n

∑
i, j=1,i, j

Xi j, (4.72)

m2 =
1

n(n−1)(n−2)

n

∑
i, j,k=1,i, j,k

Xi jXik, (4.73)

m3 =
1

n(n−1)(n−2)

n

∑
i, j,k=1,i, j,k

Xi jXikX jk. (4.74)
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4.7 Details of Belief Propagation

Belief Propagation (BP) is a message passing algorithm for the inference of graphical

models (joint distributions of random variables with conditional dependencies repre-

sented by graphs). Belief Propagation infers marginal distributions of the unobserved

variables (nodes) of such models. When the graph underlying a graphical model is a

tree, BP known to converge on a fixed point that minimizes an objective function known

as the Bethe Free Energy of the joint probability distribution of the model. Belief Prop-

agation has also been widely applied beyond the context of trees, in what is sometimes

called “loopy belief propagation,” named after the presence of cycles (”loops”) in the

graph.

Belief Propagation has recently been adapted for the inference of latent labels for

graphs realized from Stochastic Block Models (SBMs) [Decelle 2012]. The connec-

tion between BP and SBMs follows from the fact that the Bethe Free Energy of the

joint probability distribution of the latent labels on a realization of an SBM – what BP

minimizes on trees – is an upper bound on the negative log-likelihood of the SBM pa-

rameters, and it can be shown that any global minimum of the free energy is a global

minimum of the negative log-likelihood [“14”]. If a graph realized under the SBM is a

tree then Belief Propagation will quickly converge upon the maximum likelihood esti-

mate of the SBM parameters (these parameters include the assignment of nodes to block

classes). For a graph realized under the SBM that is not a tree, the convergence upon

the global maximum of the likelihood under BP is no longer guaranteed. In fact, BP is

not guaranteed to converge on any solution at all, though some sufficient conditions for

convergence are known. Despite the lack of rigorous results, BP is widely understood to

still find good solutions (solutions with near-maximal likelihood) in practice even when

the graph realized by an SBM is not a tree.

Belief Propagation for SBMs is a much more empowered algorithm than the clas-

sification algorithms SBMRank and QuadSBMRank that we present and study in the

main text of this work. The algorithms we present and study are all restricted to sim-

ple discriminative classification rules in the space of random walk landing probabilities,

classifying individual nodes independently based on these probabilities. In contrast,
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Belief Propagation performs a global joint inference of all node labels.

Furthermore, BP has only been shown to do well on very simple SBMs, very little

data (e.g. karate), and the assumptions for BP-SBM to work are strong (see recent work

trying to relax class balance). TODO: write this paragraph once we formalize our results

for equal out/in-degree vs non-uniform degree.

TODO Meanwhile, algorithms other than BP have recently been proposed that are

poly-time and rigorus results show they reach the resolution limit... Mossel-Neeman-

Sly 15, Massouli STOC14. These algo’s are not practical. See p4 (“nor have we imple-

mented it”) of MNS and also their comment about M14 on p7.

4.7.1 BP-SBM algorithm

We now present a distilled derivation of SBM-BP and sparse-SBM-BP, for complete-

ness. The existing literature is messy/physicsy.

...producing an algorithm we will call SBM-BP.

In graphs that are sparse, a heuristic can be applied to BP to yield an efficient algo-

rithm requiring just O(m) time steps instead of O(n2).

[Taylor approximations]

...we will call this latter algorithm sparse-SBM-BP.
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4.8 Numerical considerations for Covariance Matrices

The covariance matrices describe the covariances between the landing probabilities for

a random walk starting at the seed node and walking 1 to K steps. For large step counts

the landing probabilities begin to converge upon the stationary distribution of a random

walk, meaning that the covariance between step K− 1 and K becomes very high. In

general the last several columns of the covariances matrices become strongly collinear

for large values of K.

To mitigate against ill-conditioned matrix inversions, we restrict the maximum num-

ber of steps K included in our landing probability space in a manner that keeps the con-

dition numbers κ(Σa) and κ(Σb) both below 1010. In practice this empirically amounts

to performing our analysis in the space of landing probabilities for the first K = 6 steps.
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4.9 Details of EM Algorithm

The theoretical results in Section 2 of the main text assumed that the parameters (na,nb)

and P of our two-block stochastic block model were known, allowing us to derive the

theoretical centroids a and b as a function of these parameters. We note that we could

also, in principle, derive the theoretical covariance matrices Σa,Σb as a function of these

parameters (na,nb) and P. Such a derivation would however have little value in learning

contexts where the parameters of the presumed underlying stochastic block model would

anyway be unknown.

In this supplement we present a straightforward expectation maximization (EM) al-

gorithm for learning the parameters of the descriptive model of the landing probability

point clouds that emerge from a stochastic block model. The algorithm we present is the

standard EM algorithm for learning the parameters of a mixture of Gaussians. We note

that we are not making an assumption of Gaussianity in the space of landing probabil-

ities, but simply choosing to model the landing probability points clouds by their first

two moments (means and variances), as opposed to merely their first moments (means).

We obtain from a graph G = (V,E) a set of landing probability vectors {ru}u∈V that

we conceive of as a mixture of two multivariate Gaussians, aiming to learn the parame-

ters. Let a and b be the centroids, Σa and Σb be the respective covariances matrices, and

π be the proportion of nodes in the seed node block. Let zu ∈ {0,1} be the unobserved

membership assignments for each u. Our EM algorithm, iterating in steps t = 1, ...,T is

then as follows:

E-step:

zu
(t+1) =

π(t)p(ru|z = 1,a(t),Σa,(t))

π(t)p(ru|z = 1,a(t),Σa,(t))+(1−π(t))p(ru|z = 0,b(t),Σb,(t))

=
1

1+
1−π(t)

π(t)

p(ru|z=0,b(t),Σb,(t))

p(ru|z=1,a(t),Σa,(t))

(4.75)
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M-step:

π(t) =
1
|V | ∑u∈V

zu
(t), (4.76)

a(t) =
∑u∈V zu

(t)r
u

∑u∈V zu
(t)

, (4.77)

Σa,(t) =
∑u∈V zu

(t)(r
u−a(t))(ru−a(t))T

∑u∈V zu
(t)

, (4.78)

b(t) =
∑u∈V (1− zu

(t))r
u

∑u∈V (1− zu
(t))

, (4.79)

Σb,(t) =
∑u∈V (1− zu

(t))(r
u−b(t))(ru−b(t))T

∑u∈V (1− zu
(t))

. (4.80)

In the E-step above we have provided a manipulation that improves numerical stability.

The EM iteration procedure requires initialization, where we can choose to either

initialize with a full set of in-seed community assignment weights (z1
(0), ...,z

n
(0)), or ini-

tialize with a full set of parameter estimates π(0),a(0),b(0),Σa,(0), and Σb,(0). The ap-

proach to initialization that we take in this work is in fact halfway between these two

choices, making use of our earlier observation that the commonly employed personal-

ized PageRank ranking procedure, configured with some choice of α , corresponds to a

restricted version of our discriminant function that disregards the covariance structure.

We assume that we have a target size community that we are seeking to construct,

which determines (na,nb) in the block model and therefore π(0) =
na

na+nb
in the initial-

ization. In so much as we are comfortable prescribing a value of α for personalized

PageRank, we can use the equations in (6) from the main text to initialize our EM algo-

rithm given that choice of α by setting:

ak,(0) =
1

na +nb
(1+

nb

na
α

k), bk,(0) =
1

na +nb
(1−α

k). (4.81)

For the covariance matrices, a basic approach to initialization would be to simply

use the identity matrices Σa,(0) = Σb,(0) = I that personalized PageRank would use. In
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our more advanced approach, we consider a stochastic block model with initial choices

of (na,nb) and P (with P chosen to correspond to the the choice of α) and simulate

a stochastic block model and initialize the matrices Σa,(0) and Σb,(0) with the sample

covariance matrices of the blocks Va and Vb from the simulation. This initialization

performs slightly better in practice than initializing with identity matrices.

From these initial choices of the parameters π,a,b,Σa, and Σb, we can now com-

pute the first E-step to deduce the in-seed community assignment weights imputed by

personalized PageRank, and then undertake our EM iteration from there.

4.9.1 Equal covariance special case

In situations were we seek a purely linear discriminant function, we can achieve this goal

while still pursuing covariance adjustment by estimating a single common covariance

matrix for the two classes. The covariance estimation M-step for the covariance matrix

is then:

Σ(t) =
1
|V | ∑u∈V

[zu
(t)(r

u−a(t))(r
u−a(t))

T (4.82)

+(1− zu
(t))(r

u−b(t))(r
u−b(t))

T ],

and the procedure is otherwise analogous, using Σ(t) in place of Σa,(t) and Σb,(t) in the

E-step. The resulting discriminant function is then g2(r) = [Σ−1(a− b)]T r +C, as in

Equation (12) from the main text, and we call this our normalized linear discriminant,

reflecting the presence of the inverse covariance matrix to normalize relative variances,

but the absence of any quadratic term due to cancellations between the identical covari-

ance matrices.
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4.9.2 Numerical considerations

In the above EM algorithm, we provided a simple manipulation that improves the nu-

merical stability of the E-step. As a more significant numerical consideration, the prob-

abilities p(ru|z = 1,a,Σa) and p(ru|z = 0,b,Σb) both involve expressions that invert the

covariance matrices Σa and Σb. These inversions occur both in the quadratic and linear

portions of the discriminant functions, meaning that even when we impose that Σa = Σb,

we are forced to tread carefully in order to maintain numerical stability. UPDATE AND

SYNC WITH OTHER COMMENTS.

4.10 Numerical Results for SBMs and Real-World Networks

Here we supplement the graphical performance results presented in Section 3 of the

main text with tables of numerical performance values and the 5%/95% confidence in-

tervals. These results are discussed in the main text, with the discussion corresponding

to Figure 2A (the SBM), and Figure 3 (the real-world networks).
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Part II

Data mining
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CHAPTER 5

THE LIFECYCLES OF APPS IN A SOCIAL ECOSYSTEM

This chapter is written in collaboration with Lada Adamic, Shaomei Wu, and Jon

Kleinberg and was published in Proceedings of the 24th International Conference on

World Wide Web in 2015.

Apps are emerging as an important form of on-line content, and they combine as-

pects of Web usage in interesting ways — they exhibit a rich temporal structure of user

adoption and long-term engagement, and they exist in a broader social ecosystem that

helps drive these patterns of adoption and engagement. It has been difficult, however, to

study apps in their natural setting since this requires a simultaneous analysis of a large

set of popular apps and the underlying social network they inhabit.

In this work we address this challenge through an analysis of the collection of apps

on Facebook Login, developing a novel framework for analyzing both temporal and

social properties. At the temporal level, we develop a retention model that represents a

user’s tendency to return to an app using a very small parameter set. At the social level,

we organize the space of apps along two fundamental axes — popularity and sociality

— and we show how a user’s probability of adopting an app depends both on properties

of the local network structure and on the match between the user’s attributes, his or

her friends’ attributes, and the dominant attributes within the app’s user population.

We also develop models that show the importance of different feature sets with strong

performance in predicting app success.

5.1 Introduction

There is, or is likely soon to be, a webservice or app for virtually every component

of modern life. They are diverse and ubiquitous; they constitute both a backdrop and

chronicle of everyday experience. And they represent a broad change in overall patterns

of Internet use — both the research community and the media have increasingly begun
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discussing the “appification of the Web” 1. Yet empirical opportunities to consider them

as a complete ecosystem have been limited, and as a result we still know very little about

the population structure of apps — their inherent diversity, their lifecycles, and the ways

in which users engage with them.

The high-level characteristics of app engagement as a form of Web use are still the

subject of much discussion and refinement, but certain properties emerge independent

of any one particular app’s functionality — these include temporal properties, based on

long-running patterns of individual usage and engagement over time, and social prop-

erties, in which an individual will typically be a user of many apps with overlapping

functionality, in a broader social environment that is bootstrapped to create within-app

social activity.

To address these issues, we study the collection of apps on Facebook Login, making

use of anonymized aggregate daily usage logs of the apps and web services accessible

through this mechanism. We undertake our analysis on two levels of scale — the in-

dividual level, focusing on the properties of user behavior over time and in relation to

other users; and the app level, modeling the overall usage level of the app and the social

structure on its users.

At the temporal level, we develop a user retention model, showing how with a small

number of parameters we can approximate the probability that a user who adopts an app

at time t will continue to be using it at a future time t +∆. The model exposes the ways

in which usage decay has a time-dependent component, and provides us with a compact

set of parameters representing a particular app’s engagement profile that can then be

used in higher-level tasks. When we consider the app’s user population as a whole,

we are led to natural lifecycle modeling and prediction questions — given an app’s

history up to a given point in time, how well can we predict its number of users going

forward? Interesting recent work of Ribeiro [98] considered this question using time-

series data for several large Web sites; we show how a broad range of feature categories

— including our derived retention parameters, together with individual characteristics

1

https://sites.google.com/site/appweb2012/
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of the app’s users and the social network structure on its full user population — can lead

to strong prediction results across a wide diversity of apps.

At the level of app social structure, we show how the space of all the popular apps

on Facebook Login can be organized in a two-dimensional representation whose axes

correspond to popularity — the raw number of users — and sociality — the extent to

which users of the app have friends who are also users of the app. This representation

exposes certain global organizing principles in the full app population, including a pair

of complementary “frontiers” to the space — one containing apps whose sociality is

relatively fixed independent of their popularity, and one in which the sociality of the

app’s user population is not much greater than that of a random set of Facebook users of

comparable size.

Finally, we perform an analysis of social characteristics at the individual user level,

analyzing the Facebook users who are one step away from an app in the social network

— a set we can think of as the “periphery” of the app, containing people who are not yet

users of the app, but have friends who are users. For a person in an app’s periphery, we

can attempt to predict future adoption of the app based on individual characteristics and

network structure. We find that apps are diverse in the way in which the structure on a

user’s friends is related to adoption probabilities, and we find an interesting effect in the

interactions among individual characteristics: a user’s probability of adopting an app

depends on the three-way relationship among their own attributes, the attributes of their

friends who use the app, and the modal attributes of the full population of app users.

5.2 Data

The data for this study comes from anonymized logs of Facebook Login daily activity,

collected between January 2009 and June 2014. Facebook Login is a secure way for

Facebook users to sign into their apps without having to create separate logins.

The various analyses in this paper required different slices of these logs, both con-

sidering the observation window and the apps being observed. Table 1 summarizes the
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different subsampled data sets that will be referred to throughout this work. The data for

this study has granularity of one day; that is, we have logs about whether an individual

uses a specific app on each day. All user level data is de-identified.

tag selection
criteria time period size

APPSRAND
random ∝

DAU(2014-06)
Jan. 2014 -
Jun. 2014 83,000 apps

APPSPOP
most popular by
MAU(2013-06)

Jan. 2009 -
Jun. 2014

2,319 apps
1.4×109 users

Table 5.1: Summary of data sets considered in this paper. DAU and MAU refer
to Facebook Daily Active Users and Monthly Active Users, respec-
tively. Our initial overview analyses consider APPSRAND, while our
subsequent and in-depth analyses consider APPSPOP and, as occasion
permits, various subsets of it (APPSPOP{X}). Unless otherwise noted,
subsampling in this work is done on apps, not on users.

The frequency with which the Facebook Login service is called, and hence daily

activity is registered, depends on several factors. Web-based activity relies on authenti-

cation tokens that expire on the order of hours, while mobile apps can optionally request

tokens that are valid for days, provided the user does not change their password. For

some apps, we do see a periodic activity, typically 7 days apart, consistent with longer-

term authentication tokens being refreshed. This periodicity is a small effect relative

to the overall activity, as we show below. This is likely because other activity, such

as posting updates or retrieving public profiles or friend lists, again requires reconnect-

ing. Therefore, Facebook Login provides a reasonable proxy of daily use of the app. It

allows us to characterize the app’s adoption and retention.

5.3 Social Properties of Apps

5.3.1 Popularity and sociality

One question that has been raised previously is how big of a role the social network

plays in the adoption of apps. This parameter has been inferred indirectly by Onnela
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and Reed-Tsochas [88] in their study of the very early adoption of Facebook apps. It is

also estimated in the model proposed by Ribeiro [99], where individuals can drive their

friends’ adoption and re-engagement.

However, these prior studies did not directly measure whether app adoption was in

fact correlated on the network, and so we turn to this task presently. In particular, we

would like to place apps in a low-dimensional space that can provide a view for how

they are distributed across the social network of users.

To do this, we begin with two basic definitions

• We say that the popularity of an app, denoted p(x), is the probability that an

individual selected uniformly at random from Facebook’s population is a user of

the app.

• We say that the sociality of the app, denoted p(x|y), is the probability that a mem-

ber of Facebook is a user of the app given that they have at least one friend using

the app.

Studying the distributions of p(x) and p(x|y), and how they are jointly distributed

across apps, allows us to ask a number of questions. In particular, how socially clustered

is the app? And how does it depend on the type of app, or characteristics of the app’s

users?

Note that if p(x|y) is very high for an app, it means that its user population in a sense

“conforms” to the structure of the underlying social network.

Moreover, p(x|y) can in principle be high even when p(x) is low — this would

correspond to an app that is popular in a focused set of friendship circles, but not on

Facebook more broadly. On the other hand, if p(x|y) is not much more than p(x), then

it says that users of the app are spread out through the social network almost as though

each member of Facebook independently flipped a coin of bias p(x) in order to decide

whether to become a user of the app — there would be no effect of the social network

at all.

109



10−4 10−3 10−2 10−1

100

101

102

103

p(x|y)/p(x) vs p(x)

34
1

10−4 10−3 10−2 10−1

10−3

10−2

10−1

p(x|y) vs p(x)

33
1

10−6 10−4 10−2 100

10−6

10−4

10−2

100
p(x|y) vs p(x)

294
1

Figure 5.1: App sociality. Top left: Horizontal axis is app popularity, and verti-
cal axis is the relative increase in adoption likelihood for people who
have friends who also use the app. Right panels: Horizontal axis
is app popularity, vertical axis is app sociality. The colors represent
the number of apps falling within the given bin. The lower right panel
uses APPSRAND, while the other three panels use APPSPOP (see Table
6.1 for details). The labeled colors indicate the relative frequencies
of observations in each bin, such that the lowest values have been
normalized to 1. Bottom left: Matrix indicating the p-values for
the two sided Kolmogorov-Smirnov test comparing the distributions
p(x|y)/p(x) for apps within each pair of the nine listed categories.
White indicates a lower p-value and black indicates a higher one.
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Plotting apps in popularity-sociality space

An appealing feature of this pair of parameters is that it provides a natural two-

dimensional view of the space of all popular apps on Facebook. We show this view

in Figure 5.1 — a heat map showing the density of apps at each possible (discretized)

pair of values (p(x), p(x|y)).

We see in Figure 5.1 that the apps fill out a wedge-shaped region in the p(x)-p(x|y)
plane, and it is informative to understand what the boundaries of the region correspond

to. First, note that if the social network had no relationship to app usage, we would see

the diagonally sloping line p(x) = p(x|y); in the plot this corresponds to a line that lies

slightly below the diagonal lower boundary of the points in the heat map. Thus, there

exists a frontier in the space of apps that is almost completely asocial — those apps that

lie parallel to this diagonal line — but essentially no apps actually reach the line; even

the most asocial apps exhibit some social clustering. We see this in the approximately

horizontal top boundary of the points in the heat map — this is a frontier in the space

of apps where knowing that a person x has a friend using the app gives you a fixed

probability that x uses it, independent of the app’s overall popularity on Facebook. The

location of this horizontal line is interesting, since it provides an essential popularity-

independent value for the maximal extent of social clustering that we see on Facebook.

Note that the wedge-shaped region in a sense has to come to a point on the right-

hand side, as p(x) becomes very large: once an app is extremely popular, there is no

way to avoid having pairs of friends using it almost by sheer force of numbers. And

given the crowding of app users into the network, there is also no way for the extent of

social clustering to become significantly larger than one would see by chance.

The third, lower left boundary of the wedge is a manifestation of the Facebook friend

limit of 5000: if a user is friends with someone who uses the app, at least 1/5000 of their

friends use it. We approach this limit in the far left hand of this Figure with apps that

have two users, one with 0 other friends using the app and the other with 1 of their

nearly 5000, combining to approach the lower limit of 1/(2 ∗ 5000). The lower bound

decreases as 1/(n∗5000) as the number of users, n, increases.
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Figure 5.2: Relationship between national identity of potential app adopters, that
of their current user friends, and the likelihood of their adopting the
app. Blue: Relative adoption rates when a potential user and their
current user friend are from the majority to when potential user is in
majority and current user friend is in minority. Green: Relative rates
when potential user and current user friend are in same minority to
when potential user is in minority and current user friend is in major-
ity. Red: Relative rates for when potential user and current user friend
are in same minority to when they are in different minorities. The blue
curve indicates that when a potential user is from the majority country,
their current user friend could be from either the majority or a minor-
ity and they are still equally likely to adopt an app more often as less.
In contrast, when the potential user is from a minority country, in 75%
of apps they adopt more frequently when their current user friend is
from the same country as them.
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5.3.2 Analysis of Social Neighborhoods

We saw in the previous section that app adoption can be localized in the social network.

But what is the mechanism by which the app is adopted by friends? Is homophily driving

both friendships and adoption of specific apps based on interests? Or is the primary

mechanism one of exposure, where having even just a single friend who has installed

the app now gives an opportunity to become familiar with the app and subsequently

adopt it?

To answer these questions, we observe the Facebook friendship graph at time t. For

each app, we consider everyone on Facebook who has friends using the app, but who has

not used the app themselves by t. Are there features of the individual and their friends

that will predict whether the individual will adopt the app at some point in the future?

One-node neighborhoods

We begin with a question about homophily and its relation to app usage. Consider a

Facebook user A who does not currently use the app, and suppose that has exactly one

friend B who uses the app (that is, A has between 1 and 5000 friends on Facebook, but

for our purposes here, exactly one of those friends is an app user). We choose some

attribute on users (for example nationality, or age); we let f (A) and f (B) denote the

value of this attribute for A and B, and we let f ∗ denote the modal (or median) value of

the attribute across all app users.

Now the following question arises. Suppose that A is different from the typical user

in this attribute, in the sense that f (A), f ∗. Is A more likely to adopt the app if the friend

B is similar to A, or if B is similar to the typical app user? This is a basic question about

the role of individual similarity in adoption decisions — if we’re studying potential users

who are outside the target demographic, is it more effective for their app-using friends

to be similar to them, or similar to the target demographic?

We study this for nationality as an attribute in Figure 5.2 — given an app, we index

nationalities so that the most common nationality among users of the app is labeled
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0, and other nationalities are labeled by values i > 0. We now say that a(i, j) is the

adoption probability of a user A who has one friend B using the app, with f (A) = i and

f (B) = j. (Note that f ∗ = 0 according to our notation, since 0 is the most prevalent

nationality in the app.) The figure shows that for a considerable majority of apps, we

have a(i, i)/a(i,0) > 1, indicating a clear aggregate tendency for the question in the

previous paragraph: a user A is more likely to adopt the app in general when A’s one

friend using the app is similar to A, not to the typical app user. In contrast, when f (A) =

f ∗, the ratio a(0,0)/a(0, i) is balanced around 1, so there is no clear tendency in adoption

probabilities between the case f (B) = f ∗ and f (B) , f ∗: for users who have the modal

attribute value, the attribute value of their friend does not have a comparably strong

effect.

This style of question gives us a way of analyzing individual attributes in general,

and we find that attributes differ in the way this effect manifests itself. For example,

when we consider age as an attribute (in place of nationality), we see (Figure 5.3) that if

A has a friend B using the app, the age of B has very little correlation with A’s probability

of adopting. However, the age of A is related to the adoption probability — users A who

are much older or younger from the median age are relatively more likely to adopt the

app if they have a friend who uses the app, compared to individuals who are near the

median age themselves.

Two- and three-node neighborhoods

We can also use the population of apps, and the adoption decisions that people make

about them, to address a recurring recent question in the literature on on-line diffu-

sion. Given an individual A who is not currently using an app, but who has k friends

B1,B2, . . . ,Bk using it, how does A’s adoption probability depend on the pattern of con-

nections among these k friends? Is A more likely to adopt if there are many links among

these friends, or very few?

Past work has suggested that the answer can depend on the adoption decision be-

ing studied. Consider the results observed by Backstrom et al. [10] with LiveJournal
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Figure 5.3: The probability that a user adopts the app given that they have one
friend using the app. as a function of (left) the friend’s age offset
from the median and (right) the user’s age offset from the median.
The left plot indicates no apparent relationship between the age of
the friend and that the user adopts. In contrast, the right plot illus-
trates that young users and users who are aged between 10 and 30
years above the median age are more likely to adopt. Users who are
more than 40 years older than the median age are less likely to adopt.
The probabilities were binned by age into 20 equally populated bins
and the reported adoption probabilities are bootstrap estimates. The
thick central line is the median bootstrap estimate of the mean, while
the three outer bands indicate the 68%, 95%, and 99.7% confidence-
intervals.

data, where conversion probability increases with the connectedness of one’s friends,

and contrast them with those observed by Ugander et al. [115] with Facebook e-mail in-

vitations, where, for a fixed neighborhood size, one’s probability of conversion strictly

increased with the number of independent components. In both cases the result is non-

obvious, as there is no a priori mathematical reason that the effect should be monotone

with connectedness of one’s neighbors.

Given the diverse answers arising in prior work, and the consequent suggestion that

the result depends on the adoption decision, we consider how adoption probabilities

vary with neighbor connectivity across a large sample of the most popular apps.
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Figure 5.4: Right: the baseline rate of adoption given that a user has two friends
using (horizontal) and the ratio of probability of adoption given friends
are connected to probability given that friends are not connected (ver-
tical). Apps above the line y = 1 exhibit the same trend as LiveJour-
nal adoptions, and those below follow the trend observed in Face-
book adoptions. Left: Closed to open conversion ratio for two-node
neighborhoods (horizontal) and three node neighborhoods (vertical).
Apps in the upper right quadrant follow the LiveJournal trend for two-
and three-node neighborhoods, while apps in the lower left follow
the Facebook trend. The correlation between these rates is 0.98 with
p << 0.01, and there is a stark deficiency of apps in the diagonal
quadrants.

We begin by considering the question just for two-node user neighborhoods, asking

it separately for six hundred apps from

APPSPOP: given that a non-user A has exactly two friends using the app at time t, how

does A’s adoption probability depend on the presence or absence of an edge between

A’s two friends? Note again that these users may have any number of Facebook friends

between 2 and 5000, but that only two of those friends can be app users. We explore

this question in Figure 5.4. We find that both possibilities — higher or lower adoption

probability with the presence of an edge — occur in roughly comparable proportions

across the population of apps, suggesting that at the level of two nodes, both possibilities

are indeed prevalent.
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Figure 5.5: Two views of the same 3D point cloud: apps positioned accord-
ing to the ratios a(E3)/a(K3), a(P2

⋃
K1)/a(K3), and a(P3)/a(K3),

and colored such that blue apps have a(K2)/a(E2) ≥ 1, and red have
a(K2)/a(E2) < 1. All adoption rates are reported relative to the rates
for when a friend’s user friends are a clique. Red apps have higher
adoption rates with lower connectivity in the two-node graphs, and
we see a near perfect correspondence in this trend for each possi-
ble combination of connectivity in three node graphs; this is demon-
strated by the blue and red points falling naturally on either side of
1 in all three dimensions. In the left hand view the vertical extent of
the cloud demonstrates the natural variation in relative adoption rates
when a friend’s user friends form two components (y-axis) compared
to three (x-axis). In contrast, in the right hand view of this point cloud
we observe more limited variation in relative adoption rates when
the user friends are connected in one component. These differences
are reflected in the Pearson correlation coefficients of 0.94 between
a(E3)/a(K3) and a(P2

⋃
K1)/a(K3), and 0.57 between a(E3)/a(K3)

and a(P3)/a(K3) (p < 10−10 in both cases).

As often happens in the analysis of phenomena on small social subgraphs, we begin

to see some rich structure emerge in the question when we move to three-node neigh-

borhoods. For a graph G, we let a(G) denote the adoption probability of user A when

A’s neighbors induce the graph G, and note that on three nodes there are four possible

graphs: the complete graph K3, the three-node path P3, the single-edge graph P2 ∪E1,

and the empty graph E3.

We find (Figure 5.4) that the ratio a(K3)/a(E3) covaries closely with a(K2)/a(E2)

across the set of apps — in other words, when the adoption probability of an app is
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Figure 5.6: App adoption and departure dynamics. Heat maps of aggregate first
and last login times for users of several examplar apps. The y-axis
corresponds to the date of the first login and the x-axis to the last. The
concentration is from blue (few) to yellow (many). Bright yellow and
green horizontal or vertical bands correspond to periods of rapid adop-
tion and departure, respectively. The color scale increases in density
from white to blue, then yellow, then red.

higher for a connected pair of friends, it is also higher for a connected triplet of friends.

This indicates how properties of two-node neighborhoods provide strong information

about the properties of larger neighborhoods — and it is an empirical regularity of the

adoption decisions rather than a strictly mathematical one, since the property for three

nodes does not follow from the property on two nodes. We find similar regularities in the

fact (Figure 5.5) that when adoption probabilities are higher for a(E3) relative to a(K3),

they are also higher for the next-sparsest graph a(P2∪E1). And we see comparatively

much less variation between a(P3) and a(K3), which is consistent in interesting ways

with the finding of Ugander et al.[115] that neighborhood topologies inducing the same

number of connected components tended to lead to similar adoption probabilities.
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5.4 Temporal patterns in apps

In addition to learning how the adoption of apps depends on friendship ties, we’d like

to characterize the app’s ability to retain those users who have adopted. These temporal

features of an app’s evolution hold some of the keys to its success.

To get a sense for what the retention of users looks like at a global level, we show

the evolution of usage for a sample of apps in Figure 5.6. The images in this figure

are heat maps in which the cell in the (i, j) entry records the density of users who first

used the app at time i and last used it at time j. These maps thus show periods of

heavy recruitment as horizontal bands — days when many individuals first started using

the app. While there are a few vertical bands, denoting a narrow period of time when

many users were last active, there is a clear concentration along the diagonal of many

users departing soon after their first login, while some, located off-diagonal, remain

active much longer. There are also sudden increases and decreases in density, as apps

became more or less popular. With this type of global view of the diversity in usage

and retention patterns, we next turn to modeling these retention patterns; our goal is to

extract parameters from such a model to use as features in predicting an app’s future

engagement.

5.4.1 Retention model

For an app to have long term success we expect that it needs to maintain a relatively high

level of user retention. We would like to have a model of retention that characterizes

not only whether an individual will log into the app the very next day, but for any day

subsequent to their first login.

Past work on retention modeling (e.g. [33, 60, 129]) has been focused on a particular

product/activity (mostly online games), trying to predict users’ continous engagement

with a wide selection of features, many of them are domain-spefic and computationally

expensive. To study thousands of apps and billions of users, we want to propose a model

that is easy to compute and highly generalizable.
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Simplest model: exponential decay

We start with the population of newly installed users, n(0), and assume that at every

time step each user has a constant probability of leaving, x0. This mechanism gives rise

to exponential decay:

dn(t)
dt

=−x0n(t)→ n(t) = n(0)exp(−x0t), (5.1)

where n(t) is the number of app users at time t. It turns out that this model does not yield

a good fit to the data. However, the fit improves if we introduce a second parameter to

the model by fitting from the second day; that is, we fit both for the decay rate, x0, and

the fraction of users that returned on day 2. With this relaxation from fitting day 1, the

model becomes

n(t) = An(0)exp(−x0t). (5.2)

It is interesting that the exponential decay model fits the day 2 and onward trend

well while not fitting day 1: it is reasonable to expect that there is a discontinuous

transition in the probability of returning given an install versus an install and a return

the following day. Day 1 users are dominated by those who use the app exactly once,

whereas all the other days contain a signal from users who exhibited at least some level

of continued interest in the app. Despite its ability to capture this distinction, this model

is unsatisfactory: it entirely ignores the day 1 users, and even in the two-parameter

version it under-predicts retention at long times (Figure 5.7).
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Figure 5.7: Empirical retention data, model predictions, and parameters. (a,i):
Retention data and model predictions for an exemplar app. Error bars
on the data (red solid curve) representing 99.999% confidence inter-
vals (4.4172

√
p(1− p)/n). (a,ii): Error corresponding to fit shown

in (a,i). (b): Distribution of fitted retention model parameters for the
apps in APPSPOP. The shade represents the frequency of fitted pa-
rameter values falling into the given bin (darker being more frequent).
(c): Mean error achieved by the model for apps with fitted parameters
in the corresponding bin range. The same linear shade scale is used
for both panels, with the lightest gray being 10−5 and black being 3
(white corresponds to no data). b and xb denote the parameters in the
time dependent model, and A and xA those in the time indepdendent
version.
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Introducing simple time dependence

Instead of assuming that people have a constant probability of leaving at every time step,

let us assume that their probability is a simple function of time:

dn(t)
dt

=−xa

ta n(t)→ n(t) = n(0)exp
(
−xat1−a

1−a

)
. (5.3)

This model allows for the possibility that their likelihood of returning to the app could

have a time dependent component, and it introduces this time dependence with the ad-

dition of only one parameter. Notice that by setting a = 0 we recover the traditional

exponential decay model.

The parameters in this model have an interesting interpretation. Smaller values of

a indicate that the app users have more momentum, that is, the app has more sticking

power. The parameter xa is still related to the familiar probability of depature: small xa

indicates that users are more likely to continue using the app.

5.4.2 Temporal analysis

After studying the temporal dynamics of individual apps through our retention model,

we now look for regularities in the temporal patterns across multiple apps. We start

this analysis by taking a random sample of all apps, and clustering their time series of

daily active users using a k-means algorithm. All the time series are normalized by the

number of active users on the app’s peak day.

By varying k, we can get different sets of temporal clusters (see Figure 5.8). The two

clusters generated for k = 2 already capture two dominant temporal trajectories of apps:

one exhibits a clear rise and fall, while the other exhibits a slow but more sustainable

rise. Note that the slow rise shown in the second cluster here may be misleading: as

these apps keep growing and we normalize the time series by total volume, apps with a

bigger user base will appear to have fewer fluctuations and slow growth/drop. When k

increases, other small temporal clusters emerge, but they are not significantly different
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Figure 5.8: Left: k-means centroids of DAU for APPSRAND, for k = 2 and k = 3.
The clustering was done on the peak normalized time series of a 100-
day observation window. Right: K-means scores (mean of distances
from nearest centroid) for various values of k. Error bars represent
95% confidence intervals. Scatter plot is derivative of scores. Notice
that no statistically significant improvement is gained for k > 2; that
is, for all k > 2 the score of the resulting clustering is statistically
significant different from that for k = 2. The scores were evaluated
using a 75-25 train-test split, the clusters were generated with 100
restarts, and L2 was used as the distance metric.

from the two typical ones.

Then, for all apps that existed on June 1 2013, we compute their monthly active

users (MAU) on that day and one year out. We plot those distributions against each

other in Figure 5.9, where the color indicates the number of apps with the stated pairing

of MAUs. The right-hand figure normalizes the columns, so that each bin column can

be interpreted as the probability of ending up at the indicated MAU, given the current

position. We can see that apps are most likely to stay at approximately the same MAU,

but that, especially for very popular apps, there is a subpopulation that loses almost all

of their users. This pattern suggests a natural underlying binary prediction problem:

given that an app enjoys current success will it continue to be as popular one year later?
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Figure 5.9: MAU of all apps in June 2013 (horizontal) and June 2014 (vertical).
Left: Number of apps with MAU@t1 and MAU@t2 corresponding to
the specified bins. Right: P(MAU@t2— MAU@t1) is the empirical
probability of an app having y users at t2 given that it had x users at
t1. At t2 we observe that apps tend to either continue at the same level
of popularity as they experienced at t1 (bright diagonal) or exhibit a
dramatic decrease in popularity (bright band on horizontal axis). Apps
that are more populare have greater rates of continued success. How-
ever, when their popularity drops, the collapse tends to be complete.

5.5 Predicting app success

In the previous sections we have seen that apps can be described in a variety of ways.

We began by exploring the relationship between an individual’s social network and their

likelihood of adopting an app, and in general how app usage is clustered in the social

network. We also related a user’s likelihood of adopting an app to their individual char-

acteristics relative to those of the current app’s users. Next we observed that, though

overall patterns of adoption can be quite complex, an app’s retention properties are well

described by a simple model with a small set of parameters. And finally we again saw

that while the fine grained activity level for any app is complicated, in the long term

apps tend to either continue at the same activity level or diminish in popularity.

In each analysis we considered either hundreds or thousands of popular apps from
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this ecosystem, and saw that these various low dimensional features had interesting and

diverse distributions across the population.

This brings us to our final set of questions: can we use an app’s social, demographic,

retention, and temporal features to predict whether or not it will be successful in the

long term?

5.5.1 Predicting the longevity of apps

Note that we have seen empirically that the question of an app’s long term success is

well approximated by a binary variable (see Figures 5.8 and 5.9). In this subsection

and the next, we will consider two variations on a binary prediction task. One task is

straightforward: given a collection of promising apps, we want to predict which apps

will have persistent success over the next year. The other task is based on a pairwise

evaluation: to compare a pair of similarly popular apps and predict which one will be

more successful in the future.

First, we consider the task of predicting which apps in the entire population will

continue to be successful. Based on the number of active users on June 2014, we label

an app as a positive example if it has over 50% of the number of active users it had

in June 2013, and we label it as a negative example if has lost more than 50% of its

users. This labeling turns out to provide us with a balanced class distribution, with the

guess-all-positive baseline being 50%. For this binary classification task we built and

evaluated the model by training random forests on apps in APPSPOP, where each app is

represented as a vector of the features in Table 5.2.

The prediction performance results are shown in Table 5.3, and the use of all the

available features leads to performance above 70% on this binary task. We find that the

temporal features are the best single set of features, with the most important features

being the median number of users in months 8 and 9 of the 12 month observation pe-

riod (June 1 2012-June 1 2013 – see Table 6.1). The apps that would continue to be

successful also had a higher weekly minimum; given that the overall popularity of the

apps between classes is evenly distributed, we interpret this high weekly minimum as a

125



Temporal
med /min/max DAUmo.X median, min, max number of daily users in month X of observation
med /min/max ∆DAUmo.X median, min, max of change in daily users within month X (DAUX−DAUX−1)
med /min/max ∆2DAUmo.X median, min, max of second order change in daily users within month X
med /min/max DAUyear median, min, max of DAUX for X ∈ 1, . . . ,12
med /min/max ∆ DAUyear median, min, max of ∆DAUX for X ∈ 1, . . . ,12
med /min/max ∆2 DAUyear median, min, max of ∆2DAUX for X ∈ 1, . . . ,12
∆year DAU med DAU12 - med DAU1
∆year∆ DAU med ∆ DAU12 - med ∆2 DAU1
∆year∆2 DAU med ∆2 DAU12 - med ∆2 DAU1

*WAU, MAU, users, new users
Same statistics as listed for DAU above, considering instead weekly users, monthly users, total users, and new
users

Demographic
CountryX / P(CountryX ) Number, fraction of users from country X
GenderX / P(GenderX ) Number, fraction of users who stated their gender to be X
AgeX / P(AgeX ) Number, fraction of users who stated their age to be X
lk,7 / P(lk,7) Number, fraction of users who were active on Facebook for k out of 7 days

is30 / isnot30 / P(is30)
Number of users who are / aren’t monthly active Facebook users; fraction of users who were monthly active
Facebook users

Entropy(Country) Entropy of country user distribution: −∑X∈Countries P(CountryX ) log2 P(CountryX )
Entropy(Gender) Entropy of gender user distribution: −∑X∈Genders P(GenderX ) log2 P(GenderX )
Entropy(Age) Entropy of age user probability distribution: −∑X∈Ages P(AgeX ) log2 P(AgeX )
Entropy(l7) Entropy of l7 distribution: −∑k∈1,...,7 P(lk,7) log2 P(lk,7)
Entropy(is30) Entropy of is30 distribution: −[P(is30) log2 P(is30)+(1−P(is30)) log2(1−P(is30))]

Retention
N(t) Number of users who returned t days after their first login
P(t) Empirical probability of a user returning t days after their first login

a, xa Parameters for best fits of time dependent model: N(t) = N(0)exp
[−xat1−a

1−a

]

A, x0 Parameters Least squares parameter fits of time independent model:N(t) = AN(0)exp[−x0t]
Social

med / max deg median and maximum number of friends of an app user
med / max using median and maximum number of friends of an app user who also use the app

p(x|y) sociality: empirical probability of having adopted an app given that a friend has,
i.e. mean fraction of an app user’s friends who also use the app

p(x|y)/p(x) relative change in probability of a user adopting an app given that their friend has
SIRS model

S0 susceptible population size, i.e. number of Facebook users who are interested at this app
α probability of a non-user adopting the app due to non-social reasons
β probability of a non-user adopting the app through social process
γ probability of active user becoming inactive
ε probability of in-active user being drawn back by active users
pred(dayk) the DAU prediction at day k for k between 2013-06-01 and 2014-06-01

Table 5.2: Features used for training and testing the binary app success prediction
tasks. Features were measured for all apps in APPSPOP (see Table 6.1),
with the exception of the SIRS model features due to issues of model
convergence.
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signal of stability, and that this stability was a positive predictor.

Individual user attributes yielded the second highest performance, with the most

important class features being activity-based ones: l5,7 and l6,7 ( lk,7 is the fraction of

app users that were also active Facebook users for past k out of 7 days). We observe that

for k = 0, . . . ,6, negative examples are correlated with greater values of lk,7, whereas

for l7,7, the trend reverses, and the positive examples with more users who are active on

Facebook every day. This means that having users who were also highly active Facebook

users is a positive indicator of success.

Among all the retention features, the most important one was the fitted parameter

xA, which represents the “departure probability” in the exponential decay model of users

leaving an app. Not surprisingly, we find that the positive examples tend to have lower

xA than negative examples, indicating that having users who continue using the app for

an extended period of time (i.e. a lower leaving probability) is correlated with the app’s

long-term success.

Finally, the most important structural features were sociality, i.e., average user de-

gree, and mean/max number of friends who used the app. For the latter two we could not

notice any significant differences between the two classes, but we do notice that high so-

ciality is a negative indicator of success. This is likely due to the fact that we normalize

the sociality measure (p(x|y)) by the popularity of the app (p(x)); thus those apps with

very high sociality score are relatively small, and tend to be the ones situated in a very

specific, niche market. Indeed, we find that if we consider the separate distributions of

the numerator and denominator, we observe that p(x|y) is indistinguishable for the two

classes, while p(x) is a positive indicator, leaving p(x|y)/p(x) as a negative indicator.

SIRS model

In general the task of predicting an app’s time-series trajectory is a rich and interesting

problem, but the binary nature of trajectories that we observed motivated our simplifi-

cation to the binary prediction task. To explore the potential inherent in modeling richer

properties of the time series, we also consider a model of app usage via a set of inter-
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acting reaction diffusion processes, much like a chemical reaction. The model we use

was proposed by Ribeiro et al. [98], and falls into the well-known class of SIRS models.

We will briefly describe how we implemented this model, and when we return to our

underlying prediction task, we will consider the predictions and parameters from this

model as an additional set of features.

Ribeiro et al. [98] proposed a model describing the dynamics of a webservice of daily

activity time series, derived from the classical epidemic model and comprised of a set of

reaction diffusion processes. The model is specified by a set of parameters, including the

estimate of the susceptible population, and the transition probabilities between different

states. Ribeiro also outlines a framework for fitting these parameters given a window

of time series activity levels, and then uses them to extrapolate and make a long term

prediction of future activity levels. We implemented a model very similar to the one

described in [98]. We fitted the model using a Monte Carlo process using time series

from June 2, 2012 to May 25, 2013 (the same period from which we extract temporal

features), and used the fitted model to generate predictions between May 26, 2013 and

May 15, 2014.

There are two things we note about the SIRS model. First, as we try to predict

the future of apps from a fixed time point, the apps we are studying can be in very

different life stages. For example, some apps in our dataset had only existed for a short

period of time by the observation day, and thus have very limited time series data to

compute a good fit of the SIRS model. Second, some underlying assumptions in the

SIRS model, such as the constant rate of user adoption through advertisement or word-

of-mouth process, may not hold in reality. As a result, the model would not converge for

certain apps, especially the ones that experienced large fluctuations in their lifecycles.

Nevertheless, we were able to fit over two-thirds of the apps in APPSPOP. Among

them, 1100 apps had reasonable convergence and error estimates. We then used both

the fitted parameters and the predicted time series as our features for this subset of 1100

apps. On that subset of 1100 apps, the relative performance of the other features sets was

the same (all combined features yield the highest performance, followed by temporal,

then demographic, retention, and finally social).
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We find that the features from the SIRS model perform worse than the retention

features but better than the social features. Thus, despite the richness of the time-series

modeling made possible by the SIR framework, as a feature set it does not perform as

well as other measures incorporating temporal properties, including the retention model

from the previous section.

Feature set accuracy prec:
+;-

recall:
+;-

top 2 features:
{among all};
{within class}

Baseline 0.50

All 0.73 0.72;
0.74

0.74;
0.72

med users8
med users9

;
–

Temporal 0.71 0.72;
0.7

0.68;
0.74

∆yearWAU ,
minWAU11

;
med users8
med users9

Demographic 0.66 0.64;
0.68

0.70;
0.61

l6,7, l5,7;
l6,7, l5,7

Retention 0.61 0.59;
0.64

0.70;
0.53

xa, xA;
day 2 and 3 returns

Social 0.6 0.59;
0.61

0.60;
0.59

p(x|y)
p(x)

, 〈user degree〉;
Mean and max # of
friends using the app

Table 5.3: Prediction performance results for five combinations of features. Pre-
cision and recall: top and bottom rows are for positive and negative
classes, respectively. Features are ranked by out-of-bag importance
estimates while training the random forests. We trained the classifier
using all the features, and report the most important ones in each cat-
egory in the top row (“among all”), and train the classifier with only
the features in each category, and report the top opens in lower row
(“within class”).

5.5.2 Predicting pairwise relative success

Next we formulate a separate but related prediction task, by constructing a pairwise com-

parison version of predicting app success. Given that two apps have approximately the
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same monthly active users at t1 (MAU@t1), and by t2 they had diverged from each other,

we want to predict at time t1 which app is going to be more successful. We evaluate this

problem with a variety of thresholds for what we considered “near-” and “long-”term

predictions of MAU. This prediction task is particularly useful when investigating a set

of competitive apps in the same market. Intuitively, it is difficult to tell similar apps

apart at an early stage [99]. However, by looking at pairs whose outcomes at t2 are suc-

cessively farther apart, we can control for the difficulty of the task and understand when

it becomes feasible to predict such divergence.

For the pairwise prediction task we begin by generating a 50-50 train-test split be-

tween apps, and represent each pair of apps as a concatenation of two feature vectors,

again using the features from Table 5.2. We then introduce a subtle variation to make the

setup more relevant to a real-world scenario. The features and labels used in the training

stage are generated using snapshots of our datasets at t0 and t1 = t0 + 6 months, while

those used for testing are generated using snapshots at t1 and t2 = t1 + 6 months. This

simulates the practical scenario of observing the app population at t1, learning which

characteristics of apps lead to their success, and using the learned knowledge to predict

the future.

Two apps are considered to start off as being “comparable” if they fall into the same

decile at t0/1 (train/test), and are considered “distinct” if they are at least k deciles apart

at t1/2 (train/test). In Figure 5.10 we see that prediction accuracy increases monotoni-

cally with k, and that the best set of features (temporal) ultimately yield 75% prediction

accuracy. The other most striking feature of Figure 5.10 is that for most of the thresh-

old window, all the features yield approximately the same performance. Each set of

features, besides demographic, takes a turn at being both the top performer and the low-

est. The individual feature analysis that we did was consistent with the observation that

this task is not highly sensitive to the choice of features. To analyze which features

could best discriminate between positive and negative examples we used the two-sided

Kolmogorov-Smirnov test to compare the distributions of each feature for positive and

negative examples. We find that, with the exception of a few underpopulated demo-

graphic features, the Kolmogorov-Smirnov test finds that each feature is distinguishable

between the negative and positive examples with p-values extremely close to zero.
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Figure 5.10: Prediction accuracy for the pairwise relative success prediction task,
as a function of decile threshold, k.

5.6 Related Work

Sociologists and economists have long studied the problem of product adoption and

retention. Early work in this domain focused on the diffusion of innovations, as people

proposed a series of mathematical models to describes the adoption of new products

by consumers, such as the “S-shaped” adoption curve [32] and the Bass model [15].

These models have been successful in predicting the impact of advertising, especially

the effect of advertising through mass-media and billboards. Other work has focused

on the diffusion of innovations and products through social ties [101]. With the rise of

social media and online social networks, there has been more and more evidence that

the social influence, i.e. the word-of-mouth effect, is playing a increasingly important

role at driving the adoption of products and services [13, 75, 85].

To understand how products and information spread in social networks, most exist-

ing work tries to predict the volume of popularity, such as the the size of online com-

munities [10], the number of fans of Facebook pages [111], and the usage of hashtags

on Twitter [12, 102, 120]. While these work showed the correlation between the scale
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of diffusion and its structural and topical properties, there has been a recent line of work

questioning the predictability of large viral events [12, 103]. In response, Cheng et

al. [18] showed that it is possible to predict how much more a cascade will grow by

observing the temporal and other features of its spread up to the present time.

Besides being a key predictor for cascade size, the temporal dynamics of cascades

have been an interesting research topic [25, 76, 127]. Upon the discovery of several

robust temporal classes of cascades on different platforms, most studies on the temporal

dynamics focused on bursty events [117], or the peak volume [25, 76]. Indeed, the

majority of popular things spread on-line enjoy very short attention span: the popularity

rises and drop quickly, usually within a few hours or a day [124, 127]. The persistence

of interest, although rare, is rather intriguing. Wu et al. [124] found that the longevity

of URLs on Twitter can be explained by the intrinsic cultural value of the content they

link to. Follow-up work showed that information with positive sentiment is more likely

to persist [125]. Ducheneaut et al.. discovered that smaller and denser guilds in World

of Warcraft are more likely to survive longer [35].

While many papers correlate the temporal patterns of cascades with its empirical

properties, some researchers have developed theoretical models on individuals’ choice

of adopting and engaging with a product or activity [98, 117]. These models are useful at

depicting the mechanism behind the observed temporal dynamics, however, it is unclear

how generalizable they are beyond the particular product or activity studied.

Our work contributes to current research in two major aspects.

First, we study the entire lifecycle of apps over a timespan as long as 5 years .

Our focus is the persistency of growth other than the peak popularity. Different from a

viral YouTube video or a meme photo, successful apps needs to engage with their users

repeatedly. Therefore, we spent a significant amount of work analyzing and modeling

the retention of apps, and showed its importance to the long-term success of apps.

Second, we study thousands of apps at once. Previously, most papers examined

the adoption and retention of a single product/activity, thus their results might not be

generalizable to other domains. By studying a large selection of apps on Facebook, we
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are able to control for app-specific features and understand how the characteristics of an

app interact with its social and temporal dynamics.

Some work similar to ours includes a recent study of the growth and longevity

of online communities [58], the modeling and prediction of the temporal pattern of

membership-based websites [98], and a study of mobile app adoption over a small real-

life social network [93]. Our study builds on these papers in both the scope and the

variety of examples examined. Also, with the rich dataset we have about apps, users,

and the underlying social graph, we are able to introduce several new theoretical and

analytical models, and to compare them with recent formalisms [98]. By incorporating

the parameters of a fitted model as part of the feature set, we are able to extend and

compare different methodologies.

5.7 Conclusion

In this paper we studied the lifecycle of apps: as they grow and thrive, and, in some

cases, as they decline. We studied differences in their development, looking for clues

to their future fate. First, we sought parameters with which to model the interaction

between the app and the individual. We found that a simple exponential decay, even

with an adjustment for attrition after the first day of use, did not accurately capture user

retention. Instead, those who keep using the app over a longer time period are less and

less likely to stop. Modeling retention of individuals in this way is helpful in predicting

app success.

Another dimension goes beyond the individual to whether the app is adopted so-

cially. Apps vary widely in the sociality of their adoption, and we find heterogeneity

in the apps based on how their adoption probabilities depend on the connectedness of

friends who use the app and the similarities in attributes between an adopter and his or

her friends.

The features most predictive of an app’s future dynamics are those describing its

past growth trajectory. More widely adopted apps that have recently been on a growth

133



trajectory are more likely to persist. Given a range of features, we obtain over 20% ab-

solute improvement over random guessing when it comes to making a binary prediction

as to sustained activity for an app. We also obtain strong performance when we formu-

late the problem as one of matching two apps of roughly equal size which take different

trajectories, and trying to distinguish the two with a much higher than random accuracy.

There are a number of further aspects of the app ecosystem that would be interesting

to take into account in future work. First, app adoption is driven in part by the marketing

and other recruitment strategies of the app owners. Although our models incorporate the

numbers of new users coming to the app over time, they do not differentiate between

organic growth and advertising-driven growth. Furthermore, it is not clear whether so-

ciality of apps might accelerate growth or decline or both. Finally, it is unclear whether

some features might be early harbingers of future behavior, e.g. whether the change

in retention of long-time or recently acquired users is more useful in forecasting the

eventual adoption of the app. We leave these and other questions for future work.
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CHAPTER 6

INTERNET COLLABORATION ON EXTREMELY DIFFICULT PROBLEMS:

RESEARCH VERSUS OLYMPIAD QUESTIONS ON THE POLYMATH SITE

This chapter is written in collaboration with Chenhao Tan, Jon Kleinberg, and Lillian

Lee and is being published in Proceedings of the 25th International Conference on

World Wide Web in 2016.

Despite the existence of highly successful Internet collaborations on complex

projects, including open-source software, little is known about how Internet collabo-

rations work for solving “extremely” difficult problems, such as open-ended research

questions. We quantitatively investigate a series of efforts known as the Polymath

projects, which tackle mathematical research problems through open online discus-

sion. A key analytical insight is that we can contrast the polymath projects with mini-

polymaths — spinoffs that were conducted in the same manner as the polymaths but

aimed at addressing math Olympiad questions, which, while quite difficult, are known

to be feasible.

Our comparative analysis shifts between three elements of the projects: the roles and

relationships of the authors, the temporal dynamics of how the projects evolved, and the

linguistic properties of the discussions themselves. We find interesting differences be-

tween the two domains through each of these analyses, and present these analyses as

a template to facilitate comparison between Polymath and other domains for collabo-

ration and communication. We also develop models that have strong performance in

distinguishing research-level comments based on any of our groups of features. Finally,

we examine whether comments representing research breakthroughs can be recognized

more effectively based on their intrinsic features, or by the (re-)actions of others, and

find good predictive power in linguistic features.
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6.1 Introduction

Groups interacting on the Internet have produced a wide range of important collabora-

tive products, including encyclopedias, annotated scientific datasets, and large pieces of

open-source software. These successes led the Fields Medalist Timothy Gowers to ask

whether a similar style of collaboration could be used to approach open research ques-

tions. In particular, his focus was on his own domain of expertise, mathematics, and in

early 2009 [45] he famously asked, “Is massively collaborative mathematics possible?”

Shortly after posing this question, he and a group of colleagues set out to test the

proposition by attempting it. They began the first in a series of so-called Polymath

projects; in each Polymath project, an open, evolving group of mathematicians com-

municate via a shared blog attempt to solve an open research problem in mathematics.

The groups have been quite diverse in background; they have included active participa-

tion from Gowers and a second Fields Medalist, Terence Tao, along with a large set of

both professional and amateur mathematicians. To date there have been nine Polymath

projects; three of them have led to published papers and one to notable partial results

preceding the subsequent resolution of its central question, thus demonstrating that this

approach can lead to new mathematical research contributions with some regularity.

The Polymath projects have an explicitly articulated set of guidelines that strongly

encourage participants to share all of their ideas via online comments in very small

increments as they happen, rather than thinking off-line and waiting to contribute a

larger idea in a single chunk. We can thus see, through the comments made on the

site during the project, almost all the ideas, experiments, mistakes, and coordination

mechanisms that participants contributed.

Attempts to think about the nature of the collaboration underpinning Polymath lead

naturally to analogies in several different directions. One analogy is to the online col-

laborations one finds in other settings, such as Wikipedia [64] and open-source software

projects [126]. A second analogy is to large decentralized collaborations that take place

in “traditional” scientific research [57].

But both analogies are limited. The first does not quite fit because our existing mod-
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els of collaborative work on the Internet involve domains where the task is inherently

“doable”: the feasibility of the task — authoring an encyclopedia article or writing an

open-source computer program to match a known specification — is not in doubt, and

the primary challenge is to achieve the requisite level of scale and robustness. In Poly-

math, on the other hand, we see people who are the best in the world at what they do

struggling with a task that might be beyond them or impossible as they work on open

problems in their field.

The second analogy also does not quite fit: as noted by Gowers [45], decentralized

scientific collaborations have typically focused on problems that are inherently decom-

posable into separate pieces. With Polymath, on the other hand, we see problems that

present themselves initially as a unified whole, and any decomposition needs to arise

from the collaboration itself. Anyone with Internet access can participate for any period

of time that they wish.

For all these reasons, Polymath provides a glimpse into a novel kind of activity —

the use of Internet collaboration to undertake world-class research — in a way that is not

only open but completely chronicled. In the same way that co-authorship networks have

provided a glimpse into the fine-grained structure of scientific partnerships [43, 52], the

contents of Polymath offer a look at the minute-by-minute communication leading to

the research that these partnerships enable.

With a growing number of sites where people congregate to discuss solutions to

hard problems, it is useful to also appreciate the basic similarities between Polymath

and other Web-based communication and collaboration platforms. Even if the specific

findings about Polymath do not generalize to all other contexts, the questions themselves

can often be generalized. With this in mind, an additional goal of the paper, beyond

the investigation of Polymath as a domain, is to present a template for questions that

we believe can be productively asked in general about the type of data that sites like

Polymath generate. We hope that this template will help facilitate direct comparisons

and contrasts with future studies of collaborative Web-based problem-solving.
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6.1.1 Summary of contributions

Data from Polymath 1 was analyzed in an interesting paper by Cranshaw and Kittur

[26]; in their own words, they provide “an in-depth descriptive analysis of data gathered

from [Polymath 1],” focusing on the role of leadership in the progress of the project, and

the interaction between established members and newcomers as the projects proceeded.

With the inception of eight new Polymath projects, and rich variation in their evolution

and success, a new set of opportunities arises in the type of questions we can explore

with Polymath data. We organize our analysis around two central questions regarding

Polymath.

(1) Research or hard problem-solving?

At a general level, our first question is to analyze some of the distinctions between online

discussion about open research questions versus online discussion about tasks where the

outcome is more attainable.

To address this question, and to make the comparison as sharp as possible, we

use a source of discussion data that comes from Polymath itself: the mini-polymath

projects. Shortly after Polymath was successfully underway, Terence Tao assembled

a group to solve something hard but more manageable than a research question; each

mini-polymath problem is a question from a past International Mathematical Olympiad

(IMO). The existence of the mini-polymaths provides us with a very natural contrast

between the two types of activities. Specifically, we can understand the differences

between tackling an open-ended research problem, where current techniques may be

completely inadequate for finding a solution, vs. solving a problem that, while difficult,

is known to be feasible, in a setting where, to a large degree, there is control for topic

(in both cases, difficult mathematics) and for participants (there are dozens of people

who participated in both Polymath and the mini-polymaths). We study and contrast the

polymath and mini-polymath projects with three lenses: the roles and relationships of

the authors, the temporal evolution of the projects, and the linguistic properties of the

comments.
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Roles of authors and leadership. First, we analyze the role of the authors, the role of

leadership, and differences in patterns of conversation networks in the two domains. In

particular, in the research domain we observe that there is a substantially higher concen-

tration of activity in the hands of fewer people, indicating that there was a more distinct

notion of contribution leadership in the research domain than the somewhat easier mini-

polymath domain. We further observe that there is significantly more symmetry in the

global conversation network than what would be initially expected, which is not the case

in the mini-polymath projects.

Temporal dynamics. Second, we consider how progress in the two domains evolved

over time, and observe interesting patterns both in differences and similarities between

the two domains. The two types of projects differ in the temporal properties of the

discussion: overall, comments come more quickly in mini-polymath projects, befit-

ting their smaller-scale format, but, interestingly and unexpectedly, on the shortest time

scales comments actually come more quickly in Polymath, indicating that the research

discussions have the potential to reach the most rapid-fire rate.

Linguistic properties. Third, we study the use of language in the two domains, in both

content and high-level linguistic features such as politeness, relevance, and specificity,

again finding interesting differences between the two domains. Strong signals in the

text distinguish comments in Polymath projects from those in mini-polymath projects.

At the most naive level, using bag-of-words classification achieves an accuracy above

90%, since problem-specific terms and time differences (as expressed by words such as

“primes” or “July”) can be prominent in these two kinds of discussions. But surpris-

ingly, and more importantly, restricting attention to just words that are not topic-focused

still achieves 90% accuracy, suggesting stylistic differences in Polymath comments and

mini-polymath comments. Additionally, high-level linguistic features beyond just indi-

vidual words display significant differences between the two domains: research discus-

sions in Polymath projects have higher average word distinctiveness, higher relevance

to the original post for the topic, greater politeness, and greater usage of the past tense.
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(2) General contribution or research highlight?

Our second question is based on a key aspect of research collaborations — they pass

through “milestones” when important progress is made. Can we characterize such mile-

stones as the collaboration unfolds? With the ability to do this, one may be able to set

up mechanisms that help researchers focus on promising directions, which can poten-

tially result in more productive research collaboration. Alternatively, a more pessimistic

hypothesis is that these milestones may only be realized in retrospect. To characterize

these milestones, we formulate a prediction problem that asks whether it is possible to

identify comments that were marked “highlights” by participants.

The task of identifying highlights turns out to be more challenging than our first

task, distinguishing Polymath comments from mini-polymath ones. Nevertheless, we

still obtain prediction performance significantly above the baselines for the task. To

help understand whether the challenge is inherently in the task or in the shortcomings

of our prediction algorithms, we compared to the performance of applied mathematics

graduate students in recognizing highlights from Polymath discussions. Algorithms us-

ing the strongest feature sets achieve comparable performance to these human judges.

We also find that features based on the individual comments themselves outperform

features that try to capture reactions or the run-ups to the comments in question.

6.2 Data

The Polymath and mini-polymath projects share their common roots in a gateway wiki

hosted by Michael Nielsen1. Starting from that site, we parsed all discussion comments,

and for each comment retained its text, its author’s WordPress username, its timestamp

(with minute-level granularity), and its permalink.

1

http://goo.gl/LVEWbe

140

http://goo.gl/LVEWbe


For portions of our analysis we use all the Polymath projects, but in other parts we

focus on the most active and successful. As Table 6.1 indicates, there is a relatively wide

variation in the amount of content produced as part of each Polymath project, as well

as variation in their levels of success. The mini-polymaths, on the other hand, are more

uniform and each solved the Olympiad problem that they focused on. When comparing

Polymath to mini-polymath, we often focus on the subset of Polymath projects whose

successful outcomes are analogous to the successes of the mini-polymaths; these are

the Polymaths that led to publications (Polymaths 1, 4, and 8) as well as Polymath 5

which was also highly active and led to important partial results on the Erdos Discrep-

ancy Problem (EDP).2 Unless otherwise stated when we refer to quantitative results or

observations about the Polymath projects, we are referring to this subset.

In addition, we collected data about which comments in the Polymath 1 project were

identified as research highlights, which was recorded on a subpage of the Polymath

projects wiki page.3

The data studied in this paper has been made publicly available online at

https://bitbucket.org/isabelmette/polymath-data.

6.3 Roles and Leadership

6.3.1 Leadership and inequality in research discussions

What is the role of the top contributors in the Polymath research setting compared to

mini-polymath’s simpler domain? Similarly, what role do authors who contribute less

frequently play in the two settings? And how does the interaction structure of the au-

thors vary across the projects? We find striking differences between the two domains;

2

Polymath 5 was very active (see Table 6.1) and led to partial though unpublished results, which were
then cited by Terence Tao when he published his resolution of the EDP in 2015 [113].

3

http://goo.gl/ijbIqP
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Table 6.1: Activity summary for each of the polymath and mini-polymath
projects. Focal polymath projects of the present study are highlighted
in blue, other polymath projects are shown in black, and mini-polymath
projects in red. Tag: label used in subsequent figures. Papers: number
of papers written by the corresponding project. *See Footnote 2 regard-
ing partial results from Polymath 5. Active days: number of days on
which at least one comment was made. The figure shows the number
of comments and distinct authors in each project.

Project (tag) Papers # of comments Active days

Polymath 1 (p1) 2 1509 112
Polymath 4 (p4) 1 573 103
Polymath 5 (p5) 0* 2757 238
Polymath 8 (p8) 2 3975 413

Polymath 2 (p2) 0 48 10
Polymath 3 (p3) 0 553 110
Polymath 6 (p6) 0 16 4
Polymath 7 (p7) 0 531 81
Polymath 9 (p9) 0 100 28

Mini 1 (m1) n/a 336 15
Mini 2 (m2) n/a 120 7
Mini 3 (m3) n/a 146 16
Mini 4 (m4) n/a 102 10
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Table 6.2: Overview of leadership in the Polymath projects and mini-polymath
projects.

Project Host(s) Top two contributors

Polymath 1 Tao, Gowers Gowers, Tao

Polymath 4 Tao Tao, Croot

Polymath 5 Gowers Gowers, Edgington

Polymath 8 Tao, Morrison Tao, Paldi

Mini 1 Tao Bennet, Speyer

Mini 2 Tao Bennet, Hill

Mini 3 Tao Thomas H, Narayanan

Mini 4 Tao Gagika, Olli

contrasts in the leadership structures are present by design, but the differences in the

organic structure of participation stand out equally strongly.

There is an initial superficial difference between the Polymath and mini-polymath

projects: in the Polymath projects, the leaders were also among the main contributors,

while the mini-polymath projects were designed so that the leaders did not contribute

extensively.4 In a bit more detail, there is a clear definition of “the leadership” in the

Polymath projects, as Tao and Gowers were both the project hosts (they collaboratively

hosted Polymath 1 on their two blogs) and its two most prolific authors. Table 6.2 lists

the hosts for each project alongside each project’s two top contributors. In the Polymath

projects the hosts are almost always among the top contributors.

Moving beyond this straightforward distinction between moderators and contrib-

utors, we explore to what extent contributions in the successful Polymath and mini-

4

As Tao noted in setting up the mini-polymath projects, he hosted them (either via his own blog or as
the moderator on the polymathprojects.org blog), but he refrained from contributing to the collaborative
effort, stating, “I myself worked it out ... in order not to spoil the experiment, I would ask that those of
you who have already found a solution not to give any hint of the solution here until after the collaborative
effort has found its solution. ... I will not be participating in the project except as a moderator.”
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Figure 6.1: The Gini coefficient — the area between the solid and dashed lines
— indicates that there is more equality in the mini-polymath author-
comment distributions than in Polymath’s. The vertical axis f (x) is
the cumulative fraction of comments that have been contributed by
the corresponding cumulative share of authors x, where the authors
are sorted by increasing number of comments written. Dashed line:
f (x) for a hypothetical uniform distribution. Solid line: observed dis-
tribution in the given project.

polymath projects were made by a small group of active authors versus shared across a

larger group.

On one hand we have the hypothesis that the easier mini-polymath projects could

more easily be dominated and solved by just a handful of people, while the more dif-

ficult projects would require contributions from a greater number of people. On the

other hand, it may be that work in the mini-polymaths would be distributed more evenly

among many people because their lower difficulty level made them accessible to a larger

group, whereas in Polymath the problems are so difficult that very few people are able

to make a substantial number of contributions.

We explore this question and find clear differences in the role of leadership and
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heterogeneity using the Gini coefficient, a well-known measure of a system’s inequality,

as shown in Figure 6.1. In this domain we apply the Gini coefficient to the fraction of

authors who contribute a given fraction of the total number of comments in a system.

The Gini coefficient is computed via the Lorenz curve, the fraction of comments f (x)

made by the x fraction of people who provided the least number of comments. Larger

Gini coefficients indicate more inequality.

From Figure 6.1, we find that the mini-polymath projects possess a notably greater

degree of commenting equality (a lower Gini coefficient) than the research projects.

This means that in the research domain a larger fraction of comment contributions was

made by a smaller fraction of authors. But while research discussions tend to be domi-

nated by fewer people, do the less dominant people still make meaningful contributions?

We find that the answer is yes. Recall from the introduction that a subset of the com-

ments in Polymath 1 were labeled as “highlights” by participants. We can thus measure

the Gini coefficient on two separate sub-populations defined by these labels: the high-

lights and the complement of the highlights. We find that the two sub-populations have

nearly identical distributions, and thus to the extent that lower frequency contributors

participated in Polymath 1, they were making contributions that were indeed classified

as highlights in the overall success of the project.

6.3.2 Symmetry and Sticky Conversations

What does the sequence of participants in a conversation tell us about the domain? How

does the reply structure of a conversation aimed at solving an extremely hard problem

compare to the reply structure in an easier problem-solving domain? To investigate these

questions, we pinpoint two closely related metrics: reply symmetry and stickiness.

Setup and baseline. Both metrics, reply symmetry and stickiness, are computed using

the sequence of authors who comment on the project.

In particular, for each project we have the set of authors who comment, denoted A =

{ai}n
i=1, and the sequence S in which their m comments were made: S = {ai

1,a
j
2, . . .}.

The random baseline for these metrics will be based on a time-zone-controlled random
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sequence. That is, to create a random sequence Srand , for position Srand
i , we select a

random author from the set of authors who have commented in that hour of the day,

proportional to how frequently they have commented during that hour.

Definition: reply symmetry. To define reply symmetry we consider the reply matrix A:

Ai j is the number of times author j follows author i in the sequence S. We then define

symmetry in the matrix as sym(A) = 1− |A−AT |1
|A|1

. The 1-norm of the matrix A, |A|1, is

the total number of comments, and |A−AT |1 is the number of alterations that would be

made to the sequence of comments such that the reply matrix is completely symmetric.

This definition captures the extent to which people respond to the same people who

respond to them, regardless of whether they respond immediately in real time, or at a

later time.

Definition: stickiness. Next we define the notion of stickiness, which captures the

local author symmetry in comment sequences. In the author sequence, we first count

the number of times we observe the sequence motif aba — an author a is followed by

another author b, who is then followed again by a. Similarly, the motif abc corresponds

to comments by three distinct authors in succession, while the motif aaa corresponds to

three comments in a row by the same author. We define stickiness of the interaction to

be the extent to which the aba motif is overrepresented; it is the probability of observing

the motif aba in the real sequence relative to the probability of observing it in a time-

zone-controlled random baseline (the likelihood ratio).

Results: symmetry and stickiness in research domains. In Figure 6.2 we test the

hypothesis that the amount of symmetry observed is as much as would be observed by

a random, asymmetric graph. We find that in each case the bootstrapped p−value for

the Polymath projects is less than 0.05, indicating that we can reject this hypothesis and

that the symmetry we observe is more than one would expect from random fluctuations

(the exceptions are Polymath projects 2 and 6, which both have fewer than 10 authors

and 100 comments total, which is too little data to compute a meaningful estimate). On

the other hand, for each of the mini-polymath projects the estimated p−value is above

0.05, indicating that the observed symmetry may be due to random variations.
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Figure 6.2: Symmetry of conversations in Polymath and mini-polymath projects.
The horizontal axis is the amount of symmetry observed in comment
threads: higher symmetry indicates that authors follow up comments
from the same authors who follow up their comments, and the p-value
on the vertical axis is the bootstrapped estimate of the level of signifi-
cance at which we can reject the null hypothesis that the symmetry is
due to random variations.

Similarly, in Table 6.3, we observe that in three of the four polymath projects under

question there is significantly more stickiness than in the random baseline, whereas in

three of four mini-polymath projects, there is less.

What we find surprising about these phenomena of increased symmetry and sticki-

ness is not that it occurs at all, but that we observe it in the Polymath projects while not

observing it to the same extent in the mini-polymath projects, which was hosted on the

same platform and involved a similar group of people.

We expect that in the Polymath projects it is at least in part thanks to a norm that

emerged from the collaboration: as conversation in each project developed, there were

a large number of subproblems that needed to be completed (everything from running

simulations, to reviewing related work, to building information sharing web-apps), and

subgroups of people would work on them together. These subgroups of people would
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Table 6.3: The increased likelihood of the motif in the Polymath projects and
mini-polymath projects. *, **, and *** indicate that the result was sig-
nificant when measured against a time-zone-controlled random base-
line (as defined in the text) at the 0.05, 0.01, and 0.001 significant lev-
els respectively. Otherwise, the number in parentheses indicates the
p−value. nan indicates that there were no examples of this motif in the
temporally-controlled random baseline. We measure stickiness based
on the motif aba and contrast the results with aaa. The increased likeli-
hood of aaa does not differ much between Polymath projects and mini-
polymath projects.

Project aaa aba

Polymath 1 5.15***, 1.41 (0.25)

Polymath 4 2.34***, 1.42**

Polymath 5 3.51***, 1.54*

Polymath 8 3.65***, 1.91***,

Mini 1 3.55***, 1.5 (0.14),

Mini 2 5.14***, 0.86 (0.82)

Mini 3 1.9***, 0.68 (0.92)

Mini 4 nan***, 0.82 (0.79)

tend to communicate with each other more frequently than with other people, leading to

the symmetry we have observed.

The apparent lack of stickiness in the mini-polymath projects compared to the poly-

math projects may indicate that the role of smaller groups discussing subproblems was

less important in this easier problem domain.
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6.4 Temporal level features

6.4.1 Response time dynamics

The time scale on which mini-polymath projects play out is quite different from that of

the Polymath projects, with the latter taking place over the course of several months to

a year and the former being concluded in a matter of days. This difference in overall

time scales suggests that we consider contrasts in the responsiveness dynamics for Poly-

math versus mini-polymath projects: when an author posts a comment, how quickly do

people follow up after them and how do those dynamics compare in the two types of

collaborations? We find that the answer is subtle and depends on the temporal scale of

analysis itself.

First, we define the response time of a comment to be the amount of time that has

elapsed since the comment immediately preceding it was posted.5 We then consider

the mean response time in Polymath and mini-polymath, conditioned on those response

times being less than some upper threshold. That is, for some value t, what is the mean

response time of all comments whose response time is less then t? We denote this

quantity by r̄t
main and r̄t

mini for Polymath and mini-polymath, respectively.

Given that mini-polymath projects played out much more quickly overall than Poly-

math projects, it would be natural to expect that response times on mini-polymath should

be less than those on Polymath for all values of the threshold t; that is, one would expect

a positive difference r̄t
main− r̄t

mini.

What we find is more subtle, in that it depends on the threshold t; we get a different

answer if we condition on comments made within a few minutes of each other. In

Figure 6.3 (top), we observe that when we focus on very small time scales of less than

five minutes, commenting in Polymath is actually faster than in mini-polymath. This is

reflected in the negative difference r̄t
main− r̄t

mini for t < 5 minutes. And then (as expected)

as we allow for comments with larger and larger response times, the mean response

5

The blog data includes comment timestamps with one-minute granularity.
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time in Polymath becomes larger than in mini-polymath. In the figure we report the

mean difference, and consider the p−value corresponding to the significance with which

we reject the null hypothesis that the means are the same, estimated using Welch’s t-

test (for comparing population means between populations with unequal variance). For

all thresholds except 4 and 5 minutes, at which the transition between mean signs is

observed, p < 0.001.

6.4.2 Momentum and acceleration: comment dynamics

Next we consider the question of how commenting rates evolve over time in the Poly-

math and mini-polymath projects. To explore this process we draw on two measures

from physics for quantifying motion: acceleration and momentum. We define them for-

mally below, but broadly speaking, acceleration captures whether authors are comment-

ing on the project at a constant rate, an increasing rate, or a decreasing rate; momentum

captures the overall rate at which the progress is advancing, considering both the rate at

which authors are creating new comments, and also the amount of content that they are

producing in those comments.

Definitions. Let us refer to the current “position” of the project as x(ti), where x(ti) is the

number of comments that have been made up to time ti. Then the project’s instantaneous

velocity and acceleration are the first and second time derivatives of x(t), which can be

measured using the central difference formula: v(ti) = x′(ti) ≈
x(ti+1)− x(ti−1)

ti+1− ti−1
, and

similarly for a(ti) = v′(ti). We compute the average velocity with units of comments

per minute, providing a summary measure of how rapidly each project progressed. The

average acceleration then has units of comments per minute per minute, and tells us

whether or not the speed of the project was picking up (positive acceleration) or slowing

down (negative acceleration).

Finally, we introduce the notion of a comment’s momentum: borrowing from

physics, the momentum of an object is the product of its mass and its velocity. We

interpret the number of characters in a comment as its mass and so compute the momen-

tum as the product of a comment’s length and its velocity. This notion of momentum
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Figure 6.3: Top figure: (Blue vs. red indicates temporal regime where Polymath
vs. mini-polymath has faster response time). Vertical axis: frac-
tional difference in response times between the Polymath and mini-
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enables us to distinguish between projects with, for example, the same commenting rate

but with different average comment lengths.

High-momentum projects pick up more speed. Surprisingly, in Figure 6.3 (bottom)

we find that all Polymath and mini-polymath projects have a positive average accel-

eration. Earlier we observed that comment response times were on average faster in

mini-polymath than in Polymath; we also observe that they tend to have higher acceler-

ation

Perhaps most strikingly, in Figure 6.3 (bottom), we see that the average acceleration

and momentum in this case have an approximately monotonic relationship with each

other, meaning that the projects with the highest momentum were also the projects that

were picking up the most speed. This monotonic relationship is not something to be

expected a priori: for example, a project that started off with long, rapid comments and

slowly decayed would have high average momentum and negative acceleration; but all

of the examples observed here have the opposite pattern, with the higher momentum

projects accelerating more rapidly.

6.5 Linguistic features

Following the plan outlined in the introduction, we continue by studying the distinc-

tions between Polymath projects — representing research on open problems — and

mini-polymath projects, which are efforts to solve Math Olympiad problems. This in-

vestigation offers the opportunity to understand the contrasts between these related but

qualitatively different types of collaborative activities. In this section, we introduce the

high-level linguistic features that we consider and the differences observed in how they

manifest in the two domains.
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Table 6.4: T-test results for high-level linguistic features. For each feature, we
conduct a t-test from two independent samples, extracted from Poly-
math comments and mini-polymath comments respectively, where the
null hypothesis is that the two kinds of comments come from the same
distribution. The number of arrows in the table visually indicates the
p-value magnitude: p < 0.05: 1 arrow, p < 0.01: 2 arrows, p < 0.001:
3 arrows, p < 0.0001: 4 arrows. ↑ indicates that Polymath com-
ments have larger values; ↓ indicates that mini-polymath comments
have larger values.

Feature test results

Relevance

similarity to original post ↑↑↑↑
similarity to current post ↑↑↑↑

Distinctiveness

average log POS unigram prob ↑↑↑↑
average log POS bigram prob -

average log POS trigram prob ↑
average log lexical unigram prob -

average log lexical bigram prob ↑↑↑↑
average log lexical trigram prob -

Politeness

politeness [31] ↑↑↑↑
number of hedges ↑↑↑↑
fraction of words that are hedges ↓

Generality

frac. indefinite articles ↓↓↓↓
frac. past tense ↑↑↑↑
frac. present tense -
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6.5.1 Exploring high-level linguistic features

Our set of high-level linguistic features draws on recent innovations in natural language

processing that have been used for applications including the memorability of movie

quotes [30], the effects of wording on message propagation [112] and the popularity of

online posts [73]. We supplement these features with several more basic ones as well.

We divide the features into four groups: relevance, distinctiveness, politeness and

generality. To get an initial understanding of how these features differ between Polymath

and mini-polymath projects, for each one we conduct a t-test between feature values

extracted from Polymath comments and mini-polymath comments (Table 6.4). We find

that Polymath comments are indeed significantly different in many of these features

compared to mini-polymath comments. Later in §6.6, we will see how they perform in

a prediction setting in comparison to topic-based linguistic features, as well as the role-

and temporal-based features discussed in §6.3 and §6.4.

We begin by describing the feature-level differences between Polymath and mini-

polymath comments. For each category of differences, we summarize it first in a bold-

faced sentence and then elaborate in the subsequent paragraph.

Research discussions match the original problems more closely. We first ask how

much the language used in the discussion drifts away from the language used at the

outset of the project to describe the problem. We do this by computing Jaccard similarity

between each comment and the original post for the project. Since the discussions are

segmented into threads of roughly 100 consecutive comments each, we also compute a

related measure — the Jaccard similarity between each comment and the initial post in

the thread it belongs to.

One might expect that since research discussions are open-ended, the language might

drift quickly away from the description of the initial problem. In fact, we find that

comments are significantly more similar to the original posts for Polymath projects,

both in the original problem description and in the current post.

Research discussions have less distinctive language. One might expect the language

in tackling hard research problems to be more “distinct” from daily language compared
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to that in solving problems with known solutions. We formalize distinctiveness using

language model scores, defined as the average logarithm of word probabilities [30, 73,

112]. Our language model, based on frequencies of one, two, and three word sequences

(unigrams, bigrams, and trigrams) of words and part-of-speech tags, is developed from

the Brown corpus [71].

Perhaps somewhat surprisingly, research discussions resemble daily language more

in terms of part-of-speech tag patterns. When it comes to actual words, research discus-

sions also employ more common word patterns, although it is not statistically signifi-

cant for unigrams and trigrams. The greater robustness of the part-of-speech analysis,

in comparison to the word-level analysis, may reflect the fact that both projects contain

a large amount of language infrequently used outside of mathematical discussions.

Research discussions are more polite. As participants are discussing harder problems

for a longer period of time in Polymath projects, a natural hypothesis is that they are

more polite to one another. We test this using a recently developed method for estimating

the politeness of pieces of text [31], and we find that indeed there is significantly more

politeness in the text of the Polymath projects.

We obtain an inconclusive comparison when we study the related phenomenon of

hedging in the language use of the comments — a term coined by Lakoff [74] to describe

the expression of uncertainty, which would be natural to have in comments discussing

hard technical problems. Although Polymath comments have significantly more hedges,

mini-polymath comments have a larger fraction of hedges.

Research discussions are more “specific”. One hypothesis may be that we can see a

difference in how general the arguments are, i.e., mini-polymath may be more specific

due to the limited scope of the problem. Previous work has used the occurrences of in-

definite articles and tense-related expressions to capture generality [30, 112]. Somewhat

surprisingly, Polymath comments are less general, with significantly more past tense and

fewer indefinite articles.
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6.6 Predicting domain: research vs. hard problem solving

We now have a broad set of features characterizing the comments and can leverage

them to use in our basic prediction problem. Our model uses these features to determine

whether a given comment comes from a Polymath project or a mini-polymath project.

The features discussed above fall into three categories: author roles, temporal dy-

namics, and linguistics. We focus on the performance of each set in turn. The author

roles can be further distinguished by whether they are being used anonymously (omitting

author identities) or non-anonymously; the temporal by whether they are simple elapsed

time differences or more nuanced dynamics metrics such as acceleration and momen-

tum; and the linguistic properties by whether they have topic information or non-topic

information.

Surprisingly, we will find that in a controlled setting, prediction using these anony-

mous structural and non-topical features can actually outperform topic-based and

identity-based features. We also find that the dynamics metrics (drawn from physics)

offer better prediction performance than the simpler, elapsed-time metrics.

Prediction setup. We set up balanced prediction tasks for distinguishing Polymath

comments from mini-polymath comments. Specifically, as there are fewer comments

in the mini-polymath projects, we sample a Polymath comment for each mini-polymath

comment. Thus we have a pair of comments in each instance of our data, with one

comment from each of Polymath and mini-polymath respectively. (We randomly order

these two comments when presenting them to the algorithm.) We use two different ways

of sampling pairs from the overall data.

• Random (704 pairs). For each mini-polymath comment, we randomly sample a

comment from the Polymath projects.

• Controlled (203 pairs). For each mini-polymath comment, we find the Polymath

comment from the same author with the minimum length difference in terms of

the number of words. (We only use mini-polymath comments for which the same
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author has written at least one Polymath comment.) This constructs a much more

difficult prediction task.

6.6.1 Feature definitions and motivations

We now discuss the features we use for the prediction task, drawing on the features

defined above. Our plan is to compare the prediction performance using different sets

of these features.

The features can be categorized as follows; the keyword in parentheses preceding

each definition indicates the feature category as labeled in the performance results plots

(Figures 6.4 and 6.5).

• Length. Given that comments in mini-polymath projects are generally shorter than

the comments in Polymath projects, the length of a comment already provides a non-

trivial baseline for prediction. Our notion of length actually includes three quantities

for each comment: the number of words, the number of characters, and the number of

MathJax characters as features.

• Roles

– (id roles) Author and surrounding authors: numeric id of comment author and those

authors of the ten comments leading up to it and the ten succeeding it;

– (anon roles) Anonymous structural: same as id roles but with generic structural rep-

resentation of the author sequence;

• Temporal

– (reltimes) Elapsed times: hours, days, and minutes elapsed since project inception;

number of comments and number of threads since project inception;

– (physics) Dynamic properties: instantaneous velocity, acceleration, and momentum

of comment, where position is defined as comment id, and mass of a comment is

defined as the number of characters in it. These features are defined formally in

§6.4.2.
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Figure 6.4: Results for predicting Polymath comments vs. mini-polymath com-
ments. x-axis: different feature sets, each group is defined in §6.6.1.
y-axis: accuracy. Error-bars represents the standard error of the per-
formance across 5 folds. The black line shows the performance of
random guessing; the cyan line shows the performance of the length
baseline. (a) and (b) respectively show the performance without any
control and when we control author and length. (b) shows the more
detailed performance breakdown for each of the three elements (roles:
anon. vs. non-anon, timing: elapsed times vs. physics, linguistics:
topic-based vs. non-topic based).

• Linguistic features. The linguistic features consist of non-topical features (denoted

“nt-ling”) listed in the first four bullet points, and topical features (denoted “topic

ling”) listed in the latter two bullet points.

– (nt ling) High-level linguistic features, as discussed in §6.5.1: politeness, generality,

specificity, hedging, fraction of novel words with respect to the entire preceding

conversation or to a fixed-size window of previous comments.

– (nt ling) LIWC. Linguistic Inquiry and Word Count (LIWC) includes a dictionary

of words classified into different categories, along dimensions that include affective

and cognitive properties [95]. We use the frequency of each LIWC category in a

comment as features.
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– (nt ling) Part-of-speech tags (POS). Part-of-speech tags can provide us with stylis-

tic information for a comment. All possible part-of-speech tags are considered as

features.6.

– (nt ling) Stopwords from the NLTK7; most frequent 50 words from the training data;

most frequent 100 words from training data.

– (topic ling) Bag-of-words (BOW). This is a very strong method typically used in

natural language processing tasks. We include all the unigrams that occur at least 5

times in our training data as features. We use the tokenizer from the NLTK package

after replacing urls and MathJax scripts with special tokens.

– (topic ling) Bag-of-words for the preceding and succeeding comments. The same

definition as the feature above, but now for each of the five comments before the

comment in question, and each of the five after.

Computational evaluation of prediction. We use 5-fold cross-validation in our com-

putations to measure prediction performance. Since the task is balanced, we use ac-

curacy as our evaluation metric. In the computations, for each feature set, we extract

the values from each comment in a pair, and then take the differences between the first

comment and the second comment in this pair. For BOW and POS based features, we

normalize the feature vectors using L2-norms, while for the other features, the values

are linearly scaled to [0,1] based on training data. We use scikit-learn in all prediction

computations.8

Prediction: Roles, Temporal. In Figure 6.4 we observe that using the anonymized

roles (author motifs as discussed in §6.3.2) offers good performance. This positive per-

formance may be due to the distinctions we observed above. In particular, the Polymath

6

Througout we use the NLTK maximum entropy tagger with default parameters, which is based on the
Penn Treebank Dataset (http://www.cis.upenn.edu/˜treebank/home.html)

7

http://www.nltk.org/

8

http://scikit-learn.org/
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projects tend to have larger and significant correlations in the reply structure of the com-

ment threads.

We also observe that the temporal features offer significant improvements over the

random baseline. As with the role features, this performance increase can potentially

be understood as thanks to the substantial differences in temporal dynamics in the two

projects that we discussed in §6.4.

Linguistic prediction performance: topical vs. non-topical. We make several ob-

servations about the prediction results based on linguistic-only features. First, all the

feature sets improve on the length baseline for both the uncontrolled task (when we

form a pair for each mini-polymath comment) and the controlled task (when we match

the author and approximately match the length within each pair).

Second, the bag-of-words feature set slightly outperforms the non-topic feature set

on the uncontrolled task, but when we add length and author controls, in fact the non-

topic feature set significantly outperforms the bag-of-words features, achieving close to

90% accuracy. It is interesting that the non-topic feature set should achieve this, since

it is not attuned to the content of the comments themselves. Moreover, the non-topic

features actually give better performance on the controlled task than on the uncontrolled

task, despite the fact that the controlled task was set up to limit the effectiveness of

various features; meanwhile, the performance of the bag-of-words feature set in the

controlled task (along with stopwords and POS) drops significantly.

As for individual categories, high-level linguistic features actually outperform all

other non-topical categories despite the small number of features in this category, in-

cluding commonly used LIWC features. This observation is robust across both tasks.

It is worth noting that there are fewer high-level linguistic features than POS or LIWC

features.

In terms of top features (Table 6.5), similarity to the original problem statement

is the most prominent signal for Polymath comments, followed by part-of-speech tags

including adjectives; in contrast, LIWC categories and part-of-speech tags tend to be

top indicators of mini-polymath comments. Table 6.5 also shows the top word-level
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Table 6.5: Top 20 features in Polymath vs. mini-polymath prediction. Features
are separated by spaces. High-level linguistic features are in quotes.
Other non-topical features are named by concatenating the category
name and feature name; for instance, “POS-adj” means the feature “ad-
jectives” from the part-of-speech category.

Top bag-of-word features

Polymath sequences “ is sequence primes prime - now values at ” in different

of by 3 also latex paper x

mini-polymath m then can points ... mine number mines point n coins proof moves

comments added all any partial thread 2

Top non-topical features

Polymath “similarity to original post” “similarity to current post” POS-

adjective POS-adverb “POS-verb (past)” POS-“ “frac. past

tense” POS-preposition liwc-work POS-noun numchars liwc-

adverb liwc-auxverb nummathchars liwc-preps “POS-verb (non-

3rd present)” liwc-they POS-: liwc-time “average log unigram

prob (lexical)”

mini-polymath liwc-motion liwc-assent liwc-we liwc-certain liwc-cause liwc-

negemo liwc-achieve “frac. indefinite articles” liwc-filler liwc-

conj liwc-nonfl liwc-quant liwc-number POS-NONE “POS-

adjective (superlative)” “POS-verb (base form)” POS-$ “POS-

proper noun (singular)” POS-determiner POS-particle

features that emerged for the bag-of-words feature set, including topical words such as

“sequence”, “prime” and “mine”9.

9

“Mine,” in the sense of an explosive device, occurred in one problem in IMO.
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6.7 Identifying research highlights: intrinsic vs. contextual evi-

dence

We now investigate the second main question we posed in the introduction: Are re-

search breakthroughs identifiable in a string of comments? If they are, can one best

recognize them solely from their content, a finding that could indicate that authors know

the eventual importance of their statements? Or are breakthroughs best recognized by

the (re-)actions of others, suggesting that it can be hard to know in the heat of the mo-

ment which results are key ones?

Polymath 1 serves as a particularly nice setting for investigating this question be-

cause, fortunately, breakthroughs have already been identified by a domain expert: Ter-

ence Tao set up a wiki timeline of Polymath 1 highlights.10 While Cranshaw and Kittur

[26] employed this highlights list to study whether less active users had impact, we use

the list to constitute instances for the task of classifying which comments have impact,

and to identify the most helpful intrinsic vs. extrinsic features for this task.

Prediction setup. In setting up the prediction task, we employed two paradigms: (A)

classifying individual instances as being either a highlight or not, or (B) choosing one

comment from a pair where it is known that exactly one was a highlight, and the other

is the non-highlight written by the same author that is closest in length to the highlight.

Due to space constraints, we only describe (B) in this paper, for three reasons. First,

author- and length-controlled findings are more likely to generalize to other settings.

Second, we believe that for judges (human or algorithmic) that are not domain experts,

it is more reasonable to be asked to pick the more important-looking comment in a

pair than to judge a single text in isolation. Third, describing (B) allows us to be more

concise than describing (A), where mechanisms for handling class imbalance would

need to be explained. We note, though, that (B) gives us less data to work with (since

10

http://goo.gl/ijbIqP. The page’s revision history reveals that Tao’s intent was indeed to list
“highlights”, but he switched to the milder term “events” to alleviate Gowers’ apparent embarrassment at
one of his contributions being deemed “highlight-worthy”.
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Figure 6.5: Highlight-prediction results for different feature sets. Error bars:
standard error for 5-fold cross-validation. Black line: random guess-
ing. Purple line: best human performance on the author-control-only
(easier) task.

we can only construct as many pairs as there are highlights), and doesn’t directly map

onto the application of classifying individual comments as they naturally appear.

Feature sets and cross validation. For this task, we use the same feature sets that we

employed for our first task of distingishing Polymath comments from mini-polymath

comments. These features are described in §6.6. Further, in all experiments, we employ

the same experiment protocol as in the first task. Random guessing yields a baseline

accuracy of 50%.

6.7.1 Prediction Performance

To assess the difficulty of the task for humans as a point of comparison for our algo-

rithmic performance, we asked three Applied Mathematics graduate students to attempt

the classification task on 30 author-controlled pairs in an approximately 30-minute ses-
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sion.11 They got accuracies of 66.7%, 63% and 46% (agreeing 60% of the time); these

results, together with post-hoc feedback from the students, indicates that our task is

fairly difficult.

Prediction performance: roles, temporal. In Figure 6.5 we observe that the features

based on the authors’ roles in the project and those based on temporal properties do

not offer additional prediction performance beyond what can be achieved by a random

baseline.

Prediction performance: topical vs. non-topical linguistic. Meanwhile, the linguistic

features perform 15% above the random baseline, and in fact achieve the same perfor-

mance as that of the human evaluators. It is interesting to note that the text was all

that was available to the human judges, just as it was precisely the words and high-

level linguistic features and parts of speech that were available to the model we trained.

We continue by further exploring the performance of these varying groups of linguistic

features.

Figure 6.5 shows that the best-performing classifier uses bag-of-words features and

yields accuracy comparable to that of our best human subject (on a slightly simpler task).

The second best performing feature set is part-of-speech tags. Adding other non-topical

features actual hurts the performance slightly in this task. Neither preceding comments

or reactions outperforms comment-internal features. All in all, the evidence suggests

that authors often write texts that eventually turn out to be highlights in a fashion that

indicates they may be aware of the importance of their remarks at the time.

6.8 Related work

Shortly after Polymath 1’s success Tim Gowers and Michael Nielsen wrote a retro-

spective opinion piece on open collaboration in Nature [46], in which they took the

opportunity to share their vision for the incredible potential that the Web offers to the

11

At the time, we had not installed the length controls, but the task is strictly easier when length is a
potential clue.
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future of science, as a collaborative tool that is ideal for facilitating communication and

information sharing.

Michael Barany [14] wrote about Polymath from a qualitative sociological perspec-

tive, focusing on the interaction of the participants with the technological system that

supported the collaboration. In particular, he considers the mutual adaptation of that

technological system, the participants, and the overall collaboration as the project ad-

vanced from its uncertain beginning to a successful conclusion.

In addition to Barany’s piece, Cranshaw and Kittur [26] provide a quantitative

overview of Polymath 1. They find that activity tends to spur other activity, and that

activity by either of the two leaders, Terence Tao and Tim Gowers, tends to spur even

more activity. They observed that the numbering-threading convention was successful

in allowing multiple threads to develop simultaneously, but that cross-references were

limited. By constructing the comment mention-graph and cross-referencing authors’

Wordpress profiles with Google Scholar accounts they were able to show that, while

the top two contributors were the Fields Medalists, there were much “smaller names”

close behind – indicating that Gowers’s vision of the project being accessible to a broad

audience was achieved at least in part.

Finally, mini-polymath has been studied by Pease and Martin [94]; they show how

the approaches there follow well-studied frameworks for problem-solving.
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6.9 Conclusion

Polymath is an interesting experiment in promoting Internet collaboration on a type of

activity — working on open mathematical research problems — that is otherwise not

really represented in large open online collaborative efforts. Using this site as a lens, we

have sought to contrast Internet collaborations on open research problems with Internet

collaborations on “merely” difficult problems.

Limitations. While Polymath is the most visible effort at open Internet collaboration on

mathematical research problems, one should be careful about generalizing too far from

a single domain. Moreover, we can ask whether there are specific aspects of Polymath

that played a role in the findings. Perhaps most importantly, the participation guidelines

of the main Polymaths promoted rapid, incremental posting over the arguably more

typical research mode wherein one engages in longer periods of off-line reflection and

independent thought. The (laudable) intent was to make the project more accessible,

but it is possible that the collaboration was less natural as a result. Regardless of these

concerns, of course, it is clear that several projects had successful outcomes, resulting

in publications and/or important partial progress toward the stated goal.

Future Directions. Many of our findings open up promising future directions. First,

the reply-time properties are interesting, with the intriguing fact that Polymath, which

is significantly slower than Mini-Polymath overall, becomes faster at the shortest time

scales. We would like to understand the reason for this fast pace; it is also natural to ask

whether this “organically” developed fast pace is good for collaborations, or whether it

is more effective to proceed more slowly at the shortest time scales. It is also interesting

to ask whether we can trace any potential effects that the high-level linguistic properties

have on the trajectory of the discussion or the quality of the outcome.

Finally, our second prediction task, on identifying highlights in real time, raises

potential questions for the design of future iterations of Polymath-style sites. If it were

possible to flag predicted highlights as they happen, is this a useful thing to make explicit

for a group engaged in research? And if so, is it more productive to call attention to these

predicted highlights as they happen, or at a later point? Questions in this style point to
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the potential opportunities for algorithms trained on this type of data to assist in guiding

future discussions, when on-line groups assemble to work on hard problems together.
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