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Hamilton-Jacobi equations arise in a number of seemingly disparate applications, from

front propagation to photolithography to robotic navigation. Eikonal equations fall

into an important subset representing isotropic optimal control and often are used

as a first benchmark for numerical methods. Many of the interesting geometrical

properties of Eikonal and related equations are exploited in two families of popular

algorithms: the single-pass Fast Marching Methods and the iterative Fast Sweeping

Methods. We start by developing a class of two-scale hybrid algorithms that combine

the ideas of these prior methods on different scales. These hybrid methods are shown

to have a clear advantage compared to other serial algorithms, but more importantly,

one of them (“HCM”) is very suitable for parallelization on a shared memory archi-

tecture. Our extensive numerical experiments benchmark this parallel HCM against

current serial methods and another parallel state-of-the-art solver for the same com-

puter architecture. We demonstrate the robustness of the parallel HCM on a wide

range of problems, its good scaling in the number of processors, and its efficiency in

solving a problem from exploratory geophysics. In the last part, we focus on estimat-

ing the error committed by fast approximate methods that introduce boundary data

pollution. Examples include domain restriction methods for recovering only a sin-

gle optimal path between a source/target pair and a domain decomposition method

that creates subdomains whose boundaries are approximately characteristic. In sim-

ple cases we use a novel technique to estimate the sensitivity of a gridpoint to other

gridpoints in its computational domain of dependence and use this to bound the error.
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CHAPTER 1

INTRODUCTION

Static Hamilton-Jacobi PDEs arise in a surprisingly wide range of applications:

robotic path planning, optimal control, front propagation, shape-from-shading com-

putations, seismic imaging; see [56] and references therein for a detailed description.

As a result, efficient numerical methods for Eikonal PDEs are of interest to many

practitioners and numerical analysts. In this chapter we briefly introduce the ideas

behind three new hybrid methods intended to blend the best properties of the most

popular current approaches (Fast Marching and Fast Sweeping).

These methods are built to solve the nonlinear boundary value problem1

|∇u(x)|F (x) = 1, on Ω ⊂ R2;

u(x) = q(x), on ∂Ω. (1.1)

A discretized version of equation (1.1) is posed at every gridpoint, using upwind

divided differences to approximate the partial derivatives of u. The exact form of this

discretization is introduced in section 1.2; here we simply note that these discretized

equations form a system of M coupled nonlinear equations (where M is the number

of gridpoints) and that the key challenge addressed by many “fast” methods is the

need to solve this system efficiently. Of course, an iterative approach is certainly

possible, but its most straightforward and naive implementation typically leads to

O(M2) algorithmic complexity for Eikonal PDE (and potentially much worse for its

anisotropic generalizations). This is in contrast to the “fast” methods, whose worst-

case computational complexity is O(M) or O(M logM).

Interestingly, most fast Eikonal-solvers currently in use are directly related to

1For simplicity, we will restrict our exposition to first-order accurate discretizations of these
problems on Cartesian grids in R2.
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the fast algorithms developed much earlier to find shortest paths in directed graphs

with nonnegative edge-lengths; see, e.g., [1], [9, 10]. Two such algorithmic families

are particularly prominent: label-setting methods, which have the optimal worst-case

asymptotic computational complexity, and label-correcting methods, whose worst-case

asymptotic complexity is not as good, but the practical performance is at times even

better than that of label-setting. We provide a basic overview of both families in

section 1.1. The prior fast Eikonal-solvers based on label-setting and label-correcting

are reviewed in sections 1.5 and 1.4-1.6 respectively.

The most popular methods from these two categories, Fast Marching and Fast

Sweeping, have been shown to be efficient on a wide range of Eikonal equations.

However, each of these methods has its own preferred class of problems on which it

significantly outperforms the other. Despite experimental comparisons already con-

ducted in [37] and [34], the exact delineation of a preferred problem-set for each

method is still a matter of debate. The Fast Sweeping Method (FSM), reviewed in

section 1.4, is usually more efficient on problems with constant characteristic direc-

tions. But for general functions F (x), its computational cost is impacted by the

frequency of directional changes of characteristic curves. The Fast Marching Method

(FMM), reviewed in section 1.5, is generally more efficient on domains with compli-

cated geometry and on problems with characteristic directions frequently changing.

Its causal algorithmic structure results in a provably converged solution on explicitly

determined parts of the computational domain even before the method terminates

– a very useful feature in many applications. Moreover, its efficiency is much more

“robust”; i.e., its computational cost is much less affected by any changes in functions

F and q or the grid orientation. But as a result, FMM is also not much faster in

simple cases, such as when most characteristics are straight lines – a scenario where

FSM is very efficient.
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The fundamental idea underlying our hybrid two-scale methods is to take advan-

tage of the best features of both marching and sweeping. Suppose the domain is split

into a moderate number of cells such that F is almost-constant on each of them.

(Such cell splitting is possible for any piecewise-smooth F .) First, a version of Fast

Marching is used on a coarse grid, with each gridpoint representing a cell of the fine

grid. Then, once the ordering of coarse gridpoints is established, Fast Sweeping is

applied on the fine grid inside individual cells in the same order. This is the basis of

our Fast Marching-Sweeping Method (FMSM) described in section 2.1. The informal

motivation for this is that sufficiently zooming in on a portion of the domain reveals

that characteristics are approximately straight lines on that length scale, so sweeping

restricted to that portion ought to converge quickly.

Unfortunately, the coarse grid ordering captures the information flow through the

fine grid cells only approximately: a coarse gridpoint yi might be “accepted” by Fast

Marching before another coarse gridpoint yj, even if on the fine grid the characteristics

cross both from cell i to cell j and from cell j to cell i. The “one-pass” nature of Fast

Marching prevents FMSM from acting on such interdependencies between different

cells even if they are revealed during the application of Fast Sweeping to these cells.

To remedy this, we introduce the Heap-Cell Method (HCM) described in section

2.2.3. The idea is to allow multiple passes through the cells, which are sorted by the

representative “cell-values” and updated as a result of cell-level fast sweeping. We

also describe its heuristic version, the Fast Heap-Cell Method (FHCM), where the

number of cell-level sweeps is determined based on the cell-boundary data.

Similarly to Fast Marching and Fast Sweeping, our HCM provably converges to

the exact solution of the discretized equations on the fine scale. In contrast, the

even faster FHCM and FMSM usually introduce additional errors. But based on

our extensive numerical experiments (sections 2.3 and 3.4.8), these additional errors
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are small compared to the errors already present due to discretization. The key

advantage of all three new methods is their computational efficiency – with properly

chosen cell sizes, the hybrid methods significantly outperform both Fast Sweeping

and Fast Marching on examples difficult for those methods, while matching their

performance on the examples which are the easiest for each of them.

As the scope of applications for Eikonal equations broadens, the more recent

literature has focused on developing parallel methods. But Fast Marching has proven

difficult to parallelize directly, and a parallel scalable sweeping method for shared-

memory computer architectures was only recently discovered [26]. The centerpiece

of chapter 3 is the parallel Heap-Cell Method (pHCM)– a scalable version of an

already-efficient serial algorithm. Even though the original purpose of the domain

decomposition in HCM was to exploit the structure of the PDE serially, we show that

parallelization is a natural byproduct; see section 3.4 for numerical results.

In Chapter 4 we are concerned with the problem of recovering the solution at a

single point S in the domain rather than in all of Ω. A suite of fast methods [20]

addresses this by using heuristic domain restriction techniques similar to those used in

the A* algorithms for shortest paths on graphs. Since we again discretize (1.1) using

upwind finite differences, the use of domain restriction techniques effectively produces

a new, smaller system of coupled equations. Due to the dependency structure among

the gridpoints, it turns out that these techniques cause an error at S in addition to

the discretization error already present. The goal of the analysis is to estimate this

error by using a type of backward error analysis. Currently the only analytical results

available are for linear advection equations and elementary Eikonal problems where

the characteristics are straight and parallel, but we are optimistic that this analysis

will generalize sufficiently and even be applicable to the discretizations of other PDE.

Chapters 1, 2, and 3 are based largely on two papers [16, 18] coauthored with
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Alex Vladimirsky. Chapter 4 highlights my contribution to work (still-in-progress)

together with Zach Clawson and Alex Vladimirsky; it contains excerpts from [20].

In Chapter 5 we discuss the current limitations and future directions of the hybrid

methods. We also outline several directions of future work and make sober specula-

tions about the scope of the error analysis.

1.1 Fast algorithms for paths on graphs

Before immediately discussing the Eikonal PDE and current algorithms, we provide a

brief review of common fast methods for the classical shortest/cheapest path problems

on graphs. Our exposition follows [9] and [10], but with modifications needed to

emphasize the parallels with the numerical methods in section 1.2 and Chapter 2.

Consider a directed graph with nodes X = {x1, ...,xM}. Let N(xi) be the set

of nodes to which xi is connected. We will assume that κ ≪ M is an upper bound

on outdegrees; i.e., |N(xi)| ≤ κ. We also suppose that all arc-costs Cij = C(xi,xj)

are positive and use Cij = +∞ whenever xj ̸∈ N(xi). Every path terminates upon

reaching the specified exit set Q ⊂ X, with an additional exit-cost qi = q(xi) for each

xi ∈ Q. Given any starting node xi ∈ X, the goal is to find the cheapest path to the

exit starting from xi. The value function Ui = U(xi) is defined to be the optimal

path-cost (minimized over all paths starting from xi). If there exists no path from xi

to Q, then Ui = +∞, but for simplicity we will assume henceforth that Ui is finite ∀ i.

The optimality principle states that the “tail” of every optimal path is also optimal;

hence,

Ui = min
xj∈N(xi)

{Cij + Uj} , for ∀xi ∈ X\Q;

Ui = qi, for ∀xi ∈ Q. (1.2)

This is a coupled system of M nonlinear equations, but it possesses a nice “causal”
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property: if xj ∈ N(xi) is the minimizer, then Ui > Uj.

In principle, this system could be solved by “value iterations”; this approach is

unnecessarily expensive (and is usually reserved for harder stochastic shortest path

problems), but we describe it here for methodological reasons, to emphasize the par-

allels with “fast” iterative numerical methods for Eikonal PDEs. An operator T is

defined on RM component-wise by applying the right hand side of equation (1.2).

Clearly, U =


U1

...

UM

 is a fixed point of T and one can, in principle, recover U by

value iterations:

W k+1 := T W k starting from any initial guess W 0 ∈ RM . (1.3)

Due to the causality of system (1.2), value iterations will converge to U regardless

of W 0 after at most M iterations, resulting in O(M2) computational cost. This is

easy to show by induction; e.g., after one iteration at least one of the neighboring

nodes of Q will receive its final value. A Gauss-Seidel relaxation of this iterative

process is a simple practical modification, where the entries of W k+1 are computed

sequentially and the new values are used as soon as they become available: W k+1
i =

Ti(W
k+1
1 , . . . ,W k+1

i−1 ,W
k
i , . . . ,W

k
M). The number of iterations required to converge will

now heavily depend on the ordering of the nodes (though M is still the upper bound).

We note that, again due to causality of (1.2), if the ordering is such that Ui >

Uj =⇒ i > j, then only one full iteration will be required (i.e., W 1 = U regardless

of W 0). Of course, U is not known in advance and thus such a causal ordering is

usually not available a priori (except in acyclic graphs). If several different node

orderings are somehow known to capture likely dependency chains among the nodes,

then a reasonable approach would be to perform Gauss-Seidel iterations alternating

through that list of preferred orderings – this might potentially result in a substantial
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reduction in the number of needed iterations. In section 1.4 we explain how such

preferred orderings arise from the geometric structure of PDE discretizations, but no

such information is typically available in problems on graphs. As a result, instead of

alternating through a list of predetermined orderings, efficient methods on graphs are

based on finding advantageous orderings of nodes dynamically. This is the basis for

label-correcting and label-setting methods.

A generic label-correcting method is summarized below in algorithm 1. It is easy

Algorithm 1 Generic Label-Correcting pseudocode.

1: Initialization:
2: for each node xi do
3: if xi ∈ Q then
4: Vi ← qi
5: else
6: if N(xi)

∩
Q ̸= ∅ then

7: Vi ← min
xj∈N(xi)

∩
Q
{Cij + qj}

8: add xi to the list L
9: else
10: Vi ←∞
11: end if
12: end if
13: end for
14:

15: Main Loop:
16: while L is nonempty do
17: Remove a node xj from the list L
18: for each xi ̸∈ Q such that xj ∈ N(xi) and Vj < Vi do

19: Ṽ ← Cij + Vj

20: if Ṽ < Vi then
21: Vi ← Ṽ
22: if xi ̸∈ L then
23: add xi to the list L
24: end if
25: end if
26: end for
27: end while

to prove that this algorithm always terminates and that upon its termination V = U ;
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e.g., see [9]. Many different label-correcting methods are obtained by using different

choices on how to add the nodes to the list L and which node to remove (in the first

line inside the while loop). If L is implemented as a queue, the node is typically

removed from the top of L. Always adding the nodes at the bottom of L yields the

Bellman-Ford method [6]. (This results in a first-in/first-out policy for processing the

queue.) Always adding nodes at the top of L produces the depth-first-search method,

with the intention of minimizing the memory footprint of L. Adding nodes at the top

if they have already been in L before, while adding the “first-timers” at the bottom

yields D’Esopo-Pape method [49]. Another interesting version is the so called small-

labels-first (SLF) method [8], where the node is added at the top only if its value

is smaller than that of the current top node and at the bottom otherwise. Another

variation is large-labels-last (LLL) method [11], where the top node is removed only

if its value is smaller than the current average of the queue; otherwise it’s simply

moved to the bottom of the queue instead. Yet another popular approach is called

the thresholding method, where L is split into two queues, nodes are removed from the

first of them only and added to the first or the second queue depending on whether

the labels are smaller than some (dynamically changing) threshold value [32]. We

emphasize that the convergence is similarly obtained for all of these methods and

their worst-case asymptotic complexity is O(M2), but their comparative efficiency

for specific problems can be dramatically different.

Label-setting algorithms can be viewed as a subclass of the above with an addi-

tional property: nodes removed from L never need to be re-added later. Dijkstra’s

classical method [27] is the most popular in this category and is based on removing the

node with the smallest label of those currently in L at each iteration and marking it

as ACCEPTED. The fact that this results in no re-entries into the list is yet another

consequence of the causality, and the inductive proof is simple; e.g., see [9]. The

need to find the smallest label entails additional computational costs. A common
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implementation of L using heap data structures will result in O(M logM) overall

asymptotic complexity of the method on sparsely connected graphs (i.e., provided

κ ≪ M). Another version, due to Dial [25], implements L as a list of “buckets”, so

that all nodes in the current smallest bucket can be safely removed simultaneously,

resulting in the overall asymptotic complexity of O(M). The width of each bucket is

usually set to be δ = mini,j Cij to ensure that the nodes in the same bucket could not

influence or update each other even if they were removed sequentially.

We note that several label-correcting methods were designed to mimic the “no-re-

entry” property of label-setting, but without using expensive data structures. (E.g.,

compare SLF/LLL to Dijkstra’s and thresholding to Dial’s.) Despite the lower asymp-

totic complexity of label-setting methods, label-correcting algorithms can be more

efficient on many problems. Which types of graphs favor which of these algorithms

remains largely a matter of debate. We refer readers to [9, 10] and references therein

for additional details and asynchronous (parallelizable) versions of label-correcting

algorithms.

When interested in the solution at only a single node S in the domain, one must

wonder if there is any way to reduce the problem size. One can always simply halt

Dijkstra’s algorithm once S becomes ACCEPTED. Or alternatively, if an overestimate

O of the value function U(S) is available, there is a quick way to determine whether

a node xi is relevant to the computation of U(S): if Ui > O, then surely xi does not

lie on the optimal path (by the causality property of (1.2)).

The goal of the A* methods on graphs is to use such under/overestimates to

accelerate the computation by considering only a small neighborhood of nodes on the

optimal path. Here we do not discuss these algorithms in detail; we simply note that

the translation of A* to an Eikonal solver is still a current area of research, and that

domain restriction methods for Eikonal equations generally cause an error at U(S)
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(see section 1.3). A study of the error and computational savings of different A*

techniques can be found in [20].

1.2 Eikonal PDE, upwind discretization & prior fast methods

Static Hamilton-Jacobi equations frequently arise in exit-time optimal control prob-

lems. The Eikonal PDE (1.1) describes an important subset: isotropic time-optimal

control problems. The goal is to drive a system starting from a point x ∈ Ω to exit

the domain as quickly as possible. In this setting, F : Ω → R+ is the local speed

of motion, and q : ∂Ω → R is the exit-time penalty charged at the boundary. We

note that more general control problems (with an exit-set Q ⊂ ∂Ω and trajectories

constrained to remain inside Ω until reaching Q) can be treated similarly by setting

q = +∞ on ∂Ω\Q.

The value function u(x) is defined to be the minimum time-to-exit starting from

x, and a formal argument shows that u should satisfy the equation (1.1). Moreover,

characteristics of this PDE, coinciding with the gradient lines of u, provide the optimal

trajectories for moving through the domain. Unfortunately, Equation (1.1) usually

does not have a classical (smooth) solution on the entire domain, while weak solutions

are not unique. Additional test conditions are used to select among them the unique

viscosity solution, which coincides with the value function of the original control

problem [22, 21]. A detailed treatment of general optimal control problems in the

framework of viscosity solutions can be found in [4].

Many discretization approaches for the Eikonal equation have been extensively

studied, including first-order and higher-order Eulerian discretizations on grids and

meshes in Rn and on manifolds [53, 55, 42, 58], semi-Lagrangian discretizations
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[30, 33], and the related approximations with controlled Markov chains [43, 13]. For

the purposes of this thesis, we will focus on the simplest first-order upwind discretiza-

tion on a uniform Cartesian grid X (with gridsize h) on Ω ⊂ R2. To simplify the

description of algorithms, we will further assume that both ∂Ω and Q are naturally

discretized on the grid X. Our exposition here closely follows [57, 56].

We will also consider slightly more general problems, where exiting is only allowed

through a closed nonempty “exit set” Q ⊂ ∂Ω, with a prohibitively large exit time-

penalty (e.g., q = +∞) on ∂Ω\Q. This corresponds to a time-optimal control problem

“state-constrained” to motion inside Ω\Q, with u interpreted as a constrained viscos-

ity solution on Ω. The boundary conditions on Q are satisfied as usual (with u = q),

while ∂Ω\Q is treated as a non-inflow boundary, where the boundary conditions are

“satisfied in a viscosity sense”; see [4].

To introduce the notation, we will refer to gridpoints xij = (xi, yj), value function

approximations Uij = U(xij) ≈ u(xij), and the speed Fij = F (xij). A popular first-

order accurate discretization of (1.1) is obtained by using upwind finite-differences to

approximate partial derivatives:

(
max

(
D−x

ij U, −D+x
ij U, 0

))2
+

(
max

(
D−y

ij U, −D+y
ij U, 0

))2
=

1

F 2
ij

, (1.4)

where ux(xi, yj) ≈ D±x
ij U =

Ui±1,j − Ui,j

±h
; uy(xi, yj) ≈ D±y

ij U =
Ui,j±1 − Ui,j

±h
.

If the values at four surrounding gridpoints are known, this equation can be solved

to recover Uij. This is best accomplished by computing updates from individual

quadrants as follows. Focusing on a single node xij, we will simplify the notation by

using U = Uij, F = Fij, and {UE, UN , UW , US} for the values at its four neighbor

gridpoints.

First, suppose that max
(
D−x

ij U, −D+x
ij U, 0

)
= 0 and max

(
D−y

ij U, −D+y
ij U, 0

)
=
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−D+y
ij U . This implies that U ≥ UN and the resulting equation yields

U = h/F + UN . (1.5)

To compute “the update from the first quadrant”, we now suppose that

max
(
D−x

ij U, −D+x
ij U, 0

)
= −D+x

ij U and max
(
D−y

ij U, −D+y
ij U, 0

)
= −D+y

ij U .

This implies that U ≥ UN and U ≥ UE. The resulting quadratic equation is(
U − UE

h

)2

+

(
U − UN

h

)2

=
1

F 2
. (1.6)

We define “the update from the first quadrant” UNE to be the root of the above

quadratic satisfying U ≥ max(UN , UE). If no such root is available, we use the

smallest of the “one-sided” updates, similar to the previous case; i.e., UNE = h/F +

min(UN , UE). If we similarly define the updates from the remaining three quadrants,

it is easy to show that U = min(UNE, UNW , USW , USE) satisfies the original equation

(1.4).

It is also easy to verify that this discretization is

• consistent, i.e., suppose both sides of (1.4) are multiplied by h2; if the true solution

u(x) is smooth, it satisfies the resulting discretized equation up to O(h2);

• monotone, i.e., U is a non-decreasing function of each of its neighboring values;

• causal, i.e., U depends only on the neighboring values smaller than itself [55, 56].

The consistency and monotonicity can be used to prove the convergence to the vis-

cosity solution u(x); see [5].

However, since (1.4) has to hold at every gridpoint xij ∈ X\Q, this discretization

results in a system of M coupled nonlinear equations, where M is the number of

gridpoints in the interior of Ω. In principle, this system can be solved iteratively

(similarly to the value iterations process described in (1.3)) with or without Gauss-

Seidel relaxation, but a naive implementation of this iterative algorithm would be
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unnecessarily expensive, since it does not take advantage of the causal properties of

the discretization. Several competing approaches for solving the discretized system

efficiently are reviewed in the following subsections.

1.3 The dependency structure of the gridpoints

Suppose all gridpoints in X are ordered. We will slightly abuse the notation by

using a single subscript (e.g., xi) to indicate the particular gridpoint’s place in that

ordering. The double subscript notation (e.g., xij) will still be reserved to indicate

the physical location of a gridpoint in the two-dimensional grid.

Consider discretization (1.4) and suppose that the solution U has been computed

everywhere. Each xi depended on one or two of its immediate neighboring gridpoints,

determined by which quadrant was used for a two-sided update (similar to (1.6)), and

if a one-sided update was used (similar to (1.5)). This allows us to define a dependency

digraph G on the vertices x1, . . . ,xM with a link from xi to xj indicating that Uj

was needed to compute Ui. The causality of the discretization (1.4) guarantees that

G is always acyclic. We also refer to G(xi) as the subgraph of G containing only the

computational domain of dependence of the gridpoint xi.

As for the domain restriction techniques, it may at first seem unintuitive that

there is any resulting error at all; after all, the A* methods on graphs recover the

value function exactly. Furthermore, for the physical PDE the domain of dependence

of a point x is exactly the characteristic connecting it to the boundary, so a domain

restriction away from the optimal path would not cause any error. But given the

discretized system (1.4), the notion of the dependency graph explains why a domain

restriction would cause error: the computational domain of dependence can be quite
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large, even including gridpoints quite far away from the optimal path.

As an example, consider a problem where F ≡ 1 and Q consists of only the single

point in the lower left corner of the domain. In this case all characteristics passing

through interior gridpoints point towards the southwest, and correspondingly all the

updates of these gridpoints are two-sided SW updates. See Figure 1.1.

..

S

.
T

Figure 1.1: Optimal path drawn in red. The dependency graph of S is the entire grid in this
example, even under refinement.

It is easy to visualize the dependency structure among the gridpoints for this

problem: S depends on its south and west neighbors, which in turn depend on their

south and west neighbors, etc. If we solve this problem at S by a domain restriction

that cuts out any gridpoint in the domain, it is clear that the resulting local error

ought to propagate towards S. In Chapter 4 we analyze the effect of this kind of

error for the much simpler linear advection equations with constant coefficients, which

corresponds to Eikonal problems where the characteristics are straight and parallel.

1.4 Fast Sweeping Methods

Suppose we were to order the gridpoints in such a way that i > j =⇒ there is

no path in G from xj to xi. Then a single Gauss-Seidel iteration would correctly

solve the full system in O(M) operations. However, we see that unless U was already
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computed, the dependency digraph G will not be generally known in advance. Thus,

basing a gridpoint ordering on it is not a practical option. Instead, one can alternate

through a list of several “likely” orderings while performing Gauss-Seidel iterations. A

geometric interpretation of the optimal control problem provides a natural list of likely

orderings: if all characteristics point from SW to NE, then ordering the gridpoints

bottom-to-top and left-to-right within each row will ensure the convergence in a single

iteration (a “SW sweep”).

The “Fast Sweeping Methods” [62, 70] perform Gauss-Seidel iterations on the

system (1.4) in alternating directions (sweeps). Let m be the number of gridpoints in

the x-direction and n be the number in the y-direction, and xij will denote a gridpoint

in a uniform Cartesian grid on Ω ⊂ R2. There are four alternating sweeping directions:

from SW, from SE, from NE, and from NW. For the above described southwest

sweep, the gridpoints xij will be processed in the following order: i=1:1:m, j=1:1:n

(MATLAB index notation). All four orderings are similarly defined in algorithm 2.

Algorithm 2 Sweeping Order Selection pseudocode.

1: sweepDirection← sweepNumber mod 4
2: if sweepDirection == 0 then
3: iOrder ← (1 : 1 : m)
4: jOrder ← (1 : 1 : n)
5: else if sweepDirection == 1 then
6: iOrder ← (1 : 1 : m)
7: jOrder ← (n : −1 : 1)
8: else if sweepDirection == 2 then
9: iOrder ← (m : −1 : 1)
10: jOrder ← (n : −1 : 1)
11: else
12: iOrder ← (m : −1 : 1)
13: jOrder ← (1 : 1 : n)
14: end if

The alternating sweeps are then repeated until convergence. The resulting algo-

rithm is summarized in 3.
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Algorithm 3 Fast Sweeping Method pseudocode.

1: Initialization:
2: for each gridpoint xij ∈ X do
3: if xij ∈ Q then
4: Vij ← q(xij).
5: else
6: Vij ←∞.
7: end if
8: end for
9:

10: Main Loop:
11: sweepNumber ← 0
12: repeat
13: changed ← FALSE
14: Determine iOrder and jOrder based on sweepNumber
15: for i = iOrder do
16: for j = jOrder do
17: if xij ̸∈ Q then

18: Compute a temporary value Ṽij using upwinding discretization
(1.4).

19: if Ṽij < Vij then

20: Vij ← Ṽij

21: changed ← TRUE
22: end if
23: end if
24: end for
25: end for
26: sweepNumber ← sweepNumber + 1
27: until changed == FALSE

The idea that alternating the order of Gauss-Seidel sweeps might speed up the

convergence is a centerpiece of many fast algorithms. For Euclidean distance compu-

tations it was first used by Danielsson in [24]. In the context of general HJB PDEs

it was introduced by Boue and Dupuis in [13] for a numerical approximation based

on controlled Markov chains. More recently, a number of papers by Cheng, Kao,

Osher, Qian, Tsai, and Zhao introduced related Fast Sweeping Methods to speed up

the iterative solving of finite-difference discretizations [62, 70, 39]. The key challenge

for these methods is to find a provable and explicit upper bound on the number of

iterations. As of right now, such a bound is only available for boundary value prob-
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lems in which characteristics are straight lines. Experimental evidence suggests that

these methods can be also very efficient for other problems where the characteris-

tics are “largely” straight. The number of necessary iterations is independent of M

and equal to the number of times the characteristics “switch directions” (i.e., change

from one directional quadrant to another) inside Ω. However, since the quadrants

are defined relative to the grid orientation, the number of iterations will generally be

grid-dependent.

We note that the sweeping approach can be in principle useful for a very wide

class of problems. For example, the method introduced in [39] is applicable to prob-

lems with nonconvex Hamiltonians corresponding to differential games; however, the

amount of required artificial viscosity is strongly problem-dependent and the choice

of consistently discretized boundary conditions can be complicated. Sweeping algo-

rithms for discontinuous Galerkin finite element discretizations of the Eikonal PDE

can be found in [44, 69].

The Fast Sweeping Method performs particularly well on problems where the

speed function F is constant, since in this case the characteristics of the Eikonal PDE

will be straight lines regardless of the boundary conditions. (E.g., if q ≡ 0, then the

quickest path is a straight line to the nearest boundary point.)

It might seem that the recomputation of Vij from (1.4) will generally require

solving 4 quadratic equations to compare the updates from all 4 quadrants. However,

the monotonicity property noted above guarantees that only one quadrant needs to

be considered. E.g., if US < UN then USE ≤ UNE and the latter is irrelevant even

if we are currently sweeping from NE. Thus, the relevant quadrant can be always

found by using min(US, UN) and min(UE, UW ). We note that this shortcut is not

directly applicable to discretizations on unstructured meshes nor for more general

PDEs. Interestingly, Alton and Mitchell showed that the same shortcut can also be
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used with Cartesian grid discretizations of Hamilton-Jacobi PDEs with grid-aligned

anisotropy [2].

One of the problems in this basic version of the Fast Sweeping Method is the fact

that the CPU time might be wasted to recompute Vij even if none of xij’s neighbors

have changed since the last sweep. To address this, one natural modification is to

introduce “active flags” 2 for individual gridpoints and to update the currently active

gridpoints only [3]. Briefly, all gridpoints but those immediately adjacent to Q start

out as inactive. When an active gridpoint xij is processed during a sweep, if Uij

changes, then all of its larger neighbors are marked active. The gridpoint xij is then

itself marked inactive regardless of whether updating Uij resulted in activating a

neighbor. We note that a similar mechanism was previously introduced by Falcone

in the context of semi-Lagrangian discretizations [30].

This modification does not change the asymptotic complexity of the method nor

the total number of sweeps needed for convergence. Nevertheless, the extra time and

memory required to maintain and update the active flags are typically worthwhile

since their use allows to decrease the amount of CPU-time wasted on parts of the

domain, where the iterative process already produced the correct numerical solutions.

In Chapters 2 and 3 we will refer to this modified version as Locking Sweeping Method

(LSM) to distinguish it from the standard implementation of the FSM.

1.5 Label-setting methods for the Eikonal

Causality is the basis of Dijkstra-like methods for the Eikonal PDE. Just as in shortest

path problems on graphs, Dijkstra-like methods dynamically decouple system (1.4)

2We avoid the use of the word “locks” (the original terminology of [3]) to avoid confusion with
the mutex locks used later in this document in the context of parallel programming.
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in such a way that if Ui < Uj, then xi is processed before xj.

The first such method was introduced by Tsitsiklis for isotropic control problems

using first-order semi-Lagrangian discretizations on uniform Cartesian grids [63, 64].

The Fast Marching Method was introduced by Sethian [55] using first-order upwind-

finite differences in the context of isotropic front propagation. A detailed discussion

of similarities and differences of these approaches can be found in [60]. Sethian

and collaborators have later extended the Fast Marching approach to higher-order

discretizations on grids and meshes [57], more general anisotropic Hamilton-Jacobi-

Bellman PDEs [59, 60], and quasi-variational inequalities [61]. Similar methods were

also introduced for semi-Lagrangian discretizations [23]. The Fast Marching Method

for the Eulerian discretization (1.4) is summarized below in Algorithm 4.

As explained in section 1.1, the label-setting Dijkstra’s method can be consid-

ered as a special case of the generic label-correcting algorithm, provided the current

smallest node in L is always selected for removal. Of course, in this case it is more

efficient to implement L as a binary heap rather than a queue. The same is also true

for the Fast Marching Method, and a detailed description of an efficient implemen-

tation of the heap data structure can be found in [56]. The re-sorting of Considered

nodes upon each update involves up to O(logM) operations, resulting in the overall

computational complexity of O(M logM).

Unfortunately, the discretization (1.4) is only causal in the sense that there exists

no δ > 0 such that UNE > δ +max(UN , UE) whenever UNE > max(UN , UE). Thus,

no safe “bucket width” can be defined and Dial-like methods are not applicable to

the resulting discretized system. In [64] a Dial-like method is introduced for a similar

discretization but using an 8-neighbor stencil. More recently, another Dial-related

method for the Eikonal PDE on a uniform grid was introduced in [41]. A more general

formula for the safe bucket-width to be used in Dial-like methods on unstructured
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Algorithm 4 Fast Marching Method pseudocode.

1: Initialization:
2: for each gridpoint xij ∈ X do
3: if xij ∈ Q then
4: Label xij as Accepted and set Vij = q(xij).
5: else
6: Label xij as Far and set Vij =∞.
7: end if
8: end for
9: for each Far neighbor xij of each Accepted node do
10: Label xij as Considered and put xij onto the Considered List L.

11: Compute a temporary value Ṽij using the upwinding discretization.

12: if Ṽij < Vij then

13: Vij ← Ṽij

14: end if
15: end for
16: End Initialization
17:

18: while L is nonempty do
19: Remove the point x̄ with the smallest value from L.
20: for xij ∈ N(x̄) do

21: Compute a temporary value Ṽij using the upwinding discretization.

22: if Ṽij < Vij then

23: Vij ← Ṽij

24: end if
25: if xij is Far then
26: Label xij as Considered and add it to L.
27: end if
28: end for
29: end while

acute meshes was derived in [65]. Despite their better computational complexity,

Dial-like methods often perform slower than Dijkstra-like methods, at least on single

processor architectures.

Finally, we note another convenient feature of label-setting methods: if the execu-

tion of the algorithm is stopped early (before the list L becomes empty), all gridpoints

previously removed from L will already have provably correct values. This property

(unfortunately not shared by the methods in sections 1.4-1.6) is very useful in a num-
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ber of applications: e.g., when computing a quickest path from a single source to a

single target or in problems of image segmentation [56].

1.6 Other fast methods for Eikonal equations

Ideas behind many label-correcting algorithms on graphs have also been applied to

discretizations of Eikonal PDEs. Here we aim to briefly highlight some of these

connections.

Perhaps the first label-correcting methods developed for the Eikonal PDE were

introduced by Polymenakos, Bertsekas, and Tsitsiklis based on the logic of the discrete

SLF/LLL algorithms [51]. On the other hand, Bellman-Ford is probably the simplest

label-correcting approach and it has been recently re-invented by several numerical

analysts working with Eikonal and more general Hamilton-Jacobi-Bellman PDEs [12],

[3], including implementations for massively parallel computer architectures [38]. In

[3] another “2-queues method” is also introduced, essentially mimicking the logic of

thresholding label-correcting algorithms on graphs. While such algorithms clearly

have promise and some numerical comparisons of them with sweeping and marching

techniques are already presented in the above references, more careful analysis and

testing is required to determine the types of examples on which they are the most

efficient. We emphasize, however, that even though many of these prior methods are

less well-known, in practice they are sometimes (not uncommonly) faster than either

FSM or FMM.

All of the above methods produce the exact same numerical solutions as FMM

and FSM. In contrast, two of the three new methods introduced in Chapter 2 aim

to gain efficiency even if it results in small additional errors. We know of only one
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prior numerical method for Eikonal PDEs with a similar trade-off: in [68] a Dial-

like method is used with buckets of unjustified width δ for a discretization that is

not δ-causal. This introduces additional errors (analyzed in [52]), but decreases the

method’s running time. However, the fundamental idea behind our new two-scale

methods is quite different, since we aim to exploit the geometric structure of the

speed function.

There are lately also many efficient parallel algorithms for solving (1.4) and related

discretizations. We defer our review of these until section 3.1 in order to put the

parallel Heap-Cell Method into context.
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CHAPTER 2

NEW HYBRID TWO-SCALE METHODS

We present three new hybrid methods based on splitting the domain into a collec-

tion of non-overlapping rectangular “cells” and running the Fast Sweeping Method

on individual cells sequentially. The motivation for this decomposition is to break the

problem into sub-problems, with F nearly constant inside each cell. If the character-

istics rarely change their quadrant-directions within a single cell, then a small number

of sweeps should be sufficient on that cell; see Figure 2.1. But to compute the value

function correctly within each cell, the correct boundary conditions (coming from

the adjacent cells) should be already available. In other words, we need to establish

a causality-respecting order for processing the cells. The Fast Marching Sweeping

Method (FMSM) uses the cell-ordering found by running the Fast Marching Method

on a coarser grid, while the Heap-Cell Methods (HCM and FHCM) determine the

cell-ordering dynamically, based on updates along the cell-boundaries.

A B

Figure 2.1: Left: level sets of a particular value function with select characteristics drawn in

red (A). Right: a zoom on a cell. Globally the Eikonal problem in A is very difficult for sweeping

methods, whereas a sweeping method restricted to a tiny subdomain (B) ought to converge relatively

quickly.

We first introduce some relevant notation:

• X = {x1, ...,xM}, the grid (same as the grid used in FMM or FSM). This single-

subscript notation is meant to emphasize a gridpoint ordering, rather than the ge-
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A B

Figure 2.2: Two examples with different domain decompositions. Both A and B are based on

the same grid (dotted), with M = 82 and h = 1/7. Figure A uses the cell size hc = 4/7, the total

number of cells J = 22, and r = 4 gridpoints per cell-side. Figure B uses hc = 2/7, J = 42, and

r = 2.

ometric position indicated by the subscripts in formula (1.4). The corresponding

gridpoint values are denoted as Vi = V (xi).

• Q′ = X ∩Q, the set of “exit gridpoints”, whose values are prescribed.

• Z = {c1, ..., cJ}, the set of cells (or “non-overlapping box-shaped subdomains”).

• Qc = {c ∈ Z | c ∩Q′ ̸= ∅}.

• N(xj), the grid neighbors of xj; i.e., the gridpoints that exist to the north, south,

east, and west of xj.

• N c(ci), the set of neighboring cells of ci; i.e., the cells that exist to the north, south,

east, and west of ci.

• N(ci), the grid neighbors of ci; i.e., N(ci) = {xj ∈ X | xj ̸∈ ci and N(xj)
∩

ci ̸= ∅}.

• V c, the cell label.

• hc
x and hc

y, the two cell dimensions (assume hc
x = hc

y = hc).

• r, the number of gridpoints per cell-side.

To ensure that each gridpoint belongs to one and only one cell, the cell boundaries

are not aligned with gridlines, and Ωc =
∪

j=1,...,J

cj must be a superset of Ω; see Figure

2.2.
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2.1 Fast Marching-Sweeping Method (FMSM)

This algorithm uses a coarse grid and a fine grid. Each “coarse gridpoint” is taken to

be the center of a cell of “fine gridpoints”. Fast Marching is used on the coarse grid,

and the acceptance-order of coarse gridpoints is recorded. A sweeping method is then

used on the corresponding cells in the same order. An additional speed-up is obtained

by running only a fixed number of sweeps on each cell based on the upwind directions

determined on the coarse grid. Before providing the details of our implementation,

we introduce additional notation relevant to FMSM:

• Xc = {xc
1, ...,x

c
J}, the coarse grid, corresponding to the centers of cells.

• U c, the solution of the discretized equations on the coarse grid.

• V c, the temporary label of the coarse gridpoints.

• π : {1, ..., J} → {1, ..., J}, a permutation on the coarse gridpoint indices.

In this section only, the value at a cell V c(c) is determined by the label of the

coarse gridpoint.We assume for simplicity that the exit set is representable on the

coarse gridpoints lying in exit set cells Qc; in section 2.8, where this is not the case,

we use interpolation to assign the initial values U c
i . We still reserve the notation U ,

h, etc. for the fine grid. Since Fast Marching is used on the coarse grid only, the heap

L will contain coarse gridpoints only.

Remark 1. The “Modified Fast Sweeping” procedure applied to individual cells in

Algorithm 5 follows the same idea as the FSM described in section 1.4. For all the cells

containing parts of Q (i.e., the ones whose centers are Accepted in the initialization

of the FMM on the coarse grid) we use the FSM without any changes. For all the

remaining cells, our implementation has 3 important distinctions from Algorithm 3:

1. No initialization of the fine gridpoints within c̃ is needed since the entire fine

grid is initialized in advance.
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Algorithm 5 Fast Marching-Sweeping Method pseudocode.
1: Part I:
2: Run FMM on Xc (see algorithm 4).
3: Build the ordering π to reflect the Acceptance-order on Xc.
4:

5: Part II:
6: Fine grid initialization:
7: for each gridpoint xi ∈ X do
8: if xi ∈ Q′ then
9: Vi ← qi;
10: else
11: Vi ←∞;
12: end if
13: end for
14:

15: for j = π(1) : π(J) do
16: Define the fine-grid domain c̃ = cj

∪
N(cj).

17: Define the boundary condition as
18: q̃(xi) = q(xi) on cj

∩
Q′ and

19: q̃(xi) = Vi on N(cj).
20: Perform Modified Fast Sweeping (see Remark 1) on c̃ using boundary condi-

tions q̃.
21: end for
22:

2. Instead of looping through different sweeps until convergence, we use at most

four sweeps and only in the directions found to be “upwind” on the coarse grid.

As illustrated by Figure 2.3, the cells in N c(ci) whose centers were accepted

prior to xc
i determine the sweep directions to be used on ci.

3. When computing Vi during the sweeping, we do not employ the usual sweeping

procedure described in section 1.4 to find the relevant quadrant. Instead, we use

“sweep-directional updates”; e.g., if the current sweeping direction is from the

NE, we always use the update based on the northern and eastern neighboring

fine gridpoints. The advantage is that we will have processed both of them

within the same sweep.

Before discussing the computational cost and accuracy consequences of these im-
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. . .

Figure 2.3: Sweeping directions on ci chosen based on the neighboring cells accepted earlier than

ci (shown in green). Note that 2 sweeping directions are conservatively used in the case of a single

accepted neighbor.

plementation choices, we illustrate the algorithm on a specific example: a “checker-

board” speed function with F = 1 in the white checkers and F = 2 in black checkers,

with the exit set being a single point in the center of the domain see Figure 2.4). This

example was considered in detail in [48]. The numerical results and the performance

of our new methods on the related test problems are described in detail in section 2.5.

As explained in Remark 1.2, we do not sweep until convergence on each cell; e.g., the

sweeps for the cell # 1 in Figure 2.4 will be from northwest and southwest, while the

cell #14 will be swept from northeast only.

.
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Figure 2.4: Left: checkerboard speed function (with K = 5) with a source point in the slow checker

in the center. Right: The order of cell-acceptance in Part I of FMSM, assuming hc = 1/K

The resulting algorithm clearly introduces additional numerical errors – in all but

the simplest examples, the FMSM’s output is not the exact solution of the discretized

system (1.4) on X. We identify three sources of additional errors: the fact that the

coarse grid computation does not capture all cell interdependencies, and the two

cell-sweeping modifications described in Remark 1. Of these, the first one is by far

the most important. Focusing on the fine grid, we will say that the cell ci depends

on cj ∈ N c(ci) if there exists a gridpoint xk ∈ ci such that Uk directly depends on
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Ul for some gridpoint xl ∈ cj. In the limit, as h → 0, this means that ci depends

on cj if there is a characteristic going from cj into ci (i.e., at least a part of ci’s

boundary shared with cj is inflow). For a specific speed function F and a fixed cell-

decomposition Z, a causal ordering of the cells need not exist at all. As shown in

Figure 2.5, two cells may easily depend on each other. This situation arises even

for problems where F is constant on each cell; see Figure 2.11. Moreover, if the cell

refinement is performed uniformly, such non-causal interdependencies will be present

even as the cell size hc → 0. This means that every algorithm processing each cell

only once (or even a fixed number of times) will unavoidably introduce additional

errors at least for some speed functions F .

.. ci. cj

Figure 2.5: Two mutually dependent cells.

One possible way around this problem is to use the characteristic’s vacillations

between ci to cj to determine the total number of times that these cells should be

alternately processed with FSM. This idea is the basis for heap-cell methods de-

scribed in the next section. However, for FMSM we simply treat these “approximate

cell-causality” errors as a price to pay for the higher computational efficiency. Our

numerical experiments with FMSM showed that, as hc → 0, the effects due to the

approximate cell-causality dominate the errors stemming from using a finite (coarse-

grid determined) number of sweeps. I.e., when the cells are sufficiently small, running

FSM to convergence does not decrease the additional errors significantly, but does

noticeably increase the computational cost. The computational savings due to our

use of “sweep-directional updates” are more modest (we simply avoid the necessity to
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examine/compare all neighbors of the updated node), but the numerical evidence in-

dicates that it introduces only small additional errors and usually only near the shock

lines, where ∇u is undefined. Since characteristics do not emanate from shocks, the

accuracy price of this modification is even more limited if the errors are measured in

L1 norm. In section 2.3 we show that on most of X the cumulative additional errors

in FMSM are typically much smaller than the discretization errors, provided hc is

sufficiently small.

The monotonicity property of the discretization ensures that the computed solu-

tion V will always satisfy Vi ≥ Ui. The numerical evidence suggests that V becomes

closer to U as hc decreases, though this process is not always monotone.

The computational cost of Part I is relatively small as long as J ≪ M. However,

if h and M are held constant while hc decreases, this results in J →M , and the total

computational cost of FMSM eventually increases. As of right now, we do not have

any method for predicting the optimal hc for each specific example. Such a criterion

would be obviously useful for realistic applications of our hybrid methods, and we

hope to address it in the future.

2.2 Label-correcting methods on cells

The methods presented in this section also rely on the cell-decomposition Z =

{c1, . . . , cJ}, but do not use any coarse-level grid. In what follows, we will define

“cell values” to represent coarse-level information about cell dependencies. Unlike in

finite volume literature, here a “cell value” is not necessarily synonymous with the

average of a function over a cell.
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2.2.1 A generic cell-level convergent method

To highlight the fundamental idea, we start with a simple “generic” version of a

label-correcting method on cells. We maintain a list of cells to be updated, starting

with the cells in Qc. While the list is non-empty, we choose a cell to remove from it,

“process” that cell (by any convergent Eikonal-solver), and use the new grid values

near the cell boundary to determine which neighboring cells should be added to the

list. The criterion for adding cells to the list is illustrated in Figure 2.6. All other

implementation details are summarized in Algorithm 6.

..

cell B

.

cell A

.

xj

.

xi

Figure 2.6: Suppose that, as a result of processing the cell A an eastern border value Vi becomes

updated. If Vi < Vj and xj ̸∈ Q, the cell B will be added to L unless already there.

It is easy to prove by induction that this method terminates in a finite number

of steps; in Theorem 2 we show that upon its termination V = U on the entire grid

X, regardless of the specific Eikonal-solver employed to process individual cells (e.g.,

FMM, FSM, LSM or any other method producing the exact solution to (1.4) will

do). We emphasize that the fact of convergence also does not depend on the specific

selection criteria for the next cell to be removed from L. However, even for a fixed

cell-decomposition Z, the above choices will significantly influence the total number of

list removals and the overall computational cost of the algorithm. One simple strategy

is to implement L as a queue, adding cells at the bottom and always removing from

the top, thus mirroring the logic of Bellman-Ford algorithm. In practice, we found

the version described in the next subsection to be more efficient.

Theorem 2. The generic cell-based label-correcting method converges to the exact
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Algorithm 6 Generic Label-Correcting on Cells pseudocode.

1: Cell Initialization:
2: for each cell ck do
3: if ck ∩Q ̸= ∅ then
4: add ck to the list L
5: end if
6: end for
7:

8: Fine Grid Initialization:
9: for each gridpoint xi do
10: if xi ∈ Q then
11: Vi ← q(xi)
12: else
13: Vi ←∞
14: end if
15: end for
16:

17: Main Loop:
18: while L is nonempty do
19: Remove a cell c from the list L.
20: Define a domain c̃ = c ∪N(c).
21: Define the boundary condition as
22: q̃(xi) = q(xi) on c ∩Q and
23: q̃(xi) = Vi on N(c).
24: Process c by solving the Eikonal on c̃ using boundary conditions q̃.
25: for each cell ck ∈ N c(c)\L do
26: if ∃xi ∈ (c ∩N(ck)) AND xj ∈ (ck ∩N(xi)\Q) such that

( Vi has changed OR (xi ∈ Q AND c is removed from L for
the first time) )

AND (Vi < Vj) then
27: Add ck to the list L.
28: end if
29: end for
30: end while

solution of (1.4).

Proof. First we describe notation and recall from section 1.3 the dependency digraph

G.

• We say xj depends on xi if Ui is used to compute Uj (see discussion of formulas

(1.5) and (1.6)).
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• Γx = {nodes in G on which x depends directly}. For each node x, the set Γx

will have 0, 1, or 2 elements. If x ∈ Q, then Γx is empty. If a one-sided update was

used to compute U(x) (see formula (1.5)), then there is only one element in Γx.

• Gx denotes the subgraph of G that is reachable from the node x.

• We define the cell transition distance d(x) = maxxi∈Γx{d(xi)+ cell dist(x,xi)},

where cell dist(x,xi) = 0 if both x and xi are in the same cell and 1 otherwise. Note

that in general d(x) < M , but in practice max d(x) is typically much smaller. In the

continuous limit d(x) is related to the number of times a characteristic that reaches

x crosses cell boundaries.

• Ds = {x ∈ G | d(x) = s}. See Figure 2.7 for an illustration of Gx split into

D0, D1, . . . , Dd(x).

• D̃s = {xj ∈ Ds | ∃xi ∈ Ds−1 such that xj depends on xi }, i.e., the set of

gridpoints in Ds that depend on a gridpoint in a neighboring cell. Note that D̃0 = ∅.

• D̂s = {xi ∈ Ds | ∃xj ∈ Ds+1 such that xj depends on xi }, i.e., the set of

gridpoints in Ds that influence a gridpoint in a neighboring cell.

• ⋆ denotes any method that exactly solves the Eikonal on c̃ (see line 20 of

algorithm 6).

Recall that by the monotonicity property of the discretization (1.4), the temporary

labels Vj will always be greater than or equal to Uj throughout algorithm 6. Moreover,

once Vj becomes equal to Uj, this temporary label will not change in any subsequent

applications of ⋆ to the cell c containing xj. The goal is to show that Vj = Uj for all

xj ∈ X upon the termination of Algorithm 6.

To prove convergence we will use induction on s. First, consider s = 0 and note
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Figure 2.7: A schematic view of dependency digraph Gx.

that every cell c containing some part of D0 is put in L at the time of the cell

initialization step of the algorithm. When c is removed from L and ⋆ is applied to

it, every x ∈ D0 ∩ c will obtain its final value V (x) = U(x) because Gx contains no

gridpoints in other cells by the definition of D0.

Now suppose all x ∈ Dk already have V (x) = U(x) for all k ≤ s. We claim that:

1) If a cell c contains any x ∈ Ds+1 such that V (x) > U(x), then this cell is guaranteed

to be in L at the point in the algorithm when the last xi ∈ Ds ∩ N(c) receives its

final update.

2) The next time ⋆ is applied to c, V (x) will become equal to U(x) for all x ∈ Ds+1∩c.

To prove 1), suppose Ds+1 ∩ c ̸= ∅ and note that there exist xj ∈ D̃s+1 ∩ c and

xi ∈ Γxj
with xi ∈ D̂s ∩ ĉ for some neighboring cell ĉ. Indeed, if each gridpoint x

∈ Ds+1 ∩ c were to depend only on those in Ds+1 (gridpoints within the same cell)

and/or those in Dk for k < s, this would contradict x ∈ Ds+1 (it is not possible for

Γx ⊂ ∪k<sDk; see Figure 2.7). At the time the last such xi receives its final update,

we will have Vj ≥ Uj > Ui = Vi since xi ∈ Γxj
. Thus, c is added to L (if not already

there) as a result of the add criterion in Algorithm 6.

To prove 2), we simply note that all nodes in (Gx\c) ⊂ (
∪s

k=0Dk) will already

have correct values at this point.
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Remark 3. We note that the same ideas are certainly applicable to finding short-

est paths on graphs. Algorithm 1 can be similarly modified using a collection of

non-overlapping subgraphs instead of cells, but so far we were unable to find any

description of this approach in the literature.

2.2.2 Heap-Cell Method (HCM)

HCM is a particular label-correcting method on cells that aims to decouple the cells

through the use of cell values. Unlike FMSM, the dependency among the cells is

discovered dynamically; like FMSM and unlike the generic label-correcting method

on cells, HCM is designed to mimic FMM on the cell level; like the generic method

and unlike FMSM the previously processed cells may re-enter L.

As described above in the proof of Theorem 2, when system (1.4) is solved on a

cell c (using any method), if the values of N(c) are already correct, then all xi ∈ c will

receive their final values Ui. Each cell is therefore dependent on a subset of N c(c),

and the hyperbolic nature of the problem suggests that there is a preferred order of

processing the cells.

The list L of cells-to-be-processed is again initially populated with Qc. The entire

grid is initialized only once, in the same way as it is for LSM1. At each iteration of

the main algorithm, a cell c is chosen from L and equation (1.4) is solved by LSM

on X ∩ c with the boundary conditions specified by the current values on N(ci).

The order of processing of the cells is determined dynamically based on heuristically

assigned and updated cell values. The name “Heap-Cell” comes from organizing L as

1That is, all xi ̸∈ Q′ have Vi =∞; the active flags of gridpoints in {x ∈ N(xi)|xi ∈ Q′,x ̸∈ Q′}
are set to “active”; the active flags of all other gridpoints are set to “inactive”.
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a min-heap data structure. Again, since in typical cell-decompositions J ≪ M , the

cost of maintaining the heap L is small compared to the cost of grid computations.

The experimental evidence in 2.3 and 3.4 shows that HCM is very efficient for a wide

range of M and J values.

Algorithm 7 Heap-Cell Method main loop.

1: Initialize cell-values and grid-values
2: Add all c ∈ Qc cells to L
3: while L nonempty do
4: Remove the cell c with the smallest cell value from L
5: V c(c)← +∞
6: Perform modified LSM on c until convergence and populate

the list DN of currently downwind neighboring cells //see Algorithm 8
7: for each neighbor ck ∈ DN do
8: Update V c(ck), the cell value of ck
9: Add ck onto L if not already there
10: Update the preferred sweeping directions of ck
11: end for
12: end while

We say that a cell B is currently downwind from a cell A, if (1) A was the last

processed cell and (2) there exist neighboring border gridpoints xi ∈ A and xj ∈ B

such that the value of Vi has changed the last time A was processed and (3) Vi < Vj.

We note that, since this relationship is based on the temporary labels V , it is entirely

possible that the same A might be also downwind from B at a different stage of the

algorithm.

As noted earlier, a good dependency-ordering of cells may not exist even if we

could base it on permanent gridpoint labels U or even on the continuous viscosity

solution u(x). We will say that B depends on A if there exists some optimal trajectory

crossing the cell boundary from B to A on its way to Q. This allows us to construct a

dependency graph on the set of cells. We will say that a cell-decomposition is strictly

causal if this dependency graph is acyclic. A strictly causal decomposition ensures

that there exists an ordering of cells such that each of them needs to be processed
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only once.

Figure 3.1 shows that, for many generic problems and large hc, neighboring cells A

and B are likely to be interdependent, resulting in multiple alternating re-processings

of A and B. As hc decreases, the decomposition becomes weakly causal - most cell

boundaries become either purely inflow or purely outflow. Additionally, if the ordering

is such that most dependents are processed after the cells they depend on, the average

number of times each cell is processed becomes close to one. As confirmed by the

numerical evidence in section 2.3, weakly causal domain decompositions are very

useful in decreasing the computational costs of serial numerical methods.

Processing cells by using Fast Sweeping Methods: Sweeping using LSM

[3] is performed on the cell c by using the neighboring grid values as boundary data.

Precisely, the domain for processing c is c̃ = c ∪N(c), with the boundary conditions

defined as q̃(xi) = q(xi) on c ∩Q′ and q̃(xi) = Vi on N(c). The sweeping processes

gridpoints one at a time, with the gridpoint update procedure detailed in Algorithm

8.

As in the usual LSM, we loop through different sweeping directions, using a new

one in each iteration. However, by the time a cell B needs to be processed, the

boundary information from its previously processed neighboring cells can be used to

determine the preferred directions to start sweeping, with the likely effect of reducing

the total number of sweeps needed to converge in B. This is accomplished by hav-

ing each cell maintain a list of boolean preferred-sweep-direction flags, and by LSM

beginning sweeping only from the directions marked TRUE. If the convergence is not

achieved after performing sweeps in these preferred directions we revert back to a

standard loop (i.e., in 2D the default standard loop would be SW, SE, NE, NW).

After a cell is processed, all sweep-direction flags are set to FALSE. A sweep-direction

flag of a cell B is updated to TRUE only at the time a neighboring cell A tags B as
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Algorithm 8 Modified LSM update at a gridpoint xi.

1: if xi is inactive then
2: Do nothing
3: else
4: Set xi inactive
5: Compute a possible new value Ṽ for xi by solving equation (1.4)

6: if Ṽ < V (xi) then

7: V (xi)← Ṽ
8: for each xj ∈ N(xi)\Q′ do
9: if V (xj) > V (xi) then
10: Set xj active
11: if xj is in a different cell from xi then
12: Tag that cell as part of the list DN of currently downwind

cells
13: end if
14: end if
15: end for
16: end if
17: end if

downwind. The directions that are updated depend on the location of A relative to

B. For example, if B is downwind from A as in Figure 2.6, then both A-relevant

sweep-direction flags in B (i.e., both NW and SW) will be set to TRUE.

Assigning Cell Values: Cell values are computed heuristically and intended to

capture the direction of information flow. If a cell B depends on a cell A, then ideally

V c(A) < V c(B) should hold to ensure that A is processed earlier. We emphasize

that the choice of a particular cell value heuristic does not affect the final output of

the HCM (see [16] for a proof of convergence), but may affect the method’s overall

efficiency. An ideal heuristic would reflect the inherent causal structure. For example,

if the cell decomposition is strictly causal, using a good cell-value heuristic would

result in exactly J heap removals. For weakly causal cell decompositions (attained

for all problems once hc becomes sufficiently small), a good cell-value heuristic ensures

that the average number of heap removals per cell becomes closer to 1; see section

2.3 and sections 3.4.1, 3.4.2 of the next chapter for experimental evidence.

37



In FMSM of section 2.1, the cell values were defined by running FMM on the

coarse grid. That approach is not very suitable here, since each cell ck might enter

the list more than once and it is important to re-evaluate V c
k each time this happens.

Instead, we define and update V c
k using the boundary values in the adjacent cells,

and line 8 of Algorithm 7 is executed as follows:

Let bk be a unit vector pointing from the center of c in the direction of ck’s center

and suppose that xi has the largest current value among the gridpoints inside c but

adjacent to ck; i.e., xi = argmax
xj∈(c∩N(ck))

Vj. Define yi = xi +
h+hc

2
bk. Then

Ṽ c
k ← Vi +

(h+ hc)/2

F (yi)
; (2.1)

V c
k ← min

(
V c
k , Ṽ

c
k

)
.

...
xi

..
yi

.

c

.

ck

Figure 2.8: An illustration corresponding to Equation (2.2) (the estimate for a cell value) with

bk = (1, 0).

The concept of a cell value is useful even if L is implemented as a queue and

the cells are always removed from the top. Indeed, V c
k can still be used to decide

whether ck should be added at the top or at the bottom of L. This is the SLF/LLL

strategy previously used to solve the Eikonal PDE on the grid-level (i.e., without

any cells) by Polymenakos, Bertsekas, and Tsitsiklis [51]. We have also implemented

this strategy and found it to be fairly good, but on average less efficient than the

HCM described above. (The performance comparison is omitted to save space.) The

intuitive reason is that the SLF/LLL is based on mimicking the logic of Dijkstra’s

method, but without the expensive heap-sort data structures. However, when J ≪

M , the cost of maintaining the heap is much smaller than the cost of occasionally

removing/processing less influential cells from L.
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The performance and accuracy data in section 2.3 shows that, for sufficiently small

h and hc, HCM often outperforms both FMM and FSM on a variety of examples,

including those with piecewise continuous speed function F . This is largely due

to the fact that the average number of times a cell enters the heap tends to 1 as

hc → 0. Further extensions, including an improved cell value heuristic, are introduced

in Chapter 3; see section 3.4.

2.2.3 Fast Heap-Cell Method (FHCM)

Here we develop an accelerated version of HCM by using the following modifications:

1. Each newly removed cell is processed using at most four iterations – i.e., it

is only swept once in each of the preferred directions instead of continuing to

iterate until convergence.

2. Directional flags in all cells containing parts of Q are initialized to TRUE.

3. To further speed up the process, we use a “Monotonicity Check” on cell-

boundary data to further restrict the preferred sweeping directions. For con-

creteness, assume that A and B are related as in Figure 2.6. If the grid values

in N(B)∩A are monotone non-decreasing from north to south, we set B’s NW

preferred direction flag to TRUE; if those grid values are monotone non-increasing

we flag SW; otherwise we flag both NW and SW. In contrast, both HCM and

FMSM always use two sweeps in this situation; see Figure 2.3. We note that

the set c ∩N(B) already had to be examined to compute an update to V c(B)

and the above Monotonicity Check can be performed simultaneously.

The resulting Fast Heap-Cell Method (FHCM) is significantly faster than HCM,

but at the cost of introducing additional errors (see section 2.3).
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The Monotonicity Checks result in a considerable increase in performance since,

for small enough hc, most cell boundaries become monotone. However, generalizing

this procedure to higher dimensional cells is less straightforward. For this reason we

decided against using Monotonicity Checks in our implementation of HCM. FHCM

is summarized in Algorithm 9.

Algorithm 9 Fast Heap-Cell Method pseudocode.

1: Cell Initialization:
2: if cell ck ∋ x for x ∈ Qf then
3: Add ck to the list L;
4: Tag all four sweeping directions of ck as true;
5: Assign a cell value V cell

k := 0;
6: else
7: Assign a cell value V cell

k :=∞;
8: end if
9: Fine Grid Initialization:
10: if xf

i ∈ Qf then
11: V f

i := qfi ;
12: else
13: V f

i :=∞;
14: end if
15:

16: while L is nonempty do
17: Remove cell at the top of L;
18: Perform Non-Directional Fast Sweeping within the cell according to its di-

rections marked true, then set all directions to false and:
19: for Each cell border N,S,E,W do
20: if the value of a gridpoint xf

i along a border changes and V f
i < V f

j for

xf
j a neighboring gridpoint across the border then

21: Add the cell ck containing xf
j onto L if not already there.

22: Update the planned sweeping directions for ck based on the location
of the cell containing xf

i (more about this later).
23: end if
24: Compute a value v for the neighbor cell ck (more about this later)
25: if v < V cell

k then
26: (V cell

k ) ← v
27: end if
28: end for
29: end while
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As an illustration, we consider another 5×5 checkerboard example (this time with

a fast checker in the center) and show the contents of the heap in Figure 2.9.

Heap After 1st Removal

3
.17275

.17275 .17275

1 2

.17275

4

A B

Heap After 2nd Removal

6
.31453

5
.31453

.31453

4 3
.17275

2

.17275

1
.17275

Heap After 13th Removal

.31862

9
.31453

3

5
.31453.31862

7

8
.31862

6

.31453.31862

4

2
.31453

10
.31453

.30156

1

C D

Figure 2.9: FHCM on a 5 × 5 checkerboard example. The level sets of the solution are shown in

subfigure A. The state of the cell-heap, current cell values and tagged preferred sweeping directions

are shown after 1, 2, and 13 cell removals in subfigures B, C, and D.

Here we take the cells coinciding with checkers; finer cell-decompositions are nu-

merically tested in section 2.5. The arrows indicate flagged sweeping directions for

each cell, and the smaller font is used to show the current cell values. Similarly to

Dijkstra’s method and FMM, the heap data structure is implemented as an array; the

bold numbers represent each cell’s index in this array. In the beginning the central

cell is the only one in L; once it is removed, it adds to L all four of its neighbors, all

of them with the same cell value. Once the first of these (to the west of the center)
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is removed, it adds three more neighbors2 (but not the central cell since there are

no characteristics passing through the former into the latter). This is similar to the

execution path of FMSM, however, with heap-cell methods the cells may generally

enter the heap more than once. Thus, additional errors introduced by FHCM are

usually smaller than those in FMSM.

Remark 4. To conclude the discussion of our heap-cell methods we briefly describe a

recent algorithm with many similar features, but different goals and implementation

details. The “Raster scan algorithm on a multi-chart geometry image” was introduced

in [67] for geodesic distance computations on parametric surfaces. Such surfaces are

frequently represented by an atlas of overlapping charts, where each chart has its

own parametric representation and grid resolution (depending on the detail level of

the underlying surface). The computational subdomains corresponding to charts are

typically large and the “raster scan algorithm” (similar to the traditional FSM with

a fixed ordering of sweep directions) is used to parallelize the computations within

each chart. The heuristically defined chart values are employed to decide which chart

will be raster-scanned next.

In [67] the emphasis is on providing the most efficient implementation of raster

scans on each chart for a SIMD/GPU parallel architecture. The use of several large,

parametrization/resolution-defined charts typically results in complicated chart in-

terdependencies since most chart boundaries are generally both inflow and outflow.

Moreover, if this method is applied to any Eikonal problems beyond the geodesic dis-

tance computations, the monotonicity of characteristic directions will generally not

hold and a high number of sweeps will be needed on each chart. In contrast, our

focus is on reducing the cell interdependencies and on the most efficient cell ordering:

when hc is sufficiently small, most cell boundaries are either completely inflow or

2We note that the cell indexed 4 after the first removal is indexed 2 immediately after the second.
This is the consequence of the performing remove the smallest using the down heap procedure in the
standard implementation of the heap; see [57].
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outflow, providing a causal relationship among the cells. Relatively small cell sizes

also ensure that F is approximately constant, the characteristics are approximately

straight lines, and only a small number of sweeps is needed on each cell. Further-

more, the cell orderings are also useful to accelerate the convergence within each cell

by altering the sweep-ordering based on the location of upwinding cells (as in FMSM

and HCM) or fine gridpoint boundary data (as in FHCM). The hybrid methods in-

troduced here show that causality-respecting domain decompositions can accelerate

even serial algorithms on single processor machines. Finally, as explained in the next

chapter, the operations that are parallelized in PMM are in a sense opposite those

that are parallelized in the parallel HCM: in PMM many gridpoints on one chart

receive updates simultaneously in a massively parallel way, while in pHCM multiple

cells are processed simultaneously.

2.3 Numerical Experiments

All examples were computed on a unit square [0, 1]×[0, 1] domain with zero boundary

conditions q = 0 on the exit set Q (defined separately in each case). In each example

that follows we have fixed the grid size h, and only the cell size hc is varied. Since

analytic formulas for viscosity solutions are typically unavailable, we have used the

Fast Marching Method on a much finer grid (of size h/4) to obtain the “ground truth”

used to evaluate the errors in all the other methods.

Suppose ei is the absolute value of the error-due-to-discretization at gridpoint

xi (i.e., the error produced by FSM or FMM when directly executed on the fine

grid), and suppose Ei is the absolute value of the error committed by one of the new

hybrid methods at the same xi. Define the set X+ = {xi ∈ X | ei ̸= 0} and let

M+ = |X+| be the number of elements in it. (We verified that xi ̸∈ X+ ⇒ Ei = 0
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in all computational experiments.) To analyze the “additional errors” introduced by

FMSM and FHCM, we report

• the Maximum Error Ratio defined as R = maxi(Ei/ei), where the maximum is

taken over xi ∈ X+;

• the Average Error Ratio defined as ρ =
∑

(Ei/ei)
M+

, where the sum is taken over

xi ∈ X+;

• the Ratio of Maximum Errors defined as R = maxi(Ei)
maxi(ei)

.

R is relevant since on parts of the domain where ei’s are very small, additional errors

might result in large R even if Ei’s are quite small compared to the L∞ norm of

discretization errors. In the ideal scenario, with no additional errors, R = ρ = R = 1.

For the Heap-Cell algorithms we also report

• AvHR, the average number of heap removals per cell,

• AvS, the average number of sweeps per cell, and

• Mon %, the percentage of times that the “cell-boundary monotonicity” check was

successful.

Finally, we report the number of sweeps needed in FSM and LSM for each problem.

Performance analysis of competing numerical methods is an obviously delicate

undertaking since the implementation details as well as the choice of test problems

might affect the outcome. We have made every effort to select representative examples

highlighting advantages and disadvantages of all approaches. All tests in this section

were performed on an AMD Turion 2GHz dual-core processor with 3GB RAM. Only

one core was used to perform all tests. Our C++ implementations were carefully

checked for the efficiency of data structures and algorithms, but we did not conduct

any additional performance tuning or Assembly-level optimizations. Our code was

compiled using the g++ compiler version 3.4.2 with compiler options -O0 -finline.

We have also performed all tests with full compiler optimizations (i.e., with -O3) and
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found the results to be qualitatively similar; we opted to report the performance data

for the unoptimized version to make the comparison as compiler-independent as pos-

sible. For each method, all memory allocations (for grids and heap data structures)

were not timed; the reported CPU times include the time needed to initialize the

relevant data structures and run the corresponding algorithm. The speed function

F (x) was computed by a separate function call whenever needed, rather than pre-

computed and stored for every gridpoint during initialization. All CPU-times are

reported in seconds for Fast Marching (FMM), the standard Fast Sweeping (FSM),

Locking Sweeping (LSM), and the three new hybrid methods (HCM, FHCM, and

FMSM).

2.4 Comb Mazes

The following examples model optimal motion through a maze with slowly permeable

barriers. Speed function F (x, y) is defined by a “comb maze”: F = 1 outside and 0.01

inside the barriers; see Figure 2.10. The exit set consists of the origin: Q = {(0, 0)}.

The computational cost of sweeping methods is roughly proportional to the number of

barriers, while FMM is only minimally influenced by this. The same good property is

inherited by the hybrid methods introduced in this chapter. The first example with 4

barriers uses barrier walls aligned with cell boundaries and all hybrid methods easily

outperform the fastest of the previous methods (LSM); see Table 2.1.

We note that even the slowest of the HCM trials outperforms FMM, FSM, and

LSM on this example. Despite the special alignment of cell boundaries, this example

is typical in the following ways:

1. In both Heap-Cell algorithms, as the number of cells increases, the average
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Figure 2.10: Min time to the point (0, 0) on comb maze domains: 4 barriers (A), and 8 barriers

(B).

Table 2.1: Performance/convergence results for a 4 wall comb maze example.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 5.9449e-002 1.4210e-002 2.45 6.41 2.05 12

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 1.08 1.151 3.971

HCM 44× 44 cells 1.10 1.078 3.724

HCM 88× 88 cells 1.08 1.040 3.593

HCM 176× 176 cells 1.10 1.020 3.518

HCM 352× 352 cells 1.24 1.015 3.496

HCM 704× 704 cells 1.63 1.008 3.468

FHCM 22× 22 cells 0.79 1.0460 1.0000 1.0000 1.151 1.618 85.5

FHCM 44× 44 cells 0.74 1.0191 1.0000 1.0000 1.078 1.310 92.6

FHCM 88× 88 cells 0.74 1.0085 1.0000 1.0000 1.040 1.156 96.2

FHCM 176× 176 cells 0.78 1.0073 1.0000 1.0000 1.020 1.080 98.4

FHCM 352× 352 cells 0.95 1.0002 1.0000 1.0000 1.015 1.049 99.3

FHCM 704× 704 cells 1.41 1.0000 1.0000 1.0000 1.008 1.022 100.0

FMSM 22× 22 cells 0.58 1.1659 1.0000 1.0000 1.436

FMSM 44× 44 cells 0.54 1.0706 1.0000 1.0018 1.218

FMSM 88× 88 cells 0.53 1.0821 1.0000 1.0018 1.110

FMSM 176× 176 cells 0.57 1.0468 1.0000 1.0008 1.055

FMSM 352× 352 cells 0.71 1.0378 1.0000 1.0004 1.028

FMSM 704× 704 cells 1.24 1.0064 1.0000 1.0001 1.014

number of heap removals per cell decreases.

2. In FHCM the average number of sweeps per cell decreases to 1 as hc decreases.

3. In FHCM the percentage of monotonicity check successes increases as hc de-

creases.
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4. For timing performance in both HCM and FHCM, the optimal choice of hc is

somewhere in the middle of the tested range.

The reason for #2 is that, as the number of cells J increases, most cells will pass

the Monotonicity Check. When the monotonicity percentage is high and each cell

has on average 2 “upwinding” neighboring cells, each cell on the heap will have one

sweeping direction tagged. This observation combined with #1 explains #2.

Combining #1 and #2 and the fact that the length of the heap also increases with

J there is a complexity trade-off that explains #4. As J →M the complexity of both

Heap-Cell algorithms is similar to that of Fast Marching. As J → 1, the complexity

of HCM is similar to that of Locking Sweeping.

In the second example we use 8 barriers and the boundaries of the cells are not

aligned with the discontinuities of the speed function. This example was chosen

specifically because it is difficult for our new hybrid methods when using the same

cell-decompositions as in the previous example. The performance data is summarized

in Table 2.2.

Notice that since the edges of cells do not coincide with the edges of barriers, the

performance of the hybrid methods is not as good as in the previous 4-barrier case,

where the edges do coincide. In this example the cells that contain a discontinuity of

the speed function may not receive an accurate cell value (for either the Heap-Cell

algorithms or FMSM) and may often have poor choices of planned sweeping directions

(for FHCM & FMSM). For FHCM, since the error is small in most trials, this effect

appears to be rectified at the expense of the same cells being added to the heap many

times. For FMSM, since each cell is processed only once, large error remains. The

non-monotonic behavior of R in FMSM and FHCM appears to be due to changes in

positions of cell centers relative to barrier edges as hc decreases.
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Table 2.2: Performance/convergence results for an 8 wall comb maze example.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 6.5644e-002 1.6865e-002 2.50 11.1 3.20 20

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 2.13 2.795 9.293

HCM 44× 44 cells 7.68 8.738 28.046

HCM 88× 88 cells 6.68 6.798 22.804

HCM 176× 176 cells 5.86 5.655 18.872

HCM 352× 352 cells 2.95 2.456 8.314

HCM 704× 704 cells 1.74 1.037 3.587

FHCM 22× 22 cells 1.75 1.4247 1.0000 1.0000 2.946 4.087 84.7

FHCM 44× 44 cells 5.86 1.4250 1.0000 1.0000 8.991 10.209 94.0

FHCM 88× 88 cells 4.54 1.3083 1.0000 1.0000 6.976 7.329 98.1

FHCM 176× 176 cells 3.96 1.2633 1.0000 1.0000 5.754 5.910 99.1

FHCM 352× 352 cells 2.13 1.8922 1.0000 1.0000 2.468 2.549 99.1

FHCM 704× 704 cells 1.48 1.5700 1.0000 1.0000 1.037 1.066 100.0

FMSM 22× 22 cells 0.68 604.49 6.6555 21.036 1.783

FMSM 44× 44 cells 0.59 228.29 3.1529 19.442 1.385

FMSM 88× 88 cells 0.56 313.01 2.7666 6.4608 1.195

FMSM 176× 176 cells 0.58 381.98 1.7374 5.5944 1.097

FMSM 352× 352 cells 0.74 45.397 1.1718 2.0506 1.049

FMSM 704× 704 cells 1.26 23.303 1.1738 1.3536 1.024

In the next chapter we present these comb maze examples again but computed

using HCM/FHCM with a different cell value that seems to overcome the limitations

of discontinuities in the speed function that are misaligned with the cell boundaries.

Briefly, the idea for the new cell value is to rank the cells by whichever has the most

upwind inflow, instead of trying to approximate the value of the center of the cell as

we do here.

2.5 Checkerboards

We return to the checkerboard example already described in section 2.1. For both

the 11× 11 and 41× 41 checkerboard speed functions the center checker is slow. The

speed is 1 in the slow checkers and 2 in the fast checkers. The exit set is the single
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point Q = {(0.5, 0.5)}.
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Figure 2.11: Min time to the center on checkerboard domains: 11× 11 checkers (A), and 41× 41

checkers (B).

Remark 5. Such checkerboard examples arise naturally in the context of front prop-

agation through composite media, consisting of a periodic mix of isotropic constituent

materials with different speed function F . The idea of homogenization is to derive a

homogeneous but anisotropic speed function F (n), describing the large-scale proper-

ties of the composite material. After F (n) is computed, the boundary value problems

can be solved on a coarser grid. An efficient method for this homogenization was in-

troduced in [48], using FMM on the fine scale grid since the characteristics are highly

oscillatory and the original implementation of sweeping was inefficient. The same

test problems were later attacked in [45] using a version of FSM with gridpoint lock-

ing (see Remark ??). The results in Table 2.4 show that even the Locking-Sweeping

Method becomes significantly less efficient than FMM with the increase in the number

of checkers.
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Table 2.3: Performance/convergence results for 11× 11 checkerboard example.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 3.2639e-003 1.7738e-003 3.44 12.3 2.28 16

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 1.84 1.397 5.254

HCM 44× 44 cells 1.73 1.209 4.613

HCM 88× 88 cells 1.69 1.083 4.117

HCM 176× 176 cells 1.72 1.029 3.864

HCM 352× 352 cells 1.87 1.009 3.768

HCM 704× 704 cells 2.51 1.003 3.746

FHCM 22× 22 cells 1.17 1.0122 1.0000 1.0000 1.399 1.779 86.3

FHCM 44× 44 cells 1.11 1.0208 1.0000 1.0000 1.227 1.535 90.6

FHCM 88× 88 cells 1.08 1.0111 1.0000 1.0000 1.091 1.247 95.1

FHCM 176× 176 cells 1.14 1.0050 1.0000 1.0000 1.029 1.103 97.8

FHCM 352× 352 cells 1.33 1.0006 1.0000 1.0000 1.009 1.043 99.4

FHCM 704× 704 cells 2.08 1.0000 1.0000 1.0000 1.003 1.020 100.0

FMSM 22× 22 cells 0.87 40.312 1.5725 13.016 1.269

FMSM 44× 44 cells 0.91 18.167 1.0875 7.4581 1.334

FMSM 88× 88 cells 0.89 7.6692 1.0113 3.1400 1.222

FMSM 176× 176 cells 0.91 5.4947 1.0025 2.4813 1.127

FMSM 352× 352 cells 1.07 2.4557 1.0004 1.3888 1.067

FMSM 704× 704 cells 1.84 1.5267 1.0000 1.0032 1.035

Table 2.4: Performance/convergence results for 41× 41 checkerboard example.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1312 × 1312 1.2452e-002 6.6827e-003 4.13 58.9 11.7 45

METHOD TIME R ρ R AvHR AvS Mon %

HCM 41× 41 cells 4.18 3.261 11.926

HCM 82× 82 cells 3.05 1.571 5.939

HCM 164× 164 cells 2.84 1.314 4.831

HCM 328× 328 cells 2.81 1.080 3.972

HCM 656× 656 cells 3.36 1.026 3.768

FHCM 41× 41 cells 2.83 1.7506 1.0041 1.7123 3.261 4.600 75.5

FHCM 82× 82 cells 2.09 1.0299 1.0006 1.0128 1.584 2.147 78.8

FHCM 164× 164 cells 1.95 1.0103 1.0001 1.0000 1.321 1.670 90.4

FHCM 328× 328 cells 2.01 1.0173 1.0000 1.0000 1.080 1.236 96.9

FHCM 656× 656 cells 2.79 1.0075 1.0000 1.0000 1.026 1.106 100.0

FMSM 41× 41 cells 1.46 12.398 3.4110 3.3991 1.164

FMSM 82× 82 cells 1.54 10.551 1.0975 1.7662 1.211

FMSM 164× 164 cells 1.70 4.7036 1.0142 1.7123 1.281

FMSM 328× 328 cells 1.88 2.0192 1.0020 1.7123 1.242

FMSM 656× 656 cells 2.65 1.7506 1.0004 1.7123 1.147
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In both examples the cell sizes were chosen to align with the edges of the checkers

(i.e., the discontinuities of the speed function). On the 11× 11 checkerboard, almost

all of the HCM trials outperforms FMM and LSM, and most of the FHCM trials are

more than twice as fast as LSM and three times faster than FMM while the additional

errors are negligible; see Table 2.3.

The 41 × 41 example is much more difficult for the sweeping algorithms because

the number of times the characteristics changes direction increases with the number

of checkers. We note that the performance of FMM is only moderately worse here

(mostly due to a larger length of level curves and the resulting growth of the “Con-

sidered List”). Again, almost all hybrid methods outperform all other methods. The

difference is less striking than in the 11×11 example when compared with FMM, but

FHCM and FMSM are 4 to 6 times faster than LSM; see Table 2.4.

2.6 Continuous speed functions with a point source

Suppose the speed function is F ≡ 1 and the exit set consists of a single point

Q = {(0.5, 0.5)}. In this case the viscosity solution is simply the distance to the

center of the unit square. We also note that the causal ordering of cells is clearly

available here; as a result, FHCM and FMSM do not introduce any additional errors.

The performance data is summarized in Table 2.5. For constant speed functions LSM

performs significantly better than FMM on fine meshes (such as this one). The reason

why FMSM and FHCM are faster than LSM in some trials is that LSM checks all

parts of the domain in each sweep, including non-downwinding or already-computed

parts. Additionally LSM must perform a final sweep to check that all gridpoints are

locked. All of the hybrid algorithms slow down monotonically as J increases because

of the cost of sorting the heap.
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Table 2.5: Performance/convergence results for constant speed function.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 1.0956e-003 6.8382e-004 2.72 2.07 0.83 5

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 1.05 1.000 3.692

HCM 44× 44 cells 1.12 1.000 3.718

HCM 88× 88 cells 1.10 1.000 3.733

HCM 176× 176 cells 1.14 1.000 3.742

HCM 352× 352 cells 1.29 1.000 3.746

HCM 704× 704 cells 1.76 1.000 3.748

FHCM 22× 22 cells 0.66 1.0000 1.0000 1.0000 1.000 1.025 100.0

FHCM 44× 44 cells 0.67 1.0000 1.0000 1.0000 1.000 1.006 100.0

FHCM 88× 88 cells 0.69 1.0000 1.0000 1.0000 1.000 1.002 100.0

FHCM 176× 176 cells 0.75 1.0000 1.0000 1.0000 1.000 1.000 100.0

FHCM 352× 352 cells 0.92 1.0000 1.0000 1.0000 1.000 1.000 100.0

FHCM 704× 704 cells 1.47 1.0000 1.0000 1.0000 1.000 1.000 100.0

FMSM 22× 22 cells 0.47 1.0000 1.0000 1.0000 1.103

FMSM 44× 44 cells 0.47 1.0000 1.0000 1.0000 1.049

FMSM 88× 88 cells 0.49 1.0000 1.0000 1.0000 1.024

FMSM 176× 176 cells 0.53 1.0000 1.0000 1.0000 1.012

FMSM 352× 352 cells 0.67 1.0000 1.0000 1.0000 1.006

FMSM 704× 704 cells 1.23 1.0000 1.0000 1.0000 1.003

Next we consider examples of min-time to the center under two different oscillatory

continuous speed functions. For F (x, y) = 1 + 1
2
sin(20πx) sin(20πy) the level sets of

the value function are shown in Figure 2.12A and the performance data is summarized

in Table 2.6. For F (x, y) = 1 + 0.99 sin(2πx) sin(2πy) the level sets of the value

function are shown in Figure 2.12B and the performance data is summarized in Table

2.7.

Note that HCM outperforms Fast Marching on all trials, and outperforms the

sweeping methods significantly on the first example (Table 2.6) despite the fact that

no special selection of cell boundaries was made. Small changes in the frequency of the

speed function did not significantly alter the performance of the hybrid algorithms.

In the second example (Table 2.7) most HCM trials were again faster than LSM

and FMM. Note that for some cell sizes, both FMSM and FHCM have R ≪ R =
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f(x,y) = 1 + .5*sin(20πx)*sin(20πy)
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Figure 2.12: Min time to the center under sinusoidal speed functions.

Table 2.6: Performance/convergence results for F (x, y) = 1 + 1
2
sin(20πx) sin(20πy).

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 4.7569e-003 1.9724e-003 3.74 23.7 6.39 24

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 3.61 1.913 10.785

HCM 44× 44 cells 2.97 1.446 6.811

HCM 88× 88 cells 2.60 1.245 5.201

HCM 176× 176 cells 2.40 1.117 4.350

HCM 352× 352 cells 2.40 1.047 3.945

HCM 704× 704 cells 2.92 1.016 3.788

FHCM 22× 22 cells 2.72 5.6062 1.1358 2.0960 4.413 5.310 67.3

FHCM 44× 44 cells 1.82 3.1094 1.1480 1.0000 1.555 2.132 78.7

FHCM 88× 88 cells 1.61 1.4025 1.0122 1.0000 1.277 1.575 88.2

FHCM 176× 176 cells 1.53 1.0560 1.0022 1.0000 1.125 1.262 94.5

FHCM 352× 352 cells 1.65 1.0226 1.0004 1.0000 1.048 1.106 98.1

FHCM 704× 704 cells 2.40 1.0037 1.0001 1.0000 1.016 1.035 100.0

FMSM 22× 22 cells 1.14 10.497 2.4811 2.9653 1.262

FMSM 44× 44 cells 1.10 6.0892 1.3657 2.2889 1.200

FMSM 88× 88 cells 1.16 4.6801 1.0515 1.9504 1.213

FMSM 176× 176 cells 1.18 3.4828 1.0074 1.3705 1.126

FMSM 352× 352 cells 1.34 1.5987 1.0007 1.0000 1.067

FMSM 704× 704 cells 2.14 1.1262 1.0001 1.0000 1.035

maxj(Ej/ej). Whenever R is close to 1, the rate of convergence of hybrid methods

(based on L∞ errors) is the same as that of FMM and FSM.
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Table 2.7: Performance/convergence results for F (x, y) = 1+0.99 sin(2πx) sin(2πy) .

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 2.1793e-002 9.8506e-004 3.69 12.7 2.73 13

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 2.29 1.165 4.651

HCM 44× 44 cells 2.15 1.070 4.132

HCM 88× 88 cells 2.11 1.034 3.920

HCM 176× 176 cells 2.13 1.015 3.811

HCM 352× 352 cells 2.26 1.008 3.763

HCM 704× 704 cells 2.80 1.002 3.741

FHCM 22× 22 cells 1.37 60.848 1.0020 1.0014 1.174 1.409 92.7

FHCM 44× 44 cells 1.28 4.5786 1.0002 1.0001 1.078 1.185 96.1

FHCM 88× 88 cells 1.28 1.0224 1.0000 1.0000 1.039 1.086 98.2

FHCM 176× 176 cells 1.35 1.0019 1.0000 1.0000 1.017 1.039 99.3

FHCM 352× 352 cells 1.55 1.0003 1.0000 1.0000 1.008 1.018 99.7

FHCM 704× 704 cells 2.27 1.0001 1.0000 1.0000 1.002 1.006 100.0

FMSM 22× 22 cells 1.13 1362.4 1.0270 1.0053 1.231

FMSM 44× 44 cells 1.06 174.62 1.0054 1.0053 1.116

FMSM 88× 88 cells 1.05 38.545 1.0021 1.0046 1.057

FMSM 176× 176 cells 1.09 7.1581 1.0006 1.0046 1.029

FMSM 352× 352 cells 1.28 1.1687 1.0001 1.0028 1.014

FMSM 704× 704 cells 2.08 1.0724 1.0000 1.0000 1.007

2.7 Performance on coarser grids

Our hybrid methods exploit the fact that there exists hc small enough so that most

cell-boundaries will be either fully inflow or fully outflow and most pairs of cells will

not be mutually dependent. But if the original grid X is sufficiently coarse, this may

not be possible to achieve since we also need hc ≥ 2h (otherwise FMM is clearly

more efficient). In this subsection we return to some of the previous examples but

on significantly coarser grids, to test whether the hybrid methods remain competitive

with FMM and LSM. The performance data is summarized in Tables 2.8-2.11.

Since M is much smaller here, the logM term in the complexity of Fast Marching

plays less of a role. On most of the examples in this subsection HCM and FHCM are

not much faster than Fast Marching or Locking Sweeping. For example, in Table 2.9
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Table 2.8: Performance/convergence results for 20 trials of 11 × 11 checkerboard
example on a coarse grid.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

176 × 176 2.0986e-002 1.1087e-002 0.82 3.91 0.81 16

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 0.59 1.438 5.134

HCM 44× 44 cells 0.59 1.171 4.199

HCM 88× 88 cells 0.72 1.041 3.779

FHCM 22× 22 cells 0.41 1.0017 1.0000 1.0000 1.440 1.804 88.2

FHCM 44× 44 cells 0.43 1.0015 1.0000 1.0000 1.171 1.374 97.0

FHCM 88× 88 cells 0.59 1.0000 1.0000 1.0000 1.041 1.158 100.0

FMSM 22× 22 cells 0.29 5.1670 1.0770 2.3920 1.269

FMSM 44× 44 cells 0.35 2.2742 1.0066 1.3489 1.334

FMSM 88× 88 cells 0.53 1.2309 1.0004 1.0040 1.221

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

352 × 352 1.1470e-002 6.0787e-003 3.52 15.4 3.16 16

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 2.40 1.438 5.302

HCM 44× 44 cells 2.25 1.208 4.465

HCM 88× 88 cells 2.32 1.059 3.904

HCM 176× 176 cells 2.91 1.018 3.757

FHCM 22× 22 cells 1.61 1.1194 1.0002 1.0725 1.490 1.936 84.9

FHCM 44× 44 cells 1.53 1.0434 1.0000 1.0000 1.228 1.508 92.2

FHCM 88× 88 cells 1.69 1.0745 1.0000 1.0000 1.059 1.190 97.5

FHCM 176× 176 cells 2.40 1.0273 1.0000 1.0000 1.018 1.086 100.0

FMSM 22× 22 cells 1.12 10.551 1.1593 4.0315 1.269

FMSM 44× 44 cells 1.21 4.7036 1.0252 3.9089 1.334

FMSM 88× 88 cells 1.38 4.1945 1.0093 3.9089 1.222

FMSM 176× 176 cells 2.12 4.1945 1.0074 3.9089 1.127

even though the cell boundaries are perfectly aligned with the checker boundaries,

both Heap-Cell methods are merely on par with Fast Marching. Note that when h

is sufficiently small, their advantage over FMM and LSM is clear (see Table 2.4).

FMSM, however, is about twice as fast as the faster of FMM and LSM. In addition,

FMSM’s error ratios (R, R, and ρ) are smaller here than for the same examples on

finer grids in subsections 2.5-2.6.
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Table 2.9: Performance/convergence results for 20 trials of 41 × 41 checkerboard on
a coarse grid.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

164 × 164 7.1112e-002 3.8397e-002 1.08 17.9 4.01 44

METHOD TIME R ρ R AvHR AvS Mon %

HCM 41× 41 cells 1.13 2.204 7.041

HCM 82× 82 cells 1.05 1.261 4.215

FHCM 41× 41 cells 0.85 1.0000 1.0000 1.0000 2.204 2.449 92.2

FHCM 82× 82 cells 0.90 1.0000 1.0000 1.0000 1.261 1.474 100.0

FMSM 41× 41 cells 0.53 1.4878 1.0850 1.0197 1.163

FMSM 82× 82 cells 0.77 1.1277 1.0162 1.0193 1.210

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

328 × 328 4.0403e-002 2.3205e-002 4.44 73.3 16.6 45

METHOD TIME R ρ R AvHR AvS Mon %

HCM 41× 41 cells 5.42 2.873 9.970

HCM 82× 82 cells 4.02 1.500 5.104

HCM 164× 164 cells 4.19 1.181 4.105

FHCM 41× 41 cells 3.65 1.0988 1.0008 1.0679 2.873 3.802 81.6

FHCM 82× 82 cells 2.90 1.0236 1.0000 1.0000 1.501 1.923 88.0

FHCM 164× 164 cells 3.55 1.0000 1.0000 1.0000 1.181 1.384 100.0

FMSM 41× 41 cells 1.88 2.9459 1.4364 1.4668 1.164

FMSM 82× 82 cells 2.22 2.3040 1.0533 1.1457 1.211

FMSM 164× 164 cells 3.27 1.1540 1.0009 1.0679 1.281

Remark 6. Since two of the hybrid methods introduce additional errors, an impor-

tant question is, “Given the total errors resulting from FHCM and FMSM at a given

resolution (h, hc), for which h̄ > h would FMM commit similar errors, and how well

would FMM perform on that new coarser grid?” For simplicity, assume in the follow-

ing discussion that the CPU time required by FMM is roughly linear in M = O(h−2)

and that the resulting L∞ error is O(h). These are reasonable assumptions for coarse

grids; e.g., see Tables 2.8-2.11. For example, if we want to decrease the execution

time by a factor of τ 2, then M → M/τ 2, h→ τh (in 2D), and errors would increase

by a factor of τ . Such estimates allow for a more accurate performance comparison

between FMM and FMSM (or FHCM) based on the ratio R. Dividing the reported

FMM time by the value R2, we will arrive at an estimate for the new FMM time
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Table 2.10: Performance/convergence results for 20 trials of F (x, y) = 1 +
1
2
sin(20πx) sin(20πy) on a coarse grid.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

176 × 176 3.6535e-002 1.3374e-002 0.94 8.77 3.08 28

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 0.97 1.773 8.233

HCM 44× 44 cells 0.88 1.280 4.992

HCM 88× 88 cells 0.87 1.100 3.975

FHCM 22× 22 cells 0.66 1.3736 1.0209 1.0000 2.153 2.814 69.3

FHCM 44× 44 cells 0.60 1.1703 1.0186 1.0000 1.285 1.684 87.7

FHCM 88× 88 cells 0.71 1.1170 1.0072 1.0000 1.100 1.234 100.0

FMSM 22× 22 cells 0.38 7.0809 1.2945 1.0359 1.244

FMSM 44× 44 cells 0.42 2.2023 1.0402 1.0100 1.197

FMSM 88× 88 cells 0.64 1.0945 1.0024 1.0000 1.213

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

352 × 352 1.8414e-002 7.0584e-003 3.92 33.7 11.1 27

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 4.43 1.909 9.864

HCM 44× 44 cells 3.57 1.403 5.969

HCM 88× 88 cells 3.18 1.178 4.493

HCM 176× 176 cells 3.45 1.060 3.891

FHCM 22× 22 cells 2.89 1.8770 1.0300 1.0202 2.905 3.630 66.2

FHCM 44× 44 cells 2.29 1.8064 1.0712 1.0000 1.425 1.918 82.2

FHCM 88× 88 cells 2.23 1.2724 1.0108 1.0000 1.182 1.394 93.7

FHCM 176× 176 cells 2.84 1.0500 1.0016 1.0000 1.060 1.130 100.0

FMSM 22× 22 cells 1.44 4.3257 1.4890 1.1939 1.246

FMSM 44× 44 cells 1.46 2.2958 1.0975 1.1932 1.197

FMSM 88× 88 cells 1.78 1.7082 1.0110 1.0806 1.213

FMSM 176× 176 cells 2.57 1.0845 1.0010 1.0000 1.126

computed on a coarser h̄-grid with errors similar to those committed by FMSM on

an(h,hc)-grid.

Among Tables 2.8-2.11, the overall worst-case scenario for FMSM under this anal-

ysis is the 11× 11 checkerboard example. Using the data in Table 2.8 with M = 1762

and comparing FMM with FMSM at 222, 442, and 882 cells, the new estimated FMM

times would be 0.82/(2.3922) = .343, 0.82/(1.34892) = .608, and 0.82/(1.0042) = .817.

Comparing this to 0.29, 0.35, 0.53 reported for FMSM, we see that each of the cell

trials still outperforms the corresponding improved time of FMM. Similar conclusions
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Table 2.11: Performance/convergence results for 20 trials F (x, y) = 1 +
0.99 sin(2πx) sin(2πy) on a coarse grid.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

176 × 176 1.0533e-001 5.6430e-003 0.93 4.00 0.93 13

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 0.74 1.165 4.496

HCM 44× 44 cells 0.73 1.085 4.040

HCM 88× 88 cells 0.83 1.026 3.790

FHCM 22× 22 cells 0.47 1.0952 1.0020 1.0004 1.169 1.388 94.2

FHCM 44× 44 cells 0.50 1.0200 1.0005 1.0000 1.087 1.173 97.9

FHCM 88× 88 cells 0.66 1.0045 1.0001 1.0000 1.027 1.051 100.0

FMSM 22× 22 cells 0.37 1.2819 1.0044 1.0164 1.231

FMSM 44× 44 cells 0.41 1.1839 1.0007 1.0053 1.116

FMSM 88× 88 cells 0.59 1.0979 1.0001 1.0000 1.057

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

352 × 352 6.8813e-002 3.1818e-003 3.84 15.9 3.64 13

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 3.00 1.178 4.624

HCM 44× 44 cells 2.76 1.076 4.082

HCM 88× 88 cells 2.83 1.033 3.853

HCM 176× 176 cells 3.29 1.008 3.747

FHCM 22× 22 cells 1.82 1.1364 1.0040 1.0004 1.178 1.405 93.2

FHCM 44× 44 cells 1.71 1.0204 1.0005 1.0000 1.080 1.170 97.7

FHCM 88× 88 cells 1.98 1.0034 1.0001 1.0000 1.034 1.071 99.2

FHCM 176× 176 cells 2.69 1.0006 1.0000 1.0000 1.008 1.022 100.0

FMSM 22× 22 cells 1.44 2.3482 1.0080 1.0074 1.231

FMSM 44× 44 cells 1.42 1.5167 1.0014 1.0037 1.116

FMSM 88× 88 cells 1.61 1.1989 1.0004 1.0034 1.057

FMSM 176× 176 cells 2.44 1.0953 1.0001 1.0015 1.028

are reached when this analysis is performed using error ratios in L1 norms.

Remark 7. We could perform a similar comparison between FMSM and sweeping

methods, but the latter allow for yet another speed up technique: the sweeping can

be stopped before the full convergence to the solution of system (1.4). In fact, in

many implementations of Fast Sweeping, the method terminates when the changes

in grid values due to the most recent sweep fall below some positive threshold κ; e.g.;

see [40]. Similarly to FHCM and FMSM, this results in additional errors, and it is

useful to consider both these errors and the corresponding savings in computational
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Sweep Max % GPs R ρ R

# Change changing

1 1.00e+008 26.22 - - -

2 1.000e+008 31.856 - - -

3 1.000e+008 58.247 44.595 1.7709 4.8179

4 2.7622e-001 44.4527 1.4685 1.1027 1.2445

5 6.3846e-003 41.5341 1.4224 1.0888 1.1995

6 5.9641e-003 41.1957 1.4195 1.0759 1.1995

7 5.9641e-003 41.0730 1.3832 1.0631 1.1951

8 5.4993e-003 40.1919 1.3331 1.0509 1.1562

9 4.9918e-003 37.0650 1.3243 1.0440 1.1205

10 4.9918e-003 36.6337 1.3230 1.0377 1.1205

11 4.9918e-003 36.3995 1.2881 1.0314 1.1191

12 4.7740e-003 34.6743 1.2492 1.0255 1.0854

13 4.5076e-003 31.3318 1.2403 1.0218 1.0532

14 4.5076e-003 30.8150 1.2400 1.0185 1.0520

15 4.5076e-003 30.4767 1.2098 1.0152 1.0511

16 4.1600e-003 28.0934 1.1820 1.0121 1.0270

17 3.6304e-003 22.6502 1.1646 1.0102 1.0004

18 3.6304e-003 21.8062 1.1644 1.0085 1.0000

19 3.6304e-003 21.2374 1.1467 1.0068 1.0000

20 3.2984e-003 19.1404 1.1268 1.0052 1.0000

21 2.7917e-003 14.3367 1.1079 1.0043 1.0000

22 2.7142e-003 13.6340 1.1079 1.0035 1.0000

23 2.7142e-003 13.2250 1.0951 1.0027 1.0000

24 2.4311e-003 11.6746 1.0812 1.0020 1.0000

25 2.1725e-003 8.4659 1.0637 1.0015 1.0000

26 1.8533e-003 7.9677 1.0630 1.0012 1.0000

27 1.8533e-003 7.6852 1.0546 1.0009 1.0000

28 1.7075e-003 6.6664 1.0457 1.0006 1.0000

29 1.5049e-003 4.8000 1.0365 1.0004 1.0000

30 1.1216e-003 4.4653 1.0303 1.0003 1.0000

31 1.1216e-003 4.2646 1.0257 1.0002 1.0000

32 1.0109e-003 3.5656 1.0209 1.0001 1.0000

33 8.5675e-004 2.2754 1.0153 1.0001 1.0000

34 4.8751e-004 2.0300 1.0110 1.0001 1.0000

35 4.8751e-004 1.8813 1.0087 1.0000 1.0000

36 4.2582e-004 1.4314 1.0068 1.0000 1.0000

37 3.4338e-004 0.7064 1.0043 1.0000 1.0000

38 1.1188e-004 0.5689 1.0025 1.0000 1.0000

39 1.1188e-004 0.4871 1.0015 1.0000 1.0000

40 8.9968e-005 0.2863 1.0011 1.0000 1.0000

41 6.8284e-005 0.0632 1.0006 1.0000 1.0000

42 2.4066e-005 0.0297 1.0002 1.0000 1.0000

43 1.0931e-005 0.0112 1.0000 1.0000 1.0000

44 0.0000e+000 0.0000 1.0000 1.0000 1.0000

Sweep Max % GPs R ρ R

# Change changing

1 1.0e+008 25.2 - - -

2 1.000e+008 34.249 - - -

3 1.000e+008 62.372 48.051 9.2339 30.026

4 3.621e-001 49.221 12.002 4.1935 7.7797

5 1.0709e-002 43.0590 11.194 3.9168 7.7098

6 1.0252e-002 42.1586 10.474 3.6528 7.2822

7 1.0252e-002 42.0001 10.269 3.3925 7.2771

8 1.0229e-002 39.8694 9.6885 3.1431 6.9538

9 1.0207e-002 34.3652 9.6713 2.9458 6.9386

10 1.0207e-002 33.2951 9.4074 2.7562 6.5653

11 1.0207e-002 33.1453 9.0914 2.5686 6.5623

12 1.0185e-002 31.2973 8.6218 2.3892 6.1648

13 1.0165e-002 26.4975 8.5771 2.2483 6.1607

14 1.0165e-002 25.5465 8.3781 2.1135 5.8497

15 1.0165e-002 25.3961 8.0972 1.9804 5.8487

16 1.0145e-002 23.7761 7.5600 1.8536 5.4607

17 1.0127e-002 19.6460 7.5550 1.7561 5.4571

18 1.0127e-002 18.8095 7.2488 1.6635 5.0667

19 1.0127e-002 18.6819 7.0133 1.5722 5.0658

20 1.0108e-002 17.2760 6.5857 1.4861 4.7569

21 1.0092e-002 13.8028 6.5691 1.4221 4.7449

22 1.0092e-002 13.0992 6.2438 1.3619 4.3682

23 1.0092e-002 12.9746 6.0465 1.3027 4.3674

24 1.0075e-002 11.8224 5.5031 1.2475 3.9749

25 1.0060e-002 9.0073 5.4990 1.2088 3.9720

26 1.0060e-002 8.4400 5.2424 1.1730 3.6712

27 1.0060e-002 8.3202 5.0816 1.1380 3.6705

28 1.0045e-002 7.3932 4.5433 1.1059 3.2817

29 1.0031e-002 5.2311 4.5402 1.0854 3.2794

30 1.0031e-002 4.8007 4.1140 1.0670 2.8875

31 1.0031e-002 4.7054 3.9971 1.0491 2.8871

32 1.0018e-002 4.0108 3.5893 1.0334 2.5926

33 1.0005e-002 2.5072 3.5711 1.0249 2.5795

34 1.0005e-002 2.2144 3.1264 1.0177 2.2008

35 1.0005e-002 2.1276 3.0465 1.0109 2.2005

36 9.9928e-003 1.6782 2.4976 1.0053 1.8040

37 9.9809e-003 0.8296 2.4942 1.0034 1.8016

38 9.9809e-003 0.6789 2.1526 1.0020 1.5223

39 9.9809e-003 0.6047 2.1076 1.0009 1.5223

40 9.9619e-003 0.3888 1.5638 1.0002 1.1295

41 5.0711e-003 0.1151 1.5638 1.0001 1.1295

42 4.9343e-003 0.0698 1.1631 1.0000 1.0000

43 1.4668e-003 0.0338 1.0000 1.0000 1.0000

44 0.0000e+000 0.0000 1.0000 1.0000 1.0000

A B

Table 2.12: Maximum change of V for the sweeping methods for the 41× 41 checker-
board example on the 164× 164 grid (A) and 1312× 1312 grid (B).
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time. To the best of our knowledge, this issue has not been analyzed so far. The

practical implementations of FSM and LSM typically select κ heuristically or make

it proportional to the grid-size h. It is usually claimed that the number of sweeps

necessary for convergence is h-independent [70]. Tables 2.9 and 2.10 seems to show

that the number of sweeps-to-convergence (i.e., for κ = 0) depends on h. We believe

this is due to both the fact the viscosity solution is revealed in more detial as h

decreases and that the location of gridpoints relative to shocklines is h-dependent.

For κ > 0, the more relevant questions are:

1. How well do the changes in the most recent sweep represent the additional

errors, which would result if we were to stop the sweeping?

2. Is the number of sweeps (needed for a fixed κ > 0) h-independent?

3. Supposing the additional (“early-termination”) errors could be estimated, would

the number of required sweeps be h-independent?

4. Supposing FSM or LSM were run for as many sweeps as necessary to make

the additional errors approximately the same as those introduced by FMSM or

FHCM, would the resulting computational costs be less than those of hybrid

methods?

To answer these questions for one specific (41 × 41 checkerboard) example, we have

run both sweeping methods on 1642 and 13122 grids. In table 2.12 we report the

L∞ change in grid values, the percentage of gridpoints changing, and potential early-

termination errors (R, ρ, and R) after each sweep. At least for this particular

example:

1. The answer to Question 1 is inconclusive, though the max changes are clearly

correlated with R and ρ.
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2. The answer to Question 2 is negative; moreover, after the same number of

sweeps, the max changes on the 13122 grid are clearly larger than on the 1642

grid.

3. The answer to Question 3 is negative; e.g., R reduces below 1.1 after only 12

sweeps on the 1642 grid, but the same reduction on the 13122 grid requires 42

sweeps.

4. To answer the last question, we note that for this example FHCM produces very

small additional errors, while FMSM results in R = 1.0197 and R = 1.0193 (on

the 1642 grid with 212 and 422 cells, respectively; see Table 2.9). As Table

2.12A shows, 16 sweeps would be needed for FSM or LSM to produce the same

R values on this grid. Our computational experiment shows that FSM and LSM

times for these 16 sweeps are 6.62 and 2.91 seconds respectively (note that this

is the total time for 20 trials, similar to the times reported in Table 2.9). Thus,

FMSM is still more than 3.5 times faster than the early-terminated LSM and

more than 8 times faster than the early-terminated FSM. For the 13122 example,

we see that the error ratios take longer to converge to 1 for the sweeping methods

(Table 2.12B). The FMSM R values of {3.3991, 1.7662, 1.7123} (from Table 2.4,

for the different cell sizes) correspond {28, 37, 37} sweeps in Table 2.12B. The

experimentally measured early-terminated execution times for FSM and LSM

are {36.85, 48.77, 48.77} seconds and {7.40, 11.68, 11.68} seconds respectively.

Again, FMSM still holds a large advantage (more than 4 times faster than LSM

and more than 18 times faster than FSM). We note that for both the 1642 and

13122 cases, the early-terminated FSM time was linear in the number of sweeps,

while LSM did not receive as much of a speed boost; this is natural since the

percentage of gridpoints changing in the omitted “later iterations” is low, and

the LSM’s computational cost is largely dependent on the number of unlocked

gridpoints in each sweep.
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2.8 Continuous speed functions with general homogeneous

boundary conditions

Next we return to speed functions F (x, y) = 1+0.99 sin(2πx) sin(2πy) and F (x, y) =

1 + 1
2
sin(20πx) sin(20πy), but this time with zero boundary conditions on the entire

boundary of the square. The performance data is summarized in Tables 2.13 and

2.14.

Remark 8. Our current implementation of FMSM treats the coarse gridpoints near-

est to the boundary as Accepted in the initialization. If there is more than one coarse

gridpoint in the exit set, as in the following examples, care must be taken when rank-

ing the “acceptance order” of these coarse gridpoints. While in the case of single-point

exit sets it is safe to assign a zero value to these coarse gridpoints, for general bound-

ary conditions we compute the values by a one-sided update from the cell center to

the nearest point on the boundary. In addition, our FMSM implementation iterates

FSM to convergence on all cells containing parts of Q before determining the sweeping

directions for any other cells.
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Figure 2.13: Min time to ∂Ω under two sinusoidal speed functions.
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Table 2.13: Performance/convergence results for F (x, y) = 1 + 1
2
sin(20πx) sin(20πy)

with Q = ∂Ω.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 1.3670e-003 3.7171e-004 3.89 24.3 6.62 24

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 3.48 1.853 10.273

HCM 44× 44 cells 2.92 1.470 6.811

HCM 88× 88 cells 2.53 1.195 4.987

HCM 176× 176 cells 2.35 1.098 4.301

HCM 352× 352 cells 2.37 1.046 3.951

HCM 704× 704 cells 2.91 1.018 3.785

FHCM 22× 22 cells 2.60 20660 1.5321 3.2150 2.915 4.498 54.5

FHCM 44× 44 cells 1.95 62.164 1.2465 1.5447 1.539 2.502 68.0

FHCM 88× 88 cells 1.66 64.719 1.0187 1.0128 1.223 1.749 83.9

FHCM 176× 176 cells 1.55 5.7122 1.0032 1.0063 1.102 1.361 92.4

FHCM 352× 352 cells 1.66 1.1083 1.0007 1.0011 1.047 1.165 97.5

FHCM 704× 704 cells 2.40 1.0192 1.0001 1.0001 1.018 1.064 100.0

FMSM 22× 22 cells 1.97 1.6383e+5 7.8665 12.339 2.184

FMSM 44× 44 cells 1.67 1.1325e+6 2.6113 4.2370 1.892

FMSM 88× 88 cells 1.42 5506.21 1.0388 1.8072 1.527

FMSM 176× 176 cells 1.29 859.45 1.0044 1.2609 1.265

FMSM 352× 352 cells 1.40 253.58 1.0009 1.0270 1.134

FMSM 704× 704 cells 2.17 6.6107 1.0001 1.0000 1.062
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Table 2.14: Performance/convergence results for F (x, y) = 1+ 0.99 sin(2πx) sin(2πy)
with Q = ∂Ω.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 2.2246e-002 2.7572e-004 3.66 8.06 2.58 8

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 2.03 1.176 4.448

HCM 44× 44 cells 1.97 1.089 4.021

HCM 88× 88 cells 1.93 1.047 3.830

HCM 176× 176 cells 1.96 1.020 3.718

HCM 352× 352 cells 2.10 1.009 3.670

HCM 704× 704 cells 2.74 1.006 3.649

FHCM 22× 22 cells 1.51 136.37 1.0001 1.0000 1.176 1.903 93.4

FHCM 44× 44 cells 1.35 2.4167 1.0000 1.0000 1.091 1.443 99.0

FHCM 88× 88 cells 1.32 2.4167 1.0000 1.0000 1.048 1.226 99.6

FHCM 176× 176 cells 1.39 1.6390 1.0000 1.0000 1.020 1.110 99.8

FHCM 352× 352 cells 1.57 1.0000 1.0000 1.0000 1.009 1.054 99.9

FHCM 704× 704 cells 2.33 1.0000 1.0000 1.0000 1.006 1.028 100.0

FMSM 22× 22 cells 1.57 12592 1.0441 1.0000 1.599

FMSM 44× 44 cells 1.27 355.53 1.0088 1.0000 1.306

FMSM 88× 88 cells 1.15 355.53 1.0055 1.0000 1.157

FMSM 176× 176 cells 1.14 303.61 1.0030 1.0000 1.079

FMSM 352× 352 cells 1.31 134.60 1.0012 1.0000 1.040

FMSM 704× 704 cells 2.11 68.199 1.0004 1.0000 1.014
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CHAPTER 3

PARALLELIZATION

We devote most of this chapter to the development of the parallel Heap-Cell

Method (pHCM). Other material includes a new cell value heuristic for HCM and a

seismic imaging application. The extensive results section of this chapter shows that

pHCM scales well and greatly outperforms prior serial methods and parallel meth-

ods for shared-memory architectures. We begin with a literature review of parallel

methods for Eikonal equations.

3.1 Prior Parallel Methods

Several interesting approaches have been used to design parallel methods for Eikonal

and related PDEs. A careful performance/scalability comparison of all such methods

would be clearly valuable for practitioners but remains outside of scope of this thesis.

Here we give a brief overview of prior approaches primarily to put pHCM in context.

In section 3.4 we also use one of them as a benchmark for comparison with our own

approach.

Two different parallelizations of FSM were introduced in [71]. The first performs a

domain decomposition and uses separate processors to run the serial FSM on each sub-

domain. Subdomains are pre-assigned to processors and communication takes place

along the shared boundaries. The second approach does not use domain decompo-

sition and performs all 2d sweeps simultaneously on separate copies of the domain;

these copies are then synchronized after each iteration by assigning the minimum

value for each gridpoint.

The method of [26] is a more recent parallel sweeping technique (which we call “De-
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trixhe Fast Sweeping Method” or DFSM) that utilizes the fact that, for the upwind

scheme in 3D (eq.(1.4)), gridpoints along certain planar slices through the computa-

tional domain do not directly depend on each other. The planes are given by

ϕii+ ϕjj + ϕkk = C,

for ϕi, ϕj, ϕk ∈ {−1, 1} and C ∈ Z. The choice of ϕ’s determines one of the 23

sweeping directions; once the χ’s are fixed, the sweeping is performed by incrementing

C (which corresponds to translating the plane in the sweep direction). This is a

Cuthill-Mckee [54] ordering of the gridpoints. Inside any such plane the gridpoint

updates are “embarrassingly parallel”, but the resulting method is synchronous since

a barrier is required after processing each plane. Unlike the methods in [71], this

algorithm requires exactly the same number of sweeps as the serial FSM and also

exhibits much better scalability. This appears to be the current state-of-the-art in

parallel sweeping methods for a shared-memory architecture; thus, we have chosen to

benchmark our results against it in section 2.3. We note that a similar parallelization

approach can also be used with the regular (lexicographic) gridpoint ordering but

with an appropriately extended stencil/discretization. This idea was recently used to

parallelize the sweeping for more general (anisotropic) problems in [31].

As for marching approaches, the canonical FMM is inherently serial (as is Dijk-

stra’s method) and relies on a causal ordering of computations. Several paralleliza-

tions of FMM have been developed employing fixed (problem-independent) domain

decompositions and running the serial FMM locally by each processor on preassigned

subdomain(s) (e.g., [35]).In the absence of a strictly causal relationship between sub-

domains, this inevitably leads to erroneous gridpoint values, which can be later fixed

by re-running the FMM whenever the subdomains’ boundary data changes. One re-
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cent method A very recent massively parallel implementation for distributed memory

architecture in [28] uses coarse grid computations to find a good subdomain preas-

signment, attempting to exploit non-strict causality to improve the efficiency; the

approach is then re-used recursively to create a multi-level framework.

The main difficulty with making the most effective use of a domain decomposi-

tion for the Eikonal equation is that the direction of information flow at subdomain

boundaries is not known a priori. If the domain is decomposed so that there is ex-

actly one subdomain per processor, the loads may not be balanced. Additionally, a

problem shared by all algorithms using a fixed domain decomposition is the existence

of mutually dependent subdomains with a high degree of dependency; see Figure 3.1.

Nevertheless, domain decomposition is often preferred as a parallelization approach

to improve the cache locality and to avoid the use of fine-grain mutual exclusion.

Two recent approaches aim to minimize inter-domain communication by creating

problem-dependent causal domain decompositions. One [14] decomposes the exit set

into P sets, where P is the number of processors, and then each processor runs FMM

serially starting from its own piece of the exit set. It is still necessary to reprocess

ACCEPTED gridpoints (since subdomain boundaries are only approximately char-

acteristic), and there is no guarantee that loads will be balanced. The other is the

“Patchy FMM” developed in [15] for feedback control systems uses coarse grid compu-

tations to build (almost) causal subdomains, which are then processed independently.

The disadvantages of this approach include complicated subdomain geometries, addi-

tional errors along subdomain boundaries, and frequent load balancing issues (since

the subdomains are often very different in size).

In principle, it is also possible to parallelize some prior Eikonal solvers (e.g., the

Dial-like algorithm [64] and the Group Marching Method [41]) without resorting to do-

main decompositions. But we are not aware of any existing parallel implementations,
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Figure 3.1: Level sets for an Eikonal problem in 2D with cell boundaries in black and a character-

istic in red. Since the characteristic repeatedly crosses the subdomain boundary, any method that

solves this problem using the given domain decomposition will require a large number of iterations.

and the scalability is likely to be very limited due to the focus on gridpoint-level paral-

lel computations. For shortest path problems on graphs, examples of asynchronously

parallelizable algorithms include the threshold method and the SLF-LLL method

[11]. The idea in parallelizing the latter is to let each processor run a serial SLF-LLL

method on its own local queue, but with a heuristic used to determine which queue

is to receive each graph-node tagged for updating. A mutex is used for every node

to prevent multiple processors from attempting to modify it simultaneously. This

parallel design inspired our own (cell-level) approach in the pHCM.

Several parallel algorithms were also developed for other computer architectures.

One method proposed in [67], intended for SIMD and GPU architectures, computes

shortest geodesic paths on parametric surfaces. In this “Parallel Marching Method”

(PMM) the subdomains are processed serially with a dynamic ranking procedure sim-

ilar to that of FMM. Each time a subdomain is processed, the values of all gridpoints

within it are updated using parallel “raster scans,” which are similar to the parallel
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sweeps in [71] and [26].

Another method intended for massively parallel (SIMD GPU) architectures is the

“Fast Iterative Method” (FIM) developed in [38]. In FIM, an unsorted list L of

active gridpoints is maintained, and at each iteration all gridpoints on L are updated

in parallel using Jacobi updates. A variant, the “Block FIM,” maintains blocks of

gridpoints on L, and all blocks on L are updated in parallel. New blocks are added

based on whether any of their gridpoints received updates. Blocks are used to take

advantage of the SIMD parallelism.

3.2 An improvement to HCM: new cell value heuristic

In this chapter, our treatment of the cell value is different from the one in chapter

2 in two ways: 1) whenever a cell B is removed from L, we reset V c(B) to +∞,

and 2) we assign V c(B) as the smallest of the newly updated gridpoint values in

N(B); see equation (3.1). The logic is that cells should be ranked by the currently

most upwind inflow. We reset V c(B) so that if B is to be processed again, the later

time-of-processing will be determined only by new inflow information. To be precise,

Ṽ c(B)← min
j∈Anew

V (xj) V c(B)← min(V c(B), Ṽ c(B))
(3.1)

where Anew is the set of newly updated “inflow for B” gridpoints of A along the

relevant cell border; i.e., Anew = {xi ∈ N(B) ∩ A | recently updated Ui <

Uj for some xj ∈ B ∩ N(xi)}. An efficient implementation of this heuristic relies

on updating the current minimum border value of B at line 12 of Algorithm 8.
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We use a natural initialization of cell values before the main loop of the algorithm:

V c(c) ←


min{V (xj) |xj ∈ c ∩Q′}, if c ∈ Qc;

+∞, otherwise.

This heuristic appears to be very efficient for a variety of examples and easily gen-

eralizes to higher dimensions. Most importantly, it seems to be effective at handling

discontinuities in the speed function that do not align with the cell boundaries, which

was a weakness of the original cell value (e.g., see section 2.3). A comparison with

the original heuristic is also performed in section 3.4.8.

Although this cell value was independently developed, we later found that it ap-

peared in earlier work by Kimmel, et al. [67] in their “Raster scan algorithm for a

multi-chart geometry image,” which also ranks the charts (cells) on the priority queue

according to this heuristic. This method differs from pHCM in several ways, one of

which is that pHCM achieves its efficiency when each cell is almost completely inflow

or outflow; for complicated speed functions and boundary conditions this may require

significantly smaller cell sizes compared to chart sizes used in the implementation in

[67]. The similarities and differences between the two methods are described in detail

in Remark 4 in the previous chapter.

3.3 Parallelization

There are several different approaches one can take to parallelize HCM. It is possible,

for instance, to parallelize the sweeping scheme within an individual cell. Our choice

for pHCM was to have multiple subdomains processed simultaneously. Each processor

p essentially performs the serial HCM on its own local cell-heap Lp, but with one

important difference: when a cell c is tagged for re-processing, we attempt add it to
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the heap Lj with the lowest current number of cells. Except for some modifications

explicitly described below, most of the subroutines of the serial HCM can be directly

reused in pHCM as well. In algorithm 10, all data is shared unless stated otherwise.

Algorithm 10 Parallel Heap-Cell Method pseudocode.

1: Cell Initialization: same as in HCM (divide cells Qc evenly among all heaps Lp)
2: Fine Grid Initialization: same as in HCM
3: P ← number of threads
4: activeCellCount ← |Qc|
5: PARALLEL SECTION
6: while activeCellCount > 0 do
7: while Lp is nonempty do
8: Lock heap Lp

9: Position-lock cell c at the top of Lp

10: Remove c from Lp

11: V c(c)← +∞
12: Position-unlock c
13: Unlock Lp

14: Compute-Lock c
15: Perform modified LSM on c and populate the (local) list DN
16: of currently downwind neighboring cells //see Algorithm 8
17: Set all preferred sweeping directions of c to FALSE

18: Compute-Unlock c
19: for each ck ∈ DN do

20: Compute a possible new (local) cell value Ṽ for ck

21: if Ṽ < V (ck) then

22: Set Cell Value (ck, Ṽ ) //see Algorithm 11
23: end if
24: if ck is not on a heap then
25: Add Cell (ck) //see Algorithm 12
26: end if
27: Update sweeping directions of ck based on location of c
28: end for
29: activeCellCount −− (atomic)
30: end while
31: end while

The described algorithm gives rise to occasional (benign) data race conditions. But

before explaining why they have no impact on correctness/convergence, we highlight

several main design decisions:
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Algorithm 11 Set Cell Value (ck, Ṽ ).
1: success ← FALSE

2: while success == FALSE do
3: if ck is not on a heap then
4: Position-lock ck
5: if ck is still not on a heap then
6: V (ck)← min(Ṽ , V (ck))
7: success ← TRUE

8: end if
9: Position-unlock ck
10: else
11: j ← index of the heap of ck
12: Lock Lj

13: Position-lock ck
14: if ck is still on Lj then

15: V (ck)← min(Ṽ , V (ck))
16: Heap-sort Lj

17: success ← TRUE

18: end if
19: Position-unlock ck
20: Unlock Lj

21: end if
22: end while

• To ensure efficiency/scalability, there is no synchronization mechanism at the

gridpoint level.

• Unlike many other parallel Eikonal solvers, pHCM is asynchronous; i.e., no

barriers are used.

• There are two individual cell operations that must be individually serialized:

1) the movement of a cell onto/ off / within a heap and 2) the update of grid-

point values within that cell. However, together both can safely be performed

simultaneously. Thus, each cell maintains both a “compute” lock and a “posi-

tion” lock to allow for the overlapping of these operations.

• Adding a cell onto the heap with fewest elements ensures good load balancing.

But if that heap is currently locked, waiting for the lock to be released might

have the opposite effect on the method’s performance. Since we can assign the
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Algorithm 12 Add Cell (ck).

1: j ← index of heap with fewest elements (no locking; counts may be outdated
during search);

2: testCount ← 0
3: while Lock L(j+testCount)%P can not be immediately obtained do
4: testCount++
5: end while
6:

7: Position-Lock ck
8: if ck is still not on a heap then
9: Add ck onto L(j+testCount)%P

10: activeCellCount ++ (atomic)
11: end if
12: Position-Unlock ck
13: Unlock L(j+testCount)%P

cell to another heap without drastically altering the balance, we attempt to

obtain the lock using the omp test lock subroutine, and move on to the next

heap if that attempt was unsuccessful; see Algorithm 12. Profiling shows that

this approach always results in better performance than using the omp set lock.

• The activeCellCount is decremented on line 29 of Algorithm 10 (rather than

around line 10) to prevent other threads from quitting prematurely.

• The cell update (lines 15-17 of Algorithm 10) is exactly the same sweeping

procedure as in HCM. Just as in HCM, any other method that solves system

(1.4) within a cell c may be substituted in place of LSM. However, if the grid-

value updates inside c also involve updating any grid-level data in N c(c), the

potential race conditions must be handled carefully. Below we explain how this

issue is handled in LSM for the active flag updates across cell-boundaries.
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3.3.1 Efficiency and data race conditions

There is always a delicate trade-off between performance-boosting heuristics in the

serial realm and the synchronization penalty they would incur in the parallel imple-

mentation. The serial HCM has several features (the use of LSM within cells, the use

of preferred sweeping directions, the accuracy of cell values at predicting information

flow) that could cause contention when parallelized. In this section we describe how

we chose to handle those features in designing pHCM. Since there is no synchroniza-

tion at the gridpoint level, we have actually allowed several data races to be present

in the algorithm. We first check the convergence of the algorithm in the presence of

these data races.

For all of the following arguments we assume a sequentially consistent memory

model, meaning that the instructions in Algorithm 10 are executed in the order they

appear. On modern platforms it is possible that compilers or hardware will reorder

the program’s instructions. While these optimizations are innocuous in serial codes,

in a multi-threaded environment this can lead to unexpected results1.

Consider first a more basic version of pHCM that uses FSM within cells instead of

LSM. There is still a possibility of data races along the boundary of each cell: updating

a border gridpoint by Eq. (1.4) requires reading information in a neighboring cell.

But it is easy to see that the monotonicty of gridpoint value updates makes such

data races harmless. Suppose two cells A and B are being simultaneously swept by

processors pA and pB respectively (see Figure 2.6). Suppose also that B undergoes

its final sweep. First, the most obvious outcome is that

a. pA updates xi (and writes Vi).

1Indeed, in our implementation it was actually necessary to explicitly prevent such reordering of
certain lines of code (using Open MP’s “flush” pragma).
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b. pA checks Vj and finds Vi < Vj, ⇒ tags B to be added onto a heap.

So, B will have a chance to use the new boundary information Vi the next time it

is processed. Now, suppose neighbors xi and xj are updated simultaneously (i.e.,

Algorithm 8 is executed in parallel at xi and xj by the different processors). Suppose

also that the final sweep in A leaves Vi < Vj. Then either

a. pA writes V (xi).

b. pB writes V (xj).

c. pA checks Vj and finds Vi < Vj, ⇒ tags B to be added onto a heap.

d. pB checks Vi and finds Vi < Vj, ⇒ does nothing.

or

a. pB writes V (xj) .

b. pB checks Vi and finds Vj < Vi, ⇒ tags A to be added onto a heap.

c. pA writes V (xi).

d. pA checks Vj and finds Vi < Vj, ⇒ tags B to be added onto a heap.

In the latter case the cell A is unnecessarily added onto a heap, but this redun-

dancy does not impact the convergence. Therefore, a cell with new inflow boundary

information is always guaranteed to be reprocessed at some later point.

But our reliance on the Locking Sweeping technique introduces an additional issue:

it is also necessary to ensure that all relevant boundary gridpoints in that yet-to-be-

reprocessed cell will be marked as “active” – since otherwise the first cell-sweep will

not touch them. Recall that pA will only set the gridpoint values within A, but because
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of LSM, it might also change the active flags of gridpoints in N(A) ∩ B. What if xi

and xj are updated simultaneously, pA makes xj active, but pB immediately resets

it as inactive and Vj is never recomputed based on the new value of Vi? The order

of operations in Algorithm 8 makes this scenario impossible, since setting a gridpoint

inactive is immediately followed by the re-computation of that gridpoint’s value.

Finally, there is an one additional design choice we have made that causes a

race condition at the cell-level when setting the cell’s preferred sweeping direction

flags. After processing a cell A, we typically need to update the preferred sweeping

directions of its neighboring cells. If one of these neighboring cells B is simultaneously

processed using LSM, the preferred directions data might be overwritten. We could

avoid this scenario by obtaining B’s computation lock before updating its preferred

directions. Our implementation does not use this idea because the preferred directions

only reduce the number of sweeps without affecting the convergence, and because the

additional contention would dominate the savings for most M/J ratios. Since all

other access to cell-level data is lock protected, pHCM converges.

3.4 Numerical Experiments

In this section we present and compare the performance of FMM, FSM, LSM, HCM,

DFSM (a parallel sweeping method), and pHCM on three qualitatively different ex-

amples. Our primary goal is to test the “strong scalability” of pHCM with vari-

ous cell decompositions. Sections 3.4.1 and 3.4.2 provide a more detailed perfor-

mance analysis of the serial and parallel methods respectively. Our source code

and scripts for all methods and examples in this chapter are publicly available from

http://www.math.cornell.edu/∼vlad/papers/pHCM/.
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Benchmark problems

We consider three Eikonal examples with an exit set {(0.5, 0.5, 0.5)} on a unit

cube domain Ω = [0, 1]× [0, 1]× [0, 1]. In all three cases, the boundary conditions are

q = 0 in the center and q = +∞ on the boundary of the cube. Since the center of

the computational domain is not a gridpoint (i.e., M is even), we have initialized U

on the set Q of the 8 gridpoints closest to the center. Since J values are also even,

the set Qc contains 8 cells in all of the examples.

The speed functions are:

1. F ≡ 1.

2. F (x, y, z) = 1 + .5 sin (20πx) sin (20πy) sin (20πz).

3. F (x, y, z) = 1 + .99 sin (2πx) sin (2πy) sin (2πz).

These examples are “representative” in the sense that their respective viscosity

solutions are qualitatively very different. In example 1, all characteristics are straight

lines. In example 2, the characteristics are highly oscillatory and might weave through

cell boundaries many times. The third example has more moderate behavior, with

curved characteristics that do not oscillate rapidly. Figure 3.2 shows various level sets

of examples 2 and 3.

Experimental setup and implementation details

All experiments in this section (except for those in subsection 3.4.5) were per-

formed on the Texas Advanced Computing Center’s “Stampede” computer, using a

single Dell PowerEdge R820 node with four E5-4650 8-core 2.7 GHz processers and

1TB of DDR3 memory. We implemented all methods in C++ and compiled with the
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-O2 level of optimization using the Intel Composer XE compiler v13.0. All solutions

(except for those in subsection 3.4.4) were computed and stored using double preci-

sion. The speed F (x, y, z) was computed by a separate function call as needed, instead

of precomputing and storing it for every gridpoint. HCM and pHCM use Locking

Sweeping, which is experimentally always much faster than regular Fast Sweeping.

In benchmarking all parallel methods, we have used one thread per core, up to a

total of 32 cores. In addition, for some r values, the performance of pHCM may be

significantly influenced by both system-level background processes and variations in

the effective speed of the cores. To fully reflect this, each pHCM test was performed

30 times and we report both the median values and the max/min “error bars”.

We compare our methods’ performance/scaling to a parallelization of the sweeping

methods. Our implementation largely follows the method described in [26], but with

two exceptions:

• Detrixhe et. al. have not tested a “locking sweeping” version of their method;

our implementation of DLSM is based on a straightforward substitution of LSM-

updates for FSM-updates.

• Our implementation of DFSM and DLSM use the default Open MP static loop

scheduling (“omp for”) to divide the work amongst threads instead of the man-

ual load balancing procedure described in [26].

In all iterative methods, the sweeps were continued as long as some gridpoints

received updated values; in subsection 3.4.3 we separately investigate the perfor-

mance improvements due to an “early termination”. In subsection 3.4.4 we explore

the influence of memory footprint by storing/computing values in single precision.

In subsection 3.4.5 we provide additional benchmarking results on a different shared

memory architecture. Subsections 3.4.6 and 3.4.7 contain results for additional ex-
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amples (with piecewise-constant F ). Finally, in subsection 3.4.8 we provide data for

performance with a different cell value heuristic.

Figure 3.2: Some level sets of the value functions of Example 2 (row 1) and Example 3 (row 2).

Not to scale.

Layout of experimental results

The HCM tests were run using J = M/23,M/43,M/83,M/163, and M/323, so

there are 2/4/8/16/32 gridpoints per cell side. “HCMr” and “pHCMr” in the legends

mean HCM and pHCM with J = M/r3. On each test problem the performance of

pHCM depends on 3 problem parameters: M , r, and P , the number of processors.

The performance/scaling plots for pHCM2 are omitted to improve the readability of

all figures.

Figures 3.3, 3.4, 3.6, and 3.7 are organized so that columns present different exam-

ples and rows give different comparison metrics. Figure 3.3 compares the performance

of serial methods by plotting the ratio of FMM CPU-time to other methods’ times

for M = 1283, 1923, 2563, and 3203. Since we are interested in strong scalability, we

test pHCMr with a fixed problem size while varying P . In Figure 3.4, M is frozen

at 3203. The first row reports the speedup factors of the parallel methods over the

serial methods; these are (HCMr time / pHCMr time), (FSM time / DFSM time),

79



140 160 180 200 220 240 260 280 300 320
0

1

2

3

4

5

6

7

8

9

10

Gridpoint per dimension

F
M

M
 ti

m
e/

 o
th

er
 m

et
ho

d 
tim

e

Serial methods compared against FMM, Ex.1

 

 
FMM
FSM
LSM
HCM2
HCM4
HCM8
HCM16
HCM32

140 160 180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

Gridpoint per dimension

F
M

M
 ti

m
e/

 o
th

er
 m

et
ho

d 
tim

e

Serial methods compared against FMM, Ex.2

 

 
FMM
FSM
LSM
HCM2
HCM4
HCM8
HCM16
HCM32

140 160 180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

3

3.5

Gridpoint per dimension

F
M

M
 ti

m
e/

 o
th

er
 m

et
ho

d 
tim

e

Serial methods compared against FMM, Ex.3

 

 
FMM
FSM
LSM
HCM2
HCM4
HCM8
HCM16
HCM32

A B C

Figure 3.3: Performance of the serial methods for different M . The first chart has F ≡
1, the second has F = 1 + .5 sin (20πx) sin (20πy) sin (20πz), and the third has F = 1 +
.99 sin (2πx) sin (2πy) sin (2πz). The data is given as a ratio of FMM’s CPU time to the times
of all other method.

and (LSM time / DLSM time). The second row of Fig. 3.4 provides the performance

comparison of all parallel methods. The growth of parallel overhead and the change

in total work (as functions of P ) are presented for each pHCMr in Figure 3.6. Plots

similar to Figure 3.4 but computed for M = 1283 are presented in subsection 3.4.2.

Main observations:

1. LSM significantly outperforms FMM on example 1 (Fig. 3.3A) and its advan-

tage grows with M . FMM greatly outperforms LSM on example 2 (Fig. 3.3B)

for all values of M . Their performance is more comparable on the third example

(Fig. 3.3C).

2. The performance ranking among serial HCMr methods is problem-dependent

(Fig. 3.3A-3.3C).

3. Figures 3.4D-3.4F demonstrate that pHCM has a large advantage over all serial

methods for most r and P combinations. On the three examples withM = 3203,

the median performance for pHCM8 on 32 threads was between 34 and 84 times
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Figure 3.4: Scaling and performance for pHCM at M = 3203. The first column has
F ≡ 1, the second has F = 1 + .5 sin (20πx) sin (20πy) sin (20πz), and the third has F =
1 + .99 sin (2πx) sin (2πy) sin (2πz).

faster than FMM, between 7.7 and 166 times faster than LSM, and between 18.4

and 436 times faster than FSM.

4. Generally, the pHCM speedup over HCM is greater when there is more work per

cell. We see in Figures 3.4A-3.4C that the experiments with higher gridpoints-

per-cell number r exhibit better parallelization, and the speedup of pHCM4 is

always the worst.

5. In Figure 3.4 the position of each curve relative to its error bar reveals the most

likely outcome. For example, the pHCM4 scaling plummets in the worst cases

and plateaus in the best cases. At 32 threads, since the median is near the

bottom of the error bar in all examples, the good cases are relatively rare.
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6. Based on Figure 3.4, for most r values pHCM scales much better than

DFSM/DLSM. Since DFSM is a synchronous parallel algorithm, it comes as

no surprise that using the Locking Sweeping does not boost performance signif-

icantly – LSM only reduces the amount of work performed by a subset of the

threads. Better scaling in DLSM would likely be achieved if it were possible to

apply a special load balancing procedure based on the set of currently “active”

gridpoints.

3.4.1 Further comments on performance of serial methods

1. Tradeoffs between FMM and LSM. It is well known that Marching and Sweeping

methods are each advantageous on their own subsets of Eikonal problems. The

exact delineation remains a matter of debate. The readers can find careful

comparative studies in [34, 37] and partly in [16]. In each example (Figs. 3.3A-

3.3C) we observe that, as M increases, the ratio of FMM time to LSM time

increases due to the greater cost of each heap-sort operation. However, FMM’s

performance is much more robust to the qualitative differences in the solution;

FMM’s raw times for M = 3203 ranged between 32s (Ex. 1) and 51s (Ex. 2),

while the LSM times were between 3s (Ex. 1) and 363s (Ex. 2). FMM is also

usually much more efficient on problems with complicated domain geometry

(e.g., on domains containing multiple impenetrable obstacles).

2. Grid memory layout and caching issues. Large grids, particularly common

in higher dimensional problems, present an additional challenge for all (serial

and parallel) methods implemented on a shared memory architecture. Solving

equation (1.4) requires accessing the U values for all gridpoints neighboring

xijk, but the geometric neighbors can be far apart in memory when the higher-
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Figure 3.5: Cache miss rates for FMM, FSM, and LSM as M increases. “D1mr” means the rate
of data misreads at the highest level (L1) cache. “D2mr” means the rate of data misreads at the
lowest level (L2 or L3) cache. The black curves are rates of data mis-writes.

dimensional grid is stored lexicographically. This results in frequent cache-

swapping, ultimately impacting the computational cost. More detailed profil-

ing (not included here) confirms the resulting slow-down in all serial methods,

including LSM. In other applications space-filling curves have been successfully

used to alleviate this problem (e.g., [46]), but we are not aware of any successful

use in Eikonal solvers. We believe that allocating the fine grid separately per-

cell would be advantageous for a robust extension of HCM/pHCM to higher

dimensions. However, our current implementation of heap-cell methods does

not take advantage of this idea.

3. FMM scaling in M . Since the length of the heap increases with M , the number

of flops per heap operation increases too. On top of this, FMM is affected by

additional caching issues: the time per heap-related memory access increases,

since the parent/child relationships of heap entries do not translate to memory

proximity of the corresponding gridpoints. Profiling shows that the cache miss

rate increases noticeably with M compared to the sweeping methods; see Figure

3.5.

4. HCM scaling in M . For most cell decompositions, when J ≪ M , the heap

maintenance is negligible. As J becomes large (e.g., for r = 2), HCMr is
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affected by the same issues described for FMM above.

5. Optimal J in HCM. As cell sizes decrease, the causality among cells becomes

stronger (see the end of section 2.2.2) and our cell value heuristic does a better

job of capturing the dependency structure; the average number of times each cell

is processed tends to 1. Additionally, the characteristics within each cell become

approximately straight lines, so the per-cell LSM converges quickly. On the

other hand, if J is large enough, the overhead due to heap maintenance becomes

significant; this is quantified in Tables 3.1, 3.2, and 3.3 (“Heap Maintenance

%” means the percentage of execution time spent outside of sweeping cells).

Turning to individual examples:

(a) Ex.1: HCM with larger cell sizes performs better. See Figure 3.3A and

Table 3.1. This is due to a very special property of F ≡ 1: since there is

exactly one heap removal per cell regardless of J , the maintenance of the

heap is the dominant factor affecting the performance. Correspondingly,

LSM performs the best. (LSM is equivalent to HCM using only one cell.)

Table 3.1: Performance analysis of HCM on Ex. 1, M = 3203.

HCM32 HCM16 HCM8 HCM4 HCM2

Avg. Sweeps per Cell 4.84 4.92 4.96 4.98 4.12

Heap Maintenance % 1.09 1.12 1.66 5.88 33.9

(b) Ex. 2: Due to the oscillatory nature of characteristics, HCM performs

better with smaller cell sizes. The ranking among HCMr methods is more

or less the reverse of that for example 1, and the sweeping methods are

the slowest. See Figure 3.3B and Table 3.2.

(c) Ex. 3: Figure 3.3C and Table 3.3 show that the performance among the

HCMr methods is qualitatively different from the previous examples. A

weakly causal ordering already exists here for moderately-sized cells.
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Table 3.2: Performance analysis of HCM on Ex. 2, M = 3203.

HCM32 HCM16 HCM8 HCM4 HCM2

Avg. Sweeps per Cell 223 100 31.1 12.9 6.97

Heap Maintenance % 0.076 0.214 0.954 4.95 30.6

Table 3.3: Performance analysis of HCM on Ex. 3, M = 3203.

HCM32 HCM16 HCM8 HCM4 HCM2

Avg. Sweeps per Cell 29.3 14.6 9.37 7.14 5.02

Heap Maintenance % 0.292 0.424 0.914 4.55 28.5

3.4.2 Detailed performance analysis of parallel methods

Two key factors that affect the speedup of parallel methods are the amount of par-

allel overhead (contention, inter-thread communication, etc.) and the change in the

amount of work performed from serial to parallel. In this section we focus on both

the overhead analysis and the algorithmic differences between pHCM and HCM. The

overhead is the sum of the parallel overhead and the “base” heap maintenance. The

latter is given above in Tables 3.1, 3.2, and 3.3.

We define:

• AvS =
P−1∑
p=0

(Total number of sweeps performed by processor p) /J .

• Cell Comp % = percent of total time spent on sweeping cells alone.

• Overhead % = 100% - Cell Comp %, i.e., percent of total time spent beyond

sweeping cells.

1. Effects of P on overhead. As P increases, contention and network communica-

tion increase. If more threads are used for a given cell discretization, it is more

likely for a processor p̂ to wait to obtain a lock (e.g., as in line 8 of algorithm
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Figure 3.6: Overhead percentages and additional work in pHCMr for different P for the three
examples, with M = 3203. In figures A, B, and C the value at Num Threads = 1 of each curve
approximately gives the part of the overhead accounted for by heap maintenance alone; the parallel
overhead would be given approximately by subtracting it from each curve.

10).

2. Effects of J on overhead. The overhead percentage can be large if either 1) J

is large, so processors spend more time doing heap sorts and contending with

each other to obtain locks to shared data structures, or 2) J is small and P is

large, so there is not enough total work to be divided among the processors. In

this case a processor may spend a large amount of time outside the main loop

just waiting for work. A good illustration of this is the pHCM32 curve in Fig.

3.7A and 3.7C. Since here M = 1283, the cell decomposition for pHCM32 is

only 4 cells per domain side; the scaling plateaus at a low number of threads.

3. Effect of a strong causal structure. The order of processing the cells is different

for pHCM and HCM. On Ex. 1 (Figure 3.3A) there is a strict causal relationship
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among cells, resulting in exactly 1 heap removal per cell in HCM. For pHCM

the AvS is larger since cells are not generally processed in their strict causal

order. In fact, on any problem for which HCM has exactly one heap removal

per cell, pHCM will almost surely see an increase in the total number of heap

removals.

4. Effects of multiple caches. Even by comparing only the time spent on cell-

level sweeping (and accounting for differences in the total AvS) one sees that

the speedup factor is closer to P but not exact. When P is larger it is more

likely that adjacent cells will be processed simultaneously, a situation whereby

individual sweeps may become slower than their serial counterparts. Referring

back to Figure 2.6, suppose in the process of updating a border gridpoint xi ∈ A

the value of its neighbor xj ∈ B is loaded into the cache of the local processor

pA. If xj changes value as a result of sweeps on cell B, the value stored in

pA will either need to be invalidated or have the new value communicated to

it [19]. This operation is orders of magnitude slower than simply updating a

cached value without communication.

5. Robustness of pHCM. There is a possibility of the total amount of work increas-

ing significantly if processor speeds vary. Suppose processor p̂ is slow or has

become slow and is processing a high-priority cell A. The other fast processors

will not be able to do useful work on cells downwind from A. What’s more,

there is a cascade effect: cells downwind from the downwind neighbors of A will

need to be readded, etc. This effect is more commonplace for small cells, as seen

in Fig. 3.6D - 3.6F . The non-robust performance of pHCM4 appears to be due

entirely to this effect - the error bars for the work are large while those for the

overhead are small. Not surprisingly, pHCM2 (omitted here) shows even less ro-

bustness than the reported pHCMr. For small cells and large P , a synchronous

parallel implementation may be a wiser choice.
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6. Coarser grids. The charts in Figure 3.7 present the same information as in

Figure 3.4, but for M = 1283. The speedup of the parallel methods here is

expectedly worse than for M = 3203.

7. Possible decrease in work. The total amount of work performed by pHCM may

also actually decrease compared to HCM in cases where the cell heuristic poorly

predicts the dependency structure of the cells. See subsection 3.4.8.

8. Parallel Sweeping. As reported in [26], the algorithmic complexity of Detrixhe

Sweeping is constant in the number of threads; for DFSM and DLSM, charts like

3.6D-3.6F would all show a constant value of 1. Unfortunately, the performance

is also affected by the fact that memory access patterns are more complicated

for DFSM/DLSM than for FSM/LSM, which may prevent the compiler from

taking advantage of data locality. Based on our own OpenMP implementation

on a shared memory architecture, the scalability is also sensitive to hardware

properties of the specific platform; see also subsection 3.4.5. We note that the

authors of [26] have also implemented their method in lower-level memory lan-

guages (MPI, CUDA) to alleviate this sensitivity.

Choosing the optimal cell decomposition for a given problem and grid resolution

remains a difficult problem even for the serial HCM. But luckily, as shown in Fig. 3.3

and in [16], a wide range of medium-sized cells exhibits good serial performance and

parallelizes sufficiently well (Figures 3.4 and 3.7). In all cases, the parallelization is

better when there is more work per cell (e.g., r is large) and there are enough active

cells to keep all processors busy.
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Figure 3.7: Scaling and performance for pHCM at M = 1283. The first column has
F ≡ 1, the second has F = 1 + .5 sin (20πx) sin (20πy) sin (20πz), and the third has F =
1 + .99 sin (2πx) sin (2πy) sin (2πz).

3.4.3 Performance with “early sweep terminations”

All sweeping methods can be accelerated by stopping the iterations once the maximum

change over gridpoint values is less than or equal to a certain threshold κ ≥ 0. If

κ > 0, the method will terminate “early”, and the output will be different than the

true solution of the discretized system (1.4). Ideally, κ should be chosen based on

the L∞-norm discretization error, but since the latter is a priori unknown, a common

practical approach is to use a small heuristically selected constant (e.g., [70]). We

note that, for a fixed κ > 0, the number of needed iterations can be quite different

for different h, and there is currently no proof that the early-terminated numerical
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values are within κ from the correct solution.

All results reported in previous subsections were obtained with κ = 0, but on a

computer with finite precision the iterations stop when the gridpoint value changes fall

below the machine epsilon. I.e., for “double precision” computations this is equivalent

to using κ = 2−52 ≈ 2.2× 10−16.

Here we repeat the same 3 examples but with κ = 10−8 to force an early sweeping

termination, keeping all other parameters the same as in subsections 3.4.1-3.4.2. As

expected, this modification results in faster termination for FSM, LSM, DFSM, and

DLSM (see Figure 3.8). For a fair comparison, in HCM/pHCM we now terminate the

sweeping within a cell when the maximum change in a gridpoint’s value is less than

κ. We also add an additional condition on line 11 of Algorithm 8: if a gridpoint value

changes by less than κ, then the procedure on line 12 will not be executed (i.e., the

adjacent cell will not be marked for update). For most r values and on most examples,

the number of “updates per gridpoint” done by HCMr decreases when κ = 10−8 –

yielding the expected decrease in CPU times. However, we have also observed a

surprising (and as of now unexplained) work increase for HCM32 on Example 2 with

M = 3203.

For the parallel methods, the scaling is about the same (e.g., Figures 3.8D and

3.8F) or slightly worse (e.g. Figure 3.8E) than it was before with κ = 0. For pHCM

this is not surprising, since there is effectively less work per cell. However, for most r

values, the improvement in HCM still results in faster pHCM execution times (com-

pared to those in Figure 3.4).

An experimental study of additional errors due to early termination can be found

in section 2.3.

90



140 160 180 200 220 240 260 280 300 320
0

1

2

3

4

5

6

7

8

9

10

11

Gridpoints per dimension

F
M

M
 t

im
e

/ 
o

th
e

r 
m

e
th

o
d

 t
im

e

Serial methods compared against FMM, Ex. 1

 

 

FMM

FSM

LSM

HCM2

HCM4

HCM8

HCM16

HCM32

140 160 180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

Gridpoints per dimension
F

M
M

 t
im

e
/ 

o
th

e
r 

m
e

th
o

d
 t

im
e

Serial methods compared against FMM, Ex. 2

 

 

FMM

FSM

LSM

HCM2

HCM4

HCM8

HCM16

HCM32

140 160 180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

3

3.5

Gridpoints per dimension

F
M

M
 t

im
e

/ 
o

th
e

r 
m

e
th

o
d

 t
im

e

Serial methods compared against FMM, Ex. 3

 

 

FMM

FSM

LSM

HCM2

HCM4

HCM8

HCM16

HCM32

A B C

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

Num Threads

S
e
ri
a
l 
m

e
th

o
d
 t
im

e
 /
 p

a
ra

lle
l 
m

e
th

o
d
 t
im

e

Speedup, Ex. 1, M = 320 
3

 

 

Ideal

DetrixheFSM

DetrixheLSM

pHCM32

pHCM16

pHCM8

pHCM4

5 10 15 20 25 30
0

5

10

15

20

Num Threads

S
e
ri
a
l 
m

e
th

o
d
 t
im

e
 /
 p

a
ra

lle
l 
m

e
th

o
d
 t
im

e

Speedup, Ex. 2, M = 320 
3

 

 

Ideal

DetrixheFSM

DetrixheLSM

pHCM32

pHCM16

pHCM8

pHCM4

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

Num Threads

S
e
ri
a
l 
m

e
th

o
d
 t
im

e
 /
 p

a
ra

lle
l 
m

e
th

o
d
 t
im

e

Speedup, Ex. 3, M = 320 
3

 

 

Ideal

DetrixheFSM

DetrixheLSM

pHCM32

pHCM16

pHCM8

pHCM4

D E F

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Num Threads

1
 /

 r
a

w
 t

im
e

Raw Time Comparison, Ex. 1, M = 320 
3

 

 

serial FMM

serial LSM

serial FSM

pHCM32

pHCM16

pHCM8

pHCM4

DetrixheFSM

DetrixheLSM

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Num Threads

1
 /

 r
a

w
 t

im
e

Raw Time Comparison, Ex. 2, M = 320 
3

 

 

serial FMM

serial LSM

serial FSM

pHCM32

pHCM16

pHCM8

pHCM4

DetrixheFSM

DetrixheLSM

5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Num Threads

1
 /

 r
a

w
 t

im
e

Raw Time Comparison, Ex. 3, M = 320 
3

 

 

serial FMM

serial LSM

serial FSM

pHCM32

pHCM16

pHCM8

pHCM4

DetrixheFSM

DetrixheLSM

G H I

Figure 3.8: Early termination testing (subsection 3.4.3). Top row: performance of serial methods
for different M ; compare with Figure 3.3. Two bottom rows: scaling and performance for pHCM at
M = 3203; compare with Figure 3.4.
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3.4.4 Performance with “single precision” data

In this subsection we repeat the same three experiments but storing/computing the

numerical solution in single precision. This implementation uses “float” instead of

“double” variables throughout the C++ code. The results are presented in Figure

3.9.

We would expect that in single precision a smaller data footprint would have

advantages for high-level cache operations and scaling. This is mostly true, as il-

lustrated best for DFSM and pHCM on Example 3 (Figure 3.9F). It is also natural

to expect that switching to single precision should substantially decrease the total

number of needed iterations to convergence, because the iterations stop when the

maximum change in values is less than machine epsilon (i.e., we are effectively using

κ = 2−23 ≈ 1.2×10−7). Tables 3.5 and 3.6 are a side-by-side comparison of sweeping-

convergence data for Example 2 with M = 643 under single and double precision.

Based on Table 3.6, it is natural to expect that sweeping in single precision should

converge in about 33 sweeps. Table 3.5 shows that this is not the case: 53 sweeps are

in fact required for convergence. The reason for this discrepancy is that intermediate

computations are also conducted in single precision. In fact, Table 3.4 shows that

on Ex. 3 with M = 3203, the number of sweeps to convergence is actually higher in

single than in double precision. This helps explain the downward-sloping LSM curve

in Figure 3.9C.

We note that Table 3.4 also shows a growth in the number of iterations-to-

convergence with M for the sweeping methods on examples 2 and 3 in either single

or double precision.
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Table 3.4: Number of sweeps for different values of M in double and single precision.

643 1283 1923 2563 3203

Ex. 1
double 9 9 9 9 9

single 9 9 9 9 9

Ex. 2
double 69 99 131 164 191

single 53 88 116 144 173

Ex. 3
double 42 58 77 107 121

single 36 56 89 97 129
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Figure 3.9: Single precision testing (subsection 3.4.4). Top row: performance of serial methods
for different M ; compare with Figure 3.3. Two bottom rows: scaling and performance for pHCM at
M = 3203; compare with Figure 3.4. 93



Table 3.5: Single precision

sweep # max change % grid changing

1 1e+09 15

2 1e+09 23.6

3 1e+09 43.6

4 1e+09 42.8

5 1e+09 75.4

6 0.258 74

7 0.242 72.1

8 0.156 73.4

9 0.00248 69.7

10 0.00155 69

11 0.00213 67.6

12 0.00151 67.9

13 0.00151 63.7

14 0.00147 60.8

15 0.00111 57.5

16 0.000641 55.3

17 0.000216 52.7

18 0.000104 48.7

19 0.000165 44.2

20 9.66e-05 40.5

21 0.0001 37.8

22 8.12e-05 31.4

23 5.51e-05 27.4

24 2.31e-05 22.8

25 6.74e-06 20.8

26 3.58e-06 16.9

27 4.71e-06 15.1

28 2.86e-06 12.6

29 3.28e-06 11.9

30 2.86e-06 8.41

31 2.8e-06 7.51

32 2.74e-06 6.24

33 2.44e-06 4.48

34 2.26e-06 3.54

35 1.85e-06 3.15

36 2.15e-06 2.4

37 2.38e-06 2.07

38 1.67e-06 1.14

39 1.67e-06 1.04

40 1.61e-06 0.668

41 1.79e-06 0.552

42 1.19e-06 0.335

43 1.73e-06 0.367

44 1.43e-06 0.146

45 1.13e-06 0.053

46 9.54e-07 0.0202

47 1.13e-06 0.0153

48 8.34e-07 0.013

49 8.94e-07 0.00687

50 4.17e-07 0.00305

51 9.54e-07 0.00305

52 2.98e-07 0.00114

53 0 0

Table 3.6: Double precision

sweep # max change % grid changing

1 1e+09 15

2 1e+09 28.7

3 1e+09 54.5

4 1e+09 56.3

5 1e+09 87.1

6 0.258 88.3

7 0.242 94.3

8 0.156 98

9 0.00248 86.9

10 0.00155 88.2

11 0.00213 93.7

12 0.00151 96.7

13 0.00151 85.3

14 0.00147 86.3

15 0.00111 90.8

16 0.00064 94.7

17 0.000217 84

18 0.000105 84.4

19 0.000165 86.9

20 9.68e-05 89.6

21 0.0001 79.3

22 8.11e-05 79.6

23 5.57e-05 80.1

24 2.25e-05 82.4

25 7.04e-06 73.9

26 2.74e-06 72.7

27 4.11e-06 70.7

28 1.52e-06 70.3

29 1.67e-06 62.4

30 8.78e-07 59.5

31 4.82e-07 55.8

32 1.82e-07 52.9

33 5.14e-08 47.8

34 1.7e-08 44.2

35 1.7e-08 40.6

36 5.07e-09 36.4

37 6.38e-09 32

38 1.19e-09 26.9

39 6.36e-10 23.4

40 3.96e-10 19.8

41 8.61e-11 17.1

42 2.3e-11 13.7

43 1.24e-11 12.3

44 7.12e-12 10.5

45 5.87e-12 8.93

46 6.39e-13 5.8

47 2.77e-13 5.2

48 2.26e-13 4.34

49 4.12e-14 3.01

50 1.11e-14 2.07

51 7.22e-15 1.83

52 3.77e-15 1.51

53 3.66e-15 1.43

. . . . . . . . .

68 5.55e-16 0.000381

69 0 0



3.4.5 Performance on a different computer architecture

The performance/scaling of parallel methods is often strongly affected by hardware

features of a particular shared memory implementation. All parallel methods consid-

ered here scale better when the ratio of memory bandwidth to CPU speed is higher.

In addition, the scaling is affected by the network topology of the cores. Stampede

has “dual eight-core sockets,” so communication between processors is necessarily

slower when P > 16.

To explore the influence of these features, we repeat our main three examples on

a different platform (“Octopus”): a computer with 8 Dual Core AMD Opteron 880

microprocessors running at 2.4 GHz, with 128 GB total RAM under the Scientific

Linux v5.1 operating system. We have implemented all methods in C++ and compiled

with the -O2 level of optimization using the g++ compiler v4.2.1. The scaling was

tested on up to 16 threads. All other experimental settings are exactly the same as

described for “Stampede” at the beginning of section 2.3. The results are reported in

Figure 3.10.

While the main conclusions are the same as in subsections 3.4.1-3.4.2, this change

in hardware architecture yields noticeably different relative performance even for serial

methods. We observe that FMM seems to benefit more from larger cache sizes than

FSM and LSM do; thus, on Octopus the sweeping methods appear more competitive

on large grids than in the previous tests on Stampede. The HCM2, whose algorithmic

behavior is similar to FMM, is also less advantageous on Octopus, while HCM16 and

HCM32 (whose computational cost is dominated by cell-sweeping) appear to be more

advantageous here for large grids.

As for scaling (Figures 3.10D - 3.10F), all parallel methods seem to do much better

on Octopus than on Stampede, even when only the first 16 threads are accounted
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for on Stampede. For example, on Octopus the pHCM8 median scaling curve has

approximate slopes of .6, .92, and .83 on the three examples, while on Stampede the

slopes up to P = 16 are approximately .5, .8, and .73. For pHCM4 on Octopus,

the slopes are approximately .33, .73, and .67 (making pHCM4 very competitive on

Octopus), while on Stampede the slopes up to P = 16 are only .27, .43, and .43. The

scaling for DFSM not only improves on Octopus, but the slope of the scaling curve

appears to be higher when the number of threads exceeds 8.
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Figure 3.10: “Octopus” testing (subsection 3.4.5). Top row: performance of serial methods for
different M ; compare with Figure 3.3. Two bottom rows: scaling and performance for pHCM at
M = 3203; compare with Figure 3.4.
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3.4.6 Additional examples: checkerboard speed functions

We consider two additional examples with periodic piecewise constant speed func-

tions, which generalize the 2D checkerboard test problems of [16, 17]. These exam-

ples arise in the numerical computation of effective Hamiltonians in highly oscillatory

problems; see also [48]. The goal is to determine the homogenized speed profile,

i.e., the shape of the set of points that can be reached in a fixed amount of time when

the number of checkers per domain side K goes to +∞. Thus, each level set of the

value function is simply the homogenized speed profile with perturbations of size 1/K

superimposed on it.

Figure 3.11 has been obtained by taking K = 11 and m = 1/h = 2563. Since we

are interested in levels sets that are farther away from the origin, the rightmost plot

is the most meaningful. It is also insightful to look at a larger checkerboard, such as

Figure 3.11: Some level sets of the value function of the 3D checkerboard example with K = 11

Figure 3.12 with K = 41. If one were to conjecture the homogenized speed profile

Figure 3.12: Some level sets of the value function of the 3D checkerboard example with K = 41. The speed ratio

for these is 5:1, not 2:1.

based on Figure 3.12, it might be a truncated octahedron (see Figure 3.13). However,

Figure 3.12 can be misleading because the number of gridpoints per checker side is on
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Figure 3.13: A truncated octahedron (from Wikipedia).

average only about 6 (versus 23 when K = 11), which produces numerical artifacts.

A more careful analytical evaluation suggests that the homogenized speed profile is

the convex hull of three circles with centers at the origin but each lying in a different

coordinate plane (illustrated in Figure 3.14), which is closer to the rightmost level set

of Figure 3.11. Note that while the pictures in Figure 3.12 have more checkers, the

Figure 3.14: The convex hull of three circles (from Alex Vladimirsky).

ones in Figure 3.11 have more gridpoints per checker.
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Figure 3.15: 3D Checkerboard example with K = 41 (subsection 3.4.6).
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Figure 3.16: 3D Checkerboard example withK = 11 (subsection 3.4.6). Chart A is a comparison of
serial methods for different M ; compare with Figure 3.3. Scaling/performance for parallel methods
with M = 3523 is shown in charts B and D; compare with Figure 3.4. Parallel overhead and
additional work with M = 3523 are shown in charts E and F ; compare with Figure 3.6. The same
information for a coarser grid with M = 883 is shown in charts C and G− I.

Suppose that the unit cube Ω is split into K3 smaller cubes (or “3D checkers”) of
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edge length 1/K. Suppose these smaller cubes are divided into two types (“black”

and “white”) so that no two cubes of the same type have a face in common. The

speed function F is defined to be 2 on black cubes and 1 on white cubes2. The exit

set Q again consists of a single point in the center of Ω and, given the even number

of gridpoints, the set Q′ consists of 8 gridpoints.

We conducted experiments on two different 3D checkerboards, with K = 11 and

K = 41. The respective performance/scaling results are summarized in Figures 3.16

and 3.15. As observed in [16], HCM performs very well on problems where the

discontinuities of the speed function align with cell boundaries. The scaling trends

for K = 11 are most similar to those observed in Example 2, where the speed function

is also highly oscillatory. For K = 41, the speedup for pHCM4 is surprisingly large

and stable.

2We can also take F = 2 on the boundary of the cubes. Computationally, the issue does not
arise since our gridsizes are selected to ensure that each gridpoint is in the interior of either black
or white cube.
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3.4.7 Additional examples: maze speed functions

Suppose the domain contains four concentric spherical “barriers” of thickness t that

have openings on alternating sides. Specifically, Ω = [−1, 1]3, Q = {0, 0, 0}, and

F = 1 outside the set of (slowly permeable) barriers and .001 inside, with the barriers

described as follows:

A1 = {x|.3 < |x| < .3 + t}\
(
{x2 + y2 < w} ∩ {z < 0}

)
A2 = {x|.5 < |x| < .5 + t}\

(
{x2 + y2 < w} ∩ {z > 0}

)
A3 = {x|.7 < |x| < .7 + t}\

(
{x2 + y2 < w} ∩ {z < 0}

)
A4 = {x|.9 < |x| < .9 + t}\

(
{x2 + y2 < w} ∩ {z > 0}

)

where t = 1/12 and w = 1/10. This is a modified version of an example from

[26], where the barriers considered were impermeable (i.e., with F = 0). Unlike

the checkerboard examples, here the discontinuities of the speed function do not

align with the cell boundaries in any special way. In that sense, this problem is also

analogous to the second “comb maze” example from section 2.4.

.

Figure 3.17: A cross section of the speed function for the Permeable Shell Maze example. F = .001

in the barriers (black) and F = 1 outside.

First, Figure 3.19A shows HCMr is very effective for each r. One of the drawbacks

of the original version of HCM [16] was precisely the slow convergence on problems

of this type. The greatly improved performance shown here is due to the use of the
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Figure 3.18: Some level sets of the value function of the Permeable Shell Maze

new cell value heuristic (equation (3.1)).

The pHCM’s speedup (Fig. 3.19 B), on the other hand, is significantly lower

here (while for DFSM the speedup here is still typical). We believe this is due to

certain level sets of the value function getting “pinched” at the locations where there

is a hole in one of the barriers. If the ordering of non-barrier cells is strictly causal,

this means that, at several stages of the algorithm, there is only one cell upon which

all still-to-be-computed cells depend. (For example, since w = .1, in pHCM16 at

most one cell will fit through the hole in each barrier.) Furthermore, as mentioned in

section 3.4.2, pHCM sees an increase in work over HCM for problems with a strictly

causal cell ordering. However, due to the large-enough advantage that HCM holds

over other serial methods, the performance of pHCM is still significantly better than

that of DFSM/DLSM; see Fig. 3.19 C.
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Figure 3.19: Permeable Shell Maze example: serial M -scaling comparison (A), parallel scaling at
M = 3203 (B), and comparison of all methods at M = 3203 (C).
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3.4.8 Other cell values

Interestingly, pHCM seems less influenced by the particular choice of cell value heuris-

tic than the serial HCM. As noted in section 3.4.2, if the cell value is a very good

predictor of information flow, pHCM will usually see an increase in the total amount

of work by not being able to process cells exactly in their causal ordering. However,

pHCM can also partially mitigate the effect of poor cell values; instead of the cell with

the lowest value always being processed, we can think of pHCM as simultaneously

processing cells in the lowest range of values. If it is always the case that the true

“most upwind” cell has a value in that range, then pHCM will need fewer heap re-

movals than HCM. Furthermore, neighboring cells that are simultaneously processed

may be able to resolve their interdependencies, which would also reduce the total

number of heap removals and the number of sweeps per cell (see Figure 3.21A).

We have tested both HCM and pHCM with several other cell value heuristics,

including the one from the section 2.2.2. We rewrite it here for convenience in Figure

3.20 and equation (3.2), supposing A and B are two adjacent cells, with A currently

processed. As before, we define Anew ⊂ N(B)
∩

A as the set of newly updated

inflowing gridpoints of A along the relevant cell border (colored in blue in Figure

3.20).

..

A

.

B

.

V ∗
j

. yB

Figure 3.20: When cell A tags B as downwind, the value computed for B is an approximation to

the value of a point along a center axis of B; see equation (3.2).
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Vmax ← max
i∈Anew

V (xi) D ← hc + h

2

Ṽ c(B)← Vmax +
D

F (y)

V c(B)← min(V c(B), Ṽ c(B))

(3.2)

See Figure 3.20 for a geometric interpretation. For consistency with [16], we tested

this heuristic without resetting cell values to +∞ each time a cell is processed (see

line 5 of Algorithm 7 and line 11 in Algorithm 10). We observed that

• For serial methods, formula (3.1) results in better performance than formula

(3.2) if r is large.

• For smaller r the median raw time and scaling are better when using (3.2).

• For parallel methods, (3.2) leads to improved scaling for larger cells. E.g.,

Figure 3.21A illustrates how pHCM32 performs noticeably less work (measured

in terms of AvS) than HCM32, though the raw time actually increases compared

to heuristic (3.1).

However, the main motivation for using the new cell heuristic (3.1) is that formula

(2.2) leads to very bad performance on problems where discontinuities in the speed

function are not aligned with cell boundaries. E.g., for the example of subsection

3.4.7 with M = 643, HCM8 yields 20.4 average sweeps per cell with formula (3.1)

compared to 8366 average sweeps per cell with formula (3.2). Further evidence is

demonstrated by re-running the 2D comb maze examples from the previous chapter

using the original and improved cell values.
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• The performance comparison on Stampede versus that on the older machine is

qualitatively similar.

• Unlike before, FHCM and HCM perform very well on the 8-wall comb maze

(where the discontinuities of the maze are misaligned with the cell boundaries)

using the new cell value (3.1).

• As before, FHCM and HCM still perform very well on the 4-wall comb maze

(where the discontinuities of the maze align with the cell boundaries) using the

new cell value.
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Figure 3.21: An example of pHCM performing less work than HCM for the cell value given by
equation (3.2) on example 3. Compare with Figures 3.4C, 3.4F and 3.6F, and note the difference in
scaling in pHCM32.
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Table 3.7: Performance/convergence results for a 4 wall comb maze example using the original

cell value (3.2) (tested on Stampede).

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 5.9449e-02 1.4210e-02 0.57 0.46 0.19 12

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 0.12 1.151 3.971

HCM 44× 44 cells 0.11 1.078 3.724

HCM 88× 88 cells 0.12 1.042 3.598

HCM 176× 176 cells 0.12 1.019 3.516

HCM 352× 352 cells 0.14 1.010 3.482

HCM 704× 704 cells 0.24 1.003 3.454

FHCM 22× 22 cells 0.08 1.0460 1.0000 1.0000 1.151 1.618 85.5

FHCM 44× 44 cells 0.08 1.0191 1.0000 1.0000 1.078 1.310 92.6

FHCM 88× 88 cells 0.08 1.0085 1.0000 1.0000 1.042 1.160 96.1

FHCM 176× 176 cells 0.08 1.0073 1.0000 1.0000 1.019 1.078 98.3

FHCM 352× 352 cells 0.10 1.0002 1.0000 1.0000 1.010 1.042 99.3

FHCM 704× 704 cells 0.20 1.0000 1.0000 1.0000 1.003 1.017 100.0

FMSM 22× 22 cells 0.06 1.1659 1.0000 1.0000 1.436

FMSM 44× 44 cells 0.05 1.0706 1.0000 1.0018 1.218

FMSM 88× 88 cells 0.04 1.0821 1.0000 1.0018 1.110

FMSM 176× 176 cells 0.05 1.0468 1.0000 1.0008 1.055

FMSM 352× 352 cells 0.07 1.0378 1.0000 1.0004 1.028

FMSM 704× 704 cells 0.16 1.0064 1.0000 1.0001 1.014
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Table 3.8: Performance/convergence results for a 4 wall comb maze example using the improved

cell value (3.1) (tested on Stampede).

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 5.9449e-02 1.4210e-02 0.30 0.41 0.19 12

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 0.11 1.167 3.996

HCM 44× 44 cells 0.12 1.086 3.742

HCM 88× 88 cells 0.12 1.043 3.600

HCM 176× 176 cells 0.12 1.019 3.517

HCM 352× 352 cells 0.13 1.008 3.476

HCM 704× 704 cells 0.21 1.003 3.454

FHCM 22× 22 cells 0.08 1.0000 1.0000 1.0000 1.167 1.626 85.7

FHCM 44× 44 cells 0.09 1.0129 1.0000 1.0000 1.086 1.319 92.6

FHCM 88× 88 cells 0.09 1.0130 1.0000 1.0000 1.043 1.159 96.1

FHCM 176× 176 cells 0.08 1.0021 1.0000 1.0000 1.019 1.078 98.3

FHCM 352× 352 cells 0.09 1.0020 1.0000 1.0000 1.008 1.038 99.3

FHCM 704× 704 cells 0.18 1.0000 1.0000 1.0000 1.003 1.017 100.0

FMSM 22× 22 cells 0.05 1.1659 1.0000 1.0000 1.436

FMSM 44× 44 cells 0.05 1.0706 1.0000 1.0018 1.218

FMSM 88× 88 cells 0.05 1.0821 1.0000 1.0018 1.110

FMSM 176× 176 cells 0.05 1.0468 1.0000 1.0008 1.055

FMSM 352× 352 cells 0.06 1.0378 1.0000 1.0004 1.028

FMSM 704× 704 cells 0.15 1.0064 1.0000 1.0001 1.014
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Table 3.9: Performance/convergence results for an 8 wall comb maze example using the original

cell value (3.2) (tested on Stampede).

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 6.5644e-02 1.6865e-02 0.45 1.04 0.34 20

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 0.25 2.866 9.461

HCM 44× 44 cells 0.68 6.995 22.852

HCM 88× 88 cells 1.18 12.541 41.085

HCM 176× 176 cells 0.63 5.669 18.949

HCM 352× 352 cells 0.33 2.466 8.350

HCM 704× 704 cells 0.24 1.027 3.560

FHCM 22× 22 cells 0.21 1.4247 1.0000 1.0000 2.930 3.779 89.8

FHCM 44× 44 cells 0.50 1.2133 1.0000 1.0000 7.092 7.814 96.1

FHCM 88× 88 cells 0.83 1.0634 1.0000 1.0000 12.742 13.107 98.9

FHCM 176× 176 cells 0.42 1.1962 1.0000 1.0000 5.737 5.891 99.1

FHCM 352× 352 cells 0.24 1.0095 1.0000 1.0000 2.476 2.552 99.1

FHCM 704× 704 cells 0.22 1.0000 1.0000 1.0000 1.027 1.056 100.0

FMSM 22× 22 cells 0.08 604.49 5.0344 35.126 1.783

FMSM 44× 44 cells 0.06 228.29 3.1529 19.442 1.385

FMSM 88× 88 cells 0.06 313.01 2.7666 6.4608 1.195

FMSM 176× 176 cells 0.06 381.98 1.7374 5.5944 1.097

FMSM 352× 352 cells 0.07 45.397 1.1718 2.0506 1.049

FMSM 704× 704 cells 0.18 23.303 1.1738 1.3536 1.024
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Table 3.10: Performance/convergence results for an 8 wall comb maze example using the im-

proved cell value (3.1) (tested on Stampede).

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 6.5644e-02 1.6865e-02 0.31 0.84 0.32 20

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22× 22 cells 0.12 1.333 4.713

HCM 44× 44 cells 0.12 1.162 4.050

HCM 88× 88 cells 0.12 1.078 3.756

HCM 176× 176 cells 0.12 1.037 3.610

HCM 352× 352 cells 0.13 1.015 3.533

HCM 704× 704 cells 0.21 1.005 3.494

FHCM 22× 22 cells 0.09 1.4253 1.0000 1.0000 1.349 2.260 75.3

FHCM 44× 44 cells 0.10 1.4253 1.0000 1.0000 1.169 1.761 80.2

FHCM 88× 88 cells 0.08 1.4253 1.0000 1.0000 1.080 1.390 89.6

FHCM 176× 176 cells 0.08 1.2636 1.0000 1.0000 1.038 1.187 95.2

FHCM 352× 352 cells 0.10 1.9138 1.0000 1.0000 1.016 1.087 97.9

FHCM 704× 704 cells 0.19 1.5700 1.0000 1.0000 1.005 1.034 100.0

FMSM 22× 22 cells 0.08 604.49 5.0344 35.126 1.783

FMSM 44× 44 cells 0.06 228.29 3.1529 19.442 1.385

FMSM 88× 88 cells 0.05 313.01 2.7666 6.4608 1.195

FMSM 176× 176 cells 0.06 381.98 1.7374 5.5944 1.097

FMSM 352× 352 cells 0.07 45.397 1.1718 2.0506 1.049

FMSM 704× 704 cells 0.16 23.303 1.1738 1.3536 1.024

Tables 3.7 – 3.10 provide additional evidence that

• HCM and FHCM with the improved cell value do no worse than when using

original cell value in 2D on problems where the discontinuities of the speed

function align with the cell boundaries

• HCM and FHCM with improved cell value perform significantly better in 2D

on problems where the discontinuities of the speed function do not align with

the cell boundaries.
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3.4.9 An application from geophysics

A common application of the Eikonal equation is to solve inverse problems from

geophysics; that is, given the traveltimes of waves at certain locations, what is the

speed function? Tackling this problem requires a fast forward solver. Here we apply

HCM/pHCM to a 3D model commonly used for benchmarking methods used in seis-

mic imaging. This model was produced by the Society of Exploration Geophysicists

(SEG) and the European Association of Geoscientists and Engineers (EAGE). We

note that it is a common benchmark beyond Eikonal solvers, but here we compare

only the same methods described in the rest of this chapter.

Some of the difficulties with the SEG/EAGE salt model are:

• large dataset- 208× 672× 672 = 93929472 ≈ 108 gridpoints

• actual data without subsampling or smoothing

• irregularly-shaped discontinuities on several different scales

Figure 3.22 shows some level sets of F for this problem. The main feature is that

there is an irregularly-shaped salt pocket in the center of the domain where the speed

is approximately 4 times faster than on the rest of the domain.

Figure 3.22: Various level sets of the speed function of the SEG/ EAGE salt model

111



Table 3.11: Timing data for serial methods with Q as a single point in the center of
the salt pocket and as a corner of the domain outside the salt.

FMM LSM LSM early HCM8 HCM16

Center 142 260 152 23.2 26.8

Corner 125 718 204 16.6 22.2

Table 3.12: Timing data for the parallel methods with P = 16 and Q as a single point
in the center of the salt pocket and as a corner of the domain outside the salt.

DFSM DFSM early DLSM DLSM early pHCM8 pHCM16

Center 126 29.2 69.0 32.7 1.55 1.70

Corner 271 31.4 174 36.6 1.26 1.73

HCM does very well, and the pHCM scaling is nearly ideal. The performance

of pHCM8 compared to the other methods is 90-99 times faster than FMM and 98-

162 times faster than LSM with an early sweep termination threshold of κ = 10−8

(HCM/pHCM still used κ = 0).
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CHAPTER 4

ERROR ANALYSIS OF APPROXIMATE METHODS FOR

ADVECTION EQUATIONS WITH CONSTANT COEFFICIENTS

Until now we were considering the Eikonal equation discretized on grid X over the

domain Ω̄. The viscosity solution u corresponded to the min time for reaching Q ⊂ ∂Ω

from x, where the minimization was performed over all Ω̄-constrained trajectories.

On the numerical level, the grid function U was computed by specifying the boundary

conditions on Q ∩X and solving the discrete system

(
max

(
D−x

ij U, −D+x
ij U, 0

))2
+

(
max

(
D−y

ij U, −D+y
ij U, 0

))2
=

1

F 2
ij

(4.1)

on X\Q. To interpret (4.1) on X ∩ (∂Ω\Q), the missing gridpoints outside of Ω̄, were

assumed to have the values of U = +∞ as boundary conditions.

Several other numerical methods for the Eikonal PDE [20, 15] rely on solving

(4.1) on a subset of the grid X̂ ⊂ X also containing Q ∩ X. We will call that

numerical solution Û . For a specific gridpoint S ∈ X̂, X̂ generally does not contain

the entire dependency graph G(S) (defined in section 1.3 and reintroduced section

4.1). As a result, Û is typically larger than U , and deriving estimates and/or bounds

on Û(S) − U(S) is an important practical question, particularly if considered under

grid refinement as h→ 0. See section 4.6 and the Figures 4.15 and 4.16 for examples.

A related and slightly more general question is the effect of specifying addi-

tional/artificial boundary conditions qi for all xi in the set Ξ = {x ∈ X\X̂|N(x) ∩

X̂ ̸= ∅}. We will use Ū to refer to the latter numerical solution on X̂ (implicitly

dependent on the particular qi’s chosen on Ξ.) The monotonicity of (4.1) ensures

that Ū ≥ U on X̂ as long as qi ≥ Ui for all xi ∈ Ξ. Similarly, Û ≥ Ū on X̂, with the

equality guaranteed if we choose all qi = +∞.
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It is easy to show the maximum principle: |Ū − U | on X̂ is bounded by its

maximum value on Ξ. However, sharper upper bounds suitable for studying the

behavior as h → 0 remain a challenge for the general Eikonal case. In this chapter

we study these issues for the (time-implicit) upwind discretization of a much simpler

linear advection-reaction PDE with constant coefficients.

wt + awx = b (x, t) ∈ (0,∞)2

w = q x = 0 or t = 0

(4.2)

To mimic the Eikonal equations with a similar characteristic structure, we choose

the constants a =
β

1− β
and b =

√
1 + (

β

1− β
)2

F
for 0 < β < 1 and F > 0.

An asymptotic estimate for |Ŵ −W | is derived in sections 4.2 and 4.3, and an

upper bound is proven for a specific X̂ in section 4.4. We then discuss connections

between the Eikonal and advection in section 4.5 and numerical methods that solve

(4.1) on X̂ in section 4.6.

4.1 Discretization, dependency digraph, and sensitivities

We make the time axis vertical and the space axis horizontal. We take ∆t = ∆x = h

and denote x = (x, t). We denote the value of a gridpoint xn
i = (ih, nh) as W n

i ,

or simply W where not ambiguous. We denote the horizontal and vertical upwind

neighbors as xH = xn
i−1 and xV = xn−1

i , with values WH and WV respectively. Since

the goal is to mimic the upwind discretization of the Eikonal PDE, we use a time-

implicit upwind discretization as in [66] instead of usual upwind finite differences for

advection equations:
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W −WV

∆t
+

β(W −WH)

(1− β)∆x
=

√
1 + (

β

1− β
)2

F

Thus, the numerical update at a gridpoint is:

W n
i = H(WH ,WV ) =

 βWH + (1− β)WV + h

√
β2 + (1− β)2

F
x ∈ X\Q

qni x ∈ Q

(4.3)

where Q = {x = 0} ∪ {t = 0}.

We emphasize that all analysis from this section up through section 4.4 is only

for the advection PDE with constant coefficients (4.2). In future work we intend to

use our analysis of (4.3) as motivation for studying similar questions for the upwind

scheme for Eikonal equations. More details about the connection between the two

schemes are given in section 4.5.

Suppose system (4.3) has been solved. Because of the special structure of (4.3) (in

particular that 0 < β < 1), each interior xi depended on exactly two of its neighboring

gridpoints (the one to the south and the one to the west). As in sections 1.3 and

2.2, the dependency digraph G is defined as the graph containing vertices x1, . . . ,xM

and directed edges from xi to xj indicating that Wj was needed to compute Wi. We

refer to G(x) as the subgraph of G containing only the computational domain of

dependence of the gridpoint x. The dependency graph of a gridpoint S is illustrated

in Figure 4.1.

Let W̄ (S) be the solution of (4.3) on a new domain X̂ ⊂ X with additional
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S

.

xn
i = S

.

xn
i−1

.

xn−1
i

.

xn
i−2

.

xn−1
i−1

.

xn−2
i

.

xn−1
i−2

.

xn−2
i−1

Figure 4.1: Since the update of each gridpoint comes from the southwest quadrant, the dependency
digraph of S is a rotation of the grid. Characteristics are drawn in red and boundary conditions are
drawn in black.

boundary conditions specified in a set Ξ. Suppose X̂ is the same as X but with the

single additional boundary condition Ξ = {xH}. Since H is a linear function of the

neighboring values, it is clear that if qH = WH + ϵ, then W̄ = W +
∂H
∂qH

ϵ = W + βϵ.

Similarly, if Ξ = {xV } and qV = WV + ϵ, then W̄ = W + (1− β)ϵ.

To begin analyzing the sensitivity of W (S) to a change in a value farther down

G(S), it will be convenient to relabel gridpoints based on their location within G(S),

with S relabeled as x0
0. In this setting, (x, t)→ (y, s), with the new time axis pointing

towards the southwest and the new space axis pointing towards the southeast:

..x .

t

.=⇒.
s

.
y

We refer to a gridpoint’s “level” (superscript ν) as half the number of transitions

it is away from S. These dependency graph coordinates are illustrated in Figure 4.2.

W (S) can be written as a function of the values on a given level (written in
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S

.

ν = 0

.

x0
0 = S

.

ν = 1/2

.

x
1/2
−1/2

.

x
1/2
1/2

. ν = 1.

x1
−1

.

x1
0

. ν = 3/2.

ν = 2

Figure 4.2: Same as Figure 4.1 but with gridpoints rewritten in their G(S)-coordinates.

dependency graph coordinates):

W (S) = H(W 1/2
−1/2,W

1/2
1/2 )

= H(H(W 1
−1,W

1
0 ),H(W 1

0 ,W
1
1 ))

= H(H(H(W 3/2
−3/2,W

3/2
−1/2),H(W

3/2
−1/2,W

3/2
1/2 )),H(H(W

3/2
−1/2,W

3/2
1/2 ),H(W

3/2
1/2 ,W

3/2
3/2 )))

= ...

(4.4)

If Ξ = {xν
ι } and qνι = W ν

ι + ϵ, then W̄ (S) = W (S) +
∂W (S)

∂qνι
ϵ by the lin-

earity of H. We thus define αν
ι :=

∂W (S)

∂qνι
, the sensitivity of W (S) to a change

in W (xν
ι ). (The α values are defined at all gridpoints in X ∪ Q.) For example,

α1
1 =

∂

∂W 1
1

H(H(W 1
−1,W

1
0 ),H(W 1

0 ,W
1
1 )).

Since
∂H

∂WH

= β and
∂H

∂WV

= 1− β, by the chain rule a simple recursive formula

for α can be derived in terms of the local β-dependencies.

α
ν+1/2
ι−1/2 = βαν

ι + (1− β)αν
ι−1

α
ν+1/2
ι+1/2 = βαν

ι+1 + (1− β)αν
ι

αν+1
ι = βα

ν+1/2
ι+1/2 + (1− β)α

ν+1/2
ι−1/2

(4.5)
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αν+1
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.
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.
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ν+1/2
ι+1/2

.
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ι−1/2
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.

+

.

β

.

1− β

.

β

.

+

.

αν
ι

.

αν
ι+1

.

αν
ι−1

Figure 4.3: Schematic illustrating equation (4.5).

Equation (4.5) can also be written in single-step form:

αν+1
ι = β2αν

ι+1 + 2β(1− β)αν
ι + (1− β)2αν

ι−1 (4.6)

Now, things get interesting when equation (4.6) is considered as an evolution

equation for αν , the set of α’s on the νth dependency level. In other words,

αν = Aαν−1 =
ν∏

j=1

Aα0

where A is the (tridiagonal) matrix representing (4.6), and α0 is a unit vector

(since
∂W 0

0

∂q00
= 1). See Figure 4.4 for an illustration.

4.2 An asymptotic estimate for α

In this section we derive a PDE that approximates the behavior of (4.6) by using a

technique similar to “modified equations” [47] for backward error analysis of numerical

methods.
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.
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Figure 4.4: Left: evolution of αν for β = 1/2. Right: evolution of αν for β = 1/3.

Theorem 9. Equation (4.6) approximates up to O(h2) the PDE

α̃s = (2β − 1)α̃y + h
√
2(β(1− β))α̃yy

0 < s <∞

−∞ < y <∞

(4.7)

with refinement path ∆s = ∆y = h
√
2.

Before proving the theorem, note that it illustrates:

1. the stepsizes have a natural correspondence to the grid (e.g., see Figure 4.2), so

(y, s) gives a physical location on Ω.

2. the rate of advection, 1 − 2β, is constant. When β = 1/2 the advection term

vanishes, as shown in Figure 4.4.
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3. the rate of diffusion, h
√
2(β(1− β)), decreases with refinement.

Proof. Let α̃(x, t) be a smooth polynomial.

α̃ν
ι := α̃(yι, sν)

To simplify notation we will use α̃ as a short form to denote α̃ν
ι where not am-

biguous. For example,

α̃ν+1
ι = α̃(yι, sν +∆s)

= α̃ +∆sα̃s +
∆s2

2
α̃ss +O(∆s3)

Plugging in α̃(y, s) into (4.6), and Taylor expanding where appropriate:

α̃ +∆sα̃s +
∆s2

2
α̃ss +O(∆s3)

= β2(α̃+∆yα̃y +
∆y2

2
α̃yy +O(∆y3))

+ 2β(1− β)α̃

+ (1− β)2(α̃−∆yα̃y +
∆y2

2
α̃yy +O(∆y3))

Canceling the zeroth order terms and using ∆s = ∆y = h
√
2,

α̃s +
h
√
2

2
α̃ss +O(h2)

= β2(α̃y +
h
√
2

2
α̃yy +O(h2)) + (1− β)2(−α̃y +

h
√
2

2
α̃yy +O(h2))

= (2β − 1)α̃y + (β2 + (1− β)2)
h
√
2

2
α̃yy +O(h2)
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α̃s = −
h
√
2

2
α̃ss + (2β − 1)α̃y + (β2 + (1− β)2)

h
√
2

2
α̃yy +O(h2) (4.8)

The term α̃ss can be thought of as the time derivative of the right hand side of

equation (4.8):

α̃ss = −
h
√
2

2
α̃sss + (2β − 1)α̃ys + (β2 + (1− β)2)

h
√
2

2
α̃yys +O(h2)

= (2β − 1)α̃sy +O(h)

= (2β − 1)(−h
√
2

2
α̃ssy + (2β − 1)α̃yy + (β2 + (1− β)2)

h
√
2

2
α̃yyy) +O(h)

= (2β − 1)2α̃yy +O(h)

So equation (4.8) becomes:

α̃s = −
h
√
2

2
(2β − 1)2α̃yy + (2β − 1)α̃y + (β2 + (1− β)2)

h
√
2

2
α̃yy +O(h2)

= (2β − 1)α̃y +
h
√
2

2
(β2 + (1− β)2 − (2β − 1)2)α̃yy +O(h2)

= (2β − 1)α̃y + h
√
2(β(1− β))α̃yy +O(h2)

Comparison with the analytical solution: It is well-known (e.g., [29]) that

the solution of a linear advection-diffusion PDE with constant coefficients α̃s+aα̃y =

ϵα̃yy on the whole line with α̃(y, 0) = δ(y) (the Dirac delta function) is:
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α̃(y, s) =
1√
4πϵs

exp(−(y − as)2

4ϵs
) (4.9)

However, the initial condition corresponding to equation (4.6) is not actually

α̃(y, 0) = δ(y); Figure 4.4 shows that

∫ ∞

−∞
α̃(y, 0) dx = h

√
2

instead of 1, resulting in a factor of h
√
2 in the solution of PDE (4.7):

α̃(y, s) =

√
2h√

4πs
√
2(β(1− β))

exp

(
− (y − (1− 2β)s)2

4h
√
2(β(1− β))s

)
(4.10)

The h in the denominator of the exponent is the reason for the α value of a

fixed physical location away from the optimal path decaying exponentially under

refinement. Furthermore, for fixed h and y, α̃ decreases in y monotonically to 0. As

for the factor in front of the exponent, the
√
h in the numerator means that even for

y = (1 − 2β)s (i.e., (y, s) on the characteristic going through S), α̃(y, s) goes to 0

under refinement, though the rate is much slower than for y ̸= (1 − 2β)s. Figures

4.5 and 4.6 show a comparison between the analytical solution (4.7) and the “true”

α evolution (4.6) for β = 1/2 and β = 1/3 at a fixed physical time s =
√
2/2.

Note that the variance of each Gaussian is h-dependent and the drift is β depen-

dent and h-independent. Observe also that the limiting PDE as h ↓ 0 of (4.7) is an

advection equation, with information traveling only along the characteristic direction.
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Figure 4.5: Comparison between the analytical approximation α̃(·, s) (eq. (4.7)) and the true αν

evolution at time s =
√
2/2 for different h, and β ≡ 1/2. The table shows the order of approximation

for different h.
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evolution at time s =
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4.3 Using α to bound E(S)

As stated earlier, solving system (4.3) on a new domain X̂ ⊂ X with additional

boundary conditions qi ̸= Wi in a set Ξ can result in a nonzero error E(S) = W̄ (S)−

W (S). Suppose α is known ∀x ∈ X. In this section we will show how the α can be

used to bound E(S).
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In [20], we used a different interpretation of α from what has been presented here.

Suppose there is a random walk on G(S) starting from S with local probabilities of

transition given by β (to move to the western neighbor) and 1 − β (to move to the

southern neighbor). Then αi can be interpreted as the probability of passing through

node xi on the way to the boundary. The random walk ends when the boundary is

reached. As an aside, when the cost per transition is h

√
β2 + (1− β)2

F
(from (4.3))

and a price of qni is paid when the boundary node xn
i is reached, the value W (S) can

be interpreted as the expected total cost of the random walk.

We denote

• Ξ = {x ∈ X\X̂|N(x) ∩ X̂ ̸= ∅}: the set with additional boundary conditions

specified: qi = Wi + ϵi for each xi ∈ Ξ.

• Ĝ(S): the dependency digraph of S on X̂ ∪ Ξ.

• α̂i: the sensitivity of W̄ (S) to a change in value at xi ∈ X̂ ∪ Ξ; i.e., the

probability of passing through xi under the random walk starting from S on X̂.

• W̄
ν
: the set of non-boundary values on level ν (computed from (4.3) on X̂).

Additional boundary conditions generally cause changes to the dependency struc-

ture of S; Figure 4.7 shows an example. Despite differences between G(S) and Ĝ(S),

note that if ϵi = 0 ∀xi ∈ Ξ, then W̄ (S) = W (S). One trivial example is if the upwind

neighbors of S were both in Ξ, then no other gridpoint’s value (W̄ ν
ι for ν ≥ 1) would

influence the computation of W (S). When extra boundary conditions are placed on

a level ν∗, say, the influence on W̄ (S) of values at levels ν > ν∗ decreases due to W̄
ν

no longer influencing qν
∗

ι . In the stochastic interpretation, α̂i ≤ αi due to a possible

earlier transition into Ξ (at which point the random walk ends).

In section 4.1 we were able to expand W (S) as a function of values on a given
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Figure 4.7: An example X̂ with relevant boundary conditions circled in black and dependency

links drawn in blue.

dependency level (equation (4.4)). For W̄ , since Ĝ(S) is different from G(S), an

expansion in values on some level νj must include all qνι for ν < νj. We will denote

this expansion as H̄νj(q
ν1 , ..., qνj ; W̄

νj) = W̄ (S), where qν is the set of boundary

conditions on level ν.

W̄ (S) can also be expanded as a function of boundary values only:

W̄ (S) = H̄ν1(q
ν1 ; W̄

ν1)

= H̄νj(q
ν1 , ..., qνj ; W̄

νj)

= H̄νf (q
ν1 , ..., qνj , ..., qνf )

where νf is the final level of Ĝ(S). Since H̄νj is still linear and qi = Wi + ϵi for

xi ∈ Ξ ∪Q,

125



E(S) = W̄ (S)−W (S)

= H̄νj(q
ν1 , ..., qνj ; W̄

νj)−W (S)

= H̄νf (q
ν1 , ..., qνj , ..., qνf )−W (S)

= H̄νf (W
ν1 , ...,W νj , ...,W νf ) +

∑
xi∈Ξ∪Q

α̂iϵi −W (S)

=
∑

xi∈Ξ∪Q

α̂iϵi

≤
∑

xi∈Ξ∪Q

αiϵi

4.4 A rigorous bound for a particular boundary value per-

turbation

In this section we provide a rigorous upper bound on E(xn
i ) for a particular X̂ =

{X\xn
0}, with Ξ = {xn

0} replacing the existing left boundary conditions. We assume

that En
0 < C ∀n. At the end of the section we compare these bounds against the

exact error and an estimate that uses α̃.

The characteristics of the PDE (4.2) are of course straight parallel lines with slope

(1− β)/β. W̄ only converges to the correct solution w(x, t) in the region beyond the

sector {x ≤ ( β
1−β

)t}, as pictured in Fig. 4.8. I.e., W̄ will converge only at x whose

characteristics reach t = 0, avoiding the perturbed boundary conditions. Our goal is

to show that for (x∗, t∗) outside this sector, the error decreases exponentially under

refinement, and that the rate of convergence improves the smaller β is.

While the error equation clearly satisfies a recursive relationship (En
i = βEn

i−1 +

(1 − β)En−1
i ), an explicit error formula is readily available by again considering a
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Figure 4.8: Left: characteristics of the solution of equation (4.2) on the original domain X. Right:

W̄ converges to the correct solution only in the red shaded region.

random walk starting from xn
i . Each step of this walk is a Bernoulli trial, with β

being the probability of moving left, 1− β the probability of moving down, and αk
j is

the probability of passing through xk
j on the way to the boundary. As described in

section 4.3, by the linearity of H, the α’s also give an explicit error formula:

En
i =

n∑
j=1

Ej
0α

j
0 ≤ C

n∑
j=1

αj
0,

where C = maxj{Ej
0}. The sum

∑n
j=1 α

j
0 is the probability of reaching the left edge.

Now, consider the probability of reaching or passing through the left edge in ex-

actly N = i+n−1 steps. In other words, the random walk is now allowed to continue

beyond the domain after one of the boundaries is reached, as in Figure 4.9. This is

equivalent to the probability of reaching the left edge under the α-random walk,

because exactly one of the two edges is guaranteed to be reached in N steps. Fur-

thermore, once the walk reaches the left edge, there is no possibility of moving to the

line t = 0 in the remaining steps. If Y denotes this random variable, the probability

of moving j steps to the left in N trials is given by PrN,β(Y = j) = βj(1−β)N−j
(
N
j

)
1.

1We note as an aside that this formulation is exactly the “problem of points” [50] discussed by
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probability of landing on one of the circled nodes is

N∑
j=1

αj
0. The characteristic through S is drawn

in red.

The probability of passing through or terminating on the left boundary is then

PrN,β(Y ≥ i) =
N∑
j=i

βj(1− β)N−j

(
N

j

)
,

and

En
i ≤ CPrN,β(Y ≥ i). (4.11)

We are interested in bounding PrN,β(Y ≥ i) when i ≥ nβ

1− β
, i.e., at the gridpoints

whose characteristic reaches the boundary conditions at n = 0. It will be easier to

analyze PrN+1,β(Y ≥ i), i.e., the random walk with one more step. Clearly

PrN,β(Y ≥ i) ≤ PrN+1,β(Y ≥ i).

Fermat and Pascal. The historical context was that two teams have contributed equally to a pot in
a winner-takes-all game. External circumstances then cause the game to end before either team has
reached the number of points necessary to win. If team A needed i more points to win and team B
needed n more points, how should the pot be divided fairly?
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Since Y is a binomial random variable, the mean µ is generally β(i + n). When

i =
nβ

1− β
, the mean µ is the origin, and the condition i ≥ nβ

1− β
implies i ≥ µ:

(1− β)i ≥ βn

i ≥ βi+ βn

i ≥ β(n+ i) = µ.

Hoeffding’s inequality [36] can now be used based on how far i is from µ:

PrN+1,β(Y ≥ µ+ ϵ(N + 1)) ≤ e−2ϵ2(N+1) (4.12)

for ϵ > 0. Equating PrN+1,β(Y ≥ µ+ ϵ(N + 1)) with PrN+1,β(Y ≥ i) and solving for

ϵ yields

ϵ =
x∗(1− β)− βt∗

x∗ + t∗
,

so ϵ is independent of h. Geometrically, µ+ϵN = βN+ϵN = (β+ϵ)N is the mean of

a new problem with β → β + ϵ whose characteristic goes through the origin. Figure

4.10 shows an example. Since N = i+ n− 1, the Hoeffding bound is

H(x∗, t∗, β, h) := exp (−2ϵ2(x
∗ + t∗

h
))

Figures 4.11 and 4.12 are log plots of the exact error, the upper bound H,

and an α̃-based estimate from section 4.2 (using the appropriate change of coor-

dinates). Note that α̃ is neither an underestimate nor an overestimate on α, since

both
∫∞
−∞ α̃(y, s) dy = h

√
2 and

∫∞
−∞ α(y, s) dy = h

√
2 (when α’s are thought of as

step functions in the spirit of Figure 4.4)
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Figure 4.10: The red lines are characteristics of the original problem. The value y in the rightmost
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β + ϵ replacing β (with ϵ > 0).

4.5 The connection between the advection upwind scheme

and the Eikonal upwind scheme

We first recall notation from Chapter 1 for the update function related to the scheme

(4.1). Suppose the value at a gridpoint x is U , its speed F , and the values at its

eastern, northern, western, and southern neighbors UE, UN , UW , and US respectively.

Let UH := min{UW , UE} and UV := min{UN , US}. The “two-sided update” corre-

sponding to equation (4.1) is:

(
U − UH

h

)2

+

(
U − UV

h

)2

=
1

F 2
. (4.13)

In parallel to our development for W , we write U as an explicit function of its

upwind neighboring values:
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Figure 4.11: Comparison of the various bounds/estimates under refinement for different frozen x

with β = .5, t = .1, and En
1 ≡ 1 on Ω = [0, 1]2.

U = G(UH , UV ) :=
UH + UV

2
+

1

2

√
2h2

F 2
− (UH − UV )2 (4.14)

This solution is only accepted if U ≥ max{UH , UV }. This is called the “upwind

condition.” It can be shown that

G(UH , UV ) ≥ max{UH , UV } ⇐⇒ |UH − UV | ≤
h

F

If the upwind condition fails, we instead use a “one-sided update”:

G(UH , UV ) = min{UH , UV }+
h

F

Suppose that x’s quadrant-of-update is unique and that its upwind neighbors UH
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with β = 1/3, t = .1, and En
1 ≡ 1 on Ω = [0, 1]2.
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Figure 4.13: Level sets of the update from one quadrant (equation (4.14))

and UV are replaced by boundary values qH and qV . If qH = UH and qV = UV , then

clearly G(qH , qV ) = U . But if instead we force a tiny error, qH = UH+ϵ, while holding

qV = UV , then G(qH , qV )−U ≈ ϵ
∂G
∂qH

(UH , UV ). We thus define the local dependencies

for G as we did earlier for H:
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.. x

Figure 4.14: If the characteristic passing through x leans more towards the horizontal neighbor,
β is closer to 1. If it leans more towards the vertical neighbor, β is closer to 0.


βH :=

∂G
∂qH

(UH , UV ) =
1

2
+

UV − UH

2
√

2h2

F 2 − (UV − UH)2

βV :=
∂G
∂qV

(UH , UV ) =
1

2
− UV − UH

2
√

2h2

F 2 − (UV − UH)2
.

(4.15)

It is easy to show by the monotonicity of G that

• 0 ≤ βH , βV ≤ 1

• βH + βV = 1.

This allows us to simply use β := βH and 1− β as before. Figure 4.14 illustrates

how β relates to the local characteristic direction: the optimal direction of motion is

attracted towards the smaller of {UH , UV }.

Recall that our advection equation (4.2) was defined in terms of some constant

β. If the optimal direction of motion at each gridpoint is constant, then the dis-

cretizations of the Eikonal and advection equations are equivalent; the connection is

most clearly illustrated by writing (4.14) in an alternate form (the “semi-Lagrangian”

update):

G(UH , UV ) = min
γ∈[0,1]

{
|γxH + (1− γ)xV − x|

F
+ γUH + (1− γ)UV

}
(4.16)
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It can be shown that formula (4.14) is equivalent to (4.16) (e.g., [60]). Using this

fact, a simple calculation shows that β is the minimizer of (4.16) (i.e., formula (4.14)

is recovered). Equation (4.16) shows that, as in Figure 4.14, the vector [±β,±(1−β)]

can be interpreted as the unit 1-norm scaled optimal direction of motion at x, where

the signs are determined by the direction of update. Equation (4.16) also illustrates

that once the optimal controls are known, the update at a gridpoint is linear. Note

that if β and F were constants, equation (4.16) is the same as the original upwind

scheme for the linear advection equation:

H(WH ,WV ) =
|βxH + (1− β)xV − x|

F
+ βWH + (1− β)WV

= βWH + (1− β)WV + h

√
β2 + (1− β)2

F

(4.17)

This connection makes it easy to compare U with W (and Ū with W̄ , etc). Listed

again for convenience:

• U : the solution of the original Eikonal equation (4.1) on X.

• Ū : the solution of system (4.1) with extra boundary conditions qi ≥ Ui on Ξ.

• Û : the solution of system (4.1) with extra boundary conditions qi = +∞ on Ξ.

Assuming the solution U is known everywhere, the quadrants-of-update were

unique, and the optimal policy βn
i has been computed at each xn

i by (4.15), we

can consider the following analogous linear advection schemes for solving the Eikonal

equation:

• W : the solution of (4.17) on X (with coefficients no longer constant).

• W̄ : the solution of (4.17) on X̂ with extra boundary conditions qi ≥ Ui on Ξ.

The controls βn
i may be suboptimal directions of motion when qi ̸= Ui.
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By equation (4.16), clearly W = U and W̄ ≥ Ū . Thus EU(x) := Ū(x)− U(x) ≤

EW (x) := W̄ (x)−W (x) = W̄ (x)− U(x). Our previous bounds on W held when β

was constant. These bounds would apply to Eikonal equations in very special cases

where the characteristics are straight and parallel.

Two attributes of W were crucial to derive estimates for α: 1) we needed the levels

of G(S) to be clearly defined so that we could write down an evolution equation for

α, and 2) we needed β constant to get an asymptotic analytical formula for α. In

the future it may be possible to handle variable β using concentration inequalities on

more general X̂ than the one in section 4.4.

4.6 Motivation: numerical methods that solve Eikonal equa-

tions on X̂

Several efficient methods for Eikonal equations introduced in Chapter 1 and section

and 3.1 effectively solve system (4.1) on some X̂. One is the parallel Patchy FMM

[15]. This method uses interpolated values of a coarse precomputation to create a do-

main decomposition with subdomain boundaries being approximately characteristic.

The advantage of this approach is that the resulting subdomains are approximately

invariant to each other. Thus, computations can be done on each of them with

no communication across boundaries, allowing for efficient parallelization. However,

since both the boundary values as well as the boundaries themselves are computed

using only coarse information, this additional boundary error propagates into the

interiors of the subdomains.

One application of the analysis in section 4.4 is to bound the error of Patchy FMM

on a problem with parallel characteristics pointing toward the southwest. Suppose
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Ω = {t > 0}, Q = {t = 0}, there are two processors, and one subdomain is quadrant I

and the other is quadrant II, with {x = 0} being the subdomain boundary created by

Patchy FMM. In quadrant II there will be no errors, since the domain of dependence

at each gridpoint terminates on the line t = 0, where the original boundary conditions

are specified. In quadrant I, errors will be small (as quantified by equation (4.12),

the Hoeffding bound) if x = 0 is approximately characteristic; in our terminology this

occurs when β is small.

Another efficient approximate method is the AA∗ [20] for recovering a single

optimal path from a source gridpoint S to a target gridpoint T . This method achieves

its efficiency by eliminating gridpoints from X that are far from the optimal path.

Figures 4.15 and 4.17 show examples with different AA∗-restricted domains, and

Figures 4.16 and 4.18 show the associated relative error at S.

Level sets of value function produced by FMM with AA∗.
λ = 50% λ = 75% λ = 100%
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Figure 4.15: Level sets for Ū with F ≡ 1 solved using the AA∗ domain restriction method from

[20]. λ is a domain restriction parameter. Courtesy of Zachary Clawson.

One way to approach the error analysis is to define α values for Eikonal equations

(system (4.1)) where the quadrant-of-update is unique. However, a recursive formula

like (4.6) remains unavailable except in special cases. Suppose a value Un
i is replaced

by a boundary value qni ; we define αn
i :=

∂U(S)

∂qni
. In [20] Alex Vladimirsky showed
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Figure 4.16: log10 of the relative error at S of FMM/AA∗ for the Eikonal equation with F ≡ 1 for

different domain restriction parameters and different m = # gridpoints per domain side. Courtesy

of Zachary Clawson.

Level sets of value function produced by FMM with AA∗.
λ = 50% λ = 75% λ = 100%

Figure 4.17: Level sets for Ū with F = 1 + .5 sin(20πx) sin(20πy) solved using the AA∗ method

from [20]. λ is a domain restriction parameter. Courtesy of Zachary Clawson.

that

E(S) ≤ C
∑
xi∈Ξ

αi, (4.18)

where C is an upper bound on Û(S). Since the αi are not actually available without

the solution over all of X, this is only useful if their qualitative behavior is known.

We conjecture that for the upwind Eikonal scheme with small h,

αi ≈ exp

(
−ρd(xi)

2

h

)
(4.19)
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Figure 4.18: log10 of the relative error at S of FMM/AA∗ for the Eikonal equation with F ≡
1+ .5 sin(20πx) sin(20πy) for different domain restriction parameters and different m = # gridpoints

per domain side. Courtesy of Zachary Clawson.

where d(xi) is xi’s distance to the optimal path and ρ is a positive constant. Our

preliminary numerical experiments seem to confirm (4.19); see Figure 4.19. The idea

for exponential decay of the α’s was inspired by both the analytical estimate α̃ from

section 4.2 and the Hoeffding bound derived in section 4.4.

Using this, Alex Vladimirsky proved that Û converges to U even as X̂ shrinks

under refinement:

Theorem 10. Let {Xh} be a family of Cartesian grids on Ω with grid size h = 1/(m−

1) such that both S and T are gridpoints for all m. Define X̂h = {x ∈ Xh | d(x) < r

}, where r = O(hµ), for some µ ∈ [0, 1
2
). Let Uh and Ûh be numerical solutions of the

system (4.1) on Xh and X̂h respectively. If (4.19) holds, then
(
Ûh(S)− U(S)

)
→ 0

as h→ 0.

Figures 4.16 and 4.18 show clear numerical evidence of this theorem (m is the

number of gridpoints per domain edge). They show also that for most values of λ,

E(S) decays exponentially in h (i.e., the spacing between contours is approximately
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Figure 4.19: Level sets of ln(α) on X under refinement for an Eikonal equation with F ≡ 1. Each

plot shows ln(α(.7, .2)) (chosen arbitrarily) in the lower right, which is evidence that the factor ρ in

conjecture (4.19) is independent of h.

the same).
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CHAPTER 5

CONCLUSIONS

We introduced three new efficient hybrid methods for Eikonal equations, a scalable

parallelization of one of them, and showed preliminary error analysis for methods that

introduce boundary data pollution or rely on domain restriction techniques.

For the hybrid methods, using a splitting of the domain into a number of cells,

they employ sweeping methods on individual cells with the order of cell-processing

and the direction of sweeps determined by a marching-like procedure on a coarser

scale. Such techniques may introduce additional errors to attain higher computational

efficiency. Of these new methods FMSM is generally the fastest and perhaps easiest

to implement, while FHCM introduces smaller additional errors, and HCM is usually

the slowest of the three but provably converges to exact solutions. The numerical

evidence presented in section 2.3 strongly suggests that

• when h and hc are sufficiently small, additional errors introduced by FMSM and

FHCM are negligible compared to those already present due to discretization;

• for the right (h, hc)-combinations, all three of the hybrid algorithms significantly

outperform popular prior fast methods (FMM, FSM, and LSM).

We also introduced a new parallel algorithm for the Eikonal equation based on

HCM, a fast two-scale serial solver. The numerical experiments in section 3.4 demon-

strate that pHCM achieves its best speedup on problems where the amount of work

per cell is high; this occurred when cells were sufficiently large or when the sweeping

within cells required more than a few iterations. As for performance, the combination

of HCM’s speed and pHCM’s good scalability results in a considerable advantage over

some of the best serial methods and the parallelization of FSM/LSM.

All of the examples considered here used predetermined uniform cell sizes. From
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a practitioner’s point of view, the value of the proposed methods will greatly increase

once we develop bounds and estimates for the additional errors in both FMSM and

FHCM with different (h, hc)-combinations. Similarly, for pHCM, given fixed P and

M , what value of J will result in the optimal performance? While the numerical

experiments suggest an answer, rigorously addressing it will clearly still be useful.

Estimates of the computational costs of all the hybrid methods on a given cell de-

composition would also be very useful.

The benchmarking and design of pHCM was influenced by a particular shared

memory architecture, e.g., each thread currently handles the cell-level sweeping se-

rially. An efficient hybrid GPU/multicore implementation could parallelize the in-

dividual cell processing on a GPU (e.g., as in [67]) while each CPU core would still

maintain its own heap. A possible bottleneck of this approach is the smaller number

of GPUs compared to the number of CPU cores in most current systems. Extensions

to a distributed memory architecture appear more problematic since communication

times would likely dominate the cell-processing, at least for the first-order upwind

discretization of the Eikonal considered in this thesis.

The performance analysis in section 3.4 suggests a number of possible pHCM

improvements. A smarter memory allocation can be used to increase the spatial

and temporal locality of data (particularly in higher dimensional problems). Rigor-

ous criteria for early sweeping termination would bring additional performance gains

to HCM/pHCM (as well as FSM/LSM). The methods of [26] can be substituted

in place of LSM within cells, especially for problems with large cell sizes. In the

longer term, we intend to investigate the applicability of our approach to other PDEs

and/or discretizations. Causal problems with a higher amount of work per gridpoint

are likely to result in even better pHCM scalability. These include discretizations

of anisotropic Hamilton-Jacobi equations, stochastic optimal control problems, and
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differential games. We expect this to also be the case for extensions of other parallel

Eikonal solvers (e.g., DFSM/DLSM).

For each hybrid method we intend to automate the choice of cell-sizes based on

the speed function and user specified error tolerances (and for pHCM possibly the

computer architecture), and further relax the requirement that all cells need to be

uniform. A generalization of this approach to cell-subdivision of unstructured meshes

will also be valuable. Most importantly, we hope that the hybrid ideas can serve as a

basis for causal domain decomposition and efficient two-scale methods for other static

nonlinear PDEs.

In Chapter 4 we showed that given the α-values,
∑

αiϵi bounds the error of do-

main restriction for upwind finite difference schemes for advection PDEs with constant

coefficients. In these simple cases the characteristics are straight and parallel, and

equation (4.7) estimates the α-values as the solution of a linear advection-diffusion

equation. An obviously useful next step is to generalize the α-value approach to

Eikonal equations and advection equations with variable coefficients. In the case

of variable β that does not change signs, the Hoeffding or other concentration in-

equalities (e.g., [7]) again may apply. Applying this analysis to higher-dimensional

problems or non-Cartesian grids is more challenging, since the dependency graphs of

these problems have more complicated topologies.

We also hope that a similar analysis can be useful for domain restriction techniques

of other finite difference schemes with acyclic dependency graphs. These include

explicit methods for parabolic equations, static problems for which there are single-

pass algorithms, and directed flows on graphs. We conjecture that domain restriction

is generally safer for less dissipative schemes, such as a semi-Lagrangian method for

Eikonal equations on a triangulated mesh with a bound θ∗ << 90◦ on the maximum

mesh angle.
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