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Abstract 
 

Critical need exists to implement water conservation practices in agriculture and to 

control water pollution. Agriculture consumes 80% of U.S. freshwater resources. 

  

WATER RESOURCES, AGRICULTURE, AND THE ENVIRONMENT 

 

        INTRODUCTION 

Water is essential for maintaining an adequate food supply and a quality 

environment for the human population, plants, animals, and microbes on the earth. Per 

capita food supplies (cereal grains) have been decreasing for nearly 20 years (declined 

17%), in part because of shortages of freshwater, cropland, and the concurrent increase in 

human numbers (FAO 1961-2002).  Shortages in food supplies have in part contributed to 

more than 3 billion malnourished people in the world (WHO 2004a).  Two of the most 

serious malnutrition problems include iron deficiency affecting 2 billion people and 

protein/calorie deficiencies affecting nearly 800 million people (WHO 2002; WHO 

2004b).  The iron deficiency and protein/calorie deficiency each result in about 0.8 million 

deaths each year (WHO 2002). Humans obtain all their nutrients from crops and livestock 

and these nutrient sources require water, land, and energy for production (Pimentel and 

Pimentel 2003). 

 Consider that the world population currently numbers 6.3 billion with over a 

quarter million people added each day (PRB 2003). The UN (2001) estimates that 

approximately 9.4 billion people will be present by 2050.  In addition, freshwater demand 

worldwide has been increasing exponentially as population and economies grow  
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(Hinrichsen et al. 1998; Postel, 1999; Rosencrant, et al., 2002; Shiklomanov and Rodda 

2003; UNEP 2003; Gleick 2004). Population growth, accompanied by increased water use, 

will not only severely reduce water availability per person, but stress all biodiversity in the 

entire global ecosystem (Vorosmarty et al., 2000). 

 Major factors influence water availability including rainfall, temperature, 

evaporation rates, soil quality, vegetation type, as well as water runoff.  Furthermore, 

serious difficulties already exist in fairly allocating the world’s freshwater resources 

between and within countries.  These conflicts are escalating among new industrial, 

agricultural, and urban sectors.  Overall, water shortages severely reduce biodiversity in 

both aquatic and terrestrial ecosystems, while water pollution facilitates the spread of 

serious human diseases and diminishes water quality (Postel et al., 1996; Pimentel et al., 

1997). 

 In this article, water utilization by individuals and especially agricultural systems is 

analyzed. Interrelationships exist among population growth, water use and distribution, the 

status of biodiversity, the natural environment, plus the impacts of water borne human 

diseases are reported.  

            WATER RESOURCES  

Hydrologic Cycle 

 Of the estimated 1.4 x 10 18 m 3 of water on the Earth, more than 97% is in the 

oceans (Shiklomanov and Rodda, 2003).  Approximately 35 x 1015 m3 of the Earth’s water 

is freshwater, of which about 0.3% is held in rivers, lakes, and reservoirs (Shiklomanov 

and Rodda, 2003).  The remainder of freshwater is stored in glaciers, permanent snow, and 

groundwater aquifers.  The earth's atmosphere contains about 13 x 10
12

 m
 3 of water, and is 
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the source of all the rain that falls on earth (Shiklomanov and Rodda, 2003). Yearly, about 

151,000 quads (quad = 10
15

 BTU) of solar energy cause evaporation and move about 577 x 

1012 m
3
 of water from the earth's surface into the atmosphere.  Of this evaporation, 86% is 

from oceans (Shiklomanov, 1993).  Although only 14% of the water evaporation is from 

land, about 20% (115 x 1012 m3 per year) of the world's precipitation falls on land with the 

surplus water returning to the oceans via rivers (Shiklomanov, 1993).  Thus, each year 

solar energy transfers a significant portion of water from oceans to land areas.  This aspect 

of the hydrologic cycle is vital not only to agriculture but also to human life and natural 

ecosystems (Jackson et al., 2001).    

Availability of Water 

 Although water is considered a renewable resource because it depends on rainfall, 

its availability is finite in terms of the amount available per unit time in any one region.  

The average precipitation for most continents is about 700 mm/yr (7 million liters/ha/yr), 

but varies among and within them (Shiklomanov and Rodda, 2003). In general, a nation is 

considered water scarce when the availability of water drops below 1,000,000 

liters/capita/yr (Engleman and Le Roy, 1993) (Table 1).  Thus Africa, despite having an 

average of 640 mm/yr of rainfall, is relatively arid since its high temperatures and winds 

that foster rapid evaporation (Vorosmarty et al., 2001; Ashton, 2002). 

 Regions that receive low rainfall (less than 500 mm/yr), experience serious water 

shortages and inadequate crop yields.  For example, 9 of the 14 Middle Eastern countries 

(including Egypt, Jordan, Israel, Syria, Iraq, Iran, and Saudi Arabia) have insufficient 

rainfall (Myers and Kent, 2001, UNEP, 2003a) (Table 1).  
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Substantial withdrawals from lakes, rivers, groundwater, and reservoirs used to 

meet the needs of individuals, cities, farms, and industries already stresses the availability 

of water in some parts of the U.S. (Alley et al., 1999). When managing water resources, 

the total agricultural, societal, and environmental system must be considered.  Legislation 

is sometimes required to ensure a fair allocation of water.  For example, laws determine the 

amount of water that must be left in the Pecos River in New Mexico to ensure sufficient 

water flows into Texas (Washington State Library, 2002).   

Groundwater Resources 

 Approximately 30% (11 x 1015 m 3) of all freshwater on Earth is stored as 

groundwater.  The amount of water held as groundwater is more than 100 times the 

amount collected in rivers and lakes (Shiklomanov and Rodda, 2003). Most groundwater 

has accumulated over millions of years in vast aquifers located below the surface of the 

earth. Aquifers are replenished slowly by rainfall, with an average recharge rate that ranges 

from 0.1% to 3% per year (Covich, 1993; La Salle et al., 2001).  Assuming an average of 

1% recharge rate, only 110 x 1012 m3 of water per year are available for sustainable use 

worldwide. At present, world groundwater aquifers provide approximately 23% of all 

water used throughout the world (USGS, 2003a).  Irrigation for U.S. agriculture relies 

heavily upon groundwater, with 65% of irrigation water being pumped from aquifers 

(McCray, 2001).  

 Population growth, increased irrigated agriculture, and other water uses are  mining  

groundwater resources.  Specifically, the uncontrolled rate of water withdrawal from 

aquifers is significantly faster than the natural rate of recharge, causing water tables to fall 

by more than 30 m in some U.S. regions (Brown, 2002).  The overdraft of global 

 4



groundwater is estimated to be about 200 x 10 9 m 3 or nearly twice the average recharge 

rate (International Water Management Institute, 2001).  

 For example, the capacity of the U.S. Ogallala aquifer, which underlies parts of 

Nebraska, S. Dakota, Colorado, Kansas, Oklahoma, New Mexico, and Texas, has 

decreased 33% since about 1950 (Opie, 2000). Withdrawal from the Ogalla is 3 times 

faster than its recharge rate (Gleick, et al., 2002). Aquifers are being withdrawn more than 

10 times faster than the recharge rate aquifers in parts of Arizona (Gleick et al., 2002).  

            Similar problems exist throughout the world.  For example, in the agriculturally 

productive Chenaran Plain in northeastern Iran, the water table has been declining by 2.8 

m/year since the late 1990s (Brown, 2002). Withdrawal in Guanajuato, Mexico, have 

caused the water table to fall by as much as 3.3 m per year (Brown, 2002). The rapid 

depletion of groundwater poses a serious threat to water supplies in world agricultural 

regions especially for irrigation. Furthermore, when aquifers are mined, the surface soil 

area is prone to collapse, resulting in an aquifer that cannot be refilled (Youngquist, 1997; 

Glennon, 2002).   

Stored Water resources 

 In the U.S., many dams were built during the early 20th century in arid regions in 

an effort to increase the  available  quantities of water.  Although the era of constructing 

large dams and associated conveyance systems to meet water demand has slowed down in 

the U.S. (Coles, 2000), dam construction continues in many developing countries 

worldwide.   

Given that the expected life of a dam is 50 years, 85% of U.S. dams will be more 

than 50 years old by 2020 (ACC, 1999).  Prospects for the construction of new dams in the 
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U.S. do not appear encouraging.  Over time, the capacity of all dams is reduced as silt 

accumulates behind them.  Estimates are that 1% of the storage capacity of the world’s 

dams is lost due to silt each year (Economist, 1992).  

WATER USE 

Water from different resources is withdrawn both for use and consumption in 

diverse human activities.  The term use refers to all human activities for which some of the 

withdrawn water is returned for reuse, e.g., cooking water, wash water, and waste water.      

In contrast, consumption means that the withdrawn water is non-recoverable.  For 

example, evapotranspiration of water from plants is released into the atmosphere and is  

considered non-recoverable. 

Human Water Use 

 The water content of living organisms ranges from 60% to 95%; humans are about 

60% water (Tesoro, 2002). To sustain health, humans should drink from 1.5 to 2.5 liters of 

water/person/day (NAS, 1968).  In addition to drinking water, Americans use about 400 

liters water/person/day for cooking, washing, disposing of wastes, and other personal uses 

(USBC, 2001).  Compare this amount to the 83 other countries that report an average 

below 100 liters/person/day of water for personal use (Gleick et al., 2002).   

Currently the U.S. freshwater withdrawals, including that from irrigation, total 

about 1,600 billion liters/day or about 5,700 liters of water/person/day.  Of this amount 

about 80% comes from surface water and 20% is withdrawn from groundwater resources 

(USBC, 2001).  Worldwide, the average withdrawal is 1,970 liters/person/day for all 

purposes (Gleick et al., 2002).  Approximately 70% of the water withdrawn is consumed 

and is non-recoverable worldwide. 
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AGRICULTURE AND WATER 

Water in Crop Production 

Plants require water for photosynthesis, growth, and reproduction. Water used by 

plants is non-recoverable, because some water becomes a part of the plant chemically and 

remainder is released into the atmosphere. The processes of carbon dioxide fixation and 

temperature control require plants to transpire enormous amounts of water. Various crops 

transpire water at rates between 600 to 2000 liters of water per kilogram of dry matter of 

crops produced (Table 2).  The average global transfer of water into the atmosphere from 

the terrestrial ecosystems by vegetation transpiration is estimated to be about 64% of all 

precipitation that falls to Earth (Schlesinger, 1997).  

The minimum soil moisture essential for crop growth varies.  For instance, U.S. 

potatoes require 25% to 50%, alfalfa 30% to 50%, and corn 50% to 70% (Broner, 2002), 

while rice in China is reported to require at least 80% soil moisture (Zhi, 2000). Rainfall 

patterns, temperature, vegetative cover, high levels of soil organic matter, active soil biota, 

and water runoff all effect the percolation of rainfall into the soil where it will be used by 

plants.  

 The water required by food and forage crops ranges from 600 to 3,000 liters of 

water per kilogram (dry) of crop yield (Table 2).  For instance, a hectare of U.S. corn, with 

a yield of approximately 9,000 kg/ha, transpires about 6 million liters per hectare of water 

during the growing season (Benham, 1998; Palmer, 2001), while an additional 1 to 2.5 

million liters/ha of soil moisture evaporate into the atmosphere (Donahue et al., 1990; 

Desborough et al., 1996).  This means that about 800 mm (8 million liters/ha) of rainfall 

are required during the growing season for corn production.   Even with 800 to 1,000 mm 

 7



of annual rainfall in the U.S. Corn-Belt region, corn frequently suffers from insufficient 

water during the critical summer growing period (Troeh and Thompson, 1993). 

 A hectare of high yielding rice requires approximately 11 million liters/ha of water 

for an average yield of 7 t/ha (metric tons per hectare) (Snyder, 2000).  On average, 

soybeans require about 5.8 million liters/ha of water for a yield of 3 t/ha (Benham et al., 

1999).  In contrast, wheat that produces less plant biomass than either corn or rice, requires 

only about 2.4 million liters/ha of water for a yield of 2.7 t/ha (USDA, 1997) (Table 2).  

Note, under semi-arid conditions, yields of non-irrigated crops, such as corn, are low (1 to 

2.5 t/ha) even when ample amounts of fertilizers are applied (USDA, 1997).  

Irrigated Crops and Energy Use 

 World agriculture consumes approximately 70% of freshwater withdrawn per year 

(UNESCO, 2000; UNESCO, 2001e).  Approximately 17% of the world's cropland is 

irrigated but produces 40% of the world’s food (FAO, 2002).   Worldwide, the amount of 

irrigated land is slowly expanding, even though salinization, water logging, and siltation 

continue to decrease its productivity (Gleick, 2002).  Despite a small annual increase in 

total irrigated areas, the per capita irrigated area has been declining since 1990, due to 

rapid population growth (Postel, 1999; Gleick, 2002). Specifically, global irrigation per 

capita has declined nearly 10% during the past decade (Postel, 1999; Gleick, 2002), while 

in the U.S. irrigated land per capita has remained constant at about 0.08 ha (USDA, 2001). 

Irrigated U.S. agricultural production accounts for about 40% of freshwater 

withdrawn (USGS, 2003b), and more than 80% of the water consumed (EPA, 2003). 

California agriculture accounts for 3% of the state’s economic production, but consumes 

85% of the water withdrawn (Myers and Kent, 2001). 
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Energy Use in Irrigation 

   Irrigation requires a significant expenditure of fossil energy both for pumping and 

delivering water to crops.  Annually in the U.S., we estimate that 15% of the total energy 

expended for all crop production is used to pump irrigation water (Hodges et al., 1994).  

Overall the amount of energy consumed in irrigated crop production is substantially 

greater than that expended for rainfed crops.  For example, irrigated wheat requires the 

expenditure of more than 3 times more energy than rainfed wheat.  Specifically, about 4.2 

million kcal/ha/yr are the required energy input for rainfed wheat, while irrigated wheat 

requires 14.3 million kcal/ha/yr to apply an average of 5.5 million liters of water 

(NASS/USDA, 1999; Pimentel et al., 2002).  

 Delivering the 10 million liters of irrigation water needed by a hectare of irrigated 

corn from surface water sources requires the expenditure of about 880 kWh/ha of fossil 

fuel (Batty and Keller, 1980). In contrast, when irrigation water must be pumped from a 

depth of 100 m, the energy cost increases up to 28,500 kWh/ha, or more than 32 times the 

cost of surface water (Gleick, 1993).  

 The costs of irrigation for energy and capital are significant.  The average cost to 

develop irrigated land ranges from $3,800/ha to $7,700/ha (Postel, 1999).  Thus, farmers 

must not only evaluate the dollar cost of developing irrigated land, but must also consider 

the annual costs of irrigation pumping. For example, delivering 7 to 10 million liters/ha of 

water costs from $750 to $1,000 (Larson et al., 2002; Pitts et al., 2002).  About 150,000 ha 

of agricultural land have already been abandoned in the U.S. due to high pumping costs 

(Youngquist, 1997). 
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   The large quantities of energy required to pump irrigation water are significant 

considerations both from the standpoint of energy and water resource management.   For 

example, approximately 8 million kcal of fossil energy are expended for machinery, fuel, 

fertilizers, pesticides, and partial (15%) irrigation, to produce one hectare of rainfed U.S. 

corn (Pimentel et al., 2002b).   In contrast, if the corn crop were fully irrigated, the total 

energy inputs would rise to nearly 25 million kcal/ha (2,500 liters of oil equivalents) 

(Gleick, 1993).  In the future, this energy dependency will not only influence the overall 

economics of irrigated crops but also the selection of specific crops worth irrigating 

(Pimentel et al., 1997) (Table 2).  While a low value crop, like alfalfa, may be 

uneconomical, other crops might use less water plus have a higher market value (Table 2). 

 The efficiency varies with irrigation technologies (Postel, 1992, 1993).  The most 

common irrigation methods, flood irrigation and sprinkler irrigation, frequently waste 

water.  In contrast, the use of more focused application methods, such as "drip" or "micro-

irrigation" have found favor because of their increased water efficiency.  Drip irrigation 

delivers water to individual plants by plastic tubes and uses from 30% to 50% less water 

than surface irrigation.   In addition to conserving water, drip irrigation reduces the 

problems of salinization and waterlogging (Tuijl, 1993).  Although drip systems achieve 

up to 95% water efficiency, they are expensive, may be energy intensive, and require clean 

water to prevent the clogging of the fine delivery tubes (Shock, 2003).  

Soil Salinization and Waterlogging in Irrigation 

 With rainfed crops, salinization is not a problem because the salts are naturally 

flushed away. But when irrigation water is applied to crops and returns to the atmosphere 

via plant transpiration and evaporation, dissolved salts concentrate in the soil where they 
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inhibit plant growth.  The practice of applying about 10 million liters of irrigation water 

per hectare each year, results in approximately 5 t/ha of salts being added to the soil 

(Bouwer, 2002). The salt deposits can be flushed away with added fresh water but at a 

significant cost (Bouwer, 2002). Worldwide, approximately half of all existing irrigated 

soils are adversely affected by salinization (Hinrichsen et al., 1998). Each year the amount 

of world agricultural land destroyed by salinized soil is estimated to be 10 million hectares 

(Thomas and Middleton, 1993).   

 In addition, drainage water from irrigated cropland contains large quantities of salt. 

For instance, as the Colorado River flows through Grand Valley, Colorado, it picks up 

580,000 tons of salts per year (USDI, 2001).  Based on the drainage area of 20,000 ha, the 

water returned to the Colorado River contains an estimated 30 t/ha of salts per year (Pugh, 

2001).  In Arizona, the Salt River and Colorado River deliver a total of 1.6 million tons of 

salt into south-central Arizona each year (USGS, 1999).  

 Waterlogging is another problem associated with irrigation.  Over time, seepage 

from irrigation canals and irrigated fields cause water to accumulate in the upper soil 

levels. Due to water losses during pumping and transport, approximately 60% of the water 

intended for crop irrigation never reaches the crop (Wallace, 2000).  In the absence of 

adequate drainage, water tables rise in the upper soil levels, including the plant root zone, 

and crop growth is impaired.  Such irrigated fields are sometimes referred to as "wet 

deserts" because they are rendered unproductive (Postel, 1993).  For example in India, 

waterlogging adversely affects 8.5 million hectares of cropland and results in the loss of as 

much as 2 million tons of grain every year (ICAR, 1999).   To prevent both salinization 
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and waterlogging, sufficient water along with adequate soil drainage must be available to 

ensure salts and excess water are drained from the soil.  

Water Loss in Soil Erosion 

Because more than 99% of world food supply comes from the land, an adequate 

world food supply depends on the continued availability of productive soils (FAO, 

1998).  Erosion adversely affects crop productivity by reducing the availability of water, 

diminishing soil nutrients, soil biota, and soil organic matter, and also decreasing soil 

depth (Pimentel and Kounang, 1998).  The reduction in the amount of water available to 

the growing plants is considered the most harmful effect of erosion, because eroded soil 

absorbs 87% less water by infiltration than uneroded soils (Guenette, 2001). Soybean 

and oat plantings intercept approximately 10% of the rainfall, whereas tree canopies 

intercept 15% to 35% (Plant Canopies, 2003).  Thus, deforestation increases water 

runoff and reduces water availability. 

 A water runoff rate of about 30% of total rainfall of 800 mm/yr causes significant 

water shortages for growing crops, like corn, and ultimately lowering crop yields (Troeh 

and Thompson, 1993). In addition, water runoff, which carries sediments, nutrients, and 

pesticides from agricultural fields, into surface and ground waters, is the leading cause of 

non-point source pollution in the U.S. (EPA, 2002).  Thus, soil erosion is a self-degrading 

cycle on agricultural land.  As erosion removes topsoil and organic matter, water runoff is 

intensified and crop yields decrease.  The cycle is repeated again with even greater 

intensity during subsequent rains.  

 Increasing soil organic matter by applying manure or similar materials can improve 

the water infiltration rate by as much as 150% (Guenette, 2001). In addition, using 
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vegetative cover, such as intercropping and grass strips, helps slow both water runoff and 

erosion (Lal, 1993).  For example, when silage corn is interplanted with red clover, water 

runoff can be reduced by as much as 87% and soil loss can be reduced by 78% (Wall et al., 

1991).  Reducing water runoff in these and other ways is an important step in increasing 

water availability to crops, conserving water resources, decreasing non-point source 

pollution, and ultimately decreasing water shortages (NGS, 1995). 

 Planting trees to serve as shelter belts between fields reduces evapotranspiration 

from the crop ecosystem by up to 20% during the growing season, thereby reducing non-

point source pollution (Mari et al., 1985; Roose, 1996), and increases some crop yields, 

such as potatoes and peanuts (Snell, 1997).  If soil and water conservation measures are not 

implemented, the loss of water for crops via soil erosion can amount to as much as 5 

million liters per hectare per year (Pimentel and Kounang, 1998). 

Water Use Livestock Production 

The production of animal protein requires significantly more water than the 

production of plant protein (Pimentel, 2003).  Although U.S. livestock directly use only 

2% of the total water used in agriculture (Solley et al., 1998), the water inputs for livestock 

production are substantial because water is required for the forage and grain crops. 

Each year the total of 253 million tons of grain are fed to U.S. livestock requiring a 

total of about 250 x 1012 liters of water (USDA-NASS, 2002).  Worldwide grain 

production specifically for livestock requires nearly 3 times the amount of grain that is fed 

U.S. livestock and 3 times the amount of water used in the U.S. to produce the grain feed 

(Seglken, 1997; Earth Policy Institute, 2002).  
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            Animal products vary in the amounts of water required for their production (Table 

2).  For example, producing 1 kg of chicken requires 3,500 liters of water while producing 

1 kg of sheep requires approximately 51,000 liters of water in order to produce the 

required 21 kg of grain and 30 kg of forage to feed these animals (USDA, 2001; 

Buchanan-Smith, 2002) (Table 2).  For open rangeland (instead of confined feedlot 

production), from 120 kg to 200 kg of forage are required to produce 1 kg of beef.  This 

amount of forage requires 120,000 liters to 200,000 liters of water per kilogram of beef 

(Thomas, 1987; Dorsett, 2003; Rangeland, 1994). Beef cattle can be produced on 

rangeland, but a minimum of 200 mm per year of rainfall are needed (Hays and White, 

1998).  

U.S. agricultural production is projected to expand in order to meet the increased 

food needs of a U.S. population that is projected to double in the next 70 years (USBC, 

2001).   The food situation is expected to be more serious in developing countries, such as 

Egypt and Kenya, because of rapidly growing populations (Rosengrant et al., 2002).  

Increasing crop yields necessitates a parallel increase in freshwater utilization in 

agriculture.   Therefore, increased crop and livestock production during the next 5 to 7 

decades will significantly increase the demand on all water resources, especially in the 

western, southern, and central United States (USDA, 2001), as well as in many regions of 

the world with low rainfall.  

WATER POLLUTION AND HUMAN DISEASES 

 Closely associated with the overall availability of water resources is the problem of 

water pollution and human diseases.  At present, approximately 20% of the world’s 

population lack safe drinking water, and nearly half the world population lack adequate 

 14



sanitation (GEF, 2002; UN, 2002).  This problem is acute in many developing countries  

that discharge an estimated 95% of their untreated urban sewage directly into surface 

waters (Chen et al., 2002).  For example, of India’s 3119 towns and cities, only 8 have full 

wastewater treatment facilities (WHO, 1992). Downstream, the untreated water is used for 

drinking, bathing, and washing, resulting in serious human infections and illnesses. 

Overall, waterborne infections account for 90% of all human infectious diseases in 

developing countries (AEI, 2003).  Lack of sanitary conditions contributes to 

approximately 12 million deaths each year, primarily among infants and young children 

(Hinrichsen et al., 1998).   Flooding accounts for about half of the major disasters affecting 

humans each year (UNESCO, 2001a).  

Approximately 40% of U.S. fresh water is deemed unfit for recreational or drinking 

water uses because of contamination with dangerous microorganisms, pesticides, and 

fertilizers (UNESCO, 2001b). In the U.S., waterborne infections account for approximately 

940,000 infections and approximately 900 deaths each year (Seager, 1995).  In recent 

decades, more U.S. livestock production systems have moved closer to urban areas, 

causing water and foods to be contaminated with manure (NAS, 2003). In the U.S., the 

quantity of livestock manure and other wastes produced each year are estimated to be 1.5 

billion tons (GAO, 1999).  Associated with this kind contamination, the Communicable 

Disease Center reports that more than 76 million Americans are infected each year with 

pathogenic E. coli and related foodborne pathogens, resulting in about 5,000 deaths per 

year (DeWaal et al., 2000).     

 The incidence of schistosomiasis, which is also associated with contaminated 

freshwater, is expanding worldwide and each year infects more than 200 million people 
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(UN, 2003) and currently causes an estimated 20,000 deaths per year (Hinrichsen et al., 

1998).  Its spread is associated with an increase in habitats, including the construction of 

dams and irrigation canals suitable for the snail intermediate-host population and 

accessible for humans to come in contact with the infected water (Shiklomanov, 1993).  

For example, construction of the Aswan High Dam in Egypt and related irrigation systems 

in 1968 led to an explosion in Schistosoma mansoni in the human population; increasing 

from 5% in 1968 to 77% of all Egyptians in 1993 (Shiklomanov, 1993).  In 1986, the 

construction of a dam in Senegal resulted in an increase in schistosomiasis from zero per 

cent in 1986 to 90% by 1994 (Worldwaterday, 2001). 

 Mosquito-borne malaria is also associated with water bodies.  Worldwide this 

disease presently infects more than 2.4 billion people (WHO, 1997) and kills about 2.7 

million each year (Corey, 2002).  Environmental changes, including polluted water, have 

fostered this high incidence and increase in malaria.  For instance, deforestation in parts of 

Africa exposes land to sunlight and promotes the development of temporary pools of water 

that favor the breeding of human-biting, malaria-transmitting mosquitoes, Anopheles 

gambiae (Coluzzi, 1994).  In addition, with many African populations doubling every 20 

years (PRB, 2003), more people are living in close proximity to mosquito infested aquatic 

ecosystems.  Concurrently, the mosquito vectors are evolving resistance to insecticides that 

pollute their aquatic ecosystems, while protozoan pathogens are evolving resistance to the 

over-used antimalarial drugs.  Together these factors are reducing the effectiveness of 

many malaria control efforts (Olliaro et al., 1996). 
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 Another serious water-borne infectious disease that can be transmitted via air, 

water, and food, is tuberculosis (TB).  At present, approximately 2 billion people are 

infected with TB with the number increasing each year (WHO, 2001). 

 Presently, worldwide about 2 billion people are infected with one or more helminth 

species, either by direct penetration or by use of contaminated water or food (Hotez et al., 

1996).   In locations where sanitation is poor and overcrowding is rampant, as in parts of 

urban Africa, up to 90% of the population may be infected with one or more helminthes 

(Stephenson, 1994). 

 In addition to helminthes and microbe pathogens, there are many chemicals that 

contaminate water and have negative impacts on human health as well as natural biota.  

For example, an estimated 3 billion kg of pesticides are applied worldwide each year in 

agriculture (Pimentel, 1997).  USEPA also allowed the application of sludge to agricultural 

land and this sludge is contaminated with heavy metals and other toxics (McBride, 1995).  

Many of these agricultural chemicals, including nitrogen fertilizer, contaminate aquatic 

ecosystems by leaching and runoff and result in eutrophication of aquatic ecosystems and 

other environmental problems (Howarth, 2003).  Worldwide, pesticides alone contribute to 

an estimated 26 million human poisonings and 220,000 deaths each year (Richter, 2002).  

 LIMITS TO WATER USE 

Costs of Water Treatment 

 Increases in pollution of surface and groundwater resources not only pose a threat 

to public and environmental health, but also contribute to the high costs of water treatment, 

thus further limiting the availability of water for use.  Depending on water quality and the 

purification treatments used, potable water costs an average of 50¢/1,000 liters in the U.S. 
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and range up to $1.91/1000 liters in Germany (UNESCO, 2001c).  Appropriate water 

pricing is important for improved water demand and conservation of water (UNESCO, 

2001c; Minter et al., 2002).   

The cost of treating U.S. sewage for release into streams and lakes ranges from   

55¢/1000 liters for small plants to 30¢/1000 liters for large plants (Gleick, 2000).  Sewage 

effluent, when properly treated to make it safe for use as potable water, is relatively 

expensive and ranges in costs from $1.00 to $2.65 /1000 liters (Gleick, 2000).  

Purifying and reducing the number of polluting microbes in water, as measured by 

the BOD (biological oxygen demand), is energy costly.   Removing 1 kg of BOD requires 

1 kWh (Trobish, 1992).  In this process, most of the cost for pumping and delivering water 

is for energy and equipment.  Delivering 1 m3 (1,000 liters) of water in the U.S. requires 

the expenditure of about 1.3 kWh.  Excluding only the energy for pumping sewage, the 

cost and amount of energy required to process 1000 liters of sewage in a technologically 

advanced wastewater treatment plant is about 65¢ and requires about 0.44 kWh of energy 

(Downing et al., 2002).  Looking to the future, the costs of water treatment and the energy 

required to purify water will increase.   

Dependence on the oceans for freshwater has major problems.  When brackish 

water is desalinized, the energy costs are high, ranging from 25¢ to 60¢/1000 liters, while 

seawater desalinization ranges from 75¢ to $3/1000 liters (Buros, 2000). In addition, 

transporting large volumes of desalinized water adds to the costs.  

Loss of Biodiversity 

 Natural diversity of species is essential to maintaining a quality environment, as 

well as productive agriculture and forestry.  The water required to keep natural ecosystems, 
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especially the plants, functioning has been appropriately termed green water (Falkenmark, 

1995). 

The biodiversity of all species throughout the world is adversely affected when 

water resources are reduced and/or polluted.  Thus the drastic drainage of more than half of 

U.S. wetlands (National Wildlife Federation, 2002) that contain 45% of our federally 

endangered and threatened species, has seriously disrupted these ecosystems (Havera et al., 

1997).  In 2002, approximately 33,000 salmon perished in the Klamath River when 

farmers were allowed to withdraw increased volumes of water for irrigation (Service, 

2003).  Pear farmers in the Rogue Valley of Oregon use significant amounts of the water 

before it reaches the Klamath Lake, leaving only 616 million m3 of water per year for 

wildlife and other farmers downstream (Fattig, 2001).  Similarly, over pumping and 

upstream removal of water have reduced biodiversity in the Colorado River and the Rio 

Grande River (Greenwald, 1999).  The major alteration of the natural water flow in the 

lower portion of the U.S. Colorado River has been responsible for 45 species of plants and 

animals to be listed as federally endangered or threatened (Glenn et al., 2001).  

Effect of Climate and Environmental Change on Water Availability 

 Estimates of water resources and their future availability can only be based on 

present world climate patterns.  The continued loss of forests and other vegetation plus the 

accumulation of carbon dioxide, methane gas, and nitrous oxides in the atmosphere are 

projected to lead to global climate change.  Over time, such changes may alter present 

precipitation and temperature patterns throughout the world (Downing and Parry, 1994; 

IPCC, 2002).  With major shifts in water availability, future agricultural, forestry, 

biodiversity, and diverse human activities will be impacted. 
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  For example, if as projected, California experiences a 50% decrease in mountain 

snowpack due to global warming (Knowles and Cayon, 2002), this would change both the 

timing and intensity of seasonal surface water flow (Miller et al., 2001). In contrast, 

Canada might benefit from warming with extended growing seasons, but even this region 

eventually could face water shortages (Parry and Carter, 1989; IPCC, 2002).  If, as 

projected, the annual temperatures in the U.S. Corn-Belt rise 3 to 4 degrees C, rainfall 

might decline by about 10% (Myers and Kent, 2001), evaporation rates from the soil may 

increase and limit corn production in the future (Rosenzweig and Parry, 1994).   

The predicted global warming, along with increased human food requirements can 

be expected to alter and probably increase world irrigation needs by 30% to ensure food 

security (Doll, 2002). Other serious impacts of global warming could increase 

deforestation, desertification, soil erosion, and loss of biodiversity.  All of these major 

changes suggest the reduction of water availability for humans, for all other living 

organisms and also for crop and forest production (Heywood, 1995; Root et al., 2003). 

ECONOMIC COSTS OF WATER SUBSIDIES 

 The relatively high cost of treating and delivering water has led many world 

governments to subsidize water for agriculture and household use.  For example, some 

U.S. farmers pay as little as 1¢ to 5¢/1000 liters they use in irrigation, while the public 

pays from 30¢ to 80¢ per 1000 liters of treated water for personal use (Gleick, 2000).  

Farmers in the Imperial Irrigation District of California pay $15.50 in delivery fees for 1.2 

million liters of water (Murphy, 2003). Some investigators suggest that if U.S. farmers 

paid the full cost of water, they would have to conserve and manage irrigation water more 

effectively (Willardson, et al., 1994).   
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 The construction cost subsidy for federally-subsidized western U.S. irrigated 

cropland amounts to about $5,000 per hectare (Postel, 1999), and represents an annual 

construction cost subsidy of about $440 per ha/yr over the life of the project (USC, 1989; 

Pimentel et al., 1997). The total annual government subsidy is estimated to range from 

$2.5 billion to $4.4 billion for the 4.5 million hectares of irrigated land in the western 

United States (Myers and Kent, 2001; VanBeers and deMoor, 2001).  Worldwide, from f94 

to 1998 governmental water subsidies totaled $45 billion per year for non-Organization for 

Economic Cooperation and Development (OECD) countries and $15 billion for OECD 

counties (VanBeers and deMoor, 2001).  During the same period, agricultural subsidies per 

year total $65 billion for non-OECD and $355 billion for OECD countries (VanBeers and 

deMoor, 2001).  

 According to the World Bank (2003), the objectives of fair water pricing are: (1) to 

seek revenue to pay for the operations and maintenance of water availability;  (2) improve 

water-use efficiency; and (3) recover the full costs of water pumping and treatment.  

However, in general there appear to be problems with some private, for profit companies 

operating water systems for communities and regions. Often the companies operate as 

monopolies which can lead to unfair pricing practices (Schalch, 2003).    

 If U.S. prices of gasoline and diesel energy increase to approximately $10 per 

gallon, it follows that irrigation costs will continue to escalate (Pimentel and Pimentel, 

1996) from the current $2.9 billion per year (USBC, 1995).  Since vegetable and fruit 

crops return more per dollar invested in irrigation water than field crops, farmers may have 

to reassess the crops they grow.  For example, in Israel 1000 liters of water from irrigation 
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produces 79¢ worth of groundnuts and 57¢ worth of tomatoes, but only 13¢ worth of corn 

grain and 12¢ worth of wheat (Fishelon, 1994). 

    CONFLICTS OVER WATER USE 

 The rapid rise in withdrawal of freshwater for agricultural irrigation and for other 

uses that have accompanied population growth has spurred serious conflicts over water 

resources both within and between countries (FAO, 2000).  In part the conflicts over fresh 

water is due to the sharing of fresh water by countries and regions.  Currently there are 263 

transboundary river basins sharing water resources (UNESCO, 2001d). Worldwide such 

conflicts have increased from an average of 5 per year in the 1980s to 22 in 2000 (GEF, 

2002).  In 23 countries where data are available, conflicts related to agricultural use of 

water cost an estimated $55 billion between 1990 and 1997 (GEF, 2002).   

At least 20 nations obtain more than half their water from rivers that cross national 

boundaries (Gleick, 1993), and 14 countries receive 70% or more of their surface water 

resources from rivers that are outside their borders (Alavian, 2003; Cech, 2003).  For 

example, Egypt obtains 97% of its freshwater from the Nile River (Alavian, 2003), the 

second longest in the world, which is also shared by the Sudan, Ethiopia, Egypt, Burundi, 

Kenya, Rwanda, Tanzania, Zaire, Eritrea, and Uganda (Postel, 1995; Alavian, 2003).  

Indeed, the Nile River is so overused that during parts of the year little or no freshwater 

reaches the Mediterranean Sea (Postel, 1995).     

 Historically, the Middle East region has had the most conflicts over water, largely 

because it has less available water per capita than most other regions, and every major 

river crosses international borders (Fisher and Hossein, 2001; Gleick et al., 2002).  

Furthermore, the human populations in these countries are increasing rapidly, some having 
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doubled in the last 20 to 25 years, placing additional stress on the difficult political climate 

(PRB, 2003).  

 The distribution of river water also creates conflicts between several U.S. states as 

well as problems between the U.S. and Mexico.  California, Nevada, Colorado, New 

Mexico, Utah, Arizona, and Mexico all depend on Colorado River water.  In a normal 

year, little water reaches Mexico, and little or no water reaches the Gulf of California 

(Postel et al., 1996; Gleick, 2000).  

CONSERVING WATER RESOURCES 

Conserving world water must be a priority of individuals, communities, and 

countries.  An important approach is to find ways to facilitate the percolation of rainfall 

into the soil instead of allowing it to runoff into streams and rivers.  For example, the 

increased use of trees and shrubs make it possible to catch and slow water runoff by 10% 

to 20%, thereby conserving water before it reaches streams, rivers, and lakes (Urban 

Forestry, 2002).  This approach also reduces flooding. 

Maintaining crop, livestock, and forest production requires conserving all water 

resources available, including rainfall (Cech, 2003).  Some practical strategies that support 

water conservation for crop production include: (1) monitoring soil water content; (2) 

adjusting water application needs to specific crops; (3) applying organic mulches to 

prevent water loss and improve water peculation, through reduced water runoff and 

evaporation; (4) using crop rotations that reduce water runoff; (5) preventing the removal 

of biomass from land; (6) increasing use of trees and shrubs to slow water runoff; and (7) 

employing precision irrigation in water delivery systems, such as drip irrigation, that will 

result in efficient crop watering (Miller, 1999; IRZ, 2002).  

 23



In forest areas, it will be necessary to avoid clear cutting and humans should 

employ sound forest management.  Trees also benefit urban areas that have high rates of 

runoff.  Since water runoff is rapid from roofs, driveways, roads, and parking lots, the 

water can be collected in cisterns and constructed ponds.  Estimated runoff rates from 

urban area were 72% higher than areas with forest cover (Boulder, 2003).  

Given that many aquifers are being over drafted, government efforts are needed to 

limit the pumping to sustainable withdrawal levels or at the known recharge rate.  

Integrated water resource management programs offer many opportunities to conserve 

water resources for everyone, farmers and the public (Serageldin, 2003).      

        USING WATER WISELY IN THE FUTURE 

 Providing adequate quantities of pure freshwater for humans and their diverse 

activities appears to be a major problem worldwide. If further competition for water 

resources within regions and between countries continues to escalate, and remain 

unresolved this, too, will have negative impacts on essential freshwater supplies for 

personal and agricultural use.  Even now, freshwater resources for food production and 

other human needs are declining because of increasing demand (UNEP, 2003b; Gleick 

2004) and becoming outright scarce in arid regions.   Particularly in arid regions, where 

groundwater resources are the primary sources of water, future irrigation, industrial, and 

urban water use must be carefully managed to prevent exhausting the aquifers. 

More effective use of water in all agricultural production, that consumes 70% of 

world freshwater, can be achieved by providing farmers with incentives to conserve water 

and soil resources.   Employing methods of controlling erosion will help conserve water in 
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crop production.  Protecting forests, wetlands, natural ecosystems and other biological 

resources all enhance water conservation. 

 Globally, agriculture and industries that continue to pollute water used by humans 

and other organisms adversely affect public health and biodiversity.  Many developing 

countries need immediate assistance in improving their drinking water sources and sanitary 

facilities. 

 Future water resource availability will depend on the efforts of individuals, 

communities, and regions to conserve and protect the quality of water (GWP 2004; 

IWRM 2004).  The success of these efforts will determine our ability to produce 

adequate food resources and protect public health in the future. 
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Table 1.  Regions of the world with water problems (based on the criterion that yearly 
water availability per capita is less than 1,000,000 liters/yr) and their per capita water 
availability (Falkenmark and Lindh, 1993). 
 
       Water availability 

Region       per capita 1000 liters/yr 

 

Egypt         40 

West Bank      126 

Jordan       255 

Saudi  Arabia      300 

Israel       376 

Syria       440 

Kenya       610 

United States  (comparison)            1,862 
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Table 2.  Estimated liters of water required to produce 1 kilogram of food and forage 

crops. 

 

Crop    Liters/kg  Source 

 

Soybeans  2000   USDA-NASS, 1998 

Rice   1600   Synder, 2000 

Sorghum  1300   Klocke et al., 1996 

Alfalfa   1100   USDA-NASS, 1998 

Wheat     900   USDA, 1997 

Corn     650   Benham et al., 1999; Palmer, 2001 

Potatoes (dry)    630   USDA-NASS, 1998 

Millet     272   Baltensperger et al., 1996 

Broiler chicken            3500   Pimentel, 2003c 

Pig   6000   Pimentel, 2003c 

Beef            43,000     Pimentel, 2003c 

Sheep            51,000   Pimentel, 2003c 
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