
COST-AWARE RESOURCE MANAGEMENT FOR

DECENTRALIZED INTERNET SERVICES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Venugopalan Saraswati Ramasubramanian

January 2007

c© 2007 Venugopalan Saraswati Ramasubramanian

ALL RIGHTS RESERVED

COST-AWARE RESOURCE MANAGEMENT FOR DECENTRALIZED

INTERNET SERVICES

Venugopalan Saraswati Ramasubramanian, Ph.D.

Cornell University 2007

Decentralized network services, such as naming systems, content distribution net-

works, and publish-subscribe systems, play an increasingly critical role and are

required to provide high performance, low latency service, achieve high availability

in the presence of network and node failures, and handle a large volume of users.

Judicious utilization of expensive system resources, such as memory space, network

bandwidth, and number of machines, is fundamental to achieving the above prop-

erties. Yet, current network services typically rely on less-informed, heuristic-based

techniques to manage scarce resources, and often fall short of expectations.

This thesis presents a principled approach for building high performance, ro-

bust, and scalable network services. The key contribution of this thesis is to show

that resolving the fundamental cost-benefit tradeoff between resource consump-

tion and performance through mathematical optimization is practical in large-scale

distributed systems, and enables decentralized network services to meet efficiently

system-wide performance goals. This thesis presents a practical approach for re-

source management in three stages: analytically model the cost-benefit tradeoff

as a constrained optimization problem, determine a near-optimal resource allo-

cation strategy on the fly, and enforce the derived strategy through light-weight,

decentralized mechanisms. It builds on self-organizing structured overlays, which

provide failure resilience and scalability, and complements them with stronger per-

formance guarantees and robustness under sudden changes in workload. This work

enables applications to meet system-wide performance targets, such as low average

response times, high cache hit rates, and small update dissemination times with

low resource consumption. Alternatively, applications can make the maximum use

of available resources, such as storage and bandwidth, and derive large gains in

performance.

I have implemented an extensible framework called Honeycomb to perform cost-

aware resource management on structured overlays based on the above approach

and built three critical network services using it. These services consist of a new

name system for the Internet called CoDoNS that distributes data associated with

domain names, an open-access content distribution network called CobWeb that

caches web content for faster access by users, and an online information monitoring

system called Corona that notifies users about changes to web pages. Simulations

and performance measurements from a planetary-scale deployment show that these

services provide unprecedented performance improvement over the current state of

the art.

BIOGRAPHICAL SKETCH

Venugopalan Ramasubramanian (Rama) hails from a small town in India called

Salem. He completed his under-graduate education in Computer Science and En-

gineering at the Indian Institute of Technology Madras in 1999. After that, he

moved to the United States of America to pursue his doctorate in Computer Sci-

ence at Cornell University. Cornell stimulated his interests in building practical

yet sound networks and systems. He received a special Master’s in 2002 for his

research on wireless networking protocols. Later, his interests shifted to building

systems for wide area network applications, whose contributions are summarized

in this doctoral dissertation. At the time of writing this thesis, Rama was working

in Microsoft Research Silicon Valley.

iii

To my parents, Venugopalan and Swarna, on whose sacrifice this thesis rests.

iv

ACKNOWLEDGEMENTS

I started the doctorate program with a funny feeling that is similar to what one feels

while riding a massively contorted roller coaster for the first time. After countless

free falls and throw outs of disappointment and joy, I’m finally at the threshold of

writing this note of appreciation for all who have followed the bumpy ride, cheered

and supported my successes and failures, and wished me well all throughout. To

understate, I am thrilled to be in this position; as unlike roller-coaster riders, not

all who start out on a Ph.D. reach this point.

The foremost supporter of this dissertation is my adviser, Emin Gün Sirer.

His contributions extend far beyond giving technical advice on my research; he

played an instrumental role in developing my oral and written presentation skills,

served as a cheer leader during the times of disappointment, and provided ecstatic

encouragement to pursue wacky ideas that eventually turned into this thesis. I’m

deeply indebted to him for turning me into a polished researcher.

In addition to my adviser, my thanks are due to several others who played a

valuable role in my educational experience: my former adviser and thesis commit-

tee member, Ken Birman, with whom I worked for two years, other thesis commit-

tee members, Andrew Myers and Zygmunt Haas, collaborators, Daniel Mossé and

Doug Terry, and several well-wishers from whom I have benefited, sometimes with-

out my own knowledge. I owe them greatly for their generous support, guidance,

and mentorship.

A large part of this thesis would not have been possible without the contri-

butions of the following collaborators. I thank Yee Jiun Song for building and

maintaining the CobWeb content distribution network, Ryan Peterson for imple-

menting and running Corona, the web news monitoring system, and Hongzhou

v

Liu for collecting RSS workload traces. My thanks are also due to Yegnaswamy

Sermadevi and Amar Sapra for patiently explaining the nuances of mathematical

optimization.

Finally, I cannot understate the role played by my friends, whose presence was

a great source of inspiration, fulfillment, and entertainment. While I refrain from

listing their names for the sole fear of missing out a few, I owe greatly to those who

brought me out of deep personal crisis, transformed my life, and made my stay at

Cornell the most enriching part of my life. I also thank my long-standing friends,

teachers, and family members for their valuable support and wishes.

vi

TABLE OF CONTENTS

1 Introduction 1

1.1 Contributions . 5
1.1.1 Analytical Modeling . 5
1.1.2 Decentralized Optimization 8
1.1.3 Applications . 11

1.2 Outline . 20

2 Resource Allocation through Mathematical Optimization 22

2.1 Overview of Structured Overlays 23
2.1.1 Pastry . 25

2.2 Analytical Modeling . 29
2.2.1 Lookup Latency . 32
2.2.2 Update Detection Time . 35

2.3 Optimization Techniques . 37
2.3.1 Analytical Optimization . 37
2.3.2 Numerical Optimization . 46

2.4 Distributed Resource Allocation . 48
2.4.1 Popularity Estimation . 53
2.4.2 Distributed Tradeoff Aggregation 55

2.5 Implementation . 57

3 CoDoNS: Cooperative Domain Name System 61

3.1 Problems with Legacy DNS . 65
3.1.1 Survey Methodology . 65
3.1.2 Vulnerability to Malicious Attacks 66
3.1.3 Failure Resilience . 72
3.1.4 Performance Latencies . 76

3.2 CoDoNS: System Design . 80
3.2.1 Architecture . 81
3.2.2 Analysis-driven Optimization 82
3.2.3 Proactive Update Propagation 83
3.2.4 Implementation . 83
3.2.5 Issues and Implications . 85

3.3 Evaluation . 87
3.3.1 Simulations . 88
3.3.2 Deployment . 93
3.3.3 Summary . 100

vii

4 CobWeb Content Distribution Network 103

4.1 System Architecture . 105
4.1.1 Optimal Resource Management 107
4.1.2 Cache Consistency Management 109
4.1.3 User Interface . 109

4.2 Evaluation . 111
4.2.1 Simulations . 111
4.2.2 Deployment . 120

4.3 Summary . 124

5 Corona: Online Data Monitoring System 126

5.1 Characteristics of Micronews Feeds 128
5.1.1 Measurement Methodology 129
5.1.2 Feed Characteristics . 131
5.1.3 Update Characteristics . 133
5.1.4 Client Behavior . 134
5.1.5 Summary of RSS Characteristics 136

5.2 Corona: Architecture . 138
5.2.1 Analytical Models . 139
5.2.2 System Management . 143
5.2.3 Update Dissemination . 145
5.2.4 User Interface . 146
5.2.5 Issues and Implications . 147

5.3 Evaluation . 148
5.3.1 Simulations . 149
5.3.2 Corona versus Heuristics . 156
5.3.3 Deployment . 157

5.4 Summary . 158

6 Related Work 162

6.1 Resource Allocation Problems . 162
6.2 Peer-to-Peer Overlays . 163

6.2.1 Unstructured Overlays . 164
6.2.2 Structured Overlays . 165
6.2.3 Techniques to Improve Lookup Performance 168
6.2.4 Caching and Replication in Overlays 170
6.2.5 Overlays in Practice . 170
6.2.6 Applications of Structured Overlays 172

6.3 Domain Name System . 174
6.3.1 DNS Performance Studies 174
6.3.2 DNS Security . 176
6.3.3 Design Proposals . 177

6.4 Web Caching and CDNs . 178
6.4.1 Web Performance Studies 179

viii

6.4.2 Caching Algorithms . 180
6.4.3 Cooperative Caching . 182
6.4.4 Content Distribution Networks 185

6.5 Publish-Subscribe Systems . 186
6.5.1 Topic-based Publish Subscribe 187
6.5.2 Content-based Publish Subscribe 188
6.5.3 Detecting Changes in the Web 190

7 Conclusions 192

7.1 Summary . 192
7.2 Limitations and Future Work . 194
7.3 Impact . 195

Bibliography 197

ix

LIST OF TABLES

2.1 List of Symbols . 33
2.2 Analytical Analytical Solution when α 6= 1 44
2.3 Analytical Solution when α = 1 . 45
2.4 Numerical Optimization Algorithm 49

3.1 Vulnerabilities in BIND . 71
3.2 Delegation Bottlenecks in Name Resolution 75
3.3 Parameters used in CoDoNS Deployment 89
3.4 Query Resolution Latency . 96

5.1 Performance-Overhead Tradeoffs 144
5.2 Performance Summary . 156

x

LIST OF FIGURES

2.1 Prefix Routing in Pastry . 28
2.2 Structured Resource Allocation . 31
2.3 Optimal Overhead for Target Lookup Latency 43
2.4 Distributed Allocation . 52
2.5 Clustering Objects with Similar Characteristics 56

3.1 Name Resolution in Legacy DNS 64
3.2 DNS Delegation Graph . 64
3.3 Size of Delegations . 69
3.4 Average TCB Size for gTLD Names 69
3.5 Average TCB Size for ccTLD Names 73
3.6 Vulnerable Nameservers in TCB 73
3.7 Percentage of Non-Vulnerable Nodes in TCB 75
3.8 Physical Bottlenecks in Name Resolution 77
3.9 DNS Nameserver Bottlenecks . 77
3.10 Distribution of TTLs of DNS Records 89
3.11 CoDoNS Architecture . 90
3.12 Average DNS Lookup Latency for Simulated Workload 94
3.13 Per Node Network Overhead for DNS Simulations 94
3.14 Cumulative Distribution of Latency 96
3.15 Median Latency vs Time . 99
3.16 Median Latency vs Time during a Flash Crowd 99
3.17 Load Balance vs Time . 101
3.18 Update Propagation Time . 101

4.1 CobWeb Architecture . 114
4.2 Average Lookup Latency . 114
4.3 Per Node Network Overhead . 117
4.4 Per Node Storage Overhead . 117
4.5 CobWeb vs. Opportunistic Caching 119
4.6 Per Node Storage Overhead . 119
4.7 Network Bandwidth during a Flash Crowd 121
4.8 Average Lookup Latency during a Flash Crowd 121
4.9 CDF of Latency to Fetch Web Objects 123
4.10 Network Overhead Per Node . 123
4.11 Hit Rates over Time . 125

5.1 Feeds Ranked by the Number of Requests 132
5.2 Feeds Ranked by the Number of Subscribers 132
5.3 CDF of Feed Size . 135
5.4 Average Update Time . 135
5.5 Number of Changed Lines in Updates 137
5.6 Polling Rate of Clients . 137

xi

5.7 Number of Subscriptions made by Clients 140
5.8 Corona Architecture . 140
5.9 Network Load on Content Servers 151
5.10 Average Update Detection Time 151
5.11 Number of Pollers per Channel . 153
5.12 Update Detection Time per Channel 153
5.13 Update Detection Time per Channel 155
5.14 Update Detection Time per Channel 155
5.15 Corona vs. Heuristics . 159
5.16 Average Update Detection Time 159
5.17 Total Polling Load on Servers . 161

xii

Chapter 1

Introduction

Decentralized network services play an increasingly important role. Decentraliza-

tion offers three significant benefits for running network services, namely, improved

performance as geographic distribution enables clients to contact closer servers,

high availability in the presence of network and node failures as there is no sin-

gle point of vulnerability, and ability to handle increases in workload and number

of clients by adding more servers. These advantages have made Internet services

to move more and more towards decentralized architectures. These services are

typically deployed in two ways: as servers distributed in a wide area network at

geographically distant locations or as a cluster of servers that are hosted in a sin-

gle location. Prominent examples of decentralized Internet services include name

systems, such as the Domain Name System (DNS), which enable users to locate

resources identified by names, Content Distribution Networks (CDNs) such as Aka-

mai and Digital Island, which replicate Web content around the globe so that users

can fetch content faster, and publish-subscribe systems, which facilitate users to

subscribe for content of their interest and receive notifications when new content

matching their interest is published.

In practice, resource limitations pose fundamental challenges for decentralized

network services. Allocating more resources such as server machines, storage units,

and network bandwidth can improve performance; however, the performance im-

provement comes at a cost as resources tend to be scarce or expensive. For exam-

ple, a content distribution network trying to consistently replicate all web content

at every server in the world would require substantial amount of storage space

1

2

and network bandwidth. Such naive approaches to resource allocation driven by

over-provisioning of resources quickly become impractical at large scales.

Judicious utilization of resources is critical for achieving large gains in per-

formance in a distributed system. Attaining high performance using minimal re-

sources translates to huge savings in monetary terms by decreasing equipment

required, energy consumption, as well as administrative costs. Similarly, when

system resources are scarce, deriving maximum performance from the limited re-

sources can serve the users significantly better.

Most decentralized services today depend on less-informed, heuristic-based

techniques for resource allocation. Heuristics typically make decisions about allo-

cating resources using limited knowledge about resource availability and workload

characteristics. Consequently, heuristic-based techniques often have fundamental

limitations. Their effectiveness is driven by the workload and deviations from as-

sumed workload characteristics may lead to poor performance. They provide no

assurance or guarantees about performance.

The limitations of less-informed heuristics are best illustrated in caching, the

most widely-used heuristic in distributed systems. Caching in decentralized ser-

vices such as CDNs is typically governed by the following heuristic: nodes oppor-

tunistically store objects they fetch anticipating that future requests for the stored

objects can be served from the cache. This form of opportunistic caching works

well when the workload satisfies three conditions: a large number of requests are

destined for a small number of highly popular objects, objects have similar sizes,

and objects are static or do not change often.

Such assumptions rarely hold in practice for a large class of applications. For in-

stance, the workloads for name systems, CDNs, and publish-subscribe systems are

3

characterized by heavy-tailed popularity distributions, where only a small number

of lookups go for very popular objects and the remainder of the lookups go for a

large number of unpopular objects forming a long, heavy tail in the popularity dis-

tribution. Content sizes can vary from a few bytes to gigabytes and update times

may range from seconds to no updates at all. Consequently, previous attempts

to apply opportunistic caching for these applications provides less-than -adequate

improvement in performance. Moreover, opportunistic caching is driven by the

workload and cannot make use of any additional network or storage resources

available to further improve performance. These observations have led researchers

to believe that opportunistic caching is not well-suited for the Web [18, 155].

The key contribution of this thesis is a principled approach to perform informed,

cost-aware resource allocation in large-scale, decentralized systems. This approach

analytically models resource-performance tradeoffs as mathematical optimization

problems and computes near-optimal solutions on the fly. The analytical model

captures the tradeoff between resources consumed and performance derived based

on characteristics of the application workload. Mathematical optimization, then,

finds an efficient resource allocation strategy to meet system-wide performance

goals, which take the form of constraints in the optimization problem.

The approach presented in this thesis provides applications with fine-grained

control over cost and performance. An application can set and attain system-

wide performance goals. Such performance goals can take two forms; ‘achieve a

target level of performance using the minimum amount of resources’ or ‘achieve

the best performance using the limited amount of resources available.’ The former

enables applications to meet performance targets, such as those specified in service

agreements, at low cost. The latter enables applications to derive large performance

4

gains out of available resources.

The presented approach is well-suited for a wide variety of applications with

different workload characteristics and performance requirements. For example, a

lookup service may use this approach to achieve low lookup latency while reducing

network bandwidth required for maintaining replicated copies of data. A CDN

system may use this approach to achieve high rate of cache hits without exceeding

storage space available at each server. And, a publish-subscribe system may apply

this approach for an entirely different purpose of detection events and sending

timely update notifications to users.

Clearly, this thesis is not the first to apply mathematical optimization for re-

source allocation. Several researchers in the past few decades have explored an-

alytical models to express cost-performance tradeoffs and devised techniques to

perform resource allocation for different applications, both in theory and in prac-

tice [35, 48, 75, 87, 88, 107, 108, 116, 145, 146]. The primary contribution of this

thesis lies in demonstrating the effectiveness of optimization-based resource allo-

cation in distributed, Internet-scale, real-world systems. While prior approaches

for optimization-based resource allocation typically offer centralized solutions or

involve algorithms with high run-time complexity, this thesis presents fully decen-

tralized, scalable, and adaptable techniques to perform informed resource alloca-

tion on the fly.

This thesis achieves high performance, decentralization, and scalability through

the use of structured overlays. A structured overlay [71, 96, 97, 121, 128, 138, 161]

is a self-organizing network that has a regular, well-defined topology (such as a

ring, hyper cube, or torus) with uniform node degree (number of neighbors) and

bounded diameter (maximum distance between two nodes). It provides two key

5

features that are well-suited for decentralized services: namely the ability to detect

failures and take remedial actions automatically so that the service is constantly

available to the users and to increase the capacity of the system seamlessly without

disruptions. This thesis complements these two properties by enabling structured

overlays to meet application specific performance targets efficiently.

The rest of the chapter describes the contributions of this thesis in greater

detail.

1.1 Contributions

This thesis makes three major contributions. First, it presents a principled ap-

proach to resolve cost-performance tradeoffs in large scale decentralized services

by posing them as concise optimization problems. Second, it describes light-weight,

distributed mechanisms to determine and enforce near-optimal resource allocation

strategies. Finally, it shows how this approach of optimal resource management

improves the state of the art in three different decentralized applications, namely,

name services, content distribution networks, and online information monitoring

systems.

1.1.1 Analytical Modeling

Cost-performance tradeoffs in distributed systems arise in the form of resource al-

location problems. For example, consider the practice of caching objects in lookup

services. The key question in caching is which object should be cached at which

node. Clearly, caching an object at all the nodes provides the best response time

to clients requesting that object. However, limited capacity in the system to store

and update cached objects prohibits all objects from being cached at all nodes.

6

Consequently, system resources need to be allocated carefully between the objects.

This thesis takes the fundamental approach that the tradeoff between cost

and performance can be expressed as a mathematical optimization problem. The

desired system-wide performance targets can be expressed as constraints to the

optimization problem. Deriving the solution to this optimization problem, that

is, the optimal decision to determine which object should be hosted at which

node, can lead to efficient, well-informed resource allocation in practice. Such

cost-performance optimization problems can take two forms depending on appli-

cation goals: ‘minimize total cost such that global performance meets a target’

or ‘maximize global performance such that total resource consumption is within a

bound.’

The cost-performance tradeoffs depends on the characteristics of the objects in

the system. For instance, content size determines the amount of storage or memory

space required for an object; update rate and content size determine the amount of

network bandwidth required to keep copies of an object consistent. Similarly, the

popularity of an object determines the performance benefit obtained by caching

it. Caching popular objects with small sizes and low update rates provides more

benefits than caching large, unpopular objects that change often.

These complex tradeoffs between objects with wide ranging characteristics ren-

ders cost-performance optimization difficult. The optimization problems described

earlier depend on the number of nodes N and number of objects M with a com-

plexity of O(MN) to express the problem. In a large scale network service with

thousands of nodes and millions of objects, the O(MN) complexity just to pose

the problem is unmanageable.

The key insight behind this thesis is that coarse-grained yet structured resource

7

allocation renders cost-performance optimization practical. This thesis takes ad-

vantage of structured overlays to reduce the complexity of resource allocation prob-

lems. The intuition is that instead of making resource allocation decisions for each

and every node in the system, decisions can be made for groups of nodes in well-

defined regions of the structured overlay. To start with, each object is hosted at

one single node called owner. If it is desirable to increase resources for an object,

it is allocated to all the neighboring nodes of the owner. This process is extended

so that resource allocation is performed in groups of nodes defined by the distance,

or the number of hops, from the owner node.

The above process of structured, systematic resource allocation leads to concise

and elegant analytical models for resource-performance tradeoffs. Resource allo-

cation is now reduced to deciding at which level or distance from the owner node

an object should be hosted. Thus the complexity of the optimization problem is

reduced from O(MN) to O(MK), where K is the diameter of the overlay. Since

the diameter of structured overlays is sub-linear in N, typically logarithmic or even

lower, the complexity is considerably lower and easier to manage. Moreover, uni-

form distribution of node degree or number of neighbors makes analytical modeling

tractable. For instance, the cost of caching an object at level d depends on the

number of nodes at distance d from the owner and can be modeled as bd, where b

is the node degree. Similarly, the lookup latency for locating an object cached at

level d depends on the number of hops required to reach a node with a replica and

can be modeled as K − d, where K is the diameter.

This thesis presents analytical models to express different kinds of resource-

performance tradeoffs. For lookup services, it considers average response times for

lookups, for CDNs, average cache hit rates, and average update detection time for

8

online data monitoring systems. For each of these applications, it models cost for

different types of resources such as network bandwidth, memory consumption, and

computational load.

1.1.2 Decentralized Optimization

Deriving the optimal resource allocation strategy based on the above models to

meet system-wide performance goals poses three major challenges. First, resource-

performance optimization problems are typically NP-hard rendering them compu-

tationally infeasible in large systems. Second, since parameters of the optimization

problem such as workload and object characteristics are distributed throughout the

system, it is difficult for any node to compute the globally optimal resource allo-

cation strategy using local information. Finally, workload characteristics such as

popularity may change continuously rendering the previously computed resource

allocation strategies outdated.

This thesis develops fast, decentralized, and adaptable techniques to determine

and enforce efficient resource allocation strategies in practice. First, it presents two

techniques to determine near-optimal solutions for typical cost-performance opti-

mization problems at a single node. Second, it presents low-overhead mechanisms

to make the optimization process completely decentralized. Third, it presents

efficient methods to detect and adapt to changes in workload and object charac-

teristics. These techniques enable the system to meet global performance targets

through independent and local decisions.

The first optimization technique derives the solution to the optimization prob-

lem as a closed-form mathematical formula. This analytical derivation is facilitated

by making simplifying assumptions on workload and object characteristics. This

9

technique models popularity as a power-law or Zipf distribution, an analytically

tractable probability distribution with a single parameter called exponent; several

Internet applications, such as DNS and Web, follow Zipf popularity distributions.

It assumes that object characteristics are assumed to be uniform ignoring the ef-

fects of size and update rate on resource consumption. The advantage of this fully

analytical technique is that computing the solution requires only one parameter to

be estimated, namely the exponent of the Zipf distribution.

The second optimization technique is based on a fast and accurate numerical

algorithm developed in this thesis and generalizes the approach to a broader class

of applications, which may have any distribution of workload and object character-

istics. It explicitly takes into account all workload and object characteristics and

provides substantial decrease in resource consumption compared to the analytical

technique through better-informed resource allocation. The algorithm has a small

run time complexity of O(MK log(MK)) for a system with M objects and diam-

eter K and enables the optimization to be reapplied frequently so that the system

can adapt itself to changes in workload characteristics. It is near-optimal and pro-

vides solutions accurate to one object per node. That is, resource consumption at

each node exceeds from the optimum by at most one object.

The optimization techniques proposed above require characteristics of the global

system-wide workload and objects. Since it is expensive to make the entire infor-

mation available at each node, this thesis develops techniques for coarse-grained

aggregation without significant loss of accuracy. This technique treats objects

with similar characteristics as a single clustered entity, averages their characteris-

tics, and performs resource allocation on the clustered entity. Through aggregation

of characteristics of clustered entities across the system, each node gathers coarse-

10

grained information about entities not hosted by itself. Aggregating coarse-grained

characteristics enables each node to apply the solution techniques independently

and still determine a globally consistent resource allocation strategy.

Simultaneously, nodes keep track of changes to workload and object charac-

teristics. This thesis presents a unique method for monitoring changes to object

popularity when the object is distributed on several nodes. This method seamlessly

combines two different ways to estimate popularity, counting number of accesses

in a time interval and measuring inter-arrival time between accesses. The result

is a mechanism that is fast and efficient; it quickly detects sudden increases in

popularity, which may occur during a flash crowd or denial of service attack; and

incurs an overhead proportional to object popularity, thus requiring little resources

to monitor the large number of unpopular objects.

The key property of the techniques and mechanisms presented in this thesis is

decentralization. No single node in the system takes sole responsibility for resolving

tradeoffs and becomes a central point of failure. Each node makes decisions inde-

pendently and enforces the decisions only on the locally hosted objects; expensive

techniques for distributed consensus and agreement are not employed. Moreover,

the network overhead for system-wide aggregation of global information is small

and bounded. Nodes only communicate with their neighbors for aggregation and

the size of messages exchanged is bounded by using only a constant number of

clustered entities for each level. Finally, the techniques for monitoring workload

characteristics are light-weight and seamlessly handle both highly popular and less

popular objects efficiently.

I have implemented the above techniques in the form of an framework called

Honeycomb. Honeycomb provides applications the ability to resolve resource-

11

performance tradeoffs on structured overlays. It makes minimal assumptions about

the underlying overlay, adds little additional overhead, and provides an extensible

interface that accommodates many new applications.

1.1.3 Applications

The combination of optimization-based resource management and structured over-

lays provides new opportunities to build robust and scalable Internet services with

unprecedented performance. This thesis presents three different applications built

using this principled approach: first, a new naming system for the Internet called

CoDoNS that provides a safety net and a possible replacement for the Domain

Name System, the current service for looking up host names, second, a new con-

tent distribution network called CobWeb that provides high cache hit rates and

low latency access to web content, and finally, an online information monitoring

system called Corona that monitors web sites for changes and notifies users about

updates that happen in web sites of interest to the users.

This thesis examines the legacy systems that currently provide the above ser-

vices, illustrates how their use of heuristics for resource allocation leads to fun-

damental drawbacks, and shows through deployed prototypes that the approach

developed in this thesis significantly improves the state of the art.

CoDoNS: Naming System

Identifying the location of a network resource, that is, a named entity such as

an Internet host, is an essential predecessor to communication. Currently, this

critical task of translating human-friendly resource names to network addresses

is provided by the Domain Name System (DNS). In addition to name-address

12

translation, DNS also serves as a general-purpose database for mapping names to

many different kinds of associated data, including mail servers, public keys, and

service configurations.

DNS operates through static, hierarchical partitioning of the namespace and

decentralized management. The DNS namespace is partitioned into several do-

mains, each of which may be further divided into subdomains. The owner of a

subdomain holds the responsibility for both managing the namespace and resolv-

ing names under that subdomain. Thus a name lookup in DNS involves traversing

this hierarchical namespace until a server for the queried subdomain is reached.

DNS reduces the lookup latency of this iterative process through wide-spread use

of opportunistic caching.

While DNS sustained the growth of the Internet for two decades, recent in-

creases in malicious behavior, explosion in client population, and the need for fast

service relocation has exposed fundamental drawbacks in the design of DNS. These

drawbacks arise in the form of long latencies for resolving queries and propagating

updates to DNS bindings, poor resilience to server and network failures, and high

vulnerability to malicious attacks. This thesis examines these drawbacks though a

large-scale survey of DNS based on over half a million unique domain names and

hundred thousand namesevers.

Poor Performance: The hierarchical architecture of DNS leads to large latencies

for name resolution and update propagation. Recent studies [153, 73, 79] show

that DNS lookup time contributes more than one second for up to 30% of web

object retrievals. The heuristic-driven, opportunistic caching employed by DNS

is not effective for the DNS workload, which is characterized by heavy-tailed Zipf

distributions. The use of short expiry times for cached mappings, to facilitate easy

13

service relocation, further reduces the effectiveness of caching in DNS. Moreover,

manual configuration errors introduce bad delegations to non-existent servers and

create latent performance problems [110, 103].

Unanticipated changes to DNS bindings do not propagate quickly to clients as

ad hoc, opportunistic caching prohibits fast propagation of updates. DNS relies

on timeout-based invalidations of cached copies since it is expensive to keep track

of the locations of replicas in an opportunistic cache. This weak cache consistency

implies that changes may not be visible to clients for long durations, effectively

preventing quick service relocations in response to emergencies.

Low Availability: Despite the large amount of collective resources in DNS, the

number of servers hosting the bindings of any given name is typically small. The

failure, compromise, or overload of these servers that act as a bottleneck can lead

to failed lookups, malicious take overs, and Denial of Service (DoS) attacks. Ap-

proximately 80% of the domain names are hosted by just two servers, and a small

0.8% by only one. At the network level, all servers for 32% of the domain names

are connected to the Internet through a single gateway.

Moreover, the hierarchical architecture of DNS inherently poses a load imbal-

ance between the servers at the top level of the hierarchy and the servers at the

leaves. Consequently, the root and top level servers are frequent targets of DoS at-

tacks, where a recent DoS attack on the root DNS servers crippled nine of thirteen

root servers [166].

Security Risks: DNS is highly susceptible to malicious attacks due to imprudent

delegation of authority for serving name address bindings. Name owners in the

DNS designate certain servers as authoritative for hosting their name bindings.

These delegations are based on names rather than network addresses and may

14

trigger extraneous lookups during name resolution. This name-based delegation

of authority leads to subtle and complex dependencies between DNS servers. For

example, the authority for hosting cornell.edu is delegated to servers in the domain

rochester.edu, which is delegated to servers in the wisc.edu domain and in turn

delegated to umich.edu. These dependencies lead to complex trust relationships

and impose a high risk of compromise.

The large-scale measurement survey mentioned above quantifies risks posed

by transitive delegation of authority. It shows that the extent of dependencies

extend to as high as 46 servers on average and well over hundred servers for a

significant 8% of the domains. About 125 servers control a disproportionate 10%

of the namespace, where 25 of these critical servers are operated by educational

institutions, which may not have adequate incentives and resources to enforce

security.

This thesis presents a new architecture called Cooperative Domain Name Sys-

tem (CoDoNS) to replace DNS. The key principle behind CoDoNS is to separate

namespace management from name resolution. This separation enables CoDoNS to

retain the successful hierarchical and decentralized legacy DNS namespace, while

providing name resolution service through a flat, peer-to-peer architecture layered

on Honeycomb. This architecture based on the structured overlays and cost-aware

resource allocation leads to high performance, availability, and data integrity as

follows:

• High Performance: CoDoNS provides low latency name resolution and

fast propagation of updates through structured, proactive caching driven by

the cost-aware resource allocation approach outlined earlier. CoDoNS targets

low average lookup latency while minimizing the total network bandwidth

15

consumed. It pushes updates proactively to all the cached replicas taking

advantage of structured caching to determine their locations and eliminates

the need for soft, timeout-based mechanisms.

• Availability: Any node in CoDoNS can serve any binding. Consequently,

CoDoNS can tolerate large number of failures in the system. Self-organizing

overlays ensure that CoDoNS transparently heals around network and node

failures and no single node becomes a bottleneck in the system.

• Data Integrity: CoDoNS preserves data integrity and alleviates the im-

pact of node compromises by supporting the DNSSEC [50] standard. Signed

cryptographic certificates provided by name owners enables clients to verify

the authenticity of bindings fetched from CoDoNS.

A prototype of CoDoNS is deployed on the planetary-scale test bed called

PlanetLab. Performance measurements from this deployment show that CoDoNS

provides a median response time of a few milliseconds, a factor of two decrease in

the average response time compared to legacy DNS, and can adapt itself quickly

to meet sudden surges in workloads, including flash crowds and DoS attacks.

CobWeb: Content Distribution Network

The World Wide Web has emerged as the primary means of information sharing

in the Internet. Naturally, considerable effort has been spent to improve the user

perceived latency for accessing web content. The primary technique used to im-

prove lookup performance on the web has been caching. Web caching solutions to

date have been deployed in two different settings: passive caching driven by client

workload and active caching managed by content distribution networks.

16

Passive web caches are opportunistic; similar to DNS caches, they are driven

entirely by the client workload. That is, they fetch objects from the Web on behalf

of clients, cache them locally, and reply with cached copies when available. Passive

web caches may reside on Web browsers at the clients exploiting temporal locality

within the clickstream of a single user or at a common point of access to many

users, such as near network gateways that connect institutions to the Internet.

These caches may also cooperate with each other to exploit common interests of

independent users. In contrast to client-driven passive caches, content distribution

networks perform active replication, where copies of web objects are placed a priori

in geographically distributed nodes to enable quicker access to the content for their

clients.

Resource limitations pose fundamental challenges to both active and passive

web caches. The caching solutions advocated to date are predominantly driven

by heuristics to decide which object to cache where. Passive caches sidestep the

problem of resource management by relying on the client access pattern to dictate

where objects are cached. Active caches, on the other hand, use more sophisticated

heuristics that incorporate server load as well as object size and update rate into

caching decisions. Overall, the literature on web caching is replete with several

different heuristics [152, 2, 124, 25, 159, 106, 85, 53, 14], which use different in-

tuition, make different assumptions, and consider different factors to resolve the

resource-performance tradeoff.

However, several measurement and simulation studies have shown that less-

informed, heuristic-based caching for the web provided limited performance gains.

While some heuristics perform marginally better than others depending on the

circumstances, the overall cache hit rate is typically lower than 40% [18, 156]. This

17

limitation has been shown to stem from the heavy-tailed nature of web popularity

distribution, where a large percentage of queries go for less popular objects. Thus,

the conventional wisdom about web caching has been negative.

This thesis shows that high hit rates can be achieved in web caches at low

overhead. It does so through a deployed content distribution network called Cob-

Web based on the principles of cost-aware resource management outlined earlier.

CobWeb is a distributed cooperative cache, in the sense that it is composed of a

peer-to-peer network of nodes that cooperate and share cache data to provide a

low latency CDN to the users. However, unlike passive client-driven cooperative

caches, it uses proactive caching, where objects are cached to nodes in anticipation

of future demand. Similar to CoDoNS, CobWeb is layered on a self-organizing

structured overlay, and uses the Honeycomb framework to manage resources judi-

ciously.

CobWeb provides unprecedented performance improvement over heuristics by

explicitly handling heavy-tailed distributions. CobWeb can meet a high target

for cache hit rate so that it a large number of requests can be answered locally

with little delay. CobWeb achieves the target using less memory and bandwidth

resources. Alternatively, CobWeb can be set to maximize the utility of caching

with a limit on memory and bandwidth consumption. In both configurations,

CobWeb automatically learns the workload and object characteristics and manages

resources judiciously to achieve high performance at low cost.

CobWeb is deployed on PlanetLab, a global infrastructure for distributed sys-

tems research, and operated as an open-access CDN. It provides the same interface

to clients as existing Web caches and CDNs. It uses DNS redirection to dynam-

ically redirect a client to the closest CobWeb server [158]. It serves about 10

18

million requests a day at the time of writing of this thesis. Simulations and mea-

surements show that it provides significant improvement in latency over heuristic

based caching solutions.

Corona: Online Data Monitoring System

The naming system and the CDN discussed in the previous sections support a

pull mode of content dissemination, where clients issue requests to fetch content

from servers. However, there is an emerging need for systems that directly de-

liver content to the users. Such asynchronous event notifications are provided by

publish-subscribe systems, which enable clients called subscribers to register for

events of their interest on the Internet and receive notifications when the events

occur. Publish-subscribe systems are crucial for monitoring the large volume of

data sources, such as web pages, online databases, and sensor systems.

The fundamental challenge in monitoring such online data sources is that they

typically only provide a pull-based interface. Thus, clients are forced to explicitly

query the data source to find new content or updates to old content. This need

to provide asynchronous content delivery for traditional data sources has led to a

new industry standard where data is published as feeds in well-defined XML-based

formats, such as RSS and Atom, which are parsed by automated tools called feed

readers. Feed readers poll the content servers periodically on behalf of the user

and report updates detected to the user.

Publish-subscribe through uncoordinated polling, as in the current feed readers,

suffers from poor performance and scalability. Subscribers do not receive updates

quickly, as the polling period poses a fundamental limit to the update detection

time. Clients are tempted to poll at faster rates in order to detect updates quickly.

19

Consequently, content providers have to handle the high bandwidth load imposed

by clients, each polling independently and multiple times for the same content.

Moreover, the workload tends to be “sticky;” that is, users subscribed to popular

content do not unsubscribe after their interest diminishes, causing a large amount

of wasted bandwidth.

This thesis applies the cost-aware resource allocation framework outlined ear-

lier for building an online data monitoring system. This system, called Corona,

provides a high-performance update notification service for the web without re-

quiring any changes to the existing infrastructure, such as web servers. Instead of

relying on naive, independent polling, Corona allocates multiple nodes to poll for a

feed cooperatively so that updates can be detected faster and shared with clients.

The key resource tradeoff in Corona involves bandwidth and update latency.

Clearly, polling data sources more frequently will enable the system to detect and

disseminate updates earlier. Yet polling every data source constantly would place

a large burden on publishers, congest the network, and potentially run afoul of

server-imposed polling limits that would ban the system from monitoring feeds

or web pages. The goal of Corona, then, is to maximize the effective benefit of

the aggregate bandwidth available to the system, while remaining within server-

imposed bandwidth limits. This thesis explores three different modes of operation

for Corona: how to minimize update latency while ensuring that the average load

on publishers is no more than what it would have been without Corona, how to

minimize bandwidth consumption in order to achieve a targeted update latency,

and how to ensure that the load is more fairly balanced across channels with

different update characteristics.

Corona, just like CoDoNS and CobWeb, is deployed on PlanetLab and made

20

available for public use. Evaluation of this deployment shows that Corona achieves

an order of magnitude improvement in update performance. In experiments pa-

rameterized by real RSS workload collected at Cornell [92] and spanning 80 Planet-

Lab nodes and involving 150,000 subscriptions for 7500 different channels, Corona

clients see fresh updates in intervals of 45 sec on average compared to legacy RSS

clients, which see a mean update interval of 15 min. At the same time, Corona

issues no more polling requests to the content servers than issued by the legacy

RSS clients.

Summary

The above applications indicate that a principled approach for resource allocation

based on mathematical optimization can be practical, efficient, and well-suited for

a large class of distributed applications. Each application describe above employed

this general approach to meet different performance goals, namely, lookup latency,

cache hit rate, and update detection time. And in each case, the approach led

to substantial improvement in performance over the state of the art, which relies

on ad-hoc heuristics for resource allocation. Overall, the thesis shows that a well-

informed, cost-aware approach to resource allocation leads to high performance

decentralized network services.

1.2 Outline

The rest of this thesis describes these contributions in greater detail. Chapter 2

presents the optimization-based approach for resource allocation and describes the

analytical models, optimization algorithms, and distributed mechanisms developed

for near-optimal resource allocation on structured overlays. Chapter 3, 4, and 5

21

respectively describe the three services, namely CoDoNS, CoBWeb, and Corona,

built using this approach. For each service, the chapters describe the current state

of the art, present a new architecture based on structured overlays and near-optimal

resource allocation, and provide a detailed evaluation of the new architecture in

comparison to the state of the art through simulations and real-world deployment.

Chapter 6 provides a summary of other research work related to the topics dis-

cussed in this thesis. And, finally, Chapter 7 summarizes the contributions and

discusses the implications of the contributions of this thesis.

Chapter 2

Resource Allocation through

Mathematical Optimization

This chapter presents the principled approach outlined earlier for resolving resource-

performance tradeoffs in distributed systems. This principled approach is based

on mathematical optimization, where the key cost-performance tradeoff is posed

as an optimization problem with constraints to represent system-wide perfor-

mance targets of the application. The application-specific performance targets can

then be satisfied efficiently by finding near-optimal solutions to the constrained-

optimization problem. This chapter derives analytical models to capture resource-

performance tradeoffs, presents techniques for finding near-optimal solutions to

the resource-performance optimization problems, and shows how these techniques

can be implemented efficiently in practice.

This thesis primarily focuses on critical, performance-demanding decentralized

services. The unifying feature of these applications is that expensive resources

such as bandwidth, memory, and computational power distributed on multiple

nodes need to be allocated between application-level entities such as name-data

mappings, web objects, or data feeds. The techniques developed in this chapter

enables decentralized applications to make judicious resource allocation decisions.

While this chapter focuses on the driving applications introduced in Chapter 1,

the techniques developed here are general and can be applied to other distributed

applications with similar tradeoffs between resource utilization and performance.

Resource allocation in decentralized network services is governed by decisions

to a fundamental question: ‘which nodes host which application-level entities?’ As

22

23

mentioned earlier, the total number of decision variables in the above optimization

problems is MN for a system with M objects and N nodes and can be intractable

in large-scale decentralized systems. While vast amount of literature on theoretical

analysis and solution techniques for decision making problems exists [35, 48, 75,

87, 88, 107, 108, 116, 145], the scale and complexity of decision making problems

in real-world applications creates a need for exploring new techniques that work

efficiently in practice.

This thesis takes advantage of structured overlays as an underlying substrate

to facilitate efficient resource-allocation in large-scale decentralized systems. The

next section provides a brief overview of structured overlays before subsequent

sections describe the core approach of optimization-based resource allocation.

2.1 Overview of Structured Overlays

Overlays are just distributed systems composed of nodes called peers connected

by a communication network. They are called overlays because they form a su-

perimposed virtual network on top of the underlying network. That is, the com-

munication path between two nodes is not always the direct path provided by the

underlying network, but can be an indirect path passing through other peers in

the overlay. Overall, the peer nodes in a overlay system form a topology, where

each node communicates directly to a few nodes called neighbors and reaches any

other node by following multi-hop indirect paths in the topology.

Structured overlays are a class of overlays that have a regular, well-defined

topological structure. The neighbors of a node are carefully chosen in order to meet

certain criteria so that the topology has predictable properties. For example, nodes

can be organized to form a two-dimensional torus so that the maximum length of

24

an overlay path between any two nodes can be analytically bounded by the square

root of the number of nodes. Similarly, each node has a uniform node degree,

the number of neighbors, so that the average node degree in a structured overlay

can be analytically bounded. Analytical tractability of node degree and diameter

in structured overlays facilitates bounded delays for basic overlay operations such

as locating a node, adding a new node, and repairing the overlay during a node

failure.

The key property that makes structured overlays an attractive substrate for

distributed systems is self organization. The overlay automatically forms a regu-

lar topology during node failures and joins without external, manual intervention.

Thus when a new node joins the system, it can find its place in the topology,

add new neighbors, and become connected to existing nodes automatically. Sim-

ilarly, when a node fails, its neighbors detect the failure automatically and find

new neighbors without disrupting the applications layered on the overlay. The

regular topology enables these protocols to be lightweight. Thus, structured over-

lays provide high failure resilience and scalability through self organization and

analytically tractable topology.

Decentralized services are layered on a structured overlay as follows. Each

application-level entity, called object, has a unique identifier and a unique location

in the system called the home node. Structured overlays perform routing to locate

the home node of an object. Routing is the process of tracing a path from any

node in the system to the home node by following direct paths along neighbors of

intermediate nodes.

The resource allocation techniques presented in this chapter is applicable to

a wide range of structured overlays that have been proposed to date. While the

25

suitable overlays include CAN [121], Chord [138], Kademlia [97], Pastry [128],

SkipNet [71], Tapestry [161], and Viceroy [96], this chapter describes optimization

using Pastry as an example. Chapter 6 provides a detailed overview of recent

advances in structured overlays.

2.1.1 Pastry

Pastry organizes the system in a ring topology by assigning each node a unique

identifier drawn from a large circular space of numbers. Each identifier can be

expressed as a string of digits and the number of digits in each identifier is fixed.

The ring is defined based on proximity in the identifier space, that is, each node is

connected to neighbors with the next highest and next lowest identifier. Modular

arithmetic for computing proximity ensures that the identifier space wraps around

itself and forms a ring.

Objects are also assigned unique identifiers from the same identifier space.

The home node of an object in Pastry is the unique live node whose identifier is

the closest to the object, closeness being measured in the identifier space. Object

identifiers are typically assigned through consistent hashing [81], that is, a one-way

hash function is used to map the name of the object to the identifier space. A large

identifier space, typically of 128 or 160 bits, is used to ensure that two different

objects do not hash to the same identifier. Assigning identifiers through consistent

hashing provides two advantages. First, the identifier of an object can be indepen-

dently generated by any node without communicating with other nodes. Second,

it balances the number of objects managed by each home node, by spreading the

objects uniformly in the system.

Any node in the overlay can forward lookup messages for an object to its home

26

node using the above mapping between objects and home nodes. A naive way to

route such messages is to forward it along the neighbors in the ring. However,

this approach takes O(N) hops in the average case in a system of N nodes and is

consequently inefficient. Instead, Pastry routes messages using a technique called

prefix matching [114]. With prefix matching, each node forwards a message to a

node whose identifier has one more matching prefix digit with the object identifier

than the current node. Prefix matching reduces the search space in the system by

a factor of B, the base of the identifier space, during each iteration and finds the

home node in O(logB N) hops on average.

Pastry nodes maintains additional overlay neighbors to support prefix-matched

routing. Pastry distinguishes between two kinds of neighbors, namely ring neigh-

bors, which are the L successor and predecessor nodes along the ring, and prefix

neighbors, which are overlay nodes with different number of matching prefix digits

with the node. The former nodes are represented in a data structure called the

leaf set, while the prefix neighbors are represented in a tabular structure called the

routing table. The entry in the lth row and bth column of the routing table points

to a node whose identifier has the same l prefix digits as this node’s identifier and

b as the (l + 1)th prefix digit. The average neighborhood state maintained by a

Pastry node is O(L) for the leaf set and O(B logB N) for the routing table.

The routing table enables Pastry node to forward queries using prefix matching.

When a Pastry node needs to route a message, it forwards it to the home node

directly if present in the leaf set. Else, it picks the node with one more matching

prefix digit from the routing table and forwards the message to it. In exact terms,

if the object identifier has l matching prefix digits with the node’s identifier and

has b as the (l + 1)th prefix digit, then Pastry picks the node in the lth row and bth

27

column in the routing table to forward the message. Sometimes, no node may exist

in the lth row and bth column of the routing table. In that case, Pastry forwards

the message to the closest node in the lth row of the routing table. Figure 2.1

illustrates the process of routing in Pastry. An analysis of the complexity of the

routing protocol in [128] proves that the worst case latency is ⌈logB N⌉ hops.

Pastry nodes automatically update their leaf set and routing table during node

failures and joins. A new node joining the network initiates the join by contacting

a bootstrap node, which can be any node in the current Pastry ring known to the

joining node out of band. The bootstrap node then routes a join message in the

ring to locate the node closest to the joining node. The joining node then learns

its own position in the ring and fills its leaf set based on the leaf set of the closest

node found by routing the join message. The nodes in the leaf set of the joining

node also update their leaf set to include the new node. The new node fills its

routing table based on the routing tables of the intermediate nodes that routed

the join message for the new node. More precisely, the new node fills the lth row in

its routing table from the lth row of the intermediate node with l matching prefix

digits.

For failure management, each node checks liveness of its neighbors by periodi-

cally probing all nodes in their leaf set and routing table. When a neighbor in the

leaf set fails, the node adds a new neighbor to the leaf set based on the leaf sets of

other neighbors in the leaf set. That is, if one of the L successors of a node fails,

its new Lth successor is the immediate successor of the old Lth successor. When a

node in the routing table fails, a new node to fill that position is chosen from nodes

in the same row and column of the routing tables of other nodes in the same row.

Overall, the failure management protocols ensure that message routing rarely fails

28

Q

B

0210

D

E

2201

2110

lookup (2101)

2100
node
Home

Figure 2.1: Prefix Routing in Pastry: The object 2101 is hosted by the home node

E, which has the closest identifier 2100. A query for 2101 is routed towards the

home node by iteratively matching prefix digits. In the figure, the query traverses

through intermediate nodes B and D, which share one more prefix digit with the

object than the previous node in the path.

29

even in the presence of high churn, that is, frequent joins and failures of nodes.

2.2 Analytical Modeling

This thesis presents a systematic approach to allocate nodes in a structured over-

lay so that the complexity of resource-allocation decisions is manageable. This

approach takes advantage of the regular topology of structured overlays, which

induces a Directed Acyclic Graph (DAG) rooted at each node in the system. This

DAG is formed by the intermediate nodes through which messages are routed for

objects hosted by that home node. Such a DAG in a structured overlay has a

uniform node degree at each level. For example, the node degree in Pastry is its

base b.

The systematic approach allocates nodes in the DAG based on distances from

the home node. For example, all nodes at distance l hops from the home node may

be allocated to host and object. Such an allocation provides an intuitive handle

to track resource performance tradeoff. In the preceding example, the number of

hops to locate a node hosting the object decreases by h hops, while the number

of nodes hosting the object is bh, where b is the branching factor of the DAG.

Thus, the resource performance tradeoff of an object is modeled using just a single

variable.

This approach lowers the decision-making complexity from O(MN) to O(MK),

where K is the diameter of the structured overlay. Since structured overlays have

small diameters, typically ranging from a constant to a root (O(N1/d)) of the

number of nodes, this approach reduces the complexity of modeling resource allo-

cation problems substantially. Obviously, the coarse granularity at which alloca-

tion decisions are made could lead to sub-optimal solutions. However, as shown

30

in the subsequent chapters, this coarse-granularity resource allocation leads to a

fundamentally superior level of performance compared to ad-hoc, heuristic based

techniques.

The systematic node allocation strategy can be formalized for a typical prefix-

matching structured overlay as follows. Each object is allocated nodes at a level l

called the allocation level. The level l corresponds to a wedge of nodes that have l

or more matching prefix digits with the object. Thus an l level object has lookup

latency of l hops and is replicated at N
bl nodes in the system. The allocation level

for an object can range from 0, where all the nodes in the system host the object

to ⌈logb N⌉, where only the home node hosts the object. Figure 2.2 illustrates the

concept of allocation levels in Pastry.

The central question, then, is to determine the best allocation levels for each

object in the system. The optimal allocation strategy is determined by posing the

resource-performance tradeoff as constrained optimization problems as follows:

Find L∗ = arg. min.

M
∑

1

cm(lm) s.t.

M
∑

1

pm(lm) = TP (2.2.1)

Find L∗ = arg. max.
M

∑

1

pm(lm) s.t.
M

∑

1

cm(lm) = TC (2.2.2)

In the above expressions, lm represents the allocation level of object m and func-

tions cm(l) and pm(l) represent cost and performance for each object as a function

of their allocation level. The expressions consider total cost as a summation of

individual resources allocated to each object, and treat performance as a metric

averaged over each object.

Expression 2.2.1 poses an optimization problem to minimize the cost required

to achieve a performance target TP , while expression 2.2.2 represents the converse

problem of maximizing performance without exceeding a bound on cost TC . In

31

Q

B

0210

D

E

L1

2201

2100

2110L2

L1

lookup

cached
response

Figure 2.2: Structured Allocation: Objects are allocated to well-defined wedges

of nodes defined by distances from the home node. This structured allocation

facilitates analysis of cost and performance. In the figure, allocating the object

to all nodes with 1 matching prefix digit provides one-hop lookup latency for that

object.

32

either cases, the goal of the optimization is to find the optimal allocation levels of

all the objects denoted by the vector L∗ = {l∗1, l∗2, · · · , l∗m}. The allocation level of

each object takes integral values between 0 and K, the diameter of the structured

overlay, ⌈logb N⌉ for Pastry.

The next section presents analytical models for two different performance met-

rics that arise in the context of real-world applications, namely, lookup latency

and update detection times.

2.2.1 Lookup Latency

Lookup latency is the primary performance factor perceived by users of lookup

services, such as naming systems and content distribution networks. Layering

these services on top of structured overlays alone does not provide adequate lookup

performance as lookups may incur long latencies as routing involves multiple hops.

Since each overlay hop may traverse long distances in the Internet, the overall

lookup latency in structured overlay could be quite high [43, 30], sometimes much

longer than what naming systems and CDNs currently provide [39].

A naive way to improve lookup performance is by caching objects opportunis-

tically at intermediate nodes in the lookup path. While opportunistic caching pro-

vides some improvement in lookup latency, it suffers from fundamental drawbacks

as outlined in Chapter 1. This chapter presents a fundamentally different approach

to caching, where the extent of caching for an object is determined through analysis

of cost-performance tradeoffs rather than opportunistic decisions.

The average lookup performance for an object at level l is given by pm(l) =

qmD(l), where qm is the popularity of the object in terms of the number of queries

it receives in unit time, and D(l) is the network latency in the underlying overlay to

33

Table 2.1: Notation: Symbols used in this thesis and their meanings.

N number of nodes

b base of underlying overlay

K diameter of underlying overlay

M number of objects

lm allocation level of object m

qm popularity of object m

sm size of object m

um update rate of object m

p(l) performance function

c(l) cost function

T performance target

τ polling period for detecting updates

α exponent of Zipf distribution

λ Lagrange multiplier

34

traverse l hops. For a structured overlay that does not take into account network

proximity while choosing neighbors, the average latency is the same at all levels

and D(l) = l.

However, structured overlays sometimes fill positions in the routing table based

on network proximity [30, 43]. For such proximity-aware overlays, the latency D(l)

can be modeled as
∑l

0 dj, that is, the sum of the average latencies of first l hops.

Proximity aware overlays tend to have lower average latencies in initial hops than

hops close to the home node because a node typically has more choices to fill a

position at lower levels of the routing table than at higher levels. For example, in

Pastry, there are more nodes with 1 matching prefix digits than 2 matching prefix

digits, hence the average latency at level 1 tends to be lower than at level 2. In

practice, the values of dj can be determined experimentally.

The cost tradeoff for an object depends on the key type of resource the ap-

plication desires to conserve. For storage cost or memory consumption, the cost

function for object m is cm(l) = sm
N
bl , where sm is the size of the object. The

bandwidth consumption for managing an object consists of three components: the

update cost required to keep the object up to date, allocation cost to host the

object at a node, and maintenance cost required to manage resource allocation

over time. The cost to update object m at a single node is smum, where sm is the

size of the object and um is the update rate of the object, that is, the number of

updates seen by the object in unit time. The maintenance cost is a constant A for

each object at each node in the system.

The cost to change the allocation level of an object depends on both the current

and the new levels of allocation. When increasing the number of nodes allocated to

an object, that is, decreasing its allocation level, a bandwidth cost is incurred only

35

for additional nodes as the state needs to be copied only to the newly allocated

nodes. On the other hand, increasing an object’s allocation level (reducing the

amount of allocation) incurs negligible cost as state is only deleted and not copied

over the network. Thus, the allocation cost am(l) for object m currently at level l′

is:

am(l, l′) =















sm

(

N
bl − N

bl′

)

∀ l < l′

0 ∀ l ≥ l′

The overall bandwidth overhead for changing the allocation level of an object m

from l′ to l is cm(l, l′) = (A + smum)N
bl + am(l, l′).

Optimization problems to capture the application-specific performance require-

ments can be posed using the above expressions to model cost and lookup perfor-

mance. An example optimization problem, that achieves a target average lookup

latency of TL hops with minimal bandwidth consumption is expressed as:

Find L∗ = arg. min.
M

∑

1

(A + smum)
N

bl
+ am(l, l′) s.t.

M
∑

1

qmlm ≤ TL (2.2.3)

The above optimization problem takes into account the size, update rate, and

popularity of objects with minimizing bandwidth cost. The lookup latency is ex-

pressed as a weighted average over the number of queries received by different

objects. While Equation 2.2.3 models a typical lookup latency versus bandwidth

tradeoff that arises in a decentralized service, Chapters 3 and 4 present optimiza-

tion problems specific to performance requirements of two practical applications.

2.2.2 Update Detection Time

This section presents an analytical model for another key performance metric,

namely update latency. Update latency, the time taken for users of an application

36

to learn about updates to objects, is a critical performance metric for online data

monitoring and event detection systems. These systems typically monitor an online

data source from different vantage points by polling the data source periodically.

The key resource allocation problem is to determine the number of nodes required

to monitor each data source keeping in mind that monitoring a data source incurs

bandwidth overhead.

This update latency versus bandwidth tradeoff can be modeled in a structured

overlay as follows. The average update detection time at a single node polling

periodically at an interval τ is estimated as τ
2
. An object at level l has, on average,

N
bl nodes polling it and the average time for detecting updates cooperatively is τ

2
bl

N
.

The total network load for polling an object at level l is τsm
N
bl , where sm is the

size of the object.

Based on the above expressions for update detection time and network load,

a typical update latency versus bandwidth optimization problem can be posed as

follows:

Find L∗ = arg. min.
M

∑

1

sm
N

blm
s.t.

M
∑

1

qm
blm

N

τ

2
≤ TU (2.2.4)

This constrained optimization problem targets an average update detection time

of TU in the system while minimizing total bandwidth required for polling. The

variables qm represent the number of users interested in object m and sm the size

of object m. The average update detection time is measured as a weighted average

over number users interested in each object. Chapter 5 presents other optimization

problems to capture different performance requirements that arise in the context

of Corona.

37

2.3 Optimization Techniques

The optimization problems formulated in the preceding section are NP-hard. When

the allocation levels take only integral values, these problems are equivalent to

integer linear programming and multiple knapsack problems [82], which are well-

known NP-hard problems. Since the number of objects in the system is expected

to be of the order of millions or higher, finding the exact optimal solution to the

optimization problem takes exponential run-time complexity and is not practical.

Instead, this thesis develops techniques to obtain near-optimal solutions in real

time. It presents two techniques, namely an analytical technique and a numerical

technique, that are accurate and fast.

2.3.1 Analytical Optimization

The analytical approach obtains closed-form solutions to the optimization problem

through mathematical derivation. Closed-form solutions imply that the optimal

replication strategy can be quickly obtained by evaluating a simple mathemati-

cal formula. To facilitate mathematical derivation, this approach approximates

the characteristics of the objects such as popularity, size, and update rate, with

well-known, analytically tractable distributions. Analytical modeling of tradeoff

parameters ensures that the resulting closed-form solutions depend on few variables

and can be computed locally by each node.

This section derives closed-form solutions for a typical optimization problem

that achieves a target average lookup performance TL expressed in overlay hops

while minimizing overhead. To facilitate analysis, it makes the following approxi-

mations for the tradeoff parameters: the size and update rate are assumed to be

38

uniformly same for all objects and the popularity of the objects are assumed to

follow a power-law or Zipf distribution.

A Zipf distribution [163] has the characteristic that the number of queries re-

ceived by the ith most popular object is proportional to i−α, where α is a parameter

of the Zipf distribution called the exponent. The Zipf distribution is a heavy-tailed

distribution, where the less popular objects in the tail of the distribution contribute

substantially to the total number of queries. The exponent gives a quantitative

indication of the contribution of the tail. The smaller the exponent, the heavier the

tail, that is, more queries go for less-popular objects. Measurement studies show

that several Internet applications, including DNS, web content distribution, and

RSS syndication, are characterized by Zipf distributions [79, 18, 92] with varying

exponents.

With the above approximations, the optimization problem to achieve target

lookup latency with minimal overhead can be expressed as follows:

Find L∗ = arg. min.
M

∑

1

N

bl
s.t.

∑M
1 m−αlm

∑M
1 m−α

≤ TL (2.3.1)

The above expression assumes that the objects are sorted in the reverse order of

popularity, that is, object m is the mth popular object in the system. Since the

object size and update rate are not incorporated, the overhead only depends on

the number of nodes allocated to the object. Thus, the goal of the optimization

problem reduces to minimizing the total number of allocations while meeting a

target lookup latency.

Note that analytical function optimization techniques operate on continuous

real functions. Performing such a function optimization on Equation 2.3.1 would

violate the integrality requirements of L∗ and provide real number values for opti-

mal allocation levels with fractional components. Rounding off the real solution to

39

obtain an integral solution may lead to large deviations from the integral optimal

solution. In order to deal with round-off errors without sacrificing the accuracy

of solutions, the problem 2.3.1 is transformed to a problem with different decision

variables.

Instead of deciding the optimal allocation levels of objects, the technique re-

verses the problem to decide how many objects should be allocated to a certain

level. Thus, instead of determining L∗ = {l∗1, l∗2, · · · , l∗m}, the transformed problem

determines the optimal X∗ = {x∗
0, x

∗
1, · · · , x∗

K−1}, where xl indicates the number

of objects allocated at level l or lower. Also, xK equals M as all the objects are

allocated at level K or lower. Since the number of objects in the system is ex-

pected to be large, rounding off a real value x∗
l leads to a deviation of one object

at most. Thus, the rounded-off solution results in increased allocation by at most

one object compared to the optimal.

Once the optimal solution is derived in terms of x∗
l , it is quite trivial to decide

which objects are allocated at level l; the most popular x∗
0 objects are allocated

at level 0, the next popular x∗
1 − x∗

0 objects are allocated at level 1, and so on

until any remaining objects are allocated to level K, the diameter of the overlay.

Basically, an object is always allocated at a level lower or equal to a less popular

object. Otherwise, swapping their allocation levels provides lower average latency,

indicating that the original solution is not optimal and can be improved. The

transformed optimization problem can then be expressed as follows:

Find X∗ = arg. min.
K

∑

0

xl
N

bl
(2.3.2)

s.t.

∑K
1 l[Q(xl) − Q(xl−1)]

Q(xK)
≤ TL (2.3.3)

and 0 ≤ xl ≤ M ∀ 0 ≤ l < K (2.3.4)

40

Here, Q(x) =
∑x

1 qm gives the total number of queries to the popular x objects

in the system. There are additional constraints to box the values of x∗
l within

acceptable limits.

This constrained optimization problem can be converted to an unconstrained

optimization problem by introducing a Lagrange multiplier λ. In general, the

Lagrange multiplier technique converts the constrained optimization problem Min.

f(X) s.t. g(X) = 0 to the unconstrained optimization Min. f(X) + λg(X). The

optimal solution to the latter is then obtained by setting partial derivatives with

respect to the variables X and λ to zero. The transformed optimization problem

is as follows:

Find X∗ = arg. min.

K
∑

0

xl
N

bl
+ λ[

∑K
1 l[Q(xl) − Q(xl−1)]

Q(xK)
− TL] (2.3.5)

For a Zipf distribution with exponent α, the summation Q(x) =
∑x

1 m−α can

be approximated as follows:

Q(x) =















ln(x) ∀ α = 1

x1−α−1
1−α

∀ α 6= 1

The above approximations are derived by converting the discrete summation into

an integral.

Using the above approximation for Q(x) and analytically finding the roots of

the partial derivatives of 2.3.5 produces the following solution.

x∗
l =















M
K−TL

K bl

b
K−1

2

, α = 1

Mdl[K−TL(1− 1

M1−α
−1

)]

1+d+···+dK−1 , α 6= 1

where, d = b
1−α

α

For a detailed derivation of the above formulas see Tables 2.2 and 2.3. The ex-

pression 2.3.6 gives the closed-form solution to the optimization problem 2.3.1 for

41

different values of the Zipf exponent α.

The Lagrange multiplier applied above does not consider the bounding con-

straints 2.3.4 and consequently, the computed values of x∗
l may exceed M the

number of objects in the system. It is, however, quite easy to incorporate the

bounding constraints into the analytical solution. If the closed-form solution pro-

vides a value greater than M for x∗
K−1, then the analysis can be repeated by forcing

the value of x∗
K−1 to M . Forcefully setting x∗

K−1 does not change the overall form

of the optimization problem 2.3.1, but only changes the number of levels to deter-

mine allocation from K to K − 1 and the target TL to TL − 1. Thus, the optimal

solution to the problem 2.3.1 can be derived quickly by iteratively applying the

closed-form formulas until the solution meets the bounding constraints.

Thus, the analytical approach enables nodes in the decentralized system to

quickly and independently compute the optimal allocation levels. The closed-form

formulas take minimal parameters as input, namely, the number of objects in the

system M and the exponent α of the Zipf distribution. Section 2.4 describes how

these parameters can be estimated efficiently in a structured overlay with low

communication overhead.

The closed-form solution provides a mechanism to understand cost-performance

tradeoffs that arise in practice. For example, consider a resource location service

such as DNS with α = 0.9, 10, 000 nodes, and 1, 000, 000 mappings, layered on a

structured overlay with base 32. Applying this analytical method to achieve an

average lookup time, TL, of one hop yields k′ = 2, x0 = 1102, x1 = 51900, and x2 =

10000. Thus, the most popular 1102 objects would be replicated at level 0, the next

most popular 50814 mappings would be hosted at level 1, and all the remaining

mappings at level 2. The average per node storage requirement of this system

42

would be 3700 mappings.

A more detailed analysis of resource-performance tradeoffs is shown in Fig-

ure 2.3. The figure shows the total number of objects cached in the system in order

to optimally meet target lookup performance in a Pastry-like overlay of 100, 000

nodes, base 32, and 10, 000, 000 bindings. It shows that overhead increases very

rapidly as more and more aggressive, that is, close to zero, lookup latency is tar-

geted. Nevertheless, Figure 2.3 indicates that significantly low average lookup

latencies, such as a small fractional value of 0.5 hops, can be achieved with modest

overhead of caching around 4% of objects at each node.

Overall, the analytical approach provides an elegant, light-weight technique to

resolve performance-overhead tradeoffs. Chapters 3 and 4 shows that this approach

provides substantial performance improvement over heuristic-based caching. Yet,

this approach depends on assumptions about the workload of the applications

and has drawbacks. First, application objects such as web objects have orders-

of-magnitude differences in their size and update rates [47]; sizes can range from

a few kilobytes to several megabytes and update intervals from a few seconds to

no updates whatsoever. The analytical approach often ends up allocating more

nodes to a large or frequently updated object than a small static object of slightly

less popularity. Consequently, it can consume significantly more bandwidth than

necessary. Second, it optimizes only for total number of allocations and cannot

handle fine-grained overhead consumption in terms of network bandwidth or stor-

age. Finally, the solutions determined by the analytical approach can be far from

the optimal when the popularity distribution deviates from Zipf; this deviation

may happen even for workloads that typically satisfy Zipf behavior as a result of

sudden increases popularity during flash crowds.

43

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
x 10

4

target lookup latency (hops)

n
u

m
b

e
r

o
f
o

b
je

ct
s

p
e

r
n

o
d

e

Zipf 0.7
Zipf 0.8
Zipf 0.9
Zipf 1

Figure 2.3: Optimal Overhead for Target Lookup Latency: The number of alloca-

tions required to meet a target lookup latency increases rapidly as lower and lower

performance is targeted. Nevertheless, significantly low average lookup latencies

(0.25 to 0.5 hops) can be achieved with moderate overhead.

44

Table 2.2: Analytical Derivation: The closed-form optimal solution for prob-
lem 2.3.1 when α 6= 1.

The resource-performance optimization problem considered here is the following:

Find X∗ = arg. min.
K

∑

0

xl
N

bl
, s.t.

∑K
1 l[Q(xl) − Q(xl−1)]

Q(xK)
≤ TL

The constraint can be simplified as follows:

K −
K−1
∑

0

Q(xl)

Q(xK)
≤ TL

Substituting the approximation for Q(x) =
∑x

1 x−α ≈ x1−α−1
1−α

, gives the following

expression for the constraint:

K −
K−1
∑

0

x1−α
l − 1

M1−α − 1
≤ TL ⇒

K−1
∑

0

x1−α
l ≥ K + (M1−α − 1)(K − TL)

The unconstrained optimization problem with Lagrange multiplier λ is:

K
∑

0

xl
N

bl
− λ[

K−1
∑

0

x1−α
l − K − (M1−α − 1)(K − TL)]

Taking the partial derivatives with respect to each xl and λ and equating them to

0 gives the following set of equations:

λ(1 − α)x−α
l = N

bl , ∀ 0 ≤ l < K

∑K−1
0 x1−α

l = K + (M1−α − 1)(K − TL)

Solving the above set of equations provides the following closed-form formulas for

x∗
l s:

x∗
l =

Mdl[K − TL(1 − 1
M1−α−1

)]

1 + d + · · ·+ dK−1
, d = b

1−α

α

45

Table 2.3: Analytical Derivation: The closed-form optimal solution for prob-
lem 2.3.1 when α = 1.

The resource-performance optimization problem considered here is the following:

Find X∗ = arg. min.

K
∑

0

xl
N

bl
, s.t.

∑K
1 l[Q(xl) − Q(xl−1)]

Q(xK)
≤ TL

The constraint can be simplified as follows:

K −
K−1
∑

0

Q(xl)

Q(xK)
≤ TL

Substituting the approximation for Q(x) =
∑x

1 x−α ≈ ln(x), gives the following

expression for the constraint:

K −
K−1
∑

0

ln(xl)

ln(M)
≤ TL ⇒

K−1
∑

0

ln(xl) ≥ ln(M)(K − TL)

The unconstrained optimization problem with Lagrange multiplier λ is:

K
∑

0

xl
N

bl
− λ[

K−1
∑

0

ln(xl) − ln(M)(K − TL)]

Taking the partial derivatives with respect to each xl and λ and equating them to

0 gives the following set of equations:

λ
xl

= N
bl , ∀ 0 ≤ l < K

∑K−1
0 ln(xl) = ln(M)(K − TL)

Solving the above set of equations provides the following closed-form formulas for

x∗
l s:

x∗
l =

M
K−TL

K bl

b
K−1

2

46

2.3.2 Numerical Optimization

This chapter presents a general optimization technique to address the above draw-

backs and support a broad class of applications. This techniques employs nu-

merical optimization algorithms to solve the general resource-performance tradeoff

problems 2.2.1 and 2.2.2 posed earlier. Unlike the analytical technique described

earlier, this technique makes no assumptions about the popularity distribution of

the objects, explicitly takes into account fine-grained object-characteristics such

as size and update rate, and handles detailed cost-performance models such as the

expression 2.2.3 for network bandwidth consumption.

The numerical algorithm presented here is an approximation algorithm to solve

general optimization problems of the following kind:

Opt. F (L) =

M
∑

1

fm(lm) s.t. G(L) =

M
∑

1

gm(lm) ≤ T

Here, fm(l) and gm(l) can define the performance or the resource consumption for

object m as a function of the allocation level l. The numerical algorithm assumes

that the functions fm(l) and gm(l) are monotonic in l. Both performance and

resource consumption satisfy monotonicity.

As highlighted earlier, the challenge in solving the optimization problem 2.3.6 is

that it is NP-hard. The numerical algorithm should therefore find a good balance

between accuracy of solution and run-time complexity. The algorithm proposed

here has a run-time complexity of O(MK log(MK)) and accuracy within the gran-

ularity of one object per node. The numerical algorithm achieves high accuracy

by finding upper and lower bounds for the optimal value of the objective function

differing in allocation levels for at most one object. These upper and lower bounds

are exact optimal solutions to problem 2.3.6 with slightly different constraints; one

47

with a constraint TL ≤ T and another with constraint TU ≥ T . The solutions L∗
L

and L∗
U differ in at most one object, that is, there may be one object that has a

different allocation level in L∗
L and in L∗

U . The optimal solution L∗ for the original

problem 2.3.6 with constraint T may actually have vast differences in the levels

allocated to each object compared to both L∗
L and L∗

U . Yet, the optimal value of

the objective function F (L∗) is bounded by F (L∗
L) and F (L∗

U).

The lower and upper bounds are computed by using the Lagrange multiplier

technique to convert the constrained optimization problem into an unconstrained

optimization problem. The Lagrange multiplier λ converts the problem 2.3.6 into

the problem:

Opt. F ′(L, λ) =
M

∑

1

fm(lm) − λ[
M

∑

1

gm(lm) − T]

The monotonicity of fm(l) and gm(l) ensures that there is a single optimum over

the space of λ.

A simple approach to obtain the bounding solutions L∗
L and L∗

U that bracket

the optimum is to iterate over the space of λ. Such an iterative algorithm can

be performed using a standard bisection or bracketing technique [115] as follows.

The algorithm starts with the bounds L(λL) and L(λU) which optimize the re-

spective functions F ′(L, λL) and F ′(L, λU) and iteratively updates the bound by

determining the optimal solution LM for an intermediate value of λM = λU +λL

2
.

If the intermediate allocation meets the constraint, that is, G(LM) ≤ T then the

lower bound LL is set to LM , otherwise the upper bound LU is set to LM . The

above iteration is repeated until there is no change in the bounds LL and LU .

The above algorithm resembles binary search over the space of λ. Each iteration

for finding the optimal F ′(L, λM) can be accomplished in O(MK) time as the

optimal allocation level lm of object m can be found by optimizing fm(l)−λMgm(l)

48

independent of other objects. Yet, the number of iterations required to converge

to the lower and upper bounds is indeterminate as the binary search is performed

over the unbounded space of real numbers. Although in practice, the number of

iterations is limited by the precision of the floating point number representation.

Other alternatives to this algorithm, such as the Secant Method [115], are also not

guaranteed to converge within a bounded number of iterations.

This chapter presents a technique to bound the number of iterations by making

the following observation. For any object m there are at most K values of λ at

which arg optfm(l) − λgm(l) changes. These critical values are essentially ∆fm(l)
∆gm(l)

,

where ∆f(l) = f(l) − f(l − 1), ∀0 < l ≤ K. This is because exactly at λ = ∆fm(l)
∆gm(l)

the optimal argument changes from l − 1 to l.

Pre-computing the critical values of λ for each object restricts the search space

to O(MK) discrete values of λ. By performing a binary search using a sorted list

of the discrete λ values, the number of iterations of the numerical algorithm can

be bounded by O(log(MK)). Overall, the run-time complexity of the optimization

algorithm is O(KM log(MK)) including precomputations, sorting, and searching.

Table 2.4 presents the complete numerical algorithm.

2.4 Distributed Resource Allocation

The optimization techniques described in the previous section provide to efficiently

resolve the resource-performance tradeoff at single, centralized node. This section

extends these techniques to determine a global allocation strategy in a decentral-

ized manner. The mechanisms outlined here are lightweight and do not rely on

protocols such as global consensus, which are difficult and expensive to achieve in

large wide-area systems.

49

Table 2.4: Numerical Optimization Algorithm

Input:

f(M, K):objective function for object m
g(M, K): constraint function for object m
T : target on the constraint

Output:

Llow(M): lower bound solution
Lup(M): upper bound solution

Solve (Input: f(M, K), g(M, K), T ; Output: Llow(M), Lup(M)) {
variable Λ := {−∞,∞}
/* Pre-compute Lambda Values */
for m = 1 to M

for l = 1 to K

Λ := Λ ∪ {f(m,l)−f(m,l−1)
g(m,l)−g(m,l−1)

}
end for

end for

Λ := sort(Λ) /* Sort Lambda Values */
/* Bisection on Lambda Values */
variable low := 1
variable up := M ∗ K + 2
for m = 1 to M

Llow := arg. min. f(m, l) − Λ(low)g(m, l)
Lup := arg. min. f(m, l) − Λ(up)g(m, l)

end for

variable Tlow :=
∑M

1 g(m, Llow)

variable Tup :=
∑M

1 g(m, Lup)
while(low < up)

variable mid := low+up
2

for m = 1 to M
Lmid := arg. min. f(m, l) − Λ(mid)g(m, l)

end for

variable Tmid :=
∑M

1 g(m, Lmid)
if ((Tlow ≤ T and Tmid ≤ T) or (Tlow ≥ T and Tmid ≥ T))

Llow := Lmid; Tlow := Tmid

else

Lup := Lmid; Tup := Tmid

end if

end while

end

50

Instead, the presented techniques rely independent decision making and limited,

local communication. Each node applies the closed-form formula or executes the

numerical algorithm locally to determine the optimal allocation levels of objects.

However, the analytical and the numerical techniques outlined in the previous

section rely on global information about characteristics of all objects in the sys-

tem. These global object-characteristics are aggregated by the system at a coarse-

granularity through periodic communication between overlay neighbors. Together,

local computation and limited aggregation ensure that the system achieves stable

resource allocation close to the global optimum.

This thesis presents a periodic three-phase protocol to perform resource alloca-

tion efficiently. The three phases consist of an optimization phase, a maintenance

phase, and an aggregation phase. In the optimization phase, each node applies the

selected optimization technique using fine-grained characteristics for locally hosted

objects and coarse-grained characteristics obtained from overlay neighbors during

the previous aggregation phase. In the maintenance phase, changes to allocation

levels are communicated to peer nodes enabling them to host an object or stop

hosting an object. Finally, the aggregation phase enables nodes to receive new ag-

gregates of object-characteristics for the next optimization phase. In practice, the

three phases occur concurrently at each node with aggregation data piggy-backed

on maintenance messages sent during the maintenance phase.

In the optimization phase, nodes operate independently and make decisions to

increase or decrease allocation levels of each locally hosted object. Initially, only

the home node at level K hosts an object. If the home node decides to lower the

allocation level to K − 1 (based on local optimization), it sends a message to the

contacts at row K − 1 of its routing table in the next maintenance phase. As a

51

result, a small wedge of level K − 1 nodes start hosting that object. Subsequently,

each of these nodes may independently decide to further lower the allocation level

of that object. Similarly, if the home node decides to raise the allocation level from

K − 1 to K it asks its contacts in the K − 1 wedge to stop hosting the object. In

general, the responsibility of deciding to host or not host an object at a node is

delegated to the parent in the DAG rooted at the home node of the object. These

decisions are made periodically during each optimization phase.

The decisions made during the optimization phase are communicated to neigh-

boring nodes during the maintenance phase. When a level l node lowers the level

to l − 1 or raises the level from l − 1 back to l, it instructs row l − 1 in its rout-

ing table contacts to start or stop hosting that object by sending a maintenance

message. This control path, illustrated in Figure 2.4, is closely related to the DAG

rooted at the home node. The maintenance phase proceeds periodically following

every optimization phase.

Nodes aggregate characteristics of objects during the aggregation phase. Each

node requires a snapshot of the characteristics of all the objects in the system in

order to apply the optimization technique and derive the globally optimal allo-

cation strategy. For the analytical optimization technique, the node requires the

popularity estimates of all objects in order to compute the relative popularity rank

of objects and the Zipf exponent α of the global popularity distribution. For the

numerical technique, each node requires other object characteristics such as size

and update rate in addition to popularity. The next sections describe techniques to

estimate the popularity of an object in a distributed system and aggregate global

workload characteristics.

52

L1

L2

L1

home node
L2 allocations
L1 allocations

Figure 2.4: Distributed Allocation: Nodes allocate or deallocate objects their one-

hop neighbors. Initially the home node allocates an object to its one-hop neighbors,

shown in the figure with thick lines for L2. Subsequently, these nodes control

allocations for their one-hop neighbors, shown as dashed lines in the figure.

53

2.4.1 Popularity Estimation

Estimating the popularity of an object, that is, the total number of queries in the

system for that object per unit time, is non-trivial as the object may be hosted

by several nodes. Each node receives a fraction of the queries destined for that

object. Estimating the popularity of an object at a certain time involves gathering

details of query arrival for that object at each hosting node.

A naive way to compute the query rate of an object, is to have each node

periodically measure, in some aggregation interval, the number of queries an object

receives in a given period and send the number to the home node, which can add

up the numbers reported by different nodes. However, if the query distribution

is heavy-tailed there may be orders of magnitude of difference between the query

rates of popular and unpopular objects. Hence, no single aggregation interval is

large enough to accurately estimate the query rates of all objects and small enough

to allow the system to detect rapid changes in the object popularity as may occur

during a flash crowd.

An alternative is to measure the inter-arrival time between queries for each ob-

ject independently at each hosting node and use those measurements to determine

the query rate. However, deriving the query rate by aggregating the inter-arrival

times reported by several nodes is expensive as the inter-arrival times do not ag-

gregate, unlike the number of queries.

This chapter presents a hybrid of the above two approaches, namely query-rate

estimation and inter-arrival time estimation. Nodes hosting an object measure the

number of queries for that object in each aggregation interval. They periodically

transmit the data collected for each object towards the home node of the object

along the DAG. Parent nodes in the DAG aggregate the data they receive and

54

continue to route the data towards the home node. Ultimately, the home node

receives a count of queries for the object.

Home nodes then estimate the inter-arrival time using the aggregate query-

rates. For unpopular objects, which may receive no queries in many aggregation

intervals, the home node estimates the query inter-arrival time in terms of the

number of aggregation intervals before a query is seen. That is, if an object receives

one query every ith aggregation interval, it has a query inter-arrival time of i. For

popular objects, which receive many queries in the same aggregation interval, it

estimates their query inter-arrival time as 1/j, where j is the number of queries

seen in a single aggregation interval.

The advantage of the hybrid technique is that small values of aggregation in-

terval can be chosen without decreasing the accuracy of query rate estimates.

Increased aggregation overhead can be partially reduced by sending aggregation

messages only when the aggregated values are non zero. Overall, this technique en-

ables quick detection of sudden increases in popularity of an object such as during

flash crowds or denial of service attacks. At the same time, popularity estimation

for both popular and unpopular objects are handled uniformly with a common

aggregation interval without using different aggregation intervals for each object.

The home node distributes the latest popularity estimate of the object along

with the maintenance messages. Thus, popularity aggregation includes information

flow from the hosting nodes in the system to the home node and back from the home

node to the hosting nodes. This process takes at most K rounds of aggregation

for detecting changes in the popularity of an object and another K rounds of

maintenance for any remedial action to take effect based on the new popularity

estimates.

55

2.4.2 Distributed Tradeoff Aggregation

As noted earlier, the optimization relies on information about all objects in the

system to compute a global solution. It is clearly impractical to make information

about every object in the system available to every node. At the same time,

computing allocation levels based solely on locally hosted objects leads to large

deviations from the global optimum.

This chapter presents a technique to approximate objects with similar charac-

teristics as coarse-grained clusters in order to achieve scalable data aggregation.

Objects with similar cost performance tradeoffs are combined into larger units

called clusters. These clusters are formed by comparing the ratios of the dominant

factors in cost and performance functions, that is, fm

gm
. For achieving lookup-latency

targets, objects with comparable values for qm

smum
ratios are clustered and treated

as a single unit.

The accuracy of the clustering technique depends upon the number of clusters

chosen. While using more clusters improves accuracy, it also imposes additional

bandwidth overhead for aggregation. The presented technique uses a constant C

number of clusters for each level of allocation, that is, all objects allocated to the

same level are divided into C clusters. This division is performed by taking the

qm

smum
values of objects at a particular level, dividing the space of these values into

C equal units, and then combining the objects that fall into each range together.

Combining objects in the this manner has a subtle advantage over just putting

equal number of objects into each cluster. The method described here ensures

that objects in the head of the popularity distribution are clustered at a finer

grain compared to objects at the tail of the popularity distribution. Figure 2.5

illustrates the above clustering approach.

56

Figure 2.5: Clustering Objects with Similar Characteristics: Objects with similar

characteristics are combined to form clusters. This clustering is done in a non-

uniform way; for instance, highly popular objects are clustered at fine-grain while

less popular objects are clustered at coarse-grain.

57

The clusters are then aggregated system-wide by exchanging aggregate charac-

teristics for each cluster between the neighbors in the overlay network. Each node

receives C clusters for every allocation level from each neighbor. Once a cluster

is received from a neighbor the cluster is treated just as an object during opti-

mization and for further aggregation. The cluster aggregation overhead in terms

of memory state as well as network bandwidth is limited by the node degree of

the system and the diameter of the underlying overlay. For Pastry, this overhead

amounts to CB log2 N clusters at each node.

Overall, each node utilizes the precise characteristics for the locally cached ob-

jects, and cluster-level, coarse-grained characteristics for other objects. Optimiza-

tion is then performed based on these characteristics. For analytical optimization,

the global Zipf exponent is estimated using the cluster-level popularity estimates

and the precise popularity estimates for local objects. Finally, nodes use the de-

rived optimal allocation levels only for local objects and ignore the allocation levels

for clusters.

2.5 Implementation

The algorithms and mechanisms outlined in the preceding sections have been imple-

mented in the form of a tool kit called Honeycomb. Honeycomb is a near-optimal

resource management framework layered on Pastry, the prefix-matching structured

overlay system described in Section 2.1.1. This combination of near-optimal re-

source allocation and structured overlays enables Honeycomb to supporting high

performance, robust, and scalable network services. This section provides details

behind Honeycomb implementation.

Honeycomb uses 128-bit SHA-1 hash function to generate identifiers for both

58

the nodes and objects. The node identifiers are obtained by hashing the IP address

of the node. Using IP addresses ensures that when a node joins the system after a

transient failure, it gets to host the same objects as before. Thus, state associated

with an object can be stored on the disk and loaded back from it instead of copying

the object from the network at the time of joining. Object identifiers are obtained

by hashing application-specific names such as domain names or web URLs.

Assigning identifiers based on static IP addresses alone is not sufficient to ensure

that objects survive node failures. Honeycomb prevents objects from being lost

from the system by always hosting the object on multiple nodes called owners.

Each Honeycomb object has 2O + 1 owners, which include the home node and the

O closest nodes in the ring on either side of the home node. Upon the failure of the

home node, the closest of the remaining owner nodes take over as the new home

node. When a owner node fails, it is placed by a new owner chosen from the leaf

set of the underlying overlay and allocated to host the object. Permanent loss of

an object may still occur when all the owners of the object fail, for instance, during

a massive system failure involving a large number of nodes. Ensuring durability

of objects through such low-probability events is expensive and beyond the scope

of this thesis.

In addition to application-specific state, Honeycomb, also associates modest

amount of meta state with each object in order to manage its resources. This

meta state includes the following:

• Object ID: A 128-bit identifier.

• Version ID: A 32-bit version number.

• Allocation Level: A 8-bit integer specifies the current allocation level.

59

• Size: A 32-bit integer gives current size of object.

• Update Rate: A 32-bit real gives number of changes to the object in unit

time.

• Popularity: A 32-bit real gives current popularity estimate.

• Popularity-Aggregate: A 32-bit real used to aggregate popularity.

The Version ID mentioned above is used to track changes to the object. When

an object changes, the update needs to be propagated to all the nodes hosting the

object. Honeycomb supports mutable objects by proactively disseminating updates

to all nodes hosting that object. Honeycomb takes advantage of the structure of

the overlay to efficiently disseminate object updates to all the nodes hosting an

object. Just the allocation level of an object indicates the set of nodes that host

the object. Consequently, Honeycomb does not require expensive mechanisms to

keep track of locations of objects.

Update dissemination in Honeycomb works as follows. The home node initiates

the update through the nodes in its routing table. If the object is replicated at

level l, the home node sends a copy of the update to each node in the lth level

of the routing table. The nodes receiving the update subsequently propagate the

update using their routing table. For example, the nodes at level l of the home

node’s routing table further propagate the update to nodes in the (l + 1)th level

of their routing tables. This update propagation process takes O(K) propagation

delay to reach all nodes in the system and ensures that no node is reached more

than once.

The proactive update propagation protocol provides best-effort delivery guar-

antees. In order to ensure that any node that may have missed an update gets

60

eventually updated, Honeycomb also supports a lazy update propagation mecha-

nism. Nodes send the current version numbers of the objects they host to their

parent nodes as part of the aggregation message. The parent nodes check the

version numbers and sends an update to those nodes with older versions of the

object.

Prefix matching overlays occasionally create orphans, that is, objects with no

nodes having K − 1 matching prefixes. Orphans are created because there may

be no nodes with enough matching prefix digits in the system and the wedge

corresponding to level K − 1 may be empty. A consequence of this for the prefix-

based resource allocation technique is that it cannot assign additional nodes to

host an orphan. Left unhandled, this problem can have an adverse impact on

the performance tradeoff as performance for orphan objects cannot be improved.

Honeycomb compensates for the loss of performance due to orphans by separately

aggregating the characteristics of all orphans into a slack cluster, which is used to

correct the performance target prior to optimization.

Chapter 3

CoDoNS: Cooperative Domain Name

System

Internet communication such as access to web sites, file transfers, or remote login

sessions, begin with the critical task of translating the name of the remote host or

web service to a network address. The Domain Name System (DNS) provides this

translation from human-friendly names of network hosts to their network addresses.

In addition to this critical functionality, it also acts as an extensible database

for storing and retrieving data associated with names, including names of email

servers, geographic location of hosts, and information about web services.

DNS [101, 102] manages domain names by hierarchically partitioning the names-

pace into non-overlapping regions called domains. This hierarchical partitioning

provides a decentralized approach for managing the namespace efficiently by di-

viding a domain into subdomains. For example, cs.cornell.edu is a sub-domain

of the domain cornell.edu, which in turn is a sub-domain of the top-level domain

edu. Top-level domains are sub-domains of a global root domain. Each domain

name belongs to a nameowner, who has complete freedom for further partition-

ing the name into subdomains controlled by other nameowners. This hierarchical

approach for managing the DNS namespace has been critical to the scalability of

DNS. Moreover, each nameowner can manage its part of the namespace without

coming into conflict with others.

Domain names have associated information identified by well-defined types and

represented using extensible data structures, called resource records. A domain

name may have many resource records of each type. These types identify specific

61

62

kinds of resources, such as IP address (type A), mail server (type MX), service at-

tributes (type SRV), geographic location (type LOC), among others. DNS resource

records are served by Internet hosts called nameservers.

In order to facilitate decentralized name resolution, DNS follows a delegation-

based architecture. It works by delegating the responsibility of serving resource

records for each domain to a set of replicated nameservers called authoritative

nameservers. The authoritative nameservers of a domain manage all informa-

tion for names in that domain and keep track of authoritative nameservers of

the sub-domains of that domain. At the top of the legacy DNS hierarchy are

root nameservers, which keep track of the authoritative nameservers for the top-

level domains (TLDs). The top-level domain namespace consists of generic TLDs

(gTLD), such as .com, .edu, and .net, and country-code TLDs (ccTLD), such as

.uk, .tr, and .in. Nameservers are statically configured with thirteen IP addresses

for the root servers. BGP-level anycast is used in parts of the Internet to reroute

queries destined for these thirteen IP addresses to a larger number of root servers.

Clients rely on resolvers to lookup for DNS resource records. Clients typically

issue DNS queries to local resolvers within their own administrative domain. Re-

solvers follow a chain of authoritative nameservers in order to resolve the query.

The local resolver contacts a root nameserver to find the top-level domain name-

server. It then issues the query to the TLD nameserver and obtains the author-

itative nameserver of the next sub-domain. The authoritative nameserver of the

sub-domain replies with the response for the query. Figure 3.1 illustrates the dif-

ferent stages in the resolution of an example domain name www.cs.cornell.edu.

The DNS name resolution protocol defines a multi-hop procedure where one

nameserver after the other in the authority chain is contacted for resolving a query.

63

However, delegations to authoritative nameservers are based on names rather than

network addresses. Hence, the names of the intermediate nameservers have to be in

turn resolved to their addresses. Thus, following the chain of delegations requires

additional name resolutions to be performed in order to obtain the addresses of

intermediate nameservers. Each additional name resolution, in turn, depends on

a chain of delegations. Overall, these delegations induce complex, non-obvious

dependencies among nameservers.

Figure 3.2 illustrates the nameserver dependencies for www.cs.cornell.edu. In

addition to the top-level domain nameservers, the resolution of this name depends

on twenty other nameservers, of which only nine belong to the cornell.edu domain.

Several nameservers that are outside the administrative domain of Cornell have

indirect control over Cornell’s namespace. In this case, cornell.edu depends on

rochester.edu, which depends on wisc.edu, which in turn depends on umich.edu.

While Cornell directly delegates cayuga.cs.rochester.edu to serve its namespace, it

has no control over the nameservers that rochester.edu delegates to.

Pursuing the complicated chain of delegations to resolve a query, naturally,

incurs significant delay. DNS employs passive caching of resource records in order

to reduce the latency of query resolution. The resolvers and nameservers cache

responses to queries they issue, and use the cached responses to answer future

queries. Since records may change dynamically, legacy DNS provides a weak form

of cache coherency through a time-to-live (TTL) field. Each record carries a TTL

assigned by the authoritative nameserver, and is cached by a nameserver or resolver

until the TTL expires.

64

Server

Server

Server

Server

Resolver

root name server

name server
authoritative

client

local intermediate
name server

name server

resolver

query: www.cs.cornell.edu

.edu gTLD

ns.cornell.edu

ns.cs.cornell.edu

Figure 3.1: Name Resolution in Legacy DNS: Resolvers translate names to ad-

dresses by following a chain of delegations iteratively (2-5) or recursively (6-9).

a.gtld−servers.net
:

m.gtld−servers.net

com
net

:
a2.nstld.com

m2.nstld.com

nstld.com
gtld−servers.net

:
a3.nstld.com

m3.nstld.com

edu

cs.wisc.edu

dns.cs.wisc.edu
dns2.cs.wisc.edu

dns2.itd.umich.edu

wisc.edu
cs.wisc.edu

cayuga.cs.rochester.edu
slate.cs.rochester.edu

cc.rochester.edu

simon.cs.cornell.edu

dns.cs.wisc.edu

cs.rochester.edu

galileo.cc.rochester.edu

ns1.utd.rochester.edu
ns2.utd.rochester.edu

utd.rochester.edu
cc.rochester.edu

cc.rochester.edu

simon.cs.cornell.edu

dns.cs.wisc.edu

ns1.utd.rochester.edu
ns2.utd.rochester.edu

rochester.edu

dns.itd.umich.edu
dns2.itd.umich.edu

cs.wisc.edu

itd.umich.edu
umich.edu

penguin.cs.cornell.edu
sunup.cs.cornell.edu

sundown.cs.cornell.edu
sunburn.cs.cornell.edu

iago.cs.cornell.edu

cs.cornell.edu

dns.cit.cornell.edu
bigred.cit.cornell.edu
cudns.cit.cornell.edu

cayuga.cs.rochester.edu

simon.cs.cornell.edu

cit.cornell.edu
cornell.edu

www.cs.cornell.edu

Figure 3.2: Delegation Graph: DNS exhibits complex inter-dependencies among

nameservers due to its delegation based architecture. For example, the domain

name www.cs.cornell.edu depends indirectly on a nameserver in umich.edu. Arrows

in the figure indicate dependencies. Self loops and redundant dependencies have

been omitted for clarity.

65

3.1 Problems with Legacy DNS

The current use and scale of the Internet has exposed several shortcomings in the

functioning of the legacy DNS. We performed a large scale survey to analyze and

quantify its vulnerabilities [120, 119]. This survey exposes problems three impor-

tant dimensions, namely, high vulnerability to malicious attacks, poor resilience

to failures, and low latencies. This sections describes these problems and shows

that they fundamentally stem from the hierarchical, delegation-based architecture

of DNS.

3.1.1 Survey Methodology

We collected 593160 unique names by crawling the Yahoo! and DMOZ.org direc-

tories. These names are distributed among 196 distinct top-level domains. Since

the names were extracted from Web directories, these names are representative of

the sites visited by users. We then queried DNS for these names and recorded

the chain of nameservers that were involved in their resolution. A total of 166771

nameservers were discovered in this process. We thus obtained a snapshot of the

DNS dependencies on July 22, 2004. In addition, we also separately examined the

500 most popular domains, as determined by the Alexa ranking service.

We examined the DNS delegation information to study three important char-

acteristics of the legacy DNS architecture. First, we examined the vulnerability

of DNS to malicious attacks. We studied this by looking at the overall volume of

the dependencies, that is, the total number of nameservers that are involved in the

resolution of a domain name. We further explored the impact of known security

loopholes in DNS nameservers on the overall vulnerability of domain names. Sec-

66

ond, we focus on the failure resilience of the legacy DNS architecture. Our survey

quantifies the minimum number of nameserver failures that DNS can tolerate be-

fore a domain name can no longer be resolved. Finally, we examine the lookup and

update latencies provided by legacy DNS. In particular, we focus on the choice of

TTL values for resource records and how this choice impacts the lookup and the

update performance of legacy DNS.

3.1.2 Vulnerability to Malicious Attacks

The delegation based architecture of the DNS induces complex non-obvious de-

pendencies among nameservers, and can cause unexpected nodes to exert great

control over remote domains. The compromise of any one of them may lead to

a domain hijack as the compromised nameserver can divert DNS requests to ma-

licious nameservers, which could provide false IP addresses for the queried host;

clients can thus be misdirected to servers controlled by attackers.

A domain hijack accomplished by exploiting DNS dependencies can be partial

or complete. We distinguish between a partial hijack, where an attacker compro-

mises a few nameservers and diverts some queries for the targeted name, and a

complete hijack, where an attacker compromises enough nameservers to guarantee

the misdirection of all queries for that name. A domain name is said to depend on a

nameserver if the nameserver could be involved in the resolution of that name. We

represent the dependencies among nameservers that directly or indirectly affect a

domain name as a delegation graph. The delegation graph consists of the transitive

closure of all nameservers involved in the resolution of a given name. The name-

servers in the delegation graph of a domain name form the trusted computing base

(TCB) of that name.

67

The vulnerability of a DNS name is tied to the number of servers in its trusted

computing base, whose compromise could potentially misdirect clients seeking to

contact that server. Larger TCBs provide attackers with a wider choice of targets

to attack. Further, larger TCBs also imply more complex and deeper dependencies

among nameservers making it more difficult for the nameowner to control the

integrity of the servers it depends on.

In this section, we characterize the TCB size of the surveyed names. Figure 3.3

plots the cumulative distribution of TCB sizes not including the root nameservers,

which belong to the TCBs of all the domain names. Our survey shows that TCB

size follows a heavy-tailed distribution with a median of 26 nameservers, and an

average of 46 nameservers; about 6.5% of the names has a TCB of greater than 200

nameservers. We computed the TCB by counting the number of distinct server

names in the delegation graph. Since distinct names referring to the same machine

may cause the TCB to appear larger, we also computed the number of distinct IP

addresses in the delegation graphs. TCB size based on IP addresses has the same

median (26), while the average decreases marginally to 44.

One might expect that the administrators of the popular websites would be

better aware of the security risks and keep their DNS dependencies small. To test

this hypothesis, we separately studied the TCB sizes for the 500 most popular

websites reported by alexa.org. Figure 3.3 shows that these names are more vul-

nerable; they depend on 69 nameservers on average, and 15% of them depend on

more than 200 nameservers.

Next, we study the TCB sizes for names belonging to different TLDs. Fig-

ures 3.4 and 3.5 plot in decreasing order the TCB sizes for names in the generic

TLDs, and the fifteen most vulnerable country-code TLDs, respectively. Overall,

68

ccTLD names have a much higher average TCB size of 209 nameservers than gTLD

names, whose average is 87 nameservers. GTLDs aero and int have considerably

larger TCBs than other gTLDs, and, among the ccTLDs, Ukraine, Belarus, San

Marino, Malta, Malaysia, Poland and Italy, in that order, are the most vulnerable.

We examined the dependencies to determine why names in certain domain (e.g.,

aero and int TLDs and several ccTLDs) have much larger TCBs than others. We

find that names with larger TCBs typically have authoritative nameservers dis-

tributed across distant domains. Improving availability in the presence of network

outages is one of the primary reasons why administrators delegate to, and implic-

itly trust, nameservers outside their control. Extending trust to a small number of

nameservers that are geographically distributed may provide high resilience against

failures. However, DNS forces nameowners to trust the entire transitive closure of

the all names that appear in the physical delegation chains.

Sometimes even top-level domains are set up such that it is impossible to own

a name in that subdomain and not depend on hundreds of nameservers. Ukrainian

names seem to suffer from many such dependencies including nameservers in the

US at Berkeley, NYU, UCLA, as well as many locations spanning the globe: Russia,

Poland, Sweden, Norway, Germany, Austria, France, England, Canada, Israel, and

Australia. It is likely that the Ukrainian authorities do not realize their dependency

on servers outside their control. A cracker that controls a nameserver at Monash

University in Australia can end up hijacking any Ukranian name.

Next, we examine the feasibility of malicious attacks through known vulnera-

bilities in commonly deployed nameservers. Early studies [44, 86, 103] identified

several implementation errors in legacy DNS servers that can lead to compromise.

While many of these have been fixed, a significant percentage of nameservers con-

69

0 100 200 300 400 500
0

20

40

60

80

100

size of TCB

C
D

F
 (

%
)

All Names
Top 500 Names

Figure 3.3: Size of TCB: DNS Name resolution depends on a large number of

nameservers. On average, name resolution involves 46 nameservers, while a sizable

fraction of names depend on more than 100 nameservers.

0

100

200

300

400

ae
ro in

t

na
m

e
m

il
in
fo

ed
u

bi
z

go
v

or
g

ne
t

co
m

co
op

s
iz

e
 o

f
tr

u
s

te
d

 b
a

s
e

Figure 3.4: Average TCB Size for gTLD Names: Names in .aero and .int have

significantly larger TCBs.

70

tinue to use buggy implementations. We surveyed 150,000 nameservers to deter-

mine if they contain any known vulnerabilities, based on the Berkeley Internet

Name Daemon (BIND) exploit list maintained by the Internet Systems Consor-

tium (ISC) [168]. Table 3.1 summarizes the results of this survey. Approximately

18% of servers do not respond to version queries, and about 14% do not report

valid BIND versions. About 1.4% of nameserves have the tsig bug, which permits

a buffer overflow that can enable malicious agents to gain access to the system.

13% of nameserves have the negcache problem that can be exploited to launch a

DoS attack by providing negative responses with large TTL value from a malicious

nameserver.

We combine these known vulnerabilities with the delegation graphs of domain

names to explore which names are easily subjected to compromise. For name-

servers whose vulnerabilities we do not know, we simply assume that they are

non-vulnerable; hence, the results presented here are optimistic. Of the 166771

nameservers we surveyed, 27141 have known vulnerabilities. A naive expectation

might be that, with 17% vulnerable nameservers, only 17% of the names would be

affected. Instead, these vulnerabilities affect 264599 names, approximately 45%,

because transitive trust relationships “poison” every path that passes through an

insecure nameserver.

For example, www.fbi.gov was vulnerable to being hijacked at the time we per-

formed our survey , along with all other names in the fbi.gov domain. The fbi.gov

domain was served by two machines named dns.sprintip.com and dns2.sprintip.com.

The sprintip.com domain was in turn served by three machines named reston-

ns[123].telemail.net. Of these machines, reston-ns2.telemail.net was running an

old nameserver (BIND 8.2.4), with four different known exploits against it (lib-

71

Table 3.1: Vulnerabilities in BIND: A significant percentage of nameservers use

BIND versions with known security problems.

problem severity affected nameservers

all domains top 500

tsig critical 1.4 % 0.59 %

nxt critical 0.04% 0.15 %

negcache serious 13.44 % 2.57 %

sigrec serious 9.72 % 1.32 %

DoS multi serious 7.98 % 1.32 %

DoS findtype serious 1.84% 0.59 %

srv serious 1.31 % 0.59 %

zxfr serious 1.24 % 0.44 %

libresolv serious 1.06 % 0 %

complain serious 0.92 % 0 %

so-linger serious 0.78 % 0.15 %

fdmax serious 0.78 % 0.15 %

sig serious 0.49 % 0.15 %

infoleak moderate 3.12 % 0.59 %

sigdiv0 moderate 1.25 % 0.59 %

openssl medium 1.22 % 0.37 %

naptr minor 1.81 % 0.15 %

maxdname minor 1.81 % 0.15 %

72

bind, negcache, sigrec, and DoS multi) [168]. Having compromised reston-ns2, an

attacker could divert a query for dns.sprintip.com to a malicious nameserver, which

could then divert queries for www.fbi.gov to any other address, hijacking the FBI’s

website and services.

Figure 3.6 shows the cumulative distribution of the number of vulnerable name-

servers in the TCBs of surveyed names. 45% of DNS names depend on at least

one vulnerable nameserver, and can be compromised by launching well-known,

scripted attacks. Figure 3.7 shows the percentage of nodes with no known bugs

in the TCBs of surveyed names. Surprisingly, a few names do not have any non-

vulnerable nameservers in their TCB; these names belong to the ccTLD ws, which

relies on older buggy versions of BIND. Overall, the average number of vulnerable

servers is 4.1, about 9% of the average TCB size. The extent of vulnerability in the

TCBs of the 500 most popular names is also high (7.6), about 11% of the average

TCB size.

3.1.3 Failure Resilience

The legacy DNS is highly vulnerable to network failures, compromise by malicious

agents, and denial of service attacks, because domains are typically served by a

very small number of nameservers. We next examine the delegation bottlenecks in

DNS; a delegation bottleneck is the minimum number of nameservers in the dele-

gation graph of each domain that need to be compromised in order to completely

hijack that domain. Table 3.2 shows the percentage of domains that are bottle-

necked on different numbers of nameservers. 78.63% of domains are restricted by

two nameservers, the minimum recommended by the standard [101]. Surprisingly,

0.82% of domains are served by only one nameserver. Even the highly popular

73

0

100

200

300

400

500

ua by sm mt my pl it mo am ie tp mk hk tw cn

s
iz

e
 o

f
tr

u
s

te
d

 b
a

s
e

Figure 3.5: Average TCB Size for ccTLD Names: Some ccTLDs rely on, and are

vulnerable to compromises in, a large number of servers.

0 20 40 60 80 100
0

20

40

60

80

100

vulnerable nameservers in TCB

C
D

F
 (

%
)

All Names
Top 500 Names

Figure 3.6: Vulnerable Nameservers in TCB: 45% of the names depend on at least

one nameserverver with known vulnerability.

74

domains are not exempt from severe bottlenecks in their delegation chains. Some

domains (0.43%) spoof the minimum requirement by having two nameservers map

to the same IP address. Overall, over 90% of domain names are served by three or

fewer nameservers and can be rendered inaccessible by relatively small-scale DoS

attacks.

Failure and attack resilience of the legacy DNS is even more limited at the

network level. We examined physical bottlenecks, that is, the minimum number

of network gateways or routers between clients and nameservers that need to be

compromised in order to control that domain. We measured the physical bottle-

necks by performing traceroutes to 10,000 different nameservers, which serve about

5,000 randomly chosen domain names, from fifty globally distributed sites on Plan-

etLab [12]. Figure 3.8 plots the percentage of domains that have different numbers

of bottlenecks at the network level, and shows that about 33% of domains are

bottlenecked at a single gateway or router. While this number is not surprising

as domains are typically served by a few nameservers located in the same sub-

network, it highlights that a large number of domains are vulnerable to network

outages. Recently, Microsoft’s services became unavailable for a substantial period

of time due to a misconfiguration in their network gateway. The primary reason

for the success of this attack was that all of Microsoft’s DNS servers were in the

same part of the network [165].

We next quantify to what extent the known vulnerabilities in the DNS name-

servers affect the overall availability of a domain. Figure 3.9 shows the number

of non-vulnerable nameservers in the min-cut of the delegation graphs. Surpris-

ingly, about 30% of domain names have a min-cut consisting entirely of vulnerable

nameservers. The average size of a min-cut is 2.5 nameservers. This implies that

75

10
0

10
2

10
4

10
6

0

20

40

60

80

100

sa
fe

ty
 o

f T
C

B
 (

%
)

distribution

All Names
Top 500 Names

Figure 3.7: Percentage of Non-Vulnerable Nodes in TCB: A few names have their

entire TCB vulnerable to known exploits.

Table 3.2: Delegation Bottlenecks in Name Resolution: A significant number of

names are served by two or fewer nameservers, even for the most popular 500 sites.

Bottlenecks All Domains Top 500

1 0.82 % 0.80 %

2 78.44 % 62.80 %

3 9.96 % 13.20 %

4 4.64 % 13.00 %

5 1.43 % 6.40 %

13 4.12 % 0 %

76

these domain names can be completely hijacked by compromising less than three

machines on average. Moreover, another 10% of domain names have only one

non-vulnerable nameserver in their min-cut. A denial of service attack on the

non-vulnerable nameserver, coupled with the compromise of the other vulnerable

bottleneck nameservers, is sufficient to completely hijack these domains.

The severely limited resilience to failures is common in DNS and affect many

top level domains and popular web sites. Naturally, DNS is an easy target for

both malicious attacks. While few instances of phishing attacks through a domain

hijack has been reported to date, the DNS is often subjected to denial of service

(DoS) attacks and failures. DNS measurements at root and TLD nameservers show

that these servers are frequently subjected to denial of service attacks [21, 23].

A massive distributed DoS attack [166] in November 2002 rendered nine of the

thirteen root servers unresponsive. Partly as a result of this attack, the root is

now served by more than sixty nameservers and is served through special-case

support for BGP-level anycast. While this approach fixes the superficial problem

at the topmost level, domains below the TLD level find it difficult to take advantage

of this special-case approach to defend themselves against DoS attacks.

3.1.4 Performance Latencies

Name resolution latency is a significant component of the time required to access

web services. Wills and Shang [153] have found, based on NLANR proxy logs,

that DNS lookup time contributes more than one second to 20% of web object

retrievals, Huitema et al. [73] report that 29% of queries take longer than two

seconds, and Jung et al. [79] show that more than 10% of queries take longer than

two seconds. Bent and Voelker show that the average DNS lookup latency per web

77

0%

10%

20%

30%

40%

1 2 3 4 5 6 7 8 9 10
bottleneck gateways (#)

d
o

m
ai

n
s

(%
)

all domains
top 500
ccTLDs

Figure 3.8: Physical Bottlenecks in Name Resolution: A significant number of

domains, including top-level domains, depend on a small number of gateways for

their resolution.

0 2 4 6 8 10
0

20

40

60

80

100

number of safe bottleneck nameservers

C
D

F
 (

%
)

All Names
Top 500 Names

Figure 3.9: DNS Nameserver Bottlenecks: 30% percentage of names can be com-

pletely hijacked by compromising a critical set of vulnerable bottleneck name-

servers.

78

page download is 529.7 ms, or about 12.2% of the overall latency to fetch a web

page with parallel connections turned on [13].

The results from the above studies show that DNS incurs high lookup latencies

and forms a significant bottleneck for accessing the Web. The low performance is

due mainly to ineffectiveness of passive caching in DNS. Two fundamental reasons

contribute to the ineffectiveness of caching. First is the heavy-tailed, Zipf-like

query distribution in DNS; a study by Jung et al. measures a low exponent of

0.91 for popularity of DNS domains [79]. It is well known from studies on Web

caching [18] that heavy-tailed query distributions severely limit cache hit rates.

The second is the use of timeout based mechanisms to manage cache consis-

tency. Selection of a suitable value for the TTL involves a fundamental tradeoff be-

tween lookup latency and update latency. Short TTLs adversely affect the lookup

performance and increase network load [79, 78], while long TTLs interfere with

service relocation. For instance, a popular online brokerage firm uses a TTL of

thirty minutes. Its users do not incur DNS latencies when accessing the brokerage

for thirty minutes at a time, but they may experience outages of up to half an hour

if the brokerage firm needs to relocate its services in response to an emergency.

We examined the TTL values associated with each resource record encountered

in the survey. Figure 3.10 shows a cumulative distribution of TTL values. It shows

that a majority of domains, nearly 63% of domain names, use TTLs of one hour or

higher. The most common value of TTL is a day; about 30% of all domain names

have one day for their TTL. This use of long TTLs prohibits fast dissemination

of unanticipated changes to records. Surprisingly, the chosen TTLs are also too

small compared to the actual rate of change of DNS data. We performed an active

polling study, where we fetched resource records for the surveyed domain names

79

every day for a week and measured the average rate of change of DNS records. We

found that only 0.08% of records change every day. Thus, the choice of TTLs for

DNS records is entirely arbitrary and does not favorably affect either the lookup

or the update performance.

Our study also showed that a small number of domain names (about 5%) have

a very small TTL value of 30 seconds. These aggressively low TTL values are

typically set by content distribution networks. These services, such as Akamai

and Digital Island, use DNS lookups to direct clients to nearby servers of Web

content. They typically use very short TTLs (on the order of 30 seconds) in order

to perform fine grain load balancing and respond rapidly to changes in server or

network load. But, this mechanism, called server selection, virtually eliminates

the effectiveness of caching and imposes enormous overhead on DNS. A study on

impact of short TTLs on caching [78] shows that cache hit rates decrease signifi-

cantly for TTLs lower than fifteen minutes. Another study on the adverse effect

of server selection [134] reports that name resolution latency can increase by two

orders of magnitude.

In addition to the impact of badly chosen TTL values, DNS lookup performance

is also affected by the presence of a large number of broken (lame) or inconsistent

delegations. In our survey, address resolution failed for about 1.1% of nameservers

due to timeouts or non-existent records, mostly stemming from spelling errors. For

14% of domains, authoritative nameservers returned inconsistent responses; a few

authoritative nameservers reported that the domain does not exist, while others

provided valid records. Failures stemming from lame delegations and timeouts can

translate into significant delays for the end user. Since these failures and inconsis-

tencies largely stem from human errors [103], it is clear that manual configuration

80

and administration of such a large scale system is expensive and leads to a fragile

structure.

3.2 CoDoNS: System Design

The use and scale of today’s Internet is drastically different from the time of the

design of the DNS. Even though the legacy DNS anticipated the explosive growth

and handled it by partitioning the namespace, delegating the queries, and widely

caching the responses, this architecture contains inherent limitations. This section

presents an overview of CoDoNS, describes its implementation, and highlights how

it addresses the problems of the legacy DNS.

The key feature of CoDoNS is the separation of namespace management and

resolution, the twin functionalities provided by legacy DNS. Through this separa-

tion, CoDoNS retains the successful aspects of DNS, namely the decentralized and

scalable namespace management, while replacing its hierarchical, delegation-based

resolution process with a flat, peer-to-peer architecture.

CoDoNS consists of globally distributed nodes that self organize to form a

peer-to-peer network. We envision that each institution would contribute one

or more servers to CoDoNS, forming a large-scale, cooperative, globally shared

DNS cache. These servers could come from the same resources supporting the

DNS today, namely the DNS nameservers. CoDoNS provides query resolution

services to clients using the same wire format and protocol as legacy DNS, and

thus requires no changes to client resolvers. Nameowners need only to purchase

certificates for names from namespace operators and introduce them into CoDoNS;

to the nameowners, CoDoNS provides an interface consisting of insert, delete and

update. CoDoNS places no restrictions on the orgaization of the namespace and

81

is agnostic about the administrative policies of the nameowners.

3.2.1 Architecture

CoDoNS is layered as an application on top of Honeycomb, the near-optimal re-

source management framework described in Chapter 2. Consequently, it inherits

and benefits from all the properties provided by Honeycomb. These properties

include high resilience to failures, low, configurable lookup latency, as well as

proactive propagation of updates.

Each domain name in CoDoNS is associated with the home node, whose iden-

tifier is closest to the consistent hash [81] of the domain name. The home node

stores a permanent copy of the resource records owned by that domain name and

manages replication for that domain. CoDoNS uses multiple owners for each do-

main, so that the records of that domain are replicated on all owners and data loss

due to node failures is mitigated.

Replacing the DNS entirely with CoDoNS is an ambitious plan, and we do not

expect nameowners to immediately use CoDoNS for propagating their information.

In order to gradually grow into a globally recognized system, CoDoNS provides

backwards compatibility with the legacy DNS. CoDoNS uses the legacy DNS to

resolve queries for records not explicitly inserted by nameowners. The home node

retrieves resource records from the legacy DNS upon the first query for those

records. The additional redirection latency only affects the first query issued in

the entire system for a domain name.

Overall, query resolution in CoDoNS takes place as follows. Client sends a

query in the wire format of the legacy DNS to the local CoDoNS server in the

same administrative domain. The local CoDoNS server replies immediately if it

82

has a cached copy of the requested records. Otherwise, it routes the query inter-

nally in the CoDoNS network using the underlying overlay. The routing terminates

either at an intermediate CoDoNS node that has a cached copy of the record or

at the home node of the domain name. The home node retrieves the records from

the legacy DNS, if it does not already have it, and sends a response to the first

contacted CoDoNS server, which replies to the client. In the background, CoDoNS

nodes proactively replicate the records in based on the measured popularity. Fig-

ure 3.11 shows a typical deployment of CoDoNS and illustrates the process of query

resolution.

Clients generate a large number of queries for names in their local administra-

tive domain. Since the home node of a name may be located in a different domain,

local queries can incur extra latency and impose load on wide-area network links.

CoDoNS supports efficient resolution of local names through direct caching. Name-

owners can directly insert, update, and delete their records at CoDoNS servers in

their administrative domain, and configure the local CoDoNS servers to use the

direct cache for replying to local queries.

3.2.2 Analysis-driven Optimization

CoDoNS derives its performance characteristics from the resource management

framework described in Chapter 2. The key resource-performance tradeoff that

arises in CoDoNS is the tradeoff between lookup latency and the resources required

to store and maintain duplicate copies of the resource records. Lookup latency can

be improved by caching resource resource records on more and more nodes in the

system, where as, keeping the records consistently updated when resource records

change consumes network bandwidth.

83

CoDoNS finds the right balance between lookup latency and bandwidth con-

sumption by modeling the tradeoff as an optimization problem and using the re-

source management framework to determine and enforce the optimal tradeoff in

the system. CoDoNS uses the following analytical model to express its resource-

performance tradeoff.

Min.

M
∑

1

smum
N

bl
s.t.

P

M

1
qmlm

P

M

1
qm

≤ TL (3.2.1)

All the notations used in the preceding expression are as used in Chapter 2 and

defined in Table 2.2.

3.2.3 Proactive Update Propagation

The resource management framework also enables CoDoNS to rapidly push up-

dates to all the replicas in the system. CoDoNS uses just a small integer, the

allocation level of a resource record, to determine the range of nodes hosting the

record. Proactive update propagation obviates the need for timeout-based caching.

Thus, CoDoNS does not make use of TTLs in resource records. Instead, it ensures

through proactive update dissemination that all copies of resource records are

promptly updated and the changes reach the clients quickly. With CoDoNS, net-

work administrators can relocate services at any time without losing availability.

3.2.4 Implementation

Each CoDoNS server implements a complete, recursive, caching DNS resolver and

supports all requirements described in the specification [101, 102]. CoDoNS also

supports inverse queries that map IP addresses to a domain name by inserting

reverse address-name records into the DHT when name-address records are intro-

84

duced.

Domain names in CoDoNS have unique 128 bit identifiers obtained through the

SHA-1 hashing algorithm. The home node, the closest node in the identifier space,

stores permanent copies of the resource records of the domain name and takes

responsible for detecting and propagating updates for the record. Since CoDoNS

does not associate TTLs with the records, the home nodes push the updates to all

replicas, which retain them until the replication level of the record is downgraded,

or until an update is received. Nameowners insert updated resource records into

CoDoNS, and the home nodes proactively propagate the updates.

CoDoNS ensures the consistency of records obtained from the legacy DNS by

proactively refetching them. The home node uses the TTL specified by the legacy

DNS as the duration to store the records. It refetches the records from legacy DNS

after TTL duration, and propagates the updated records to all the replicas if the

records change. Since CoDoNS polls for updates in the background, its lookup

performance is not affected. The TTL values are rounded up to a minimum of

thirty seconds; records with lower TTL values are not placed into the system.

Such low TTL values typically indicate dynamic server selection in legacy DNS.

The legacy DNS relies on error responses, called NXDOMAIN responses, to de-

tect names that do not exist. Since clients reissue a request several times when they

do not receive prompt replies, the DNS specification recommends that resolvers

cache NXDOMAIN responses. CoDoNS provides complete support for negative

caching as described in [7]. However, permanently storing NXDOMAIN responses

could exhaust the capacity of the system, since an unlimited number of queries can

be generated for non-existent domains. Hence, CoDoNS nodes cache NXDOMAIN

responses temporarily and do not refresh them upon expiry.

85

3.2.5 Issues and Implications

CoDoNS decouples namespace management from the physical location of name-

servers in the network. Instead of relying on physical delegations to trusted hosts

and assuming that Internet routing is secure, CoDoNS uses cryptographic delega-

tions and self-verifying records based on the DNSSEC [50] standard.

DNSSEC uses public key cryptography to enable authentication of resource

records. Every namespace operator has a public-private key pair; the private

key is used to digitally sign DNS records managed by that operator, and the

corresponding public key is in turn certified by a signature from a domain higher

up in the hierarchy. This process creates a chain of certificates, terminating at

a small number of well-known public keys for globally trusted authorities. Since

records are signed at the time of issue, the private keys need not be kept online.

The signature and the public key are stored in DNS as resource records of type

sig and key respectively. Clients can verify the authenticity of a resource record

by fetching the sig record and the key record from the DNS.

The use of cryptographic certificates enables any client to check the verity of

a record independently, and keeps peers in the network from forging certificates.

To speed up certificate verification, CoDoNS servers cache the certificates along

with the resource records and provide them to the clients. Existing clients that

are not DNSSEC compliant need to trust only the local CoDoNS servers within

their administrative domain, since CoDoNS servers internally verify data fetched

from other nodes.

CoDoNS authenticates nameowners directly through certificates provided for

every insertion, delete, and update. Insertions simply require a signed resource

record with a corresponding well-formed certificate. An increasing version number

86

associated with each record, signed by the owner and checked by every server,

ensures that old records cannot be reintroduced into the system. Deletions require

a signed request that identifies the record to be expunged, while updates introduce

a new signed, self-verifying record that replaces the now-stale version.

Since DNSSEC has not yet been widely deployed in the Internet, CoDoNS

cannot rely on the legacy DNS to provide certificates for resource records fetched

from legacy DNS. Consequently, CoDoNS uses its own centralized authority to

sign resource records fetched from the legacy DNS. Queries to the legacy DNS are

directed to a small pool of certifying resolvers, which fetch authoritative resource

records from the legacy DNS, sign them, and append the sig records to the legacy

DNS response. This approach requires trust to be placed in the certifying resolvers.

Threshold cryptography [162] can be used to limit the impact of adversaries on

these resolvers until CoDoNS takes over completely. The certifying name resolvers

ensure that CoDoNS participants cannot inject corrupted records into the system.

Malicious participants may also disrupt the system by corrupting the routing

tables of peers and misrouting or dropping queries. Castro et al. [29] propose a

method to handle routing table corruptions in DHTs. This scheme augments the

regular routing table with a secure routing table where the entries need to satisfy

strict constraints on node identifiers that limit the impact of corrupt nodes. Since

nodes in the secure routing table are not picked based on short network latencies,

this scheme may increase the lookup delay. Setting a lower target latency at the

Beehive layer can compensate for the increase in lookup latency at the cost of

bandwidth and storage.

CoDoNS thus acts as a large cache for stored, self-verifying records. This de-

sign, which separates namespace management from the physical servers, prohibits

87

dynamic name resolution techniques where the mapping is determined as a result

of a complex function, evaluated at run time. In the general case, such functions

take arbitrary inputs and have confidentiality requirements that may prohibit them

from being shipped into the system. For instance, content distribution networks,

such as Akamai, use proprietary techniques to direct clients to servers [20, 134].

To support such dynamic mapping techniques, CoDoNS enables nameowners to

stipulate redirections of queries for certain names using a special redirection record.

High lookup performance during redirections is ensured through proactive replica-

tion and update of the redirection record in the same manner as regular resource

records.

As with any peer-to-peer system, CoDoNS relies on its participants to con-

tribute resources on behalf of others. While it may seem, at first, that rational

actors might be averse to participating in the system for fear of having to serve as

home nodes for highly popular records, proactive replication ensures that the load

perceived by all nodes is comparable. A highly popular record will be replicated

until the load it projects on its home node is comparable to the query load for

other records.

3.3 Evaluation

This section provides a detailed evaluation of CoDoNS through a combination of

simulations and measurements on an experimental deployment. The simulations

show that underlying resource management framework finds near-optimal solutions

to the latency-bandwidth tradeoff problem posed in expression 3.2.1. The exper-

imental evaluations demonstrates how the analysis-driven resource management

approach translates into substantial performance improvement in real life.

88

Both the simulation and the measurement study were performed for real DNS

workloads. We used a DNS workload from traces collected at MIT between the 4th

and 11th of December 2000 [79]. We extracted the first 12 hours of this trace, which

consisted of 265,111 total queries for 30,397 distinct DNS records. This workload

closely resembles a Zipf distribution with exponent 0.91.

3.3.1 Simulations

The simulation results discussed here are drawn from experiments on a 1024 node

Pastry network of base 16. For all our experiments, we started the simulation with

an empty cache; DNS records were cached as queries from the trace were injected

into the system. The workload was uniformly divided and queries were made to

each node at an uniform rate. The total query rate to the system was approxi-

mately 6 queries per second. The aggregation interval was set to 12 minutes, the

optimization interval to 120 minutes, and the target latency was set to 0.5 hops.

We compare the resulting lookup performance, measured as average overlay hops,

with the network bandwidth required for replication and update propagation.

We compared the tradeoffs between lookup latency and bandwidth consump-

tion for four different configurations. The first configuration uses the analytical

solution technique, which finds closed-form solutions to the tradeoff problem. This

technique models the popularity of domain names as a Zipf distribution and as-

sumes uniform update rates and sizes for all records. We call this configuration

Beehive-DNS, after Beehive, the initial version of the resource management frame-

work that only used the analytical solution technique [118]. The second configu-

ration called Honeycomb-DNS uses the numerical technique to solve the tradeoff

problem 3.2.1 taking into account the popularity, the size, and the update rate of

89

10
2

10
3

10
4

10
5

10
6

10

20

30

40

50

60

70

80

90

100

TTL (sec)

C
D

F
 (

%
)

Figure 3.10: Distribution of TTLs of DNS Records: More than 67% of domains

set high values for TTLs (> one hour) thereby prohibiting quick service relocation

during emergencies.

Table 3.3: Parameters used in CoDoNS Deployment

Parameter Value

base 16

leaf set size 24

aggregation interval 6 min

analysis interval 60 min

90

home
node

server
codons

cached
reply

reply from
home node

client

query

reply

legacy
DNS

Figure 3.11: CoDoNS Architecture: CoDoNS servers self-organize to form a peer-

to-peer network. Clients send DNS requests to a local CoDoNS server, which

obtains the records from the home node or an intermediate node, and responds to

the client. In the background, the home nodes interact with the legacy DNS to

keep records fresh and propagate updates to cached copies.

91

each record. Third, in order to highlight the difference between the analytical and

numerical technique, we also evaluate the performance of Honeycomb-DNS using

uniform update rate and size. We call this crippled version HoneycombNoUpdate-

DNS. Finally, we simulate a DNS system based on passive caching. This configu-

ration called PCPastry-DNS does not use the resource management framework at

all. Instead, it merely caches the record at all intermediate nodes on the lookup

path. PCPastry-DNS essentially simulates a typical timeout-based passive caching

approach widely used by DNS servers today.

Lookup Performance

The lookup performance of the four DNS configurations in a 12 hour simulation

is shown in Figure 3.12. As expected, Beehive-DNS and both Honeycomb based

systems achieve their target lookup performance, 0.5 hops, when they reach steady

state. For each of these configurations, achieving the steady state takes about four

hours, which corresponds to two rounds of optimization. Since the diameter of

the underlying network is log161024 ∼ 2.5, incremental allocation of levels to the

records takes the expected time of two optimization rounds, to decrease the level

from 2 initially to 1 and then to 0.

PCPastry, on the other hand, is only able to achieve a lookup latency of 1.6

hops. While this poor performance of PCPastry is surprising given the wide use

of passive caching in the legacy DNS, the inability of PCPastry to achieve big

gains in performance can be easily explained. There are two factors of the DNS

workload that works against PCPastry. First is the heavy-tailed popularity dis-

tribution which means enough repeated queries do not go to the highly popular

and therefore widely cached resource records. Relying on heuristics, PCPastry

92

cannot allocate resources adequately to improve the lookup performance further.

The second reason is the use of timeout based mechanism to handle mutable ob-

jects. Cached resource records simply expire after a period of time and have to

be refetched upon the next query. Together, heavy-tailed popularity distribution

and short timeouts ensure that passive caching based mechanisms cannot provide

adequate improvement to DNS lookup latency.

Network Bandwidth

Figure 3.13 shows the network overhead incurred by each configuration. We

observe that both Honeycomb setups incurred far less network bandwidth than

Beehive-DNS. Even without considering update rates, HoneycombNoUpdate-DNS

was able to outperform Beehive in terms of minimizing network overhead. This

is due the fact that Beehive assumes a Zipf distribution in the query load and

needs to estimate the Zipf parameter of the query distribution before its replica-

tion solution becomes optimal. Inaccurate estimation of the Zipf parameter, due

to insufficient global popularity information available at each node initially, causes

Beehive to underestimate the Zipf exponent, resulting in increased replication and

high network overhead.

Comparing Honeycomb-DNS with HoneycombNoUpdate-DNS, the former is

able to reduce the network bandwidth consumption by a factor of two compared

to the latter. This shows the importance of taking into account object specific

characteristics. In this case, by taking advantage of the large variance in the

update rate of DNS records, Honeycomb-DNS is able to resolve the tradeoff more

efficiently. This comparison also highlights the performance difference between the

analytical and numerical techniques.

93

In comparison to PCPastry-DNS, the network overhead of PCPastry-DNS is

much lower than that of the other three DNS systems. This is not surprising as

PCPastry-DNS, being a passive caching system, is incapable of proactively utilizing

bandwidth to improve its lookup performance. Thus, while its overhead is low, its

performance gains are also limited.

3.3.2 Deployment

We have deployed CoDoNS on PlanetLab [12], an open platform for developing,

deploying, and accessing planetary-scale services. PlanetLab enables us to deploy

CoDoNS on servers around the world and evaluate it against the background of

real Internet with congestion, losses, and unpredictable failures. In this section,

we present performance measurements from the PlanetLab deployment for the

same DNS workload. Our experiments highlight three important properties of

CoDoNS. First, they show that CoDoNS provides a low latency name resolution

service. Second, they demonstrate CoDoNS’ ability to resist flash crowds by quickly

spreading the load across multiple servers. Finally, they evaluate CoDoNS’ support

for fast update propagation.

We setup a peer-to-peer network of CoDoNS servers on globally distributed

PlanetLab nodes. The values used for different parameters of Pastry and Honey-

comb are listed in Table 3.3. We start the CoDoNS servers with no initial DNS

records. After an initial quiescent period to stabilize Pastry, we issue DNS requests

from a real workload to the CoDoNS server at each node. During the experiment,

we measure the lookup latency of CoDoNS, and periodically record the load han-

dled and overhead incurred by each node. We also apply the same workload to

the legacy DNS, and measure its performance. The measurements reported in this

94

0 3 6 9 12
0

0.5

1

1.5

2

2.5

3

time (hours)

la
te

n
cy

 (
h

o
p

s)

Beehive−DNS
HoneycombNoUpdate−DNS
Honeycomb−DNS
PCPastry−DNS

Figure 3.12: Average DNS Lookup Latency for Simulated Workload: Both Hon-

eycomb and Beehive quickly converge to the target latency of 0.5 hops.

0 3 6 9 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time (hours)

n
e

tw
o

rk
 o

ve
rh

e
a

d
 (

kb
p

s)
 p

e
r

n
o

d
e

Beehive−DNS
HoneycombNoUpdate−DNS
Honeycomb−DNS
PCPastry−DNS

Figure 3.13: Per Node Network Overhead for DNS Simulations: Honeycomb-DNS

consumes substantially lower bandwidth than Beehive-DNS by including update

overhead in the analysis.

95

paper were taken from a deployment on 75 geographically distributed PlanetLab

nodes.

Lookup Latency

Figure 3.14 shows the cumulative distribution of lookup latencies incurred by

CoDoNS and the legacy DNS. Table 3.4 summarizes the results of Figure 3.14

by providing the median, mean, and the 90th percentile of the latency distribution.

We aggregate the latency during the second half of the workload, allowing the first

half to warm the caches of both CoDoNS and the legacy DNS. The second half

of the workload also contains DNS requests for domain names not present in the

cache, and CoDoNS incurs the extra latency of fetching the queried records from

the legacy DNS. In order to study the impact of contacting the legacy DNS, we

separately evaluate the lookup performance of CoDoNS by inserting the records at

their home nodes before applying the work load. This study essentially evaluates

the scenario after a complete take over of the legacy DNS by CoDoNS.

50% of the queries in CoDoNS are answered immediately by the local CoDoNS

server without incurring network delay, since proactive replication pushes responses

for the most popular domain names to all CoDoNS servers. Consequently, CoDoNS

provides a significant decrease in median latency to about 2 milliseconds compared

to about 39 milliseconds for the legacy DNS. The tail of the latency distribution

indicates that cache misses leading to legacy DNS lookups have an impact on the

worst-case lookup performance of CoDoNS. However, a complete take over from the

legacy DNS would obviate the extra latency overhead. Overall, CoDoNS achieves

low latencies in the mean, median, and the 90th percentile, for both deployment

scenarios, with and without dependence on the legacy DNS.

96

10
0

10
1

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

90

100

latency (ms)

C
D

F
 (

%
)

codons
codons+dns
legacy dns

Figure 3.14: Cumulative Distribution of Latency: CoDoNS achieves low latencies

for name resolution. More than 50% of queries incur no network delay as they are

answered from the local CoDoNS cache.

Table 3.4: Query Resolution Latency: CoDoNS provides low latency name resolu-

tion through analytically informed proactive caching.

Latency Mean Median 90th %

CoDoNS 106 ms 1 ms 105 ms

CoDoNS+DNS 199 ms 2 ms 213 ms

Legacy DNS 382 ms 39 ms 337 ms

PlanetLab RTT 121 ms 82 ms 202 ms

97

Figure 3.15 shows the median latency of CoDoNS and the legacy DNS over

time. The fluctuations in the graph stem from the changing relative popularities of

names in the workload over time. CoDoNS reacts to these changes by continuously

adjusting the extent of proactive caching. Initially, CoDoNS servers have an empty

cache and relies on legacy DNS for most of the queries. Consequently, they incur

higher latencies than the legacy DNS. But as resource records are fetched from

legacy DNS and replication in the background pushes records to other CoDoNS

servers, the latency decreases significantly. The initial surge in latency can be

easily avoided by bootstrapping the system with records for well known domain

names.

Flash-crowd Effect

Next, we examine the resilience of CoDoNS to sudden upheavals in the popularity

of domain names. To model a flash-crowd effect, we take the DNS workload and

modify the second half to reflect large scale changes in the popularity of all domain

names. We achieve this by completely reversing the popularities of all the domain

names in the workload. That is, the least popular name becomes the most popular

name, the second least popular name becomes the second most popular name,

and so on. This represents a worst case scenario for CoDoNS because records

that are replicated the least suddenly need to be replicated widely, and vice versa,

simulating, in essence, a set of flash crowds for the least popular records.

Figure 3.16 shows the median resolution latencies in CoDoNS during the flash-

crowd effect introduced at the six hour mark. There is a temporary increase in

the median latency of CoDoNS when the flash crowd is introduced. But, proac-

tive replication in the background detects the changes in popularity, adjusts the

98

number of replicas, and decreases the lookup latency. The latency of CoDoNS

after popularity reversal quickly reaches the low values in Figure 3.15, indicating

that CoDoNS has recovered completely from the worst-case, large scale changes in

popularity.

Load Balance

We evaluate the automatic load balancing provided by proactive replication in

CoDoNS by quantifying load balance using the coefficient of variation, defined as

the ratio of the standard deviation of the load across all the nodes to the mean

load. The overall average of query load is about 6.5 per second for the system.

Figure 3.17 shows the load balance in queries handled by CoDoNS servers, ei-

ther from their internal cache or by querying the legacy DNS, for the duration of

the workload. At the start of the experiment, the query load is highly unbalanced,

since home nodes of popular domain names receive far greater number of queries

than average. The imbalance is significantly reduced as the records for popular

domains get replicated in the system. Even when a flash crowd is introduced at the

six hour mark, dynamic changes in caching keep the load balanced after a tempo-

rary increase in load variance. Overall, continuous monitoring and adaptation of

proactive caching enable CoDoNS to respond to drastic changes in the popularity

of names and handle flash crowds.

The network bandwidth and per-node storage costs incurred by proactive caching

are modest. The average bandwidth consumed over the entire experiment was 12.2

KB/s per node (std. dev. 2.26 KB/s) for all network activities. The average num-

ber of records per node was 4217 (std. dev. 348), a mere 10% of the total number

of records. These records require, on average, 13 MB per node. These measure-

99

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

time (hours)

la
te

n
cy

 (
m

s)

codons
legacy dns

Figure 3.15: Median Latency vs Time: Lookup latency of CoDoNS decreases

significantly as proactive caching takes effect in the background.

4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

100

time (hours)

la
te

n
cy

 (
m

s)

codons
legacy dns

Figure 3.16: Median Latency vs Time as a flash crowd is introduced at 6 hours:

CoDoNS detects the flash crowd quickly and adapts the amount of caching to

counter it, while continuing to provide high performance.

100

ments indicate that CoDoNS distributes the load evenly across the system and

incurs low uniform bandwidth and storage overhead at each node.

Update Propagation

Finally, we examine the latencies incurred by CoDoNS for proactive update propa-

gation. Figure 3.18 shows the delay incurred for disseminating updates to resource

records replicated at different levels. 98% of the replicas are updated within one

second even for level-0 records, which are replicated at all nodes in the system. It

takes a few seconds longer to update some replicas due to high variance in network

delays and loads at some hosts. The latency to update 99% of replicas one hop

from the home node is about one second. Overall, update propagation latency in

CoDoNS depends on the extent of replication of records. In the worst case, it takes

log N hops to update all the nodes in the network. For a million node CoDoNS

network, updating 99% of replicas would take far less than a minute for even the

most popular domain names replicated throughout. This enables nameowners to

relocate their services without noticeable disruptions to their clients.

3.3.3 Summary

Performance measurements from a planetary-scale deployment against a real work-

load indicate that CoDoNS can provide low latencies for query resolution. Massive

replication for the most popular records, but a modest number of replicas per

server, achieves high performance with low overhead. Eliminating the static query

processing hierarchy and shedding load dynamically onto peer nodes greatly de-

creases the vulnerability of CoDoNS to denial of service attacks. Self organization

and continuous adaptation of replication avoids bottlenecks in the presence of flash

101

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

time (hours)

co
e

ff
ic

ie
n

t
o

f
va

ri
a

tio
n

flash crowd
no flash crowd

Figure 3.17: Load Balance vs Time: CoDoNS handles flash crowds by balancing

the query load uniformly across nodes. The graph shows load balance as a ratio

of the standard deviation to the mean across all nodes.

0.01 0.1 1 10
0

10

20

30

40

50

60

70

80

90

100

update latency (sec)

re
p

lic
a

s
u

p
d

a
te

d
 (

%
)

level−1 records
level−0 records

Figure 3.18: Update Propagation Time: CoDoNS incurs low latencies for propa-

gating updates. 98% of replicas get updated within one second.

102

crowds. Proactive update propagation ensures that unanticipated changes can be

quickly disseminated and cached in the system.

CoDoNS provides a new platform for nameowners to efficiently publish and

manage their data. Our current implementation and deployment provides a simple

incremental migration path from legacy DNS towards the performance and func-

tionality offered by CoDoNS. During this process CoDoNS can serve as a safety

net alongside legacy DNS.

Chapter 4

CobWeb Content Distribution Network

The Web has become increasingly important as it enables users to access infor-

mation and services located throughout the world. Naturally, significant amount

of effort has been spent to improve client performance, reduce server load, and

minimize network traffic. The fundamental technique employed in improving web

performance has been caching.

Web caches to date have been deployed in two different settings, one driven

by clients and one by content providers. Web caches that are placed close to

the clients exploit temporal locality within the request stream of a single user

as well as spatial locality stemming from the common interests of independent

users of the same proxy. These web caches, which are common to users located

in several independent institutions, are called cooperative caches as they typically

consist of a distributed system of caches that exchange information with each

other to achieve a better overall cache hit rate. However, they depend on passive

monitoring and opportunistic caching, where each proxy only caches objects that

have been requested by a client that is directly connected to it. This form of

passive, opportunistic caching severely limits potential benefits because web traffic

is well-known to follow a Zipf distribution, with a heavy tail [19, 41, 5]. The heavy

tail means that a large number of web requests go for unpopular objects making

it difficult to achieve high cache hit ratios.

Web caches can also be placed within the network to aid content distribution.

In particular, companies such as Akamai and Digital Island provide content dis-

tribution services to web site operators by placing servers in strategic locations to

103

104

cache and replicate content. Such networks of servers are commonly known as con-

tent distribution networks (CDNs), and are driven by content providers rather than

content consumers. In contrast to the demand-driven nature of web proxies, most

CDNs replicate web objects proactively throughout the network using heuristics

aimed at load balancing and improving performance [57, 148]. These heuristics aim

to maximize the effective benefit from the bandwidth spent on proactive content

distribution, but typically do not provide any hard performance guarantees.

The fundamental challenge faced by any web cache is to decide which objects to

replicate and to what extent. Proxy web caches sidestep this problem by passively

caching objects that local clients have requested. In doing so, they limit the benefits

that can be realized through caching to only those objects that have been fetched

by the client population. CDNs often utilize heuristics which offer little control

over the performance characteristics and resource consumption of the resulting

system. Such heuristics do not provide a guaranteed way to achieve a certain hit

rate or to control bandwidth consumption optimally.

Several measurement and simulation studies of different heuristics for web

caching show that cache performance is limited. Breslau et al. compare cache

performance of four widely-used heuristics for size different web workloads and

show that no single heuristic is clearly superior to others for all workloads and the

cache hit rate typically does not exceed 30% [18]. Similar negative observations for

cooperative caches are reported by Wolman et al., whose study of web workloads

in two large institutions show that typical cache hit rates do not exceed 40% [156].

This chapter presents a content distribution network called CobWeb [136]. Cob-

Web employs the optimal resource management approach described in this thesis

to provide unprecedented control over the performance of a web cache. CobWeb

105

can be set a predetermined target cache hit rate, which it achieves with minimal

resource consumption or it can provide the best cache hit rate using a limited

amount of memory or bandwidth resources. The rest of this chapter describes

the architecture of CobWeb and shows how well CobWeb meets its performance

targets.

4.1 System Architecture

CobWeb operates as a globally distributed ring of cooperating nodes. Each Cob-

Web node acts as a Web proxy capable of serving HTTP requests. The techniques

underlying CobWeb can be used to drive both client driven as well as server driven

caches. Institutions that currently have large web caches at their gateway to the

Internet may let the caches join the global CobWeb ring and share cache content

intelligently and optimally. Other publicly available Web caches, such as Squid,

may also be part of the CobWeb system. Alternatively, CobWeb could be deployed

as a CDN under a single administrative domain such as Akamai. This chapter de-

scribes CobWeb as a cooperative web cache under a single administrative domain.

Figure 4.1 illustrates this architecture of CobWeb.

CobWeb distributes objects uniformly between its nodes through consistent

hashing [81]. Each web object is assigned a unique identifier that is a SHA-1 hash

of its URL. When a CobWeb proxy receives a request from a client, it routes the

request through the underlying overlay, directing the query toward the object’s

home node, the node whose identifier is numerically closest to the object’s identi-

fier. The first node along the routing path which has a copy of the object returns

the object to the origin CobWeb proxy, which is responsible for delivering it to the

client.

106

Web objects are not loaded into CobWeb unless requested. When a URL is

first requested, its home node is responsible for fetching the object from the origin

web server and inserting it into the system. Subsequently, the home node is also

responsible for renewing the object when it expires and propagating changes to

other nodes. Non-cacheable web objects are simply delivered to the client but

not stored within the CobWeb system. Home nodes also delete objects from the

system if they do not receive any queries over a long period of time.

CobWeb inherits high failure resilience from the overlay substrate. When a

home node fails, the next closest node in the identifier automatically becomes the

home node of an object. An objects for which the home node has the sole copy,

simply disappear from the system. This behavior is acceptable because CobWeb

serves merely as a performance enhancing soft cache, rather than a permanent

store.

Users access CobWeb in a transparent way without requiring any extensions

or reconfigurations to the browser. In order take advantage of CobWeb, a user

merely needs to append “.cobweb.org:8888” to the main URL of a web site. The

HTTP request is diverted to the closest CobWeb server through DNS-redirection.

Subsequently, all web pages accessed through links on the main URL are automat-

ically redirected through CobWeb. Alternatively, CobWeb is also available as a

conventional proxy service, which can be accessed by setting the proxy options in

the browser to point to the closest CobWeb node.

The above architecture facilitates deployment under a single administrative

domain, such as in the Akamai model or our current deployment on PlanetLab.

However, in a collaborative deployment, where nodes under different administrative

domains are part of the CobWeb network, some nodes may be malicious and either

107

attack the overlay or corrupt the content cached in the system. This problem can be

easily solved if web servers provide digitally signed certificates along with content.

An alternative solution that does not require changes to servers is to use threshold

cryptography to generate self-certifying content [162, 77]. When new content is

to be inserted into the ring, the object can be fetched and partially-signed by a

quorum of ring members. If the quorum size exceeds a threshold, partial signatures

may be combined into a single signature that attests that t out of n nodes in a

wedge on the CobWeb ring agree on the content. Such a scheme can ensure that

rogue nodes below a threshold level cannot corrupt the system with bad content

and other measures [29] can protect the underlying substrate from malicious nodes.

However, the design and implementation of such a threshold-cryptographic scheme

for a non-collaborative environment is beyond the scope of this thesis.

The rest of this section describes in detail the different components of the

CobWeb architecture.

4.1.1 Optimal Resource Management

CobWeb is layered Honeycomb, the optimal resource management framework de-

scribed in Chapter 2. Each object is cached at a replication level that corresponds

to a well-defined region of the overlay system at a certain fixed distance from the

home node of the object. The numerical optimization algorithm proposed earlier

then enables CobWeb to find the optimal replication levels for each object in the

system, taking into account popularity, size, and update rate.

CobWeb optimizes the average lookup performance since content distribution

networks are primarily concerned with providing users with low latencies through

a high hit rate. At the same time, it aims to make the best use of the resources

108

available. Given that disk storage is cheap and disk capacity is rapidly increasing,

storage cost is unlikely to be of much interest in practice. Network bandwidth, on

the other hand, is expensive and often the bottleneck in distributing large objects.

Hence CobWeb primarily focuses on network bandwidth as the resource to be

optimized.

CobWeb uses the analytical models derived in Chapter 2 for expressing lookup

performance and bandwidth overhead. These expressions are as follows:

Avg. Latency =

∑M
1 qmlm

∑M
1 qm

(4.1.1)

Total Bandwidth =

M
∑

1

(A + smum)
N

bl
+ am(l, l′) (4.1.2)

The above expressions represent average lookup latency in overlay hops and total

network bandwidth in bytes per unit time including the bandwidth consumed for

management, update propagation, and replication.

CobWeb computes the optimal replica strategy in two possible configurations.

In the first configuration, it sets a target lookup latency, TL, and computes the

replica placement strategy that will achieve this target with the minimum cost. In

this configuration, CobWeb provides a knob that allows system administrators to

tune the performance of the system. For example, a target of 0.5 ensures that at

least 50% of all queries do not require a network hop and results in 50% cache hit

rate. In the second configuration, CobWeb minimizes the average lookup latency

subject to a limit on resource consumption. Given that our measure for cost is

bandwidth overhead, a system administrator can set the amount of bandwidth,

TB that CobWeb can consume over a time interval. CobWeb then computes the

replica placement strategy that will produce the best lookup performance within

these limits.

109

4.1.2 Cache Consistency Management

A common concern in maintaining replicas at multiple locations is the issue of

maintaining consistency. Due to the structure of its overlay network, CobWeb is

capable of efficiently maintaining consistency among objects. When a web object

expires, its home node is responsible for fetching a new copy from the origin web

server. This new copy is then propagated proactively to all nodes with cached

copies of the object. Given the allocation level of an object, each node can de-

termine exactly the set of nodes it needs to deliver the updates to, allowing this

process to be fast and efficient.

4.1.3 User Interface

As mentioned earlier, CobWeb provides two different interfaces for different classes

of uses. Users may change the proxy settings in their browser and designate a Cob-

Web node as a web proxy. In designating the proxy node, users can either specify

the explicit address of a CobWeb node close to them, or instead use the generic

proxy address “cobweb.closestnode.com”. As described in Section 4.1.3 below,

CobWeb uses the Meridian mechanism [158, 157] based on active measurements

to locate the CobWeb node closest to the client.

Although the proxy interface is fast and relatively easy to use, it is not always

possible for users to change the proxy settings of their browsers. Further, content

providers, such as Slashdot, who wish to take advantage of the load shedding and

performance improvement provided by the CobWeb cache may not be in a position

to force their clients to modify their proxy designations. In these cases, clients can

be redirected to use the CobWeb cache by appending the suffix “cob-web.org:8888”

to the host name of any URL. For instance, cnn.com can be accessed via the URL

110

“http://www.cnn.com.cob-web.org:8888”. Rewriting the host name suffix forces

client browsers to look up the name with the CobWeb DNS server, which again

uses the Meridian mechanism to route the client’s request to the closest CobWeb

node.

URL Rewriting

CobWeb performs URL rewriting on the fly in order to provide clients with a

seamless experience, where all resources on a “cobwebbed” URL are fetched from

the CobWeb cache instead of the origin server. This enables CobWeb to support

high-volume sites such as Slashdot. Consider a HTML page hosted on one web

server that includes many images hosted on another server with a different host

name. URL rewriting ensures that when the page is requested through CobWeb,

all the images will be accessed through CobWeb as well, alleviating the load on

both the HTML server and the image server. URL rewriting occurs only once

when a page is first fetched by a CobWeb node from the origin server. Subsequent

accesses incur no overhead since the resultant page is then cached in the system.

DNS Redirection

Latency between clients and cobweb servers may form a significant portion of the

overall lookup performance. To keep this latency low, it is important that users are

directed to the CobWeb proxy that is closest to them. CobWeb accomplishes this

by using the Meridian algorithm for closest node selection [158, 157]. When a user

first queries for a cobwebbed URL, a DNS request is sent to CobWeb’s DNS server,

which initiates a recursive Meridian lookup. Meridian is a network service that

enables clients to locate the closest node from a network of nodes. Meridian finds

111

the closest node by organizing the network into concentric, non-overlapping rings

with exponentially increasing radii, based on the node’s distance from each other.

Upon a query to find the closest node, a Meridian node determines its distance

d to the client using a reverse DNS query or an ICMP ping, examines its rings

in the range d/2 to 3d/2 to find suitable nodes, and asks those nodes to measure

their distances to the client. If a suitable node is found, the query is forwarded

to that node and the process continues recursively; otherwise, the current node is

designated as the closest proxy for that client. The Meridian algorithm reduces the

distance between the candidate proxy and the client node exponentially at each

hop, has been proven to succeed with very high probability under general models

for the Internet latency space, and achieves low error rates in practice.

To mask the latency of proximity detection from the client, CobWeb caches

closest node information reported by Meridian. Internally, CobWeb caches mea-

surements taken during the Meridian routing process that are used to determine

inter-node distances. In addition, when the closest node to a client is found, the

identity of that node is cached at the DNS server for a relatively long period of 10

minutes, allowing subsequent queries from that client to be satisfied instantly.

4.2 Evaluation

In this section, we evaluate the performance of CobWeb through extensive simu-

lations and measurements from a real world deployment of our system.

4.2.1 Simulations

We first compare the performance of CobWeb, in its two different configurations,

with Beehive, which uses the analytical approach for solving the optimization

112

problem. In addition, we compare CobWeb with PCPastry, a caching mechanism

built on top of Pastry that passively caches objects on the intermediate nodes in the

routing path, to show the difference in the characteristics of a proactive replication

system such as CobWeb and that of a passive, opportunistic caching system. As

a baseline for comparison, we also include plain Pastry in our simulations, with

no caching at all. Finally, we examine the performance of CobWeb in the face of

flash crowds and show that it is capable of quickly adapting to rapid changes in

the popularity of objects.

In the experiments below, we run CobWeb in two different configurations. In

the first configuration, CobWeb-TL, CobWeb is configured to achieve a target

latency to guarantee high performance. In our experiments, we set this target

latency to 0.5 hops, which seeks to satisfy more than 50% of queries at the local

CobWeb proxy. In the second configuration, CobWeb-TB, CobWeb is set to meet a

target bandwidth limit. This emulates the situation where a CDN needs to provide

optimal performance subject to a resource constraint. In our experiment, we set

the bandwidth limit to 0.25 KB/s. In both cases, CobWeb-TL and CobWeb-TB

are configured with an aggregation interval of 12 minutes. We configure Beehive

to meet the same latency target of 0.5 hops.

For each of these systems, our simulations model a 1024 node network. We

inject queries to these servers based on a workload extracted from a week-long

trace from a busy proxy server that is part of the IRCache project at the National

Laboratory for Applied Network Research [172] in October 2004. The workload

consists of a total of 409,600 queries for 10,000 objects. The workload distribution

follows a Zipf distribution with parameter 0.82. The queries are uniformly divided

among the clients, which send queries into the system at a steady rate. The total

113

query rate seen by the system is about 6 queries per second. Wherever the graphs

are plotted with error bars, the experiments were repeated five times with different

seeds to the random number generator and the standard deviation is plotted as

the error.

Proactive Caching

Since the Beehive system and the CobWeb-TL system are both configured to meet

the performance targets, we expect both systems to perform similarly once they

have converged to their performance targets. CobWeb-TB, on the other hand, is

expected maximize its performance while keeping to a bandwidth limit.

Figure 4.2 shows the latency average latency of CobWeb and Beehive systems

over the duration of the experiment. As expected, CobWeb-TL and Beehive both

converge to the target latency within the first few hours. CobWeb-TB, given its

aggressive bandwidth constraints, experiences a slower improvement in latency

because it has to stay within its bandwidth limit. CobWeb-TB’s performance

stabilizes after about 5 hours, at a steady average lookup latency of about 0.68,

because its bandwidth constraints do not allow it to maintain a sufficient number

of replicas to match CobWeb-TL and Beehive’s performance.

While performance is an important goal for these systems, keeping network

and storage overhead at a minimum is also important. Figure 4.3 shows that ana-

lytically informed caching can achieve high performance while keeping bandwidth

consumption modest. Not surprisingly, CobWeb-TB converges to its target band-

width limit of 0.25 KBps very quickly, and its bandwidth consumption remains

at this level in the steady state. Both Beehive and CobWeb-TL, which target

lookup performance instead of bandwidth consumption, meet their targets with a

114

Figure 4.1: CobWeb Architecture

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20

time (hours)

la
te
n
c
y
 (
h
o
p
s
)

CobWeb TL

CobWeb TB

Beehive

Figure 4.2: Average Lookup Latency: Beehive and CobWeb-TL quickly converge

to their target latency of 0.5; CobWeb-TB achieves lower performance.

115

bandwidth consumption of 0.5 KBps.

Unlike CobWeb-TB, Beehive and CobWeb-TL experience an initial bandwidth

spike. This is a result of the aggressive replication that occurs at the beginning of

the experiment, as both systems try to rapidly improve their hit rates to meet their

performance goals. Between the two, CobWeb-TL consumes much lower network

bandwidth as it converges to its performance target. The reason for this lower

overhead is two-fold. First, CobWeb does not require an accurate estimate of the

Zipf parameter of the workload, in fact, it does not even assume a Zipf distribution,

allowing it to converge to an optimal solution much faster than Beehive. Second,

because CobWeb-TL takes object sizes into account when computing its replication

solution, it is able to minimize network usage.

Figure 4.4 shows the storage overhead of each node during the experiment. We

observe that the storage overhead of the systems corresponds closely to that of the

network overhead. Beehive’s storage overhead initially overshoots its steady state

value before gradually settling on its steady-state value. This is a result is again

due to intitial underestimation of the zipf parameter in Beehive. The CobWeb

systems do not make the assumption of a Zipf distribution of the query load and

are inherently not subject to this estimation error. In addition, CobWeb-TL, by

preferentially replicating smaller objects, incurs only about half the overhead of

Beehive while achieving the same performance.

The storage overhead of CobWeb-TB is lower because it is indirectly limited

by its bandwidth constraint. Although CobWeb-TB’s resource consumption limit

is defined in terms of network overhead, this creates an indirect limit on storage

consumption due to the fact that each replicated object consumes network band-

width for update propagation and aggregation overhead. When the system reaches

116

a state where all available network bandwidth is being consumed by maintenance

overhead in this fashion, CobWeb-TB can no longer cache additional objects.

Comparison to Passive Caching

We next compare CobWeb-TL to PCPastry and Pastry. For this experiment, we

increased the target latency of CobWeb-TL to 1.0. This allows CobWeb-TL to

match PCPastry’s performance so that we can make reasonable comparisons of

the two systems’ resource consumption.

Being a passive caching system, PCPastry is indifferent to the popularity of

objects. Therefore, we expect it to incur a significantly higher storage overhead

than CobWeb, and to converge to a steady state at a much slower rate. Our

simulations confirm this. Figure 4.5 shows the latency performance of PCPastry

and CobWeb-TL. We observe that the latency performance of PCPastry converges

very slowly to a lookup latency of about 1 hop, as cached copies of objects are

slowly created throughout the network in response to the workload. CobWeb-

TL converges rapidly to the targeted performance level. Being a passive system,

PCPastry is incapable of providing any means of trading off more resources for

performance gains.

Also, as expected, CobWeb-TL is able to accomplish the same performance

target as PCPastry at much lower cost. Figure 4.6 shows the storage overhead

of the two systems. The storage overhead of PCPastry increases steadily over

the course of the experiment. As more queries are injected into the system, the

passive caching mechanism of PCPastry indiscriminately caches every object that

passes through every node. In sharp contrast, CobWeb-TL computes an optimal

replication strategy and stores a much smaller set of objects at each node. Once

117

0

2

4

6

8

10

12

0 5 10 15 20

time (hours)

n
e
tw
o
rk
 b
a
n
d
w
id
th
 p
e
r
n
o
d
e
 (
k
b
p
s
)

CobWeb TL

CobWeb TB

Beehive

Figure 4.3: Per Node Network Overhead: CobWeb-TL incurs significantly lower

network overhead than Beehive, while CobWeb-TB uses the least network over-

head, being able to stay below its allotted bandwidth limit

0

2

4

6

8

10

12

0 5 10 15 20

time (hours)

O
b
je
c
ts
 S
to
re
d
 (
M
B
)

CobWeb TL

CobWeb TB

Beehive

Figure 4.4: Per Node Storage Overhead: CobWeb-TL incurs significantly lower

storage overhead than Beehive, while CobWeb-TB, because of its bandwidth limit

constraint, incurs the least storage overhead.

118

CobWeb-TL achieves a steady state where it is able to meet its performance target,

its storage overhead remains constant.

In the above experiments, PCPastry was set an unbounded cache size. It may

appear that constraining the cache size of PCPastry may help reduce its resource

consumption without a significant impact on its lookup performance. In order

to test this hypothesis, we simulated PCPastry with its cache size limited to the

steady state storage consumption of CobWeb-TL and used the least recently used

(LRU) and least frequently used (LFU) heuristics for cache replacement. Unfor-

tunately, under this scenario, PCPastry provided almost negligible performance

improvement compared to Pastry with no caching. This experiments further high-

lights the fundamentally superior level of performance of principled, well-informed

approaches over blind heuristics.

Flash Crowds

One of the goals of the CobWeb system is to alleviate the “Slashdot effect,” also

known as “flash crowds.” We simulate the conditions of a flash crowd and show

that CobWeb adapts rapidly to such situations. In this experiment, the workload

consists of 409,600 queries for a total of 5000 unique objects. The query distribu-

tion follows a Zipf distribution with exponent 0.9 and the aggregation interval for

CobWeb is set to 45 seconds. The two systems, CobWeb-TL and CobWeb-TB, are

configured with a target latency of 1 hop, and a target bandwidth limit of 2 KBps

respectively. In order to simulate a flash crowd, the popularities of the 10 least

popular objects in the system are increased by three orders of magnitude, after 10

hours, making them the most popular objects in the system.

Figure 4.7 shows the average latency observed by clients over the course of the

119

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

time (hours)

la
te
n
c
y
 (
h
o
p
s
)

CobWeb TL

PCPastry

Pastry

Figure 4.5: CobWeb-TL converges to the target latency of 1 rapidly, while PCPas-

try converges much more slowly.

0

1

2

3

4

0 5 10 15 20

time (hours)

o
b
je
c
ts
 s
to
re
d
 (
M
B
)

CobWeb TL

PCPastry

Pastry

Figure 4.6: Per Node Storage Overhead: CobWeb-TL’s storage overhead reaches

a low, steady-state value rapidly, while PCPastry’s storage overhead increases

steadily overtime.

120

experiment. At the 10th hour, when the flash crowd occurs, both CobWeb-TL and

CobWeb-TB experience a sudden increase in the average latency. However, both

systems quickly recover to their steady state average latency within a matter of

minutes as the systems learn the new popularity distribution and take remedial

actions.

The corresponding network bandwidth consumption is shown in Figure 4.8.

When the flash crowd occurs, CobWeb-TL’s network bandwidth consumption in-

creases rapidly because CobWeb-TL aggressively replicates the newly popular ob-

jects in order to meet its performance targets. CobWeb-TB, on the other hand, sees

an almost steady bandwidth consumption in the face of a flash crowd. Yet, slower

background replication ensures that CobWeb-TB converges back to its steady state

latency.

Our results show that CobWeb performs well under flash crowd conditions.

CobWeb’s fast aggregation techniques allowed the system to detect changes to ob-

ject popularity quickly and change replication strategy accordingly. As a result,

both CobWeb-TL and CobWeb-TB were able to recover to their steady state per-

formance within minutes. CobWeb-TB was able to accomplish this while staying

within its target bandwidth limit.

4.2.2 Deployment

We next show results from a live deployment of CobWeb on PlanetLab to demon-

strate that the performance benefits seen in simulations are achievable in practice.

Our deployment consists of a set of 90 widely distributed PlanetLab [12] nodes,

each acting as a CobWeb server. Each CobWeb server is configured in CobWeb-TL

mode, minimizing network overhead while aiming a target lookup latency of 0.5

121

5 10 15 20
0.5

0.75

1

1.25

1.5

time (hours)

la
te

n
cy

 (
h

o
p

s)

CobWeb TL
CobWeb TB

Figure 4.7: Network bandwidth consumed during a flash crowd: CobWeb-TL sees

a sudden increase in network bandwidth usage which rapidly returns to its previous

steady state; CobWeb-TB shows little change in network bandwidth usage.

5 10 15 20

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

time (hours)

n
e

tw
o

rk
 b

a
n

d
w

id
th

 p
e

r
n

o
d

e
 (

kb
p

s)

CobWeb TL
CobWeb TB

Figure 4.8: Average lookup latency during a flash crowd: Both systems see a small

increase in latency, but quickly recovers to the steady state latency.

122

hops. The workload we use for testing our deployment is extracted from the same

NLANR trace that we used for our simulations and contains a total of 100,000

queries for 24,822 unique objects. The query distribution closely follows a Zipf-like

distribution with parameter 0.83. We divide this workload uniformly and issue

HTTP

We divide this workload uniformly and issue HTTP requests from 20 PlanetLab

nodes. The aggregate rate of queries sent into the system is about 240 queries per

second. We measure the time taken to complete each query as seen by each of

these clients, as well as the network overhead and cache hit rates seen by each

CobWeb server. Then, we measure the latency seen by each of the clients when

they fetched web objects directly from the origin servers without the use of any

web proxies.

Our experimental results show that CobWeb provides a significant performance

improvement over fetching objects directly from the origin server. Figure 4.9 shows

the cumulative distribution of lookup latencies for fetching objects through Cob-

Web and directly from the origin server. Note that the horizontal axis of the graph

is plotted on a log scale. We observe that the cumulative distribution graph for

CobWeb rises steeply to about 0.58. This steep rise corresponds to the large por-

tion of queries that were satisfied by a hit in the local cache. Approximately 60%

of queries were satisfied in less than 30 milliseconds. In contrast, less than 5%

of direct fetches were completed in that time. The graph shows that the median

time to fetch an object through CobWeb was 27 milliseconds, while the median

time to fetch an object directly from the origin web server was 200 milliseconds.

Our measurements shows that the network overhead incurred was modest, never

exceeding 500 bytes per second (Figure 4.10).

123

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (milliseconds)

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

Cumulative Distribution of Fetch Times

CobWeb−TL
Direct Fetch
CoralCDN

Figure 4.9: CDF of latency to fetch web objects: clients using CobWeb observed

a large performance increase over clients fetching web objects directly from web

servers.

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600

Time (minutes)

N
et

w
or

k
B

an
dw

id
th

 O
ve

rh
ea

d
pe

r
N

od
e

(b
yt

es
/s

ec
on

d)

Network Bandwidth Consumption over Time

Figure 4.10: Network Overhead Per Node: CobWeb incurred a modest network

overhead.

124

Since the implementation of CobWeb in May 2005, we have deployed the sys-

tem on PlanetLab and made it available for public use. Our PlanetLab deployment

runs on the same 90 nodes that were used for the measurements described above,

and is configured in CobWeb-TL mode to meet a target latency of 0.5 hops. The

number of requests served by CobWeb has increased steadily ever since our ini-

tial deployment. CobWeb currently serving more than 10 million requests daily.

This has allowed us to observe CobWeb’s behavior under a real world workload.

Figure 4.11 shows the global hit rate seen by the CobWeb deployment over a one

week period. The graph shows that CobWeb is capable of meeting its performance

target under a real workload.

CobWeb demonstrates that informed, proactive replication is capable of sup-

porting a high-performance content distribution network that minimizes resource

overhead by taking into account object popularity, sizes, and update rate when

computing the optimal replication solution. The modest network overhead in-

curred suggests that CobWeb can scale to support a large population of clients

with a high query rate. Our experience with the deployment of CobWeb as a

publicly available service on PlanetLab confirms this.

4.3 Summary

This chapter described CobWeb, a globally distributed content distribution net-

work that applies the approach of optimization based resource management to the

problem of web object caching. Simulations and real world experiments clearly

demonstrated the superiority of a principled approach to a heuristic-driven one.

CobWeb is able to make better use of its resources and provide a significantly

better performance to its users compared to a passive web cache.

125

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
it

R
at

e

Time (minutes)

Global Hit Rate Over Time

Figure 4.11: Hit Rates over time: CobWeb-TL converges to a target hit rate of 0.5

Chapter 5

Corona: Online Data Monitoring System

Online data sources have become increasingly prevalent. The growing popularity

of frequently updated online content, including weblogs, collaboratively authored

web pages (wikis), and news articles, motivates a publish-subscribe mechanism

that can deliver updates to users quickly and efficiently, with low aggregate load

on the network and content providers. Yet, existing web protocols do not provide

a mechanism for automatically notifying users of updates.

In the research community, publish-subscribe systems have raised considerable

interest over the years. A typical publish-subscribe paradigm consists of three com-

ponents: publishers, who generate and feed the content into the system, subscribers,

who specify content of their interest, and an infrastructure for matching subscriber

interests with published content and delivering matched content to the subscribers.

Based on the expressiveness of subscriber interests, two types of publish-subscribe

systems have been proposed, namely topic-based or content-based. In topic-based

systems, publishers and subscribers are connected together by pre-defined topics,

called channels; content is published on well-advertised channels to which users

subscribe to and receive asynchronous updates. Content-based systems enable

subscribers to express elaborate queries on the content and use sophisticated con-

tent filtering techniques to match subscriber interests with published content.

The fundamental drawback of the preceding publish-subscribe systems is their

non-compatibility with the current Web architecture. Publish-subscribe systems

so far have primarily focused on the design and implementation of content filtering

and event delivery mechanisms. Such mechanisms require substantial changes in

126

127

the way publishers serve content, expect subscribers to learn sophisticated query

languages, or propose to lay out middle boxes in the core of the Internet. However,

the growing popularity of a new application called micronews syndication, which

monitors web content through naive, repeated polling, indicates that backwards

compatibility with existing web tools and protocols is critical for rapid adoption.

Micronews feeds are short descriptions of frequently updated information, such

as news stories and blog updates, in XML based formats such as RSS [131] and

Atom [167]. They are accessed via HTTP through URLs and supported by client

applications and browser plug ins called feed readers, which check the contents of

micronews feeds periodically and automatically on the user’s behalf and display

the returned results. The micronews standards envision a publish-subscribe mode

of content dissemination and define XML tags that tell clients how to receive

asynchronous updates as well as special tags that inform clients when not to poll.

Yet, few content providers currently use these tag to enable asynchronous updates.

The current state of the art in micronews syndication continues to rely on repeated

polling.

The current publish-subscribe architecture based on uncoordinated polling suf-

fers from poor performance and scalability. Subscribers do not receive updates

quickly, as the polling period poses a fundamental limit to the update detection

time. Clients are tempted to poll at faster rates in order to detect updates quickly.

Consequently, content providers have to handle the high bandwidth load imposed

by clients, each polling independently and multiple times for the same content.

Moreover, the workload tends to be “sticky;” that is, users subscribed to popular

content do not unsubscribe after their interest diminishes, causing a large amount

of wasted bandwidth.

128

Existing micronews syndication systems provide ad hoc, stop-gap measures

to handle the performance and scalability problems. Content providers currently

impose hard rate limits based on IP addresses, which render the system inoperable

for users sharing an IP address (such as clients behind NATs and Firewalls), or

they provide hints for when not to poll, which are discretionary and imprecise.

The fundamental problem is that the server bandwidth is used inefficiently, and

stems from an architecture based on naive, uncoordinated polling.

This chapter describes a novel distributed system for monitoring changes to on-

line data sources. The presented system, called Corona, provides a high-performance

update notification service without requiring any changes to the existing infras-

tructure, such as web servers. Corona enables any client to subscribe for updates

to any existing web page or micronews feed, and asynchronously and efficiently

delivers updates. Corona derives its superior performance from the optimal re-

source management framework described in Chapter 2. The resource management

framework determines the optimal amount of bandwidth to devote to polling data

sources in order to meet system-wide goals.

This chapter is organized as follows. First, it provides insights into the charac-

teristics of micronews feeds derived through a large-scale measurement study [92].

Second, it describes in detail the architecture of the Corona system [117, 113].

Finally, it evaluates the performance of the proposed architecture based on simu-

lations and real-life deployment.

5.1 Characteristics of Micronews Feeds

Understanding the workload characteristics of a publish-subscribe application is

essential for designing a high performance pub-sub system. Currently no published

129

measurement study of real-life publish-subscribe application exists. We fill this

breach by examining RSS syndication, the first widely deployed publish-subscribe

system, which is used for disseminating Web micronews.

This section studies the feed characteristics and client behavior in the RSS

system using data collected through a combination of passive logging and active

polling. First, we recorded a 45-day trace from the Department of Computer

Science at Cornell University. We use this trace to examine the characteristics of

RSS workload, such as the popularity of RSS feeds, and user behavior, including

polling rate and subscription patterns. Second, we collected snapshots of RSS

content by actively polling a large number of RSS feeds.

We report on three broad aspects of the RSS system using the trace data and

periodic snapshots. First, we analyze the characteristics of RSS feeds, such as the

popularity distribution, content size, format, and version of RSS used. Second,

we investigate how RSS feeds are updated; in particular, we focus on the update

intervals of RSS feeds, the amount of change involved in updates, and correla-

tions between updates and feed size. Finally, we examine how clients use RSS by

studying their polling behavior and subscription patterns.

5.1.1 Measurement Methodology

Passive Logging: We built a software tool for tracing RSS traffic and installed

it at the network border of our department. Our department is a medium-sized

academic organization with about 600 graduate students, faculty, and staff. The

network is topologically separated from transient users, such as undergraduates in

computer labs, who do not have dedicated computers for long-running programs.

We traced user activity over a 45 day period, spanning from 22 March to 3 May

130

2005, and recorded all RSS related traffic. The trace consists of 158 different RSS

users, who subscribe to 667 feeds in total.

Our tracer software operates by capturing every TCP packet, reassembling full

TCP flows, and logging the flows that contain an RSS request or response. For

anonymity, we obfuscate client IP addresses using a one-way hash salted with a

secret; this enables us to identify unique IP addresses without being able to map

them back onto hosts. Although DHCP is used in our department, the assignment

of IP addresses is decided by the physical network port used, and is therefore quite

static. Laptop users that connect to public network ports may have different IPs

over time, but we estimate the number of laptop users to be low compared to users

with fixed IPs. The tracer tool ran on a Dell dual processor 4650 workstation, which

was able to keep up with packet capture at Gigabit line speed on the link from our

department to the campus backbone. We made flow assembly non performance

critical by performing it offline on the captured packet stream and observed no

packet drops during the whole trace period.

Active Polling: We obtained a list of 99,714 RSS feeds from syndic8.com, a

directory that acts as a vast repository of RSS feeds. We actively polled 1000

randomly chosen feeds every ten minutes for 131 hours (more than five days) and

recorded the results. While picking feeds for active polling, we ensured that no

two feeds are belong to the same web site in order to make sure the results are not

biased by the update behavior of any single web site. During the polls, download

timeout was set to 20 seconds and a request was retried 4 times if the response

was not received within the timeout period. A successful download of the RSS

content gives a snapshot of the RSS feed at that time. A download may fail due

to high instantaneous load on the server, network congestion, or stringent polling

131

limits imposed by servers. We fetched 769813 snapshots in total; that is, only 2%

of snapshots were lost per feed on average.

5.1.2 Feed Characteristics

We first present statistics on RSS workload and content. We compute the popular-

ity of RSS feeds based on the user activity traces and derive content characteristics

from the snapshots of RSS feeds. We measure popularity in two ways: based on

the number of requests received for each RSS feed and based on the number of

clients who subscribed to each RSS feed.

Feed Popularity: Figure 5.1 shows the popularity of RSS feeds ranked by the

number of requests received. The popularity follows roughly a Zipf distribution

with exponent α = 1.37. The most popular feed (BBC news) receives 12,203 re-

quests, while there is a long tail of many feeds that receive only a single request.

Figure 5.2 plots the popularity of RSS feeds based on number of subscribers ob-

served in the trace. The distribution of subscribers also follows a Zipf distribution

(α = 0.5). The small number of clients in our trace makes the log-log plot diverge

a little from the Zipf line. Overall, RSS workload has characteristics similar to

Web workloads, which are also known to follow heavy-tailed power-law distribu-

tions [18].

Feed Size: RSS feeds typically consist of Web content encapsulated in XML

format. Therefore, we expect the majority of RSS feeds to have size close to most

Web objects. This is confirmed by Figure 5.3, which plots the distribution of feed

size. The feed size is calculated as the average of all the snapshots of the feed; the

variance is very small for the feed snapshots. More than 80% of the RSS feeds are

relatively small at less than 10KB. The minimum observed feed size is 356 bytes,

132

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

N
um

be
r

of
 R

eq
ue

st
s

Channel Rank

α=1.37

Figure 5.1: Feeds Ranked by the Number of Requests: RSS popularity follows a

Zipf distribution.

 1

 10

 100

 1000

 1 10 100 1000

N
um

be
r

of
 C

lie
nt

s

Channel Rank

α=0.50

Figure 5.2: Feeds Ranked by the Number of Subscribers: RSS popularity based

on subscriptions also follows a Zipf distribution.

133

median is 5.8KB, and the average is 10KB. While, 99.9% of feeds are smaller than

100KB, the feed size distribution is heavy tailed with the largest feed at 876,836

bytes (not shown in the graph).

Extremely large RSS feeds, however, are rare, unlike some Web objects that

can be of several megabytes or more. RSS feeds are expected to be more concise

than web pages because RSS is meant for the quick dissemination of news updates,

often only carrying links to the more elaborate news articles. Moreover, the current

architecture of RSS, where clients need to fetch the whole feed for checking updates,

poses a high bandwidth load on content servers. This discourages content providers

from supporting large feeds and biases towards small feed sizes.

5.1.3 Update Characteristics

Updates are the main driving force of the RSS system. We examine the nature of

RSS updates using the series of hourly snapshots gathered through active polling.

We ensure that missing snapshots do not affect the calculations of update interval

by only counting the intervals between valid updates; an update is valid only if there

is a valid snapshot preceding the update, and that preceding snapshot matches the

last recorded update.

Update Interval: Figure 5.4 shows the average update interval of RSS feeds,

calculated by averaging the valid update intervals measured for each feed. We see

that feed update intervals fall in two extremes: they either update very frequently

or very rarely. Over 50% of the RSS feeds do not change at all during the entire

polling period of 5 days. At the same time, other RSS feeds change at a fairly rapid

rate. About 9% of the feeds change at least once every hour. A significant 5% get

updated every ten minutes. Since we gathered snapshots every ten minutes, our

134

data do not show updates that happen within that time. Nevertheless, we find

that RSS feeds have widely varying update intervals. This result suggests that

RSS readers should use different polling periods for different feeds. However, most

RSS readers poll all the feeds at a uniform rate.

Update Size: We quantify update sizes using the minimum edit distance (“diff”)

between two consecutive snapshots. Figure 5.5 shows the cumulative distribution

of update sizes. 64% of all updates involve no more than two lines of changes. The

average change in the number of lines is 16.7 (6.8% of feed size) and the maximum

is 16,542. The feed that changes most is hosted by a weather service website that

provides weather forecast for many areas.

The major criticism against RSS has centered around its scalability. The con-

stant polling by clients poses a significant bandwidth challenge on RSS servers.

This study indicates that it is highly desirable to send clients only the “delta,”

that is, the portion of data that actually changes. Our measurement shows that

the feed updates only 6.8% of its content on average, which suggests that this

optimization can reduce bandwidth consumption by as much as 93.2%.

5.1.4 Client Behavior

Finally, we analyze how clients use the RSS system from the user activity trace we

collected.

Polling Frequency: We divide the clients into two categories, namely auto and

manual, according to their polling behavior. Auto clients poll feeds at a fixed

rate, usually by running RSS readers in the background, while manual clients use

RSS in the same way as they browse the Web, that is, launch RSS readers when

they really want to read the news, and close the program after reading it. We

135

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
D

F
 (

%
)

Feed Size (KBs)

Figure 5.3: CDF of Feed Size: RSS feeds are typically small (less than 10 KB)

with a median of about 5.8 KB.

0 20 40 60 80 100 120

10

20

30

40

50

60

70

80

90

100

Update Interval (hours)

C
D

F
 (

%
)

Figure 5.4: Average Update Time: 9% of feeds have average update interval of

less than one hour, while 50% of feeds do not change for more than five days.

136

consider clients who poll a feed for less than 3 times a day or with irregular polling

intervals as manual clients. We find that 36% of clients in our department fall in

this category. For auto clients, who poll at periodic intervals, we show the polling

rate in Figure 5.6. 58% of them poll feeds hourly, suggesting that most users do

not change the default setting of their RSS readers. A small number of aggressive

clients poll as often as every ten minutes.

Number of Subscriptions: Figure 5.7 shows the number of feeds subscribed by

each client in sorted order. This distribution also follows a Zipf distribution with

exponent α ∼ 1.13. While most clients subscribe to less than five feeds, there are

several clients that subscribe to more than 100 feeds.

5.1.5 Summary of RSS Characteristics

The measurement study of RSS provides insights about how a publish-subscribe

system is utilized in practice and what issues need to be addressed while designing

publish-subscribe systems.

The main focus of our study is to analyze how feeds are updated, a fundamental

aspect of pub-sub systems. This study shows that update rates of RSS feeds are

distributed in extremes; many feeds (9%) update every hour, while a large number

of feeds (50%) do not change for days. Hence, significant bandwidth savings can

be obtained by using the optimal polling period for each feed instead of a single

common polling rate for all feeds. End users of RSS, however, cannot be relied on

to set the optimal polling rate, as this study shows that clients predominantly do

not change the default settings of RSS readers. A better solution is for content

providers to indicate when and at what rate to poll a particular feed. The version

2.0 of RSS already provides support for customized polling, although many readers

137

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

C
D

F
 (

%
)

Update Size (Lines)

Figure 5.5: Number of Changed Lines in Updates: 64% of updates involve no more

than two lines of change.

 0

 10

 20

 30

 40

 50

 60

10 30 40 50 60 70 100 180

P
er

ce
nt

 (
%

)

Poll Interval (min)

Figure 5.6: Polling Rate of Clients: About 58% of clients use the default setting

of one hour as the polling period.

138

are yet to support this feature.

Much of the bandwidth in RSS goes towards refetching feeds in order to check

for updates because the current RSS architecture does not employ asynchronous

notifications. This study indicates that delta encoding is a major opportunity

for improving bandwidth usage in RSS, as updates are often made only to a tiny

portion of the content (about 7% of the feed on average). Finally, clients subscribed

to the same feed poll the content servers independently, imposing a high load on

the servers of popular feeds.

5.2 Corona: Architecture

Corona (Cornell Online News Aggregator) is a topic-based publish-subscribe sys-

tem for monitoring online data sources. It provides asynchronous update notifi-

cations to clients, while interoperating with the current pull-based architecture of

the Web. URLs of Web content serve as topics or channels in Corona; users regis-

ter their interest in some Web content by providing its URL and receive updates

asynchronously about changes posted to that URL. Any web object identifiable

by a URL can be monitored with Corona. In the background, Corona checks for

updates on registered channels by cooperatively polling the content servers from

geographically distributed nodes.

We envisage Corona as an infrastructure service offered by a set of widely-

distributed nodes. These nodes may be all part of the same administrative do-

main, such as Google, or consist of server-class nodes contributed by participating

institutions. By participating in Corona, institutions can significantly reduce the

network bandwidth consumed in frequent redundant polling for content updates,

as well as reduce the peak loads seen at content providers that they themselves

139

may host.

The central feature that enables Corona to achieve fast update detection is

cooperative polling. Corona assigns multiple nodes to periodically poll for the

same channel and shares updates detected by any polling node. In general, n nodes

polling with the same polling interval and randomly distributed polling times can

detect updates n times faster if they share updates with each other. Corona makes

informed decisions on allocating polling tasks among nodes by using the optimal

resource management framework proposed earlier. Figure 5.8 illustrates the overall

architecture of Corona.

This section provides detailed descriptions of the components of Corona’s archi-

tecture, including the analytical models, update detection and notification mech-

anisms, and the user interface.

5.2.1 Analytical Models

The key resource tradeoff in a publish-subscribe system where publishers are exoge-

nous entities that serve content only when polled involves bandwidth versus update

latency. Clearly, polling data sources more frequently will enable the system to

detect and disseminate updates earlier. Yet polling every data source constantly

would place a large burden on publishers, congest the network, and potentially run

afoul of server-imposed polling limits that would ban the system from monitoring

the data source. The goal of Corona, then, is to maximize the effective bene-

fit of the aggregate bandwidth available to the system, while remaining within

server-imposed bandwidth limits.

Corona resolves the fundamental tradeoff between bandwidth and update la-

tency by expressing it formally as an optimization problem with performance re-

140

 1

 10

 100

 1000

 1 10 100 1000

N
um

be
r

of
 S

ub
sc

rip
tio

ns

Client Rank

α=1.13

Figure 5.7: Number of Subscriptions made by Clients: The number of channels

subscribed by clients follows a Zipf distribution.

subscribe
notify

su
bs
cr
ib
e

no
tif
y

po
ll

poll

Web Server

Web ServerClient

Client

Figure 5.8: Corona Architecture: Corona is a distributed publish-subscribe system

for the Web. It detects Web updates by polling cooperatively and notifies clients

through instant messaging.

141

quirements expressed as constraints. We explore three different performance goals

that are important for a publish-subscribe system.

Corona-Lite: The first performance goal we set is to minimize the average update

detection time while bounding the total network load placed on content servers.

Corona-Lite improves the update performance seen by the clients while ensuring

that the content servers handle a light load, no more than what they would handle

from the clients if the clients fetched objects directly from the servers.

Table 5.1 shows the optimization problem for Corona-Lite. The overall update

performance is measured by taking an average of the update detection time for

each channel weighed by the number of clients subscribed to that channel. We

weigh the average using the number of subscriptions because update performance

is an end user experience and each client counts as a separate unit in the average.

The target network load for this case is simply the total number of subscriptions

seen by the system.

Corona-Lite clients experience the maximum benefits of cooperation. Clients

of popular channels gain greater benefits than clients of less popular channels.

Yet, Corona-Lite avoids suffering from diminishing returns and uses its surplus

polling capacity on less popular channels where the extra bandwidth yields higher

marginal benefit. Since improvement in update performance is inversely related

to the number of polling nodes, there is little benefit in increasing the number

of polling nodes beyond a point. A heuristic based scheme that assigns polling

nodes in proportion to number of subscribers would clearly suffer from diminish-

ing returns. Corona, on the other hand, distributes the surplus load to other, less

popular channels, achieving a better global average update detection time. Con-

sequently, a less popular channel also gains substantial performance improvement

142

compared to what cooperation between that channel’s clients alone can achieve.

Corona-Fast: While Corona-Lite bounds the network load on the content servers

and minimizes update latency, the update performance it provides can vary de-

pending on the current workload. Corona-Fast provides stable update perfor-

mance, which can be maintained steadily at a desired level through changes in

the workload. Corona-Fast solves the converse of the above optimization problem;

that is, it minimizes the total network load on the content servers while meeting a

target average update detection time. Corona-Fast enables us to tune the update

performance of the system according to application needs. For example, a stock-

tracker application may pick a target of 30 seconds to quickly detect changes to

stock prices.

Corona-Fast shields legacy web servers from sudden increases in load. Sudden

increase in the number of subscribers for a channel does not trigger a corresponding

increase in network load on the web server, since Corona-Fast does not increase

polling after diminishing returns sets in. In contrast, in legacy RSS, popularity

spikes cause a significant increase in network load on content providers. Corona-

Fast protects content servers from flash crowds and sticky traffic.

Corona-Fair: Both Corona-Fast and Corona-Lite do not consider the actual rate

of change of content in a channel. As observed in section 5.1, update intervals

for Web objects are known to vary considerably from a few minutes to no change

over several days. Corona-Fair incorporates the update rate of channels into the

performance tradeoff in order to achieve a fairer distribution of update performance

between channels. It defines update performance as a ratio of the update detection

time and the update interval of the channel and aims to minimize the modified

metric for a load target.

143

While the new metric accounts for the wide difference in update characteristics,

it biases the performance unfavorably against channels with large update interval

times. A channel that does not change for several days experiences long update

detection times, even if there are are many subscribers for the channel. Corona

addresses this imbalance by exploring other update performance metrics based on

square root and logarithm functions, which grow sub-linearly. A sub-linear met-

ric dampens the tendency of the optimization algorithm to punish slow-changing

yet popular feeds. Table 5.1 summarizes the optimization problems for different

versions of Corona.

5.2.2 System Management

Corona is a completely decentralized system, where nodes act independently, share

load, and achieve globally optimal performance through mutual cooperation. Corona

spreads load uniformly among the nodes through consistent hashing [81]. Each

channel in Corona has a unique identifier and one or more owner nodes managing

it. The identifier is a content hash of the channel’s URL and the primary owner of

the channel is the Corona node with the closest identifier to the channel, that is,

it’s home node. Corona sets additional owners for a channel in order to tolerate

failures. These owners are the f -closest neighbors of the primary owner along the

ring. In the event an owner fails, a new neighbor automatically replaces it.

Owners take responsibility for managing subscriptions, polling, and updates

for a channel. They keep state about the subscribers of a channel and send noti-

fications to them when fresh updates are detected. In addition, owners also keep

track of channel specific factors that affect the performance tradeoffs, namely the

number of subscribers, the size of the content, and the interval at which servers

144

Table 5.1: Performance-Overhead Tradeoffs: This figure summarizes the optimiza-

tion problems for different versions of Corona.

Corona-Lite:

min.
∑M

1 qi
bli

N
s.t.

∑M
1 si

N
bli

≤
∑M

1 siqi

Minimize average update detection time, while bounding the load placed on
content servers.

Corona-Fast:

min.
∑M

1 si
N
bli

s.t.
∑M

1 qi
bli

N
≤ T

∑M
1 qi

Achieve a targeted average update detection time, while minimizing the load
placed on content servers.

Corona-Fair:

min.
∑M

1 qi
τ
ui

bli

N
s.t.

∑M
1 si

N
bli

≤
∑M

1 siqi

Minimize average update detection time w.r.t. expected update frequency,
bounding load on content servers.

Corona-Fair-Sqrt:

min.
∑M

1 qi

√
τ√
u

i

bli

N
s.t.

∑M
1 si

N
bli

≤ ∑M
1 siqi

Corona-Fair with sqrt weight on the latency ratio to emphasize infrequently
changing channels.

Corona-Fair-Log:

min.
∑M

1 qi
log τ
log ui

bli

N
s.t.

∑M
1 si

N
bli

≤
∑M

1 siqi

Corona-Fair with log weight on the latency ratio to emphasize infrequently
changing channels.

145

update channel content. The latter is estimated based on time between updates

detected by Corona.

Corona relies on the mechanisms provided by the Honeycomb resource man-

agement framework for managing its polling allocation. As described in Chapter 2,

Honeycomb manages polling using light-weight mechanisms that impose a small,

predictable overhead on the nodes and network. Its decision making does not

rely on expensive constructs such as consensus, leader election, or clock synchro-

nization. All networking activity is local and limited to contacts in the routing

table.

5.2.3 Update Dissemination

Updates are central to the operation of Corona; hence, we ensure that they are de-

tected and disseminated efficiently. Corona uses monotonically increasing numbers

to identify versions of content. The version numbers are based on content modifica-

tion times whenever the content carries such a timestamp. For other channels, the

primary owner assigns version numbers in increasing order based on the updates

received by it.

Corona nodes share updates only as diffs, the difference between old and new

content, rather than the entire content. A difference engine enables Corona to

identify when a channel carries new information that needs to be disseminated

to subscribed clients. The difference engine parses the HTML or XML content

to discover the core content in the channel, ignoring frequently changing elements

such as timestamps, counters, and advertisements. The difference engine generates

a diff if it detects an update after isolating the core content. The data in a diff

resembles the typical output of the POSIX ’diff’ command; it carries the line

146

numbers where the change occurs, the changed content, an indication whether it

is an addition, omission or replacement, and a version number of the old content

to compare against.

When a diff is generated by a node, it shares the update with all other nodes at

the same polling level as the channel. To achieve this, the node simply disseminates

the diff along the DAG rooted at it up to a depth equal to the polling level of

the channel. The dissemination along the DAG takes place using contacts in the

routing table of the underlying overlay. For channels that cannot obtain a reliable

modification timestamp from the server, the node detecting the update sends the

diff to the primary owner, which assigns a new version number and initiates the

dissemination to other nodes polling that channel. Two different nodes may detect

a change “simultaneously” and send diffs to the primary owner. The primary owner

always checks the current diff with the latest updated version of the content and

ignores redundant diffs.

5.2.4 User Interface

Corona employs instant messaging (IM) as its user interface. Users add Corona

as a ”buddy” in their favorite instant messaging system; both subscriptions and

update notifications are then transported as instant messages between the users

and Corona. Users send request messages of the form ”subscribe url” and ”unsub-

scribe url” to subscribe and unsubscribe for a channel. A subscribe or unsubscribe

message delivered by the IM system to Corona is routed to all the owner nodes of

the channel, which update their subscription state. When a new update is detected

by Corona, the current primary owner sends an instant message with the diff to

all the subscribers through the IM system. If a subscriber is off-line at the time

147

an update is generated, the IM system buffers the update and delivers it when the

subscriber subsequently joins the network.

Delivering updates through instant messaging systems may incur some addi-

tional latency, but this latency is typically modest. Instant messaging systems are

already designed to reduce such latencies during two-way communication. More-

over, IM systems that allow peer-to-peer communication between their users, such

as Skype, do not suffer from the additional latency of tunnelling through a cen-

tralized service.

Instant messaging enables Corona to be easily accessible to a large user pop-

ulation, as little computer skill is required. It is freely accessible for users behind

public-access computers, which restrict users from reconfiguring the system, as

well as users behind firewalls since instant messaging connections are moderated

by centralized services on well-defined ports. Moreover, instant messages also

guarantee the authenticity of the source of update messages to the clients, as in-

stant messaging systems pre-authenticate Corona as the source through password

verification.

5.2.5 Issues and Implications

Corona interacts with IM systems using GAIM [61], an open source instant mes-

saging client for Unix based platforms. Our current version supports multiple IM

systems including Yahoo Instant Messenger, AOL Instant Messenger, and MSN

Messenger. Some of these IM systems pose a limitation that only one instance

of a user can be logged on at a time, preventing Corona nodes to be all logged

on at the same time. While we hope that IM systems will support simultaneous

logins from automated users such as Corona in the near future, as they have for

148

certain chat robots, our current implementation uses a centralized server to talk

to IM systems as a stop-gap measure. This server acts as an intermediary for all

update diffs sent to clients as well as subscription messages sent by clients. Also,

a few IM systems, such as Yahoo, rate limit instant messages sent by unprivileged

clients. Corona’s implementation limits the rate of updates sent to clients and

avoids sending updates in bursts.

Corona trusts the nodes in the system to behave correctly and generate au-

thentic updates. However, it is possible that in a collaborative deployment, where

nodes under different administrative domains are part of the Corona network, some

nodes may be malicious and generate spurious updates. This problem can be easily

solved if content providers are willing to publish digitally signed certificates along

with the content. An alternative solution that does not require changes to servers

is to use threshold cryptography to generate a certificate for content [162, 77]. The

responsibility for generating partial signatures can be shared among the owners

on a node ensuring that rogue nodes below the threshold level cannot corrupt the

system.

5.3 Evaluation

We evaluate the performance of Corona through large-scale simulations and wide-

area experiments on PlanetLab [12]. In all our evaluations, we compare the per-

formance of Corona with the performance of legacy RSS, a widely-used micronews

syndication system. The simulations and experiments are driven by real-life RSS

traces described in Section 5.1.

149

5.3.1 Simulations

In order to scale the workload to the larger scale of our simulations, we extrapolate

the distribution of feed popularity from the workload traces and set the popularity

to follow a Zipf distribution with exponent 0.5. For update rate of channels, we

use distribution obtained through active polling, setting the update interval of the

channels that do not see any updates to one week.

We perform simulations for a system of 1024 nodes, 80,000 channels, and

4,000,000 subscriptions. We start each simulation with an empty state and issue all

subscriptions at once before collecting performance data. We run the simulations

for six hours with a polling interval of 30 minutes and maintenance interval of one

hour. We study the performance of the three schemes, Corona-Lite, Corona-Fast,

and Corona-Fair, and compare the performance with that of legacy RSS clients

polling at the same rate of 30 minutes.

Corona-Lite

Figures 5.9 and 5.10 respectively show the network load and update performance

for Corona-Lite, which minimizes average update detection time while bounding

the total load on content servers. The figures plot the network load, in terms of

the average bandwidth load placed on content servers, and update performance,

in terms of the average update detection time. Figure 5.9 shows that Corona-

Lite stabilizes at its target load equal to that imposed by legacy RSS clients.

Starting from a clean slate, where only owner nodes poll for each channel, Corona-

Lite quickly converges to its target in two maintenance phases. The average load

exceeds the target for a brief period before stabilization. This slight delay is due to

nodes not having complete information about characteristics of other channels in

150

the system. However, the discrepancy is corrected automatically when aggregated

global channel characteristics are available to each node.

At the same time, Figure 5.10 shows that Corona-Lite achieves an average up-

date detection time of about one minute. The update performance of Corona-Lite

represents an order of magnitude improvement over the average update detection

time of 15 minutes provided by legacy RSS clients. This substantial difference

in performance is achieved through judicious distribution of polling load between

cooperating nodes, while imposing no more load on the servers than the legacy

clients.

Figures 5.11 and 5.12 show the number of polling nodes assigned by Corona-

Lite to different channels and the resulting distribution of update detection times.

The X axis shows channels in reverse order of popularity. We only plot 20,000

channels for clarity. The load imposed by legacy RSS is equal to the number of

clients. For Corona-Lite, three levels of polling can be identified in Figure 5.11,

channels clustered around 100 at level 1, channels with less than 10 clients at

level 2, and orphan channels close to the X axis with just one owner node polling

them. The sharp change in the distribution after 60,000 channels indicates the

point where the optimal solution changes polling levels.

Figure 5.11 shows that Corona-Lite favors popular channels over unpopular

ones when assigning polling levels. Yet, it significantly reduces the load on servers

of popular content compared to legacy clients, which impose a highly skewed load

on content servers and overload servers of popular content. Corona-Lite reduces

the load at the over-loaded servers, and transfers the extra load to servers of less

popular content to improve their update performance.

The favorable behavior of Corona-Lite is due to diminishing returns caused by

151

0 2 4 6
0

0.5

1

1.5

Time (hours)

N
et

w
or

k
Lo

ad
 p

er
 C

ha
nn

el
 (

kb
ps

)

Legacy RSS
Corona Lite
Corona Fast

Figure 5.9: Network Load on Content Servers: Corona-Lite settles down quickly

to match the network load imposed by legacy RSS clients.

0 2 4 6

0.5

1

10
15

100

Time (hours)

U
pd

at
e

D
et

ec
tio

n
T

im
e

(m
in

)

Legacy RSS
Corona Lite
Corona Fast

Figure 5.10: Average Update Detection Time: Corona-Lite provides 15-fold im-

provement in update detection time compared to legacy RSS clients for the same

network load.

152

the inverse relation between the update detection time and the number of polling

nodes. It is more beneficial to distribute the polling across many channels than

devote a large percentage of the bandwidth to polling the most popular channel.

Nevertheless, load distribution in Corona-Lite respects the popularity distribution

of channels; popular channels are polled by more nodes than less popular channels

(see Figure 5.11). The upshot is that popular channels gain an order of magnitude

improvement in update performance than less popular ones (see Figure 5.12).

Corona-Fast

Unlike Corona-Lite, Corona-Fast minimizes the total load on servers while aiming

to achieve a target update detection latency. Figures 5.9 and 5.10 show the network

load and update performance, respectively, for Corona-Fast. Figure 5.10 confirms

that Corona-Fast closely meets the desired target of 30 seconds. This improvement

in update detection time entails an increase in server load over Corona-Lite. Unlike

Corona-Lite, whose update performance may vary depending on the workload

seen by the system, Corona-Fast provides a stable average update performance.

Moreover, it enables us to set the performance depending on the requirements of

the application or users and ensures that the targeted performance is achieved with

minimal load on content servers.

Corona-Fair

Finally, we examine the performance of Corona-Fair, which uses update rate of

channels to further fine-tune the distribution of load. It takes advantage of the

fact that channels with long update intervals need not be polled as often as rapidly

updated channels. Figure 5.13 shows the distribution of update detection times

153

0 20000 40000 60000 80000 100000
10

0

10
1

10
2

10
3

10
4

Channel Rank by Popularity

N
um

be
r

of
 P

ol
lin

g
N

od
es

Legacy RSS
Corona Lite

Figure 5.11: Number of Pollers per Channel: Corona trades off network load from

popular channels to decrease update detection time of less popular channels and

achieve a lower system-wide average.

0 20000 40000 60000 80000 100000
10

0

10
1

10
2

10
3

10
4

Channel Rank by Popularity

U
pd

at
e

D
et

ec
tio

n
T

im
e

(s
ec

)

Legacy RSS
Corona Lite

Figure 5.12: Update Detection Time per Channel: Popular channels gain greater

decrease in update detection time than less popular channels.

154

achieved by Corona-Lite and Corona-Fair for different channels ranked by their

update intervals. Channels with same update intervals are further ranked by pop-

ularity. For clarity of presentation, we plot the distribution for 200 randomly

picked channels.

Figure 5.13 shows the impact of not using update interval information while

assigning polling levels in Corona-Lite. Some channels with large update intervals

may have short update detection times (shown in the lower right part of the graph),

while some rapidly changing channels end up with long update detection times

(shown in the upper left part of the graph). Corona-Fair fixes the bias by using

update intervals of channels to influence polling level assignment. Figure 5.13

shows that Corona-Fair has a fairer distribution of update detection times with

update intervals, that is, channels with shorter update intervals have faster update

detection time and vice versa.

Corona-Fair optimizes for update performance measured as the ratio of update

detection time and update interval. Thus, channels with long update intervals

may also have proportionate update detection times leading to long wait times for

clients. Section 2.2 proposed to correct this bias using two metrics with sub-linear

growth based on the square root and logarithm of the update interval. Figure 5.14

shows that Corona-Fair-Sqrt and Corona-Fair-Log achieve update detection times

that are fairer and lower than Corona-Fair. Between the two metrics, Corona-

Fair-Sqrt is better than Corona-Fair-Log where a few channels with small update

interval have long update detection times.

Overall, the Corona-Fair schemes provide fair distribution of polling between

channels with low average update detection times and without exceeding band-

width load on the servers. The average update detection time and load for dif-

155

0 20000 40000 60000 80000 100000
10

0

10
1

10
2

10
3

10
4

Channel Rank by Update Interval

U
pd

at
e

D
et

ec
tio

n
T

im
e

(s
ec

)

Corona Lite
Corona Fair

Figure 5.13: Update Detection Time per Channel: Corona-Fair provides greater

decrease in update detection time for channels that change rapidly than channels

that change rarely.

0 20000 40000 60000 80000 100000
10

0

10
1

10
2

10
3

10
4

Channel Rank by Upate Interval

U
pd

at
e

D
et

ec
tio

n
T

im
e

(s
ec

)

Corona Fair Sqrt
Corona Fair Log

Figure 5.14: Update Detection Time per Channel: Corona-Fair-Sqrt and Corona-

Fair-Log fix the bias against channels that change rarely and provide better update

detection time for them than Corona-Fair.

156

Table 5.2: Performance Summary: This table provides a summary of average

update detection time and network load for different versions of Corona. Overall,

Corona provides significant improvement in update detection time compared to

Legacy RSS, while consuming the same load.

Average Update Average Load

Scheme Detection Time (polls per 30 min

(sec) per channel)

Legacy-RSS 900 50.00

Corona-Lite 54 49.00

Corona-Fair 142 50.24

Corona-Fair-Sqrt 56 49.25

Corona-Fair-Log 53 49.32

Corona-Fast 32 58.92

ferent Corona-Fair schemes is shown in Table 5.2. The average update detection

time suffers a little in Corona-Fair compared to Corona-Lite, but the modified

Corona-Fair schemes provide an average performance close to that of Corona-Lite.

5.3.2 Corona versus Heuristics

Next, we compare the update performance of Corona with two commonly two

heuristic-based schemes for assigning polling load between nodes. The first heuris-

tics called Proportional allocates nodes in proportion to the channel popularity,

that is, the number of clients subscribed to a channel. This heuristic represents a

realistic scenario where all the users interested in a channel cooperatively detect

and share updates. The second heuristic called Square Root is a simple modifi-

157

cation of the first and allocates polling load in proportion to the square root of

channel popularity. We choose the square root heuristic because it is known to

work better than proportional in other domains such as replication in unstructured

overlays [38].

Figure 5.15 shows the average update detection time for Corona-Lite and

Corona-Fast in comparison to Proportional and Square Root heuristics. First,

both heuristics provide a substantial improvement in update performance com-

pared to the naive, uncoordinated polling of legacy feed readers by more than

a factor of two, with Square Root performing slightly better than Proportional.

However, Corona-Lite based on a well-informed, principled approach is able to

out perform the heuristics to a significant extent. In this simulation, Corona-Lite

achieves an average update detection time of 53 ms compared to 357 ms for Pro-

portional and 319 for Square Root. At the same time, the network load imposed

on content servers remains the same for all the schemes compared in Figure 5.15

except Corona-Fast.

5.3.3 Deployment

We deployed Corona on a set of 60 PlanetLab nodes and measured its perfor-

mance. The deployment is based on the Corona-Lite scheme, which minimizes

update detection time while bounding network load. For this experiment, we use

2600 real channels providing RSS feeds obtained from www.syndic8.com. We issue

50,000 subscriptions for them based on a Zipf popularity distribution with expo-

nent 0.5. Subscriptions are issued at a uniform rate during the first one hour of

the experiment. The maintenance interval and the polling interval are both set to

30 minutes. We collected data for a period of eight hours.

158

Figure 5.16 shows the average update detection time for Corona deployment

compared to legacy RSS. Corona decreases the average update time to about 38

seconds compared from 15 minutes for legacy RSS. Figure 5.17 shows the corre-

sponding polling load imposed by Corona on content servers. Corona gradually

increases the number nodes polling for objects and reaches a load limit of around

1500 polls per minute. Corona’s total network load is bounded by the load imposed

by legacy RSS, which averages to just under 1600 polls per minute. These graphs

highlight that while imposing comparable load as legacy RSS, Corona achieves a

substantial improvement in update detection time.

5.4 Summary

This chapter proposes a novel publish-subscribe architecture that is compatible

with the existing pull-based architecture of the Web. Motivated by the grow-

ing demand for micronews feeds and the absence of any infrastructure to provide

asynchronous notifications, we develop a unique solution that addresses the short-

comings of pull based content dissemination and delivers on the promise of a real,

deployable, easy-to-use publish-subscribe system.

Corona’s unique contribution is the optimal resolution of performance-overhead

tradeoffs. Any pull-based content dissemination system has a fundamental tension

between the amount of polling required to achieve good update performance and

the corresponding network load imposed on content providers. Corona resolves this

dilemma by posing the tradeoff as an optimization problem and derives the optimal

tradeoff through decentralized, low-overhead mechanisms. Moreover, it provides

a ”knob” to control the overall performance of the system at fine granularity by

setting application-specific performance targets.

159

900

357
319

53 32

0

200

400

600

800

1000

Legacy

RSS

Proportional Square

Root

Corona Lite Corona Fast

A
v
g
.
U
p
d
a
te
 D
e
te
c
ti
o
n
 T
im
e
 (
s
e
c
)

Figure 5.15: Corona vs. Heuristics: Corona performs significantly better than

commonly used heuristics.

0 2 4 6
10

1

10
2

10
3

Time (hours)

U
pd

at
e

D
et

ec
tio

n
T

im
e

(s
ec

)

Corona

Legacy RSS

Figure 5.16: Average Update Detection Time: Corona provides an order of mag-

nitude lower update detection time compared to legacy RSS.

160

Corona’s principled approach achieves large gains in performance and scala-

bility. Performance measurements based on simulations and real-life deployment

show that Corona clients can achieve several orders of magnitude improvement

in update latency. At the same time, Corona bounds the total network load ex-

perienced by web servers. Finally, Corona acts as a buffer between clients and

servers, shielding servers from the impact of flash crowds and sticky traffic. Over-

all, Corona alleviates the two fundamental problems of pull-based systems, namely

bad update latencies for clients and high network load on servers, with a single,

unified approach.

The results from simulations and wide-area experiments confirm that Corona

achieves a balance between update latency and network load. It dynamically learns

the parameters of the system such as number of nodes, number of subscriptions,

and channel-characteristics, and uses the new parameters to periodically adjust the

optimal polling levels of channels and meets performance and load targets. Corona

offers considerable flexibility in the kind of performance goals it can achieve. We

showed three specific schemes targeting update detection time, network load, and

fair distribution of load under different metrics of fairness. Measurements from the

deployment showed that achieving globally optimal performance in a distributed

wide-area system is practical and efficient. Overall, Corona proves to be a high

performance, scalable publish-subscribe system.

161

0 2 4 6
0

2000

4000

6000

Time (hours)

T
ot

al
 N

et
w

or
k

P
ol

ls
 p

er
 M

in

Corona

Legacy RSS

Figure 5.17: Total Polling Load on Servers: The total load generated by Corona

is well below the load generated by clients using legacy RSS

Chapter 6

Related Work

This chapter provides an overview of current research and development in areas re-

lated to this thesis. In particular, it gives a summary of prior research on resource

allocation problems, describes recent advances in distributed overlay systems, and

summarizes work related to the three decentralized services explored in this the-

sis, namely naming systems, content distribution networks, and publish-subscribe

systems.

6.1 Resource Allocation Problems

Resource allocation in distributed systems is a classical problem, which has drawn

the attention of researchers for decades. The problem of deciding which node hosts

which object or file has been classically called the File Assignment Problem (FAP).

Dowdy and Foster [48] and Wah [145] provide a comprehensive survey of analytical

models developed for posing the file assignment problem in a distributed network.

The models they discuss include the kind of analytical models posed in this thesis

to meet performance goals given resource constraints. More recently, Li et al. [88],

Jamin et al. [75], and Qiu et al. [116] pose similar file assignment problems in the

context of content distribution networks. While, Cho et al. [35] and Pandey et

al. [108, 107] explore resource allocation problems in the context of monitoring

online data through polling.

Several solution techniques that work well for small sized systems have also

been proposed in the past. Solution techniques applied to these problems include

techniques such as dynamic programming [88] and branch and bound [145], which

162

163

are efficient for small problems but have worst-case exponential time complexity,

as well as, approximation algorithms to solve the allocation problem expressed as

K-center problem [75], facility location problem [116], and constrained optimiza-

tion problem [35]. However, the above techniques depend on a single, centralized

server to perform the computations. Kurose and Simha [87] proposed a fully decen-

tralized technique that solves resource allocation problems, but requires all-to-all

communication between the nodes.

In addition to resource management on distributed systems, a vast amount of

literature also exists on resource management in a single system, often described

as scheduling. Prior research in scheduling is not discussed in this chapter; a good

survey of different techniques for scheduling resource usage on a single node can

be found in Waldspurger’s Ph.D. thesis [146].

In contrast to the extensive prior work in resource allocation, the techniques

presented in this thesis enable resource allocation for large-scale, distributed sys-

tems, which are crucial for hosting services in the current Internet.

6.2 Peer-to-Peer Overlays

Peer-to-peer overlay systems have emerged in recent times as a powerful alternative

to the traditional client-server architecture. Instead of depending on centrally

administered server nodes, a peer-to-peer overlay consists of commodity, privately

owned computers that form a communication network between themselves. Such

self-organizing, peer-to-peer overlays became widely-used due to the popularity of

content sharing applications, such as Freenet [36], Gnutella [169], and Kazaa [171],

which enable users to search and download content that is not publicly hosted on

the Web.

164

The success of file-sharing systems showed that peer-to-peer systems can achieve

high scalability and failure resilience and provided the impetus for their extensive

study in the research community. This section provides an overview of current

research in the field of peer-to-peer systems.

6.2.1 Unstructured Overlays

Peer-to-peer overlays can be characterized as unstructured or structured depending

on how they organize themselves into an overlay network. Unstructured overlays

resemble an irregular graph where any node may pick any other peer node as

neighbor. Early peer-to-peer file sharing systems, such as Freenet and Gnutella

are examples of unstructured overlays. Searching in unstructured overlays is per-

formed through controlled flooding, where a query originating at a node may

eventually spread to all the nodes in the system. Such floods resemble typical

graph-traversal algorithms, such as depth-first and breadth-first traversal. Freenet

employs a depth-first search algorithm, whereas Gnutella employs a breadth-first

algorithm.

While the unstructured overlays could easily scale to millions of peer nodes

and handle the high rate of churn caused by nodes leaving and joining the system

frequently they do not provide good lookup performance. An average query visits

a large fraction of nodes in the system and consumes a large amount of time to

fetch results. In the worst case, a query spreads to every live node and may still

not invoke any response from a single node in the system.

Several techniques have been proposed to improve the performance of unstruc-

tured overlays. Lv et al. [95] propose to replace flooding-based search with random

walks. Their technique substantially decreases the network overhead for searching,

165

but does not decrease lookup performance. Chawathe et al. [34] combine random

walks with topology adaptation based on lifetime and bandwidth availability of

nodes to improve lookup and download performance. These improvements, how-

ever, do not make a qualitative difference to the lookup performance of unstruc-

tured overlays.

6.2.2 Structured Overlays

Structured overlays provide bounded lookup performance through clever organi-

zation of the overlay network into a well-defined, regular topology. The regular

topology ensures that the maximum distance between any two nodes in the system,

the diameter of the topology, can be analytically bounded. Structured overlays

can provide superior lookup performance by providing worst-case and average-case

bounds on lookup latency that are significantly better than unstructured overlays.

To achieve better lookup performance, structured overlays restrict the type of

lookups. Unlike unstructured overlays, which support search based on arbitrary

keywords, structured overlays typically provide lookups only on globally-defined

unique keys. Such unique keys are usually derived by hashing the content or a

well-defined attribute of the content, such as its universal name (URN), into an

integral key space [81]. The overlay system maps each key to a specific node or set

of nodes and routes queries to the node or nodes responsible for the queried key.

A large number of structured overlays, which differ in their topology and lookup

algorithm, have been proposed so far. The choice of topology and lookup algorithm

determines the worst-case lookup performance of the system as well as the number

of neighbors monitored by each node.

CAN [121] organizes the network into a hyper-dimensional torus of constant

166

dimension and routes lookups from one dimension to the next until the mapping

node for the key is reached. The CAN network has a diameter of O(dN
1

d) and

node degree of O(d) for a network of N nodes and dimension d. It is possible to

configure the CAN network with a dimension d = log N and obtain a worst-case

lookup performance of constant O(log N) hops, if a reasonable bound on the size

of the network can be estimated in advance.

Pastry [128], Tapestry [161], and Kademlia [97] organize the topology based on

digits of integral identifiers assigned to each node. In these overlays, each node has

neighbors that differ in exactly one prefix digit in the identifiers. They support keys

drawn from the same space as node identifiers and map the key to the ”nearest”

node in the identifier space. While Pastry and Tapestry use modular difference

between two identifiers to measure nearness, Kademlia uses the XOR operation

to determine the distance between two identifiers. All three overlays employ a

routing algorithm proposed by Plaxton et al., which routes queries iteratively from

one node to another with increasing number of prefix digits between node identifier

and the queried key [114]. Overall, these overlays have a diameter of O(logb N) and

node degree O(b logb N), for a network of N nodes and a base b for representing

identifier digits.

Chord [138] uses the same network organization as the above prefix-matching

overlays, but use a slightly different algorithm for routing queries. Chord nodes

maintain neighbor links with nodes at distances in geometric sequence. That is,

each node has a link to the closest nodes at distances between 2i−1 and 2i. By

iteratively routing queries to the farthest neighbor with identifer less than the key,

Chord achieves a worst case lookup performance of of O(log N) with node degree

O(log N), for a network of N nodes.

167

A few other overlay systems make use of well-known data structures to orga-

nize network topology. Viceroy [96] organizes the network into a butterfly data

structure, commonly used in numerical algorithms for computing Fast Fourier

Transforms (FFT). The advantage of the butterfly structure is that while it has

the same O(log N) diameter as the previously described overlays, it requires only

a constant seven neighbors per node. However, the butterfly structure is organized

into hierarchical layers, where nodes in the top layers of the hierarchy serve as

intermediaries to a significantly greater number of queries than the nodes in the

lower layers.

SkipNet [71] provides the same properties of O(log N) diameter and constant

node degree as Viceroy while also ensuring uniformly balanced routing load for

each node. SkipNet achieves these properties by using a probabilistic data structure

called Skip List to organize the network. In addition, SkipNet also facilitates range

queries, that is, queries for a range of keys rather than a single key.

The varying topological properties of the previously described structured over-

lays indicate a fundamental trade off between the diameter and the node degree;

fewer neighbors per node implies longer diameter, and vice versa. Koorde [80]

explores this tradeoff using a data structure called de Bruijn graphs. It shows

that the best worst-case bound on lookup performance for a O(log N) node-degree

network is O(log N
log log N

) and for a network with constant node degree d is O(logd N).

Independently, Naor and Wieder [151] provide an alternative method to construct

structured overlays with the same tradeoff bounds as Koorde.

168

6.2.3 Techniques to Improve Lookup Performance

While structured overlays provide analytical bounds on the worst case lookup

performance, the actual lookup latencies are still large; a typical query makes

several hops and each hop may span the Internet, incurring a large delay overall.

Several techniques have been proposed to improve the lookup performance of

a structured overlay. Typically, these techniques are of three types: a) altering

the structure of the overlay to reduce the number of hops to a small constant,

b) exploiting physical latencies between peer nodes when constructing overlays to

reduce lookup times, and c) caching or replication of objects to terminate queries

earlier in the lookup path.

Constant Diameter Topologies

Douceur et al. [46] propose a structured overlay called SALAD that has a constant

diameter d, which can be configured to a suitable integral value. SALAD achieves

d hop lookup performance using O(dN
1

d) neighbors per node.

Mizrak et al. [100] propose a two-level hierarchical architecture to achieve a

three-hop overlay. The upper level consists of specially designated nodes called

super peers, which partition a circular identifier space between themselves in a

manner similar to Chord, but are fully connected. The lower level nodes are

connected to a super peer. A query is answered in three hops consisting of the

super peer of the originating node, the super peer of the destination node, and the

destination node.

Gupta et al. [66, 67] propose a one-hop overlay by using a fully connected graph.

They argue that maintaining O(N) neighborhood at each node is feasible even for

moderately large networks of thousands of nodes.

169

Kelips [68] provides a more scalable approach for achieving one-hop lookup

performance with only O(
√

N) node degree. Kelips divides the nodes into O(
√

N)

groups of O(
√

N) nodes on average. Each node is a neighbor of all the nodes in its

group and at least one node in every other group. An object is mapped to a group

and replicated on all nodes in its group. A query is resolved within one hop by

simply forwarding it to any node in the group responsible for the queried object.

Proximity-based Neighbor Selection

While the preceding approaches propose alternative topologies for organizing an

overlay efficiently, other approaches exploit the variance in network latencies be-

tween nodes to improve lookup performance without altering the underlying topol-

ogy. These latency-based techniques typically operate by picking the closest eligible

node to perform the role of an overlay neighbor.

Castro et al. [30] explore proximity based neighbor selection in Pastry. They

show that by picking the closest node among all nodes with same prefix digits as

neighbors, Pastry can effectively achieve O(1) lookup performance. Their exper-

iments show an expected lookup performance equivalent to 1.4 average Internet

hops. Dabek et al. [43] explore the same technique in the context of Chord. Zhang

et al. [64] propose techniques to adaptively chose proximal neighbors by piggy-

backing information on lookup messages.

Coral [59] takes advantage of the variance in latencies between Internet hosts by

grouping nodes with similar latencies into clusters. Each node belongs to clusters

of different latency ranges and each cluster is organized as a separate structured

overlay. Coral achieves improved lookup latency by always looking up a key in a

lower latency cluster before a higher latency cluster.

170

6.2.4 Caching and Replication in Overlays

The third technique commonly used to improve lookup performance in overlays

is caching or replication. Caching in overlays is typically used in the passive,

opportunistic form described earlier in this thesis. That is, search results are

cached at the intermediate nodes traversed by the query and timeouts are used to

expunge entries from caches. This form of passive caching is used in CFS [42] and

PAST [129], two file systems layered on top of Chord and Pastry respectively.

OpenDHT [122] employs a limited amount replication to achieve low lookup

latency. OpenDHT is a publicly deployed structured overlay similar to Pastry. It

reduces lookup latency by replicating each object at a fixed number of geographi-

cally distributed nodes. Sending parallel lookups to the replica holding nodes and

using the fastest response ensures that the overall lookup performance is high.

In addition to improve lookup performance, limited replication is also com-

monly used to provide persistence of storage on overlays. Here, objects are always

replicated on a certain fixed k number of nodes, so that object would continue

to reside in the system despite node failures. There is a cost-performance trade-

off governing the choice of k; a large value of k increases the number of failures

the system can tolerate , but also incurs overhead to replicate the object k times

and preserve consistency for mutable objects. Current systems do not explore this

tradeoff, but pick an arbitrary value for k. Both CFS and PAST use this form of

replication for data persistence.

6.2.5 Overlays in Practice

This section describes the mechanisms proposed to handle issues that arise when

overlays are deployed in practice. In particular, it describes techniques to handle

171

churn, improve security, and overcome lack of transitivity in the network.

Churn

Churn refers to the frequent joining and leaving of nodes in a peer-to-peer to

system. Rhea et al. [123] explore a combination of proactive and reactive failure

recovery to handle high churn in an overlay system. Kelips employs replication

and gossip-based epidemic failure management to handle churn [68]; it maintains

O(
√

N) copies of each object to ensure that a query can always be answered with a

high probability. Replication happens in the background through periodic gossip.

Security

Security is an important concern for overlay networks as they are typically deployed

in a distributed environment, where nodes are not administered centrally. Hence,

it is essential to ensure that the effect of infiltration and compromise of hosts by

malicious agents is limited and does not affect the integrity of the system as a

whole. A malicious agent should not be able to insert arbitrarily large number of

hosts into the system and malicious or compromised nodes should not be able to

induce other benign nodes to perform bad things.

Castro et al. [29] propose techniques to limit the impact of compromised and

malicious nodes in an overlay. They use statistical bounds of node density when

node identifiers are assigned randomly to restrict the number of identities a ma-

licious agent can create. In their scheme, an overlay neighbors are picked from a

narrow portion of the identifier space so that malicious agents only have an impact

proportional to the amount of identifier space they control. Other researchers have

proposed mechanisms to limit the amount of infiltration into the overlays by using

172

out-of-band mechanisms to authenticate the identity of the hosts [129, 42].

Non Transitivity

In addition to churn and security, several other engineering issues arise while over-

lays are deployed in practice. One such issue is the absence of transitive connec-

tivity in network connections in the Internet. While structured overlays assume

that a node A can communicate to C if A can communicate to B and B to C, such

transitivity does not always exist in the Internet. Freedman et al. [58] analyze

the problems cause by transitivity violations and propose several techniques to

mitigate the problems.

6.2.6 Applications of Structured Overlays

Several applications have been layered on top of structured overlays taking advan-

tage of its high failure resilience and scalability. Most applications of structured

overlays are based on the key-based lookup primitive. These applications include

file systems, cooperative web caches, name services, and other ad hoc lookup ser-

vices.

CFS and PAST, mentioned earlier, are two overlay based file systems proposed

for archival storage of data. Ivy [104], also layered on top of Chord like CFS,

provides a full-fledged read-write interface that PAST and CFS do not provide.

Farsite [3] is a serverless, peer-to-peer filesystem designed to reclaim extra disk

space available on hosts within an institution. It uses the SALAD overlay for

managing file location information and meta data.

Structured overlays have also been used to build cooperative web caches, which

enable users to improve web performance by taking advantage of common interests

173

of other users within the institutions. Structured overlays server the purpose of

locating web objects among other participating hosts in the institution before the

object is fetched from the web server. Examples of cooperative web caches using

structured overlays include Squirrel [74], Kache [91], and CoralCDN [59]. These

cooperative web caches are layered on Pastry, Kelips, and Coral respectively.

Structured overlays also serve as building blocks for lookup services. New name

services using overlays have been proposed to replace the DNS. DDNS [39] and

Overlook [143] are two name services built using Chord and Pastry respectively.

OverCite [139] is a system to lookup bibliography information for academic publi-

cations. UsenetDHT [135] serves as a storage system for articles posted on Usenet,

a widely-used network newsgroup.

The second class of applications on structured overlays take advantage of its

topology for multicast, that is, simultaneous data dissemination to multiple hosts.

Scribe [130] is application-level multicast protocol that provides data dissemination

using the Pastry overlay. SplitStream [31] is a system for disseminating large

content, such as multi media and software binaries, using Scribe as an underlying

framework. POST [99] is a system for email layered on Pastry. And, FeedTree

uses Scribe multicast to disseminate update for web micronews.

Surprisingly, peer-to-peer file sharing applications, which motivated Freenet

and Gnutella, have not been the driving applications for structured overlays. The

key reason for this is the difficulty of performing key-word searches on structured

overlays. However, Castro et al. [28] show that flooding based key-word searches

can be efficiently designed on structured overlays with bounded worst case lookup

performance. Overnet [173], based on Kademlia, is the only widely-used peer-to-

peer file sharing system layered on a structured overlay. Its algorithm for perform-

174

ing keyword based search is, however, not public.

The rest of this chapter describes work related to the three applications dis-

cussed in this thesis.

6.3 Domain Name System

The Domain Name System (DNS) was designed in the early eighties to provide

the fundamental service of translating host names to IP addresses. Prior to the

deployment of DNS in 1982, the name-address mappings were stored and trans-

ferred around in a single file, which had limited scalability as the number of end

hosts grew. DNS enables name-address translation to scale to the millions of hosts

that comprise the Internet today and serves different types of data including IP

addresses, names of mail servers, public keys, etc. The DNS standard and proto-

cols is elaborately detailed in Internet RFCs [101, 102, 51], while a good reference

for operational issues is the book [4]. DNS hierarchically partitions name spaces

into domains and uses delegations to transfer control from a domain to its sub

domains. This basic design of DNS has not changed since its initial deployment in

1982.

6.3.1 DNS Performance Studies

In 1988, the designers of DNS, Mockapetris and Dunlap, published a retrospective

analysis of the successful features and shortcomings of DNS [103]. Their study

identified the decentralized and hierarchical namespace as the biggest success and

the delegation of authority required to serve a namespace, that is, to provide DNS

mappings, as the biggest shortcoming.

The first major measurement study of DNS was performed by Danzig et al.,

175

who studied the characteristics of DNS traffic [44]. Their study identified several

software errors in nameserver implementations that trigger a large amount of DNS

traffic. Several measurement studies since then have provided good insight into

the advantages and the drawbacks of the system.

Lookup Performance: Jung et al. performed a large scale survey of DNS

performance by tracing active workload of users at MIT [79, 78]. Their study

analyzes the client-perceived lookup performance of DNS, characteristics of DNS

query workload, and the effectiveness of caching in DNS. It shows that DNS queries

follow a heavy-tailed Zipf distribution. Bent and Voelker [13], Huitema et al. [73],

and Wills et al. [153] focus on the impact of DNS latencies to web download times.

All three studies show that DNS lookup latency forms a significant portion of web

latency.

Failure Resilience: Pappas et al. study the impact of broken delegations,

cyclic dependencies, and nameserver redundancies on the availability of DNS [110].

Their study shows that DNS has surprisingly low tolerance to failures, predomi-

nantly less than 2 node failures, and that broken delegations contribute substan-

tially to its lookup latency. Park et al. [111] study the robustness of DNS im-

plementations and show that poor implementations of DNS resolvers contribute

substantially to unresolved DNS queries and long lookup latencies. Finally, several

studies on the DNS traffic seen by root servers show that DNS root servers are

frequently subject to denial of service attacks [21, 23, 22].

DNS-based Redirection: A few studies have focused on the impact of DNS-

based network control, that is, the practice of dynamically redirecting web re-

quests to lightly-loaded or proximal servers during IP address resolution. Shaikh

et al. [134], Johnson et al. [76], Krishnamurthy et al. [83], and Pang et al. [109]

176

show that DNS-based server selection is highly coarse-grained and the chosen server

may deviate considerably from the best server, in terms of both network distance

and server load. Moreover, Shaikh et al. show that server selection increases DNS

lookup latency considerably because dynamically generated DNS mappings have

very small timeout values.

Trust in DNS: Our measurement study on DNS focuses on an important and

previously unexplored aspect of DNS security; namely the impact of delegating

trust to other administrative domains for serving DNS mappings. Our study,

described in Chapter 3 and [120], shows that a typical DNS name depends on

a large number of servers for its resolution and the high prevalence of security

vulnerabilities in DNS software amplifies the security risks.

6.3.2 DNS Security

Protecting the integrity of DNS has always been a major concern that led to the

initial proposal of DNSSEC as a standardization effort [50]. DNSSEC associates

each mapping with a chain of cryptographic certificates that start from the owner

domain and end at the root server. DNSSEC has received very little acceptance

to date primarily due to three drawbacks: first, the DNSSEC standard does not

clearly demarcate ownership of certificates across domain boundaries, second, au-

thenticated denial of existence of DNS domains or records for a name was not

described clearly, and finally, depends on a centralized public key infrastructure

that prevents domains to secure themselves independent of their parents.

A new standard for DNSSEC has been recently proposed that provides clean

security for delegation of authorities and denial of existence [8]. However, the third

problem related to incremental deployment continues to hinder the wide adoption

177

of DNSSEC.

6.3.3 Design Proposals

Few design alternatives for DNS have been proposed since its initial deployment.

Here we give a brief overview of the proposals.

Initial proposals involved minor changes to some aspects of DNS operation. Co-

hen and Kaplan [37] propose a proactive caching scheme for DNS records. In their

scheme, expired DNS records in the cache are proactively fetched from the author-

itative nameservers. They analyze several heuristics-based prefetching algorithms,

and evaluate their performance. This scheme entails prefetching at intermediate

caches, which generates substantial amount of background traffic to update DNS

records.

CoDNS proposes to mask delays in the legacy DNS caused by failures in local

resolvers by diverting queries to healthy resolvers in other nearby administrative

domains [111]. However, it does not consider the security risk involved in trust-

ing servers outside the administrative domain. Overall, CoDNS provides resilience

against temporary problems with the legacy DNS, but is not intended as a replace-

ment.

Several recently proposed DNS architectures leverage the failure resilience and

scalability properties of structured overlays. DDNS [39] and Overlook [143] are

name service architectures layered on Chord and Pastry respectively. However,

both Chord and Pastry are overlays with O(log N) diameter and provide poor

lookup performance, with latencies much longer than what the DNS achieves cur-

rently.

Handley and Greenhalgh [69] have recently proposed to actively push critical

178

DNS mappings such as the NS records that represent nameserver delegations and

the glue records that carry addresses of nameservers, to all the DNS servers in the

world. However, they only show that pushing the critical records to all servers is

feasible in terms of bandwidth consumption and do not propose any mechanisms

to actually perform and manage the replication.

Finally, Balakrishnan et al. propose to replace the hierarchical DNS and URL

namespace with flat global identifiers and introduce additional layers of translation

to facilitate a namespace that does not tie resource names to host names [147, 10].

Currently, a URL for a resource includes the name of the host serving the resource.

While their proposal alters the namespaces, it is complementary and would benfit

from CoDoNS, the high performance resource location service proposed in this

thesis.

CoDoNS proposed is intended a safety net and a possible replacement for DNS.

By separating namespace management from name lookups, it provides an efficient

platform for name resolution, irrespective of the namespace. It combines proac-

tive, push-based caching and structured overlays to provide low lookup latency,

high failure resilience, and scalability. Optimal resolution of performance-overhead

tradeoffs ensures that CoDoNS makes the best use of limited resources such as net-

work bandwidth, while providing significantly improved lookup performance over

legacy DNS.

6.4 Web Caching and CDNs

The Web has always been an important topic of research and several methods

to improve the Web have been proposed. The primary technique employed to

improve Web performance is caching, both passive as well as active. Rabinovich

179

and Spatscheck [154] provide a detailed survey of web caching and replication.

This section provides an overview of the most representative performance studies

and caching techniques to improve Web performance.

6.4.1 Web Performance Studies

Measurement studies of the Web have focused on understanding its performance

as well as workload characteristics. Some well-known traces of live web activity

include the DEC traces [84] collected at Digital Equipment Corporation, the UCB

traces [65] collected at the University of Berkeley, the UPisa traces [125] collected at

Universita di Pisa in Italy, and the NLANR traces [172] collected by requests seen

on Squid caches. Bent and Voelker[13] study the lookup performance of web page

downloads and the impact of several browser options such as the use of persistent

connections, number of parallel connections, etc.

Other studies have focused on characteristics of Web workload, such as the

object popularity, size, and update rate. Analyzing the above traces, Breslao et

al. [18] show that Web workload is heavy-tailed and follows the Zipf distribution.

Almeida et al. [5] study the locality of reference, both spatial and temporal, in

web workloads. Crovella et al. [41] study the correlations between document size

and popularity. Douglis et al. [47] focus their study on the update rate of web

objects and show that web objects have a wide range of update rates. Barford et

al. [11] compare the popularity and size of content in traces collected three years

apart and report that the characteristics are qualitatively similar. Several other

studies by Abdulla [1], Arlitt and Williamson [9], Bray [17], Glassman [63], as well

as Gribble and Brewer [65] have reported on characteristics of the Web workload

based on user activity traces.

180

6.4.2 Caching Algorithms

Initial research on web caching was largely focused on heuristics for managing the

local cache on a web browser, that is, for deciding which objects in the cache

should be removed when the cache is full. Two popular choices for cache replace-

ment has been the least recently used (LRU) and the least frequently used (LFU)

algorithms, which remove the oldest cache entry and the least popular cache entry

respectively. However, both these strategies do not recognize the high variance in

the characteristics of web objects such as size, update rate, latency to the server,

etc.

By far, size of the web object is the most commonly used characteristic to

influence cache replacement algorithms. The Largest Size First heuristic proposes

to remove the biggest object from a full cache [152]. Another heuristic uses the

logarithm of the object size and removes the object with the largest log(size) while

breaking ties using LRU [2]. The Lowest Relative Value (LRV) uses the ratio of

size and popularity and removes the object with the lowest ratio [124].

A few algorithms use the latency for downloading the object during a cache

miss to influence cache replacement. The Lowest Latency First heuristic evicts

the object with smallest download latency so that the latency impact of a cache

miss can be reduced [159]. The Greedy Dual Size (GD-Size) algorithm combines

both the cost for a cache miss as well as the size of the object to decide cache

replacement. It picks the object with the smallest ratio of the downloading latency

and the object size [25].

Cao and Irani [25] study the effectiveness of the cache replacement heuristics

described above through simulations. Their study shows that the performance of

the different heuristics are comparable and no single heuristic is well-suited for

181

all scenarios. The overall cache hit rate varies of the heuristics between 20% to

40%. Brelau et al. [18] show that the low cache hit rate is primarily due to the

heavy-tailed nature of popularity distribution. Their study on the performance

of LRU, LFU, and GD-Size on different real-life workload traces agrees with the

findings of Cao and Irani.

In addition to cache replacement algorithms, research has also focused on han-

dling stale objects; that is, objects whose cache lifetime has expired. Several

researchers have studied the usefulness of proactively pre-fetching expired objects

from the web servers instead of expunging them from the cache. Padmanabhan

et al. [106], Kroeger et al. [85] and Fan et al [53] show that pre-fetching can pro-

vide substantial reduction in web latency, especially for clients with low-bandwidth

Internet access such as dial-up modems. Their studies also observe that while pre-

fetching can provide substantial improvement in the performance of web caches,

there is a corresponding increase in the bandwidth required to achieve the im-

provement. They propose different heuristics to decide which object should be

pre-fetched taking into account the cost-performance tradeoffs.

A few web caching strategies use sophisticated techniques to predict access

patterns, that is, temporal and spatial correlations between object access, in order

to enhance cache performance. Bestavros [14], Padmanabhan and Mogul [106],

and Zukerman et al. [164] have proposed modeling techniques based on Markov

chains to deduce probability of object access.

Several studies have analyzed the performance limits of caching. The funda-

mental limitation stems from the fact that web queries may contain unforgeable

entities such as cookies, may be meant for dynamically generated data, or real-time

data for which caching does not make sense. Studies by Feldmann et al. [54] and

182

Wolman et al. [156] show that up to 40% of web queries may not be cacheable

for the above reasons. The number of queries to dynamically generated objects

appears to be growing from 1% in the mid nineties [152] to about 10-20% in the

late nineties [54, 156]. The study by Feldmann et al. [54] also shows that about

20-30% of web queries carry user-specific cookies in them.

6.4.3 Cooperative Caching

While the previously described studies focus on caching at a single client, several

techniques have been proposed to pool caches together and cooperatively share

content across the caches. The key intuition behind this approach is that the

workload generated by a large number of clients can be exploited for redundancy

as popular objects fetched by a few clients may be of interest to several others

as well. Research in this form of caching called cooperative caching has primarily

focused on how to organize the network of caches and how to exchange cache

content between caches.

Several researchers have analyzed traces of Web activity and shown that co-

operative caching can provide substantial improvement over the performance of

independent caches. Duska et al. [49] show that cooperative caching can achieve

85% cache hit rate. Wolman et al. [154, 156] show that while cache hit rate increases

with population of users using the cache, the benefits diminish as the population

base grows very large. Gribble and Brewer [65] deduce based on client traces that

cache hit rate increases logarithmically with the size of client population.

Cooperative caches can be classified into hierarchical and peer-to-peer based on

their organization. Harvest is one of the earliest proposed hierarchical cooperative

cache [33]. It organizes the caches into a hierarchy based on the location and

183

scale of the cache. For example, a browser cache is lower than an institution-level

cache, which is lower than a regional or national cache. The Harvest architecture

is employed by Squid, which is a globally deployed and widely used cooperative

cache [150].

In the hierarchical caching system, a cache miss at a lower-level cache is for-

warded to its parent at the next higher level. Therefore, hierarchical caches incur

substantial latency cost during cache misses. Peer-to-peer caches eliminate this

problem by organizing the system into a flat structure with no hierarchy. Such

peer-to-peer caches typically form an overlay network of caches were each cache

has a certain number of neighbor caches with which it exchanges information about

cache content.

Summary Cache proposed by Fan et al. [52] proposes a cooperative cache archi-

tecture where each cache knows about every other cache and periodically exchange

their cache content. It uses Bloom filters, a compression scheme for representing a

set of objects, to achieve cache information sharing with less network bandwidth.

Since a web object may reside on any web cache, all-to-all communication is re-

quired for caches to locate another cache with content if there is a local miss.

Tewari et al. [141] propose a similar flat organization for caches, but retain the

hierarchy for communicating cache content. In their system exchange of cache

summaries is restricted to the parent and siblings. Yet, both schemes require each

cache to store complete cache summaries of all the caches in the system.

A few researchers avoid the need for all-to-all exchange of cache information by

allocating each web object to one or more well-defined caches for managing that

web object. Ross et al. [126] propose a scheme for distributing responsibility for

a web object among a non-changing, static set of nodes through hashing. Thaler

184

and Ravishankar [142] explore the issue of adding and removing web servers effi-

ciently in a hash-based cooperative cache. Karger et al. [81] propose a technique

called consistent hashing that can allocate objects to nodes without requiring prior

information about the nodes and can accommodate frequent changes in the set of

nodes.

A few cooperative caches take advantage of structured overlays to provide

an efficient and scalable architecture for cooperative caching. Squirrel [74] and

Kache [91] are overlay-based cooperative web caches. Squirrel uses consistent

hashing to map objects to nodes and the Pastry overlay to locate cached objects.

Kache is layered on top of Kelips and takes advantage of the replication in Kelips

to provide low latency and high failure resilience.

In addition to the purely hierarchical and purely flat cache organizations, sev-

eral web caching systems combine hierarchy as well as peer-to-peer communication

to maximize benefits. The Internet Cache Protocol (ICP) is a modification of the

Harvest hierarchy that enables caches to exchange content with other caches at

the same level [149]. Michael et al. [98] propose an adaptive cache where caches

are organized into a hierarchy of clusters. Each cluster is is a self-organized peer-

to-peer network of caches that are proximal to each other. Caches within a cluster

exchange cache content with each other. Gadde et al. [60] develop a cooperative

web cache that is aided by a centralized directory service providing meta data

about locations of objects.

The previously described cooperative caching schemes mandate a specific amount

of network communication on each node. Roussoulos and Baker [127] have recently

proposed an incentive-based mechanism for nodes to decide when to propagate up-

dates about cache summaries. The decisions made by a node to participate in the

185

propagation of cache locations for a particular object depends on the local popu-

larity of that object and the rate of change of caching information for that object.

6.4.4 Content Distribution Networks

The caching schemes described earlier all rely on passive caching, where caches

are filled in response to queries generated by clients. The alternative approach

is to proactively push copies of web objects to selected sets of caches or content

servers so that clients looking for those objects can download them from a close-by

node. This push-based approach to caching has been popularized by the success

of commercial content distribution networks such as Akamai and Digital Island.

Push-based caching has also been extensively studied in the research commu-

nity. Bestavros [14] proposes proactive cooperative web caches where objects are

pushed to different caches based on their demand. CoDeen is a widely used con-

tent distribution network developed by Park et al. [148, 112]. While the exact

algorithm used by CoDeen for distributing objects is not publicized, it employs a

combination of heuristics to place objects based on the demand, latency, and load

level of each node.

CoralCDN [57] and Backslash [137] are CDNs built using structured overlays.

CoralCDN uses the Coral structured overlay to cache objects. CoralCDN pro-

vides quick responses using the latency-based overlay architecture of Coral and

withstands flash crowds due to rapid, dynamic increase in the number of nodes

caching an object as the popularity of the object increases. Backslash also focuses

on handling flash crowds efficiently by creating additional copies of objects in the

system. It uses deterministic, heuristics to decide when to create more copies for

an object.

186

Overall, previous cooperative caching schemes and CDNs rely on ad-hoc heuris-

tics to decide which node should cache which objects. In contrast, the key contri-

bution of this thesis is to show that a far more efficient way of making the above

key decision is through mathematical optimization. CobWeb, the CDN we built

based on this principled approach, there by, achieves superior performance in terms

of latency while making the best use of available storage and bandwidth resources.

6.5 Publish-Subscribe Systems

The publish-subscribe (pub-sub) paradigm consists of three components: publish-

ers, who generate and feed the content into the system, subscribers, who specify

content of their interest, and an infrastructure for matching subscriber interests

with published content and delivering matched content to the subscribers. The

field of publish-subscribe had its origins in early systems for group communication.

The first publish-subscribe systems were based on the Isis group communication

tool kit [62].

Publish-subscribe systems can be classified as topic-based or content-based de-

pending on the expressiveness of subscriber interests. In topic-based systems,

publishers and subscribers are connected together by pre-defined topics, called

channels; content is published on well-advertised channels to which users sub-

scribe and from which they receive asynchronous updates. Content-based systems

enable subscribers to express elaborate queries and use sophisticated content filter-

ing techniques to match subscriber interests with published content. This section

provides a background on content distribution based on the publish-subscribe and

summarizes the current state of the art.

187

6.5.1 Topic-based Publish Subscribe

Topic-based publish-subscribe systems provide event or update notification service

on well-defined topics that subscribers can register for. Isis [62], TIBCO [174],

FeedTree [132] and Herald [24] are a few well-known topic-based pub-sub systems.

The topics represent well-defined entities such as multicast groups as Isis [62], or

web URLs as in FeedTree [132], or keywords as in TIBCO [174].

A few topic-based publish-subscribe systems use type systems to identify topics.

In these systems each topic is represented as a typed tuple and all events that match

the same type of tuple as associated to the same topic. Tuple space based systems

include Linda [26], T-spaces [175], and Java Spaces [170].

Much of the research on topic-based publish-subscribe systems have focused

on building efficient infrastructures for event dissemination. Group communica-

tion or multi-cast protocols, which simultaneously transport a network message to

multiple participants is a key component of several topic-based publish-subscribe

systems. The group communication protocols used in publish-subscribe include

virtual synchrony in Isis, reliable multicast protocols such as Scalable Reliable

Multicast [56] (SRM), Reliable Multicast Transport Protocol [89] (RMTP), and bi-

modal multicast [16], and application-level multicast protocols such as Scribe [130]

in FeedTree.

An alternative technique used for event notification involves allocating the no-

tification load for each topic to nodes called rendezvous points in the distributed

system. In these systems, each topic has one or more rendezvous points which

manage subscription state and forward events and updates to the subscribers.

TIBCO was the first system to use the rendezvous approach for event notification.

A recent system, Herald [24], also proposes to use distributed rendezvous points

188

for event notification.

6.5.2 Content-based Publish Subscribe

Content-based publish-subscribe systems, unlike topic-based ones, provide a much

richer interface for users to select content that matches their interest. Conse-

quently, research in content-based publish-subscribe systems has focused primar-

ily on languages for expressing complex subscriber interests and on techniques

for matching published content with queries expressed in these domain specific

languages.

Content-based publish-subscribe systems have either designed their own query

languages or used off the shelf standard query languages. These languages allow

users to specify their interests in simple terms through relational algebra or in fairly

complex terms through user-written scripts in Turing-complete languages. Simi-

larly the content handled by the publish-subscribe systems ranges from structured

content with well-defined attributes, to semi-structured content such as XML, and

unstructured content such as web objects

Several publish-subscribe systems assume that the published content has well-

defined meta-data or attributes against which queries can be issued. Examples of

these systems include, Gryphon [140], Siena [27], Elvin [133], Jedi [40], Java Mes-

saging Services [70] (JMS), Astrolable [144], SDIMS [160], Cone [15], Pepper [90],

and PIER [72]. A few systems such as Pepper and Cone only support equality

and range queries. Several including Gryphon, Siena, and Elvin, invent their own

query language, while others such as Astrolabe, PIER, and JMS support queries

expressed using SQL, a widely used query language for relational databases.

Several publish-subscribe systems have been designed for content published

189

in XML, an industrial standard for representing semi-structured data of ad hoc

structure. The key reason for adopting XML is that it forms an intermediate

between structured and unstructured content. Since having universal, globally-

defined attributes in published content is difficult to implement in practice, self-

describing content in XML provides an alternative. XML queries are described

using XPath expressions for simple queries and XQL (XML Query Language) for

complex queries. XPath and XQL are part of the XML standard accepted by a

collaboration of leading enterprizes.

Several researchers have proposed efficient content-filtering algorithms for XML.

Altinel and Franklin have proposed a mechanism called XFilter based on finite state

machines for filtering XML documents [6]. Yanlei et al. have proposed an improved

mechanism called Yfilter based on non-deterministic finite state machines [45].

Other approaches for XML content filtering include the use of a trie-based data

structure called XTrie by Chan and Rastogi [32] and enhancing XML filtering with

keyword search in Niagara [105].

Few publish-subscribe systems are designed for unstructured web content. Con-

quer [94] and WebCQ [93] support keyword queries on web objects and provide

asynchronous event notifications. These systems apply database techniques for

processing streaming data to detect perform keyword searches. However, similar

to other publish-subscribe systems described earlier, these systems do not focus

on an important aspect in the design of publish-subscribe systems for the Web,

namely detecting changes made to Web content. This important aspect of update

detection is reviewed later in this section.

Content-based publish-subscribe systems also organize the network of partic-

ipating nodes to ensure efficient content matching and event dissemination. As-

190

trolabe and SDIMS organize the network into a hierarchy and take advantage of

aggregating query results from children at the parent nodes to improve the ef-

ficiency of content filtering. Few systems, instead organize the network into a

flat peer-to-peer overlays to achieve better load balance. Examples of publish-

subscribe systems layered on structured overlays include Cone, Pepper, and PIER.

XTreeNet [55], a publish-subscribe system for XML content, uses unstructured

overlay to organize its network.

The fundamental drawback of the preceding publish-subscribe systems is their

non-compatibility with the current Web architecture. They require substantial

changes in the way publishers serve content, expect subscribers to learn sophis-

ticated query languages, or propose to lay out middle boxes in the core of the

Internet.

6.5.3 Detecting Changes in the Web

Few publish-subscribe have focused on supporting the Web as is without requiring

Web content providers to change the way they provide content. The key problem

faced by these publish-subscribe systems is detecting changes in web content using

the pull-based mechanisms of the Web.

FeedTree [132], is a recently proposed system topic-based publish-subscribe

system for detecting changes in web pages and disseminating the updates to the

users. FeedTree participants cooperatively poll the web to detect changes and share

updates with each other. FeedTree organizes the nodes using Pastry structured

overlay, allocates polling tasks to nodes in the system, and disseminates updates

using the Scribe application level multicast protocol. However, FeedTree nodes

decide to poll for a feed and share updates based in an ad hoc manner based on

191

heuristics.

A principled approach that takes into account tradeoffs between resource avail-

ability and performance, have been explored for optimizing update detection in

centralized systems. CAM [108] is an algorithm for allocating polling resources in

a centralized server for achieving different application specific performance goals.

WIC [107] is another algorithm for allocating polling resources in a centralized

server that focuses on the between rate of polling and update detection rate. Cho

and Garcia-Molina [35] propose techniques to derive optimal polling schedules to

optimize average freshness and age of objects in a web cache. While these algo-

rithms employ optimization based approach, similar to Corona, the above proposed

techniques cannot be applied for optimizing polling in a decentralized setting.

Moreover, the effectiveness of the above algorithms has not been demonstrated in

a deployed system.

Corona, the publish-subscribe system presented in this thesis, uses optimal

resource allocation to poll web pages and detect updates in a distributed system.

This principled approach enables Corona to provide the best update performance

for its users, while ensuring that content servers are lightly loaded and do not get

overwhelmed due to flash crowds or sticky traffic. Moreover, Corona requires no

additional tools to be installed by the clients, but employs an easy-to-use IM based

interface to the users.

Chapter 7

Conclusions

This thesis presented a principled approach to building decentralized network ser-

vices that offer high performance guarantees. In this domain, judicious use of

scarce or expensive resources is critical to achieving high performance. The the-

sis formulated this fundamental resource-performance tradeoff mathematically as

constrained optimization problems, derived near-optimal solutions to the mod-

eled problems, and used these solutions to achieve desired performance goals in

real world applications. The result was an ability to achieve unprecedented im-

provement in performance compared to ad hoc, less-informed techniques widely

employed in today’s applications.

This chapter summarizes the key contributions of this thesis, places the contri-

butions in context, and provides directions for future work.

7.1 Summary

Distributed systems today predominantly employ techniques that are unaware or

less conscious of resource consumption. This trend continues despite the fact that

performance of network services critically depends on the available quantity of

resources such as storage space, network bandwidth, and computing servers. The

scale of today’s network applications can be so large that the resources required

to achieve high levels of performance is prohibitively expensive. For example, the

amount of space and bandwidth required to replicate even a modest fraction of the

web is beyond the reach of most institutions. Thus, careful utilization of resources

is crucial to obtain large gains in performance.

192

193

The approach presented in this thesis enables applications to control their re-

source utilization at a fine grain. It provides a tunable knob that applications can

use to meet system wide performance goals. Accurate analytical models of how

individual object parameters such as size, popularity, and update rate influence

resource consumption ensure that the system achieves the targeted performance at

low cost. Alternatively, instead of specifying explicit performance targets, appli-

cations can just obtain high performance by making judicious use of the available

resources.

This analysis-driven approach provides a fundamentally different level of per-

formance compared to commonly used heuristic-driven techniques. For instance,

it is common knowledge that passive, opportunistic web caches provide low perfor-

mance as web objects follow heavy-tailed popularity distributions [18, 155]. This

thesis showed a way to surpass these limitations and achieve high performance in

the presence of heavy tailed popularity distributions. Unlike heuristics tailored to

specific workloads, the approach presented in this thesis is general and supports a

broad class of applications as it handles any distribution of object characteristics.

The above theoretically sound approach lends itself to a scalable, adaptable,

and robust system. This thesis presented decentralized, light-weight techniques to

implement a practical resource management framework. This framework, called

Honeycomb, scales logarithmically with the size of the system, continuously learns

and adapts itself to changes in workload, and efficiently tolerates network and node

failures.

Honeycomb currently supports three real network services. These services de-

scribed in the thesis, namely the CoDoNS naming system, the CobWeb content dis-

tribution network, and the Corona data monitoring system, are deployed on a plan-

194

etary scale test bed and are available for public use. Evaluation of these deployed

systems show that Honeycomb can be well-suited for building such performance-

demanding applications.

7.2 Limitations and Future Work

While this thesis was largely self-contained and explored important directions to

study resource management in decentralized network services, operational experi-

ence in running the above services exposed a few limitations in our approach and

opened up several new and interesting avenues to explore further.

This thesis does not address locality of access for objects. While highly popu-

lar objects tend to be popular throughout the system, there are also objects that

have high popularity only in a particular locality. Our current replication protocol

assumes that objects are uniformly popular in all locations. However, the inde-

pendent, decentralized decision making approach presented in this thesis can be

easily extended to handle locally popular objects efficiently. In order to replicate

objects locally, the network can be organized into a locality-aware overlay through

proximity-based neighbor selection [30, 43], which ensures that a node’s one-hop

neighbors are located in close proximity to the node. Further more, using the lo-

cally estimated popularity of objects, instead of the globally aggregated popularity,

can make object replicas reside close to their locality of access.

Second, this thesis treats all nodes in the system uniformly. That is, it assumes

that all nodes have the same amount of resources such as bandwidth and memory.

While the kind of infrastructure services explored in this thesis are expected to run

on sufficiently well-provisioned hardware, it is practical to expect a limited degree

of heterogeneity in the amount of resources available to different nodes. Heteroge-

195

neous nodes can be easily handled by using the notion of virtual nodes [42], where

a real node is split into several virtual nodes with constant bandwidth and storage

or memory capacities. Splitting nodes into virtual nodes at a coarse granularity en-

sures that the system appears homogeneous while few virtual nodes are introduced

in the system.

Finally, the analytical models presented in this thesis predominantly focused

only on the average values of performance and cost. While average is a useful

metric to quantify resource consumption or level of performance, additional metrics

such as percentiles and variance may be better-suited for some applications. For

example, Internet Service Providers (ISPs) often charge for bandwidth based on

the 95th percentile rather than the average, while service level agreements (SLAs)

typically specify performance requirements in percentiles. Similarly, using the

variance enables applications to bound the performance difference across objects.

Extending the resource allocation techniques to handle percentiles and variance

would substantially expand the domain of suitable applications.

7.3 Impact

Despite a few limitations, the work presented in this thesis has already attracted

substantial attention. The three public services we maintain continues to gain

new users. CoDoNS is our first deployed service, now in operation since August

2004. In addition to several anonymous users of our DNS service, we have received

interest from companies and organizations that want to host their own CoDoNS

network. In particular, CNNIC (China Internet Network Information Center) has

expressed a desire to use CoDoNS to host the names under the .cn top level domain.

CobWeb, our open-access CDN, is our largest used service. Since deployment in

196

May 2005, CobWeb has been serving about 10-12 million queries per day. Finally,

Corona, deployed in February 2006, has already attracted over a hundred users,

who have rarely withdrawn from the system.

Overall, this thesis demonstrated that a well-informed, optimization-based ap-

proach to resource allocation is practical even for planetary-scale decentralized

systems and leads to unprecedented performance improvement over conventional,

heuristic-based techniques.

BIBLIOGRAPHY

[1] Ghaleb Abdulla. Analysis and Modeling of World Wide Web Traffic. PhD
thesis, Virginia Polytechnic Institute and State University, 1998.

[2] Marc Abrams, Charles Standbridge, Ghaleb Abdulla, Stephen Williams, and
Edward Fox. Cost-Aware WWW Proxy Caching Algorithms. In Proc. of the
International World Wide Web Conference (WWW), Boston, MA, December
1995.

[3] Atul Adya, William Bolosky, Miguel Castro, Gerald Cermak, Ronnie
Chaiken, John Douceur, Jon Jowell, Jacob Lorch, Marvin Theimer, and
Roger Wattenhofer. FARSITE: Federated, Available, and Reliable Storage
for an Incompletely Trusted Environment. In Proc. on Symposium of Oper-
ating Systems Design and Implementation (OSDI), Boston, MA, December
2002.

[4] Paul Albitz and Cricket Liu. DNS and BIND. O’Reilly, 2001.

[5] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adriana de Oliveira.
Characterizing Reference Locality in the WWW. In Proc. of IEEE Interna-
tional Conference in Parallel and Distributed Information Systems, Tokyo,
Japan, June 1996.

[6] Mehmet Altinel and Michael Franklin. Efficient Filtering of XML Documents
for Selective Dissemination of Information. In Proc. of International Con-
ference on Very Large Databases (VLDB), Cairo, Egypt, September 2000.

[7] Mark Andrews. Negative Caching of DNS Queries. Request for Comments
(RFC) 2308, March 1998.

[8] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose. Protocol Mod-
ifications for the Domain Name System Security Extensions. Request for
Comments 4035, March 2005.

[9] Martin Arlitt and Carey Williamson. Web Server Workload Characteriza-
tion: the Search for Invariants. Philadelphia, PA, May 1996.

[10] Hari Balakrishnan, Karthik Lakshminarayanan, Sylvia Ratnasamy, Scott
Shenker, Ion Stoica, and Michael Walfish. A Layered Naming Architec-
ture for the Internet. In Proceedings of the ACM SIGCOMM Conference,
Porland, OR, August 2004.

[11] Paul Barford, Azer Bestavros, Adam Bradley, and Mark Crovella. Changes
in Web Client Access Patterns: Characteristics and Caching Implications.
World Wide Web, 2(1-2):15–28, 1999.

197

198

[12] Andy Bavier, Mic Bowman, Brent Chun, David Culler, Scott Karlin, Steve
Muir, Larry Peterson, Timothy Roscoe, Tammo Spalink, and Mike Wawr-
zoniak. Operating System Support for Planetary-Scale Network Services.
In Proc. of Symposium on Networked Systems Design and Implementation,
Boston, MA, March 2004.

[13] Leann Bent and Goeffrey Voelker. Whole Page Performance. In Proc. of the
International Workshop on Web Content Caching and Distribution, Boulder,
CO, August 2002.

[14] Azer Bestavros. Demand-based Document Dissemination to Reduce Traffic
and Balance Load in Distributed Information Systems. In Proceedings of
the Symposium on Parallel and Distributed Processing, San Anotonio, TX,
February 1995.

[15] Ranjita Bhagwan, George Varghese, and Geoff M Voelker. Cone: Augment-
ing DHTs to Support Distributed Resource Discovery. Technical Report
CS2003-0755, University of California at San Diego, July 2003.

[16] Kenneth Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu,
and Yaron Minsky. Bimodal Multicast. ACM Transactions on Computer
Systems, 17(2):41–88, 1999.

[17] Tim Bray. Measuring the Web. Paris, France, May 1996.

[18] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implications. In Proc. of
IEEE International Conference on Computer Communications, New York,
NY, March 1999.

[19] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
Caching and Zipf-like Distributions: Evidence and Implications. In Proc. of
IEEE International Conference on Computer Communications, New York,
NY, March 1999.

[20] Thomas Brisco. DNS Support for Load Balancing. Request for Comments
(RFC) 1794, April 1995.

[21] N. Brownlee, kc claffy, and E. Nemeth. DNS Measurements at a Root Server.
In Proc. of IEEE Global Telecommunications Conference, San Antonio, TX,
November 2001.

[22] N. Brownlee, kc claffy, and E. Nemeth. DNS Measurements at a Root Server.
In Proc. of IEEE Global Telecommunications Conference, San Antonio, TX,
November 2001.

199

[23] Nevil Brownlee, kc Claffy, and Evi Nemeth. DNS Root/gTLD Performance
Measurements. In Proc. of Usenix Systems Administration Conference, San
Diego, CA, December 2001.

[24] Luis Felipe Cabera, Michael B Jones, and Marvin Theimer. Herald: Achiev-
ing a Global Event Notification Service. In Proc. of Workshop on Hot Topics
in Operating Systems, Elmau, Germany, May 2001.

[25] Pei Cao and Sandy Irani. Cost-Aware WWW Proxy Caching Algorithms.
In Proc. of the USENIX Symposium on Internet Technologies and Systems
(USITS), Monterey, CA, December 1997.

[26] Nicholas Carriero and David Gelernter. Linda in Context. Communications
of the ACM, 32(4):444–458, April 1989.

[27] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service. ACM Transactions
on Computer Systems, 19(3):332–383, August 2001.

[28] Miguel Castro, Manuel Costa, and Antony Rowstron. Debunking some
Myths about Structured and Unstructured Overlays. In Proceedings of the
USENIX/ACM Symposium on Networked Systems Design and Implementa-
tion (NSDI), Boston, CA, May 2005.

[29] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and
Dan Wallach. Secure Routing for Structured Peer-to-Peer Overlay Networks.
In Proc. of Symposium on Operating Systems Design and Implementation,
Boston, MA, December 2002.

[30] Miguel Castro, Peter Druschel, Charlie Hu, and Antony Rowstron. Prox-
imity Neighbor Selection in Tree-Based Structured Peer-to-Peer Overlays.
Technical Report MSR-TR-2003-52, Microsoft Research, September 2003.

[31] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. SplitStream: High-Bandwidth Multicast
in a Cooperative Environment. In Proc. of ACM Symposium on Operating
Systems Principles, Bolton Landing, NY, October 2003.

[32] Chan, Fan, Felber, M Garofalakis, and Rajiv Rastogi. Efficient Filtering of
XML Documents with XPath Expressions. In Proc. of International Con-
ference on Data Engineering, San Jose, CA, February 2002.

[33] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, Michael F.
Schwartz, and Kurt J. Worrell. A Hierarchical Internet Object Cache. In
Proc. of USENIX Annual Technical Conference, pages 153–164, San Diego,
CA, January 1996.

200

[34] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott
Shenker. Making Gnutella-like P2P Systems Scalable. Karlsruhe, Germany,
August 2003.

[35] Junghoo Cho and Hector Garcia-Molina. Effective Page Refresh Policies.
ACM Transactions on Database Systems, 28(4), 2003.

[36] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore Hong. Freenet: A
Distributed Anonymous Information Storage and Retrieval System. Lecture
Notes in Computer Science, 2009, 2001.

[37] Edith Cohen and Haim Kaplan. Proactive Caching of DNS Records: Ad-
dressing a Performance Bottleneck. In Proc. of Symposium on Applications
in the Internet, San Diego-Mission Valley, CA, January 2001.

[38] Edith Cohen and Scott Shenker. Replication Strategies in Unstructured Peer-
to-Peer Networks. In Proc. of ACM SIGCOMM, Pittsburgh, PA, August
2002.

[39] Russ Cox, Athicha Mutitacharoen, and Robert Morris. Serving DNS using a
Peer-to-Peer Lookup Service. In Proc. of International Workshop on Peer-
to-Peer Systems, Cambridge, MA, March 2002.

[40] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI
Event-Based Infrastructure and Its Application to the Development of the
OPSS WFMS. IEEE Transactions on Software Engineering, 27(9):827–850,
2001.

[41] Carlos Cunha, Azer Bestavros, and Mark Crovella. Characteristics of WWW
Client-Based Traces. Technical Report TR-95-010, Boston University, 1995.

[42] Frank Dabek, Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-Area Cooperative Storage with CFS. In Proc. of ACM Symposium on
Operating Systems Principles, Banff, Canada, October 2001.

[43] Frank Dabek, Jinyang Li, Emil Sit, M Frans Kaashoek, Robert Morris, and
Chuck Blake. Designing a DHT for Low Latency and High Throughput. In
Proc. of USENIX Symposium on Networked Systems Design and Implemen-
tation, San Francisco, CA, March 2004.

[44] Peter Danzig, Katia Obraczka, and Anant Kumar. An Analysis of Wide-
Area Name Server Traffic: A Study of the Internet Domain Name System.
In Proc. of ACM SIGCOMM, Baltimore, MD, August 1992.

[45] Yanlei Diao, Shariq Rizvi, and Michael Franklin. Towards an Internet-Scale
XML Dissemination Service. In Proc. of International Conference on Very
Large Databases (VLDB), Toronto, Canada, August 2004.

201

[46] John R. Douceur, Atul Adya, William J.Bolosky, and Dan Simon. Reclaim-
ing Space from Duplicate Files in a Serverless Distributed File System. In
Proc. of International Conference on Distributed Computing Systems, Vi-
enna, Austria, July 2002.

[47] Fred Douglis, Anja Feldman, Balachander Krishnamurthy, and Jeffrey
Mogul. Rate of Change and Other Metrics: a Live Study of the World
Wide Web. In Proc. of USENIX Symposium on Internet Technologies and
Systems, Monterey, CA, December 1997.

[48] Lawrence Dowdy and Derrell Foster. Comparative Models of the File As-
signement Problem. ACM Computer Surveys, 14:287–314, 1982.

[49] Bradley M. Duska, David Marwood, and Michael Feeley. The Measured
Access Characteristics of World Wide Web Client Proxy Caches. In Proc.
of USENIX Symposium on Internet Technology and Systems, Monterey, CA,
December 1997.

[50] Donald Eastlake. Domain Name System Security Extensions. Request for
Comments 2335, March 1999.

[51] R. Elz and R. Bush. Clarifications to the DNS Specifications. Request for
Comments 2181, July 1997.

[52] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary Cache: A
Scalable Wide-area Web Cache Sharing Protocol. IEEE/ACM Transactions
on Networking, 8(3):281–293, 2000.

[53] Li Fan, Quinn Jacobson, Pei Cao, and Wei Lin. Web Prefetching between
Low-Bandwidth Clients and Proxies: Potential and Performance. In Proc. of
the ACM Conference on the Measurement and Modeling of Computer Sys-
tems (SigMetrics), Atlanta, GA, May 1999.

[54] Anja Feldmann, Ramon Caceres, Fred Douglis, Gideon Glass, and Michael
Rabinovich. Performance of Web Proxy Caching in Heterogeneous Band-
width Environments. New York, NY, 1999.

[55] William Fenner, Michael Rabinovich, K K Ramakrishnan, Divesh Srivastava,
and Yin Zhang. XTreeNet: Scalable Overlay Networks for XML Content Dis-
semination and Querying (Synopsis). In Proc. of International Workshop on
Web Content Caching and Distribution, Sophia Antipolis, France, September
2005.

[56] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia
Zhang. A Reliable Multicast Framework for Light-Weight Sessions and Ap-
plication Level Framing. IEEE/ACM Transaction on Networking, pages 784–
803, December 1997.

202

[57] Michael Freedman, Eric Freudenthal, and David Mazières. Democratizing
Content Publication with Coral. In Proc. of Symposium on Networked Sys-
tems Design and Implementation, San Francisco, CA, March 2004.

[58] Michael Freedman, Karthik Lakshminarayanan, Sean Rhea, and Ion Stoica.
Non-Transitive Connectivity and DHTs. In Proc. of the Usenix Workshop on
Real Large Distributed Systems (WORLDS), San Francisco, CA, December
2005.

[59] Michael Freedman and David Mazières. Sloppy Hashing and Self-Organizing
Clusters. In Proc. of International Workshop on Peer-to-Peer Systems
(IPTPS), Berkeley, CA, February 2003.

[60] Syam Gadde, Michael Rabinovich, and Jeffrey S. Chase. Reduce, Reuse, Re-
cycle: An Approach to Building Large Internet Caches. In Proc. of Workshop
on Hot Topics in Operating Systems, Cape Cod, MA, May 1997.

[61] GAIM. A Multi-Protocol Instant Messaging Client.
http://gaim.sourceforge.net.

[62] Bradford Glade, Kenneth P. Birman Robert Cooper, and Robert van Re-
nesse. Light-Weight Process Groups in the ISIS System. Distributed Systems
Engineering, 1(1):29–36, sep 1993.

[63] Steven Glassman. A Caching Relay for the World Wide Web. Computer
Networks and ISDN Systems, 27(2):165–173, 1994.

[64] Ashish. Goal, Hui Zhang, and Ramesh Govindan. Incrementally Improving
Lookup Latency in Distributed Hash Table Systems. In Proc. of the ACM In-
ternational Conference on Measurement and Modeling of Computer Systems
(SigMetrics), San Diego, CA, June 2003.

[65] Steven Gribble and Eric Brewer. System Design Issues for Internet Middle-
ware Services: Deductions from a Large Client Trace. In Proc. of USENIX
Symposium on Internet Technologies and Systems, Monterey, CA, December
1997.

[66] Anjali Gupta, Barabara Liskov, and Rodrigo Rodrigues. One Hop Lookups
for Peer-to-Peer Overlays. In Proc. of Workshop on Hot Topics in Operating
Systems, Lihue, HI, May 2003.

[67] Anjali Gupta, Barabara Liskov, and Rodrigo Rodrigues. Efficient Routing
for Peer-to-Peer Overlays. In Proc. of Symposium on Networked Systems
Design and Implementation (NSDI), San Francisco, CA, March 2004.

203

[68] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robert van
Rennesse. Kelips: Building an Efficient and Stable P2P DHT Through In-
creased Memory and Background Overhead. In Proc. of International Work-
shop on Peer-to-Peer Systems, Berkeley, CA, February 2003.

[69] Mark Handley and Adam Greenhalgh. The Case for Pushing DNS. In
Proceedings of the Workshop on Hot Topics in Networks (HotNets), College
Park, MD, November 2005.

[70] Mark Hapner, Rich burridge, Rahul sharma, and Joseph Fialli. Java Message
Service. http://java.sun.com/products/jms/docs.html, April 2002.

[71] Nicholas Harvey, Michael Jones, Stefan Saroiu, Marvin Theimer, and Alec
Wolman. SkipNet: A Scalable Overlay Network with Practical Locality
Properties. In Proc. of USENIX Symposium on Internet Technologies and
Systems, Seattle, WA, March 2003.

[72] Ryan Huebsch, Joseph M Hellerstein, Nick Lanham, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Querying the Internet with PIER. In Proc. of Inter-
national Conference on Very Large Databases, Berlin, Germany, September
2003.

[73] C. Huitema and S. Weerahandi. Internet measurements: The rising tide
and the DNS Snag. In Proc. of ITC Specialist Seminar on Internet Traffic
Measurement and Modeling, Monterey, CA, September 2000.

[74] Sitaram Iyer, Antony Rowstron, and Peter Druschel. Squirrel: A Decentral-
ized Peer-to-Peer Web Cache. In Proc. ACM Symposium on Principles of
Distributed Computing, Monterey, CA, July 2002.

[75] Sugih Jamin, Cheng Jin, Anthony Kurc, Danny Raz, and Yuval Shavitt.
Constrained Mirror Placement on the Internet. In Proc. of INFOCOM Con-
ference, Anchorage, AL, April 2001.

[76] Kirk L. Johnson, John F. Carr, Mark S. Day, and M. Frans Kaashoek. The
Measured Performance of Content Distribution Networks. In Proc. of Inter-
national Web Caching and Content Delivery Workshop, Lisbon, Portugal,
May 2000.

[77] William K. Josephson, Emin Gün Sirer, and Fred B. Schneider. Peer-to-
Peer Authentication With a Distributed Single Sign-On Service. In Proc. of
International Workshop on Peer-to-Peer Systems, San Diego, CA, February
2004.

[78] Jaeyon Jung, Arthur Berger, and Hari Balakrishnan. Modeling TTL-based
Internet Caches. In Proc. of IEEE International Conference on Computer
Communications, San Francisco, CA, March 2003.

204

[79] Jaeyon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. DNS Per-
formance and Effectiveness of Caching. In Proc. of SIGCOMM Internet
Measurement Workshop, San Francisco, CA, November 2001.

[80] Frans Kaashoek and David Karger. Koorde: A Simple Degree-Optimal Dis-
tributed Hash Table. In Proc. of International Workshop on Peer-to-Peer
Systems, Berkeley, CA, February 2003.

[81] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin,
and Rina Panigraphy. Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web. In Proc.
of ACM Symposium on Theory of Computing, El Paso, TX, April 1997.

[82] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems.
Springer Verlag, 2005.

[83] Balachander Krishnamurthy, Craig Wills, and Yin Zhang. On the Use and
Performance of Content Distribution Networks. In Proc. of ACM SIGCOMM
Workshop on Internet Measurement, San Francisco, CA, November 2001.

[84] Thomas Kroeger, Jeff Mogul, and Carlos Maltzahn. Digital’s Web Proxy
Traces, August 1996.

[85] Tom M. Kroeger, Darrell D. E. Long, and Jeffrey C. Mogul. Exploring the
Bounds of Web Latency Reduction from Caching and Prefetching. In Proc.
of USENIX Symposium on Internet Technologies and Systems, Monterey,
CA, December 1997.

[86] Anant Kumar, Jon Postel, Clifford Neuman, Paul Danzig, and Steve Miller.
Common DNS Implementation Errors and Suggested Fixes. Request for
Comments 1536, October 1993.

[87] James Kurose and Rahul Simha. A Microeconomic Approach to Optimal
Resource Allocation in Distributed Computer Systems. IEEE Transactions
on Computers, 38(5):705–717, May 1989.

[88] Bo Li, Mordecai Golin, Guiseppe Ialiano, and Xin Deng. On the Optimal
Placement of Web Proxies in the Internet. In Proc. of INFOCOM Conference,
New York, NY, March 1999.

[89] John C. Lin and Sanjoy Paul. RMTP: A Reliable Multicast Transport Pro-
tocol. In Proc. of the IEEE INFOCOM, San Francisco, CA, March 1996.

[90] Prakash Linga, Adina Crainiceanu, Johannes Gehrke, and Jayavel Shan-
mugasundaram. Guaranteeing Correctness and Availability in P2P Range
Indices. In Proc. of ACM SIGMOD Confernece, Baltimore, MD, June 2005.

205

[91] Prakash Linga, Indranil Gupta, and Ken Birman. A Churn-Resistant Peer-
to-Peer Web Caching System. In Proc. of the Workshop on Survivable and
Self-Regenerative Systems (SSRS), Fairfax, VA, February 2003.

[92] Hongzhou Liu, Venugopalan Ramasubramanian, and Emin Gün Sirer. Client
Behavior and Feed Characteristics of RSS, a Publish-Subscribe System for
Web Micronews. In Proc. of ACM Internet Measurement Conference, Berke-
ley, CA, October 2005.

[93] Ling Liu, Calton Pu, and Wei Tang. WebCQ: Detecting and Delivering
Information Changes on the Web. In Proc. of the International Conference
on Information and Knowledge Management, McLean, VA, November 2000.

[94] Ling Liu, Calton Pu, Wei Tang, and Wei Han. CONQUER: A Continual
Query System for Update Monitoring in the WWW. International Journal
of Computer Systems, Science and Engineering, 14(2):99–112, 1999.

[95] Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
Replication in Unstructured Peer-to-Peer Networks. In Proc. of International
Conference on Supercomputing, New York, NY, June 2002.

[96] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A Scalable and
Dynamic Emulation of the Butterfly. In Proc. of ACM Symposium on Prin-
ciples of Distributed Computing, Monterey, CA, August 2002.

[97] Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-peer Informa-
tion System Based on the XOR Metric. In Proc. of International Workshop
on Peer-to-Peer Systems, Cambridge, CA, March 2002.

[98] Scott Michel, Khoi Nguyen, Adam Rosenstein, Lixia Zhang, Sally Floyd, and
Van Jacobson. Adaptive Web Caching: Towards a New Global Caching Ar-
chitecture. In Proc. of International WWW Caching Workshop, Manchester,
UK, June 1997.

[99] Alan Mislove, Ansley Post, Charles Reis, Paul Willmann, Peter Druschel,
Dan S Wallach, Xavier Bonnaire, Pierre Sens, Jean-Michel Busca, and Lu-
ciana Arantes-Bezerra. POST: A Secure, Resilient, Cooperative Messaging
System. In Proc. of International Workshop on Peer-to-Peer Systems, Berke-
ley, CA, February 2003.

[100] Alper Mizrak, Yuchung Cheng, Vineet Kumar, and Stefan Savage. Struc-
tured Superpeer: Leveraging Heterogeneity to Provide Constant-time
Lookup. In Proc. of IEEE Workshop on Internet Applications, San Fran-
cisco, CA, April 2003.

[101] Paul Mockapetris. Domain Names: Concepts and Facilities. Request for
Comments 1034, November 1987.

206

[102] Paul Mockapetris. Domain Names: Implementation and Specification. Re-
quest for Comments 1035, November 1987.

[103] Paul Mockapetris and Kevin Dunlop. Development of the Domain Name
System. In Proc. of ACM SIGCOMM, Stanford, CA, August 1988.

[104] Athicha Muthitacharoen, Robert Morris, Thomer Gil, and Benjie Chen. IVY:
A Read/Write Peer-to-Peer File System. In Proc of Symposium on Operating
Systems Design and Implementation (OSDI), Boston, MA, December 2002.

[105] Jeffrey Naughton, David DeWitt, David Maier, Ashraf Aboulnaga, Jianjun
Chen, Leonidas Galanis, Jaewoo Kang, Rajasekar Krishnamurthy, Qiong
Luo, Naveen Prakash, Ravishankar Ramamurthy, Jayavel Shanmugasun-
daram, Feng Tian, Kristin Tufte, Stratis Viglas, Yuan Wang, Chun Zhang,
Bruce Jackson, Anurag Gupta, and Rushan Chen. The Niagara Internet
Query System. The IEEE Data Engineering Bulletin, 24(2):27–33, 2001.

[106] Venkat Padmanabhan and Jeffrey Mogul. Using Predictive Prefetcing to
Improve World Wide Web Latency. In Proc. of the ACM SIGCOMM Con-
ference, Stanford, CA, August 1996.

[107] Sandeep Pandey, Kedar Dhamdere, and Christpoher Olston. WIC: A
General-Purpose Algorithm for Monitoring Web Information Sources. In
Proc. of the Conference on Very Large Data Bases (VLDB), Toronto,
Canada, August 2004.

[108] Sandeep Pandey, Krithi Ramamritham, and Soumen Chakraborti. Monitor-
ing the Dynamic Web to Respond to Continuous Queries. In Proc. of the
International World Wide Web Conference, Budapest, Hungary, May 2003.

[109] Jeffrey Pang, Aditya Akella, Anees Shaikh, Balachander Krishnamurthy,
and Srinivasan Seshan. On the Responsiveness of DNS-based Network Con-
trol. In Proc of the ACM SIGCOMM Conference on Internet Measurement,
Taormina, Italy, October 2004.

[110] Vasileios Pappas, Zhiguo Xu, Songwu Lu, Daniel Massey, Andreas Terzis,
and Lixia Zhang. Impact of Configuration Errors on DNS Robustness. In
Proc. of ACM SIGCOMM, Portland, OR, August 2004.

[111] KyoungSoo Park, Vivek Pai, and Larry Peterson. CoDNS: Improving DNS
Performance and Reliability via Cooperative Lookups. In Proc. of Sympo-
sium on Operating Systems Design and Implementation, San Francisco, CA,
December 2004.

[112] Limin Park, KyoungSoo Park, Ruoming Pang, Vivek Pai, and Larry Peter-
son. Reliability and Security in the CoDeeN Content Distribution Network.
In Proc. of USENIX Annual Technical Conference, Boston, MA, June 2004.

207

[113] Ryan Peterson, Venugopalan Ramasubramanian, and Emin Gün Sirer.
A Practical Approach to Peer-to-Peer Publish-Subscribe. Usenix ;login:,
31(4):42–46, August 2006.

[114] Greg Plaxton, Rajmohan Rajaraman, and Andrea Richa. Accessing Nearby
Copies of Replicated Objects in a Distributed Environment. Theory of Com-
puting Systems, 32:241–280, 1999.

[115] William Press, Brian Flannery, Saul Teukolsky, and William Vetterling. Nu-
merical Recipies in C: The Art of Scientific Computing. Cambridge Univer-
sity Press, 2 edition, 1992.

[116] Lili Qiu, Venkat Padmanabhan, and Geoff Voelker. On the Placement of
Web Server Replicas. In Proc. of INFOCOM Conference, Anchorage, AL,
April 2001.

[117] Venugopalan Ramasubramanian, Ryan Peterson, and Emin Gün Sirer.
Corona: A High Performance Publish-Subscribe System for the World Wide
Web. In Proc. of Symposium on Networked Systems Design and Implemen-
tation, San Jose, CA, May 2006.

[118] Venugopalan Ramasubramanian and Emin Gün Sirer. Beehive: Exploiting
Power Law Query Distributions for 0(1) Lookup Performance in Peer-to-
Peer Overlays. In Proc. of Symposium on Networked Systems Design and
Implementation, San Francisco, CA, March 2004.

[119] Venugopalan Ramasubramanian and Emin Gün Sirer. The Design and Im-
plementation of a Next Generation Name Service for the Internet. In Proc.
of ACM SIGCOMM, Portland, OR, August 2004.

[120] Venugopalan Ramasubramanian and Emin Gün Sirer. Perils of Transitive
Trust in the Domain Name System. In Proc. of ACM Internet Measurement
Conference, Berkeley, CA, October 2005.

[121] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In Proc. of ACM SIG-
COMM, San Diego, CA, August 2001.

[122] Sean Rhea, Byung-Gon Chun, John Kubiatowicz, and Scott Shenker. Fix-
ing the Embarrassing Slowness of OpenDHT on PlanetLab. In Proc. of the
Usenix Workshop on Real Large Distributed Systems (WORLDS), San Fran-
cisco, CA, December 2005.

[123] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling
Churn in a DHT. In Proc. of USENIX Annual Technical Conference, Boston,
MA, June 2004.

208

[124] Liugi Rizzo and Lorenzo Vicisano. Replacement Policies for a Proxy Cache.
IEEE/ACM Transactions on Networking (ToN), 8(2):158–170, 2000.

[125] Luigi Rizzo. Web Proxy Traces, May 1997.

[126] Keith W. Ross. Hash-Routing for Collections of Shared Web Caches. IEEE
Network Magazine, 1997.

[127] Mema Roussopoulos and Mary Baker. CUP: Controlled Update Propagation
in Peer-to-Peer Networks. In Proc. of USENIX Annual Technical Conference,
San Antonio, TX, June 2003.

[128] Antony Rowstorn and Peter Druschel. Pastry: Scalable, Decentralized Ob-
ject Location and Routing for Large-scale Peer-to-Peer Systems. In Proc.
of IFIP/ACM International Conference on Distributed Systems Platforms,
Heidelberg, Germany, November 2001.

[129] Antony Rowstorn and Peter Druschel. Storage Management and Caching
in PAST, a Large-scale, Persistent Peer-to-Peer Storage Utility. In Proc. of
ACM Symposium on Operating Systems Principles, Banff, Canada, October
2001.

[130] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Dr-
uschel. SCRIBE: The Design of a Large-scale Event Notification Infrastruc-
ture. In Proc. of Workshop on Networked Group Communications, London,
UK, November 2001.

[131] RSS 2.0 Specifications. http://blogs.law.harvard.edu/tech/rss, 2005.

[132] Dan Sandler, Alan Mislove, Ansley Post, and Peter Druschel. FeedTree:
Sharing Web Micronews with Peer-to-Peer Event Notification. In Proc. of In-
ternational Workshop on Peer-to-Peer Systems, Ithaca, NY, February 2005.

[133] Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps.
Content Based Routing with Elvin. In Proc. of AUUG2K, Canberra, Aus-
tralia, June 2000.

[134] Anees Shaikh, Renu Tewari, and Mukesh Agarwal. On the Effectiveness of
DNS-based Server Selection. In Proc. of IEEE International Conference on
Computer Communications, Anchorage, AK, April 2001.

[135] Emil Sit, Frank Dabek, and James Robertson. UsenetDHT: A Low Over-
head Usenet Server. In Proc. of the International Workshop on Peer-to-Peer
Systems (IPTPS), San Diego, CA, February 2004.

[136] Yee Jiun Song, Venugopalan Ramasubramanian, and Emin Gün Sirer. Op-
timal Resource Utilization in Content Distribution Networks. Technical Re-
port TR-2005-2004, Cornell University, Computing and Information Science,
November 2005.

209

[137] Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-Peer Caching
Schemes to Address Flash Crowds. In Proc. of International Workshop on
Peer To Peer Systems, Cambridge, MA, March 2002.

[138] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A Scalable Peer-to-peer Lookup Service for Internet Appli-
cations. In Proc. of ACM SIGCOMM, San Diego, CA, August 2001.

[139] Jeremy Stribling, Isaac Councill, Jinyang Li andFrans Kaashoek, David
Karger, Robert Morris, and Scott Shenker. OverCite: A Cooperative Digital
Research Library. In Proc. of the International Workshop on Peer-to-Peer
Systems (IPTPS), Ithaca, NY, February 2005.

[140] Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan
Miller, Bodhi Mukherjee, Daniel Sturman, and Michael Ward. Gryphon:
An Information Flow Based Approach to Message Brokering. In Proc. of
International Symposium on Software Reliability Engineering, Paderborn,
Germany, November 1998.

[141] Renu Tewari, Michael Dahlin, Harrick Vin, and John Kay. Beyond Hierar-
chies: Design Considerations for Distributed Caching on the Internet. Tech-
nical Report TR98-0, University of Texas at Austin, 1998.

[142] David Thaler and Chiniya Ravishankar. A Name-based Mapping Scheme for
Rendezvous. ACM/IEEE Transactions on Networking, 6(1):1–14, February
1998.

[143] Marvin Theimer and Michael Jones. Overlook: Scalable Name Service on an
Overlay Network. In Proc. of the International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, July 2002.

[144] Robbert van Renesse, Kenneth P Birman, and Werner Vogels. Astrolabe: A
Robust and Scalable Technology For Distributed Systems Monitoring, Man-
agement, and Data Mining. ACM Transactions on Computer Systems, 21(3),
May 2003.

[145] Benjamin Wah. File Placement in Distributed Computer Systems. IEEE
Computer, 17:22–33, 1984.

[146] Carl Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-
Share Resource Management. PhD thesis, Massachusetts Institute of Tech-
nology, 1995.

[147] Michael Walfish, Hari Balakrishnan, and Scott Shenker. Untangling the
Web from DNS. In Proceedings of the USENIX/ACM Symposium on Net-
worked Systems Design and Implementation (NSDI), San Francisco, CA,
March 2004.

210

[148] Limin Wang, Vivek Pai, and Larry Peterson. The Effectiveness of Request
Redirection on CDN Robustness. In Proc. of Symposium on Operating Sys-
tems Design and Implementation, Boston, MA, December 2002.

[149] D. Wessels and K. Claffy. Internet Cache Protocol (ICP), version 2. Request
For Comments (RFC) 2186, 1997.

[150] Duane Wessels and kc Claffy. ICP and the Squid Web Cache. IEEE Journal
on Selected Areas in Communications, 16(3):345–357, 1998.

[151] Udi Wieder and Moni Naor. A Simple Fault Tolerant Distributed Hash Table.
In Proc. of International Workshop on Peer-to-Peer Systems, Berkeley, CA,
February 2003.

[152] Stephen Williams, Marc Abrams, Charles Standbridge, Ghaleb Abdulla, and
Edward Fox. Removal Policies in Network Caches for World Wide Web
Documents. In Proc. of the ACM SIGCOMM Conference, Stanford, CA,
August 1996.

[153] Craig E. Wills and Hao Shang. The Contribution of DNS Lookup Costs to
Web Object Retrieval. Technical Report TR-00-12, Worcester Polytechnic
Institute, July 2000.

[154] Alec Wolman, Geoff Voelker, Nitin Sharma, Neal Cardwell, Molly
Brown, Tashana Landray, Denise Pinnel, Anna Karlin, and Henry Levy.
Organization-Based Analysis of Web-Object Sharing and Caching. In Proc.
of USENIX Symposium on Internet Technologies and Systems, Boulder, CO,
October 1999.

[155] Alec Wolman, Goeffrey Voelker, Nitin Sharma, Neal Cardwell, Anna Karlin,
and Henry Levy. On the Scale and Performance of Cooperative Web Proxy
Caching. In Proc. of ACM Symposium on Operating Systems Principles,
Kiawah Island, CA, December 1999.

[156] Alec Wolman, Goeffrey Voelker, Nitin Sharma, Neal Cardwell, Anna Karlin,
and Henry Levy. On the Scale and Performance of Cooperative Web Proxy
Caching. In Proc. of ACM Symposium on Operating Systems Principles,
Kiawah Island, CA, December 1999.

[157] Bernard Wong and Emin Gün Sirer. ClosestNode.com: An Open-Access,
Scalable, Shared Geocast Service for Distributed Systems. SIGOPS Operat-
ing Systems Review, 40(1), January 2006.

[158] Bernard Wong, Aleksandrs Slivkins, and Emin Gün Sirer. Meridian: a
Lightweight Network Location Service without Virtual Coordinates. In Proc.
of ACM SIGCOMM, Philadelphia, PA, August 2005.

211

[159] Roland Wooster and Marc Abrams. Proxy Caching that Estimates Page
Load Delays. In Proc. of the International World Wide Web Conference
(WWW), Santa Clara, CA, April 1997.

[160] Praveen Yalagandula and Mike Dahlin. A Scalable Distributed Information
Management System. In Proc. of ACM SIGCOMM, Porland, OR, August
2004.

[161] Ben Zhao, Ling Huang, Jeremy Stribling, Sean Rhea, Anthony Joseph, and
John Kubiatowicz. Tapestry: A Resilient Global-scale Overlay for Service
Deployment. IEEE Journal on Selected Areas in Communications, 22(1):41–
53, January 2004.

[162] Lidong Zhou, Fred B. Schneider, and Robbert van Renesse. COCA: A Secure
Distributed On-line Certification Authority. ACM Transactions on Com-
puter Systems, 20(4):329–368, November 2002.

[163] George K. Zipf. Human Behavior and the Principle of Least-Effort. Addison-
Wesley, Cambridge, MA, 1949.

[164] Ingrid Zukerman, David Albrecht, and Ann Nicholson. Predicting users’
requests on the WWW. In Proc. of the International Conference on User
Modeling, Banff, Canada, June 1999.

[165] Microsoft Suffers another DoS Attack. http://www.winnetmag.com /Win-
dowsSecurity/Article/ArticleID/19770/WindowsSecurity 19770.html, Jan-
uary 2001.

[166] Massive DDoS Attack Hit DNS Root Servers.
http://www.internetnews.com/dev-news/article.php/1486981, October
2002.

[167] Atom Syndication Format. http://www.atomenabled.org/developers /syn-
dication.

[168] BIND Vulnerabilities. http://www.isc.org/sw/bind/bind-security.php,
February 2004.

[169] The Gnutella 0.4 Protocol Specification.
http://dss.clip2.com/GnutellaProtocol0.4.pdf, 2000.

[170] JS-JavaSpaces Service Specification. http://www.jini.org/nonav/standards
/davis/doc/specs/html/js-spec.html, 2002.

[171] Kazaa. http://www.kazaa.com.

[172] National Laboratory of Applied Network Research. http://www.nlanr.org,
July 1997.

212

[173] Overnet. http://www.edonkey2000.com/documentation/how on.html.

[174] TIBCO Publish-Subscribe. http://www.tibco.com.

[175] TSpaces. http://www.almaden.ibm.com/cs/TSpaces/.

