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This is a pivotal time in neuroscience as modern imaging techniques and methods in network 

reconstruction are elucidating the structure of the brain as never before. Ultimately, our insights 

into these networks of connections will be the foundation for a better understanding of cognitive 

function and dysfunction in humans and other species. Comprehending why these structures are 

as we find them can be helped by knowing their developmental programs. Mathematical models 

will play a key role in understanding how developmental programs are orchestrated by the 

genome and refined by evolution to construct the brain. 

In this thesis I present mathematical models for two early stages of the development of 

the cerebral cortex in mammals: neurogenesis and the emergence of early network structure. 

Both models are informed by empirical developmental and anatomical data. The first, an 

ordinary differential equation model for the kinetics of cortical neurogenesis, shows how those 

kinetics shape the basic architecture of the cortex. A massive increase in the number of cortical 

neurons, driving the size of the cortex to increase by 5 orders of magnitude, is a key feature of 

mammalian evolution. Not only are there systematic variations in the cortical architecture across 

species, but also within a given cortex (affecting the type of information processing which 

happens in each part of the cortex). The mathematical model presented here accounts for both the 

cross-species and within-cortex variation as arising from the same developmental mechanism.  



   
 
 
 

  
 
 

For the second model, data from an axon-tracing study in rodents informs a network 

model of early connectivity between neurons in the cerebral cortex. Analysis of the model shows 

that early axon out-growth has an anisotropic spatial distribution which reduces the volume 

occupied by the axons without causing a significant decrease in the efficiency of the resulting 

network. Moreover, the preferential connectivity observed along the medial-lateral axis of the 

cortex my seed the emerging layout of the cortical areas which are specialized for various types 

of information processing. 
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INTRODUCTION 

 

Among complex systems the brain stands distinguished by several features but one is often over-

looked: it is self-assembling. No planners, engineers or technicians are at hand, just a 

developmental program which has been honed by evolution. This thesis presents two 

mathematical models, each built on a foundation of anatomical data, which elucidate how 

aspects of that developmental program evolved in mammals. The models illustrate how changes 

to the developmental program, whether in healthy or disrupted development, impact the 

emergence of the brain’s network structure from the growth of billions of individual neurons. 

This is a pivotal time in neuroscience as sophisticated imaging techniques are making the 

field rich with data. The remarkable conjunction of modern axon tract-tracing techniques and 

methods from complex networks are elucidating the structure of the brain as never before. 

Bewildering volumes of data on the complex topology of connections formed by axons running 

between brain regions are being tamed in light of network concepts like hubs, centrality, motifs 

and small-world connectivity. Even greater volumes of connectional data will soon flow from the 

Human Connectome Project and possibly from the proposed Brain Activity Map (a.k.a. the 

BRAIN initiative). Ultimately, our insights into these patterns of connections will be the 

foundation for a better understanding of cognitive function in humans and other animals.  

However, quite apart from the functions these anatomical networks support, their 

structure is determined in large part by their early development. Comprehending why brain 

networks are as we find them will require understanding what is possible within their 

developmental program. Equally, understanding how misalignments in development lead to 
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malformed brain networks may illuminate the origin of pathologies such as autism and ADHD 

which implicate brain connectivity. That understanding is currently lacking. Efforts to catalog 

developmental and adult patterns of gene expression across the brain in multiple species are 

yielding a burgeoning volume of data. Some of those data buttress existing theories but many 

demand to be included in more comprehensive quantitative developmental models.  

The models presented in this thesis are focused on the cerebral cortex (more specifically, 

the isocortex), the thin sheet which forms the outer surface of the mammalian forebrain. In larger 

brains, such as those of primates, the cortex takes on the familiar folded appearance as its area is 

massively expanded while it maintains a sheet-like form. The expansion of the cortex is the 

defining feature of mammalian brain evolution; as brains got bigger, the cortex gained neurons at 

a greater rate than any other brain structure. It is widely held that the expanded cortex underlies 

the superior cognitive capabilities of primates. The mathematical models presented here 

explicate aspects of the formation of the cortical network. Specifically, they address two 

subsequent stages in cortical development: (i) the process of neurogenesis which populates the 

cortex with neurons and (ii) the formation of the early cortical network as neurons first begin to 

connect. The work is differentiated by its evolutionary developmental perspective: the models 

are not only built on a developmental time axis but also on an evolutionary axis, speaking to how 

developmental programs differ across species.  

An evolutionary-developmental perspective guided the choices made in constructing the 

models. Evidently, the brain architecture of our shrew-like mammalian ancestors had not only 

evolved to be functional – the developmental programs generating it had also been filtered to be 

“evolvable”, capable of producing an architecture with enough adaptability to meet the demands 
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of many different body types living in disparate niches. The necessary design principles were in 

place to successfully scale up the number of constituent neurons by more than five orders of 

magnitude. That massive expansion notwithstanding, developmental programs exhibit a large 

degree of conservation across taxa. The basic components of the network are also largely 

unchanged: neurons make comparable numbers of connections via axonal and dendritic arbors of 

similar size; also conserved is the structure of cortical columns, the basic functional units within 

cortical areas. Thus, the models presented here reflect the fact that similar developmental rules 

and components can achieve practicable network structure in cortices with vastly different sizes. 

In this sense we can view the neural architecture as an adaptive system, not only in the usual 

sense of learning, development and environmental response, but also as adaptive with respect to 

the demands of growing and wiring very differently sized brains.  

Features of the mature brain network, such as its hubs and small-world, modular 

architecture, facilitate the processing and integration of information in an efficient manner. How 

such felicitous global features emerge from the rules guiding the growth and development of 

individual neurons is not understood. Considering the sheer number of connections, it becomes 

plain that at most a tiny fraction of them could be explicitly programmed in the genome. Thus 

the mature cortical network is largely the result of adaptive self-assembly, re-wiring itself in 

response to endogenous activity and sensory input. We know that neurons are electrically active 

and begin to form provisional connections soon after they are born, creating a preliminary 

network structure. That structure will adapt under the influence of its nodes’ spontaneous activity 

and newly arriving sensory input. This adaptive self-assembly surely sets this network apart. It 
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suggests that a deep understanding of the resulting structure will require us to pay attention to the 

details of its growth. 

Evolution cannot act directly on network properties, unilaterally adjusting, for example, 

the efficiency or clustering of the resulting network. Just as a baker can only affect the quality of 

his product by adjusting the ingredients and cooking time and temperature, evolution must work 

by adjusting developmental parameters. To help understand how features of the mature cortical 

network emerge and are affected by developmental parameters, models for the two stages of 

cortical development outlined above were developed. Some of those features of cortical 

anatomy, such as the trend of neuronal packing density increasing along the anterior to posterior 

axis of the cortex, are characterized in Chapter 1, along with a discussion of the developmental 

origins and computational consequences of that anatomical gradient.  

A neuron's location and role within the layers of the cortex is determined by the 

developmental time at which it is born. Neurons within different cortical layers have distinct 

connection profiles, some layers being mostly input or output layers, others routing signals 

locally. Thus we see that the time course of neuron production molds the future structure of the 

cortical network. Chapter 2 introduces a model for neurogenesis which accounts for how changes 

in parameters such as the size of the neural stem-cell pool, the cell-cycle duration and cell death 

rate determine features of the adult cortex, including the gradient in neuronal density discussed 

in Chapter 1. 

Chapter 3 describes a model addressing how the neurons newly produced in neurogenesis 

establish an early cortical network. Using anatomical data from an axon tracing study in the 

Finlay laboratory, a spatially embedded network growth model for early connectivity was 
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developed. The anatomical data revealed an unexpected tendency for axons to grow 

predominantly along one axis of the cortical sheet in preference to the perpendicular axis. 

Analyzing the resulting network structure offered the following explanation: the degree of 

directional preference in the axons’ growth lies precisely at a level which reduces the volume 

required to pack the axons in space while not adversely affecting the efficiency of the resulting 

network. The spatial model also establishes a framework for future investigations of how the 

growth of the cortical sheet during development and its expansion across species affect the 

resulting network structure. Asking how cell-based rules have evolved to connect progressively 

larger cortices will inform our understanding of the connectome. 

As alluded to above, neuroscience now has a plethora of available data. In short supply, 

however, are interpretive and predictive quantitative models. Not only does modeling add value 

to projects focused on gathering empirical data (structural and functional imaging studies, gene 

expression and gene manipulation studies, etc.) but provides testable predictions about the highly 

complex process of brain development which can guide future empirical work. Apart from 

illuminating the evolutionary origins of healthy cognitive function, well informed models of 

brain development hold another promise: that complex pathologies in brain networks which 

underlie cognitive dysfunctions might be simply explained by changes to parameters in the 

embryonic brain. The heretofore elusive origins of debilitating conditions such as autistic 

spectrum disorders could thus become clear. 
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CHAPTER 1 

 

SYSTEMATIC, BALANCING GRADIENTS IN NEURON DENSITY AND NUMBER 

ACROSS THE PRIMATE ISOCORTEX1 

 

Abstract 

 

The cellular and areal organization of the cerebral cortex impacts how it processes and integrates 

information. How that organization emerges and how best to characterize it has been debated for 

over a century. Here we demonstrate and describe in the isocortices of seven primate species a 

pronounced, anterior-to-posterior gradient in the density of neurons and in the number of neurons 

under a unit area of the cortical surface. Our findings assert that the cellular architecture of the 

primate isocortex is neither arranged uniformly nor into discrete patches with an arbitrary spatial 

arrangement. Rather, it exhibits striking systematic variation. We conjecture that these gradients, 

which establish the basic landscape that richer areal and cellular structure is built upon, result 

from developmental patterns of cortical neurogenesis which are conserved across species. 

Moreover, we propose a functional consequence: that the gradient in neurons per unit of cortical 

area fosters the integration and dimensional reduction of information along its ascent through 

sensory areas and towards frontal cortex. 

                                                 
1 This text was first published in Frontiers in Neuroanatomy under the same title with authors Diarmuid J. 
Cahalane, Christine J. Charvet and Barbara L. Finlay.  
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1.1 Introduction 

 

Two hypotheses about the fundamental organization of the cerebral cortex (or, isocortex or 

neocortex) define the poles of a debate which has endured for close to a century. Crisp borders 

drawn on the cortical surface to delimit areas with distinct cellular architecture, as first penned 

by Brodmann and von Economo, seeded the “modularist” paradigm (Brodmann, 1913; Economo 

and Koskinas, 2008). In this view, each cortical region is described by its unique input and 

output connectivity, along with intrinsic circuitry corresponding to a particular type of data 

integration and transformation, the output of which is recombined in subsequent areas (Kaas et 

al., 2002). Even if sharply defined borders are no longer expected between most areas (Rosa et 

al., 2005), current functional imaging studies suggest that specific cortical regions can be 

associated with distinct cognitive tasks, isolating areas for identifying faces (Kanwisher et al., 

1997), for judging others’ actions (Saxe and Kanwisher, 2003), for linguistic functions 

(Fedorenko et al., 2011) and so on. Gene expression studies have sought to discover molecular 

mechanisms which imprint these areas on the developing cortex (Fukuchi-Shimogori and Grove, 

2001; Sansom and Livesey, 2009; Yamamori, 2011) in the spirit of the “protomap” hypothesis 

(Rakic, 1988).  

An alternative paradigm, initially “connectionist” (Elman et al., 1998) but which has 

extended to various second-generation architectures and network analyses, has roots in the mass 

action hypothesis of Lashley (1931) and echoes the “protocortex” model (O’Leary, 1989). It 

discounts the role of genetically determined regions and it highlights the uniform nature of the 

transformation and recombination performed by the cortex on any input. Neuroimaging studies 
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in support of this view note the distributed and often redundant nature of cortical activation 

during most operations (O’Toole et al., 2005; Smith et al., 2009; Anderson, 2010). The 

connectionist paradigm envisions the embryonic cortex as largely undifferentiated; as synaptic 

connections form and refine under the influence of sensory input and endogenous cortical 

activity, areal specializations emerge (Johnson and Vecera, 1996).  

 

 

Figure 1.1. Fitting a model to neuron density recorded in each sample in baboon. Collins et al. 

removed and flattened the entire cortical sheet, cut it into samples and measured the density of 

neurons and number of neurons in each. The outlines of the samples of Collins et al. are as 

represented here and the height of each surface indicates the density of neurons measured in the 

corresponding sample. Also illustrated is the model function, increasing along an axis from 

anterior-lateral to posterior-medial cortex, which we have fitted to describe the global trend in 

neuron density.   

 

A third paradigm is now emerging in which systematic variation across the cortical sheet 

may force the roughly hierarchical integration of information as is seen to occur both within and 
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across sensory and motor systems (Felleman and Van Essen, 1991; Barone et al., 2000). We will 

argue that such variation derives from a conserved pattern of neurogenesis. The protomap and 

protocortex are increasingly recognized as not mutually exclusive and as both being important 

concepts for understanding the emergence of order in the cortex (Dehay and Kennedy, 2007). 

The paradigm we present here promises to contribute another key concept to our understanding 

of cortical development and organization. 

 

The density and number of both neurons and glial cells across the isocortical expanse 

were analyzed with respect to known cortical areas in a recent study using the isotropic 

fractionator method (Herculano-Houzel and Lent, 2005) in four primate species (the galago, 

Otolemur garnetti; the owl monkey, Aotus nancymae; the macaque, Macaca mulatta; and the 

baboon, Papio cynocephalus anubis) (Collins et al., 2010a; Collins, 2011). The authors noted 

that primary sensory areas in the isocortex had higher neuron numbers than other regions and 

noted other inter-areal variability along with potential phylogenetic and niche-related variability. 

However, they did not comment on what appeared to be pronounced anterior-to-posterior (or, 

more precisely, anterior-lateral to posterior-medial) gradients both in neuron density and in the 

number of neurons under a unit area of cortical surface (see Figure 1.1). For brevity, we will 

refer to the latter quantity as “neurons per unit column”, but we wish to be clear that our 

definition is independent of anatomical or functional definitions of a “cortical column”. In this 

report we analyze the data published by Collins et al. to demonstrate and describe those gradients 

in neuron number and density. Furthermore, we add data collected by microscopy in sectioned 

material from four additional New World monkey species. Not only do we find analogous 
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gradients in those species, but the morphological detail and precise location of neurons that we 

describe in sectioned material also complements the data obtained using the isotropic fractionator 

method.  

 

 

Figure 1.2. Modeling neuron density. In three primate species Collins et al. dissected the cortex 

into multiple samples and recorded the density of neurons in each dissected piece. In A, B and C 

we denote the locations of the samples on the flattened cortical sheet. We fitted model surfaces 

(D, E, F) which allowed us to project the data onto a principal axis of variation (G, H, I). In A, B 
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and C the red arrow indicates the alignment of the principal axis. A: anterior; P: posterior; M: 

medial; L: lateral. 

 

 

Figure 1.3. Neurons per unit column. (A and B) Model surfaces fitted to the to the number of 

neurons under a square millimeter of cortical surface in each of the samples tested by Collins et 

al. (C and D) As for the neuron density measurements (see text), we found that the data were 

well represented by projecting onto a single “principal axis”. A: anterior; P: posterior; M: 

medial; L: lateral. 

 

 

1.2 Results 

 

The data collected by Collins et al. (Collins et al., 2010a) are plotted in Figure 1.2 (neuron 

density in galago, macaque and baboon) and Figure 1.3 (number of neurons per unit column in 
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galago and baboon). To collect these data for the galago and baboon the isocortical sheet was 

removed, flattened and cut orthogonal to the cortical surface into multiple samples having an 

approximately equal (top) surface area. The macaque cortex was processed similarly, but in this 

case the samples were cut along the borders of cortical areas, identified by reference to a map of 

known areas, before the cortex was flattened. Samples were processed using the isotropic 

fractionator to determine the number of neurons in each. The method is discussed in detail 

elsewhere (Collins et al., 2010b) but, briefly, entails homogenizing the samples, creating an 

isotropic suspension of dissociated nuclei, staining the dissociated nuclei and then counting them 

either under a microscope or with a flow cytometer. The samples’ locations, weights, and (top) 

surface areas, as well as the number of neurons in each (for the galago and baboon only) were 

reported.  

To characterize the reported variation in the density of neurons and in the number of 

neurons per unit column across the cortical sheet, we fitted model surfaces (see Methods). Much 

of the variation in each dataset occurs as a super-linear trend along a single direction, which we 

will term the “principal axis” (see Figure 1.2 and Figure 1.3). To model that variation, we chose 

functions from a family whose members’ level sets are straight lines orthogonal to that principal 

axis – loosely speaking, the resulting surfaces are ramps, rising along the direction of the 

principal axis with increasing slope (see Figure 1.1). We used the same functional form to model 

neuron density in the galago, macaque and baboon (Figure 1.2D, E and F) and the number of 

neurons per unit column in the galago and baboon (Figure 1.3C and D). Typically, the principal 

axis was found to point in an anterior-lateral to posterior-medial direction on the cortical sheet.  
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Figure 1.4. Cortical Thickness. Sample average thickness of cortex as calculated by dividing the 

number of neurons per column by the density of neurons for each sample in the study by Collins 

et al. Cortical thickness is seen to, on average, be reduced in posterior regions. The surfaces (in C 

and D) and the curves (in E and F) were calculated by dividing our respective model functions 

for neurons per column by those for neuron density. The arrows in A and B indicate the 

orientation of the principal axes. 

 

For the galago and baboon, where both neuron density and number of neurons per unit 

column were available, the axes of variation of both those quantities were found to align to 

within a fraction of a degree (see Methods). Assuming a constant specific gravity of cortical 

tissue (Stephan et al., 1981), the collinear trends in the density and number of neurons in a unit 

column have consequences for cortical thickness along that same axis (Figure 1.4). Posterior 

cortex, despite having more neurons per unit column, is nevertheless thinner, on average, as a 
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result of increased neuron density (see Figure 1.5 for a schematic summary). Thus our analysis 

of the isotropic fractionator data reveals unambiguous trends capturing a large fraction of the 

variance in the neuron density and number of neurons per unit column in the isocortex. 

Consistent with MRI (Fischl, 2000) and stereological (Pakkenberg and Gundersen, 1997) studies 

of human cortical thickness, we find that average cortical thickness varies over a much lesser 

range (by approximately two-fold) than do the underlying density and number of neurons 

(approximately five-fold) – a fact which may explain why such striking gradients spanning the 

cortex have gone unnoted. 
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Figure 1.5. Schematic depiction of the neurogenesis timing gradient and balanced gradients in 

neuron density and number per unit column. In posterior regions neurogenesis continues for 

longer, resulting in a higher total number of neurons in each unit column.  Higher neuronal 

density in those regions means that the increased number of neurons does not result in greater 

cortical thickness. We also found that the average size of a neuron’s cell body in cortical layers II 

and III increases towards anterior regions. Larger neuron cell bodies are associated with longer 

axonal and/or dendritic processes. 

 

Are such gradients in neuron density and neurons per unit column common to the cortices 

of all primates or perhaps to a still larger phylogenetic group? To assess the generality of these 

features, we estimated neuron density in the isocortices of four New World monkeys (a golden-

handed tamarin, Saguinus midas; a northern owl monkey, Aotus azarae; a black howler monkey, 

Alouatta caraya; and a tufted capuchin, Cebus apella). Using light microscopy we examined 

serial sections along the anterior-posterior axis (see Methods). In all four species, neuron density 

increased in progressively more caudal regions (Figure 1.6A-D). Taken together, the results from 

seven primate species suggest that these systematic cortical variations in neuron density are 

general to the primate order. 
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Figure 1.6. (A-D) Stereological measurements of neuron density in four species of New World 

monkeys. Neuron density decreases toward the anterior. Linear regression confirms the high 

significance (p<0.002, one-tailed t-test) of the trend in A, B and C. For D, Cebus apella, 

(p=0.08). (E-F) Neuron soma size in cortical layers II and III. Soma size increases toward the 

anterior isocortex (in E, p=0.09;  F, p=0.0008; G, p=0.03, H, p=0.001 using a one-tailed t-test). 

 

We sought to better understand what variations in neural architecture underlie the 

observed differences in neuron density. The differences in density across cortical locations could 

be due to one or both of two factors. Firstly, the dosage of densely packed granule cells, 

particularly in isocortical layer IV, is known to vary across the cortex. Secondly, a varying 

amount of connectivity of pyramidal neurons, with their axonal and dendritic processes 
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occupying relatively more space as connectivity increases, could contribute to reduced neuron 

density. Here we present evidence of such increased connectivity. Since isocortical layers II and 

III together are both an important source and target of intracortical axonal projections, and 

because the volume and extent of a neuron’s processes can be a factor in determining the volume 

of its soma (e.g. Elston et al. (2009)), we measured the soma sizes of neurons found in layers II 

and III. In the four New World monkeys we examined sites distributed along the posterior-to-

anterior axis selected in the same manner as those for the stereological measurements of neuron 

density reported above (see Methods). Figure 1.6 (E to H) shows that neuronal soma size in 

isocortical layers II and III increases as neuron density decreases from the posterior to anterior in 

these cortices. In three of the four species examined, the global trend in soma size reaches 

significance (p<0.05, one sided t-test), but outliers are present in all cases. The noisy nature of 

the trend hints that local effects are also influencing soma size, e.g. axon length, cortical area and 

the effects experience (pruning or enlarging arbors) are all known to affect soma size. However, 

the global trends are consistent with the hypothesis that decreased neuron density in anterior 

regions is due, at least in part, to the greater amount of neuropil produced by increased 

intracortical connectivity. 

To characterize the cortical architecture as varying systematically seems at odds with the 

notion that areas assume their properties idiosyncratically, prompted by genetic markers, 

projections from subcortical structures (Finlay and Pallas, 1989) or other locally present cues. 

For example, Collins et al. noted that areas involved in sensory processing had higher neuron 

densities than some adjacent areas (Collins et al., 2010a). Identifying the data points which 

related to primary sensory areas in the baboon, we noted that neuron densities at such sites 
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typically lay above the model surface we had fitted (Figure 1.7). We used a two-factor model, 

incorporating each sample’s location and whether or not it was from a primary sensory area, to 

show that primary areas have a density of neurons which is 1.26 times higher than that predicted 

for a non-primary area in the same cortical location (an F-test confirms that the two-factor model 

is the better descriptor of the data; F=28.3, p<10-6, d.f.=(1,135), see Methods). Lower levels of 

neuron death during early development have been reported in putative sensory areas (Finlay and 

Slattery, 1983) relative to other areas and we suggest that this may contribute to the greater 

number of neurons per unit column in these regions. We offer this as an example of how local 

deviations are overlaid on the basic landscape set up by the global gradient in neuron number. 

We posit that the gradient itself is established by an isocortex-wide developmental pattern and 

acts in combination with more local mechanisms to develop the cortex’s richer structure.  

 

 

Figure 1.7. Highlighting primary sensory areas in baboon. Fitting all data points with a one-

factor model (as described in the text) yielded the black curve. A two-factor model (not 

illustrated, see text) suggests primary sensory areas (those highlighted here) have an expected 

density 1.26 times greater than would a non-primary area in the same location. 
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1.3 Discussion 

 

The global gradients in neuron density and number per unit column that we have described are 

matched with a prominent gradient of cortical neurogenesis that is conserved across species (see 

Figure 1.5 for a schematic summary). In every mammalian isocortex that has been studied, the 

non-cingulate isocortex is populated with neurons in an anterior-to-posterior progression, the 

progression being more pronounced in larger brains (Bayer and Altman, 1991; Kornack and 

Rakic, 1998; Miyama et al., 1997; Smart et al., 2002; Jackson et al., 1989; Luskin and Shatz, 

1985; Rakic, 2002). For primates particularly, despite beginning at approximately the same time 

in all regions, neurogenesis generally ends earlier in frontal cortical regions than in posterior 

cortex (by as much as 3 weeks for some frontal regions in macaque, but with exceptions such as 

area 46) (Rakic, 1974, 2002). A neurogenetic interval of progressively longer duration in 

progressively more posterior regions, allowing a greater number of cell division cycles, would 

account for the greater number of neurons per unit column in those regions (Kornack and Rakic, 

1998). Previously, it was suggested that in primates elevated levels of neurogenesis were specific 

to primary visual areas (Dehay and Kennedy, 2007). However, the location of the visual cortex, 

typically at the highest point on the density gradient, and the known reduction of cell death in 

primary sensory regions (Finlay and Slattery, 1983) may be sufficient to explain its high density 

of neurons. As to the lower density of neurons in anterior cortex, we offer the related 

developmental possibility that the earlier completion of neurogenesis in these regions may afford 

its neurons a head start and a lengthier interval to elaborate neuronal processes – it is known that 

isocortical neurons begin to establish their arbors from the earliest stages of cortical development 
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(Goldman-Rakic, 1987). That hypothesis is compatible with our finding of increased neuron 

soma size in cortical layers II and III, with studies showing enlarged pyramidal dendritic arbors 

in pre-frontal cortex (Elston et al., 2009), and with the approximately constant number of 

synapses per unit volume across adult visual, auditory and pre-frontal cortex (Huttenlocher and 

Dabholkar, 1997). Process development should be distinguished from synaptogenesis however, 

as synapse formation appears to occur approximately simultaneously across the primate cortical 

sheet (Rakic et al., 1986). 

Apart from aligning with a developmental axis, we point out that the cortical variations 

we have highlighted are also aligned with important functional and processing axes. The 

gradients have consequences for the makeup neural circuitry, implying a rostral-to-caudal shift in 

the ratio of space apportioned to neurons’ cell bodies versus their connective processes. So, it is 

of interest that higher stages of information processing and integration in the cortex occur at 

progressively more anterior locations. Higher visual areas and association areas integrating 

visual information are located anterior to the primary visual areas (Van Essen et al., 1992). The 

motor areas, which integrate somatosensory information in motor control, are located anterior to 

the primary areas receiving somatosensory input. However, such an alignment in the auditory 

processing areas is not so clearly evident (Kaas and Hackett, 2004). We note that the auditory 

areas differ from the other sensory areas in lacking a spatial topography and in occupying a much 

smaller proportion of the primate cortical surface. That small spatial extent means the global 

gradient in neuron number would imply little change in cellular architecture across these areas in 

any case. Network analysis of structural connectivity in the cortex also suggests an anterior-to-

posterior gradient whereby frontal regions have more integrative roles, evidenced by the 
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preponderance of network hubs being located in those regions (Modha and Singh, 2010). We 

conclude that the architectural gradients we have identified foster successively higher and more 

integrative stages of neural processing: as information is represented in successively higher (i.e. 

progressively anterior) areas, their reduced areal extents and lower numbers of neurons per unit 

column imply the dimensional reduction or other compression of that information. Considering 

the opposing direction, the gradients discussed here also align with established and hypothesized 

contra-flows of neural information issuing from frontal regions.  It has been shown that 

progressively anterior regions of prefrontal cortex execute “progressively abstract, higher 

control” of behavior (Badre, 2008). The control of attention has been shown to propagate 

backward through visual areas (Buffalo et al., 2010). Merker has hypothesized that a 

“countercurrent” from frontal regions provides more caudal regions a context to associate with 

sensory information (Merker, 2004). The so-called Bayesian brain hypothesis also posits an 

anterior to posterior flow of context-relevant predictions about future input, priming relevant 

representations and ultimately acting on lower sensory areas to guide perception (Bar, 2007).  

We wish to be clear that the cortex-wide gradient in cellular architecture we describe here 

does not preclude the presence of abrupt anatomical borders between cortical areas. Neither the 

data of Collins et al. nor the histology we report has a sampled the cortical surface at sufficient 

density to resolve, for example, the border between visual areas 17 and 18, which is readily 

visible in stained sectioned material from primates even at low magnification. Our hypothesis is 

that cellular architecture changes in an ordered progression at the isocortex-wide scale. 

Examining the cortex with suitable methods at a higher resolution would refine local features 

such as areal borders. Perhaps a useful analogy is that of a staircase: to discuss to the overall 
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slope or pitch of the staircase, a global measure, is not to deny the presence of discrete steps. 

Evidence for the modular, hierarchical genetic organization of the cortex at the intermediate 

scale of lobes and regions has been found by analysis of the cortical surface in twins (Chen et al., 

2012). 

The isotropic fractionator, being a high throughput method, is ideal for comparative 

studies examining large numbers of cortical loci. For example, the large number of samples 

examined by Collins et al. (N=141 in baboon) and the uniformity of their distribution in the 

cortical sheet stand in contrast to the sampling of just six sites (V1, S1, M1 and Brodmann areas 

7, 9, and 22) in an oft-cited report of the “basic uniformity” of cortical structure by Rockel et al. 

(1980). That report concluded the number of neurons per unit column is the same in all of non-

visual cortex and constant across five species (mouse, rat, cat, macaque and human). Rockel did 

find that the number of neurons in primary visual cortex in primates was elevated by a factor of 

2.5 over that in other cortical areas, and the data of Collins et al. support a comparable contrast 

between primary visual areas and some neighboring areas, but there the similarities end. Under-

sampling of the cortex by Rockel et al. may have contributed to their finding of constant neuron 

number, with just one of the six sites examined being in frontal cortex. Numerous previous 

studies have contradicted the conclusions of Rockel et al. regarding both within cortex variation 

and cross-species variation, e.g. Pakkenberg and Gundersen (1997), Beaulieu and Colonnier 

(1989), Cheung et al. (2007), Cheung et al. (2010) and several others discussed in Collins et al. 

(2010a), but the definitive contribution of Collins et al. surely provides closure on this matter.  

Despite the value of the isotropic fractionator as a comparative tool, it does have 

limitations. Firstly, it is unclear whether every neuronal nucleus present in the tissue samples 
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survives the dissociation step, is successfully stained and then detected at the counting step. 

However, any under-counting of nuclei would result in the same fractional error in the estimated 

neuronal density of each sample. Thus, while the absolute number of neurons might be under-

estimated, comparing estimates across samples is still useful. Secondly, the isotropic fractionator 

cannot tell apart different neuronal cell types, examine their morphology, nor identify the layers 

those neurons had occupied in the intact cortex. For that reason, traditional histology in sectioned 

material can usefully compliment results from fractionator studies by providing additional 

information at a subset of the cortical sites examined. For example, in sectioned material in the 

present study we identified those neurons in cortical layers II and III and estimated their soma 

size by tracing cell body outlines at high (60×) magnification. In future work, such methods will 

allow us to investigate in detail how each layer contributes to the gradient in neuron number and 

how neuron density varies within layers.  

In summary, we emphasize the empirical finding that two gradients - an increase in the 

density of neurons and an increase in the number of neurons per unit column - align on an axis 

from the frontal to occipital poles of the mature primate cortex. The gradients are balanced in the 

sense that their net effect is to produce a cortex whose thickness changes, by comparison, to a 

much lesser extent. Variation in the cellular architecture across cortical regions surely also 

implies a corresponding variation in the types of neural processing tasks that regions are most apt 

to support. Understanding the interaction of the global variations we have described with local 

features, such as the presence of genetic markers or subcortical sensory projections, will be 

central to understanding how cortical areas assume and execute their respective roles in neural 

processing. To conclude, we propose that the modularist’s vision of the embryonic isocortex as a 
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patchwork and the connectionist’s view of it as a blank computational canvas would be better 

replaced by the metaphor of a staircase, with position along the staircase having significance for 

the nature of the computation carried out there. The connectionist must acknowledge that not all 

steps are equal and the modularist must acknowledge their global trend. The entwined challenges 

of understanding the evolution, development, anatomy, function and pathologies of the isocortex 

will surely demand such integrative perspectives. 

 

 

1.4 Materials and Methods 

 

1.4.1 Species. This report includes analysis of previously published data (Collins et al., 2010a; 

Collins, 2011) relating to a baboon (Papio cynocephalus anubis), a rhesus macaque (Macaca 

mulatta) and a prosimian galago (Otolemur garnetti) collected using the isotropic fractionator 

method. We collected original data in sectioned tissue from four species of New World 

monkeys: one golden-handed tamarin (Saguinus midas), one northern owl monkey (Aotus 

trivirgatus), one black howler monkey (Alouatta caraya), and one tufted capuchin (Cebus 

apella). These samples came from previous studies conducted in this laboratory (Kaskan et al., 

2005; Chalfin et al., 2007). The animals had been bred or housed in the Centro Nacional de 

Primatas in Pará, Brazil. The sex, brain weight and specimen ID of these animals are listed Table 

1.  
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1.4.2. Ethics Statement. The original data in this report was collected from animals housed and 

treated in compliance with the principles defined in the National Institutes of Health Guide for 

the Care and Use of Laboratory Animals, as certified by Cornell University’s Institutional 

Animal Care and Use Committee as part of a larger study. 

 

1.4.3. Sample Preparation. For Saguinus midas, Aotus trivirgatus, Alouatta caraya and Cebus 

Apella, the animals were adapted to dark conditions for 30 minutes while a light anesthetic was 

administered by intramuscular injection (a 1:4 mixture of 2% xylazine hydrochloride and 5% 

ketamine hydrochloride). The same preparation was then used to deeply anesthetize the animals. 

They were perfused with a phosphate-buffered saline solution (PBS) with a pH of 7.2 prior to 

perfusion with 4% paraformaldehyde. The brains were removed and weighed. One to two weeks 

later, the brains were stored in a 2% paraformaldehyde solution. Prior to sectioning, the brains 

were placed in a 30% sucrose/PBS 0.1M preparation having a pH of 7.2. Coronal sections were 

made at 60µm using a freezing microtome. Every fifth or seventh section was kept, mounted on 

a gelatinized slide and stained with cresyl violet.  

 

1.4.4. Estimating neuron density and neuron soma size. Sections were examined using a Leitz 

Diaplan micropscope and a Neurolucida imaging system with a mechanical stage 

(Mircrobrightfield Inc., Colchester, VT). Coronal sections were selected, approximately equally 

spaced along the rostral-caudal axis, excluding the most caudal and rostral sections (Figure 1.6). 

The number of sections chosen for each species is given in Table 1. We did not correct for 

shrinkage of the sectioned material – the within-cortex comparisons we present are unaffected by 
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this. Cells with small and condensed somas were not included so as to exclude glial cells from 

the analysis. 

 

1.4.4a Site selection. In each section, we randomly selected two regions in the right or left (see 

Table 1) isocortical hemisphere within which to estimate neuron size and density. Within the 

randomly selected regions, we overlaid a grid on the magnified image to randomly select a 

column of cortex. At the selected location, the axes of a grid were aligned to be (respectively) 

tangential and normal to the cortical surface at that location. For the purpose of this description, 

we refer to the axis normal to the surface at each sampling site as a “sampling axis”.   

 

1.4.4b Neuron density estimates. We placed counting boxes measuring 41 µm × 41 µm at 50-

200 µm intervals along each selected sampling axis, beginning at layer I and until the boundary 

between layer VI and the white matter was reached (see Figure 1.8). We used the optical disector 

method (Williams et al., 2003) to estimate the number of neurons contained in each box’s 

volume.  The 60 µm sections were thick enough to employ a three-dimensional, 5 µm thick, 

guard zone, whereby neurons that lay on the three exclusion planes (x, y and z planes) were not 

counted. Details of how many counting boxes were used to calculate density along each 

sampling axis are given in Table 2. 

 

1.4.4c Neuron soma size estimates. We estimated neuron size in isocortical layers II/III. 

Beginning at the layer I/layer II interface and ending at the layer III/layer IV interface, we placed 

counting boxes measuring 41 µm × 41 µm at intervals of 100 µm along the sampling axis. 
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Within each box, once the focal plane was fixed we identified those neurons whose nuclei were 

clearly visible. This ensured only neurons were counted. Moreover, it ensured that our estimates 

of soma area were consistently made, using a cross-section of the neuron that contained the 

nucleus rather than an arbitrary cross-section. For the range and mean of the number of neurons 

selected per sampling axis see Table 3.  

 

 

Figure 1.8. Counting boxes for neuron density and neuron soma size estimates. As outlined  in 

the Methods section, and as illustrated here in a section from Aotus trivirgatus temporal 

isocortex, sampling axes (dashed line) were placed normal to the cortex’s outer surface at chosen 

sites in cortical sections. Along each sampling axis, counting boxes measuring 41 µm × 41 µm 

(red squares, drawn to scale) were placed, typically at 100 µm intervals, from the surface to the 
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white matter. Neuron density estimates were made within each counting box. In those counting 

boxes that lay in cortical layers II and III (indicated by the bracket), estimates of neuron soma 

size were also made. 

 

 

1.4.5. Mathematical and statistical methods.  

1.4.5a. Modeling neuron density and number per unit column. In samples cut from the 

flattened cortical sheet, Collins et al. recorded neuron density and the total number of neurons 

along with the top surface area and a tracing of each sample’s outline on the cortex prior to 

sectioning. We assigned Cartesian coordinates (x, y) to denote, in the two-dimensional plane of 

the flattened cortical sheet, approximately the centroid of each sample.  For both the neuron 

density and neurons per unit column measurements, we noted in species that (a) there was a 

super-linear trend in the data and (b) most of the variation in the data was in a roughly anterior-

lateral to posterior-medial direction. For these reasons, we chose to fit the following surface 

(with fitting parameters a, b, c, and d) to quantify the trend and to identify the principal axis of 

variation: )])1((exp[),( 2 yddxcbayxf  . This function grows as an exponential along 

one direction and is level along all lines parallel to the orthogonal direction. The direction of the 

principal axis of variation is given by the fitted parameter d via  )arccos(d . In each case, we 

fitted the surface to the data by minimizing the sum of the squared errors using the “FindFit” 

function in Mathematica (Version 7, Wolfram Research, Champaign, IL.). The fitted values of 

the parameters, as well as the coefficient of determination R2 for each case, are as in Table 4. The 

results of projecting the data on to the principal axes are shown in Figure 1.2, parts g, h and i, for 

neuron density and in Figure 1.3, parts c and d, for neurons per unit column. This provides visual 
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confirmation that one axis captures much of the variance. To validate that observation, in each 

case we projected the model’s residuals onto the orthogonal axis and carried out a linear 

regression to test for trends in the data. In no case was there a significant trend along the 

orthogonal axis (p>0.15 and R2<0.07 in all cases). 

 

1.4.5b Two-factor model for neuron density.  In the baboon neuron density dataset, we tagged 

each data point with a binary descriptor of whether or not it belongs to a primary sensory area 

(V1, S1 or A1). Collins et al. had identified the samples from such areas by viewing the flattened 

cortex on a light box, whereby myelin-dense sensory areas are opaque relative to the surrounding 

areas. Samples for which more than half of their surface area lay within a primary sensory area 

were tagged as belonging to that primary sensory area. We let qi denote the density of neurons as 

measured in the ith sample and let (xi,yi) be the sample’s location. We let si equal 1 if the ith 

sample belongs to a primary sensory area and let it equal 0 otherwise. We obtained our fit by 

adjusting the parameters a, b, c, d and e, to minimize the quantity   
i

iiii yxfqse 2),()1(  

with )])1((exp[),( 2 yddxcbayxf  , as in the location-only model described above. 

This minimization amounts to carrying out a least squares fit of the location-only model with the 

added parameter e now discounting the densities of primary sensory areas. Loosely speaking, the 

discount term e quantifies by what fraction the density of primary sensory areas would need to be 

reduced to fall “in line” with their non-primary sensory neighbors. The result of fitting the two-

factor model (using the “NMinimize” function in Mathematica) is shown in Table 5. The 

coefficient of determination, R2=0.84, is seen to be higher than in the location-only model 
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(R2=0.81). We note that the location-only model is nested within the extended model (to see this, 

take 0e ), and so an F-test can be used to confirm the high significance of the improvement in 

the value of R2 (F=28.3, p<10-6, d.f.=(1,135)). The value of e=0.206 yielded by the fitting 

procedure can be interpreted as primary sensory area having a density which is 1/(1-e)≈1.26 

times greater than would be predicted in this model for a non-primary sensory area at the same 

location. 

 

Acknowledgements  

This work was supported by National Science Foundation/Conselho Nacional de 

Desenvolvimento Cientifico e Tecnologico grant 910149/96-99 to Luiz Carlos de Lima Silveira 

and B.L.F., NSF grant number IBN-0138113 to B.L.F., an Eunice Kennedy Shriver National 

Institute of Child Health and Human Development fellowship No. F32HD067011 to C.J.C., and 

support from the G. Harold and Leila Y. Mathers Foundation to C.E.C. and Jon H. Kaas. D.J.C. 

was supported by a National University of Ireland Traveling Studentship and NSF grant CCF-

0835706 to Steven Strogatz. The content is solely the responsibility of the authors and does not 

necessarily represent the official views of any supporting agency. 

We thank Christine Collins for helpful discussions and for comments on this manuscript, 

Nicole Young for collecting quantitative data for the baboon cortex, Richard Darlington for 

statistical consultation, Luiz Carlos de Lima Silveira for sponsorship of the New World Monkey 

study in which the sectioned material was collected, Peter Kaskan for brain histology, Veit Elser 

for helpful discussions. We thank three anonymous reviewers for their comments and helpful 

suggestions. 



   
 
 
 

   31 
 
 

Appendix 1A 

 

SUPPLEMENTARY INFORMATION FOR 

CHAPTER 1: SYSTEMATIC, BALANCING GRADIENTS IN NEURON DENSITY AND 

NUMBER ACROSS THE PRIMATE ISOCORTEX 

 
 

Species Saguinus 
midas 

Aotus 
trivirgatus 

Alouatta 
caraya 

Cebus 
apella 

Specimen ID SM 970108B AT 980115A AC 970111A CA 970913 

Sex F F M M 

Brain weight (g) 9.09 14 54.3 62 

Hemisphere examined Right Left Left Right 

Magnification 60× 60×/40× 40× 60× 
Section thickness (µm) 60 60 60 60 

Section thickness, shrunken (µm) 28 25 28 28.1 

Number of sections examined 5 8 7 6 

Guard zone (µm) 5 5 5 5 

 
Table 1A.1. Species data for New World monkeys specimens used in stereological measurement 
of neuron density and layer II and III soma size. 
 

 
 

Species Saguinus 
midas 

Aotus 
trivirgatus 

Alouatta 
caraya 

Cebus 
apella 

Mean number of locations sampled per column 17.4 16.1 18.8 20.1 

Min.  number of locations sampled per column 6 8 10 8 

Max. number of locations sampled per column 27 27 32 45 

 
Table 1A.2. Numbers of sites along a sampling axis at which counts were made to determine 

neuron density. 
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Species Saguinus 
midas 

Aotus 
trivirgatus 

Alouatta 
caraya 

Cebus 
apella 

Mean number of neurons selected per column 13.8 15.1 9.8 14.6 

Min.  number of neurons selected per column 6 9 6 8 

Max. number of neurons selected per column 19 25 13 26 

 
Table 1A.3. Numbers of layer II and III neurons measured along a sampling axis to estimate 

soma size.  

 
 

 
Species Measurement N a b c d  R2 

Otolemur g. Neurons per column 35 5.41×104 12.5 -0.476 0.989 8.6˚ 0.81
 Neuron density 35 3.33×104 12.7 -0.613 0.989 8.4˚ 0.92
Papio c. a. Neurons per column 141 3.16×104 12.0 0.118 -0.858 -30.9˚ 0.68
 Neuron density 141 1.98×104 11.1 0.225 -0.854 -31.3˚ 0.81
Macaca m. Neuron density 41 2.21×104 11.6 0.155 -0.839 -32.9˚ 0.81

 
Table 1A.4. Parameters for curve-fitting of neuron density and neurons per unit column. N is the 

number of points in each data set. R2 is the coefficient of determination for each fit.  

 
 

 
Species Measurement Np Nnp a b c d e  R2 

Papio c. a. Neuron density 25 116 1.19×104 11.0 0.158 -0.846 0.206 -32.2˚ 0.84

 
Table 1A.5. Parameters for fitting our two-factor model for baboon neuron density. In this model 
we discount the recorded density at primary sensory areas by a factor of (1-e). Np is the number 
of data points from primary sensory areas and Nnp is the number of data points from non-primary 
areas. R2 is the coefficient of determination. 
 



   
 
 
 

   33 
 
 

CHAPTER 2 
 

A COMPUTATIONAL, EVOLUTIONARY-DEVELOPMENTAL MODEL LINKING CROSS-

SPECIES AND INTRA-CORTEX VARIATION IN ISOCORTICAL NEURON NUMBER IN 

MAMMALS 

 

Abstract 

A massive increase in the number of isocortical neurons, driving the size of the isocortex to 

increase by 5 orders of magnitude, is a key feature of mammalian evolution. Not only are there 

systematic variations in the isocortical architecture across species, but also across spatial axes 

within a given isocortex. In this report we present a computational model that accounts for both 

types of variation as arising from the same developmental mechanism. The Ordinary Differential 

Equation model presented demonstrates that changes to the kinetics of neurogenesis (specifically 

to the cell cycle rate, the cell death rate and the “quit rate”, i.e. the fraction of cell divisions 

which are terminal) are sufficient to explain the great diversity in the number of cortical neurons 

across mammals. Moreover, spatio-temporal gradients in those same parameters in the 

embryonic cortex, such as have been recorded in several species, can account for cortex-wide, 

graded variations in the mature neural architecture. Consistent with emerging anatomical data in 

several species, the model predicts (i) a greater complement of neurons per cortical column in the 

later-developing, posterior regions of intermediate and large cortices, (ii) that the extent of 

variation across a cortex increases with cortex size, reaching five-fold or greater in primates,  and 

(iii) that when the number of neurons per cortical column increases, whether across species or 
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within a given cortex, it is the later-developing superficial layers of the cortex which 

accommodate those additional neurons. We posit that these graded features of the cortex have a 

functional (computational) significance and so must be subject to evolutionary selection.  

 

 

2.1 Introduction 

 
By considering the patterns of brain variation from present day sharks and rays to today’s 

mammals including primates, we can infer the trajectory of brain evolution over a period of 

approximately 450 million years in the vertebrate lineage. Changes in brain structure follow a 

remarkably stable pattern: it is always the same brain parts that have become enlarged when 

overall brain size increases (Yopak et al., 2010). In particular, the cortex (or its forebrain 

homologue) is preferentially enlarged whenever brains become large. Moreover, in studies of 

individual variation in humans, minks, pigs, and mice, when overall brain size is larger, those 

same divisions as would be predicted by looking at brain enlargement across taxa are found to be 

preferentially enlarged (Finlay et al., 2011; Charvet et al., 2013). That is despite the range of 

variation between individuals being orders of magnitude less than that across taxa. Such 

regularities in brain scaling suggest that the developmental mechanisms which generate central 

nervous systems are strongly conserved across species (Finlay and Darlington, 1995).  

To tease apart the features of the isocortex contributed by the scaling of conserved 

developmental mechanisms from those features which might be specially selected for in a given 

niche or species, we have created a formal, quantitative model of cortical neurogenesis. The 
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model elucidates how the dials and levers made available by conserved developmental 

mechanisms allow selection to shape the basic landscape of the embryonic cortex. The extent to 

which any particular cortical area (e.g. a visual or language area) has been a special subject of 

selection can then be better evaluated given the baselines provided by this evolutionary 

developmental or “evo-devo” model.  

For decades, the developmental mechanisms which generate the mammalian cerebral 

cortex have been the subject of extensive investigations and competing theories, e.g. “protomap” 

(Rakic, 1988) versus “protocortex” (O’Leary, 1989). More recently, investigators have cataloged  

developmental and adult gene expression across the cortex in multiple species. Some of that data 

sits well with existing theories but more comprehensive mechanistic models are needed to 

interpret much of it (Kang et al., 2011; Hawrylycz et al., 2012). What has become clear is that 

rather than there being a singular, definitive mechanism to coordinate the structure and layout of 

the cortex, many mechanisms and sources contribute order throughout development (Dehay and 

Kennedy, 2007; Sansom and Livesey, 2009; Yamamori, 2011). Early polarization and 

regionalization of the cortex is directed by morphogens issuing from signaling centers in the 

cortical primordium (Fukuchi-Shimogori and Grove, 2001a). Spatial gradients in the kinetics of 

neurogenesis change the extent and timing of neuronal production from location to location 

(Rakic, 1974b, 2002a; Bayer and Altman, 1991). Molecular signals guide axons of the various 

sensory modalities to enter the growing cortex at particular locations (Finlay and Pallas, 1989). 

The axons of those projections are kept in topological register and that orders the various 

topographic maps in the cortex. The structure of correlations in sensory information flowing 

through those same projections further refines the adult cortical architecture (Johnson and 
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Vecera, 1996). As we unravel how this complex ontogeny is orchestrated by the genome, formal 

models for developmental mechanisms will be pivotal in synthesizing data on developmental 

gene expression patterns (Lewis, 2008).  

The mechanics of mammalian cortical neurogenesis are patently adaptable: changes in 

duration and kinetics result in the production of five orders of magnitude more neurons in the 

largest cortices compared to the smallest. What developmental parameters must change to 

accommodate the much greater number of neurons required to populate larger cortices? Several 

computational models have been proposed which reconcile the limited empirical data available 

on the kinetics of the cortical neurogenesis with aspects of the mature distribution of cortical 

neurons (Kornack and Rakic, 1998; Caviness et al., 2003; Gohlke et al., 2007). Most published 

models focus on a single species but some comparative studies address a few species. We have 

developed a model to investigate the key parameters contributing to the variations in neural 

architecture observed not only across the mammalian order but also across the cortical surface of 

a given species. The model is purposefully simplistic, so as to make it’s mechanics transparent: it 

tracks two populations, namely the precursor pool and the neuronal progeny of those precursors, 

as the size of each changes during neurogenesis. Studies have suggested that separate 

compartments within the embryonic ventricular region are respectively responsible for producing 

the deep and superficial layer neurons of the cortex (for a review, see Dehay and Kennedy 

(2007)). For simplicity, we model the ventricular region as a homogeneous source of neurons, 

their layer assignment being dependent on their time of production. Also not included in our 

model are the inhibitory neurons which migrate (tangentially) into the embryonic cortex from the 

ganglionic eminence and contribute a small part of the total population of cortical neurons. 



   
 
 
 

   37 
 
 

Given a unit founder population of precursors, the model predicts the time course of neuronal 

output at a ventricular zone location in terms of amplification of the unit founder population.  

Parameters in the model which change over the time course of neurogenesis include the quit 

fraction (the instantaneous probability that the product of a cell divisions is a neuron and will not 

undergo further rounds of cell division), the cell-cycle duration and the probability that either of 

the two cells resulting from a division die.  

Empirical data to inform the model’s inputs and to test its predictions against measured 

numbers of neurons, postnatally or in adulthood, are in short supply. Estimates of the number of 

precursor cells, of the adult distribution of cortical neurons and for the kinetic parameters (cell 

cycle rates, death rates and the quit fraction) have been published for only a handful of 

mammalian species. We collate what information is to hand in order to estimate targets for 

precursor amplification and adult layer distribution of neurons across the range of mammalian 

brain sizes from small rodents to primates. For the kinetic parameters, we use what published 

data is available to inform initial guesses of these parameters. Then, for each cortex size, we 

search over many candidate sets of the parameters to find those producing the best match to the 

targets for amplification and layer assignment of neurons.  

Our model explains recently demonstrated global gradients (reaching up to 5-fold 

variation, but also subject to local, areal deviations) in the number of neurons per column across 

the anterior to posterior axis of primate cortices (Cahalane et al., 2012; Collins et al., 2010a) as 

arising from intra-cortical gradients in the kinetics of neurogenesis which are known to exist in 

rodents, carnivores and primates (Luskin and Shatz, 1985; Jackson et al., 1989; Bayer and 

Altman, 1991; Miyama et al., 1997; Kornack and Rakic, 1998; Rakic, 2002a; Smart et al., 2002). 
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The model produces the empirically testable hypotheses that (i) rodent brains exhibit a much 

lesser gradient in neuron number per column and (ii) mammalian cortices of intermediate size 

(e.g. in cat or ferret) exhibit an intermediate gradient of approximately 2-fold variation. 

Accompanying the spatial gradient in neuron number, the proportion of neurons populating the 

upper versus lower layers of the cortex is predicted to shift, preferentially swelling upper layers 

as neuron number per column increases.  

 

2.1.1 Overview of Cortical Neurogenesis The following is an abridged overview of the basic 

processes by which cortical neurons are produced and assigned to a particular layer of the cortex. 

A founding population of precursor cells in ventricular zones near the wall of the cerebral 

vesicles initially undergoes rounds of symmetric division, whereby both daughter cells are 

precursors, thus swelling the precursor pool. Neurogenesis begins when some divisions in the 

precursor pool become asymmetric: with some probability a daughter cell is now a differentiated 

neuron which will not undergo further rounds of cell division and will migrate out of the 

ventricular zone towards the developing layers of the cortex. We refer to the probability of a 

daughter cell being a neuron as the “quit fraction”. As long as the quit fraction remains close to 

zero, the precursor population increases approximately exponentially. As neurogenesis proceeds, 

the quit fraction becomes larger. The precursor population peaks exactly when the quit fraction is 

one half: now, in expectation, every precursor that undergoes cell division produces one 

precursor and one neuron, thus the growth phase of the precursor pool has ended. Eventually the 

majority of the cells produced are neurons and the precursor pool becomes further depleted with 

each round of divisions. Young neurons migrate out of the ventricular zone to populate the 
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developing layers of the cortex in an “inside-out” manner (Rakic, 2002a). It has been established 

that the neurons of the deep cortical layers (VI and V) are produced first. Neurons destined for 

the progressively more superficial layers (VI through II) subsequently migrate through the 

already-present layers. These events take place over approximately 8 days in rat and 60 days in 

the rhesus macaque (Kornack and Rakic, 1995). 

 

 

2.2 Methods  

 

2.2.1 Modeling the Neuronal Output of the Ventricular Zone. A system of two ordinary 

differential equations (ODEs) models the dynamics of precursor cell replication and neuron 

production in the ventricular zone. Denoting the number of precursor cells present at time t by 

P(t) and the number of differentiated neurons present by N(t), the following differential 

equations prescribe how those populations change in time during neurogenesis: 
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where c(t) is the cell-cycle duration, d(t) is the independent probability that each daughter cell 

dies after a cell division, and q(t) is the probability that a daughter cell is a differentiated neuron 

which quits the precursor pool and does not undergo further rounds of cell division. To interpret 

the equations, note that if d and q were equal to zero, the precursor pool would undergo 
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exponential growth, doubling in number at a rate inversely proportional to the cell cycle duration 

c(t). Allowing d(t) to be non-zero accounts for the probability of cells dying after a division, thus 

reducing the overall growth rate. As the quit fraction becomes non-zero, this accounts for that 

fraction of daughter cells which does not die but leaves the precursor pool. It is precisely those 

quitting cells which swell the neuronal population and so that same “non-dead, quitting” quantity 

subtracted from the equation for precursors also appears as the positive contribution in the 

equation for the neuronal population. As no neurons are present at the start of neurogenesis, the 

initial number of neurons, N(0), is equal to zero. So that the final output can be interpreted as the 

“amplification factor” of the initial precursor population, the initial precursor population is 

written as P(0)=1. This description of a “unit” precursor population is made possible by the fact 

that the output of the model is linear with respect to the initial precursor population. Hence, the 

amplification factor is determined in the model by the time course of the kinetic parameters, c(t), 

d(t), and q(t).  

 

2.2.2 A Universal Time Axis for Neurogenesis. Researchers have shown not only that the order 

of neurodevelopmental events is strictly conserved across mammals, but also that the timing of 

events can be predicted with high precision across species (Clancy et al., 2001; Finlay and 

Darlington, 1995). The mathematical form of the “translating time” model allows the scaling of 

early developmental intervals across mammals in a linear fashion. The developmental interval of 

interest in the present study is that between the onset and the completion of isocortical 

neurogenesis. The neurogenetic interval of any mammal can be stretched to lie between zero and 

one on a universal time axis (see Supplementary Figure 2A.1). In terms of our model, this 
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corresponds to the time in development between the moment when the quit fraction q(t) first 

becomes non-zero (which we call t=0 on the universal time axis) and when q(t)=1, signaling that 

all divisions will be terminal and thus ending neurogenesis (at what we will call t=1). Differences 

in the length of neurodevelopmental schedules across species are reflected in the translating time 

formalism in the “species scores”. For the purposes of this study, those scores provide a 

convenient axis on which to line up brains, the larger brains generally having higher species 

scores due to their longer developmental interval.  

As the present study focuses on the cortex, a slight modification of the species score is 

used, which we will term the “cortex score” and denote sc. Neurodevelopmental events relating 

to the generation of the cortex in the primate order occur later in the developmental interval than 

might be predicted by looking at timing in other mammalian orders. Within the translating time 

model, a primate-cortex factor is included to model such events. The cortex score used here is 

simply the species score in the case of non-primates and for primates a primate-cortex correction 

is added (a difference of 0.21722, (Clancy et al., 2001)). For those species where a species score 

was not available in the literature, adult brain weight is used as an ad hoc proxy to estimate the 

species score and the primate-cortex correction is added as appropriate (see Supplementary 

Information in Appendix 2A).  

 

2.2.3 Modeling the Layer Assignment of Cortical Neurons. It is well established that the time 

of a neuron’s production during neurogenesis predicts in which of the cortex’s layers it will 

assume its adult location. Developmental cell-labeling studies in rat (Bayer and Altman, 1991) 

and monkey (Rakic, 1982) have illustrated on which days the neurons destined for each layer of 
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the cortex are produced. Data from the cell-labeling studies is employed to parameterize a 

function which assigns the neuronal output of the ODE model either to lowers (layers V and VI) 

or upper (layers II-IV) according to the time of production. Although the model could 

accommodate further separating the output into any number of layers, sufficient empirical data to 

test such model predictions are not currently available. At a given time t in the neurogenetic 

interval for a cortex score of sc, the fraction u(t; sc) of total neuronal output is routed to the upper 

layers, and 1-u(t; sc) to the lower layers, where u(t; sc) is a sigmoid-shaped function given by 
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The parameter tswitch determines the time at which u(t; sc) =0.5 and w determines the width of the 

sigmoid’s cross-over (see Supplementary Figures 2A.3 and  2A.4). For a given cortex score, 

empirical data from rat and monkey are used to estimate the parameter tswitch, while the parameter 

w is fixed at 10.3% of length of the neurogenetic interval as that is the mean value measured in 

both rat and in monkey (see Supplementary Information §2A.3). Based on the rat and monkey 

empirical data and assuming a linear relationship between cortex score sc and tswitch, it is 

estimated that tswitch (sc)=0.675-0.114sc. 

 

2.2.4 Estimating the amount of Neuronal Amplifications and the Adult Layer Distributions 

of Neurons.  
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Figure 2.1. Estimates for the founder population (dashed line) and total neuronal output of the 

ventricular zone (solid line) as a function of cortex score sc. The solid symbols represent adult 

cortical neuron counts in rodents (blue disks) and primates (red squares), each multiplied by a 

factor of 1.5 to allow for the large fraction of neurons that dies after reaching the cortex. The 

open symbols represent empirical counts of cells in the precursor pools of rodents (blue circles), 

carnivores (green triangles) and a sheep (orange diamond). The ratio of the two fitted functions 

gives an estimate for the amplification factor for a given cortex score. See Supplementary Tables 

2A.1 and 2A.2 for data and sources. 

 

To establish by what factor the precursor pool ought to be amplified for a given cortex score, and 

in what proportion neurons produced should be allotted to the upper and lower layers, data from 

the literature were collated and stereological measurements were carried out in this laboratory to 

asses adult neuron numbers, neuron layer distribution, and precursor population sizes (see 

Supplementary Tables 2A.1, 2A.2 and 2A.3). To allow for the substantive fraction neurons that 

dies after reaching the cortex, the adult neuron population numbers are multiplied by a factor of 

1.5 to estimate the total output of cortical neurogenesis (Burek and Oppenheim, 1996; 

Underwood, 2013).  Functions relating both total output and precursor pool populations to cortex 
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score sc (see Figure 2.1) were fitted to data and their ratio used to estimate the amplification 

factor a as a function of cortex score, obtaining a(sc)=exp(2.81-1.254sc+1.256sc
 2). 

 

 

Figure 2.2.To estimate the proportion of neurons whose adult location is in the upper layers (II-

IV) versus lower layers (V and VI) of the cortex, a linear regression of the proportion as assessed 

in six rodents (blue disks), three carnivores (green triangles) and five primates (red squares) 

against cortex score sc is carried out. For species and sources, see Supplementary Table 2A.3. 

 

Figure 2.2 displays a fit of the adult layer distribution of neurons versus cortex score. Although 

there is a significant trend of increased proportions of neurons in upper layers with increasing 

cortex score (p<0.02), this accounts for only a modest fraction of the variance in the data 

(R2=0.41). On inspection, the data suggest the relationship of layer proportion to cortex score 

might be also be a function of the species’ order, with rodents, carnivores, primates et cetera 

adopting different patterns of layer scaling – a possible extension of the model would distinguish 
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between taxa and not make the approximation that cortical architecture is a function of cortex 

score, or cortex size, alone. 

 

2.2.5 Assimilating Empirical Data for Kinetic Parameters 

Despite there being many qualitative accounts of the mechanics cortical neurogenesis in the 

literature, there have been few quantitative studies of the parameters governing the kinetics of 

the process. In that context, it not possible to supply the mathematical model, whose behavior is 

designed to mimic empirical qualitative observations, with the necessary kinetic parameters 

across the range of species based on what data are available in the literature alone. To address 

this shortfall, what data are available are used to generate initial estimates of the parameters 

determining the shape of functions modeling the quit fraction q(t), the cell cycle duration c(t) and 

the cell death rate d(t) for each value of the cortex score (i.e. across the range of cortex sizes). 

Given the initial estimate for each parameter, a range of neighboring values is considered. The 

final choice of the parameter set for a given species contains those parameters for which the 

model produces the best results in terms of matching the target population of neurons in the 

upper and lower layers, and having a precursor pool which is depleted at the end of neurogenesis.  

The progression of the quit fraction is modeled as a modified sigmoid q(t;,), 

constrained to have q(0)=0 and q(1)=1. The width of the sigmoid’s crossover is controlled by the 

parameter  and the midpoint of the crossover is reached at time t= (see Supplementary 

Information §2A.6 for details). Initial estimates for  and  are established for all cortex scores 

based on empirical data on the progression of the quit fraction in mouse as no data are available 

for other species (Takahashi et al., 1996) (see Supplementary Figure 2A.5).  
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The cell cycle duration, expressed as a fraction of the duration of neurogenesis, is 

modeled as changing linearly in time over the developmental interval as 

ttctc )(),;()(   . Fitting a line to the initial cell cycle durations (i.e. those at the 

beginning of neurogenesis) for mouse, rat and macaque provides an estimate for  as a function 

of cortex score, and similarly  is estimated using data on the cell cycle duration at the end of 

neurogenesis for mouse, rat, ferret and macaque (Takahashi et al., 1995; Miller and Kuhn, 1995; 

Reillo and Borrell, 2012; Kornack and Rakic, 1998; Lukaszewicz et al., 2005) (see 

Supplementary Information §2A.6).  

The progression of the cell death rate is modelled as linearly increasing over the time 

interval as ttdtd   ),;()( . To our knowledge, measurements of the cell death rate are 

available only in rat (Thomaidou et al., 1997). Those data inform the estimates =0.1 (the value 

at t=0) and =0.15 (resulting in d(1)=0.35), and it is assumed, in the absence of other data, that 

these values apply across the range of cortex scores. 

The final parameter introduced relates to the layer assignment function, u(t; sc). The 

parameter fitting algorithm is allowed to move the layer assignment function back or forward 

slightly on the time axis via the parameter . In this manner, any misalignment between the 

empirically informed u(t; sc) and the end-points of the model’s time axis can be amended.  

2.2.6 Finding the Best Fit for Kinetic Parameters. For a given candidate set of parameter 

values  iiiiiiiim  ,,,,,, ,  the ODE’s for the corresponding Pi(t) and Ni(t) are solved 

numerically using an implementation of the Runge-Kutta 4th order method in the c++ computer 

language. The parameter values which investigated for each species score are given in 
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Supplementary Table 2A.4. The resultant upper and lower layer components of the neuronal 

output, labeled Ui and Li, respectively, are calculated from Ni(t) as follow  

 
1

0

1

0
))(1)((;))()(( dttutNLdttutNU iiiiii  . 

To evaluate how well Ui, Li and Pi(1), as arising from the choice of parameters mi, match the 

target values for the given cortex score, the “error” 

TiTiii LLUUPE  )1(  

is calculated. Here UT and LT are the upper and lower layer neuronal output targets for the given 

species (as in Figure 2.1) and Pi(1) ought to be zero if the precursor pool has been successfully 

depleted at the end of neurogenesis. The particular set of parameters mi which minimizes Ei for a 

given cortex score is denoted  ******** ,,,,,, m . We label the corresponding upper 

and lower layer neuronal output as U and L, respectively. Checking 5×105 parameter sets takes 

approximately one minute on a desktop computer.  

 

2.2.7 Modeling the Effects of Spatial Gradients in Neurogenesis. Neurogenesis is known to 

end earlier in the anterior cortex and relatively later in the posterior cortex of several species 

including mouse (Smart, 1983; Miyama et al., 1997), rat (Bayer and Altman, 1991), ferret 

(Jackson et al., 1989), cat (Luskin and Shatz, 1985) and monkey (Smart et al., 2002). We 

extended the model outlined above to examine the effects on neuronal output of those known 

spatial gradients in the progress of neurogenesis across the surface of the embryonic cortex. 

Viewing the parameters m identified above as applying to the “average” location in cortex, the 

effects of progressing the corresponding parameter functions, from their starting values through 
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to their end values, more quickly in anterior cortex and more slowly in posterior cortex may be 

examined. The mathematical formulation for how time in the parameter functions is scaled 

according spatial position x in the model cortex is given in the Supplementary Information 

(§2A.8). At position x=0.5 the functions are unaffected by the scaling (this is the “average 

cortical location”), while at x=0 the scaled time variable t̂  is given by  1
ˆ tt  and at x=1 by 

 1
ˆ tt . To reflect the extent of empirical anterior-posterior time differences, the value 

of=10% is chosen. Solving a separate pair of differential equations for each spatially indexed 

Px(t) and Nx(t) produces outputs Ux and Lx.  

 

 

2.3 Results 

 

The model presented in this report can account for the massive increase over mammalian 

evolution in the number of cortical neurons as arising from biologically plausible, continuous 

changes to the kinetic parameters of a developmental mechanism which is conserved across 

species. Moreover, the initial cortical precursor population is not required to change significantly 

across species to support the change of approximately five orders of magnitude in the size of the 

adult cortical neuronal population. The increase in total adult number of cortical neurons is 

predicted to have a concomitant increase in the proportion of those neurons which occupy the 

upper layers (II-IV) of the cerebral cortex. 
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Intra-cortical variations in neural architecture are predicted by modeling the spatial 

differences in the kinetics of neurogenesis which are known to be present across the embryonic 

cortex. Across the range of brain sizes, the model predicts that cortices of larger sizes will have a 

gradient of increasing slope in the number of neurons per cortical column (Figure 2.4). In all 

cases, the gradient rises from the less neuron-dense anterior cortex along an axis towards the 

denser posterior cortex.  

 

2.3.1 Cross-species Increases in Neuron Number and Upper Layer Proportion. We have 

identified coordinate changes to the progression of the quit fraction q(t), the cell cycle duration 

c(t) and the cell death rate d(t) which can account, to high accuracy, for the changes seen in 

upper and lower cortical neuron numbers across the range of mammalian cortex sizes. The 

accuracy with which the empirical targets for those neuron numbers are reproduced is within 4% 

of the target values in all cases and within less than 1% for intermediate and larger cortices, as 

shown in Figure 2.3. Our search scheme does not exhaust the space of biologically plausible 

parameters, so it may be assumed that higher accuracy is possible. However, the current absence 

of empirical data with which to compare such predictions, along with the approximate nature of 

the targets, means the pursuit of higher accuracy predictions is of uncertain value at this time. 

For example, future anatomical data may support the suggestion that the layer proportion of 

neurons varies by taxonomic group and not only by cortex size. In that eventuality, the model’s 

targets ought to also reflect group differences in upper and lower neuron number, and this would 

necessarily change the best fit parameters for the species in question.  
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Figure 2.3. Accuracy of model output for a range of cortex scores. The solid line joins points 

indicating the error E of the best fitting parameter set m found for each cortex score examined. 

In each case, the best 50 parameter sets mi had an error less than that indicated by the dashed 

line. 

  

 The parameter sets which can reproduce target neuron numbers for a given cortex score 

to high accuracy are not unique (see Supplementary Figure 2A.7). For each cortex score, circa 

5×105 parameter sets were examined and in each case 50 parameter sets had an accuracy better 

than that depicted by the dashed line in Figure 2.3. Evidently, compensating changes to the 

various parameters can result in similar neuronal output. Future empirical observations will help 

to constrain the search space, revealing some parameter sets as implausible and thus refining the 

model’s predictions concerning those parameters which remain unobserved.  
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Figure 2.4. Model-predicted inter-species and intra-cortex differences in the timing, extent and 

layer assignment of cortical neuron output. Shown here are the predicted amounts of neuronal 

output (in terms of amplification of a unit precursor pool) across the anterior-posterior (spatial) 

axis of the cortex over the course of embryonic neurogenesis (time axis) for three different 

cortex scores (1.0, similar to a rat; 1.75, similar to a ferret; 2.5 similar to a macaque monkey). 

The larger cortices have a longer developmental interval, produce orders of magnitude more 

neurons in total and, in particular, have a greater complement of upper layer neurons. The 

anterior-posterior gradient in neuron number becomes more pronounced in larger cortices and it 

is the upper layers which accommodate the greater proportion of the increasing quantities of 

neurons. Species photo credit: Wikimedia Commons.  

 

 

2.3.2 Intra-cortex Increases in Neuron Number and Upper Layer Proportion. Neurogenesis 

is known to progress at location-dependent rates, varying across the embryonic cortices of 

rodents, carnivores and primates (Luskin and Shatz, 1985; Jackson et al., 1989; Bayer and 
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Altman, 1991; Miyama et al., 1997; Kornack and Rakic, 1998; Rakic, 2002a; Smart et al., 2002), 

whereby the non-cingulate isocortex is populated with neurons in an anterior to posterior 

progression. Modeling the effect of such spatial gradients in developmental timing (by adjusting 

the progression of the parameters in neurogenesis, as described in the Methods section), the 

predicted outcome is an anterior to posterior gradient in the number of neurons per column. The 

extent of the gradient in neuron numbers, reaching up to five-fold in large primate cortices, is 

consistent with known anatomical gradients in primate neuron number (Cahalane et al., 2012; 

Collins et al., 2010a). The model predicts an accompanying shift in the layer proportion of 

neurons, favoring upper layers in the later-developing posterior cortex. Stereological 

measurements of upper and lower neuron numbers carried out in the Finlay laboratory confirm 

that the increased complement of neurons per column in the posterior of primate cortices is 

largely contained in the upper layers; the absolute numbers of neurons per column in layers V 

and VI vary relatively little across the cortex. 

 To understand the mechanics of how changes to the timing of neurogenesis across an 

embryonic cortex can affect neuronal output, we modeled the effect of delaying the rise of the 

quit fraction by 30% in a cortex of intermediate size (cortex score of 2.25) (see Figure 2.5). The 

moderate adjustment to q(t) results in a disproportionate, 4-fold boost in the neuronal output. 

Moreover, the shift in the average time at which those are produced is also relevant, later born 

neurons having a greater chance of adopting an upper layer fate.  
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Figure 2.5. Modeling the effect on neuronal output of delaying the progression of the quit 

fraction q(t) (top panel) by approximately 30% (the red curves are delayed relative to yellow 

curves) in a cortex of intermediate size. The precursor pool (middle panel) stays in a state of 

near-exponential growth for longer, peaking later and larger, resulting in the production of 

approximately 4-fold more neurons (bottom panel), the bulk of which are born relatively late.  

 

2.3.3 Cross-species Differences in the Extent of Intra-cortical Variation. Across species, the 

model predicts that larger cortices will have a far more pronounced anterior-posterior gradient in 

neuron number and layer proportion: varying by five-fold in large primates and by just a few 

percent in small rodents. The longer period of gestation in primates makes the difference in 

neurogenesis end-dates more notable in those species than in rodents. In the macaque monkey, 

despite beginning at approximately the same developmental time in all regions, neurogenesis 

ends as many as three weeks later in posterior cortex – an intra-cortex difference of more than 
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30% in the length of the interval (Rakic, 2002a). By comparison, the anterior-posterior timing 

difference in rat may be as long as 2 days, amounting to perhaps a 25% percent intra-cortex 

difference in the duration of neurogenesis (Bayer and Altman, 1991). Hence the fractional 

differences in neurogenesis duration across species are not dissimilar. The impact of lengthening 

the period of neurogenesis by a given percentage depends, however, on how many additional 

rounds of cell-division that extension will allow. Hence, larger brains, where many more of 

rounds of cell-division take place during neurogenesis, will realize a disproportionate boost in 

neuronal output in those regions with extended neurogenesis. This leaves open the possibility 

that the intermediate-sized brains (of, e.g. some carnivores) exhibit a gradient of intermediate 

slope.   

 

 

2.4 Discussion 

 

Considering the plethora of developmental mechanisms which co-operate in directing the 

ontogeny of the cortex, it is perhaps not surprising that selection may not be able to address 

particular circuits or cortical areas without also affecting others. That is to say, rather than being 

mosaic as implied in the “proper mass” hypothesis (Jerison, 1973), adaptations might necessarily 

be coordinate in nature. For example, it could be that the only way to provide an increased 

number of neurons per cortical column in visual area 1 would be to boost neurogenesis output 

according to position along the anterior-posterior axis. Such an adaptation would have an impact 
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beyond the borders of that cortical area under direct selection pressure. A reasonable first 

reaction to the hypothesis that developmental mechanisms admit only such coordinated change is 

that it sounds highly restrictive, forbidding the selection of a myriad of potentially expedient 

mosaic adaptations. However, appropriate, “evolvable” developmental mechanisms might 

provide useful structure. They might leave available to selection the most useful reduced set of 

parameters from a search space far too large for the genotype to sample extensively.  

 

2.4.1 Interaction with Other Mechanisms. We have outlined a model for how the kinetics of 

neurogenesis could give rise to an embryonic cortex whose architecture varies smoothly and 

systematically from the anterior to posterior poles. We conjecture that these gradients establish 

the basic landscape that richer areal and cellular structure is built upon, as prompted by genetic 

markers, projections from subcortical structures or other locally present cues (Kingsbury and 

Finlay, 2001). We offer the following as an example of how local deviations can be overlaid on 

the basic landscape set up by the global gradient in neuron number. In their investigation of 

neuronal densities across the cortex, Collins et al. noted that areas involved in sensory processing 

had higher neuron densities than some adjacent areas (Collins et al., 2010a). Identifying the data 

points of Collins et which related to primary sensory areas in baboon, we used a two-factor 

model, incorporating each sample’s location and whether or not it was from a primary sensory 

area, to look for significant differences in neuronal density from what a “location-only” model 

predicted (Cahalane et al., 2012). We found that primary areas have a density of neurons which 

is 26% higher than that predicted for a non-primary area in the same cortical location (Figure 4). 

So, clearly, a mechanism other than smooth, location dependent changes in neurogenesis is 
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required to fully explain the variations in neuron density. Lower levels of neuron death during 

early development have been reported in developing sensory areas relative to other areas (Finlay 

and Slattery, 1983). We suggest that mechanism, in combination with the smooth gradients in 

neurogenesis output described above, and possibly in concert with further local mechanisms, 

may explain the greater number of neurons per unit column in primary sensory regions.  

 

 

Figure 2.6. Using a two factor model (location and an indicator for primary or non-primary area) 

of neuronal density is better than a location-only model. In the two factor model, primary 

sensory areas have a neuronal density 26% higher than would a non-primary sensory area at the 

same location. The origin of the spatial “principal” axis is at the posterior medial pole of the 

flattened cortex and it extends towards the anterior lateral pole. 

 

2.4.2 Structural & Functional Implications. The anterior-to posterior changes in cortical 

neuron number imply a corresponding variation in the types of neural processing that the 

respective regions of the cortex are most apt to support. Indeed, the cortical variations we have 
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highlighted are aligned with important functional and processing axes: higher stages of 

information processing and integration occur at progressively more anterior locations in the 

cortex. For example, higher visual areas and association areas integrating visual information are 

in regions anterior to the primary visual areas (Van Essen et al., 1992). From somatosensory 

areas, information flows in the anterior direction to the motor areas where it informs motor 

control. The notion that frontal regions have more integrative roles in neural processing is also 

indicated by their structural network connectivity, with most of the cortex’s hubs being located 

in frontal regions (Modha and Singh, 2010).  We surmise that successively higher and more 

integrative stages of neural processing might be best supported by the less neuron-dense 

architecture bestowed on frontal cortex by developmental gradients. Thus, the developmental 

mechanisms which lead to within-cortex variations in neural architecture impact cortical function 

and so are presumably a target of selection. 

 

 

Figure 2.7 Considering the layout of cortical areas, we see that regions with more integrative 

roles in information processing are typically located anterior to those cortical areas receiving 

primary sensory input. 
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2.4.3 Questions Arising. The strikingly regular scaling of brain component sizes across species 

is a key feature of vertebrate brain evolution. As we have argued, those regularities hint at the 

strong conservation across taxa of the developmental mechanisms which produce the central 

nervous system. We have given a model of cortical neurogenesis which demonstrates how a 

conserved mechanism can explain both cross-species scaling and within-cortex variations. We 

conclude by addressing the following two questions raised by such an argument. Firstly, what 

further empirical data may soon be available to support or challenge the degree to which 

coordinate changes, arising from conserved mechanisms, account for the structure of the cortex? 

Secondly, in the midst of so much conservation, what remains variable and available to 

selection? 

Regarding empirical data, it was cross-cortex isotropic fractionator studies in primates 

which revealed the pronounced gradients in neuron number along the anterior-posterior axis 

discussed above (Collins et al., 2010a). In contrast to the primate cortices, preliminary 

stereological measurements of neuron number carried out in this laboratory suggest a much more 

uniform distribution of neurons across the rodent cortex. Would a cortex whose size is 

intermediate to that of the rodent and primate would exhibit an intermediate level of gradation in 

neuron number as is predicted by the model presented here? Are there large or intermediate 

brains in which neurogenesis happens in lock-step across the cortex and so no gradient in neuron 

number is produced? Studies systematically sampling multiple sites in the cortices of non-

primates would help answer the question of whether gradients in neuron number and neuron 

layer assignment are an obligatory feature of an enlarged cortex or whether they are unique to 

primates. Apart from data on the mature anatomy of the cortex, estimates of kinetic parameters 
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in a greater range of species than are currently reported may support or challenge the 

assumptions we have made here concerning how those parameters change across species. 

As to what parameters might be made accessible to selection by conserved developmental 

mechanisms, by means of which the brains of different groups or species become differentiated 

from those of common ancestors, we offer the following as a possible example. Even if neuron 

number were constrained to vary smoothly, in a graded manner, across the cortex, then the slope 

of that gradient might be a subject of selection. It seems apparent that those smaller cortices 

produced by relatively few rounds of cell division have a limited scope to develop gradients in 

neuron number by way of spatial variation of neurogenesis. It is less clear, however, if or why 

large cortices could not be more or less varied across their spatial extent. Can the slope of the 

gradient be set independent of cortex size? Answering questions such as these will further the 

understanding of the cellular and molecular mechanisms at work in constructing the brain and of 

how those mechanisms are encoded in the genome.  
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APPENDIX 2A 

 

SUPPLEMENTARY INFORMATION FOR 

CHAPTER 2: A COMPUTATIONAL, EVOLUTIONARY-DEVELOPMENTAL MODEL 

LINKING INTER-SPECIES AND INTRA-CORTEX VARIATION IN ISOCORTICAL 

NEURON NUMBER IN MAMMALS 

 

 

2A.1 A Universal Time Axis for Neurogenesis (SI for §2.2.2) 

 

Figure 2A.1. If the date t1,a of a developmental event a is recorded in species 1, then the 

translating time model of Clancy et al. (2001) allows one to predict the date t2,a of that event in a 

species 2. The gray curves in the figure illustrate how the dates of three illustrative events a, b, 

and c would translate in gestational time across species with different species scores, using 

mouse (species score 0.701) and the macaque monkey (species score 2.255) as examples. The 

formulae in the inset illustrate that the interval of time between any two events in one species is 
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simply stretched linearly when translated to a different species. A more recent study including 

postnatal developmental events has shown that a non-linear model gives a better description of 

how developmental time translates across species (Workman et al., 2013). However, the 

translation in that newer model remains very nearly linear for events in early development, the 

epoch of relevance in the present study. 

 

 

2A.2 Assigning Estimated Species Scores According to Adult Brain Weight (SI for §2.2.2) 

To estimate species scores not available in the literature, we fitted a line to N=10 published 

species scores plotted against the natural logarithm of the corresponding adult brain weight. The 

approximate relationship between weight and species score s given by the regression line, 

)ln(*02296.971.0 weights  , is used to estimate species scores from brain weight in other 

animals.  

 

 

Figure 2A.2. Linear regression of species scores against log of adult brain weight. N=10, 

R2=0.82, F=37, p<0.0003. 
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2A.3 Modeling the Layer Assignment of Cortical Neurons (SI for §2.2.3) 
 
 

 
 

Figure 2A.3. The fraction of neurons produced on post-conception (PC) days in rat which have 

an upper-layer fate. The data of Bayer and Altman (1991) are used under the approximation that 

the number of upper (II-IV) and lower (V and VI) layer neurons is equal at each site (an 

approximation which is commensurate with stereological data collected in rodents in this 

laboratory, data not shown). The blue disks are based on measurements in anterior cortex and the 

red triangles show data from posterior cortex. The corresponding curves represent the best fit of 

the function  wtttu switch /)(erf15.0)(   achieved by adjusting the parameters tswitch and w 

using the NonlinearModelFit function in Mathematica (Version 9, Wolfram Research, 

Champaign IL). R2>0.99 for both fitted curves.  
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Figure 2A.4. The fraction of neurons produced on post-conception (PC) days in the macaque 

monkey which have an upper-layer fate; data from Rakic (1982). The blue disks are based on 

measurements in one posterior area (Area 18) shown in panel (a), and three distinct sites in 

central, motor cortex, shown in panels (b), (c) and (d). Data in the same study describe additional 

areas but lacked the temporal resolution to discern the width of the switch-over from lower to 

upper layer neuron production. The corresponding curves (solid lines) represent the best fit of the 

function u(t) and R2>0.98 for all fitted curves.  
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2A.4 Estimating the Amount of Neuronal Amplification (SI for §2.2.4) 
 
 

Precursor population empirical data 

Species 
Cortex 
Score Precursors PC Day 

Hamster 0.663 1.7E+06 10/11 
sources/notes 2 F
Mouse 0.701 1.0E+06 10 
sources/notes 2 1
Sheep 1.870 2.3E+06 24 
sources/notes ebw F
Cat 1.808 2.8E+06 17 
sources/notes 2 F
Dog (Beagle) 1.410 2.6E+06 24 
sources/notes ebw F

 
Table 2A.1. Data used in a regression of founder population against cortex score sc resulting in 

the relationship founders=exp(13.702+0.585sc), having  R2=0.67 and p=0.09. Table legend: (1) 

Haydar et al., 2000; (2) Clancy et al., 2001; (F) stereological data collected in the Finlay 

laboratory; (ebw) cortex score estimated from adult brain weight. 
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Adult cortical neurons 

Species 
Cortex 
Score Adult Neurons 

Hamster 0.663 9.2E+06
sources/notes 2 F
Rat 0.897 2.1E+07
sources/notes 2 7
Macaque 2.472 2.7E+09
sources/notes 2 4
Human 2.717 2.2E+10
sources/notes 2 5
Agouti 1.590 5.8E+07
sources/notes ebw F
Paca 1.770 6.3E+07
sources/notes ebw F
Tamarin 1.697 2.3E+08
sources/notes ebw F
Owl Monkey 1.797 3.0E+08
sources/notes ebw F
Capuchin 2.135 1.0E+09
sources/notes ebw F

 
Table 2A.2. Data used in a regression of adult neuron population against cortex score sc resulting 

in the relationship neurons=exp(16.54-0.669sc+1.256sc
2), having  R2=0.96 and p<0.04. Table 

legend: (2) Clancy et al., 2001; (4) Christensen et al., 2007; (5) Roth and Dicke, 2005; (7) Korbo 

et al., 1990; (F) stereological data collected in the Finlay laboratory; (ebw) cortex score 

estimated from adult brain weight. 
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2A.5 Estimating the Laminar Distribution of Neurons (SI for §2.2.4) 

 
Laminar distribution of cortical neurons 

Species 
Cortex 
Score 

Upper 
Layers 

(II-IV) % 
Hamster 0.663 48%
sources 2 F
Mouse 0.701 49%
sources 2 19
Rat 0.897 49%
sources 2 19
Guinea Pig 1.476 45%
sources 19
Ferret 1.714 59%
sources 2 19
Cat 1.808 62%
sources 2 19
Macaque 2.472 60%
sources 2 19
Human 2.717 66%
sources 2 19
Agouti 1.590 56%
sources ebw F
Paca 1.770 56%
sources ebw F
Tamarin 1.697 73%
sources ebw F
Owl Monkey 1.797 76%
sources ebw F
Cappuchin 2.135 71%
sources ebw F
Dog (Beagle) 1.410 55%
sources ebw 19

 
Table 2A.3. Data used in a regression of the fraction of neurons occupying upper layers against 

cortex score sc, resulting in the relationship f(sc)=0.416+0.107sc, having  R2=0.41 and p<0.02. 

Table legend: (2) Clancy et al., 2001; (19) using data from Hutsler et al. (2005), under the 

assumptions that (i) the data are representative of the aggregate cortical location in the respective 

species and (ii) the volume density of neurons in the upper and lower cortical layers is 

approximately equal at a given cortical location (an approximation which is consistent with 

stereological data collected in this laboratory in three rodent and three primate species, data not 
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shown); (F) stereological data collected in the Finlay laboratory; (ebw) cortex score estimated 

from adult brain weight. 
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2A.6 Assimilating Empirical Data for Kinetic Parameters (SI for §2.2.5) 

 
Modeling the progression of the quit fraction q(t) 
 

 

Figure 2A.5. The progression of the quit fraction q(t) in mouse. The red points are empirical data 

(Takahashi et al., 1995) and the blue curve is the best fit of the modified sigmoid function 

q(t;,).  

 
The function q(t;,) is given by 
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Modeling the progression of the cell cycle duration d(t) 
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Figure 2A.6. The cell cycle duration at the beginning and end of neurogenesis in several species, 

expressed as a fraction of the duration of the respective neurogenetic intervals of those species. 

(a) Initial cell cycle duration in mouse, rat and macaque (from left to right) (Takahashi et al., 

1995; Miller and Kuhn, 1995; Kornack and Rakic, 1998). (b) Cell cycle duration near the end of 

neurogenesis in (from left to right) mouse, rat, ferret and monkey (Takahashi et al., 1995; Miller 

and Kuhn, 1995; Reillo and Borrell, 2012; Lukaszewicz et al., 2005). For the end cell cycle 

duration in macaque, the value estimated by Lukaszewicz et al. was used rather than the estimate 

of Rakic et al. (1998). 

 
 
 
2A.7 Finding the Best Fit for Kinetic Parameters (SI for §2.2.6) 
 

Ranges of Values for Candidate Parameter Sets mi 

Function Parameter From To # Steps 

q(t)  0.50 8.00 20 

q(t)  0.20 0.80 20 

c(t)  cstart(sc)-0.02 cstart(sc)+0.02 10 

c(t)  cend(sc)-0.02 cend(sc)+0.02 10 

d(t)  0.10 n/a 0 

d(t)  0.15 n/a 0 

u(t)  -0.06 0.06 10 
 
Table 2A.4. These ranges of values, resulting in 586,971 candidate parameter sets mi for each 

cortex score sc, were used in searching for the set of values m which minimized the prediction 

error Ei. The ranges for  and  used for a given cortex score sc are functions of sc: 

cstart(sc)=0.0699-0.022sc and cend(sc)=0.119-0.0325sc as determined in §2A.6 above. 
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2A.8 Modeling the Effects of Spatial Gradients in Neurogenesis (SI for §2.2.7) 

To model the empirical observation that the kinetic parameters for neurogenesis progress through 

their trajectories more quickly in anterior cortex and less quickly in posterior cortex, the 

following scaling of time is used in the parameter functions. The extent to which time is scaled 

depends on the spatial coordinate x, which ranges from x=0 at the anterior cortex to x=1 at the 

posterior. In the scaled functions below, the form of the layer assignment function );(ˆ xtu  is 

scaled to a lesser extent than the other kinetic parameters. That choice is informed by preliminary 

stereological data collected in the Finlay laboratory (data not shown) which indicate that the 

number of lower layer neurons in primates varies from anterior to posterior cortex to a much 

lesser extent than does the number of upper layer neurons. Scaling the layer assignment function 

across the anterior-posterior axis in the same manner as all other parameters would result in the 

model predicting a large increase in the number of lower layer neurons in intermediate and large 

sized cortices.  

 

We let 
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is solved numerically for ]
21

1
,0[




x
t . The resulting, indexed values of Nx(t) is used to 

calculate the upper and lower layer output according to  


  )21(

1

0 * ));(ˆ)((ˆˆ x

dtxtutNU xx   and 
  )21(

1

0 * ));(ˆ1)((ˆˆ x

dtxtutNL xx  . 
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2A.10 Results of Parameter Search (SI for §2.3.1) 

 

 

Figure 2A.7 Panels (a)-(e) show, for each cortex score, which values of the respective parameters 

best match the target values for neuron output with the two remaining parameters, those for d(t), 

pinned at =0.1 and =0.15. The green trace shows the parameter values in the best performing 

parameter set m. The thick pink trace shows the average of the best 20 values at each cortex 

score. The blue dots show values which occurred in the best 50 parameter sets with opacity 

proportional to how frequently that particular value featured in the best 50. In panel (f) the solid 

line shows the minimum error E expressed as a fraction of the total output (upper layer plus 
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lower layer) for each cortex score. The value of Ei for all of the best 50 parameter sets for each 

value of sc lies below the dashed line.  
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CHAPTER 3 
 

NETWORK STRUCTURE IMPLIED BY INITIAL AXON OUTGROWTH IN RODENT 

CORTEX:  EMPIRICAL MEASUREMENT AND MODELS2  

 

Abstract 

The developmental mechanisms by which the network organization of the adult cortex is 

established are incompletely understood. Here we report on empirical data on the development of 

connections in hamster isocortex and use these data to parameterize a network model of early 

cortical connectivity. Using anterograde tracers at a series of postnatal ages, we investigate the 

growth of connections in the early cortical sheet and systematically map initial axon extension 

from sites in anterior (motor), middle (somatosensory) and posterior (visual) cortex. As a general 

rule, developing axons extend from all sites to cover relatively large portions of the cortical field 

that include multiple cortical areas. From all sites, outgrowth is anisotropic, covering a greater 

distance along the medial/lateral axis than along the anterior/posterior axis. These observations 

are summarized as 2-dimensional probability distributions of axon terminal sites over the cortical 

sheet. Our network model consists of nodes, representing parcels of cortex, embedded in 2-

dimensional space. Network nodes are connected via directed edges, representing axons, drawn 

according to the empirically derived anisotropic probability distribution. The networks generated 

are described by a number of graph theoretic measurements including graph efficiency, node 

                                                 
2 This text was first published in PLoS ONE under the same title with authors Diarmuid J. Cahalane, 
Barbara Clancy, Marcy A. Kingsbury, Ethan Graf, Olaf Sporns and Barbara L. Finlay.  
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betweenness centrality and average shortest path length. To determine if connectional anisotropy 

helps reduce the total volume occupied by axons, we define and measure a simple metric for the 

extra volume required by axons crossing. We investigate the impact of different levels of 

anisotropy on network structure and volume. The empirically observed level of anisotropy 

suggests a good trade-off between volume reduction and maintenance of both network efficiency 

and robustness. Future work will test the model's predictions for connectivity in larger cortices to 

gain insight into how the regulation of axonal outgrowth may have evolved to achieve efficient 

and economical connectivity in larger brains. 

 

 

3.1 Introduction 

 

Understanding the nature of the network of interconnections within the cerebral cortex is of 

central importance to determine how information is distributed and integrated (Bullmore and 

Sporns, 2009). Collated neuroanatomical data sets from several species (Felleman and Van 

Essen, 1991; Scannell et al., 1999) on the neuroanatomical connections of multiple cortical 

regions have been analyzed extensively, examining hierarchical organization, clustered and 

modular architecture and other key network metrics such as small-world attributes (Hilgetag and 

Grant, 2000; Sporns et al., 2004; Modha and Singh, 2010). More recently, the functional 

connectivity of the human cortex has been described by analyzing time series of activations 

obtained in imaging studies, during resting and task-evoked activity (Fox and Raichle, 2007). 

Until now, only a few studies have attempted to trace the developmental origin of key features of 
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cortical network architecture. Understanding the early development of anatomical connectivity is 

important as it may help to identify the structural features that become organized prior to those 

which arise in the course of experience. 

 During the time in which anatomical information has been gathered about the 

connectional anatomy of the cortex, our computational understanding of it has changed 

continuously. The classical view of the cortex centered on operations performed by “cortical 

areas” with each area representing a distinct region thought to integrate specific inputs from 

thalamus and cortex, transform them, and pass them to “higher” areas for further integration. In 

accord with this theory, investigations of cortical neuroanatomy and neurophysiology catalogued 

in great detail patterns of input and output connections, and response properties of single neurons 

of specific cortical regions, to illuminate each area’s essential function (e.g. (Hubel and Wiesel, 

1965; Kaas, 1987), reviewed in  (Olshausen and Field, 2005)). Correspondingly, early studies of 

the development of connectivity in the cortex focused on primary visual cortex and primary 

somatosensory cortex, treating each as independent entities (O'Leary et al., 1994; Fitzpatrick, 

1996). Few studies were designed explicitly to compare the early establishment of cortical 

connectivity across areas or to link its local and global features. 

 Serial-processing or switchboard metaphors for the cortex have been progressively 

replaced, not least because of the development of functional neuroimaging techniques, by a less 

hierarchical and more distributed model of function (Bressler and Menon, 2010). Under this 

view single areas may contribute to multiple functions and vice versa (Duncan and Owen, 2000; 

O'Toole et al., 2005; Anderson, 2010). The assignment of “function” to single brain areas has 

been shown to be quite plastic, on both short and long timescales (Pallas, 2001; Burton, 2003). 
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Information gathered from neuroanatomical studies (Modha and Singh, 2010; Scannell et al., 

1995) together with advances in graph theoretical analysis of anatomical networks (Bullmore and 

Sporns, 2009) suggest that patterns of cortical connectivity reflect the interplay of local and 

global rules of how axons become spatially distributed, rather than a fixed developmental 

program that assigns connections to areas according to a pre-formed list of unique inputs and 

outputs. 

 Efficiency and scaleability are key design objectives for networks specialized for 

information processing, and they also have implications for evolving neural systems (Bassett et 

al., 2010). In combination with the efficient transmission of information, neural systems must 

also be economical in terms of volume and energy consumption, and existing evolved brains are 

manifestly scalable (Murre and Sturdy, 1995; Sporns et al., 2000; Chklovskii and Koulakov, 

2004). Characterization of the efficiency and scaleability of local and global connectivity 

patterns in the cortex has been limited by the fact that all of the information presently available 

for analysis falls into one of two distinct categories, differentiated by the length-scales they 

examine. The first category, recorded in neuroanatomical studies, by activation of functional 

areas in imaging studies, or by diffusion tensor and diffusion spectrum imaging, describe axonal 

projections at scales comparable to the size of the entire cortex but typically at the low resolution 

of cortical areas or “regions of interest” (Hagmann et al., 2008). The second category of studies 

has focused on smaller units of cortex, mapping connections within cortical columns or patterns 

of synaptic connectivity on individual arbors (White and Fitzpatrick, 2007).  

How features at the large scale emerge from the developmental rules governing growth at 

the cellular level is not well understood. Anatomical studies of the establishment of connectivity 
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spanning those two length scales are lacking in the literature, as are any attempts to infer the 

global network structure arising from such wiring rules. For this reason, we undertook to 

examine the establishment of overall connectivity in the cortex in a small mammal, the hamster, 

where the cortex is recently formed and axon outgrowth is in progress at the time of birth. 

Furthermore, we compared the connectivity patterns of small regions across the cortex, both 

independently of and in relation to their cortical region of origin. Based on our empirical 

observations, we propose a method of generating model cortical networks. Further, we use the 

model to make inferences about the particular form of the axon outgrowth distribution observed, 

arguing that it may be favored because it reduces wiring volume while maintaining high network 

efficiency and robustness. The ultimate intention is to ascertain, in a small cortex, basic 

principles for the establishment of axon network structure at the onset of first experience, and 

examine how those principles scale in expanding cortical sizes.  

 

 

3.2. Methods Part I: Data Acquisition and Basic Quantification 

 
3.2.1 Ethics Statement. Throughout all experiments, animals were treated in accord with the 

policies and procedures set forth in The National Institutes of Health Guide for the Care and Use 

of Laboratory Animals and approved regulations of Cornell University’s Institutional Animal 

Care and Use Committee (IACUC). The experiments described in this paper were conducted 

under IACUC protocol number 84-55-00. 
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3.2.2 Species. Fifty-four Syrian hamster pups (Mesocricetus auratus) of both sexes from timed 

pregnancies in the laboratory colony were used in this study. Animals were fed ad libitum and 

maintained on a 10L:14D photoperiod.  

 

3.2.4 Tracer and Injections. According to convention, the 24-hour period following birth is 

designated postnatal day 0 (P0). Only hamsters born within 24 hours of the expected 15.5 day 

gestation period were used for this study. Biocytin was injected into pup cortex at ages P0, P2, 

P4, P6 and P8, with transport time optimized at 24 hours. Intracortical transport was principally 

anterograde with very few cortical cell bodies retrogradely labeled outside the immediate 

injection area. However, both anterograde and retrograde transport were observed to the 

thalamus, although at ages earlier than P4, transport to the thalamus was principally retrograde. 

This thalamic label was used to identify thalamic nuclei with connections to the cortical injection 

site.  

 

3.2.5 Surgeries. Pups were anesthetized by hypothermia and maintained on an ice blanket in 

molded head and body restraints. The skull was exposed and a hole made overlying the cortical 

region of interest. A solution of 5% biocytin was injected through a backfilled micropipette 

(inner diameter 15-20 µm) using a Picospritzer (General Valve Co.; Fairfield, NJ), with pressure 

and duration adjusted to deliver >0.1 – 0.5 microliters of solution. Injections were positioned 

only in cortical regions that could be clearly viewed, avoiding areas of high vascularization. 

Because rodent intracortical connectivity originates from both infra- and supragranular layers, 

injections were centered at a depth adjusted for the different ages to span the full thickness of the 
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cortex while avoiding the underlying white matter. Following injections, the scalp was sutured; 

pups were rewarmed and returned to the mother. After 24 hours pups were overdosed with 

sodium pentobarbital and perfused transcardially with 0.9% saline followed by 4% 

paraformaldehyde and 0.1% gluteraldehyde in 0.1M phosphate buffer (PB, pH 7.4). Brains were 

cryoprotected in 30% sucrose at 4o centigrade until processing.  

 

3.2.6 Histochemistry. All brains were frozen and sectioned coronally at approximately 60 µm. 

Sections were treated according to a protocol adapted from Ding and Elberger (Ding and 

Elberger, 1995), followed by conventional diaminobenzidine (DAB) processing. Briefly, 

sections were rinsed in phosphate buffered saline (PBS; pH 7.2,) quenched in 1% H2O2, and 

immersed in 1% Triton-X100 (TX) in PBS. Tissue was incubated overnight in an avidin-biotin 

solution (1:100; Vectastain Elite Standard Kit) containing 1% TX. Sections were reacted with 

0.004% tetramethylbenzidine (TMB); mounted on chromium-gelatin coated slides, dehydrated, 

cleared, and coverslipped with Krystalon (Fisher Scientific) with one series counterstained with 

cresyl violet. Dehydration of the unstained series was kept to less than one-minute immersion in 

each of three graded alcohols to minimize shrinkage. Following data collection, this series was 

also lightly stained with cresyl violet to further verify neural divisions and landmarks. 

 

3.2.7 Reconstruction of Dorsal Cortex and Injection Sites. Reconstructions were made using a 

LeitzDiaplan Microscope and a Neurolucida imaging system with a mechanical stage 

(Microbrightfield, Inc., Colchester, VT). Measurements were obtained from each traced serial 

section in each of the fifty-four brains, always including sections containing landmarks 
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comparatively stable across development such as the furthest ventral and caudal levels of the 

white matter, thalamic complex, and caudate nucleus.  To avoid artificially elongating in the 

medial to lateral plane when converting from coronal sections to dorsal views, in each traced 

section a midpoint contour was measured using a line drawn intermediate between the superficial 

white matter and the top of cortical layer I. The measurement began medially at the “point of 

flexure” (dorsalmedial crest separating the two cerebral hemispheres) and extended laterally to 

the rhinal fissure. A dorsal cortical surface view was then constructed by plotting each midline 

measurement to scale using Canvas 6.0 (Deneba Systems, Inc.). In effect, this method generates 

a flattened or “unrolled” surface from curved serial coronal sections as if viewed from above (the 

dorsal surface; see Figure 3.4D).  

 

3.2.8 Identification of Cortical Regions. Multiple sources of information were integrated to 

position general areal boundaries in the developing cortex and locate injection sites. First, atlases 

of the adult hamster brain (Morin and Wood, 2000) and developing and adult rat brain (Paxinos 

and Watson, 1986; Bayer and Altman, 1991; Altman and Bayer, 1995) were used to establish the 

overall orientation and form of the map. It is well established that the topology of 

thalamocortical and corticothalamic projections is conserved from first innervation to adulthood, 

though maturational gradients in the cortex and the deformation of the cortex by overall growth 

alters the relative size of cortical regions (Lent, 1982; Crandall and Caviness, 1984; Miller et al., 

1993; Molnar et al., 1998).  The anterograde and/or retrograde transport of biocytin from 

injection sites to the thalamus, listed in Table 1, was used to fix the positions of the primary 

visual, auditory and somatosensory cortex and shift areal boundaries with respect to the adult 
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cortex as required, for each postnatal age. Published and unpublished hamster developmental 

studies from this laboratory were also used to help align regions of the developing cortex with 

respect to other adjoining telencephalic regions, such as the striatum and hippocampus, whose 

topological positions remain fixed from initial generation to adulthood (Miller et al., 1993; 

Windrem and Finlay, 1991; Kingsbury et al., 2000).  

 

3.2.9 Axon Tracing. Thirty-six developing brains with well-labeled axons were completely 

analyzed microscopically and 24 representative brains were traced using a Neurolucida (25x) for 

more detailed morphological and statistical analysis, including ages (injected-recovered) P0-1 

(n=7), P2-3 (n=4), P4-5 (n=3), P6-7 (n=4), P8-9 (n=3). Axons were identified by their coloring, 

thin uniform appearance, characteristic branching patterns, and, on many occasions, the presence 

of growth cones. Every visible intracortical axon in each traced section was drawn. Sections to 

be traced (typically over one half) were determined by the presence or absence of labeled axons, 

although as noted above, sections containing the furthest ventral and caudal levels of the white 

matter, thalamic complex, and caudate were always traced to obtain registration measurements 

for dorsal views.   

 

3.2.10 Reconstruction of Axonal Projections. The tracings of coronal sections were then used 

to generate dorsal view reconstructions of the furthest distal points where labeled axons were 

found, as well as axon density plots of projections arising from injection sites. First, radial lines 

were drawn perpendicular to the middle layers of the gray matter and spanning the entire depth 

of the white and gray matter, spaced every 200µm beginning at the point of flexure and ending at 
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the rhinal fissure, with the last measurement the interval between the final 200 µm line and the 

rhinal fissure. Tangential substrates were then outlined using pseudo phase-contrast on unstained 

tissue and adjusted using counterstained sections (accounting for shrinkage, which was 

consistently less than 10%). The tangential substrate boundaries included the subjacent border of 

the cortex (layer VI), the subjacent border of the infracortical fasciculus (a cell-sparse area above 

the subplate neurons, also called “channel 2” in (Bayer and Altman, 1991), and the subjacent 

border of the subplate neurons, which corresponds to the superficial border of the white matter. 

Axons crossing each radial line were counted and tangential substrate subtotals obtained. Each of 

these counts was associated with a location ),( ji on the 60µm × 200µm grid, indicating that this 

is the count at the ith radial line in the jth section. The substrate subtotals were labeled Ctx
jic , , for 

those axons counted in cortical layers, and WM
jic , , for those in the white matter. We use Coll

jic ,  to 

denote the collapsed count of all axons encountered at a radial line, i.e. for each count location 

WM
ji

Ctx
ji

Coll
ji ccc ,,,  . 

The tangential compartments are not uniformly identifiable in hamster cortex:  in far 

anterior and posterior coronal sections, white matter fibers, subplate neurons and the infracortical 

fasciculus merge. Moving anterior to posterior in pup brains, white matter fibers are first noted at 

the level of orbital cortex where the rhinal fissure no longer clearly separates cortex and 

olfactory bulbs, followed approximately 0.5 mm posterior by a distinct layer of subplate neurons 

and approximately 0.5 mm further posterior by the band of fibers comprising the infracortical 

fasciculus. In far lateral regions of cortex, the subplate neurons seem to merge with neurons of 

the claustrum; in both far lateral and posterior cortex, the fasciculus is quite thick relative to 



   
 
 
 

   84 
 
 

anterior sections (see also Reep ( 2000)). The position of isolated single axons or very sparse 

projections was always registered independent of the radial lines used for systematic sampling. 

Care was taken to ensure that counts did not include axons traveling to subcortical or callosal 

areas; however, although these axons travel different routes, some small uncertainty is 

unavoidable. Dorsal view reconstructions were produced for projections traveling from an 

injection site in each of the different substrates (cortical layers I-VI, infracortical fasciculus, 

subplate and white matter), as well as a “collapsed” view of the first three combined so as to 

represent the conventionally identified cortical gray matter. 

 

3.2.11 Basic Quantification. The surface area covered by underlying axons within the borders 

of the cortex bounded by the point of flexure and rhinal fissure was determined for 20 traced pup 

brains using NIH Image. Total area of axon coverage (in mm2) was analyzed for cortex, subplate, 

infracortical fasciculus, and for a category collapsed across these three, as well as for the white 

matter. These totals were expressed as a percentage of the total dorsal area or anterior/posterior 

(A/P) or medial/lateral (M/L) length in each individual brain. Schematized cortical areas were 

not used in statistical analysis; areas were determined for each individual brain at each age (see 

also Table 2). ANOVA was performed in Statview 5.0 to determine if axon extent in M/L or A/P 

planes varied based on injection site location or age, followed by Scheffe’s Post-hoc test when 

appropriate.  
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3.3 Methods Part II: Characterization of Axon Outgrowth Distribution 

 
3.3.1 Interpolating the Data. The data for each animal was recorded as a set of axon counts 

taken at points on a 2-D grid whose axes aligned with the medial/lateral (ML) and 

anterior/posterior (AP) axes of the flattened cortical hemisphere. Indexing each grid point ),( ji  

and calling the corresponding count jic , , these counts document the number of axons originating 

at the injection site which were detected at location ),( ji  on the 200µm by 60µm grid of sample 

points. As described above, for each animal, three sets of count data were analyzed: axons found 

in the cortical layers only Ctxc , axons in the white matter only WMc , and a collapsed set Collc , 

where WM
ji

Ctx
ji

Coll
ji ccc ,,,  . 

In order to arrive at the desired description in terms of probability distribution functions of axon 

terminal sites, the following steps were carried out. Any missing counts from the interior of each 

dataset were interpolated. Each grid was re-centered such that the injection site (detected as the 

site having the maximum axon count maxc ) had index )0,0(),( ji . We assumed that the 

injection site is a point source of axons. To simplify further calculations, a 2-dimensional first 

order interpolating function was fitted to each grid (using Mathematica). With the interpolating 

function ),( yxc , it was possible to treat the count data as continuous over the 2-D domain with 

)μm60,μm200(,  jicc ji . 
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Figure 3.1. Characterizing axon outgrowth distributions. (A) The contour plot depicts a typical 

distribution of axon outgrowth from the site at the origin. The spatial distribution of axon 

outgrowth was described by an angular distribution function )( , quantifying the relative 

fraction of outgrowth volume in the infinitesimal sector of the plane centered at angle   (shaded 

sector). A radial distribution function )(rS  quantifies the fraction of axon volume in the 

infinitesimal annulus at radius r . (B) The function ),;( q , with parameter   determining the 

height of its two diametrically opposed peaks, is graphed here on a circular domain for several 

different values of  . The tilt   is the same for each member of the family shown here, 

resulting in the peaks occurring at the same values of   and  2  for each member. The 

distribution is almost uniform on the circle for values of   near zero. As   approaches 1, then 

),;( q  becomes a delta function. 

 

 

3.3.2 Angular Distribution of Outgrowing Axons. Two functions, calculated using ),( yxc , 

were used to characterize each dataset. The first, 



0

)sin,cos()( rdrrrc  , accounts for the 

angular distribution of axons (see Figure 3.1A). The data exhibited a prevalence of growth along 

the direction of the ML axis in preference to the AP axis. To quantify this anisotropy, we fitted a 

double peaked function 



   
 
 
 

   87 
 
 























 )(

2

1
)(

2

1

2

1
),;( )()( 





  uuq , 

defined on )2,0[   . Here 
2

2
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1
)(


 


u  with parameter )1,0[  is a 

probability distribution on the circle (see Figure 3.1B). The distribution is flat at 0  and 

approaches two delta spikes as 1 . For each animal, we calculated the values of   and  , or 

the anisotropy and tilt as we call them respectively, which minimized the least squares error 

between ),;( q  and )(  (see Supplementary Figure 3A.2 for fits to data). Thus ),;( q  is 

a probability distribution for the relative volume of outgrowth in each direction, parametrized in 

each case by anisotropy  and tilt  . 

 

3.3.3 Radial Distribution of Outgrowing Axons. Arriving at the radial distribution function, 

characterizing the length distribution of the axons, requires taking into account the cumulative 

nature of the count data: ),( yxc  is the number of axons one would expect to find passing 

through any point ),( yx , not the number of axons terminating there. Given that axons may trace 

more or less circuitous routes between their origin and terminal arbor, and may also branch en 

route, it will not be possible to exactly recover the density distribution of endpoints from the 

count data. To arrive at an approximation to the true distribution, we assume (i) that no 

branching occurs prior to arrival at the terminal site and (ii) that axons travel from the origin 

along straight trajectories. These assumptions are generally consistent with the data collected in 

this study and in earlier work (Miller et al., 1993). Given that our network model is constructed 
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using such straight-line axon trajectories, disregarding the (unknown) particulars of axons routes 

will not affect our simulated networks. 

The quantity 





2

0
max

)sin,cos(
2

1
)( drrc

c
rS , under assumptions (i) and (ii) above,  

can be interpreted as the probability that an axon has length greater than or equal to r  (see 

Figure 3.1A). The probability that it terminated at a length less than r  is simply )(1)( rSrP   

and so, in principle, )(rP  is an approximation to the cumulative distribution function (CDF) for 

the length of the axons. In practice however, portions of the empirical "CDFs" fail to meet the 

monotonicity property required of distribution functions. The difficulty arises near the origin, at 

small radii r , where the resolution of the experiment means that few count sites are contributing 

to the calculated value of )(rS . Furthermore, what counts are present may be noisy due to the 

high concentration of stained axons close to the injection site. For this reason, we chose to 

disregard the non-monotonic portions of the empirical functions )(rP near the origin and fit 

analytical CDF's to the remaining monotonic data. However, it is that portion of the data, near 

the origin, which would otherwise provide the normalizing constant for our distributions (i.e. 

)0,0(max cc  ). Hence, the fitting procedure must also provide an estimate for that normalizing 

constant. On inspection, the usable portion of the empirical distributions seemed to be well fit by 

gamma distributions, which have previously be used to model axon length distributions (Kaiser 

et al., 2009). So as to reduce the number of fitting parameters, we constrained the fitting 

procedure to use gamma distributions with a shape parameter equal to 2. Thus the radial 
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distribution of each outgrowth pattern was characterized by the mean   of its fitted gamma 

distribution, 


 /

2
);( re

r
rp  . See Supplementary Figure 3A.1 for fits to data. 

 

 

3.4 Methods Part III: Network Modeling and Analysis of Networks 

 

 

Figure 3.2. Generating spatial networks. (A) We begin with a grid of 100µm squares, each containing a 

node located uniformly at random within the square. For each node,  a set of candidate end points for 

efferent links is drawn from under the probability distribution, those terminating outside the boundary of 

the region (such as the dashed lines here) will be discarded in favor of new candidates until the quota of 

axonsn  has been reached. The ends of the candidate axons snap to the nearest node, and the links are 

recorded in the adjacency matrix. (B) Repeating the procedure in (A) for each node results in a network 

such as that depicted here. For clarity of display, the network in (B) is drawn on a grid of 2020N  

nodes having 10axonsn . Networks used in our simulation have 5050N  and 10axonsn . 
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3.4.1 Generating Spatial Networks.  We study a network model whose nodes are localized 

populations of neurons, linked by edges which model representative axons. The network is 

constructed as follows (see also Figure 3.2). We model the hamster’s cortical hemisphere as 

comprising 2,500 idealized cortical units. Each unit represents the neural population under a 

100µm×100µm square of cortex. Our model cortex is a grid of 50×50=2,500 of such units, thus 

mimicking a cortical sheet measuring 5mm×5mm. These units are the nodes in our network.  

With each node i we associate a location ),( iii yxp  , chosen uniformly at random within the 

corresponding unit’s square footprint.  

Emanating from each node are a fixed number, axonsn , of directed network edges, 

representing efferent axons. Edges are assigned to each node i by using the following procedure: 

(i) select a length r  and a direction   from under the empirically derived radial and angular 

probability distributions, )(rp  and )( , respectively; (ii) find the node j nearest to the point at 

distance r  from node i in the direction  ; (iii) add a directed edge, pointing from node i to node 

j, to our network. There are two exceptions to the above procedure.  First, if the randomly chosen 

length r  and direction  determine a point which lies outside the grid, we chose a new random r  

and  , repeating until the chosen r  and   determine a point inside the grid. Second, self edges 

are disallowed – should one occur, we discard it and choose a new random endpoint such that the 

axon does not terminate at its node of origin. The procedure for generating edges is repeated 

until the node i has been assigned its full complement of axonsn  edges. Edges are assigned to all 

nodes in the network in this manner. Once all edges have been assigned, in the adjacency matrix 

A , the entry ijA  records the number of directed edges from node i to node j.  
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We note that although the details of meandering axonal paths were ignored as we 

deduced )(  and )(rp , our method of generating networks does not require such details to 

reproduce the distribution of axon terminal sites. Our networks were created and visualized using 

Mathematica 7.0 (Wolfram Research, 2008). 

 

3.4.2 Degree Distribution, Path Lengths and Clustering. We calculated several measures to 

analyze the networks generated by our spatial model. The out-degree  j ij
out
i Ak  of a node on 

a directed network counts the number of edges originating at that node. By construction, we have 

axons
out
i nk   for all nodes in our networks. The in-degree counts all edges terminating at a node: 

 j ji
in
i Ak . The number of edges comprising shortest network path between any pair of nodes, 

i and j, also known as the distance from i to j, is recoded as ijd  . The average shortest path,  




ji ijd
NN

l
)1(

1
, gives a characteristic length for the network paths. The clustering of a 

network gives the probability that if the edges i→j and j→k are both present then so too is the 

edge k→i. The clustering, C,  is given by 
2)length  of paths of(number 

)network in the  trianglesofnumber (6
C , where, 

for example, i→j→k is a path of length 2 and a “triangle” refers to a case where the three edges 

(i→j , j→k and k→i) are present (Newman et al., 2006). A small-world network is characterized 

by having both the short path lengths typical of a random network and the high clustering typical 

of a more regularly wired (e.g. lattice) network. Using random networks as a baseline, the small-

world index, S, makes the classification of networks as being small-world quantitative 
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(Humphries and Gurney, 2008).  The small-world index of a network with N nodes, M edges, 

clustering C and average shortest path length l, is given by 
r

r

ll

CC
S  , where rC  and rl  are, 

respectively, the clustering and average shortest path length of a random network also having N 

nodes and M edges. For a random network, 1S , but S takes larger values for small-world 

networks. 

 

3.4.3 Network Efficiency. Global network efficiency quantifies the efficiency of communication 

between all pairs of nodes on the network, under the assumption that information flows along the 

shortest paths available (Latora and Marchiori, 2001). Considering just one pair of nodes first, if 

an edge joins the two nodes, the path between them has length 1 and so communication is 

maximally efficient for that pair: we say that path has an efficiency of 1. If the shortest path 

between a pair of nodes (i and j) has length ijd , then we say its efficiency is 
ijd

1 . The average 

value of that pairwise efficiency, taken over all pairs of nodes in the network, is the global 

efficiency: 


ji
ijdNN

E 1
)1(

1
. Only a completely connected network (where all possible 

edges are present) has a global efficiency of 1. All other networks have an efficiency 1E .  

 

3.4.4 Node Centrality. The betweenness centrality of a node is a measure of how important that 

node is for efficient communication on the network (Newman et al., 2006). Considering the set 

of all shortest paths on the network, we see that some "central" nodes may feature in a greater 

number of shortest paths than do other less central nodes. The betweenness centrality of a node i 



   
 
 
 

   93 
 
 

is the fraction of all shortest paths on the network which pass through i. Specifically, if st  is the 

number of shortest paths from s to t, and )(ist  is the number of such paths containing the node 

i, the betweenness centrality of i is given by  


its
st

st
i

ib 
 )( . 

 

3.4.5 Modularity. It can be useful to think of the nodes on a network as being members of 

different communities. To investigate the modular nature of our networks, we will assign nodes 

to non-overlapping communities whose membership is defined by location. If the communities 

are chosen well, one should observe a greater prevalence of intra-community edges over inter-

community edges than would be found in a comparable random network (i.e. a randomly wired 

network with the same number of nodes and edges). The modularity Q quantifies the extent to 

which we have such a prevalence (Leicht and Newman, 2008). Assigning each node to a 

community, and denoting the node i’s community ic , we can measure the modularity of the 

network with respect to that community assignment: 

ji cc
ji

out
j

in
i

ij M

kk
A

M
Q ,

,

1 











 , 

where M is the total number of edges in the network and 
ji cc , is equal to 1 if ji cc   and is zero 

otherwise. We measure the modularity of our networks with respect to two different, spatially 

defined, community assignments. First, we partition the nodes into 4 rectangular communities, 

roughly equal in size, aligned with the medial-lateral axis. Namely, the communities contain the 

nodes in rows 1 through 13, 14 through 25, 26 through 37 and 38 through 50 of our 50×50 grid, 

respectively). The communities are thus rectangles whose width spans the medial-lateral 
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dimension of our gird and whose height is about one fourth that of the grid. Second, we use a 

similar partitioning, but in this case assigning nodes by column number to one of four 

rectangular communities aligned with the anterior-posterior axis. 

The NetworkX package (Hagberg et al., 2008) for Python was used to carry out the graph 

analysis of our networks.  

 

3.4.6 Spatial Modeling of Links. Exploiting the spatially embedded nature of our network, we 

investigate how anisotropy may affect the volume requirement of axons via an altered number of 

axon encounters (see Figure 3.3). Modeling all the axons as straight lines in the plane, we count 

the number of axon encounters. Only encounters along the body of an axon are considered, those 

occurring at a node are disregarded. Axon encounters were enumerated using an algorithm 

implemented in c++.  

 

 

Figure 3.3. Extra volume cost due to axon encounters. Axons, whose paths were destined to 

intersect in (A) incur an extra volume cost as one or both alter their paths to avoid collision such 
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as in (B). The extra volume requirement of scenario (B) as compared with (A) is 
33 9.264)1( rr   , where r  is the axon radius.  

 

 

3.5 Results 

 

3.5.1 Characterization of Initial Axon Distribution in Empirical Data. Thirty-six developing 

brains were judged to have well-placed injections and well-labeled axons and form the empirical 

corpus on which the network modeling results are based.  Injections were placed across the 

cortical field, although because of its small size, inaccessibility of the most lateral aspect, 

developing vascularization, and the relative immaturity of posterior regions at the earliest ages a 

uniform grid of sites is difficult to produce. Our method of representing initial transected axon 

counts is shown on a representative “unrolled” P0-1 cortex in Figure 3.4D. 
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Figure 3.4. Representative  injection site, axon travel in tangential substrates and initial 

reconstruction procedure. (A) Photomicrograph of a biocytin injection site spanning the cortical 

layers and avoiding the white matter at age P4-5 (injected-recovered). Note that this figure 

depicts a relatively large injection site, shown here to best illustrate axons traveling in the various 

tangential substrates. (B) High power photomicrograph of area outlined in (A) depicting axons 

coursing through the cortex, the infracortical fasciculus, and the subplate, as well as in the 

conventionally identified white matter. (C) Although some axons travel within the subplate 

neurons (visible in the Nissl-stained middle panel of the photomicrograph), others clearly avoid 
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this substrate (small black arrows). Arrowheads in B and C delineate the upper boundaries of the 

infracortical fasciculus (top), the subplate neurons (middle) and the conventionally identified 

white matter (bottom). Scale bars are approximately 100 µm. (D) Graphic depicting the method 

by which coronal tracings of axons are mapped onto unrolled dorsal views of the cortex, with the 

standard dorsal view superimposed in gray on the unrolled cortex. Unrolled cortex includes 

cortical areas ventromedial and ventrolateral to flexures and thus hidden in a standard (“rolled”) 

dorsal view. Gray arrows indicate the medial point of flexure in both views; open arrows point to 

the rhinal fissure. Black arrows in both (A) and (B) indicate the site of the injection in a P0-1 

animal (#675.1). Images in this figure were produced using digitally scanned negatives  (1200 

pixels per inch resolution on a flatbed scanner) processed using PhotoShop software (Adobe, 

Mountain View, California) to optimal contrast and sharpness, then cropped and lettered. No 

other adjustments were made. 

 

For initial contrasts of differences in axon outgrowth patterns across the cortical surface, 

injection placement was assigned to one of three broad categories: “anterior” (presumptive 

motor), “middle” (presumptive somatosensory) and “posterior” (presumptive visual) cortex 

(Table 1). The assigned divisions take into account the location of anterograde and/or retrograde 

labeling found in thalamic regions as well as the position of the axons in the developing cortex. 

Tracer was typically deposited at each site throughout the layers of the cortex, avoiding the white 

matter; injections sites were very small compared to the dimensions of the primary cortical areas 

(Figure 3.4). The topography of axon extension in each tangential substrate, topography of 

extension within the cortex as a function of injection site and age, variations in trajectory 

patterns, and changes in the relative density of projections across ages were all quantified and 

contrasted.  
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3.5.2 Paths of Axon Extension. The greatest numbers of intracortically confined projections are 

local, extending in a radial fashion for short distances in the gray matter directly adjacent to the 

injection site. Longer-range projections traveling away from injection sites take multiple paths, 

coursing through the conventionally identified gray matter, the infracortical fasciculus, and 

among the subplate neurons, as well as in the white matter itself (see Figure 3.4B). In these small 

brains, axons reaching the most distant point from the injection site might equally be found 

traveling through the cortex or through subcortical white matter -- the route taken by an axon, 

within grey matter or white matter did not dictate the distance traversed. Although this study 

traces the distribution of a population of labeled axons, the trajectories of individual axons were 

noted when they could be followed. Some of the individual axons that could be traced from 

injection site to growth cone or terminal arbor traveled exclusively in one substrate, others 

switched pathways, for example, from the infracortical fasciculus to the white matter, avoiding 

the subplate (Figure 3.4C); or alternated travel between two substrates. 

 

3.5.3 Overall axon extension by region, lamina and postnatal day. The mean of the available 

neural area in each substrate covered from the injections (expressed as a percentage of total 

dorsal cortical area) is as follows: cortex mean: 61.21%, SE: 3.24, white matter mean: 38.09%, 

SE: 3.16; subplate mean: 32.34%, SE: 2.59; infracortical fasciculus mean: 30.53%, SE: 2.97 

(Figures 3.5 and 3.6). Thus, these small tracer injections resulted in extensive axon spread in the 

cortex, and insofar as it was possible to rank injection sites by size, the only difference associated 

with injection size was projection density, not extent.  
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Figure 3.5. Axon extension in gray matter across early ages. Dorsal views depict representative 

axon extension in 15 cortices across the different developmental ages included in this study. For 

this figure, the three tangential substrates that make up the conventional rodent gray matter 

(subplate, infracortical fasciculus, cortex) are collapsed into one compartment. The abbreviations 

below each animal indicate the thalamic areas in which anterograde and/or retrograde labeling 
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was noted. Abbreviations: dorsal lateral geniculate nucleus, dLGN; ventrobasal nucleus, VB; 

ventrolateral nucleus, VL. 

 

Figure 3.6. Axon extension in white matter. Dorsal views depicting representative axon 

extension in the white matter of the same animals depicted in Figure 3.5.  
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 Even at the earlier age, connections from each site span almost the entire medial/lateral 

(M/L) distance of the cortex; this coverage persists as total cortical area more than doubles 

between ages P0-1 and P8-9 (Table 2). This widespread axon extension, evident across all 

locations, is illustrated in the dorsal reconstructions depicted in Figure 3.5. Because extension 

within the subplate and infracortical fasciculus was always less than extension within the cortex 

itself, in Figure 3.5 these three divisions are collapsed into one “gray matter” compartment. 

Qualitative inspection and statistical analyses indicate no significant differences in axon 

coverage from any site (anterior, middle or posterior) at any postnatal age, when total area of 

coverage was expressed as a percentage of total cortical area, regardless of the substrate of axon 

extension.   

 Tracer placements that happened to bridge more than one cortical area, as judged by 

retrograde labeling of both primary visual and somatosensory thalamic nuclei, might be expected 

to produce larger ranges of axon travel if each cortical area specifies a unique list of termination 

addresses, as contrasted with a model of initial axon outgrowth independent of cortical area 

identity. Though the number of cases we could use to address this question is small, examination 

of the area of cortex labeled by tracer injections in the several cases that resulted in retrograde 

label to both somatosensory and visual thalamic nuclei (45.0%, n=3, across ages) compared to 

injections that labeled either one or the other class (70.2%, n=7, across ages), however, showed 

the opposite, though non-significant trend.  

 Despite the general similarity of widespread coverage patterns from P1-P9, some local 

patterns were evident. As illustrated by the gradient outlines in Figure 3.5, long-range 

connections from anterior cortex extend asymmetrically posterior and laterally towards middle 
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cortex, not colonizing far posterior cortex. Axons labeled by injections in middle cortical areas 

appear reciprocally focused on anterior cortex with few posterior projections. The majority of 

developing intracortical projections from posterior cortex is confined to the posterior cortex 

itself, although from all sites a number of axons typically extend to presumed medial limbic 

regions. 

 

3.5.4 Axon extension and trajectory changes in the white matter. Axon travel in the 

conventionally recognized pathway, the white matter, is summarized in Figure 3.6. Travel in the 

white matter is more confined than travel in the overlying substrates, and more anisotropic, as 

shown by a comparison of the axon coverage in Figure 3.6 to the outlines of axon coverage in 

the collapsed views illustrated in Figure 3.5. 

Because intracortical axons travel in large numbers through the cortex as well as the 

conventionally identified white matter, these schematized dorsal representations of axon 

populations do not distinguish axons traveling intracortically from those which exit the cortex, 

travel in white matter, and re-enter cortex to terminate. The generally uniform picture of axon 

extension that the dorsal view reconstructions suggest is perhaps at odds with the presence of a 

large number of abrupt trajectory shifts in axon tracks which might suggest alteration axon 

extension by detection of an areal boundary (e.g., Figure 3.4C, left). Trajectory shifts in white-

matter axons might indicate regions of cell-to-substrate recognition that specify unique 

termination zones. For the two distributions which most strongly suggested the development of a 

particular termination focus, one early and one late in development, we charted every axon that 

turned from a horizontal trajectory to travel vertically (Figure 3.7). The locations of abrupt 
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trajectory shifts populated the entire area of extension, however, producing a distribution that 

was simply a reduced form of the overall distribution. This pattern is more suggestive of random 

sampling of the substrate by the axon population prior to target selection (Bastmeyer et al., 1998; 

Bastmeyer and O'Leary, 1996). Overall these relatively uniform distributions resemble those 

seen in studies which reconstructed single-axon termination patterns within single areas in larger 

brains (White and Fitzpatrick, 2007).  

 

 

Figure 3.7. Vertically-turning axons. Comparative views of axon extension in cortex including 

gradients of only those axons extending horizontally and parallel to the white matter at ages P2-3 

(A) and P6-7 (C) together with outlines of areas where vertically-oriented axons extending 

perpendicular to the white matter were found at each age (B and D). Outlines are representative 

of projections patterns found even at early ages in which labeled axons are found in areas both 

continuous and non-contiguous (possible target) with the injection site. 
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3.5.6 Synopsis of typical outgrowth pattern. Given the empirical observations above, we 

characterize the typical outgrowth pattern as having the following features: (i) having areal 

coverage larger than half of the cortical hemisphere; (ii) comprising axons travelling in both the 

white and gray matter which traverse comparable distances; (iii) having a footprint with greater 

extent along the ML axis than along the AP axis, with travel in the white matter being 

comparatively more constrained in this regard; (iv) being largely independent of the location of 

its source. With these features in mind, we developed the following framework to arrive at a 

quantitative description. 

 

 

Figure 3.8. Fitting axon distributions. (A) The fitted mean length of an axon in the collapsed 

(black squares), cortex (gray dots) and WM (red triangles) outgrowth distributions for each 

animal (assuming a gamma distribution with shape parameter equal to 2). (B) Measured 

anisotropy in the collapsed (black squares), cortex (gray dots) and WM (red triangles) outgrowth 
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distributions for each animal. We note that white matter axons travel more anisotropically than 

those traversing gray matter. See Figure 3.1 and the Methods section for details of our approach 

to quantifying anisotropy in the measured distributions. (C) Preferred direction of travel. (i) 

Orientation of our coordinate system relative to the anterior/posterior and medial/lateral axes of 

the cortical hemisphere. The preferred axis of axon travel, shown here for each animal’s (ii) 

collapsed, (iii) cortex and (iv) white matter distributions tends to align closely with the ML axis.  

 

 

3.5.7 Modeling outgrowth distributions. Probability densities for the angular and radial 

components, denoted  ),;( q  and );( rp  , respectively, were fitted to the observed 

outgrowth distributions. The resulting values of the characteristic length  , anisotropy   and 

tilt

 


 

for each dataset are shown in Figure 3.8, and can be summarized as follows.  

The radial distribution shows a marked departure from uniformity (see Figure 3.8B). The 

measured values of anisotropy   for collapsed distribution have mean 0.69 and standard 

deviation 0.07 on our 0 to 1 scale (see Supplementary Figure 3A.2 for fits to data). There is a 

clear tendency for white matter distributions to be more anisotropic ( 07.078.0 WM ) than 

distributions measured only in the cortex ( 07.066.0 Ctx ). The tilt   is such that the 

preferred direction of travel is almost collinear with the ML axis, as illustrated in Figure 3.8C 

(  107Coll ). 

The length distribution of axons in the white matter, gray matter and collapsed 

distributions were well fit by gamma distributions (see Supplementary Figure 3A.1 for fits to 

data), with mean lengths as shown in Figure 3.8A. There is a tendency for distributions measured 

in older animals to be longer and for white matter axons to travel greater distances. Taking the 
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ratio CtxWM  /  for each animal, we find that WM  is on average 119±33% as long as Ctx  - 

indicating a trend of axons travelling in white matter reaching further than those traversing 

cortex only. This greater length is not incompatible with the lesser areal coverage of white matter 

axon distributions; travel in this compartment was also noted to be more anisotropic and 

therefore has a more slender footprint. 

 

3.5.8 Spatial network modeling. We sought to create a model of the early cortical network 

which was faithful both to the qualitative characteristics and the measured distributions of axon 

outgrowth. We also wanted the nodes of this network to be biologically meaningful but 

representing neurons as individual nodes would have made our model computationally unwieldy. 

We instead take our nodes to be cortical populations or units, comprising all the neuronal cell 

bodies and local processes within a small volume of the cortical sheet, much like the "cortical 

output units" of Innocenti and Vercelli (2010). We define these units as 100µm×100µm squares 

on a 2-dimensioal cortical sheet, so that they have roughly the dimensions of a dendritic arbor. 

Hence our "local" length-scale is set at ~100µm. The number of nodes is thus conducive to 

constructing and analyzing our simulated networks on a desktop computer. 

 The simulated networks are found to have the small world property but are not scale free. 

The small world index is measured to be 4.57±0.17, indicating our networks possess short path 

lengths comparable with those of random networks while also having far higher clustering. This 

may have been anticipated given the form of the axonal distributions employed, which have a 

preponderance of local connections and relatively few long links. The networks are not in the 

class of so-called scale-free networks, with neither their in-degree nor out-degree having the 



   
 
 
 

   107 
 
 

required power-law distributions. The out-degree is, by construction, the same for every node 

and is equal to the bespoke number of efferent axons per node,  axonsn . The in-degrees are in 

close agreement with those for a random network, only differing slightly from the Poisson 

distribution one would encounter in that case. We can see why such an in-degree distribution 

arises: if we ignore boundary effects, then nodes attract afferent axons with a probability 

proportional to the area of their respective Voronoi cells, the polygons in the plane enclosing all 

points to which a given node is the closest node. Given our method of distributing nodes in the 

plane, the preponderance of Voronoi cells not adjacent to borders will have area comparable with 

that of our 100µm×100µm grid squares. Such nodes therefore attract afferent edges with 

approximately equal probability, thus giving rise to the observed narrow, near-Poisson 

distribution of in-degrees.  

 

3.5.9 Anisotropy of axonal distributions: consequences for efficiency, robustness and 

modularity. Anisotropy in axonal distributions may lead to a more volume-efficient wiring 

scheme but would seem, prima facie, to entail negative repercussions for the resulting network 

structure. Given that increased anisotropy in laying down axons leads to a smaller ensemble of 

possible networks (to see this consider the limiting case where axons are restricted to travel 

along only one axis), we were curious as to what advantages it might bestow. While 

investigating the effect of varying anisotropy   on the topology of simulated networks, we also 

sought to determine whether increased   might lead to a more compact packing of axons in 

space. We begin with the observation that an axon's length, and thus its volume, is increased if it 
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must deviate to avoid another axon (see Figure 3.3). Therefore, encounters with other axons tend 

to increase the total volume requirement. 

 

Figure 3.9. Effect of anisotropy. (A) Packing volume and network paths. In our simulations 

increased anisotropy   leads to a reduced number of axons encouters but also a decrease in 

network efficiency E   and an increase in mean shortest path length l . The dashed line marks the 

mean empirical value of   for collapsed axon distributions and the extent of the shaded region 

indicates the standard deviation in that quantity. Each data point is the average result for 10 

networks, each generated with 2500N  nodes, having 10axonsn , drawn from under a 

distribution having anisotropy as indicated and length distributed as a gamma-2 distribution with 

average length 1000µm. (B) Node betweenness centrality. Increased anisotropy   leads to an 

increased right-skewness in the distribution of node betweenness centrality in the generated 

networks. The dashed line and shaded region, respectively, denote the mean and standard 

deviation of the empirical values for  . These data were generated using the same network 

parameters as in (A). See also Supplementary Figure 3A.3 for a comparison of the histograms of 

the betweenness centrality distribution at 2.0 , 7.0  and 9.0 . 

 

Our spatial network model predicts that there exists a narrow range of values for the 

anisotropy parameter   which reduces the extra volume requirement of crossing axons without 

significantly impacting the ease of communication within the network, as measured by the 

efficiency E (see Figure 3.9A). Increasing the anisotropy beyond this range is predicted to reduce 
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network efficiency. We find that the empirically measured values of anisotropy fall within this 

range for both white matter and gray matter travel.  

Increased anisotropy may lead to networks which are more vulnerable in the case of central 

nodes failing.  The presence of such nodes is indicated by a more skewed distribution of node 

betweenness centrality (see Figure 3.9B; also Figure 3.S3 for histograms of betweenness 

centrality distributions). The betweenness centrality ib of the node i quantifies the relative 

contribution of individual network elements to the collection of shortest paths on the network 

(see Figure 3.10). Conversely, it can be seen as a measure of how detrimental the removal of that 

element might be to the functioning of the network as a whole. We observe that increased 

anisotropy in the spatial distribution of links leads to an increased positive skew in the 

distribution of node betweenness centrality in simulated networks (Figure 3.9B). The right tail of 

the distribution becomes increasingly “heavy”, signifying the emergence of a small number of 

nodes with betweenness centrality much higher than the average value. As studies in other 

complex networks have shown (Albert et al., 2000), the existence of such highly central nodes 

renders the network as a whole more vulnerable to functional disruption in the event of their 

failure. It is also the case, however, that communication on such a network is more robust to the 

failure of a typical node, i.e. one which is not among the few highly central nodes.  

The possibility of nodes becoming overloaded may be another reason to disfavor highly 

anisotropic wiring schemes. Assuming that information is propagated along the shortest paths 

between nodes, betweenness centrality can be interpreted as a measure of how much traffic a 

node handles. Given the finite neural populations comprising our nodes, they will have a limited 

capacity to process or propagate information. Hence, with highly anisotropic wiring, nodes 
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which are very central may be at risk of becoming overloaded, thereby affecting the reliability of 

communication on the network. 

 

 

Figure 3.10. Contrasting nodes of high and low node betweenness centrality on the same 

network. (A) and (B) each show a different subset of the shortest paths on the same network. In 

(A), the node on the graph with the highest betweenness centrality is marked by the green dot. 

All the shortest paths which travel through that node are shown. Almost 1.5% of this directed 

graph’s )1( NN  paths pass through the node. The edges used by these paths have color and 

thickness reflecting the number of paths traversing that edge. By contrast, (B) shows a node of 

lower betweenness centrality which is on less than 0.1% of the network’s shortest paths. The 

network has 900N  nodes, 5axonsn , average axon length 800 µm and 65.0 . 

 

Looking at the modularity of our networks as anisotropy is increased, we observe that 

partitioning the network into communities aligned with the medial-lateral axis of our grid is 

increasingly favored over choosing communities aligned perpendicular to that axis (see Figure 

3.11). This may favor a layout in which more strongly connected and functionally related cortical 

areas have that same axial alignment. We investigated modularity with respect to partitioning the 
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nodes into 4 spatially defined communities: first, communities which were (approximately) 

equally-sized rectangular blocks of nodes, aligned with the medial-lateral axis; second, a similar 

arrangement but with the rectangular blocks now parallel to the anterior-posterior axis. In both 

cases, the preponderance of short links, which leads to spatial clustering, ensured that our 

networks were more modular than the comparable network wired uniformly at random. 

However, the modularity was seen to increase significantly with anisotropy for the medial-lateral 

partitioning while decreasing for the anterior-posterior partitioning. 

 

 

Figure 3.11. Modularity versus anisotropy of axon outgrowth.  For the range of anisotropy 

values, we calculated the modularity of our networks with respect to two different community 

assignments. Assigning nodes to 4 approximately equal rectangular blocks, spanning the medial-

lateral extent of our model cortex and having height equal to one fourth of the anterior-posterior 

extent, we see that modularity increases with anisotropy. However, using a partitioning which 

assigns nodes to communities extended along the anterior-posterior axis instead, we observe a 

decrease in modularity. In both cases, the networks are more modular than the comparable 

randomly wired network. This is because the prevalence of relatively short edges in our networks 

leads to clustering among nearby nodes in either set of communities.
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3.6 Discussion 

 
The neuroanatomical results we present in this paper show a surprising independence between 

the early patterns of axon outgrowth and the cortical region of their origin. In these small brains, 

axons extend to the limits of their growth through the cortex itself, and also in the white-matter 

tracts under the cortex. There is no obvious variation in axon “behavior” between axon 

populations arising from sites of origin near cortical boundaries, and axons traversing future 

borders of cortical areas. Axons originating from delimited regions cover a third to a half of the 

entire cortical area. The network model of cortical connectivity inferred from these outgrowth 

distributions suggests that at this scale the cortical network has a high small-world index and is 

not scale-free but rather has both in- and out-degrees which are narrowly distributed (“single-

scale”). Our spatial model suggests that the unexpected anisotropy of initial axon outgrowth may 

represent a partial solution to the problem of minimizing the volume requirement of cortical 

connections while simultaneously maintaining network efficiency. 

Reduced network efficiency has straightforward interpretations in the context of neural 

networks, where a primary goal is the cost-effective and timely exchange and integration of 

information. Increased average path lengths, too, can serve only to incur higher costs and error 

rates in propagating information on the cortical network. Further, the increasingly right-skewed 

distribution of node betweenness centrality with increased anisotropy in axon travel hints at yet 

another potential constraint: highly central nodes render the network liable to suffer a marked 

increase in path lengths in the event of their failure or overload. Clearly, some trade-off must 
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exist between these deleterious effects and any benefits arising from reduced wiring volume. We 

do not know what relative weights one should assign to such costs and benefits in order to 

achieve the optimal trade-off. However, our results suggest that the axonal patterns recorded in 

this study may achieve such a balance. Further, there is evidence that different mammalian 

orders may have evolved disparate solutions to the problem of supporting and connecting 

increased numbers of neurons in the neo-cortex (Herculano-Houzel et al., 2006; Herculano-

Houzel et al., 2007). Anisotropy of axonal outgrowth patterns may be just one aspect of the 

various strategies available to taxa in solving this problem. 

We suggest that two features of the outgrowth patterns described here may contribute to 

the layout of the cortex: highly central nodes in this developing cortex may seed future hub 

regions and modularity may favor certain spatial layouts for cortical areas. Regarding the former, 

one possible effect of a skewed node centrality distribution is to distinguish potential future hubs 

in our network of cortical units. Although network hubs typically have higher-than-average 

degree, the degree statistics of our nodes are narrowly distributed and uniform across 2-

dimensional space. This is in contrast with reports of broader degree distributions in the adult 

cortical network (Sporns et al., 2007). However, in our model networks, nodes with high 

betweenness centrality begin to appear as anisotropy is increased. Such nodes are uniformly 

distributed in space, but may provide seed sites for the emergence, in interaction with activity 

from sub-cortical projections, of structural network hubs, and for a broader distribution of node 

degrees (Modha and Singh, 2010; Hagmann et al., 2008). As development proceeds, elevated 

centrality may lead activity at such sites to be correlated with that at distal regions of the cortex, 

leading to increased persistence of afferent projections. Secondly, we observed that the 
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modularity of our networks favors the formation of communities which extend parallel to the 

medial-lateral axis. The overall layout and separation of sensory and motor modalities in the 

cortex is established by the embryonic polarization of the cortical sheet (Fukuchi-Shimogori and 

Grove, 2001). That polarization may enable the emergent modularity of the cortical network we 

have modeled. Later in development, this modularity may itself guide the formation of features 

of cortical network structure. 

In this study, we have only examined the connectivity structure “implied” by the pattern 

of axon outgrowth also making the assumption that an axon has exactly one arbor, occurring at 

the extent of its travel. We have neither demonstrated that synaptic connections have been made 

by these axons at the limits of their extents, nor that the connections are permanent. Axon tracing 

studies have demonstrated that a typical axon may branch once or more and may have arbors at 

sites other than its most distal arbor (Zhong and Rockland, 2003). As to the effects of such 

limitations in our approach, we expect the measured anisotropy of outgrowth to be largely 

unchanged (assuming that branches of the same axon proceed independently). The length 

distributions we have fitted, however, will have under-represented axon ramifications at shorter 

lengths. The effect of including more ramifications at shorter distances from the neuron’s cell 

body would be to further increase the modularity and clustering (and hence, we expect, also the 

small-world index) of our networks.  

Our network model presents a reduced representation of the cortical network by taking as 

its nodes “cortical units” rather than the greatly more numerous constituent neurons – an 

approach consistent with the notion, presented in several studies, that it is appropriate to consider 

computational units having the scale of, for example, ocular dominance columns (Innocenti and 
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Vercelli, 2010). Implicit in our model, however, is the further assumption that cortical 

connectivity at this intermediate scale can also be usefully depicted using a representative sample 

of “edges” far smaller in number than the axonal connections they hope to mimic. The cross-

comparability of neural networks sampled at different scales and resolutions is a topic of current 

interest in the neuro-imaging community (Zalesky et al., 2010). 

We note that travel in the white matter as measured in this study is only slightly longer 

than the cortex-only travel. For this reason, our network model contained only one class of links, 

modeling all axons as identical. From the empirical data it is clear that axons traversing the gray 

matter alone can span the cortex. However, while the axons travelling in the white matter are not 

very much longer than their gray matter counterparts, they do represent a significant portion of 

the total axon population. This fact suggests these axons, with their capacity for faster and more 

reliable spike propagation, bestow some functional advantage even in a small brain. Further, this 

length mismatch could suggest that the size of the hamster cortex lies near an upper limit for 

what can be spanned by gray matter axons alone. 

Our model is easily extended to accommodate two (or more) classes of axon. One could, 

for example, employ a short class, to mimic unmyelinated axons having a reach less than the 

dimensions of the cortex, and a longer class, representing connections having a length-scale 

comparable with the extent of the cortex. In this manner our model may elucidate the empirically 

observed scaling of white matter volume with increased cortical size (Zhang and Sejnowski, 

2000). This will necessitate deciding on some minimum threshold for network performance (in 

terms of efficiency, shortest path lengths, or similar), and then finding the possible distributions 

and number of white matter connections required to achieve that standard.  
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In conclusion, our goal was to succinctly capture the salient features of the empirically-

measured initial outgrowth distributions in a simple model with a minimal number of parameters. 

Such a concise model, having a small parameter space, is well suited to exploring the 

developmental implications of changes in these parameters. Ultimately, we would like to test our 

model's predictions for connectivity in larger cortices, thereby gaining insight into how 

developmental programs have evolved to achieve efficient communication in larger mammalian 

brains.  
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APPENDIX 3A 

 

SUPPLEMENTARY INFORMATION FOR 

CHAPTER 3: NETWORK STRUCTURE IMPLIED BY INITIAL AXON OUTGROWTH IN 

RODENT CORTEX:  EMPIRICAL MEASUREMENT AND MODELS 

 

Supplementary Tables 

Table 3A.1. Details animals, tracer injections and labelled subcortical nuclei (continued overleaf). 

 Age Animal Pup 
weight 

A-P Length Label Placement

1 PO-1 704.4 2.9 g 3420µm VL, VB, PoM    anterior 

2 PO-1 697.1 2.4 g 3540µm VL, VB     anterior 

3 PO-1 675.2 2.8 g 3600µm MD, VL, VB    anterior 

4 PO-1 678.3 2.6 g 3660µm VL, VB, R    middle 

5 PO-1 704.2 2.7 g 3720µm VL, VB, R    anterior 

6 PO-1 678.1 2.6 g 3600µm MD, VL, VB    anterior 

7 PO-1 678.2 2.8 g 3720µm VL, VB, dLGN    posterior 

8 PO-1 675.1 2.7 g 3480µm R, L     posterior 

9 PO-1 678.4 2.6 g 3600µm VB, L, dLGN    posterior 

10 P2-3 674.3 2.6 g 3300µm VB      anterior 

11 P2-3 695.1 2.8 g 3900µm VB      anterior 

12 P2-3 695.3 2.8 g 3420µm VL, VB, L    anterior 

13 P2-3 710.1 4.4 g 3720µm VL, VB, L    middle 

14 P2-3 695.2 2.8 g  3540µm VL, VB, R    middle 

15 P2-3 679.1 3.6 g 4020µm dLGN, vLGN     posterior 

16 P2-3 710.4 4.0 g 4020µm dLG      posterior 

17 P4-5 671.4 4.4 g 4560µm VL, VB, R    anterior 

18 P4-5 680.4 4.2 g 4140µm VL, VB, R    anterior 

19 P4-5 681.2 4.0 g 4200µm -      middle 

20 P4-5 694.3 4.2 g 4140µm R      middle 

21 P4-5 697.3 6.8 g 4080µm PoM, L, dLGN, vLGN   posterior 

22 P4-5 694.2 4.2 g 4140µm VL, R     posterior 
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23 P6-7 680.5 7.4 g 4500µm VB      anterior 

24 P6-7 669.5 6.2 g 4980µm VL, VB, R    anterior 

25 P6-7 694.4 7.8 g 4720µm VL, VB, PoM, R   middle 

26 P6-7 683.1 6.4 g 5040µm VL, VB, L    middle 

27 P6-7 707.1 5.1 g 4620µm VL, VB, R, L   middle 

28 P6-7 683.3 7.2 g 5040µm L, dLGN, vLGN    posterior 

29 P6-7 669.4 6.5 g 4800µm L, dLGN, vLGN    posterior 

30 P6-7 708.2 7.4 g 5340µm R, L, dLGN, vLGN   posterior 

31 P8-9 671.6 9.1 g 4920µm VL, VM     anterior 

32 P8-9 672.8 10.8 g 5100µm VL, VM, PoM    anterior 

33 P8-9 679.7 10.8 g 5100µm VL      middle 

34 P8-9 692.4 7.9 g 4380µm VL, VB, R, L, dLGN, vLGN middle 

35 P8-9 701.3 10.0 g 4980µm L, dLGN, vLGN    posterior 

36 P8-9 701.1 9.2 g 5160µm R, L, dLGN, vLGN   posterior 

 

Table 3A.1. Injections of anterograde tracer were made into three cortical regions: anterior 

(presumptive motor), middle (presumptive somatosensory) and posterior (presumptive visual 

cortex). Because some variability is evident in the A/P length of brains at similar early ages, we 

also list pup weight in grams. The Label lists only those putative major thalamic nuclei in which 

we have a great degree of confidence in identification at these ages; other nuclei were also 

labeled (see also  Jones (1998)). 

Abbreviations: dorsal lateral geniculate nucleus, dLGN; lateral nucleus, L; mediodorsal nucleus, 

MD; posteromedial nucleus, PoM; reticular nucleus, R; ventrobasal nucleus, VB; ventrolateral 

nucleus, VL; ventral lateral geniculate nucleus, vLGN. 
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Table 3A.2 Statistics of measured axon disctributions. 

 Age Animal Placement Total 
Area 

WM Cortex Subplate Fasc. 

1 P0-1 697.1 anterior 17.4mm2 56.1% 60.1% 39.0% 35.7%
2 P0-1 675.2 anterior 15.0 mm2 23.1% 50.8% 20.9% 20.0%
3 P0-1 704.2 anterior 16.0 mm2 25.1% 36.1% 12.1% 16.9%
4 P0-1 678.1 anterior 15.6 mm2 58.3% 62.6% 50.4% 53.9%
5 P0-1 678.2 posterior 18.1 mm2 21.2% 38.1% 19.5% 33.2%
6 P0-1 675.1 posterior 16.4 mm2 50.2% 73.6% 49.6% 56.7%
7 P0-1 678.4 posterior 17.5 mm2 23.4% 55.7% 31.9% 35.0%
8 P2-3 695.3 anterior 18.3 mm2 48.2% 66.1% 30.8% 37.1%
9 P2-3 710.1 middle 16.7 mm2 67.0% 79.4% 32.8% 33.5%

10 P2-3 695.2 middle 19.2 mm2 49.4% 88.2% 36.6% 46.4%
11 P2-3 679.1 posterior 25.0 mm2 35.4% 59.0% 39.4% 22.8%
12 P4-5 671.4 anterior 30.8 mm2 32.0% 59.1% 23.1% 17.9%
13 P4-5 680.4 middle 31.4 mm2 20.5% 53.8% 16.1% 16.9%
14 P4-5 697.3 posterior 28.6 mm2 35.7% 40.6% 31.0% 10.8%
15 P6-7 680.5 anterior 35.9 mm2 32.1% 50.9% 29.2% 22.6%
16 P6-7 669.5 anterior 40.2 mm2 25.6% 71.3% 22.7% 24.9%
17 P6-7 683.3 posterior 44.6 mm2 48.7% 52.2% 43.3% 29.1%
18 P8-9 672.8 anterior 39.6 mm2 46.3% 81.2% 47.1% 48.0%
19 P8-9 671.6 anterior 37.2 mm2 22.8% 73.4% 23.7% 14.8%
20 P8-9 701.3 posterior 35.7 mm2 40.9% 71.8% 47.5% 33.6%

 

Table 3A.2. Statistical analysis was performed using these measurements from 20 pup brains and 

2 adult brains. Total isocortical area is expressed in mm2 and axonal coverage in each substrate is 

expresses as a fraction of total isocortical area. Abbreviation: white matter, WM; infracortical 

fasciculus, fasc. 
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Supplementary Figures 

 
 
Figure 3A.1. Fits to data for the length distribution function. Shown here in blue is the 
empirically measured function )(rS  and, in red, our model, ));(1( rCn  , where n  is a  
normalizing constant and );( rC  is the cumulative distribution function of the gamma(2) 

distribution, 


 /

2
);( re

r
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Figure 3A.2. Fits to data for the angular distribution function . Shown here in blue is the 
empirical function )(  and, in red, the fitted angular probability distribution ),;( q  for the 
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collapsed axon distributions. The parameter   ("anisotropy") determines the height of both 
peaks and   ("tilt") determines the location on the circle of the diametrically opposed peaks. 
 

 

Figure 3A.2. Histograms of node betweenness centrality for several values of values of 
anisotropy  . The right tail of the distributions of betweenness centrality values is seen to 
become heavier with increased anisotropy   of the axon distribution. The inset provides an 
enlarged view of the area demarked by the dashed rectangle.   
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