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Part I:

We illustrate di↵erent modeling approaches to describe the dynamics of dengue

fever (a vector-borne disease). According to the Center for Disease Control and

Prevention (CDC), there are an estimated 50 to 100 million cases of dengue fever

(the symptoms associated with dengue infection) every year around the world

(mostly in the tropics) 1. We demonstrate that “e↵ective” mosquito control strate-

gies are not su�cient in controlling dengue outbreaks. It is possible for low

mosquito densities to cause large outbreaks. Furthermore, mosquito eradication

is likely the most e↵ective way to eliminate dengue fever but it is unpractical

and nearly impossible to achieve. Based on the epidemiological threshold, R0, we

were able to determine the most sensitive parameters that can lead to enhance

the implementation of public health policies and control strategies under di↵erent

modeling scenarios.

1CDC: Fact Sheet: Dengue and Dengue Hemorrhagic Fever. June 19, 2001.
World Wide Web. http://www.cdc.gov/ncidod/dvbid/dengue/facts.htm



Part II:

Alcohol abuse has been a problem for a long time in the United States. Drink-

ing behavior patterns have changed over the years and it a↵ects all races, age

classes and social status. We used epidemiological approaches and constructed

mathematical models to study drinking behavior. We find that peer pressure from

moderate drinkers have the biggest impact on the population of low-risk drinkers.

Threshold quantities that establish the prevalence of the drinking communities are

studied and thoroughly analyzed to determine possible prevention strategies. We

also explored the e↵ect of the SDR (susceptible (’at-risk’), drinkers, temporarily

recovered) model on a ’small-world’ structure and a continuous time Markov chain

model. We found that network structure does not play a role on drinking behavior

dynamics. We conclude that the SDR model is robust. For the stochastic simula-

tions we computed final size drinker distributions. We also explored a more detailed

model that includes four drinker classes (abstainers-occasional drinkers-moderate

drinkers-heavy drinkers) and n neighborhoods. We computed threshold conditions

and conducted an uncertainty analysis. We determine that the key transition to

have an endemic drinking culture is from occasional drinker to moderate drinker.
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Chapter 1

Part I: Introduction
It is believed that dengue originated in Africa [42]. During the late 18th century

there were the “first” major outbreaks in Asia, Africa, and North America but it is

still uncertain as to the exact date (period) when dengue originated. As reported

in the CDC the occurrence of these outbreaks on three continents leads to believe

that these viruses have been spread worldwide for many years. Dengue fever was

not considered to be a fatal disease for those who visited endemic countries [7].

During the late 19th century and early 20th dengue fever was being misdiagnosed

with other similar diseases like, scarlatina and rheumatic fever [1, 2, 3, 4].

The first recorded outbreaks were in 1779 � 1780 in Asia, Africa and North

America. Long ago the periods between epidemic outbreaks were long, 10 � 40

years. Sailing vessels were the preferred mode of vector transport in those times [7].

Dengue fever seems to a↵ect around 100 million people annually. The exact num-

bers are unknown because not all the cases are reported, cases can reflect flu-like

symptoms and many are asymptomatic [50].

There are four di↵erent serotypes (DEN-1, DEN-2, DEN-3 and DEN-4). In-

dividuals acquire permanent immunity from each serotype with which they have

become infected. Tropical and subtropical regions experiencing high levels of ur-

banization and increased deforestation are often the areas at the greatest risk for

vector-borne disease epidemics [46, 49]. Currently dengue is one of the most serious

human infectious diseases [50].

The most severe case of dengue is Dengue Hemorrhagic Fever (DHF) or Dengue

Shock Syndrome (DSS). There are two theories that have attempted to explain the

1
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pathogenesis of DHF. One is that virulent dengue virus strains cause DHF while

avirulent strains cause DF (Dengue Fever). The other is that DHF is mediated

by host immune responses. In other words, the cross-reaction between strains can

augment infections [50].

Some important factors that may have contributed to the global emergence of

DHF are: lack of e↵ective mosquito control in dengue-endemic countries, uncon-

trolled urbanization and population growth [7]. A total of 250, 000�500, 000 cases

of DHF are reported annually with a fatality ratio of about 5% [50] (see Figure 1.1

for a world distribution of dengue). Research has shown that 85%� 90% of DHF

cases have been caused by cross-reactions between di↵erent strains. DHF can oc-

cur in primary or secondary infections but it is more common during a secondary

infection [50]. Susceptibility is universal, but children generally have milder ill-

Figure 1.1: World distribution of dengue epidemic [10].

ness than adults. All four dengue serotypes produce flu like symptoms; headache,

backache, fatigue, sti↵ness, anorexia, and chills [42]. The strains are antigenically
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distinct, that is, infection with one type does not typically provide immunity to

a second type. Instead after infection with a particular strain there is at most 90

days [40, 53]) of partial immunity to other strains.

Recent papers by [19, 43, 41, 58] highlight the concerns of the disease emerging

to higher endemic states where it was absent and then reappeared. There are many

factors that can contribute to the reappearance of dengue fever:

• Infiltration of a new strain to a mostly susceptible population,

• Loss of immunity in the population,

• Considerable urbanization of rural areas (increases the number of breeding

sites),

• Climate variability: temperature fluctuations, floods and droughts.

Current policies and interventions focus on educating people about the seri-

ousness and possibly fatal consequences of dengue fever and its fatal form Dengue

Haemorrhagic Fever (DHF) and Dengue Shock Syndrome (DSS). However, these

methods have had an negligible e↵ect on dengue endemic countries (see Figure 1.1).

Social dynamics play an important role in the transmission of dengue. Lack

of resources, poor living, as well as, lack of knowledge or careless behavior can

contribute to new dengue infections. We show that collective behavioral changes

can reduce the number of dengue infections. We assume that collective behavior

change imply low cost artifacts and rational behavior such as: mosquito repellents,

bed nets and screens on windows.

The total economic cost of dengue is di�cult to estimate since nearly half the

cases are asymptomatic or not reported. Loss wages, work days lost, absenteeism

all contribute to the economic impact but are hard to measure accurately.
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In Chapter 2 we discuss the epidemiology of dengue. Chapter 3 reviews previous

dengue models and their results. In Chapter 4 we explore a single-outbreak model

and fit it to data from the most recent outbreaks in Singapore (2001, 2004, and

2005). We make comparisons, estimate parameters and estimate the reproductive

number for each outbreak. In Chapter 5, we consider a single strain mathematical

model that incorporates the early life-history of the vector allowing for multiple

mosquito densities depending on the egg/larvae recruitment function. We incor-

porate seasonality and illustrate a simple scenario which shows that low mosquito

densities can still cause large outbreaks when a new strain is introduced in a mostly

susceptible population. In Chapter 6, we look at the e↵ects of social dynamics by

incorporating collective behavioral change classes in a two-strain model.



Chapter 2

Epidemiology of dengue

2.1 Ecology of Aedes aegypti and Aedes albopictus

Two species of mosquitoes are capable of transmitting the dengue virus, Aedes

aegypti and Aedes albopictus. Aedes albopictus is found mostly in rural areas.

Aedes aegypti is mostly found in urban areas where human density is high. Aedes

aegypti is the main vector/carrier of the dengue virus. The life cycle of Aedes

aegypti consists of four stages [8]. During the first stage the eggs are laid just

above the water line on tree holes, discarded containers, or on the ground where

water might fall. Eggs can survive without water for almost a year. Aedes aegypti

lays up to 150 at once and on average can lay about 1, 400 eggs in its lifetime. The

eggs hatch in 1�2 days and release the larvae. After 7�10 days the larvae change

to pupa in preparation for the adult stage. Days after maturation, the females

look for a blood meal and males mate. The males do not ingest blood but feed

on plants and flowers. Females can feed on animals or humans but research has

shown that they prefer to feed on humans [45, 7]. On average these mosquitoes

can live for a period of 12 to 15 days [38]. The females feed every two to three days

and lay eggs after the feeding process [56]. Aedes aegypti do not usually breed in

contaminated waters [42, 5]. This process is highly dependent on temperature.

Aedes aegypti has adapted to live around human environments and eradication

has proven impossible. This is mainly due because the breeding sites are in a great

part created by humans [48, 30, 42].

5
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Figure 2.1: Manifestations of the dengue syndrome [42].

2.2 Transmission cycle

Dengue transmission may occur when an uninfected female mosquito feeds on an

infected individual or when an infected mosquito bites an uninfected human. Al-

though there has been evidence of vertical transmission of dengue virus by Aedes

aegypti, typically they can only get infected after biting an infected person. Once

the virus is in the mosquito replicates for a period of 8 to 12 days [11]. Humans

cannot infect other humans. At the time the individual is infected the virus re-

produces and produces symptoms that can last from 3� 14 days (see Figure 2.2).

2.3 Treatment and control

Since dengue viruses were isolated, e↵orts to make a vaccine has failed. There is

no vaccine for dengue fever. However, there are e↵orts in developing attenuated

vaccines for dengue fever [25, 20]. These vaccines are in the early stages and human

trials have not begun. Hence, it is possible that an e↵ective vaccine will not be

available for the next five to ten years.
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Figure 2.2: Transmission cycle [11].

2.4 Seasonal trends and the e↵ects on dengue transmission

There are many factors that can influence the transmission of dengue fever, e.g.

climate, vector movement, vector density among others [42, 26, 54, 39]. There has

been significant research on vector-density and there is no clear answer about how

low the density of mosquitoes should be in order to prevent large outbreaks. In

fact, in Singapore the house index dropped to 1% and outbreaks still occurred [42].

See Figure 4.1.



Chapter 3

Review of dengue models and results
Previous dengue models have been developed by [34, 32, 33, 35, 27, 37]. In this

chapter I review some of the models previously analyzed and their results.

Most of these papers focus on the ongoing discussion of what causes Dengue

Hemorrhagic Fever (DHF) or Dengue Shock Syndrome (DSS) [50, 49, 6, 7, 44]. The

main focus in literature was in the immunology of dengue [42, 40, 44, 56, 19, 5].

From previous mathematical modeling few approaches (see [54]) were taken to

study reducing the number of breeding sites which could probably be responsible

for large epidemic outbreaks. Public policies have been implemented in order to

alert communities of the danger of these mosquitoes, however, the strategy works at

some level but dengue strains can invade a susceptible population by immigration

or loss of immunity as it has happened in Central America, South America, and

Puerto Rico [7]. It is widely believed that cross-reaction of strains (DEN�2 being

the main suspect) is the main catalyst of dengue hemorrhagic fever, DHF.

We reviewed a model for a single strain of dengue [31]. Their model’s equations

are:

S 0H(t) = µHNh � �Hb
Nv

NH + m
Sh

Iv

Nv
� µHSH

I 0H(t) = �Hb
Nv

NH + m
SH

Iv

Nv
� (µH + �H)IH

R0
H(t) = �HIH � µHRH

S 0v(t) = A� �vb
NH

NH + m
Sv

IH

Nh
� µvSv

I 0v(t) = �vb
NH

NH + m
Sv

IH

NH
� µvIv

where NH = SH + IH + RH and Nv = Sv + Iv represent the host and vector

8
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populations respectively with Sh, Sv denote the susceptible populations, IH , Iv

the infected and RH the recovered, here assumed with permanent immunity. The

parameter values are: µH = 0.0000457, µv = 0.25, b = 0.5, �H = 0.75, �v = 1,

m = 0, �H = 0.1428, N = 10, 000, and A = 400.

A single strain dengue model is constructed where they include biting rates

and probability of infection (human-mosquito and vice-versa). The analysis of the

model turns out to be more complicated but model results and predictions are

qualitatively similar to those resulting from our proposed model which includes an

egg/larva recruitment function f(L) which is density dependent (L-total mosquito

population).

The model looks at the impact of ULV insecticide treatment. The treatment

is applied during seven days when there is a low prevalence of the virus. The

insecticide does not reduce prevalence of dengue, however, it delays the onset of

the epidemic. Essentially, the model looks at vector mortality as a form of control

and prevention.

In [35] the competitive dynamics of dengue fever using an ode model is studied.

Their objective is to find conditions for or against competitive exclusion. The

model is described by the following system of nonlinear di↵erential equations:

S 0(t) = h� (B1 + B2)S � µS, (3.1)

I 01(t) = B1S � �2B2I1 � uI1, (3.2)

I 02(t) = B2S � �1B1I2 � uI2, (3.3)

Y 0
1(t) = �1B1I2 � (e1 + u + r)Y1, (3.4)

Y 0
2(t) = �2B2I1 � (e2 + u + r)Y2, (3.5)

R0(t) = r(Y1 + Y2)� uR, (3.6)
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and

M 0(t) = q � (A1 + A2)M � �M, (3.7)

V 0
1(t) = A1M � �V1, (3.8)

V 0
2(t) = A2M � �V2. (3.9)

Where N = S + I1 + I2 + Y1 + Y2 + R and T = M + V1 + V2 are the total host and

vector populations respectively.

To briefly discuss the outline of the model we have the following population

classes: S, susceptible hosts, Ii(i = 1, 2), first infection of the host with strain 1

and 2 respectively, Yi(i = 1, 2), second infection with strain 1 or 2 depending on

which strain the host had previously, R, recovered class. The primary infection of

the host is given by,

Bi =
�iVi

c + !hN
.

There are two stages for the vector; M , adult vectors, Vi(i = 1, 2), where a host is

infected with either strain 1 or 2 at a given rate of,

Ai =
↵i(Ii + Yi)

c + !vN
.

These describe frequency-dependent disease transmission and both are special cases

of the Holling type II functional response [24] and are generalizations of the model

for Malaria [16], and Chagas disease [59].

The authors incorporate vector-host dynamics in a two-strain dengue model.

They carry out numerical simulations to illustrate their results using parameter

ranges from the 1991 dengue fever outbreak in Brazil [51]. They estimate the

basic reproductive number for both strains (⇡ 2 for both). The existence of the

interior endemic equilibrium (both strains co-exist) is established via simulations
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for �i 2 (0, 2). If �i (susceptibility index to strain i) is very small or large only the

boundary equilibria exist. The authors were able to establish conditions for the

existence of the interior endemic equilibrium for ranges in �i. The parameter values

used for simulations are: u = 1/70 years, r = 1/14, ↵i 2 (0, 0.05), �i 2 (0, 0.05),

� = 1/14, c = 1, ! = 0.5, and �i 2 (0, 5).

In the next chapters we constructed dengue fever models that look at a single-

outbreak model using current data from Singapore [13], incorporate the early life-

stage of the vector, and a multiple strain model that includes collective host be-

havior changes.



Chapter 4

A case study: a single-outbreak model

for dengue outbreaks in Singapore
Singapore a member of Southeastern Asia Islands is located between Malaysia and

Indonesia. It has a population of approximately 4.5 million and has an area of

692.7 sq. km [15]. The weather is tropical which makes it an ideal habitat for the

vector (Aedes aegypti and Aedes albopictus) that transmits dengue. Dengue fever

has been a problem in Singapore where its public health system has implemented

measures but have not impacted dengue transmission. Some of the preventive

measures include [13]:

• Clustering of cases by place and time

-Intensified control actions are implemented in these cluster areas.

• Surveillance control programs

-Vector control

-Larval source reduction (search and destroy)

• Health education

-House to house visits by health o�cers -Dengue prevention Volunteer Groups

(National Environmental Agency (NEA))

• Law enforcement

-Large fines for facilitating the existence of breeding sites

However, the situation worsen since 2001. Here, we have gathered data from two

di↵erent outbreaks (2001 and 2004) and use them to estimate model parameters

12
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Figure 4.1: Confirmed DF/DHF weekly cases from 2001� 2006 in Singapore [13].

and the basic reproductive number for both years.

In Figure 4.2 we observe that DEN � 1 and DEN � 2 have been the prevalent

strains in Singapore from 1992�2004. In particular, using the data provided by [13]

we can conclude that DEN � 2 strain is responsible for the majority of dengue

cases from 2001 � 2003 (see Figure 4.1). These outbreaks are fairly consistent in

their magnitude. Moreover, in 2004 DEN � 1 took over as the dominant strain

and not surprisingly the number of cumulative cases increased significantly. In

2005, DEN � 1 prevailed as the dominant strain, however, the number of cases

caused by strain DEN�3 increased. In Figure 4.1 we see that the number of cases

for 2006 is significantly lower than for previous years. These sudden drop in the

number of dengue cases may be due to the increased immunity in the population.

Using geographical data [13] we can see from Figure 4.4 that from 2001�2003 most

dengue cases were scattered along similar regions. However, in 2004, even when

it’s apparent the most dengue cases occurred in the same regions the concentration
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Figure 4.2: Confirmed DF/DHF cases [13].

of the cases seems to be larger than previous years. This is consistent with data

on the weekly number of cases (see Figure 4.1). It still remains uncertain how the

cases are distributed for 2005. The di↵erence from the 2001 outbreak in comparison

with 2005 is of 11, 464 cases. From Figure 4.5 Aedes aegypti is mostly found in

ornamental and domestic containers. This trend points at the importance of social

behavior. It is vital for individuals to reduce the risk of transmission by destroying

uncommon artificial breeding sites. The host is mainly responsible for providing

“artificial” breeding sites for the mosquitoes and increasing the transmission of

dengue. It is worth noting that although anyone can be infected with dengue some

age groups are more a↵ected than others. In Figure 4.6 we look at seven di↵erent

age groups and their respective dengue incidence rates (per/100, 000). We observe

that although incidence has increased steadily in all age groups since 2001 there

was a major increase in the 5 � 14 age group from 2003 to 2005. This growth

can be correlated to the activity level of this age group along with the increased
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Figure 4.3: Map of Singapore.

number of “artificial” breeding sites. In fact, dengue incidence rates more than

doubled in all age groups from 2003 to 2005.

Laboratory surveillance. Reported cases were serologically confirmed by

one or more of laboratory tests; viz. anti-dengue IgM antibody enzyme linked

immunosorbent assay (ELISA) and the haemagglutination-inhibition test.

4.1 Single-outbreak model

In this chapter we introduce simple single-outbreak mathematical model that de-

scribes the dynamics of dengue between hosts and vectors in Singapore. The

population is divided as follows: S-susceptible, E-exposed (infected but not in-

fectious), I-infected (presumed infectious) and R-recovered (immune). For the

vector we have: V (susceptible mosquitoes), L (latent mosquitoes) and J (infected

mosquitoes). The following is the system of nonlinear di↵erential equations that
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2001 2002

2003

2004

Figure 4.4: Geographical distribution of DF/DHF in Singapore from 2001 �

2004 [13].

we use to model the dynamics of a single outbreak:

S 0 = ��S J
M ,

E 0 = �S J
M � ⇢E,

I 0 = ⇢E � �I,

R0 = �I,

V 0 = �↵V I
N ,

L0 = ↵V I
N � (µm + �)L,

J 0 = �L� µmJ,

(4.1)

where N = S + E + I + R and M = V + L + J .

We will compare two outbreaks that occurred in Singapore. We fit our model
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[Reported by Kita Y, Communicable Diseases Division (Surveillance), Ministry of Health and Tang CS, Environmental Health

Institute, National Environment Agency]

Figure 6

Distribution of Ae. aegpyti by top 5 breeding habitats, 2004
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Figure 7

Distribution of Ae. albopictus by top 5 breeding habitats, 2004
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Editorial comments

Singapore is known for its well-established pub-

lic health infrastructures, sound environmental man-

agement, close inter-agency collaboration and organ-

ised concerted health educational efforts in dengue

prevention and control. Despite its successful imple-

mentation of the nationwide integrated Aedes mos-

quito control programme with the overall Aedes house

index maintained at between 1 and 2 since the 1980s,

dengue has re-emerged as an important vector-borne

disease. Epidemics occurred in a 6-year cycle in 1992

(incidence rate of 102 per 100,000), 1998 (166 per

100,000) and 2004 (219 per 100,000). Factors which

could have contributed to the resurgence include de-

clining herd immunity of the population with only

6.4% of children and young adults below 25 years of

age possessing haemagglutination-inhibition antibody

to dengue 21, localised build-up of Aedes population,

change in Aedes bionomics resulting in a higher risk

of children acquiring dengue infection outside the

home2, and periodic emergence of a predominant den-

gue serotype.  Unlike most other dengue endemic

countries in the region, dengue fever comprised more

than 98 % of the reported cases and the median age

was 25 years with males outnumbering females by

1.6 times.

In the current vector control programme imple-

mented by NEA, Ministry of the Environment, source

reduction is the main strategy. There is a systematic

surveillance programme and an effective control strat-

egy to quickly curtail disease transmission. A geo-

graphic information system is used for tracking vec-

tor distribution and population for the surveillance

and control of disease outbreaks. Law enforcement

Figure 4.5: Distribution of Ae. aegpyti by top five breeding habitats, 2004 [13].

to data and estimate parameters for each outbreak. We will focus on the infectious

period (1/�) and the transmission (contact) rates for human and vector (� and ↵,

respectively). Parameter definitions can be found in Table 4.1

4.2 Results

The basic reproductive number for the system is given by:

R0 =

s
�

�

�

µm + �+ d

↵

µm + d
,

where � is the transmission rate from vector to human. 1/� represents the average

host infectious period. ↵ is the transmission rate from human to vector. 1/(µm+d)

is the average vector infectious period and �/(µm +�+d) represent the proportion
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Figure 4.6: Age-specific incidence (per/100,000) rates of DF/DHF cases [13].

of vectors that make it to the infectious class (J).

We used the data from [13] to fit the model, estimate parameters and the

basic reproductive number from the 2001, 2004 and 2005 outbreaks. For the 2001

outbreak the dominant strain was DEN � 2 followed by DEN � 4, DEN � 1

and DEN � 3. However, in 2004 DEN � 1 surpassed DEN � 2 as the dominant

strain in the population with approximately 70% of the cases (see Figure 4.2).

DEN � 2 followed with approximately 28% of the cases. DEN � 3 and DEN � 4

did not play a big role in the 2004 outbreak. In Figure 4.7, 4.8 and 4.9 we show

the cumulative number of DF/DHF confirmed cases and the model solution. It

is important to notice that the average infectious period (�) is approximately 1.7

days for 2001 and 7 days for 2004. This implies that the window of opportunity of

the mosquito was relatively short in 2004 and much larger in 2005. In 2001 dengue

was possibly a mild illness and in 2005 it was likely that the disease was more

virulent. In fact, the number of hospitalizations due to dengue has increased since
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Table 4.1: Parameter List

Parameters Description

↵ contact rate (human-vector)

� contact rate (vector-human)

⇢ latent period in humans

� latent period in mosquito

µm per-capita adult mosquito mortality rate

� per-capita recovery rate

2003 [12]. It is not clear if loss of immunity plays a role in the increased virulence

Table 4.2: R0 estimates for dengue outbreaks in Singapore from 2001� 2005.

Year Value Dominant strain

2001 1.1 2

2002 2.4 2

2003 4.7 2

2004 1.2 1

2005 5 1

of dengue. Moreover, the 2005 outbreak in which there were more than 700 cases

the third week of September, the biggest number of new cases seen in Singapore.

Some studies have shown that climate variations such as temperature and rainfall

are key components in the transmission of dengue [43, 26]. Furthermore, the 2005

outbreak seems to behave di↵erently. The number of cases increased by 4, 659 from

the previous year.
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Figure 4.7: Singapore data from the 2001 dengue outbreak. Estimates of the

parameters: � = 0.73, ↵ = 0.75, � = 4.2, ⇢ = 2.3, � = 0.5 and µ = 0.1. The

estimated basic reproductive number for this outbreak is R0 = 1.1.
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Figure 4.8: Data from the 2004 dengue outbreak in Singapore. Estimates of the

parameters: � = 0.2, ↵ = 0.83, � = 1, ⇢ = 2.33, � = 0.6 and µ = 0.1. The

estimated basic reproductive number for this outbreak is R0 = 1.2.
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Figure 4.9: Data from the 2005 dengue outbreak in Singapore. Estimates of the

parameters: � = 1.1, ↵ = 1, � = 2, ⇢ = 0.04, � = 0.2 and µ = 0.02. The estimated

basic reproductive number for this outbreak is R0 = 5.
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4.3 Conclusions

Despite the tremendous e↵orts of the public health system in Singapore to control

dengue the number of confirmed clinical DF/DHF cases has increased over the past

five years by 11, 464 new cases. Some factors that could be contributing to the

situation in Singapore are: the introduction of new strains, new pool of susceptible

individuals (via immigration) and lack of significant reduction in vector population

are some of the most important factors.

Other contributing factors are migration and loss of immunity. It was estimated

that in 2006 that the migration rate was 9.12 per 1000 individuals [13]. This

factor could be contributing to the new cases by displacing the immune individuals

(migration) and adding a new pool of susceptible (immigration).

We estimated the basic reproductive number for 2001 � 2005 outbreaks (see

Table 4.2). From the parameter estimates we obtain that the reproductive numbers

for each outbreak. We conclude that the di↵erence in the infectious period (�) gives

the vector a bigger window of opportunity to transmit the virus. Also, there are

other important factors that could possibly play a major role in transmission such

as: immigration and the di↵usion of strains in the population.

Other factors can be contributing to the increased virulence and transmissibility

of the virus. Some of which will be discussed later.



Chapter 5

Single strain model with vector-life

history⇤

Several models of dengue have been developed in the past [34, 32, 33, 35, 27],

with most of them in the tradition of Ross [57]. Knowledge of life history of the

vector (closely connected to the distribution, size and dynamics of breeding sites)

is the key to the development of potentially e↵ective control measures [36]. Yet,

the vector life history has rarely been included by theoreticians. A model that

includes a detailed account of the life history of the vector may not be amenable

to analysis. Instead, the classical Ross model is expanded to include a simplified

version of the vector’s life history. The impact of selective vector control measures

on dengue dynamics is explored. The model assumes that (female) vectors may be

found in three states: the egg/larvae state, E; the uninfected vector state, V ; and

the infected vector state, J . The host (humans) disease dynamics are modeled via

an SIR model (see [21, 47, 22, 17, 29]), where S(t) denotes the susceptible human

population at time t; I(t) the infected (assumed infectious) host population at

time t; and R(t) the recovered individuals (with assumed permanent immunity) at

⇤Sánchez, F., Engman, M., Harrington, L. and C. Castillo-Chávez. Models for
Dengue Transmission and Control. Modeling The Dynamics of Human Diseases:
Emerging Paraddigms and Challenges. AMS Contemporary Mathematics Series
(in press). Gumel A. (Chief Editor), Castillo-Chávez, C., Clemence, D.P. and R.E.
Mickens.
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time t. The model is given by following non-linear system:

dE
dt = f(L)� (µe + �)E = f1(E, V, S, R, J, I)

dV
dt = �E � µmV � ↵V I

N = f2(E, V, S, R, J, I)

dS
dt = µN � �S J

L � µS = f3(E, V, S, R, J, I)

dR
dt = �I � µR = f4(E, V, S, R, J, I)

dJ
dt = ↵V I

N � µmJ = f5(E, V, S, R, J, I)

dI
dt = �S J

L � (µ + �)I = f6(E, V, S, R, J, I)

(5.1)

where L = V + J and N = S + I + R denote the total adult vector and host

populations respectively. N is assumed to be constant, a valid assumption when

the time scale of interest is short in relation to the life-span of the host but L is not

assumed to be constant. In fact, the net egg/larvae recruitment function f(L) is of

Kolmogorov type, that is f(L) = Lg(L) with g : R+ ! R+ a di↵erentiable function

such that g(0) > 0, and g(1) = 0. Dengue is not assumed to increase vector death

rates. Selective control measures (Section 4) are modeled by replacing the more

general function g with gc(L) ⌘ g0(L) � c(L), where g0(L) represents a (strictly

decreasing) per-capita mosquito fertility rate and c(L) the per-capita vector death

rate that results from selective control e↵orts. Control e↵orts are modeled in a

phenomenological way via the function c(L) which captures, in a rough manner,

the impact of measures geared towards the elimination of the egg/larvae. These

measures may include selective spraying of areas where vector density is high.

Furthermore, it is assumed that such measures negatively impact the net egg/larvae

recruitment functions. Consequently, g�1
c (y) denotes the, possibly multiple valued,

inverse image of y under control regime c, that is, shifting vector densities via

control measures is a possibility. The parameters used in the model are defined

in Table 5.1. Naturally, a reasonable model that includes the life-history of the
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Figure 5.1: Caricature of the model.

vector must be able to support a critical mass of vectors. Enough hosts must also

be available for dengue to prosper. Since our focus is primarily on the study of

dengue in endemic regions with characteristics similar to those found in Singapore,

N is large “enough”. Conditions that guarantee the establishment of a “critical”

mass of vectors are tied into the nature of f(L). Certainly, such a critical mass

exists in places where dengue is endemic (like the Caribbean). The existence of a

minimal critical mass of vectors depends on the demographic threshold Rd(0) (see

below). Rd(s) will govern the existence and stability of vector densities at level s

where s � 0.

In the absence of control measures (gc = g0) only two vector densities may be

possible L1 ⌘ 0 and L1 > 0. Rd(s), the vector demographic number at vector

density L1 = s, is given by

Rd(s) =
f 0(s)

�
where � =

(µe + �)µm

�
. (5.2)
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Table 5.1: Parameter List

Parameters Description

� per-capita rate at which viable eggs become adult vectors

↵ contact rate (human-vector)

� contact rate (vector-human)

µe per-capita egg mortality rate

µm per-capita adult mosquito mortality rate

µ per-capita natural human mortality rate

� per-capita recovery rate

Where f is the net egg/larvae recruitment function described above. Rd(0) denotes

the invasion demographic reproductive number. Rd(0) > 1 corresponds to the

situation where a vector population can successfully invade a habitat. In fact,

Rd(0) > 1 guarantees the existence of a critical mass of vectors (positive and

stable). It is assumed throughout that Rd(0) is always greater than one. That is,

the possibility of vector extinction is excluded in this study.

The issue of whether or not a disease can invade a host population and re-

main endemic requires the introduction of a second threshold. Disease invasion

and persistence are typically intimately connected to the disease’s basic reproduc-

tive number R0. This number or “ratio” is a dimensionless quantity that gives

the number of secondary infections generated by a “typical” infectious individ-

ual (vector or host) in populations at demographic equilibrium. R0 involves the

parameters that drive the “invasion” process. Hence, its study (sensitivity and

uncertainty) helps identify key parameters and evaluate the relative e↵ectiveness

of various control measures. R0 can be computed in various ways. Here, we use
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the next generation operator method [23], [28], and obtain that

R0 =

s
↵�

µm(µ + �)
. (5.3)

It is shown (Rd(0) > 1) that the disease’s basic reproductive number R0 is

the key. The condition R0 < 1 is, at least, a necessary condition for a globally

asymptotically stable disease free state. On the other hand, R0 > 1 allows the

possibility of multiple stable endemic states.

Control is modeled, in the endemic case, as an adult (vectors) harvesting process

with a maximal harvesting rate (e↵ort) ✏. Although, the economics of control are

not included, it is implicitly assumed that the cost of increasing ✏, that is, the

cost of eliminating a larger number of adults per unit of time, may grow fast as ✏

increases. Limitations on our ability to implement control e↵orts (measured by ✏)

may have a severe impact the vector’s dynamics, a point that will be illustrated

below.

5.1 Disease dynamics and control

In this section it is assumed that the vector has become established, that is, that

Rd(0) > 1. We also assumed that we have plenty of hosts, N >> 0. The infection-

free equilibrium is

E1 =
µm

�
g�1

c (�), L1 = V1 = g�1
c (�), S1 = N, R1 = J1 = I1 = 0. (5.4)

The “mosquito-free” and “disease-free” state (0, 0, N, 0, 0, 0), is an essential

singular point of the system is therefore not considered⇤ (see [18]). Conditions

⇤However, the use of DDT was probably responsible for the disappearance, over
many decades, of dengue in Costa Rica (L. Harrington; personal communication)
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for the existence of positive (disease present) equilibria are immediate from the

formulae:

E1 = µm

� g�1
c (�),

V1 = µ+�
µR2

0+�
g�1

c (�),

S1 = N(�+µR2
0)

(µ+�)R2
0

,

R1 = �Nµm(R2
0�1)

↵(µ+�) ,

J1 = µ(R2
0�1)

µR2
0+�

g�1
c (�),

I1 = µNµm(R2
0�1)

↵(µ+�) ,

(5.5)

Clearly, positive (endemic) equilibria are possible whenever R0 > 1. The role of

R0 is fundamental in both the free and “controlled” host-vector system as the

following series of results show. The proofs are in the appendix.

Theorem 5.1.1. Consider the system (5.1) with f(L) = Lgc(L) where gc, is

di↵erentiable. Assume {g�1
c (�)} is non-empty, and let n = card{g�1

c (�)} (i.e. the

number of positive vector densities) then

a.) If R0  1 then the system has n positive disease-free equilibria (at various

vector densities) and no endemic equilibria.

b.) If R0 > 1 then the system has n positive disease-free equilibria and n endemic

equilibria (at distinct vector densities).

In other words, control measures may support various stable vector densities (a

function of the e↵ort and related parameters). Result 4.1 suggests that as long as

there is a critical stable mass of vectors (and a large host population) the disease

will survive if R0 > 1. Specific conditions are set in Result 4.2 and 4.3 below.

Theorem 5.1.2. Let ~x1(DF ) = (E1, V1, N, 0, 0, 0) be a disease-free equilibrium

of (5.1) then ~x1(DF ) is l.a.s. if R0 < 1 and Rd(g�1
c (�)) < 1. If either of R0 or

Rd(g�1
c (�)) are greater than 1 then the corresponding equilibrium is unstable.
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Theorem 5.1.3. Let ~x1 = (E1, V1, S1, R1, J1, I1) be an endemic equilibrium

of (5.1) then V1 + J1 2 {g�1
c (�)}, R0 > 1 and ~x1 is locally asymptotically stable

if Rd(g�1
c (�)) < 1 and unstable if Rd(g�1

c (�)) > 1. Note that Rd(g�1
c (�)) < 1

simply states that we have a stable vector population (an attractor).

The condition in Result 4.4 (below) follows from the observation that since

f(L) = Lgc(L) then

f 0(g�1
c (�)) = �+ g�1

c (�)g0c(g
�1
c (�)). (5.6)

Dividing by 1
� gives

Rd(g
�1
c (�)) = 1 +

1

�
g�1

c (�)g0c(g
�1
c (�)). (5.7)

Hence, Rd(g�1
c (�)) < 1 if and only if g0c(g

�1
c (�)) < 0, that is:

Theorem 5.1.4. Let ~x1 = (E1, V1, S1, R1, J1, I1) be a (positive disease free or

endemic) equilibrium of (5.1) then Rd(g�1
c (�)) < 1 if and only if g0c(V1+J1) < 0.

In the absence of control measures the system behaves as expected, that is,

Theorem 5.1.5. Assume that c(L) = 0, that is, f(L) = Lg0(L) where g0(L) is

strictly decreasing. If Rd(0) > 1 and R0 < 1 then the unique positive disease-free

equilibrium, ~x1, given by (5.4), is globally asymptotically stable in the domain

⌦ = {(E, V, S, R, J, I)|E > 0, V > 0, S + I + R = N} ⇢ R6
+.

We note that the same result can be obtained under the weaker hypotheses:

card{g�1
c (�)} = 1 and Rd(g�1

c (�)) < 1.

Vector control is modeled as adult “harvesting” on the “recruitment” function

f(L). In fact, if f(L) is replaced by L(g(L) � c(L)) then the choice of c(L) can
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impact the qualitative dynamics of the system. The following result outlines some

possibilities.

Theorem 5.1.6. Suppose Rd(0) > 1, and that f(L) = Lgc(L). Assume that

gc(L) = � for an increasing, finite sequence {V 1
1, V 2

1, · · · , V 2n+1
1 } where g0c(V

2j+1
1 ) <

0 for all 0  j  n and g0c(V
2j
1 ) > 0 for all 1  j  n. If R0 < 1, then there

are n + 1 locally asymptotically stable positive disease free equilibria for the sys-

tem (5.1). These equilibria are given by ~x2j+1
1 = (µm

� V 2j+1
1 , V 2j+1

1 , N, 0, 0, 0), 0 

j  n and the basins of attraction for these equilibria are given by ⌦2j+1 =

{(E, V, S, R, J, I)|E > 0, V > 0, S + I + R = N, V 2j
1 < V + J < V 2j+2

1 }, for

each 0  j  n, where, for convenience V 0
1 is defined to be 0 and V 2n+2

1 = 1.

Similar results have been obtained before. In [60], Wu and Feng constructed

models for Schistosomasis that support alternating stable and unstable equilibria

and computed their corresponding basins of attraction.

In order to provide an explicit illustration to the above results, we take g(L) =

⇢e�!L and c(L) = ✏L
a2+L2 , that is,

f(L) = ⇢Le�!L � ✏L2

a2 + L2

where ✏ is interpreted as the maximal “harvesting” rate (value of Lc(L) as L !1)

a2 is a parameter associated with the time needed to handle of or search for adult

vectors, and ⇢ is the maximal per-capita vector egg-reproduction rate. Equilibria

are solutions of

⇢e�!L � ✏L

a2 + L2
= �,

that is, this explicit “�” corresponds to the generic � in (5.5). There are at most

three positive equilibria. Figure 5.2 illustrates the case when there are three (two

stable and one unstable).
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Figure 5.2: The equilibria alternate stability, the first and third being stable and

the second one being the unstable equilibrium. Graphs of g(L), c(L); ⇢ = 15,

✏ = 15, a = 0.5 and ! = 0.2.

5.2 E↵ects of seasonal variations

The incorporation of seasonality e↵ects on the transmission dynamics of dengue

is important [9], [14]. Seasonality may directly impact host to vector transmission

rates (�); the per capita fertility rate (⇢) and possibly the maximal “control” rate

(✏) (possibly higher when vector densities are higher). Here, we briefly illustrate its

potential role on each of these parameters via simulations. Three sets of indepen-

dent simulations are conducted. The artificial introduction of seasonality e↵ects

in f(L) = ⇢Le�!L� ✏L2

a2+L2 is as follows: ✏ is replaced by ✏̄ = ✏0(✏1 + sin(2⇧t
180 )), � by

�̄ = �0(�1 + sin(2⇧t
180 )) and ↵ is replaced by ↵̄ = ↵0(↵1 + sin(2⇧t

180 )). These selections

are not driven by particular explicit scenarios or systematically explored. Our

objective here is to illustrate the potential role of fluctuations on key parameters.
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Seasonal variations in ✏ may derive from the observation that (vectors’) “harvest-

ing” e↵orts may not be equal over the entire year. They may be higher during

the rainy (or dry) season. Here, ✏ is varied independently while all the other pa-

rameters remain fixed. Simulations that include simultaneous fluctuations on both

transmission rates, ↵ and � are also considered.

Figures 5.3c, 5.3d illustrate e↵ects of seasonality on infected host class lev-

els due to regular fluctuations on the intensity of control e↵orts (✏). The vec-

tor population exhibits oscillatory behavior with a period of six months (same

as that of ✏). Figures 5.3c and 5.3d illustrate the impact of periodic harvest-

ing e↵ects. The dynamics become regular (oscillatory) after the transients are

“gone” (1000 days). Seasonally-dependent harvesting via the control parameter

✏ forces the vector population to jump from the low demographic equilibrium

(V low
1 = 0.4099141) to the high (V high

1 = 10.99821) where it remains afterwards.

In the absence of seasonality vector levels remain at the lower equilibria. Although

vector levels (infected and uninfected) shift the corresponding host-infection lev-

els remain unchanged. That is, the host endemic levels found in Figures 5.3c

and 5.3d correspond to both vector levels as illustrated in Figures 5.4c and 5.4d.

Moderate, independent or simultaneous changes in transmission rates (↵ and �)

do not drive shifts in vector population levels (from either the low demographic

equilibria (Elow
0 = 0.230129, V low

0 = 0.4099141 and J low
0 = 0.004318148) to the

high (Ehigh
0 = 5.527807, V high

0 = 10.99821, Jhigh
0 = 0.3055878), or vice-versa. In

Figure 5.4 there are two sets of simulations a) and b) illustrate that fluctuations

on the transmission rates (↵ and �) do not cause the vector equilibria to “jump”

from the low demographic equilibria to the high demographic equilibria. In c)

and d) the control parameter (✏) is varied and results in the vector density to
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move from the low demographic equilibria (Elow
0 = 0.230129, V low

0 = 0.4099141

and J low
0 = 0.004318148) to the high demographic equilibria (Ehigh

0 = 5.527807,

V high
0 = 10.99821, Jhigh

0 = 0.3055878) for the given set of parameters.

Vector density is started at the low demographic equilibria for all simulations

with seasonality to illustrate the e↵ect of the parameters on the vector density.

It is important to re-state that vector density levels may shift from low to high

levels and viceversa from the impact of strong fluctuations in control e↵orts (✏),

however, simulations suggest that either level of vector density (high or low) leads

to approximately the same level of dengue prevalence in human infections (see

Figure 5.3).
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Figure 5.3: Moderate seasonal e↵ects on host and vector transmission rates (↵, �

and ✏). The parameter values are: µ = 0.00004, µe = 0.003, µm = 0.03, � = 0.09,

� = 0.14, ⇢ = 15, ! = 0.2, ✏ = 15, ↵ = 0.5, � = 0.5, a = 0.5 Initial conditions:

S0 = 9999, I0 = 1, R0 = 0 (host population). In this case we show the infected

host class (I(t)) when seasonal e↵ects take place in the transmission rates (↵ and

�) and control measures (✏). For a) and b) ↵ and � are varied simultaneously; a)

↵̄ = 0.5 + 0.4 sin(2⇧t
180 ) and �̄ = 0.5 + 0.4 sin(2⇧t

180 ), b) ↵̄ = 0.8 + 0.4 sin(2⇧t
180 ) and

�̄ = 0.8 + 0.4 sin(2⇧t
180 ). For c) and d) ✏ is varied; c) ✏̄ = 15 + 5 sin(2⇧t

180 ) and d)

✏̄ = 15 + 10 sin(2⇧t
180 ).
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Figure 5.4: Moderate seasonal e↵ects on host and vector transmission rates (↵, �

and ✏). The parameter values are: µ = 0.00004, µe = 0.003, µm = 0.03, � = 0.09,

� = 0.14, ⇢ = 15, ! = 0.2, ✏ = 15, ↵ = 0.5, � = 0.5, a = 0.5 Initial conditions:

S0 = 9999, I0 = 1, R0 = 0 (host population). In this case we show the vector

population (V (t)) when seasonal e↵ects take place in the transmission rates (↵

and �) and control measures (✏). For a) and b) ↵ and � are varied simultaneously;

a) ↵̄ = 0.5 + 0.4 sin(2⇧t
180 ) and �̄ = 0.5 + 0.4 sin(2⇧t

180 ), b) ↵̄ = 0.8 + 0.4 sin(2⇧t
180 )

and �̄ = 0.8 + 0.4 sin(2⇧t
180 ). For c) and d) ✏ is varied; c) ✏̄ = 15 + 5 sin(2⇧t

180 ) and

d) ✏̄ = 15 + 10 sin(2⇧t
180 ). The vector begins at the low demographic equilibrium

Elow
0 = 0.230129, V low

0 = 0.4099141 and J low
0 = 0.004318148 and then jumps to

the high equilibrium Ehigh
0 = 5.527807, V high

0 = 10.99821, Jhigh
0 = 0.3055878. In

the absence of seasonality ✏ = 15 there is no jump.
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5.3 Conclusions

A model for the transmission dynamics of dengue that includes the egg/larva stage

of the vector and control e↵orts directed towards the adult vector population is

considered. The model couples, in a simple way, a modified version of the classical

SIR model for the host with a vector model that includes vector life stages (from

egg to adult). Sharp conditions for local stability of disease-free and endemic

equilibria are computed in the absence and presence of control measures. It is

shown that, under the right conditions, the disease-free equilibrium is globally

stable provided that R0 < 1 and Rd(0) > 1 (that is, when a critical mass of

vectors exists). Selective control measures geared towards the “elimination” of

the adult population (R0 > 1) can give rise to a landscape that supports multiple

stable vector levels. In fact, under some control scenarios, it is possible to establish

the local stability of endemic states having R0 > 1 and Rd(g�1
c (�)) < 1.

The possibility of “eliminating” a vector population over sustained periods of

time, using drastic policies directed to the adult vectors, seems virtually impossible

since reducing vector densities (even significantly) may not seriously impact host-

dengue prevalence levels in humans (see example). Control methods that include

“attacks” on additional vector-life stages must be implemented. Such e↵orts should

include for example, dramatic reductions on the numbers and sizes of breeding

sites.

Currently, in the tradition of Ross, most theoretical work has focused on the

use of control e↵orts aimed at adult vector populations. This is unfortunate. In

fact, Ross was clearly aware of the importance of incorporating our knowledge of

the ecology and life history of vectors in the development of disease control poli-

cies. Ross did not pursue detailed mathematical studies of vector control strategies
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because he lacked access to modern computational tools. Frameworks that include

vector’s life-history dynamics are needed to test control measures that focus on

“vulnerabilities” in non-adult vector populations. The introduction of seasonal

variation in control measures in a rather artificial setting has helped (we hope)

illustrate the view that low vector densities lead to proportionally the same dis-

ease host prevalence levels than large vector densities. Methods that focus only

on controlling adult mosquito populations are simply inadequate. Those that fo-

cus (simultaneously) on vector’s life-history stages (integrated management ap-

proaches) need to be developed, tested and implemented. Finally, eradication of

Aedes aegypti appears to be the only way to eliminate dengue.



Chapter 6

Two-strain dengue model with collective

host behavior change
The mechanisms behind the joint evolutionary dynamics of dengue strains are not

well understood despite its high prevalence around the world. Two dengue strains

are put in competition in a population where collective host behavior changes

can a↵ect the likelihood of repeated infections. Furthermore, we look at collective

behavior change after recovery from first infection. This work is based on a previous

models by [35, 33, 55, 52].

6.1 The model

Let N and M denote the host and mosquito (assumed constant) populations,

respectively. That is, it is assumed that the host/vector ratio remains constant.

This common assumption perhaps not accurate in regions where temperature and

precipitation activity are highly variable. For mathematical simplicity there is no

disease induced mortality. Mortality associated with dengue is low [10]. Hence

the per-capita host death and births rates are assumed to be equal to µ. Vectors

are also assumed to have the same constant birth and death rates denoted by µm.

It is assumed that behavioral changes reduce the e↵ective population size, which

may alter significantly the likelihood of infection. We let the subscripts i, k = 1, 2

where i 6= k denote two distinct strains. The host population is stratified as follows:

S, represents susceptible hosts; Di, represents hosts initially infected with strain

i; Zi, represents hosts experiencing their second dengue infection (strain i); Bi,

38
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Figure 6.1: Caricature of the model.

represents the class of hosts who change their behavior after infection with strain

i; Ri, represents hosts who recover from strain i; R, represents hosts that recover

from both strains.

In addition, �i, represents the transmission rate of strain i from mosquito to

host; �i represents the recovery rate of hosts infected with strain i; p, represents

the rate at which individuals change their behavior.

The vector population is divided as follows: susceptible (adults) mosquitoes, V ;

mosquitoes infected with strain i but not infectious (latent), Li; and, mosquitoes

infectious with strain i, Gi. Furthermore, ↵i, represents the transmission rate

of strain i from host to mosquito; �i represents the rate at which mosquitoes

become infectious; and  is a measure of the e↵ectiveness of behavioral changes in

humans. The transmission dynamics of dengue is modeled by a re-scaled, via the

re-introduction of the following dimensionless variables

s = S
N , di = Di

N , bi = Bi
N , zi = Zi

N , ri = Ri
N , r = R

N , v = V
M , li = Li

M and gi = Gi
M ,
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set of nonlinear di↵erential equations:

li
0 = ↵i

di+zi
1� (bi+bk)

⇣
1�

P2
i=1 li �

P2
i=1 gi

⌘
� (µm + �i)li,

gi
0 = �ili � µmgi,

(6.1)

where v +
P2

i=1(li + gi) = 1.

s0 = µ� �isgi � �ksgk � µs,

di
0 = �isgi � (µ + �i)di,

bi
0 = pri � �kbigk � µbi,

zi
0 = �irkgi + �ibkgi � (µ + �i)zi,

ri
0 = �idi � �krigk � (µ + p)ri,

r0 = �izi + �kzk � µr.

(6.2)

where s +
P2

i=1(di + bi + zi + ri) + r = 1. Naturally, the first question focuses on

establishing the conditions for disease invasion. The average number of secondary

infections caused by a “typical” infectious individual (host or vector) in a mostly

susceptible population, that is, when the disease is rare, is denoted by R0. The,

basic reproductive number, R0 of the above system is⇤:

R0 = max{R1,R2}, (6.3)

where

Ri =

s
↵i�i

µm(µm + �i)

�i

(µ + �i)

is the ith strain basic reproductive number. Here 1/µm denotes the average lifespan

of the vector; �i(µm + �i) is the proportion of mosquitoes that progress from the

latent to the infectious stage; 1/(µ+�i) is the average infectious period of the host

(human); and ↵i, �i are the transmission rates of vectors and hosts, respectively.

⇤See Appendix for detailed calculation.
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Hence, each Ri is given by the geometric mean of host and vector contributions

to secondary infections. In other words, it takes two steps for a vector (host) to

generate a secondary vector (host) infection. R0 < 1 implies the extinction of both

strains while R0 > 1 implies that at least one strain will survive (see Appendix).

6.2 Disease invasion and persistence

The system has a disease-free equilibrium, ⇠⇤0 ; two boundary equilibria, ⇠⇤1 and ⇠⇤2 ,

where only one of the strains is present and an endemic state. They are:

⇠⇤0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

⇠⇤1 = (s⇤, d⇤1, 0, 0, 0, r
⇤
1, 0, b

⇤
1, 0, l

⇤
1, 0, g

⇤
1, 0),

⇠⇤2 = (s⇤, 0, d⇤2, 0, 0, 0, r
⇤
2, 0, b

⇤
2, 0, l

⇤
2, 0, g

⇤
2),

(6.4)

where

l⇤i = µµm(Ri�1)
�i�i(1��i+⌫i)

,

g⇤i = µ(Ri�1)
�i(1��i+⌫i)

,

s⇤ = ⌫i+1��i
⌫i+Ri��i ,

d⇤i = µ(Ri�1)
(µ+�i)(Ri��i+⌫i)

,

b⇤i = p�i(Ri�1)
(µ+p)(µ+�i)(Ri��i+⌫i)

,

r⇤i = µ�i(Ri�1)
(µ+�i)(µ+p)(Ri��i+⌫i)

,

(6.5)

�i =
p �i

(µ + p)(µ + �i)
,

and

⌫i =
↵i

µm

µ

µ + �i
.

�i represents the risk of becoming infected with a second strain after behav-

ioral changes and ⌫i represents the e�cacy of human transmission of dengue

to mosquitoes. The factors in �i are:  , the e↵ectiveness of behavior change;
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�i/(µ + �i), the proportion of individuals who survive from the infection to the re-

covered class; and p/(µ+p), the proportion of individuals who change behavior and

survive. The factors in ⌫i are: µ/(µ+�i), the proportion of humans who die in the

infected class; ↵i, the transmission rate of infection from humans to mosquitoes;

and 1/µm, the average life span of mosquitoes. The stability properties of these

equilibria are stated in the following proposition:

Theorem 6.2.1. Let ~⇠⇤0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) be the positive disease-

free equilibrium of (6.1)-(6.2) then it is locally asymptotically stable if and only if

R0 < 1.

Proposition 6.2.2. A necessary condition for the local asymptotic stability of the

endemic equilibria is that (for i, k = 1, 2, i 6= k)

R2
i <

"
1� (R2

k � 1) �k
(⌫k+R2

k��k)

1� (R2
k � 1)µ µm+�k

�k�k(⌫k+1��k)

#2

4 (⌫k +R2
k � �k)

�k(R2
k�1)

(µ+�k) + (⌫k + 1� �k)

3

5 (6.6)

See Appendix for a proof of Proposition 6.6.

Theorem 6.2.3. Assume �i = ⇢k, for i 6= k, where  = 0 and R0 < 1, then

the positive disease-free equilibrium given by 6.4 is globally asymptotically stable

on the domain ⌦ = {(s, di, bi, zi, ri, r, v, li, gi)|x +
P2

i=1(di + bi + zi + ri) + r =

1, v +
P2

i=1 li +
P2

i=1 gi = 1} ⇢ R15
+ for i = 1, 2.

See Appendix for a proof of Theorem 6.2.3.

Four distinct regions of stability are described in Figure 6.2. “DF” represents

the disease-free equilibrium which is globally asymptotically stable when R0 < 1.

Region I represents the region where local stability of the boundary equilibrium

associated with strain 1 (R1 > 1) is locally asymptotically stable; and region
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Figure 6.2: Regions of stability when a) ↵1 = �1 = 0.2, ↵2 = �2 = 0.2, �1 = 0.33,

 = 0.5, p = 0.1. In b) we let �1 = �2 = 0.5,  = 0.9 and p = 0.9 while in c) we

let ↵2 = �2 = 0.5,  = 0.5 and p = 1.

II represents the analogous case for the secondary boundary equilibria (R2 >

1). Region III represents the region of strain coexistence. Parameter values can

greatly a↵ect the size of region III, but not the overall qualitative behavior.

6.3 Numerical simulations

For the numerical simulations we v the parameters ↵i, �i, ⇢k, p, and  were

varied while maintaining µ, µm, �i, and �i constant. Parameter values and initial

conditions are chosen to be biologically accurate as to display the behavior of

our model. The parameters µ, and µm were determined from dengue outbreak

studies [32, 33].

In Figure 6.3 we look at the secondary infection for di↵erent values of ⇢1. ⇢i
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Figure 6.3: Individuals infected with secondary strain (z1) for three values of the

infection rate (⇢1) from the behavior change class (b2).

represents the reduced transmission rate from the behavior change class. When

⇢1 = 0.1 the system takes longer to take o↵ and then stabilizes at a very low

level. This implies that e↵ective preventive measure by the population can have a

significant impact on the transmission dynamics of dengue. It is also important to

note that most of these measures are inexpensive and can easily be implemented,

however, cultural di↵erences and poverty can play a role in the implementation of

these measures. When ⇢1 = 0.55 the number of secondary infections grows faster

and does not reach an endemic equilibrium but oscillates at low levels. When

⇢1 = 1 the number of secondary infections grows faster and at higher levels and

does not stabilize. Over the long term dynamics the system oscillates a low lev-

els (see Figure 6.4). In Figures 6.5, 6.6, 6.9, 6.10 we show the time series of the

system. For these scenarios we let strain two be the more virulent strain. From

Figure 6.5 we can see that strain two, the more virulent strain, takes o↵ faster



45

z 1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Run 1: 1000000 steps in 5.63 seconds

z 1

0 0.001 0.002 0.003 0.004 0.005 0.006

0

0.001

0.002

0.003

0.004

0.005

0.006

Run 1: 1000000 steps in 5.63 seconds

Figure 6.4: Phase plane of secondary infection (z1 and z2).
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Figure 6.5: Time series of first infection (d1 and d2). Parameter values: �1 = 0.33,

�2 = 0.5, �1 = 0.25, �2, �1 = �2 = 0.1, ↵1 = 0.5, ↵2 = 0.33, ⇢1 = 1, ⇢2 = 4,

p = 0.1 and  = 0.5. Initial conditions: s0 = 0.98, d1 = 0.01, d2 = 0.01, v0 = 0.98,

g1 = 0.01, and g2 = 0.01.
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Figure 6.6: Time series of behavior change population (b1 and b2). Parameter

values: �1 = 0.33, �2 = 0.5, �1 = 0.25, �2, �1 = �2 = 0.1, ↵1 = 0.5, ↵2 = 0.33,

⇢1 = 1, ⇢2 = 4, p = 0.1, and  = 0.5. Initial conditions: s0 = 0.98, d1 = 0.01,

d2 = 0.01, v0 = 0.98, g1 = 0.01, and g2 = 0.01.

and has a larger e↵ect on infected host population. In this case we have sustained

oscillations (see Figure 6.7). In Figure 6.6 it is not surprising that b2 is larger than

b1. This indicates that the more virulent strain has a more significant e↵ect on

the population that has been previously infected with strain two. See Figure 6.8

for limit cycle of the behavior change class. There is a correlation between the

virulence of the strain and the way the population reacts to the disease. When

larger outbreaks occur the population (collectively) tend to pay more attention

to the risks involved. However, if the outbreak is “insignificant”, i.e., not many

confirmed cases due to asymptomatic cases, the population tend to ignore the

risks and take less caution. In the mosquito population the system also shows

sustained oscillations (see Figure 6.11). Although strain two is the more virulent

strain, strain one has the larger impact on the infected mosquito population.
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Figure 6.7: Phase plane of first infection (d1 and d2).
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Figure 6.8: Phase plane of behavior change population (b1 and b2).
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Figure 6.9: Time series of secondary infection (z1 and z2). Parameter values:

�1 = 0.33, �2 = 0.5, �1 = 0.25, �2, �1 = �2 = 0.1, ↵1 = 0.5, ↵2 = 0.33, ⇢1 = 1,

⇢2 = 4, p = 0.1 and  = 0.5. Initial conditions: s0 = 0.98, d1 = 0.01, d2 = 0.01,

v0 = 0.98, g1 = 0.01, and g2 = 0.01.
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Figure 6.10: Time series of infected mosquito population (g1 and g2). Parameter

values: �1 = 0.33, �2 = 0.5, �1 = 0.25, �2=0.14, �1 = �2 = 0.1, ↵1 = 0.5,

↵2 = 0.33, ⇢1 = 1, ⇢2 = 4, p = 0.1 and  = 0.5. Initial conditions: s0 = 0.98,

d1 = 0.01, d2 = 0.01, v0 = 0.98, g1 = 0.01, and g2 = 0.01.
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Figure 6.11: Phase plane of infected mosquito population (g1 and g2).

This is mostly related to the short infectious period of strain one (�1 = 1/4). The

more virulent strain (strain two) has an infectious period of �2 = 1/7. The longer

infectious period relates the virulence of the strain. Typically, if individuals get

a highly virulent strain the e↵ects of the disease are more prevalent and last longer.

Simulations with Seasonality. The introduction of seasonality requires four

control parameters: ⌘0 which controls the growth of the mosquito population, ⌘1

which controls the strength of the seasonality, ! which controls the frequency of

oscillation and � which controls the phase of oscillations. The control parameters

play a large role in determining the dynamics of the system. ⌘0 dictates whether

the population will eventually die out, go unbounded, or reach a steady mean

value. Oscillations in both mosquito and host classes can be induced by ⌘1 and !

can determine the nature of the oscillations while � is the phase shift. The most

important feature, however, is that the seasonality term is an explicit function of

time. That is, the system of equations is now non-autonomous. This adds a great

deal of complexity to the analysis and numerical solutions were sought in order to

address this issue. Figure 6.12 is a summary of our results. We see that adding
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Figure 6.12: y1 when R1 > 1 and y2 when R2 < 1.

the seasonality term has a tremendous impact on the total mosquito population.

It was previously assumed that the mosquito population was constant and that

allowed for the re-scaling of the system of equations, transforming them into a very

tractable form. Figure 6.12 (a) clearly shows that the total mosquito population

is not constant and in fact is periodic in time. In Figure 6.12 (b) we see that while

these periodic oscillations are also evident in the number of susceptible mosquitoes,

the dynamics of that class are dominated by the initial growth and decay terms.

The oscillations are of very low amplitude and do not e↵ect the overall dynamics

significantly. Looking at Figure 6.12 (c) and (d), there is little change between the

two systems.

6.4 Conclusions

A model for the transmission dynamics of two strains of dengue, a mosquito-

transmitted disease, were formulated and analyzed with the incorporation of a

behavioral change class. In a region where two serotypes of dengue are present,

the incorporation of a behavioral change class may be essential to more accurately
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model host and mosquito populations in e↵orts to implement ideas for control

methods. After a primary infection and the severe medical complications that may

accompany the infection, a once primary infected individual may change his/her

behavior to prevent a possible secondary infection. The model shows that the

rate of secondary infections is influenced greatly through the incorporation of a

behavioral change class.

The local and global stability of the disease-free equilibria and the co-existence

of strains was established (numerically). Our results support the necessity of a be-

havioral change class to model the transmission dynamics of dengue. A behavioral

change constitutes any control methods implemented by a once primarily infected,

susceptible population. Any proportion of that population implementing control

methods results in a dramatic decrease of the infectious and infected mosquito

population rates. Control methods instituted by those individuals (collective be-

havior) may be an e↵ective method to control dengue outbreaks. Heighten control

methods implemented continuously may also be an e↵ective method to lessen the

rate of dengue outbreaks.

Social behavior plays a major role in the evolution of infectious diseases. There

are tremendous challenges in modeling social dynamics. Innovative methods of

modeling that incorporate social dynamics are needed in order to have a bigger

impact on emerging infectious diseases.
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Appendix A

Jacobians and Characteristic Equations

for the single strain model
Using the fact that N is constant, it is a straightforward computation to obtain

the Jacobian of the system (5.1). It is given by

J(~x) =

2

6666666666666664

�(µe + �) f 0(L) 0 0 f 0(L) 0

� �(µm + ↵I
N ) 0 0 0 �↵V

N

0 �SJ
L2 ��J

L � µ 0 ��SV
L2 0

0 0 0 �µ 0 �

0 ↵I
N 0 0 �µm

↵V
N

0 ��SJ
L2

�J
L 0 �SV

L2 �(µ + �)

3

7777777777777775

. (A.1)

At a disease free equilibrium ~x1(DF ) = (E1, V1, N, 0, 0, 0) it reduces to the

simple form

J(~x1(DF )) =

2

6666666666666664

�(µe + �) f 0(V1) 0 0 f 0(V1) 0

� �µm 0 0 0 �↵V1
N

0 0 �µ 0 ��N
V1

0

0 0 0 �µ 0 �

0 0 0 0 �µm
↵V1
N

0 0 0 0 �N
V1

�(µ + �)

3

7777777777777775

.

Due to the block diagonal form of the Jacobian its eigenvalues are those of the

upper left and lower right 3⇥ 3 matrices whose characteristic equations are

(µ + �)[�2 + (µm + µe + �)�+ (µm(µe + �)� �f 0(g�1
c (�))] = 0 (A.2)
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and

(µ + �)[�2 + (µ + µm + �)�+ (µm(µ + �)� ↵�)] = 0. (A.3)

Writing the characteristic polynomial, in a useable form, for the Jacobian at an

endemic equilibrium requires more work.

Proposition A.0.1. The characteristic polynomial of the Jacobian (A.1) at the

equilibrium (5.5) is given by

det(J(~x1)� �I) =

(µ + �)
⇥
�2 + (µm + µe + �)�+ µm(µe + �)� �f 0(g�1

c (�))
⇤

·
⇢
�3 +


(µ + �) +

µm(µR2
0 + �)

� + µ
+

µ(µ + �)R2
0

� + µR2
0

�
�2

+


µmµR2

0 + (µ + �)

✓
µmµ(R2

0 � 1)

µ + �
+

µ(µ + �)R2
0

� + µR2
0

◆�
�+ µ(µ + �)µm(R2

0 � 1)

�

(A.4)

Proof. We first expand det(J(~x)��I) along the 4th column then subtract column

4 from column 2 and add row 5 to row 3 in the resultant 5⇥ 5 sub-determinant to

arrive at

det(J(~x)� �I) = (�µ� �)⇥
�����������������

�(µe + �)� � 0 0 f 0(L) 0

� �(µm + ↵I
N )� � 0 0 �↵V

N

0 0 �(µ + �) 0 �(µ + � + �)

0 ↵I
N + µm + � 0 �µm � � ↵V

N

0 ��S
L

�J
L

�SV
L2 �(µ + �)� �

�����������������

.
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We now add row 2 to row 4 and expand along the 4th row to get

det(J(~x)� �I) = (�µ� �)⇥
8
>>>>>>>><

>>>>>>>>:

�

��������������

0 0 f 0(L) 0

�(µm + ↵I
N )� � 0 0 �↵V

N

0 µ + � 0 µ + � + �

��S
L

�J
L

�SV
L2 �(µ + �)� �

��������������

+ (µm + �)⇥

��������������

�(µe + �)� � 0 0 0

� �(µm + ↵I
N )� � 0 �↵V

N

0 0 µ + � µ + � + �

0 ��S
L

�J
L �(µ + �)� �

��������������

9
>>>>>>>>=

>>>>>>>>;

.

It is not di�cult to see that after expansion of both 4⇥ 4 determinants along

their top rows, a common factor which is a 3 ⇥ 3 determinant emerges. Upon

substitution of the equilibrium values, this 3 ⇥ 3 determinant yields the cubic

factor of (A.4) and the rest accounts for the quadratic factor.

Proof of Theorem 5.1.2

Theorem 5.1.2. Let ~x1(DF ) = (E1, V1, N, 0, 0, 0) be a positive disease free

equilibrium of (5.1) then ~x1(DF ) is locally asymptotically stable if R0 < 1 and

Rd(g�1
c (�)) < 1. If one of R0 or Rd(g�1

c (�)) is greater than one then the equilib-

rium is unstable.

Proof. The characteristic polynomial for the Jacobian at ~x1(DF ) contains the

quadratic factor

�2 + (µm + µe + �)�+ (µm(µe + �)� �f 0(g�1
c (�))
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so that the negativity of the real parts of its roots requires, that

(µm(µe + �)� �f 0(g�1
c (�)) > 0,

but this is equivalent, by definition, to Rd(g�1
c (�)) < 1. The characteristic poly-

nomial at the disease free equilibrium contains a factor

�2 + (µ + µm + �)�+ [µm(µ + �)� ↵�],

so that these roots have negative real part if and only if µm(µ+�)�↵� > 0, which

is equivalent to R0 < 1.

Proof of Theorem 5.1.3

Theorem 5.1.3. Let ~x1 = (E1, V1, S1, R1, J1, I1) be an endemic equilibrium

of (5.1) then V1+J1 2 {g�1
c (�)}, R0 > 1, and ~x1 is locally asymptotically stable

if Rd(g�1
c (�)) < 1 and unstable if Rd(g�1

c (�)) > 1.

Proof. V1 + J1 2 {g�1
c (�)} follows immediately from the sum of equations V1

and J1. From I1 we see that endemicity requires R0 > 1. Now, the roots of the

quadratic factor of equation all have negative real part if and only if

(µm(µe + �)� �f 0(g�1
c (�)) > 0

but, by definition, this is equivalent to Rd(g�1
c (�)) < 1. It remains only to verify

that all the zeros of the cubic factor of,

�3 +


(µ + �) +

µm(µR2
0 + �)

� + µ
+

µ(µ + �)R2
0

� + µR2
0

�
�2

+


µmµR2

0 + (µ + �)

✓
µmµ(R2

0 � 1)

µ + �
+

µ(µ + �)R2
0

� + µR2
0

◆�
�+ µ(µ + �)µm(R2

0� 1),

(A.5)
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have, under these conditions, negative real parts. For this we use the Routh-

Hurwitz criteria. With a1, a2, a3 defined as the coe�cients of the second, first and

zeroth degree terms respectively, we clearly have a1 > 0, and a3 > 0 when R0 > 1.

We now multiply the first terms of a1 and a2 and observe that the products of all

the other terms are positive since R0 > 1. Therefore

a1a2 � a3 = µmµ(µ + �)R2
0 + positive terms� µmµ(µ + �)(R2

0 � 1)

= µmµ(µ + �)(R2
0 � (R2

0 � 1))+ positive terms

and hence a1a2 � a3 > 0. Hence, the Routh-Hurwitz criteria are satisfied and the

result is proved.

Proof of Theorem 5.1.5

Theorem 5.1.5. Assume that c(L) = 0, that is, f(L) = Lg0(L) where g0(L) is

strictly decreasing. If Rd(0) > 1 and R0 < 1 then the unique positive disease-free

equilibrium, ~x1, given by (5.4), is globally asymptotically stable in the domain

⌦ = {(E, V, S, R, J, I)|E > 0, V > 0, S + I + R = N} ⇢ R6
+.

Proof. The condition Rd(0) > 1 together with the fact that g0(L) is strictly de-

creasing impliesg0(L) = � has a unique positive solution proving the existence and,

in this case, uniqueness of the equilibrium.

Now, let (E(t), V (t), S(t), R(t), J(t), I(t)) be any solution of the system (5.1)

with initial condition (E0, V0, S0, R0, J0, I0) 2 ⌦. The sum of the di↵erential equa-

tions V 0 and J 0 together with E 0 gives the reduced, two dimensional system in E

and L = V + J

dE

dt
= f(L)� (µe + �)E = F (E,L) (A.6)

dL

dt
= �E � µmL = G(E,L) (A.7)
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on R2
+.

Both (0, 0) and (E1, L1) =
⇣µm

�
g�1
0 (�), g�1

0 (�)
⌘

are equilibria of (A.6), (A.7),

but a short calculation shows that the condition Rd(0) > 1 implies that (0, 0) is

a saddle point whose stable manifold does not intersect R2
+ \ {(0, 0)}. It is also

easy to see that R2
+ \ {(0, 0)} is positively invariant. As a result, no positive semi-

orbits starting in R2
+ \{(0, 0)} can converge to (0, 0). On the other hand (E1, L1)

is locally asymptotically stable by Result 4.2 since g0 strictly decreasing implies

Rd(g
�1
0 (�)) < 1. The divergence of the vector field defining the flow for (A.6),

(A.7) is negative on all of R2
+. Hence, by Bendixson’s theorem there is no periodic

orbit.

Integration of (A.6) yields

E(t)  e�(µe+�)tE0 +
M

(µe + �)
(1� e�(µe+�)t)

where M is the upper bound for f(L) and, therefore, E(t) is bounded for t > 0.

A similar argument, together with the boundedness of E(t), proves that L(t) is

bounded for t > 0.

The Poincaré-Bendixson theorem now applies as follows: Since (E(t), L(t)) is

a bounded semi-orbit in a region which contains no periodic orbit and only one,

asymptotically stable equilibrium, then the limit set of the semi-orbit must contain

nothing but the equilibrium (E1, L1). In other words, all semi-orbits of the full

system must enter the invariant set

{(E, V, S, R, J, I)|E > 0, V > 0, E = E1, V + J = L1, S + I + R = N}.

Now, we need only compute the limits for S,R, J and I, and the limit of V will

follow from the constraint V + J = L1. To this end, we integrate equations J 0(t)
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and I 0(t) to obtain:

I(t) = e�(µ+�)tI0 +
�

e(µ+�)t

Z t

0

e(µ+�)⌧ S(⌧)J(⌧)

L(⌧)
d⌧ (A.8)

and

J(t) = e�µmtJ0 +
↵

Neµmt

Z t

0

eµm⌧I(⌧)V (⌧)d⌧. (A.9)

Clearly,

S(t)  N, I(t)  N,
J(t)

L(t)
 1, and V (t)  L(t) (A.10)

and now that we have proved that L(t) approaches a finite limit, by (A.10), all of

V (t), I(t), S(t), and J(t) must also be bounded. Computing lim sup of both (A.8)

and (A.9) and using L’Hôpital’s rule, we have

lim sup
t!1

I(t)  �

µ + �
lim sup

t!1

J(t)

L(t)
lim sup

t!1
S(t) (A.11)

and

lim sup
t!1

J(t)  ↵

µmN
lim sup

t!1
I(t) lim sup

t!1
V (t) (A.12)

We now claim that

lim sup
t!1

J(t) = lim
t!1

J(t) = 0.

If lim supt!1 V (t) = 0 then by (A.12) lim supt!1 J(t) = limt!1 J(t) = 0 and the

claim is established. Now assume lim supt!1 V (t) > 0 and suppose lim supt!1 J(t) >

0 for the purpose of proving the claim by contradiction. Since lim supt!1 L(t) =

limt!1 L(t) = L1 > 0 exists

lim sup
t!1

J(t)

L(t)
=

1

L1
lim sup

t!1
J(t) (A.13)

but also V (t)  L(t) for all t so that

1

lim supt!1 V (t)
� 1

L1
. (A.14)
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Combining (A.13) and (A.14) gives

lim sup
t!1

J(t)

L(t)
 lim supt!1 J(t)

lim supt!1 V (t)
(A.15)

Substituting (A.15) into (A.11) gives us

lim sup
t!1

I(t)  �

µ + �

lim supt!1 J(t)

lim supt!1 V (t)
lim sup

t!1
S(t) (A.16)

And then, finally substituting (A.16) into (A.12) and using the definition for R0

we arrive at

lim sup
t!1

J(t)  R2
0

N
lim sup

t!1
J(t) lim sup

t!1
S(t)

but since lim supt!1 S(t)  N this leads to the contradiction R0 � 1. Hence we

must have

lim
t!1

J(t) = 0.

Now from (A.11) and (A.13) it follows that I(t) ! 0. Since L = V + J and

J(t) ! 0 we must have V (t) ! L1 = g�1
0 (�). Finally, by integrating R0(t) and

using the fact that I(t) ! 0 we get R(t) ! 0 and since S + I +R = N , S(t) ! N .

This completes the proof.

Proof of Theorem 5.1.6

Theorem 5.1.6. Suppose Rd(0) > 1, and that f(L) = Lgc(L). Assume that

gc(L) = � for an increasing, finite sequence {V 1
1, V 2

1, · · · , V 2n+1
1 } where g0c(V

2j+1
1 ) <

0 for all 0  j  n and g0c(V
2j
1 ) > 0 for all 1  j  n. If R0 < 1, then there

are n + 1 locally asymptotically stable positive disease free equilibria for the sys-

tem (5.1). These equilibria are given by ~x2j+1
1 = (µm

� V 2j+1
1 , V 2j+1

1 , N, 0, 0, 0), 0 

j  n and the basins of attraction for these equilibria are given by ⌦2j+1 =

{(E, V, S, R, J, I)|E > 0, V > 0, S + I + R = N, V 2j
1 < V + J < V 2j+2

1 }, for

each 0  j  n, where, for convenience V 0
1 is defined to be 0 and V 2n+2

1 = 1.
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Proof. Result 4.6 implies that the condition g0c(V
2j+1
1 ) < 0 is equivalent to the

condition Rd(g�1
c (�)) < 1. The proof follows by observing that the conditions in

the comment after Theorem 5.1.5 hold in each set ⌦2j+1. That is, in sets that

exclude unstable equilibria (V 2j
1 and V 2j+2

1 ).



Appendix B

Jacobian and proofs of two strain model

of dengue
Using the next generation operator approach of [23] to calculate R0, the Jacobian

of the infectious classes (di, zi, gi where i = 1, 2) is as follows:

A =

2

6664

�(µ+�1) 0 0 0 �1s 0
0 �(µ+�2) 0 0 0 �2s
0 0 �(µ+�1) 0 �1r2 0
0 0 0 �(µ+�2) 0 �2r1

↵1�1v
µm+�1

0
↵1�1v

µm+�1
0 �µmµm 0

0
↵2�2v

µm+�2
0

↵2�2v
µm+�2

0 �µm

3

7775
. (B.1)

The basic reproductive number, R0, for each strain is calculated from the eigenval-

ues of the matrix M·D�1 where M and D are the decomposition of A such that

D consists of the diagonal elements of A where A = M�D with M and D > 0.

The Jacobian of the system (6.1) - (6.2) is given by,

J(~⇠) =

2

64
J1 J2

J3 J4

3

75

where,

a1 = ↵2v(d2+z2) 
(1� (b1+b2))2 , a2 = � ↵2(d2+z2)

1� (b1+b2) � (µm + �2), a3 = ↵1v(d1+z1) 
(1� (b1+b2))2 , and a4 =

� ↵1(d1+z1)
1� (b1+b2) � (µm + �1). Then,

J1 =

2

66664

�(µ+�2) 0 0 0 �2s 0 0
�2 �(�1g1+µ+p) 0 0 0 0 0
0 p �(⇢2g1+µ) 0 0 0 0
↵2v

1� (b1+b2) 0 a1 a2 � ↵2(d2+z2)
1� (b1+b2)

↵2s
1� (b1+b2) 0

0 0 0 �2 �µm 0 0
0 0 0 0 �2r1+⇢1b1 �(µ+�2) 0
0 0 0 0 0 0 �(µ+�1)

3

77775
,
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J2 =

2

664

0 0 0 0 0 �2g2
0 0 0 0 ��1r2 0 0
0 0 0 �⇢2u2 0 0

0
↵2v(d2+z2) 

(1� (b1+b2))2
� ↵2(d2+z2)

1� (b1+b2) �
↵2(d2+z2)
1� (b1+b2) 0 0

0 0 0 0 0 0
0 0 0 �1s 0 �1g1

3

775

J3 =

2

6664

0 0 0 0 0 0
0 0 0 0 ��2r1 0
0 0 0 0 �⇢1b1 0

0 0
↵1v(d2+z2) 

(1� (b1+b2))2
� ↵1(d1+z1)

1� (b1+b2) �
↵1(d1+z1)
1� (b1+b2) 0

0 0 0 0 0 0
0 �1g1 ⇢2g1 0 0 0
0 0 0 0 ��2s 0

3

7775

J4 =

2

6664

�(µ+�1) 0 0 0 �1s 0 �1g1

�1 ��2g2�(µ+p) 0 0 0 0 0
0 p �⇢1g2�µ 0 0 0 0
↵1v

1� (b1+b2) 0 a3 a4
↵1(d1+z1)
1� (b1+b2)

↵1v
1� (b1+b2) 0

0 0 0 �1 �µm 0 0
0 0 0 0 �1r2+⇢2b2 �(µ+�1) 0
0 0 0 0 ��1s 0 ��1g1��2g2�µ

3

7775

Also, for convenience the order of the system in the Jacobian matrix is, ~⇠ =

(d2, r2, b2, l2, g2, z2, d1, r1, b1, l1, g1, z1, s).

At the DFE, ~⇠⇤(DF ) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1), it reduces to

J(~⇠⇤(DF )) =2

66666666664

�(µ+�2) 0 0 0 �2 0 0 0 0 0 0 0 0
�2 �(µ+p) 0 0 0 0 0 0 0 0 0 0 0
0 p �µ 0 0 0 0 0 0 0 0 0 0
↵2 0 0 �(µm+�2) 0 ↵2 0 0 0 0 0 0 0
0 0 0 �2 �µm 0 0 0 0 0 0 0 0
0 0 0 0 �2 �(µ+�2) 0 0 0 0 0 0 0
0 0 0 0 0 0 �(µ+�1) 0 0 0 0 0 0
0 0 0 0 0 0 �1 �(µ+p) 0 0 0 0 0
0 0 0 0 0 0 0 p �µ 0 0 0 0
0 0 0 0 0 0 ↵1 0 0 �(µm+�1) 0 ↵1 0
0 0 0 0 0 0 0 0 0 �1 �µm 0 0
0 0 0 0 0 0 0 0 0 0 0 �(µ+�1) 0
0 0 0 0 ��2 0 0 0 0 0 ��1 0 �µ

3

77777777775

.

The Jacobian matrix corresponding to the endemic equilibria is as follows,

where ~⇠ = (d2, z2, b2, r2, l2, g2, d1, z1, b1, r1, l1, g1, s):

J(~⇠⇤(EE)) =

2

64
G1 ⇤

0 G2

3

75 .

where,
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G1 =

2

66664

�µ(R2�1)
⌫2+1��2

�µ 0 0 0 0 0
��2(⌫2+1��2)
⌫2+R2��2

µ(R2�1)
⌫2+1��2

�(µ+�2) 0 0 0 0
��2(⌫2+1��2)
⌫2+R2��2

0 0 �(µ+�2) 0 0 0 0
0 0 0 �µ p 0 0
0 �2 0 0 �(µ+p) 0 0
0 h1 h1 h2 0 h3 h4
0 0 0 0 0 �2 �µm

3

77775

and,

G2 =

2

66664

�(�1+µ) 0 0 0 0
�1(⌫2+1��2)
⌫2+R2��2

0 �(�1+µ) 0 0 0 h6

0 0
�⇢1µ(R2�1)
�2(⌫2+1��2)�µ p 0 0

�1 0 0
�µ(R2�1)
⌫2+1��2

�p�µ 0 0

h6 h6 0 0 �(µm+�1) 0
0 0 0 0 �1 �µm

3

77775
.

The following values are found in J(~⇠⇤(EE)),

h1 =
↵2(1� µmµ(R2�1)

�2�2(⌫2+1�2)
µ(R2�1)

�2(⌫2+1��2))

1� �2(R2�1)
⌫2+R2��2

h2 =
↵2µ (R2 � 1)(1� µmµ(R2�1)

�2�2(⌫2+1��2) �
µ(R2�1)
�2(⌫2+1�2)

(µ + �2)(⌫2 +R2 � �2)(1� �2(R2�1)
⌫2+R2��2 )

2

h3 = � ↵2µ(R2 � 1)

(µ + �2)(⌫2 +R2 � �2)(1� �2(R2�1)
⌫2+R2��2 )

� (�2 + µm)

h4 = � ↵2µ(R2 � 1)

(µ + �2)(⌫2 +R2 � �2)(1� �2(R2�1)
⌫2+R2��2 )

h5 =
�1µ�2(R2 � 1)

p (⌫2 +R2 � �2)
+

⇢2�2(R2 � 1)

 (⌫2 +R2 � �2)

h6 =
↵1(1� µmµ(R2�1)

�2�2(⌫2+1��2) �
µ(R2�1)

�2(⌫2+1��2)

1� �2(R2�1)
⌫2+R2��2

Proof of Theorem 6.2.1

Theorem 6.2.1. Let ~⇠⇤0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) be the positive disease-

free equilibria of (6.1)-(6.2) then it is locally asymptotically stable if and only if

R0 < 1.

Proof. The analysis follows from the eigenvalues of the Jacobian⇤ matrix eval-

⇤See Appendix
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uated at the the disease-free equilibrium. They are: �1( of multiplicity two ),

�µ( of multiplicity three ), �(µ + �1), �(µ + �2) and the roots of the cubic equa-

tion:

�3 + (2µm + �i + �i + µ)�2 + (µm(µm + �i) + (µ + �i)(2µm + �i))�+

µm(µm + �i)(µ + �i)(1�Ri) = 0, (B.2)

which are of the form

�3 + a1�
2 + a2�+ a3 = 0.

Clearly a1 > 0 and a3 > 0 whenever R0 < 1. Then we are left to verify the

condition a1a2 � a3 > 0, or whether or not

(2µm + �i + �i + µ)(µm(µm + �i) + (µ + �i)(2µm + �i))

> µm(µm + �i)(µ + �i)(1�R0), (B.3)

and,

2µm(2µm + �i)(µ + �i) + (pos.terms) > µm(µm + �i)(µ + �i). (B.4)

where i = 1, 2. They both hold when R0 < 1

Proof of Theorem 6.2.3

Theorem 6.2.3. Assume �i = ⇢k, for i 6= k, where  = 0 and R0 < 1, then

the positive disease-free equilibrium given by 6.4 is globally asymptotically stable

on the domain ⌦ = {(s, di, bi, zi, ri, r, v, li, gi)|x +
P2

i=1(di + bi + zi + ri) + r =

1, v +
P2

i=1 li +
P2

i=1 gi = 1} ⇢ R15
+ for i = 1, 2.

Proof. We construct the following Lyapunov function, where i, k = 1, 2 and i 6= k.

L =
2X

i=1

⇣ �i

µm(µm + �i)
gi + li + ii + zi

⌘
� 0,
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where the orbital derivative is given by

L̇ =
2X

i=1

 
� (µ + �i)(ii + zi)

h
1�R0

⇣
1�

2X

i=1

li �
2X

i=1

zi

⌘i

� �ili(
�i

µm
� 1) + �igi(1� (ik + zk))

!
 0 (B.5)

By inspection and with �i su�ciently small (which basically indicates that the

transmission rate is small) but greater than µm, L̇  0.

Proof of Proposition 6.6

Proposition 6.6. A necessary condition for the local asymptotic stability of the

endemic equilibria is that (for i, k = 1, 2, i 6= k)

R2
i <

"
1� (R2

k � 1) �k
(⌫k+R2

k��k)

1� (R2
k � 1)µ µm+�k

�k�k(⌫k+1��k)

#2

4 (⌫k +R2
k � �k)

�k(R2
k�1)

(µ+�k) + (⌫k + 1� �k)

3

5 (B.6)

Proof. It must be shown that all eigenvalues of the sub-matrix G2 have negative

real part whenever (B.6) holds. The problem reduces to the study of the roots of

the characteristic polynomial,

p(�) = �3+(2µm+µ++�1+�1)�
2+[(µm + �1)(µ + �1) + µm(µ + �1 + µm + �1)]�

+


µm(µm + �1)(µ + �1)� h5(h6�1 +

�1�1(⌫2 + 1� �2)

⌫2 +R2 � �2

�
, (B.7)

of this sub-matrix.

With a1, a2, and a3 the quadratic, linear, and constant coe�cients, respectively.

It is easy to see that a1,a2 are positive, and that a1a2 � a3 > 0 when (B.6) holds.

The inequality of the proposition is, after substitution of the expressions of h5 and

h6, equivalent to the condition that a3 > 0.
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virulence and density dependent mortality in an epidemic model. Biometrics
Unit, Cornell University, BU 1299-M, 1995.

[53] J. Mendez Galvan and R. Castellanos. Manual para la vigilancia epidemio-
logica del dengue, 1994, Accessed 2004.

[54] A. Morrison, K. Gray, A. Getis, H. Astete, M. Sihuincha, D. Focks, D. Watts,
J. Stancil, J. Olson, P. Blair, and T. Scott. Temporal and geographic patterns
of aedes aegypti (diptera: Culicidae) production in iquitos, peru. Journal of
Medical Entomology, 41(6):1123–1142, 2004.

[55] M. Nowak and R. May. Superinfection and the evolution of parasite virulence.
Proceedings of the Royal Society of London B, 255:81–89, 1994.

[56] A. Ponlawat and L. Harrington. Blood feeding patterns of aedes aegypti and
aedes albopictus in thailand. Journal of Medical Entomology, 42(5):844–849,
2005.

[57] R. Ross. The prevention of malaria. 1911.

[58] A. Tran, X. Deparis, P. Dussart, J. Morvan, P. Rabarison, F. Remy, L. Poli-
dori, and J. Gardon. Dengue spatial and temporal patterns, french guiana,
2001. Emerging Infectious Diseases, 10(4):615–621, April 2004.

[59] J. Velasco-Hernández. A model for chagas disease involving transmission by
vectors and blood transfusion. Theoretical Population Biology, 46(1):1–31,
1994.

[60] J. Wu and Z. Feng. Mathematical models for schistosomiasis with delays
and multiple definitive hosts. In: Mathematical Approaches for emerging and
re-emerging infectious diseases, Part II, IMA, 126:215–229, 2002.



Chapter 7

Part II: Introduction
Alcohol abuse has been a problem in the United States and around the world for

decades. There are nearly 14 million people in the United States (1 in every 13

adults) who abuse alcohol or are alcoholic. Some of the more common complica-

tions of alcohol abuse include: HIV, sexually transmitted diseases (STD’s), violent

acts leading to injury/death, less productivity (economic burden), liver diseases

(Cirrhosis), date rape among others [1, 28]. There is no cure for alcohol abuse or

alcoholism.

Formulating drinking behavior models by itself can give rise to many insights

and questions. The process naturally raises and instigates questions that often

help sharpen the focus of the research and on occasion identify directions that

require attention or reformulation. For example, during the process of developing

a population model of the “spread” of drinking behaviors through contacts be-

tween humans mixing in “appropriate” environments a variety of questions arise

including: What is a drink? What are safe drinking levels? What is an occasional

drinker? Of course, the answers are di↵erent for each individual but we must use

averages. How does one average? The impact of using “averages” to describe a

population of drinkers has its own pitfalls since our aggregated models are not

derived explicitly from individual based models. In an ideal world, we would have

not only good data but individuals based and time series data that capture the

dynamics of drinking over “legitimate” time horizons. The use of models (their

simulation and analysis) as a tool that enhances understanding by suggesting or

identifying new directions and hypotheses or by closing down unproductive paths
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or identifying wrong turns, is not only necessary but fundamental. But what type

of models? Typically in fields where models have become established (ecology,

genetics, epidemiology, etc.) the model is not thought of as a description that

captures as much detail as it can from a complex system but actually it is thought

of as a tool designed to answer sharp, focused, specific questions. Hence, the level

of detail or information that it is incorporated in a model should be just enough

to guarantee that the question under consideration can be addressed in a non-

obvious and useful setting. This is why in many areas of ecology and epidemiology

(particularly where data are available) the goal has often been to use as simple

models as possible (but not simpler) as one attempts to address a specific question.

Deterministic models have many advantages and can often give solid insights into

processes where data are limited ([11, 12, 10]). The introduction of models with

high degree of complexity is sometimes possible and its analyses often possible

([26, 33, 8]).

The question requires the use of a model that includes two levels of heterogene-

ity: “local” and “global”. We are able to formulate a modeling framework that

captures the impact of two contact mixing levels driven by average residence times

and drinking activity per unit of time. We hope to use this complex setting (still

a highly aggregated model) to study the interactions between “global” drinking

environments and local drinking networks and their e↵ect of such interactions on

the short- and the long-term dynamics of drinking at the population level.

There are many factors that contribute to individuals becoming problem drinkers:

peer pressure from other drinkers, stress level, type of environment, relationships,

among others. It is di�cult to take into account many of the factors that could

contribute to the problem.
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There are many di↵erent treatments that include medication or psychological

help or a combination of both. One of the main problems is that individuals that

recover could relapse even after being sober for a long time. How this process occurs

is what interests us. We look at the impact of “problem” drinkers on the population

of temporarily recovered and the impact of fast recovery. Also, education plays a

big role in most social and disease dynamics [17], however, educational programs

or rehabilitation programs usually target individuals who typically have strong self

motivation to get better. Moreover, individuals who really need help are usually

timid and rarely seek any type of help.

In Chapter 8 we will focus on the influence of other drinkers on the temporarily

recovered and look at two di↵erent types of environments (local and global). We

explored a simple mathematical model (deterministic, networks and stochastic)

that looks at the impact of influence of other drinkers, temporary recovery and

relapse. In Chapter 9 we look at di↵erent types of environments play a role in

drinking dynamics. We also look at a more detailed model that includes di↵erent

classes of drinkers (abstainers, occasional, moderate, heavy) in a local and global

environments. We study the e↵ects of these environments in the light drinking

classes (abstainer and occasional).



Chapter 8

Drinking as an epidemic–a simple

mathematical model with recovery and

relapse⇤

The outcomes (patterns) associated with various biological and sociological pro-

cesses are often the result of interactions or contacts between individuals, groups,

sub-populations or populations. For example, some aspects associated with the

process of language acquisition can be thought of as the result of non-specified

contacts between those who speak the language and those who have yet to ac-

quire it. Although contacts between individuals in di↵erent states are at the heart

of these processes, the definition of “contact” (e↵ective contact) is highly depen-

dent on context and di�cult to define. Gonorrhea transmission, for example, is

most often the result of intimate sexual contacts (intercourse) between infected

and non-infected partners. Tuberculosis (TB) or influenza infections are most of-

ten the result of “casual” contacts (handshakes or kissing) or the result of sharing

close environments, for long-enough periods of time with infected individuals.

Starting with the pioneering work of Ross and his students [29], researchers

who conduct studies of social and health problems in which data are scarce have

often relied on simple mean field deterministic models to generate insights and

understanding. The analysis of such mathematical models is used to generate hy-

⇤Fabio Sánchez, Xiahong Wang, Carlos Castillo-Chávez, Paul Gruenewald and
Dennis Gorman. Drinking as an epidemic–a simple mathematical model with
recovery and relapse. Evidence Based Relapse Prevention. Edited by Katie
Witkiewitz and G. Alan Marlatt, 2006 (to appear in).
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potheses or to gain insights (with limited data) on the “transmission” process and

its control [11, 12, 10]. Challenges arise from the fact that the dynamics of social

processes are highly non-linear. Tuberculosis, for example, can be transmitted

through casual interactions (e.g. in public transportation systems) or through the

type of close contacts that take place among household members or close friends.

While it has been di�cult to measure explicitly the contribution of each of these

transmission routes in the case of TB, it has been possible to show that both

routes are necessary for the pathogen’s survival [15, 3]. In epidemiology, the result

of contacts between susceptible and infectious individuals may alter temporarily

or permanently an individual’s health status. Flu infections are short (3� 6 days

on the average), TB infections are life-long (most infected individuals remaining

“forever” in a latent state) and HIV infections are progressive (especially in the

absence of treatment) and life-long.

In addition to studying infectious disease transmission processes, epidemio-

logical contact models have also been applied to the study of the dynamics of

social and behavioral processes such as eating disorders, drug addictions and vio-

lence [16, 34, 30, 14, 27]. There are clearly di↵erences in the generation of addictive

behaviors and the transmission of infectious diseases. However, the fact remains

that the acquisition of both can be modeled (in the context of specific questions)

as the likely result of contacts between individuals in given environments. For

example, the development of alcohol use among young people and the influence of

“supportive environments” on the development and maintenance of heavy drink-

ing, alcohol abuse, dependence and problems among adults, are predicated upon

the combined e↵ects of social influence and access to alcohol [18, 35, 36, 37]. Thus,

additional understanding of the dynamics of drinking behaviors may result from
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the use of a perspective that models drinking as the result of contacts of suscepti-

bles with individuals in distinct drinking states.

8.1 Simple SDR drinking model

Drinking is modeled as an “acquired” state, the result of frequent (i.e., high number

of contacts) or intense (i.e., high likelihood of conversion) interactions between

individuals in three drinking states (susceptible, regular drinkers and temporarily

recovered) within an (implicitly) assumed fixed drinking environment.

This is the first time this approach is used to model drinking dynamics. The

goal of the model is to identify mechanisms (quantitatively speaking) that facil-

itate or limit the conversion of a population of non-drinkers to one of drinkers.

The process of quantification helps to understand the role of social forces on the

time evolution of drinking. Knowledge of these factors may be useful in the de-

velopment of e↵ective drinking control policies and in the evaluation of treatment

interventions.

We describe the dynamics of drinking within the context of the classic SIR

(Susceptible-Infected-Recovered) epidemiological framework [6]. The population

in question is divided into the following drinking classes: occasional and moderate

drinkers (S); problem drinkers or “infectious” (D); and temporarily recovered (R).

It is assumed that the population size remains constant, that is, that the time

scale of interest is such that the total population size does not change significantly

over the length of the study. New recruits join the population as occasional and

moderate drinkers (S) and mix at random (i.e., homogeneous mixing) with the rest

of the members of the population. Uniform or homogeneous mixing means that

the likelihood of coming into contact with members of each class is either S
N = s,
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Figure 8.1: Caricature of the model.

D
N = d or R

N = r where N = S + D + R. Under these assumptions, the process of

transmitting “drinking behaviors” is modeled via the following re-scaled (that is,

we work with proportions) system of nonlinear di↵erential equations:

ṡ = µ� �sd� µs,

ḋ = �sd + ⇢rd� (µ + �)d,

ṙ = �d� ⇢rd� µr,

1 = s + d + r.

(8.1)

The rate of conversion from the susceptible state (occasional drinker) to the regular

drinking state is assumed to be proportional to the size of the susceptible popula-

tion, the likelihood of interacting with a randomly selected drinking partner and

the magnitude and intensity of the contacts. The rate of relapse is the result of

similar forces that involve contacts between r and d individuals.

The fact that individuals can transition to the D class from the S and R classes

suggests that “conversion” may be the result of “group” rather than individual pro-

cesses. The “first” transfer of individuals to the drinking class is the result of a

nonlinear process modeled via a function of S and D, B(S,D). This function

must satisfy the following conditions: B(0, D) = B(S, 0) = 0 (in the absence of

susceptible or problem drinkers there is no transmission). Homogeneous mixing

means that B(S,D) can be modelled as �S D
N or B(s, d) = �sd (in re-scaled vari-
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ables). Here � is a measure of the average number of e↵ective interactions between

susceptible and problem drinkers per unit of time. The rate of transfer from R

to D is the result of a nonlinear process modeled via the function G(D, R) with

G(0, R) = G(D, 0) = 0. Here, we choose to model the total nonlinear relapse

rate by ⇢RD
N or ⇢rd (in re-scaled variables) where the parameter ⇢ is a measure

of the average number of e↵ective contacts per unit of time between drinkers and

temporarily recovered individuals. This nonlinear process assumes that R and D

individuals (as well as S-individuals) share the same environments.

From the analysis of the “drinking-free” equilibrium, that is, the state where

drinking is not part of the culture, we compute the model’s basic reproductive

number

R0 =
�

µ

which corresponds to the case when, � = 0 (no treatment). R0 is the number of

secondary cases generated by a “typical” regular drinker in a non-drinking popu-

lation, that is, a population where problem drinkers are so rare that their numbers

are “insignificant” and where treatment is not available. That is, R0 is computed

in the situation when the R-class does not exist.

R0 measures the growth of drinking behaviors per generation and is the prod-

uct of the average D-residence time, namely 1
µ (“infectious” window) and the

D-transmission rate �. It is worth noting that R0 decreases if either 1
µ (average

drinking “life-span”) or � (transmission rate) or both decrease.

The basic reproductive number with recovery is given by

R� =
�

µ + �
,

with R�=0 ⌘ R0. In this case, the SD model dynamics are well known. In fact,

if R0 < 1 then the introduction of any number of drinkers does not result in the
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establishment of a culture of drinking (D(t) ! 0 as t !1). On the other hand, if

R0 > 1 even the introduction of a single drinker will lead to the establishment of

a culture of drinkers (D(t) ! D⇤ > 0 as t !1). The results here are not typical.

R� < 1 does not guarantee that the “epidemic” will die out. Furthermore, when

R� > 1 the “epidemic” takes o↵ and reaches a “permanent” endemic state (i.e.,

persistence of a regular drinking class over time is guaranteed).

8.2 Population dynamics of drinking under high relapse

rates

Here the relationship between recovery (�) and relapse (⇢) rates are explored. Ide-

ally, e↵ective treatments should increase recovery and reduce relapse rates to the

extent that an “epidemic” of heavy drinking is reduced or stopped. However, it

appears from an analysis of the basic drinking reproductive number (with recov-

ery), R�, that this may be a di�cult task. We have the trivial equilibrium (no

drinking state) given (in proportions) by (s⇤, d⇤, r⇤) = (1, 0, 0). Positive solutions

(s⇤ > 0, d⇤ > 0, r⇤ > 0), that is, solutions where drinking may become established

are solutions of the quadratic equation

f(d) = d2 �Bd + C = 0,

where B = 1 � 1
R0
� 1
R⇢ and C = 1

R0

⇥
1
R⇢ �

�
⇢

⇤
with R⇢ = ⇢

µ+� . Two positive

solutions d⇤1, d⇤2 in (0, 1) exist whenever B > 0, C > 0, f 0(1) > 0 and B2� 4C > 0.

From the definition of C it follows that C > 0 whenever R� < 1. The positivity

of the discriminant (B2 � 4C > 0) requires the following conditions: R⇢ > 1 and

0 < Rc < R� < 1 (Rc > 0 whenever R� < 1) where

R⇢ =
⇢

µ + �
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Table 8.2: Description of threshold conditions.

Thresholds Description

R0 Number of secondary cases generated by a “typical” problem drinker

in a non-drinking population.

R� Basic reproductive number with recovery.

R⇢ Number of secondary cases generated by a “typical” problem drinker

in a population of “temporarily” recovered individuals.

Rc Critical value to where drinking communities can be under control.

and

Rc =
⇢

�


1

1 + 1
R0

� 2

r
1

R0
� µ

⇢

�
.

If both 0 < Rc < R� < 1 and R⇢ < 1 then drinking dies out. However, whether or

not a culture of drinking becomes established (0 < Rc < R� < 1 and R⇢ > 1) de-

pends on initial conditions (see Figure 8.5c, 8.5d). That is, where the system ends

up (including the rapid growth and establishment of a d-class or its elimination)

depends on the size of the initial proportion of problem drinkers. In fact, a rapid

and large “outbreak” is possible whenever the number (or proportion) of initial

drinkers is high. Such an outbreak, the model predicts, will result in the long-term

survival of a regular drinking culture despite the fact that R� < 1. Furthermore,

in this last case a community of drinkers not only becomes established but may be

nearly impossible to eliminate. In fact, parameters must be modified so that the

value of R0 is lower than that of Rc. This result is “unexpected” since the system

has in place parameters that represent the e↵ects of highly e↵ective treatment pro-

grams (that is, R� < 1). Using current drinking literature pertaining to recovery,

relapse and the social interpersonal influences upon drinking behavior [23]-[22], we

have estimated several of the parameters necessary to the initial specification of a
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Figure 8.2: Threshold conditions: Rc and R�.

simple SDR model of drinking behavior (see Table 8.1).

8.3 Uncertainty and sensitivity analysis

The exact measurement of key behavioral and drinking parameters is di�cult since

precise data pertaining to these are not readily available. Thus, in order to better

estimate the impact of variation in parameter ranges on dynamical outcomes, we

conduct an uncertainty analysis on R�,
Rc
R�

and R⇢ (see Table 8.2 for description).

We assigned probability distribution functions to each of the parameters (see Ta-

ble 8.1) in R�,
Rc
R�

and R⇢ based on our reading of the relevant literature pertaining

to the initiation, maintenance and cessation of alcohol use, and proceeded to study

their impact on the corresponding R� and Rc
R�

distributions.

The level of uncertainty in the model’s parameter values is explored via Monte

Carlo simulations (based on 1000 realizations). Figures 8.3 and 8.4 show the

resulting histograms R� and Rc
R�

.

Rc
R�

< 1 provides a necessary condition for the possibility of having two drinking

steady states (d⇤1 > 0, d⇤2 > 0). In other words, the number of problem drinkers in
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the population plays a major role in the “spreading” of the drinking culture and

establishment of drinking environments. That is, for any given set of parameter

values there is a critical mass of drinkers that can cause the drinking community

to grow or disappear. This happens when 0 < Rc < R0 < 1. Figure 8.4 illustrates

the fact that Rc
R�

< 1 using the distributions from Table 8.1 as well as having the

two positive “drinking” steady states.
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Figure 8.3: Histogram for R�. The mean is 3.12 with a standard deviation of 7.39

and 71% of R� > 1.

The quantities R�, Rc and R⇢ are functions of parameters. Here, we analyzed

the sensitivity of R�,
Rc
R�

and R⇢ to parameter variations. Using the partial rank

correlation coe�cient (PRCC) we determined the qualitative relationship between

the parameters and the threshold quantities previously described. The analysis

showed that the alcohol recovery rate was the most significant (sensitive) param-

eter. Furthermore, if � (recovery rate) is not small and the relapse rate ⇢ is high

enough then the situation can actually worsen despite treatment e↵ectiveness. In
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Figure 8.4: Histogram of Rc
R�

. The mean is 0.16 with a standard deviation of 0.11

and the median is 0.14

other words, if both the initial rate of recovery from treatment and the subsequent

relapse rate are high this will create a critical mass of vulnerable individuals that

can re-enter the problem drinker class. The PRCC value indicates the e↵ect of the

parameter in the quantities R�,
Rc
R�

and R⇢.

From Table 8.3 the transmission rate (�) has a “negative” e↵ect on R� and

Rc/R�. In other words, it decreases both quantities but it has a greater e↵ect

on R�. The relapse rate (⇢) has a “negative” e↵ect on R⇢ and Rc/R�. It has a

relatively large e↵ect on both quantities, however, the treatment rate (�) has the

biggest (positive) e↵ect on Rc/R�. It increases Rc/R�. In other words, if Rc
R�

> 1

the drinking community becomes established.
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8.4 Numerical simulations

Numerical simulations are used to illustrate our model results on drinking dy-

namics. The most general model can support two positive equilibria (backward

bifurcation) when R� < 1, Rc
R�

< 1 and R⇢ > 1 where R⇢ = ⇢
� (1�R�) with ⇢ > �.

The probability that R� > 1 is high (see Table 8.4), that is, it is highly likely that

drinking becomes established. Individuals who recover then relapse at the total
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Figure 8.5: Backward bifurcation and time series of the d-class. Parameter values:

µ = 0.0000548, � = 0.2, ⇢ = 0.21 and � = [0.001, 1.3]. A time series plot of the

system with di↵erent initial conditions. Lower left: s = 0.97, d = 0.03 and r0 = 0.

Lower right: s = 0.99, d = 0.01 and r = 0. Parameter values: µ = 0.0000548,

� = 0.19, � = 0.2 and ⇢ = 0.21.
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rate ⇢dr (nonlinear relapse). If this rate is high, then the probability that we enter

the region (R� < 1 and multiple positive steady states) where the development

of successful treatment programs is unlikely is increased. This implies that once

a drinking culture is established it is di�cult to bring it to a low enough level to

completely eliminate it. As soon as a drinking culture is established, the e↵ec-

tiveness of treatment (�) becomes a critical factor in limiting and curtailing its

influence. High rates of recovery with high relapse rates will not a↵ect reductions

in problem drinking. In fact, a new pool of high-risk “susceptible” previous prob-

lem drinkers can become part of such a drinking community and problem drinking

become di�cult to eradicate.

In Figure 8.5a) we illustrate a backward bifurcation where drinking behav-

ior can become quickly established and getting it under control would require a

tremendous e↵ort (Rc = 0.33). We used a range of parameter values that allows

for the possibility of multiple steady states (R� < 1, Rc
R�

< 1 and R⇢ > 1). In

the case in which recovery and relapse rates are equal (� = ⇢ = 0.2), R� < 1 is a

su�cient condition to bring the drinking culture under control (Figure 8.5b).

The number of initial problem drinkers introduced in the population play a

crucial role in the establishment of the drinking community. Figure 8.5c illustrates

the role of initial conditions (initial number of occasional and moderate drinkers,

problem drinkers and recovered individuals) in the presence of two drinking en-

demic states (a backward bifurcation). Setting the initial parameter for problem

drinkers within the population at just 3% is su�cient to establish a community of

drinkers. Such a situation might occur, for example, when a new class of fresh-

men arrive at college. The critical proportion of problem drinkers may determine

whether or not a drinking culture becomes endemic (established) even under un-
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Figure 8.6: Problem drinkers (D) vs. ⇢. Parameters: � = 0.5, � = 0.2, and

µ = 0.0000548. Initial conditions: s0 = 0.99, d0 = 0.01, and r0 = 0.

favorable conditions (R� < 1). In contrast, when we start with less than 3% of

the population as problem drinkers then the drinking community is “eliminated”

(see Figure 8.5d). In Figure 8.6 we can see a phase transition that occurs as the

relapse rate (⇢) increases and becomes larger than the treatment rate (�). This

phase transition is correlated with the quantity R⇢. When the number of sec-

ondary conversions from the temporarily recovered population is bigger than one

the proportion of problem drinkers increases. In contrast, in Figure 8.7 we ob-

serve the opposite. As the treatment rate (�) increases the proportion of problem

drinkers decreases. This happens as the treatment of problem drinkers becomes

more e↵ective the number of secondary cases starts decreasing (R� < 1) and the

proportion of problem drinkers decrease. In the case where the “conversion” rate

(�) (see Figure 8.8) is varied the proportion of problem drinkers stays at zero until

it crosses � = 0.19. This occurs when R� = 1.
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8.5 Conclusions

We introduced a simple mathematical model to describe the dynamics of drinking

behaviors generated from contacts between individuals in drinking environments.

This simple model, despite its limitations, has generated some useful insights. R�,

the basic reproductive number (as a function of treatment), is not always the key.

In fact, in situations where recovery and relapse rates are high R� < 1 does not

guarantee the successful elimination of drinking from the population. High relapse

rates will occur when treatment programs only have short-term positive e↵ects.

Model results and analyses show that the propagation of drinking behaviors

is the result of two conversion processes: s to d as determined by R� and r to

d. Furthermore, in contrast to classic epidemiology, outbreaks (sudden growth in

the number of problem drinkers) are possible when R� < 1. In this last situation,

initial conditions play an essential role on the establishment of drinking communi-

ties. The case R� < 1 and R⇢ > 1 is enhanced by intervention programs with high

relapse rates. Under this scenario the control of problem alcohol use via treatment

may be extremely di�cult. It may be more e↵ective to try to limit the average

resident times of s-individuals in drinking environments (i.e., the average time

they spend in places in which alcohol is available and drinking is commonplace).

Indeed, this may be the most e�cient way to proceed until treatments with more

sustained e↵ects are identified and widely implemented.



Chapter 9

Drinking model in a small-world network

and a Markov chain model

9.1 Small-world networks

The fact that several processes (like drinking) are highly dependent on the con-

tact of individuals on a given population has driven theoreticians to the study of

epidemics on networks. Initially, most studies have been carried out using distinct

static network structures [25, 24]. These graphs (networks) were brought to light

by the work of Erdős and Rényi in the 19600s [5].

In 1998 Watts-Strogatz introduced an algorithm that generates small-world

networks. The algorithm constructs a one-dimensional ring lattice of N nodes

connected to its 2k (k=average number of connections) nearest neighbors. With

probability p some edges are selected and “rewired” to a randomly selected node.

The algorithm prevents two nodes from having more than one edge running be-

tween them, and there cannot be self-connections from the nodes in this lattice [38].

These type of networks were classified by the level of randomness (clustering)

which is modeled by p. A regular network has a value of p = 0. Every node in the

network is connected to its nearest two neighbors (to the right and left, k = 2).

In a random network which has p = 1, every node has equal probability to be

connected to any node in the network.

The novelty of their work came from the fact that having a small number of

randomly connected nodes (p ' 0.01) reduces the distance between any two nodes

in the network. For our purposes, this facilitates the spread of drinking behavior.
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These type of networks have shown to support high levels of clustering. Networks

having these two characteristics (clustering and short average distance between

nodes) are known as the small-world e↵ect, a phenomena that has been observed

in various social and other networks [38].

9.2 Drinking behavior on small-world networks

If nodes represent individuals in the population and the edges describe their con-

tacts with other individuals then epidemics on networks can be used to evaluate

the role of contact/social structure in the spread of drinking behavior.

In this setting, individuals can be in one of three distinct states: susceptible

(light drinker), drinkers (“problem” drinker), and “temporarily” recovered (SDR).

A susceptible individual in contact with a “problem” drinker (D) may become a

“problem” drinker with probability �D where � is the risk of “infection” per unit

time. In the same way, problem drinkers can recover with probability � where 1
�

is the average time spent in the “problem” drinking class. After recovery, former

drinkers (R) can relapse into the “problem” drinking class with probability ⇢D.

Note that this probability assumes that former drinkers (R) relapse via contacts

with “problem” drinkers (D) (see Figure 9.5 for transition probabilities). Five

nodes were predetermined to be “problem” drinkers and chosen from the network

uniformly at random. In all cases throughout this section we averaged 30 realiza-

tions over a period of 104 units of time and 52 values of the disorder parameter p.

In Figure 9.1 we determined the mean final size of the spread of drinking behaviors

for p = 0 and p = 1, i.e., very few random connections and connections completely

random, respectively. The final size is almost the same for both values of p.

In Figure 9.2 we do the same tests but there is a significant di↵erence in the final
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Figure 9.1: Mean final size of the “problem” drinking population with 1000 nodes,

hki = 6, � = 0.03 and ⇢ = 0.8 as a function of the treatment rate � for two extreme

values of p (disorder parameter).

size of the drinking community. When p = 1 the community becomes established at

the highest prevalence level (on average between 40% and 55%). From Figure 9.3

we observe that the population of problem drinkers oscillates between 300 and 600

with not much fluctuation for all values of p (disorder parameter). In other words,

the structure of the network does not play a role in the “spread” of the drinking

behavior. Few random connections have the same e↵ect as the probability of

having many random connections being high. This leads to the conclusion that

the system is robust for a particular parameter range, that is, when the relapse

rate (⇢) is larger than the treatment rate (�), i.e., treatment is not e↵ective. We

also computed histograms from extreme values of p (0 ad 1). See Figure 9.7.

Figures 9.6, 9.7, we show di↵erent distributions for the cases previously discussed

of “problem” drinkers for two values of the disorder parameter p.
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9.3 Conclusions

In this study, we look at the role of social structure on drinking dynamics. The

setting is provided by networks parametrized via a disorder parameter “p”. For

p = 0, we have a situation where individuals only interact “locally”, that is, only

with the nearest neighbors while when p = 1 they interact with everybody in the

network.

It is not surprising to see that drinking dynamics are enhanced when p = 1. On

the other hand, it is surprising to see that network structure does not significantly

impact population drinking levels.

In addition, in this section we explored the role of varying the treatment rate

(�) and the relapse rate (⇢) for two di↵erent values of the disorder parameter (p = 0
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Figure 9.3: Mean final size of the “problem” drinking population with 103 nodes

and hki = 3 as a function of the disorder parameter p. Parameter values: � = 0.03,

⇢ = 3, and � = 0.8.

and p = 1). In the case of � we find that network structure has no e↵ect on the final

size of the drinking community. However, as the treatment rate increases (more

e↵ective treatment) the final size of the drinking community decreases regardless

of network structure for a fixed relapse rate (⇢ = 0.8).

In the case of the relapse rate (⇢), the final size of the drinking community

is not a↵ected by network structure. Moreover, as the relapse rate (⇢) increases

the final size of the drinking community also increases for a fixed treatment rate,

� = 0.8.

In Figure 9.3 the relapse rate is larger than the treatment rate (⇢ = 3,� = 0.8),

i.e., ine↵ective treatment. The drinking community is established at around 50%.

Network structure does not impact the size of the drinking community. In Figure

9.4 the treatment rate is larger than the relapse rate (� = 0.8, ⇢ = 0.4), i.e., e↵ective
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Figure 9.4: Mean final size of the “problem” drinking population with 103 nodes

and hki = 3 as a function of the disorder parameter p. Parameter values: � = 0.03,

⇢ = 0.4, and � = 0.8.

treatment. The drinking community is established at around 20%. Despite the

fact that network structure does not impact the size of the drinking community,

an e↵ective treatment program can lead to the decrease of the final size of the

drinking community.

In our study we find that for large relapse rates the prevalence of the drinking

community is high and it is very di�cult to reduce. E↵ective treatment rates are

necessary to control and reduce the prevalence of drinking communities.

Also, our simulations show that the number of long-distance connections do not

play a significant role in the establishment and maintenance of such communities.

Treatment programs must develop individual follow-up programs designed to

keep vulnerable individuals from relapse into drinking. Clearly, there are some

issues that need to be addressed (economics) and many well established treat-
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Figure 9.5: Diagram of transition probabilities.

ment facilities that need to re-evaluate their traditional sometimes non-e↵ective

programs.

9.4 Drinking behavior: a continuous Markov chain ap-

proach

In this section we look at the stochastic version of the simple SDR model de-

scribed in Chapter 8 (see [31]) using a continuous time Markov chain model. We

are particularly interested in explaining the role of stochasticity on the backward

bifurcation region and compare it to its deterministic counterpart [2]. We showed

that the mean of the stochastic realizations and the deterministic model match.

We compute final size distributions at a fixed time horizon for R� < 1 and R� > 1.
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when ⇢ = 0.4, � = 0.8, � = 0.03 and µ = 0.0000548.

9.5 Methods

We describe the dynamics of drinking within the context of the classic SIR epi-

demiological framework [6]. The population in question is divided into the follow-

ing drinking classes: occasional and moderate drinkers (S); problem drinkers or

“infectious (D); and temporarily recovered (R). It is assumed that the population

size remains constant, that is, that the time scale of interest is such that the total

population size does not change significantly over the length of the study. New

recruits join the population as occasional and moderate drinkers (S) and mix at

random (i.e., homogeneous mixing) with the rest of the members of the population.

The rate of conversion from the susceptible state (occasional drinker) to the

regular drinking state is assumed to be proportional to the size of the susceptible

population, the likelihood of interacting with a randomly selected drinking partner
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Figure 9.7: Histograms of the “problem” drinking population for two values of p

when ⇢ = 3, � = 0.8, � = 0.03 and µ = 0.0000548.

and the magnitude and intensity of contacts. The rate of relapse is the result of

similar forces that involve contacts between R and D individuals.

Here, we looked at the SDR model using a stochastic Markov chain model.

Setup. We divide the model into events that can occur and assign rates to these

events. These events are placed in a vector ([birth S-dead S-D D-dead D-R R-dead

R-D]). There vector state contains the random variables t, S, D and R that will

contain all the simulation data. All parameters and initial conditions are fixed and

the number of realizations is established. Here, we carry out 100 realizations.

Model transitions. Individuals can be in one of three states: susceptible (S),

drinkers (S) and recovered (R). A susceptible individual in contact with a drinker

(D) may become a drinker at the rate �SD/N where � is the transmission rate.

Drinkers can “recover” at the rate �D where 1
� is the average time spent in the

drinking class. After recovery, former drinkers (R) can relapse into the drinking
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Table 9.1: SDR drinking network model. Di denotes the number of “problem”

drinker neighbors of node i.

transition probability of transition

node i changes from

susceptible into “problem” drinker 1� exp(��Di)

node i changes from

“problem” drinker into “temporarily” recovered 1� exp(��)

node i changes from

“temporarily” recovered into “problem” drinker 1� exp(�⇢Di)

class at the rate ⇢RD/N . Note that these rates become conditional probabilities

after the vector that contains them is divided by the sum of all the rates.

Procedure. The process starts once all the probabilities for each event are deter-

mined and the parameters and initial conditions are set. The stochastic process

runs until the pre-determined time or when there are no more drinkers (D) or

recovered (R).

9.6 Numerical simulations

We explore and compare the mean of the distribution from a Markov chain model

built from the same rates used to construct the deterministic version of the SDR

model. The dynamics of the simple deterministic model “match” the mean dy-

namics of the stochastic model. However, there are di↵erences. When R� < 1

a number of the stochastic realizations go to zero while others generate drinking

communities (endemic states) over a fixed time horizon.
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In the deterministic case for specific parameter ranges and when R� < 1 we

can have an endemic state (backward bifurcation e↵ect).

The SDR model supports multiple steady states when Rcritical < R� < 1 [31].

Figure 9.8: Left. Stochastic version of SDR model (100 realizations). Mean= 507.

Right. Deterministic version of SDR model. For these simulations the parameters

used were: � = 0.5, ⇢ = 0.21, � = 0.1 and µ = 0.0000548 with R� = 5. We started

with five drinkers (D0 = 5). Mean= 528.
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Figure 9.9: From the stochastic simulations we computed a histogram of the final
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9.7 Conclusions

Drinking is easily established in di↵erent communities by the presence of restau-

rants, clubs, social gatherings, bars, etc. We explored a simple network model that

takes into account a heterogeneous contact structure. We look at the e↵ect of short

and long distance connections between individuals and how they help establish or

diminish drinking communities.

In the case when we have a backward bifurcation (multiple prevalent states)

we find that once drinking communities are established it is di�cult to eradicate

them if there are enough problem drinker in the population.

A stochastic model was built to determine the validity of the simple determin-

istic model using its counterpart stochastic version and allowing for perturbations

(stochasticity). Two cases were studied, R� > 1 and R� < 1, albeit the relevant

one is when R� > 1.

From the simulations (preliminary results) we were able to match the deter-

ministic model to the stochastic. We computed final size histograms for specific

stoppage times.

This is the beginning part of this study and further cases are being sought and

simulations are being conducted. Preliminary simulations show that varying the

relapse rate (⇢) a↵ects the prevalence of the drinking community which is agrees

with our previous results in Section 8.4 and 8.8.

This model can be used to create generic datasets and use them in the sim-

ple deterministic model. Also, note that these simulations are computationally

expensive.



Chapter 10

E↵ects of local and global alcohol

consumption networks on drinking

dynamics
Drinking is often tied into socially adaptive environmental conditions [20, 19, 21].

Environments can facilitate drinking behaviors. How frequently do individuals find

themselves as temporary residents of these environments? and What is the im-

pact of visits to these environments on their long-term drinking behavior? These

are some of the questions that fit within the overall theoretical framework pre-

sented here. We hope that this framework can shed some additional insights that

facilitate our understanding of these issues. Here, we explored the impact of “lo-

cal” and “global” environments on drinking behavior, frequency and intensity and

longevity. These questions are explored through the construction of a population

level mathematical framework that assumes drinking is promoted via “contacts”

in “local” and “global” environments.

10.1 Mean field example

In order to illustrate our approaches, we introduce a “mean” field model for the

dynamics of the “spread” of drinking. The introduction of the setting uses specific

assumptions and a selected level of complexity but from the process it should be

clear that a great number of possible scenarios can be using a similar modeling

approach. We look at drinking as an environmental and population driven process.

107
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Here, our model divides the population into four “drinking” classes: abstainers,

occasional, moderate and heavy drinkers. The definitions use to characterize these

states are:

a) Abstainer (very low-risk drinker) - fewer than 12 drinks in a year, no more

than 2 per day.

b) Occasional drinker (low-risk drinker) - 1 to 13 drinks per month and no more

than 2 per day.

c) Moderate drinker (medium-risk drinker) - 4 to 14 drinks per week and no

more than 2 at once.

d) Heavy drinker (high-risk) - drinks more than 2 drinks per day.

Moderate drinking is the “universal” threshold associated with “safe drinking”. A

drink is defined as 10cc of alcohol (12oz. regular beer, 5oz. glass of wine, or shot

1.5oz. 80-proof distilled spirits [13]).

The model includes drinking interactions at multiple levels. The identification

of what these levels are depends on the question. For example, it may include

local (bars and social activities, where non-drinkers and drinkers are assumed to

interact in their own “neighborhood”) and global activities (interactions outside

own “neighborhood” like downtown bars) where individuals from all neighbor-

hoods place themselves in drinking environments (nightclubs, discotheques, sport

events, etc.). Here, the term “neighborhood” is define as the “space” reserved for

local interactions. Additional possible interpretations are easily concocted. The

population is divided into n neighborhoods. For simplicity, each neighborhood is

assumed to be composed of two types of individuals “homebody” and “social”.

Homebody individuals are those individuals who mostly interact in local drinking
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Figure 10.1: Caricature of the model.

environments. Social individuals have no boundaries. Individuals become part of

drinking environments when they spend a “regular” amount of time in “local” or

“global” activities that involve drinking. Heterogeneity in participation is modeled

via average “neighborhood” activity (drinking) levels. Individuals are assumed

to “budget” their social contacts (scaling parameter) in direct proportion to the

time that they spend in drinking environments, etc. Individuals are assumed to

“progress” towards higher levels of drinking via two routes: “promoting” social

interactions (modeled by contacts between individuals of the various “drinking”

classes) or through longevity in each drinking class (like aging). In other words, it is

assumed that individuals may “influence” others in their social environments. The

relative influence scale used here assumes that abstainers and occasional drinkers

may be influenced only by moderate drinkers while moderate drinkers are only

influenced by heavy drinkers. Heavy drinkers are assumed not to be influenced by

anyone. It is assumed that low-risk drinkers (abstainers and occasional drinkers)
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do not interact with others outside their local drinking neighborhood while mod-

erate drinkers can be influenced by moderate drinkers and heavy drinkers from

all neighborhoods. In other words, we implicitly assume that the proportion of

abstainers and occasional drinkers who visit a “pure” drinking environment is neg-

ligible. All the above assumptions reduces model complexity and the limits of their

validity can be tested, at least, numerically.

The introduction of this “simple” model immediately raises many challenges.

How do we define an e↵ective contact (average number of contacts per unit of

time required for promotion into the next level)? Here, rather than explicitly

defining the concept of contact, we will tend to think of such a parameter as a

“fitting” parameter. Hence, the average contact rate of a particular group will be

a measure of how much more or how much less active is this group in relation to

all other groups. Variability in behaviors (time spent in local is global drinking

environments) will be modeled not only by di↵erential average group contact rates

but also by di↵erential resident times in each environment. The time a moderate

or heavy drinker spends on its neighborhood or in a “pure” drinking place are given

by !i = ⌧i/(⌧i + �i) and  i = �i/(�i + ⌧i) respectively. Parameters and parameter

descriptions are given in Table 10.2.

Table 10.1: Sub population and classes. i is the neighborhood index.

State Variables Description

Ni total population of neighborhood i

Si abstainers or non-drinkers from neighborhood i

Oi occasional drinkers from neighborhood i

Mi moderate drinkers from neighborhood i

Hi heavy drinkers from neighborhood i
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The highest modeling di�culty comes from our attempts to model the interac-

tions between individuals of the same and di↵erent neighborhoods. Mathematical

and theoretical epidemiologists have spent considerable amount of time addressing

this problem [4, 7, 9]. Here, it is assumed that contacts are “frequency” depen-

dent with weights provided by the average-activity group levels and appropriate

residence times. There are two types of individuals in each neighborhood “social”,

that is, those who interact with everybody and everywhere and “homebody”, that

is, those who interact with social and homebody locally. These are some complica-

tions since the population is divided into low-risk drinkers and high-risk drinkers

and high risk drinkers are the only ones who interact with drinkers from other

neighborhoods. The mixing probabilities are:

1) Pbi,ai = P̃ai = ai(Si+Oi)
bi!i(Mi+Hi)+ai(Si+Oi)

!i ! mixing probability between social

and homebody individuals from neighborhood i in neighborhood i.

2) Pbi,bi = P̃bi = bi!i(Mi+Hi)
ai(Si+Oi)+bi!i(Mi+Hi)

!i ! mixing probability between social

individuals from neighborhood i in neighborhood i.

3) Pbi,bj = P ⇤
bj

= bj⌧j(Mj+Hj)Pn
l=1 bl⌧l(Ml+Hl)

⌧i ! mixing probability between social individ-

uals from neighborhood i and j in the commonground place.

4) Pai,aj = 0 ! homebody individuals from neighborhoods i and j do not

interact.

5) Pai,bj = 0 ! a homebody individual from neighborhood i and a social indi-

vidual from neighborhood j do not interact assuming i 6= j.
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Naturally, for each neighborhood the following “conditional probabilities” identi-

ties hold:

P̃bi,ai + P̃bi,bi +
nX

j 6=i

Pbi,bj = !i + ⌧i = 1.

The nonlinear environmental transition progression rate are:

BSi(t) = �iaiSi

h Mi!i

(Si + Oi) + !i(Mi + Hi)

i
,

BOi(t) = �iaiOi

h Mi!i

(Si + Oi) + !i(Mi + Hi)

i
,

BMi(t) = �ibiMi

h
P̃ai

Hi

(Si + Oi) + !i(Mi + Hi)
+ P̃bi

!iHi

(Si + Oi) + !i(Mi + Hi)
+

nX

j=1

P ⇤
bj

Hj

(Mj + Hj)

i
.

Putting all the definitions and assumptions together lead to the “mean field”

model given by the following system of nonlinear di↵erential Equations:

dSi

dt
= µNi �BSi(t) + ⇢iMi � µSi,

dOi

dt
= BSi(t)�BOi(t) + ↵iMi � (µ + �1)Oi,

dMi

dt
= BOi(t) + �1Oi �BMi(t)� (⇢i + ↵i + µ + �2)Mi,

dHi

dt
= BMi(t) + �2Mi � µHi,

where i = 1, ..., n and Ni = Si + Oi + Mi + Hi.

For simplicity purposes we now use the following re-scaling variables: si = Si
Ni

,

oi = Oi
Ni

, mi = Mi
Ni

and hi = Hi
Ni

which lead to the system below.

1) Pbi,ai = P̃ai = ai(si+oi)
bi!i(mi+hi)+ai(si+oi)

!i ! mixing probability between social and

homebody individuals from neighborhood i in neighborhood i.

2) Pbi,bi = P̃bi = bi!i(mi+hi)
ai(si+oi)+bi!i(mi+hi)

!i ! mixing probability between social in-

dividuals from neighborhood i in neighborhood i.
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3) Pbi,bj = P ⇤
bj

= bj⌧j(mj+hj)Pn
l=1 bl⌧l(ml+hl)

⌧i ! mixing probability between social individ-

uals from neighborhood i and j in the commonground place.

4) Pai,aj = 0 ! homebody individuals from neighborhoods i and j do not

interact.

5) Pai,bj = 0 ! a homebody individual from neighborhood i and a social indi-

vidual from neighborhood j do not interact assuming i 6= j.

Bsi(t) = �iaisi

h mi!i

(si + oi) + !i(mi + hi)

i
,

Boi(t) = �iaioi

h mi!i

(si + oi) + !i(mi + hi)

i
,

Bmi(t) = �ibimi

h
P̃ai

hi

(si + oi) + !i(mi + hi)
+ P̃bi

!ihi

(si + oi) + !i(mi + hi)
+

nX

j=1

P ⇤
bj

Hj

(Mj + Hj)

i
.

dsi
dt = µ�Bsi(t) + ⇢imi � µsi,

doi
dt = Bsi(t)�Boi(t) + ↵imi � (µ + �1)oi,

dmi
dt = Boi(t) + �1oi �Bmi(t)� (⇢i + ↵i + µ + �2)mi,

dhi
dt = Bmi(t) + �2mi � µhi,

(10.1)

where i = 1, ..., n and si + oi + mi + hi = 1.

10.2 Threshold quantities and simulations

In mathematical epidemiology it is traditional to compute non-dimensional quan-

tities that determine the nature of dynamic transitions.

The basic reproductive number R0 is defined as: the average number of sec-

ondary cases produced by a “typical” infected (assumed infectious) individual during
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his/her entire life as infectious (infectious period) when introduced in a population

of susceptibles.

Let us now outline the role of R0 on the study of stability of equilibria. Most

reasonable epidemic models have at least two equilibria, namely, a disease-free

equilibrium and a positive (endemic) equilibrium. Typically one can show that

the disease-free equilibrium is locally asymptotically stable (l.a.s) if R0 < 1 and

unstable whenever R0 > 1. In addition, there are extensive examples which show

that in fact R0 > 1 implies the existence of a unique (l.a.s.) endemic equilibrium.

It turns out that for many models a transcritical bifurcation occurs whenR0 crosses

the threshold R0 = 1. This is to say, asymptotic local stability is transferred from

the infectious-free state to the new (emerging) endemic (positive) equilibrium.

Notice that this transfer of asymptotic stability may be sensitive to the choice of

initial conditions when there are multiple equilibria.

Let R1
0 and R2

0 denote the basic reproductive numbers for neighborhood 1 and

2, respectively. Our method to compute R1
0 and R2

0 is oulined in the appendix.

We thus obtain,

R1
0 = �1�1a1!1

(µ+�1)
h
(�1b1⌧1+�2)+(µ+⇢1+

µ↵1
µ+�1

)
i

R2
0 = �1�2a2!2

(µ+�1)
h
(�2b2⌧2+�2)+(µ+⇢2+

µ↵2
µ+�1

)
i

(10.2)

Now, let us address an interpretation of R1
0, the interpretation of R2

0 will be anal-

ogous. Consider,

R1
0 =

�1

(µ + �1)
�1a1!1

1h
(�1b1⌧1 + �2) + (µ + ⇢1 + µ↵1

µ+�1
)
i

The ratio �1

µ+�1
denotes the “system-departure”-adjusted fraction of occasional

drinkers that become moderate drinkers without any type of influence from other
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drinkers.

Next, �1a1!1 denotes the total number of adequate contacts (su�cient contacts

to progress to a higher drinking level).

The term (�1b1⌧1+�2) is the contribution to escalate into the the heavy drinking

state. On the other hand, we claim that (µ + �1 + µ↵1

µ+�1
) is an indirect anti-

contribution to reach the heavy drinking state. Since, (µ + �1) is an outflow from

the occasional drinking class, which is added to µ↵1

µ+�1
, the fraction that leaves the

system from the moderate drinking state passing through the occassional drinking

state. In Figure 10.2 we illustrate the case when we have two neighborhoods. We

illustrate how reducing the pool of moderate drinkers reduces the basic reproductive

ratio. In the upper-left corner we have �1 = 1/20, �2 = 1/50. In this case

individuals from neighborhood two have a higher transmission (“convincing”) rate

and the number of moderate drinkers decreases. In this case R1
0 = 6.9 and R2

0 = 9

for neighborhood one and two as noted. In the upper-right corner the number of

personal contacts moderate drinkers from neighborhood one have. The result is

similar, the number of moderate drinkers decreases and the resulting R1
0 = 4.96

and R2
0 = 9. In the bottom-left corner the time moderate drinkers spend on

outside their own neighborhood is increased, that is, this reduces the possibility

of “infecting” local individuals. The resulting R1
0 = 5.37 and R2

0 = 9. In the

bottom-right corner we increased the time moderate drinkers from neighborhood

one spend outside their own neighborhood and the number of personal contacts.

In this case R1
0 = 4.2 and R2

0 = 9.

Uncertainty Analysis for Ri
0 for i = 1, 2. We used a Monte Carlo procedure

(simple random sampling) to assess the variability in the reproductive ratios due

to the uncertainty in estimating model parameters [32]. We assigned distributions
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Figure 10.2: Two neighborhoods. Parameter values: µ = 0.0000548, �1 = �2 =

1/30, �1 = �2 = 1/5, a1 = a2 = 15, b2 = 30, ⌧1 = ⌧2 = 0.1, ⇢1 = 1/5, ↵1 = 1/30.

Initial conditions: s1
0 = 0.99, o1

0 = 0, m1
0 = 0.01, h1

0 = 0, s2
0 = 0.95, o2

0 = 0,

m2
0 = 0.05, h2

0 = 0.

to each of the parameters in Table 10.5. The sample size was 106. It is assumed

that a1 > a2, !1 > !2. Figures 10.3 and 10.4 show the resulting histograms of R1
0

and R2
0.
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Table 10.3: Estimates of R1
0 from 10 Monte Carlo simulations.

Realization Mean (R1
0) Median (R1

0) IQR (R1
0) Pr(R1

0 > 1)

1 49.9 12.7 37 0.913

2 49.8 12.7 36.8 0.913

3 49.6 12.7 36.9 0.913

4 50 12.8 37 0.914

5 49.8 12.7 37 0.913

6 49.6 12.7 36.8 0.913

7 49.9 12.7 37 0.913

8 50.3 12.8 37 0.914

9 49.9 12.7 37 0.913

10 49.8 12.7 36.9 0.913

Mean 49.86 12.72 36.96 0.9134

SE 0.06501 0.009145 0.02109 8.163⇥ 10

�5

CV 0.004124 0.002273 0.001805 0.000283
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Table 10.4: Estimates of R2
0 from 10 Monte Carlo simulations.

Realization Mean (R2
0) Median (R2

0) IQR (R2
0) Pr(R2

0 > 1)

1 1.25 0.244 0.835 0.913

2 1.25 0.244 0.833 0.913

3 1.25 0.244 0.835 0.913

4 1.24 0.245 0.836 0.914

5 1.25 0.245 0.833 0.913

6 1.25 0.245 0.834 0.913

7 1.24 0.244 0.835 0.913

8 1.25 0.244 0.836 0.914

9 1.25 0.244 0.835 0.913

10 1.25 0.245 0.838 0.913

Mean 1.248 12.72 0.835 0.2315

SE 0.001578 0.0001226 0.000481 7.316⇥ 10

�5

CV 0.003998 0.001587 0.001822 0.0009995
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Figure 10.3: Distribution for R1
0.

Figure 10.4: Distribution for R2
0.
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Table 10.5: Parameter distributions.

Parameter Distribution Parameter Distribution

a1 Poisson(200) µ Beta(4⇥ 10

�5
)

a2 Poisson(15) !1 Uniform[0.5, 1]

↵1 Uniform[0, 0.5] !2 Uniform[0, 0.5]

↵2 Uniform[0, 0.5] �1 UnifDiscrete[0, 28]

b1 Poisson(5) �2 UnifDiscrete[0, 28]

b2 Poisson(5) ⇢1 Uniform[0, 1]

�1 Exponential(30) ⇢2 Uniform[0, 1]

�2 Exponential(30) ⌧1 Gamma[3, 6]

�1 Exponential(4.6) ⌧2 Gamma[3, 6]

�2 Exponential(4.6)
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Potential Control Strategies. As we have explained above, R1
0 and R2

0

are used as threshold quantities that somehow control the transfer of stability of

the “disease-free” into the “endemic” equilibria. In order to keep a population

free of alcohol abusive comsuption (heavy drinkers go extinct) we need to favor

substantial decreases in R1
0 and R2

0. Recall, that if R1
0 < 1 and R2

0 < 1 then the

disease-free equilibria for both neighborhoods are locally asymptotically stable.

Again, let us focus into R1
0 since the following results apply analogously to R2

0.

We write,

R1
0

�1

(µ + �1)
�1a1!1

1h
(�1b1⌧1 + �2) + (µ + ⇢1 + µ↵1

µ+�1
)
i

It is clear, that a decrease in �1

(µ+�1) - fraction of occasional drinkers that become

moderate drinkers- implies a decrease in R1
0. Similarly, a decrease in �1a1!1- the

total number of adequate contacts- will induce a decrease in R1
0.

Now, let �1 and ↵1 be fixed. Define,

F (µ) = µ + �1 +
µ↵1

µ + �1

It follows that F 0(µ) = 1 + �1↵1

(µ+�1)2 > 0, which in turn implies that F is an in-

creasing function of µ. Now, fix all other parameters and let µ increase, then

1h
(�1b1⌧1+�2)+(µ+�1+

µ↵1
µ+�1

)
i decreases, which implies that R1

0 decreases as well.

Let us fix µ, and �1. Define,

G(↵1) = µ + �1 +
µ↵1

µ + �1

Then, G0(↵1) = µ
µ+�1

> 0, that is, G is an increasing function of ↵1. Hence, if one

fixes all the other parameters and let ↵1 increase, then R1
0 decreases.
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10.3 Conclusions

We have developed a mathematical drinking model that describes the interactions

between the classes of drinkers. Our results suggest that the number of personal

contacts and the time that a high-risk drinker spends on its own neighborhood

have the biggest impact on the reproductive ratio, Ri
0.

The global structure of the model is governed by individuals that meet at other

places. In our model only moderate and heavy drinkers leave their neighborhood

to interact in the drinking environment outside their neighborhood. The resulting

interaction is crucial in determining the number of individuals at risk of becoming

a burden to society or to others (family, friends, etc.). If the number of heavy

drinkers increases due to this interaction we would have to consider a model that

incorporates treatment and its e↵ectiveness.

The local structure of the model plays an important role in the spread of social

contagion (drinking behavior). The number of contacts of ’low-risk’ drinkers and

the time ’high-risk’ drinkers spend on their neighborhood is crucial to the growth

of the drinking culture.

Our model suggests that the key transition to have an endemic drinking culture

is from occasional drinker to moderate drinker. Furthermore, it is seen in the

basic reproductive ratio that reducing the progression into the heavy drinking

class contributes to the growth of the drinking culture. As a control strategy in

our model the focus should be on moderate drinkers.

We observe that reducing the number of low-risk contacts (ai) can reduce the

growth in the drinking communities. Also, individuals at borderline of becoming

problem drinkers play a crucial role in spreading the sentiment that drinking is

acceptable. However, these drinkers are typically not considered a problem.
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probability. Mathematical Biosciences, 128:265–284, 1995.

[5] B. Bollobas. Random graphs. Academic, London, 1985.
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