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A major challenge in the numerical simulations of turbulent reacting flows in-

volving large numbers of chemical species and reactions is the accurate and

computationally-efficient representation of combustion chemistry. Recent ad-

vances on the experimental and theoretical fronts of the study of real fuel chem-

istry have led to more accurate chemical mechanisms of real fuels involving

hundreds to thousands of species and thousands of reactions. However, the

direct use of such detailed chemistry in large-scale calculations of turbulent re-

acting flows still remains computationally prohibitive. In our work, we focus

on the combined Large-Eddy Simulation (LES)/Probability Density Function

(PDF) computations of turbulent reacting flows, in which the thermochemical

composition of the fluid is represented by a large number of particles. To re-

duce the cost of chemistry calculations in large-scale LES/PDF computations,

we have developed a combined dimension reduction and tabulation approach

in which the chemistry is represented accurately and efficiently in terms of a re-

duced number of “represented species”. In this combined approach, the dimen-

sion reduction of combustion chemistry is performed using the Rate-Controlled

Constrained-Equilibrium (RCCE) method, followed by tabulation using the In

Situ Adaptive Tabulation (ISAT) algorithm. An automated Greedy Algorithm

with Local Improvement (GALI) has been developed for selecting good rep-



resented species for use in this approach. In addition, we have developed a

Partitioned Uniform Random (P-URAN) parallel strategy for the efficient par-

allel implementation of chemistry in large-scale LES/PDF simulations on mul-

tiple cores. This strategy has been tested by performing full-scale LES/PDF

simulations of the Sandia Flame D turbulent jet flame on up to 9,216 cores

and it is found to achieve good scaling. In this work (1) we describe in detail

the implementation of ISAT/RCCE/GALI and the P-URAN parallel strategy;

(2) we show that the combined ISAT/RCCE/GALI yields orders of magnitude

speed-up with very good error control; (3) we demonstrate that our implemen-

tation of RCCE is an accurate, efficient and robust implementation; (4) we show

that the P-URAN parallel strategy achieves over 85% relative weak scaling ef-

ficiency and around 60% relative strong scaling efficiency on up to 9,216 cores;

(5) we show that the combined ISAT/RCCE methodology with P-URAN signifi-

cantly reduces the simulation time; and (6) a combination of ISAT/RCCE and P-

URAN algorithms enables us to perform accurate and computationally-efficient

large-scale LES/PDF simulations with real fuel chemistry involving hundreds

of chemical species.
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6.1 Sketch of the composition space (indicated by represented r and
unrepresented u subspaces) illustrating the reaction mapping
computation using the RCCE/TIFS implementation. Given the
initial reduced composition at t = 0 denoted by r(0), the reac-
tion mapping r(t) is obtained in three steps (1) computing the
constrained-equilibrium composition at r(0) denoted by z

CE(0);
followed by (2) integrating the trajectory in full space (TIFS) to
obtain z(t); followed by (3) reduction r(t) = B

T
z(t). . . . . . . . . 202
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6.2 Sketch of the composition space (indicated by represented r

and unrepresented u subspaces) illustrating the projections in-
volved in the RCCE method. Given a reduced composition de-
noted by r, the classical RCCE implementation computes the
source vector ṙ by computing the chemical source term S at
the constrained-equilibrium composition z

CE (on the CEM) and
then projecting it back to the represented subspace giving ṙ =
B

T
S. This implementation does not take into account the non-

invariance of the CEM manifold. Alternatively, one could con-
sider a projector denoted by P, which first projects the source
vector S onto the tangent plane of the CEM (denoted by T) to
account for the non-invariance, before projecting it back to the
represented subspace to yield ṙ = B

T
PS. . . . . . . . . . . . . . . 206

6.3 Sketch of the composition space (indicated by represented r and
unrepresented u subspaces) illustrating the projections involved
in the CPIM method. Given a reduced composition r, the RCCE
implementation computes the source vector ṙ

CE by projecting
the chemical source term S

CE computed at the constrained-
equilibrium composition z

CE onto the represented space yield-
ing ṙ

CE = B
T
S
CE . Alternatively, in the CPIM method, a mani-

fold close-and-parallel to the CEM is considered to evaluate the
chemical source term S

CP (which lies entirely in the CEM and
CPIM tangent space denoted by T). In the CPIM method, the
source vector is given by ṙ

CP = B
T
S
CP , which can be rewritten

in terms of a projector P such that ṙCP = B
T
PS

CE . . . . . . . . . 212
6.4 Sketch of the composition space (indicated by represented r and

unrepresented u subspaces) illustrating reaction mapping com-
putation using the three implementations of the RCCE method:
RCCE/TIFS, RCCE and RCCE/RAMP. Given the initial reduced
composition r(0), (1) the RCCE/TIFS implementation computes
the reaction mapping by following the trajectory in full space
starting from z

CE(0) to obtain z(t) followed by reduction to yield
the reaction mapping r(t) [RCCE/TIFS] = B

T
z(t); (2) the RCCE

implementation solves a reduced system of ODEs with source
vector ṙ = B

T
S to obtain r(t) [RCCE]; and (3) the RCCE/RAMP

implementation solves the reduced system of ODEs (as in RCCE)
using an alternative source vector ṙ = B

T
PS to obtain r(t)
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6.5 Sketch depicting a test composition z(0) and its reaction map-
ping z(t) in the full composition space (indicated by the repre-
sented r and unrepresented u subspaces). The reaction makes
the test composition move closer to a low-dimensional attract-
ing manifold. In the represented subspace, ṙe = B

T
S denotes

the exact source vector and ṙ denotes a source vector approxima-
tion obtained using one of the RCCE implementations. In addi-
tion, re(t) = B

T
z(t) denotes the exact reaction mapping and r(t)

denotes the reaction mapping obtained using one of the RCCE
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using the RAMP approach) to ṡ (at the test composition) versus
temperature T computed using the saved test compositions at
t = 0 for a range of values of relaxation rate ω from 0 to 109 s−1. . 231

6.10 Source vector error in the RCCE and RCCE/RAMP (for various
values of ω) implementations at nrs = 11 computed using test
compositions saved at t = 0 (top) and t = ∆t (bottom). . . . . . . 234

6.11 Source vector error in the RCCE and RCCE/RAMP (for fixed ω =
104) implementations at various values of nrs computed using
test compositions saved at t = 0 (top) and t = ∆t (bottom). . . . 236

6.12 Reaction mapping error for varying reaction time step t at nrs =
11 (top) and nrs = 15 (bottom) using the three implementations:
RCCE/TIFS, RCCE and RCCE/RAMP. The gray colored high-
lighted region shows the typical range of values of t (from 1 µs
to 1 ms) used in real LES/PDF computations. The dashed line
indicates t = ∆t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.13 Reaction mapping error for large reaction time steps t at nrs = 11
and nrs = 15 using the RCCE/TIFS implementation. . . . . . . . 241

xxiv



6.14 Combined reduction-tabulation error for a fixed reaction time
step, t = ∆t, at various values of nrs using the three implementa-
tions of RCCE: RCCE/TIFS, RCCE and RCCE/RAMP with ISAT.
The tabulation error (without reduction) is indicated by the solid
line labeled ISAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

6.15 Average CPU time required to compute the reaction mapping
and other quantities involved in the RCCE/TIFS, RCCE and
RCCE/RAMP implementations at nrs = 11 with the reaction
time step t = ∆t. The quantities shown (from bottom) in-
clude: constrained-equilibrium composition, zCE ; the CEM tan-
gent space, T; Jacobian, J; chemical source term, S; source vector
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CHAPTER 1

INTRODUCTION

The world’s energy needs are ever increasing. According to IEA [5] and other

sources, from 1990 to 2008, the world population increased by 27% and the av-

erage energy consumption per person increased by 10%, resulting in an overall

39% increase in the world energy consumption. In 2008, 81.2% of the overall

energy needs was met by combustion of fossil fuels (oil 33.5%, coal 26.8%, gas

20.8%). Non-fossil fuel sources - hydro, nuclear and renewables (wind, solar,

biofuels, etc.) - provided the remaining share of energy. According to the projec-

tions made by several agencies [2, 5, 4], the world’s energy demand is expected

to increase by another 40% by 2030 and the share of energy supply from renew-

ables (e.g., biofuels) will continue to increase in the coming decades. However,

fossil fuels will continue to remain the major source of energy, providing around

80% of the world energy needs until 2030 [2, 5, 4]. A recent study [83] states that

“if the world continues to consume fossil fuels at 2006 rates, the reserves of oil,

coal and gas will last a further 40, 200 and 70 years, respectively”. So we can

expect the fossil fuels to continue to provide a major share of world’s energy for

many decades to come.

The combustion of fossil fuels results in the emission of greenhouse gases

and other air pollutants, which is of increasing environmental concern. The

emission of greenhouse gases (primarily carbon dioxide, CO2) results in global

climate change, which in a long term is expected to have adverse effects on the

environment and human society. According to IPCC [3], “the observed increase

in global average temperatures since the mid-20th century is very likely (> 90%)

due to the observed increase in anthropogenic greenhouse gas concentrations”.
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The IPCC highlights the need for mitigation of greenhouse gas emissions over

the coming decades through energy policies, imposition of emission standards

and regulations [3]. To control the emissions, various countries have been im-

posing emission standards on the engine manufacturers, and these emission

standards are becoming more and more stringent with time. In the near fu-

ture, it will become very challenging for the engine manufacturers to meet these

emission standards if advancements are not made in computational and exper-

imental tools for engine design.

With the impetus for cleaner energy sources and design of more efficient

combustion devices which meet the stricter emission standards in the future,

the combustion research has a significant role to play in the coming decades.

Furthermore, most practical combustion devises (for example the gas turbine

engines and the reciprocating internal combustion engines) used in the trans-

portation and industrial sectors operate in the turbulent regime. Consequently,

the study of turbulent combustion poses an even more challenging task. Over the

years, significant advances have been made in the study of turbulent flows [67]

and turbulent combustion [61, 22]. Progress on all the three fronts - theoreti-

cal, experimental and computational - has lead to better understanding of the

processes involved in turbulent combustion problems.

This work focuses primarily on the development of computational algo-

rithms for the study of turbulent combustion and reacting flow problems. The

numerical study of turbulent reacting flows poses three-fold challenges: (1) re-

solving the wide range of length and time scales present in the turbulent flow

[67, 70]; (2) tracking the composition of a large number of chemical species when

dealing with real fuel chemistry [100, 82, 71]; and (3) capturing accurately the
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turbulence-chemistry interactions [74, 6].

Simulation of turbulent non-reacting flows in itself is very challenging, and

various approaches have been developed over the years for studying turbulent

flows [67]. One of the earliest approaches used for simulating turbulent flows,

which is still prevalent, is the Reynolds-Averaged Navier-Stokes (RANS) ap-

proach [21, 39]. This approach involves solving for the time-averaged mean

flow quantities with a model for all the unclosed terms in the governing equa-

tions. The RANS approach, due to its relatively simple implementation and

great computational-efficiency, has been used for studying a wide range of tur-

bulent flow problems. However, due to its over-simplification of the physics

and modeling issues, the RANS approach is not accurate enough to simulate

complex flows and capture all the interesting flow characteristics.

In the last two decades, starting in the 1990s, the availability of faster

computational resources and the introduction of advanced programming lan-

guages and tools for performing large-scale distributed parallel computing,

has helped two alternative approaches for the simulation of turbulent flows to

emerge. These are Direct Numerical Simulation (DNS) and Large-Eddy Simula-

tion (LES). The DNS approach involves solving numerically the Navier-Stokes

equations on very fine grids to resolve all the required flow and combustion

length and time scales without any modeling [34, 16]. The DNS approach pro-

vides a great tool for studying low to moderate Reynolds number turbulent

flows. However, it is still prohibitively expensive to use DNS for simulating

high Reynolds number turbulent flows and practical combustion devices like

gas turbine engines, and it is likely to remain so for several decades.
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In contrast, in the LES approach, only the large scale motions are resolved

on the grid, while the small scale sub-grid motions are modeled [25, 47, 45].

This approach is thus computationally much less expensive than DNS, and yet

provides enough resolution to capture the important flow characteristics. Over

the last decade, LES has been widely accepted as the more suitable approach

for simulating high Reynolds number turbulent flows. In this study as well, we

employ the LES methodology to solve for the turbulent flow field.

For simulating turbulent reacting flows, in addition to solving for the turbu-

lent flow characteristics, we also need to solve for the chemical species composi-

tion and to handle the turbulence-chemistry interactions. Most modern day nu-

merical solvers for turbulent reacting flows have two components: one to solve

for the (non-reacting) turbulent flow, typically referred to as the flow solver;

and another to solve for the combustion chemistry, typically referred to as a

combustion model. These two components are coupled and work in tandem to

incorporate the turbulence-chemistry interactions.

A major challenge in the simulation of reacting flow with real fuel chemistry

is the presence of a large number of chemical species and reaction time scales,

which makes reaction computations prohibitively expensive. A very good dis-

cussion of the various approaches developed over the years for combustion

modeling is provided in [71]. As described in [71], most combustion model-

ing approaches are either Flamelet based or Probability Density Function (PDF)

based. In the Flamelet based approaches, instead of keeping track of all the

chemical species composition, the chemistry is represented in terms of two to

three reduced scalars. So these approaches are based on a very strong assump-

tion that the chemical species compositions lie around a very-low-dimensional
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manifold in the high-dimensional composition space and thus can be parame-

terized in terms of two to three reduced scalars. The Flamelet based approaches

are thus very easy to implement and computationally very efficient. These have

been widely used for studying turbulent combustion problems [61, 63]. How-

ever, due to their over-simplification of the turbulence chemistry interactions,

these approaches have limited applicability and are in general not very accurate

for more complex flows involving extinction re-ignition and strong turbulence-

chemistry interactions [71]. In contrast, the PDF based methods enable the di-

rect use of detailed chemistry (without any modeling) in reacting flow compu-

tations [65]. Over the years, the PDF methods have proven to be more accurate

at representing chemistry and the turbulence-chemistry interactions in the more

complex and challenging flow regimes [14, 96, 102]. Here we focus on the PDF

approach to solve for the combustion chemistry.

In this study we focus on turbulent reacting flows at low Mach numbers

and neglect acoustic and compressibility effects. To solve for the turbulent flow

field we are using an LES solver [62, 63] obtained from the Stanford university

and further developed in our group at Cornell. This LES solver has been cou-

pled with a PDF solver, named HPDF [97], which has been entirely developed

at Cornell. The HPDF solver solves for the composition PDF using Lagrangian

particle based methods. In this approach, the thermochemical composition of

the fluid is represented by a large number of notional particles in the computa-

tional domain [97, 29, 30].

The HPDF solver has three main components:

1. transport: to account for the change in position of the particles due to ad-

vection (including a random-walk model for molecular transport in cer-
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tain implementations [98, 95]);

2. mixing: to account for the change in chemical composition of particles due

to mixing (which models the molecular diffusion);

3. reaction: to account for the change in chemical composition of particles due

to chemical reaction.

These components are implemented in fractional steps [98] and thus can be

studied individually.

In coupled LES/PDF simulations of turbulent reacting flows with detailed

chemistry (without any simplification), the reaction computations are extremely

expensive and may consume over 99% of the overall computation time [29].

The main focus of this work is to develop algorithms to reduce the cost of reac-

tion computations without losing much of the accuracy offered by the detailed

mechanisms and PDF methods.

Over the years various approaches have been developed to reduce the cost of

reaction computations, which can be broadly classified into the following three

categories:

1. mechanism reduction: methods in this category are aimed at developing

skeletal mechanisms involving fewer species by systematically remov-

ing unimportant species and reactions (within a specified error tolerance)

from the detailed mechanisms [53, 60, 58]. The use of a skeletal mechanism

(in place of the corresponding detailed mechanism) significantly reduces

the number of species that need be tracked in the computations, thereby

greatly reducing the computational cost.
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2. dimension reduction: these approaches focus on representing the detailed

chemistry in terms of a reduced number of variables [41, 44, 55, 79]. Only

the reduced variables are tracked in the computations, so the computa-

tional cost is significantly reduced.

3. storage and retrieval: these methods are based on the idea of storing the

reaction solutions in a table in an attempt to retrieve a linear approxima-

tion to the reaction solution in the subsequent time-steps using the stored

solutions in the table [66, 49, 92, 93]. Since retrieving an approximate so-

lution from the table is relatively inexpensive, these methods are found to

significantly reduce the overall computational cost.

In addition, several combined methodologies [91, 89, 77] have also been

developed which employ a combination of the aforementioned methods; and

more recently adaptive chemistry methodologies [46, 54, 19] have also been de-

veloped which use the aforementioned methods on-the-fly during a simulation

to reduce the computational cost.

In this work, we develop a combined dimension reduction and tabu-

lation approach using the Rate-Controlled Constrained-Equilibrium (RCCE)

[41, 40, 38] dimension reduction method and the In Situ Adaptive Tabulation

(ISAT) [66, 49] tabulation algorithm. This combined ISAT/RCCE [32] method-

ology enables representing chemistry accurately and efficiently in terms of a

reduced number of specified represented species. An automated Greedy Algo-

rithm with Local Improvement (GALI) [31, 32] has been developed for select-

ing good represented species for use in this combined approach. This com-

bined ISAT/RCCE/GALI methodology can be used either directly with a de-

tailed mechanism or with a skeletal mechanism (for very large detailed mecha-
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nisms). As a result, we are using a combination of all the three aforementioned

approaches to represent chemistry, and as is demonstrated in this work, this

combined approach helps reduce the computational cost associated with reac-

tion by orders of magnitude with very good error control.

We first implement and test this combined ISAT/RCCE/GALI [31, 32]

methodology in a Partially-Stirred Reactor (PaSR), which is a computation-

ally cheaper test case representative of real LES/PDF simulations. We then

extend our LES/PDF solver with the capability of representing chemistry us-

ing this combined ISAT/RCCE methodology. In performing large-scale parallel

LES/PDF simulations, significant load imbalance among the participating cores

is created due to reaction since the chemical reactivity is in general not uniform

over the entire computational domain [48, 29]. As a result, additional parallel

strategies are required to redistribute the reaction work load in order to mini-

mize the overall simulation time. We implemented various parallel strategies

using the x2f mpi Fortran library to manage the reaction load distribution. In

particular a Partitioned Uniform Random (P-URAN) [29] strategy is found to

perform the best among all the strategies and scales well to a large number of

cores.

In this work, we describe in detail the implementation of the combined

ISAT/RCCE/GALI algorithm and the P-URAN parallel strategy. We first quan-

tify the accuracy and efficiency of the combined ISAT/RCCE methodology us-

ing the PaSR, and then demonstrate the accuracy, efficiency and scalability of

the combined ISAT/RCCE and P-URAN strategy for performing large-scale

LES/PDF simulations of the Sandia Flame D [9] – a methane/air turbulent pi-

loted jet flame.
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The outline of the remainder of this thesis is as follows:

• In Chapter 2, we describe the Greedy algorithm used for selecting good

represented species for use in the RCCE dimension reduction method.

• In Chapter 3, we describe in detail the implementation of the combined

ISAT/RCCE algorithm and an extended Greedy Algorithm with Local Im-

provement (GALI) for selecting good represented species.

• In Chapter 4, we explore different parallel strategies for managing reac-

tion load distribution in large-scale LES/PDF simulations. We describe

the Partitioned Uniform Random (P-URAN) strategy which is found to

perform the best among all the strategies tested and scales well to large

number of cores. We implement and test these strategies for performing

large-scale LES/PDF simulations of Sandia Flame D on up to 9,216 cores.

• In Chapter 5, we extend our LES/PDF solver with the option of represent-

ing chemistry using our combined ISAT/RCCE methodology with paral-

lel implementation using the P-URAN strategy. We present results for the

Sandia Flame D.

• In Chapter 6, we compare the relative accuracy and efficiency of our im-

plementation of RCCE using the Trajectory In Full Space (TIFS) approach

with some of the previous implementations of RCCE. We show that our

implementation of RCCE is the most accurate, efficient and robust imple-

mentation.

• Finally, in Chapter 7, we conclude by listing the major contributions of this

work and future challenges.
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CHAPTER 2

A GREEDY ALGORITHM FOR SPECIES SELECTION IN DIMENSION

REDUCTION OF COMBUSTION CHEMISTRY †

2.1 Abstract

Computational calculations of combustion problems involving large numbers

of species and reactions with a detailed description of the chemistry can be very

expensive. Numerous dimension reduction techniques have been developed

in the past to reduce the computational cost. In this paper, we consider the

rate controlled constrained-equilibrium (RCCE) dimension reduction method,

in which a set of constrained species is specified. For a given number of con-

strained species, the “optimal” set of constrained species is that which mini-

mizes the dimension reduction error. The direct determination of the optimal set

is computationally infeasible, and instead we present a greedy algorithm which

aims at determining a “good” set of constrained species; that is, one leading

to near-minimal dimension reduction error. The partially-stirred reactor (PaSR)

involving methane premixed combustion with chemistry described by the GRI-

Mech 1.2 mechanism containing 31 species is used to test the algorithm. Re-

sults on dimension reduction errors for different sets of constrained species are

presented to assess the effectiveness of the greedy algorithm. It is shown that

the first four constrained species selected using the proposed greedy algorithm

produce lower dimension reduction error than constraints on the major species:

CH4, O2, CO2 and H2O. It is also shown that the first ten constrained species

selected using the proposed greedy algorithm produce a non-increasing dimen-

†V. Hiremath, Z. Ren, and S. B. Pope. A greedy algorithm for species selection in dimension
reduction of combustion chemistry. Combustion Theory and Modelling, 14(5):619-652, 2010.
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sion reduction error with every additional constrained species; and produce the

lowest dimension reduction error in many cases tested over a wide range of

equivalence ratios, pressures and initial temperatures.

2.2 Introduction

Modern chemical mechanisms for real fuels typically involve hundreds of

species and thousands of reactions [64, 100]. Computational calculations of re-

active flows involving such fuels with detailed chemistry are prohibitive even

on a distributed computing platform.

Numerous techniques have been developed in the past to reduce the com-

putational cost of implementing combustion chemistry. These include:

1. Skeletal Mechanisms: A skeletal mechanism consists of a subset of the

species and reactions from the detailed mechanism. Many methods have

been developed to systematically generate skeletal mechanisms from de-

tailed mechanisms, such as the Directed Relation Graph (DRG) [53], DRG

with error propagation (DRGEP) [60] and Simulation Error Minimization

Connectivity Method (SEM-CM) [58].

2. Reduced Chemical Mechanisms (based on QSSA): The quasi-steady-state

approximation (QSSA) [11, 87] has been widely applied to develop re-

duced chemical mechanisms. The QSSA method involves the identifica-

tion of QSS species in the system, whose net rate of production is assumed

to be zero, thereby reducing the governing differential equation for the

QSS species into an algebraic relation. These algebraic relations are used
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to eliminate the QSS species from the system.

3. Dimension Reduction Methods: Another class of dimension reduction

techniques is based on the observation that chemical systems involve reac-

tions with a wide range of time scales. As a consequence, reaction trajec-

tories are attracted to lower dimensional attracting manifolds in the com-

position space. Computations can be performed in a reduced space by

identifying such low-dimensional manifolds, thereby reducing the over-

all computational cost. Methods based on this idea include the rate-

controlled constrained equilibrium (RCCE) [41, 40], computational singu-

lar perturbation (CSP) [44], intrinsic low-dimensional manifolds (ILDM)

[55], trajectory-generated low-dimensional manifolds (TGLDM) [72], in-

variant constrained equilibrium-edge pre-image curve (ICE-PIC) [79] and

one-dimensional slow invariant manifold (1D SIM) [7].

4. Storage Retrieval Methods: In these approaches, combustion chemistry

computations are stored in a table, and are used to build inexpensive ap-

proximate solutions at a later stage of computation to reduce the overall

cost. Methods based on this idea include the structured look-up tabula-

tion [17], repro-modelling [93], artificial neural network (ANN) [18], in

situ adaptive tabulation (ISAT) [66, 49] and piecewise reusable implemen-

tation of solution mapping (PRISM) [92].

In recent times, combined methodologies have also been developed, wherein

reduced reaction mechanisms or dimension reduction methods are used in con-

junction with storage/retrieval methods, such as ISAT-QSSA [91], ISAT-RCCE

[89], and recently ICE-PIC with ISAT [77].

In reactive flow calculations, the species concentration are governed by two
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processes: chemical reaction and transport. We consider the important class of

solution methods in which splitting scheme is used, where the chemical reaction

and transport processes are accounted for in two separate steps. In the compu-

tational modelling of the turbulent combustion using PDF methods [65], the

fluid composition within the solution domain is represented by a large number

of particles. In a full-scale PDF calculation, more than 2 million particles may

be used, and the solution can advance for more than 5000 time steps, leading to

approximately 109 particle-reaction sub-steps. If such a calculation involves 100

species with the chemistry represented by a detailed mechanism, then at each

reaction sub-step, 100 coupled ODEs need to be solved to determine the species

concentrations, which can be very expensive and computationally prohibitive.

Instead a dimension reduction method (such as RCCE or ICE-PIC) integrated

with ISAT can be used to perform the reactive flow calculations in terms of say

10 represented species; where the combined reduction-storage methodology de-

termines and tabulates (in situ) the reduced space in terms of the 10 represented

species based on the detailed mechanism.

In a reactive system, the reaction trajectories rapidly approach a hierarchy of

attracting manifolds of decreasing dimensions and the reactive system’s slow

dynamics is well approximated by these low-dimensional attracting slow in-

variant manifolds (SIMs) in the reactive space. Numerous dimension reduc-

tion methods have been developed which exploit this property to represent the

chemistry using a reduced set of variables. Here we focus on the RCCE and

ICE-PIC dimension reduction methods, which have been successfully imple-

mented and used in many reactive flow computations [80, 35, 36, 77]. The slow

invariant manifold is approximated in the RCCE method by the constrained-

equilibrium manifold (CEM) constructed using thermodynamic concepts, and
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in the ICE-PIC method by the invariant constrained-equilibrium edge (ICE)

manifold which is a collection of all the reaction trajectories emanating from the

CEM edge. Recent studies [7] have shown that the consideration of the topol-

ogy of classical thermodynamic functions may not provide a good approxima-

tion to the 1D SIM. However, in RCCE and ICE-PIC we typically use more than

one constrained species (i.e., work in higher dimensions), and the errors in the

approximation generally decrease in higher dimensions. We also note that the

method described by [7] has yet to be applied in many dimensions.

The RCCE dimension reduction method (originally proposed in [41]) is

based on the assumption that in a reactive system, the reaction trajectories relax

to the complete equilibrium with a rate determined solely by the slow reactions,

while the fast reactions tend to locally equilibrate the system subject to the con-

straints imposed by the slow reactions. Thus, the system reaches the complete

equilibrium by evolving through a sequence of constrained-equilibrium states

on the CEM. As a result, only the rate equations of the slowly changing con-

straints need to be solved, though a different approach is used in our imple-

mentation of RCCE as described in Section 2.3.3. The constrained-equilibrium

state can be determined (locally) by computing the state corresponding to the

maximum entropy subject to the given set of constraints.

The very first step involved in the application of RCCE (and ICE-PIC)

method is specification of the constraints for dimension reduction. The conser-

vation of elements form the most basic time-independent constraints. Among

the time-dependent constraints, a literature review [27, 35, 36] shows that most

commonly used constraints in RCCE include general linear constraints on the

total number of moles; moles of active valence (AV); moles of free oxygen (FO)
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etc.

In our implementations of RCCE and ICE-PIC, which are integrated with

ISAT [89, 79, 77, 78], the concentration of a specified set of constrained species

form the constraints. The specification of good constraints is crucial for the ac-

curacy of dimension reduction, but there are no systematic methods available

to select good constraints in an automated way.

Ideally one wants to find the smallest set of constrained species that yields

the dimension reduction errors below a specified tolerance; or one wants to find

the “optimal” set of constrained species that minimizes the dimension reduction

errors for a fixed number of constrained species. This is a very hard problem, so

we aim to devise an algorithm to select a “good” set of constrained species, i.e.,

a near-optimal set of species which produces low dimension reduction errors.

The proposed method works by considering a computationally inexpensive

representative test problem (the partially-stirred reactor (PaSR)), and directly

measuring the dimension reduction error. A “good” set of constrained species

are selected by employing a greedy algorithm; which selectively adds “good”

species to the set (initially empty) one at a time to minimize the dimension re-

duction error at each stage. Here we consider the application of this method

for RCCE, but the methodology developed is also applicable to ICE-PIC. The

SEM-CM [58] method used for developing skeletal mechanisms employs a sim-

ilar idea for identifying the species to be retained in the skeletal mechanism. In

the SEM-CM method, the mechanism building procedure is started from a set

of specified important species, and then species are added (based on ranking)

one at a time until the simulation error using the skeletal mechanism becomes

smaller than a required threshold.
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The outline of the remainder of the paper is as follows: In Section 2.3, we de-

velop a mathematical representation for a gas-phase reacting system. We then

describe the RCCE dimension reduction procedure and define the dimension

reduction errors involved in this procedure. In Section 2.4, we propose a defini-

tion for the “optimal” set of species and later present the greedy algorithm for

selecting a “good” (near-optimal) set of species. In Section 2.5 we present re-

sults obtained using the greedy algorithm for the test case of a partially-stirred

reactor (PaSR) with methane premixed combustion. Finally, in Section 2.8 we

draw conclusions based on the presented results.

2.3 Representation of Chemistry

We consider a reacting gas-phase mixture consisting of ns chemical species,

composed of ne elements. The set of all species is denoted by Φ. The ther-

mochemical state of the mixture (at a given position and time) is completely

characterized by the pressure p, the mixture enthalpy h, and the ns-vector z of

specific moles of the species. To simplify the exposition, we consider an adia-

batic and isobaric system with h and p taken to be given constants, and so the

thermochemical state is given by z.

It is useful to consider the species composition z to be an ns-vector or a point

in the ns-dimensional full composition space.
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2.3.1 Reaction Trajectories

Due to chemical reactions, the chemical composition z evolves in time according

to the following set of ordinary differential equations (ODEs)

dz(t)

dt
= S(z(t)), (2.1)

where S is the ns-vector of chemical production rates determined by the chemi-

cal mechanism used to represent the chemistry.

The reaction mapping, R(z, t) is defined to be the solution to Eqn.2.1 after

time t starting from the initial composition z. In this work, the reaction mapping

is computed by numerically integrating the set of ODEs (2.1) using DDASAC

[15].

2.3.2 Dimension Reduction

The dimension reduction methods that we are interested in are methods based

on low-dimensional manifolds, and in particular the RCCE and ICE-PIC dimen-

sion reduction methods. In this section we briefly describe the notation used

in these dimension reduction methods; detailed descriptions are provided in

[79, 77].

In RCCE and ICE-PIC, the set of species Φ is decomposed as Φ = {Φr,Φu},

where Φ
r is the set of represented species with cardinality nrs, and Φ

u is the set of

unrepresented species with cardinality nus, where nrs+nus = ns and nrs < ns−ne.

The reduced representation of the species composition is denoted by r ≡

{zr, zu,e}, where z
r is nrs-vector of specific moles of represented species, Φr; and
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z
u,e is an ne-vector giving the specific moles of the elements in the unrepresented

species, Φu (for atom conservation). Thus, r is a vector of length nr = nrs+ne in

the reduced composition space, and the dimension of the system is reduced from

ns to nr < ns. At any time t, the reduced representation, r(t) is related to the full

composition, z(t) as

r(t) = B
T
z(t), (2.2)

where B is constant ns × nr matrix which can be determined for a specified set

of represented species.

2.3.3 Steps Involved in Dimension Reduction

In this section we briefly describe the four main steps involved in our imple-

mentation of RCCE. Since our implementation of RCCE is integrated with ISAT,

some of the steps in our implementation of RCCE differ from other works found

in the literature, those steps are highlighted and justified.

1. The first important step in the application of the RCCE dimension reduc-

tion method is the selection of the set of represented (constrained) species,

Φ
r. For a given set of represented species, Φr, the reduced representation

is given as r ≡ {zr, zu,e}.

Alternatively, in many of the RCCE implementations [35, 36] general lin-

ear constraints on species are specified. In our implementation of RCCE,

to simplify the user interface and specification of constraints, we use the

species specific moles of the represented species as the constraints.

2. The next step is the species reconstruction, i.e., given a reduced represen-

tation r(0) at time t = 0, reconstruct an estimate of the full composition
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Figure 2.1: Sketch of the composition space (indicated by represented r

and unrepresented u axes) showing the four steps involved in
the dimension reduction procedure using RCCE and ICE-PIC:
(i) the initial reduced composition is represented by r(0); (ii)
the reconstructed composition at r(0) is represented by z

DR(0);
(iii) the reaction mapping starting from z

DR(0) after time t is
represented by z

DR(t); (iv) the reduced composition after time
t is represented by r

DR(t).

denoted by z
DR(0).

In RCCE the species reconstruction is performed by computing the

constrained-equilibrium composition for the given constraints. In our im-

plementation of RCCE, the constrained-equilibrium composition is com-

puted using the CEQ [68] code, with the constraints given by the reduced

representation r. The constrained-equilibrium composition at r is denoted

by z
CE(r). So the reconstructed composition in RCCE is given as

z
DR(0) = z

CE(r(0)). (2.3)

3. The next step is to obtain the reaction mapping. Starting from the recon-

structed composition, zDR(0), the set of ODEs (2.1) are integrated numeri-

cally in the full space using DDASAC to obtain the reaction mapping after
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time t denoted by z
DR(t) as shown in Fig.2.1.

An alternative approach for RCCE method as suggested in [40] and also

used in [35, 36] is to integrate the rate equations for the constraint poten-

tials which is more economical than integrating the ODEs (2.1) directly. In

our implementation of RCCE, we chose the latter approach for the ease of

integrating RCCE dimension reduction method with ISAT, which is dis-

cussed in more detail in [89].

4. The final step involved in the dimension reduction method is reduction,

i.e., from the obtained reaction mapping after time t, zDR(t), compute the

reduced representation denoted by r
DR(t) (shown in Fig.2.1), given as:

r
DR(t) = B

T
z
DR(t). (2.4)

To summarize, the key steps involved in the RCCE dimension reduction

method are

1. Selection: Identifying good constraints or the set of represented species,

Φ
r for dimension reduction.

2. Species Reconstruction: Given the constraints, r(0), reconstructing the

full composition, zDR(0).

3. Reaction Mapping: Starting from the reconstructed composition z
DR(0),

computing the reaction mapping after time t in the full composition space

z
DR(t).

4. Reduction: From the reaction mapping z
DR(t), obtaining the reduced repre-

sentation r
DR(t) after time t.
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The ICE-PIC dimension method also involves the same four aforemen-

tioned steps, with the only difference in the species reconstruction step, wherein

the reconstructed composition is defined based on the invariant constrained-

equilibrium (ICE) manifold [79, 77]. The remaining three steps: selection, reaction

mapping and reduction are identical to the steps in RCCE.

Among these steps, the selection of the represented (constrained) species is

an important step as the errors involved in the remaining three steps implicitly

depend on the choice of the represented species, Φr. As mentioned in [35, 36]

also, identification of appropriate constraints is essential for the accuracy of the

RCCE dimension reduction method. In the following sections, we develop an

automated algorithm to select a “good” set of represented species, Φr for the

accurate implementation of RCCE and ICE-PIC dimension reduction methods.

2.3.4 Partially-Stirred Reactor

In methods to develop QSSA based reduced mechanisms, it is useful to consider

a range of test cases both to identify QSS species and to validate the resulting

reduced mechanisms.

Here, we are interested in applying RCCE and ICE-PIC methods to LES/PDF

calculations, for which the partially-stirred reactor (PaSR) is a (computationally

cheaper) representative test case. We can vary pressure p, temperature T and

the time step ∆t to be representative of conditions in an LES/PDF calculation.

In this study, we consider the test case of a partially-stirred reactor (PaSR)

involving premixed combustion of a methane/air mixture. A description of the
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PaSR is given in [66]; here we list only the important parameters involved.

There are two inflowing streams: a premixed stream of stoichiometric

methane/air mixture at 600 K; and a pilot stream consisting of the adiabatic

equilibrium products of a stoichiometric methane/air mixture at 2375 K (corre-

sponding to unburnt gas temperature of 600 K). The mass flow rates of these

streams are in the ratio 0.95:0.05. Initially (t = 0), all particle compositions are

set to be the pilot-stream composition. The pressure is atmospheric throughout.

Other important parameters involved are: number of particles, NP = 100;

residence time, τres = 10 ms; mixing time scale, τmix = 1 ms; pairing time scale,

τpair = 1 ms; time step = 0.1 ms (involving 3 fractional sub-steps of mixing, re-

action and mixing); and reaction time step ∆t = 0.033 ms. The PaSR is run for

3,400 time steps, each involving 3 sub-steps over 100 particles, leading to more

than 106 particle-sub-steps.

In this study, the GRI-Mech 1.2 mechanism involving 31 species is used to

describe the methane combustion. The species involved are

Φ = {H2, H,O2, OH,H2O,CH3, CH4, CO,CO2, CH2O,C2H4, O,HO2, H2O2, C, CH,CH2, CH2(S), (2.5)

HCO,CH2OH,CH3O,CH3OH,C2H,C2H2, C2H3, C2H5, C2H6, HCCO,CH2CO,HCCOH,N2}

To give some idea about the state of the PaSR, scatter plots of species specific

moles of CH4 and CO (retrieved from 10 selected particles from the PaSR) ver-

sus the temperature are shown in Fig.2.2 and Fig.2.3, respectively. We see that

the CH4 concentration drops with temperature, as more and more CH4 reacts

to form products. The concentration of CO on the other hand, increases with

temperature and reaches a maximum at around 2000K.
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Figure 2.2: Scatter plot of the specific moles of CH4, zCH4
(retrieved from

10 selected particles from the PaSR) versus temperature, T , ob-
tained from 3,400 time steps of 0.1ms each in the PaSR for a
stoichiometric methane premixed combustion at atmospheric
pressure and an initial temperature of 600K.

In our implementation of PaSR, computations can be performed using the

full set of species, Φ, in the full composition space (without any dimension re-

duction) or using a smaller set of represented species, Φr, with one of the di-

mension reduction methods – RCCE or ICE-PIC. For a given test case, PaSR cal-

culations are performed with and without dimension reduction, and the com-

positions obtained with the two approaches are compared to estimate errors

involved in dimension reduction.

In the next section we define the various errors involved in the dimension

reduction steps. Subsequently, based on these definitions of error, we propose a

definition for “optimal” set of represented species and present an algorithm to
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Figure 2.3: Scatter plot of the specific moles of CO, zCO (retrieved from
10 selected particles from the PaSR) versus temperature, T , ob-
tained from 3,400 time steps of 0.1ms each in the PaSR for a
stoichiometric methane premixed combustion at atmospheric
pressure and an initial temperature of 600K.

select “good”, near-optimal set of represented species.

2.3.5 Dimension Reduction Errors

In this section we define the various errors involved in the dimension reduction

process and describe the method employed to measure these errors using the

PaSR.

Given a composition, z(0) in the full composition space, the reaction mapping,

R(z(0), t) (for t ≥ 0) is more concisely denoted by z(t) (see Fig.2.4).
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Figure 2.4: Sketch of the steps involved in the computation of dimension
reduction errors. z(0) and its reaction mapping after time t,
z(t), are given compositions in the full space. For a specified
set of represented species, Φr, the reduced representation at
z(0) in denoted by r(0). The reconstructed composition at r(0)
is denoted by z

DR(0). The reaction mapping from z
DR(0) after

time t is denoted by z
DR(t), and the reduced composition at

z
DR(t) is denoted by r

DR(t).

For a given set of represented species, Φr, the reduced representation of the full

composition, z(0) is denoted by r(0) and is obtained by performing the reduction

using (2.2) as

r(0) = B
T
z(0). (2.6)

At r(0), the reconstructed composition using a dimension reduction method

is denoted by z
DR(0). Starting from the reconstructed composition, the reaction

mapping, R(zDR(0), t) in the full composition space is more concisely denoted

by z
DR(t) (see Fig.2.4).

Now for a representative test problem, to estimate the errors incurred using

a dimension reduction method, a number of test compositions are selected in

the full space. Let the number of test compositions used be denoted by, N . We
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perform a PaSR computation in the full composition space (without dimension

reduction) and then pick N distinct test compositions in the full space denoted

by z
(n)(0), for n = 1 toN ; and their corresponding reaction mappings after a fixed

constant time t, are denoted by z
(n)(t).

At the N chosen compositions, z(n)(0), in the full space, and for a given set of

represented species, Φr, we denote the corresponding reduced representations by

r
(n)(0), the reconstructed compositions by z

DR(n)(0), and the reaction mappings

by z
DR(n)(t).

Note that, given z(0) and t, zDR(t) depends on the specification of the rep-

resented species, Φr. As needed, we show this dependence explicitly by the

notation z
DR(t,Φr).

At this stage, we define the error in the reaction mapping obtained after time

t starting from the reconstructed composition to be

ǫ(t,Φr) =
[zDR(n)(t,Φr)− z

(n)(t)]rms

[z(n)(t)]rms

, (2.7)

where the operator [ ]rms is defined by, for example,

[z(n)(t)]rms =

√

√

√

√ 1
N

N
∑

n=1

||z(n)(t)||2, (2.8)

where ||z|| denotes the 2-norm.

In particular we have two important errors in the dimension reduction

method corresponding to t = 0 and t = ∆t:

1. Species Reconstruction Error: This is the error in reconstructing the full

composition given a reduced composition r(0) at t = 0 and is given by

Eqn.2.7 as ǫ(0,Φr).
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2. Reaction Mapping Error: This is the error in the reaction mapping ob-

tained after time step ∆t (reaction time step) starting from the recon-

structed composition and is equal to ǫ(∆t,Φr).

Both the species reconstruction and reaction mapping errors depend on the

choice of represented species, Φ
r, and the goal of this work is to identify a

“good” set of represented species which reduces these errors.

2.4 Selection of Optimal Species

2.4.1 Optimal Species

In the previous section we looked at the various errors involved in the dimen-

sion reduction method, and with the goal of reducing these errors for accurate

implementation of dimension reduction in combustion chemistry, here we pro-

pose a definition for optimal species based on the RCCE dimension reduction

method.

The definition of the optimal set of species is based on the dimension reduc-

tion error, ǫ(t,Φr). We consider either the species reconstruction error, ǫ(0,Φr)

or the reaction mapping error, ǫ(∆t,Φr); and the error used for defining the

optimal set is concisely denoted by ǫ(Φr).

For a given definition of the error ǫ(Φr), and a given value of nrs, the set of

nrs represented species, Φr which minimizes the error, ǫ(Φr), is defined to be

the optimal set of species and is denoted by Φ
opt.
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The optimal set of species, Φopt, (by definition) produces the minimum error:

ǫ(Φopt) = min
Φr

ǫ(Φr). (2.9)

2.4.2 Objectives of Species Selection

Ideally one wants to find the optimal set of represented species for implementing

dimension reduction. For a given value of nrs, a simple brute-force method for

selecting the optimal set of species is to form all possible
(

ns

nrs

)

number of sets of

represented species, and then compute the error, ǫ(Φr), for each of the sets. The

set of species producing the minimum error is the required optimal set. Such a

brute-force method involves O
(

ns

nrs

)

number of computations, which can become

very expensive even at small values of nrs and ns (for example, for ns = 30 and

nrs = 10, over 30 million sets of represented species can be formed) and hence

this brute-force method is in general impracticable to use.

An alternative approach is to use a greedy algorithm. A greedy algorithm

proceeds in stages, making a locally optimal choice at each stage to find a near-

optimal solution [20]. Greedy algorithms are shortsighted in their approach,

making one greedy choice at a time without worrying about the consequences of

such a choice in the future. In other words, a greedy algorithm never reconsiders

its choices. Greedy algorithms are not guaranteed to give the optimal solutions,

but provide good solutions for many mathematical problems.

A “good” set (initially empty) of represented species denoted by Φ
g is

formed in stages using a greedy algorithm by selecting at each stage the species

whose addition to the set produces the minimum dimension reduction error.

28



The idea is, for a given value of nrs, to select a set of nrs “good” species,

proceed in nrs stages, from 1, 2 . . . nrs, selecting the best species at each stage,

i.e., the species which minimizes the error. So, at Stage 1, pick the first best

species from Φ corresponding to the minimum error. Next, at Stage 2 pick the

next best species from the remaining set of species which minimizes the error,

and continue until nrs species are selected.

At each stage S (for S = 1 . . . nrs) of this algorithm, (ns − S + 1) number

of computations are performed. Overall in nrs stages only O(ns nrs) number of

computations are performed and hence this method is economical.

Moreover, in the implementations of RCCE and ICE-PIC it is often desirable

to start working with a given set of represented species, and if required to add

more species to the existing set. For such a purpose, the greedy algorithm is

ideal, as it selects the best available represented species from the remaining set

of species.

In the next section we formally describe this automated greedy algorithm,

and then present results.

2.4.3 Greedy Algorithm for Species Selection

Notation

Here we define certain terms and quantities used to describe the algorithm:

• Determined species: In a given chemical system with a specified number

of moles of elements, the species whose concentration can be determined
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by atom conservation alone are called the determined species. Obviously

such species are not good choices for represented species as they are al-

ready determined.

• Unrepresented determined species (Φud): For a given set of represented

species, Φ
r, the set of other species whose concentration can be deter-

mined by element conservation alone are called the unrepresented deter-

mined species and are denoted by Φ
ud. (There may be no such species, in

which case Φ
ud is the empty set.)

• Unrepresented undetermined species (Φuu): The set of unrepresented

species which are not determined are called the unrepresented undeter-

mined species and are denoted by Φ
uu. (If there are no such species, i.e.,

all the species are either represented or determined, then Φ
uu is the empty

set.)

The greedy algorithm presented in the next section, selects at each stage a good

species (producing minimum dimension reduction error) from the set of unrep-

resented undetermined species, Φuu to form a good set of represented species,

Φ
g.

Greedy Algorithm

The greedy algorithm is described below for finding the entire species ordering

i.e., until the set Φuu is empty, based on the defined error ǫ(Φr).

1. The ns species in set Φ are assigned indices 1, 2, . . . ns in an arbitrary order.

We use the notation species k to denote the species with index k.
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2. The algorithm proceeds in S stages, numbered 1, 2, . . . S where S is at most

ns − ne.

3. At the end of the jth stage, there are j “good” represented species selected

by the algorithm, which form the represented set Φg
j .

4. Initially, before the beginning of stage 1, the set Φ
g
0 is initialized to an

empty set.

5. At the beginning of the jth stage, based on the set of represented species

from the previous stage, Φg
j−1, the set Φuu

j of unrepresented undetermined

species is identified. If this set is empty, then the algorithm terminates. Let

the set of indices of species in Φ
uu
j be denoted by I

uu
j .

6. In the jth stage, another species mj for mj ∈ I
uu
j is identified to be added to

Φ
g
j−1 to form Φ

g
j .

• For each species k (k ∈ I
uu
j ), Φg

j,k denotes the union of Φg
j−1 and species

k from Φ
uu
j .

• For each set Φg
j,k the defined error ǫ(Φr) is computed as

ǫjk = ǫ(Φg
j,k). (2.10)

7. The selected species mj ∈ I
uu
j is that which minimizes the error, i.e.,

ǫjmj
≤ ǫjk for all k ∈ I

uu
j . (2.11)

8. The species mj is added to the set of good represented species, Φg
j−1 to

yield

Φ
g
j = Φ

g
j−1 ∪ {speciesmj}. (2.12)

9. The value of j is incremented, and the next stage is started at (5).
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At the end of the algorithm, the ordered set Φg presents a good choice of rep-

resented species for dimension reduction methods. For implementing dimen-

sion reduction at any given value of nrs, the first nrs number of species from the

ordered set Φg are used as the represented species.

Note that for any given reduced dimension nrs, the above algorithm does

not give the optimal set of species, Φopt, which minimizes the global error at

that value of nrs, but incrementally adds the best available species at each stage

to the set of represented species computed from the previous stage.

2.5 Results

2.5.1 Greedy Algorithm Results

The greedy algorithm presented in the previous section is applied on the set of

species (2.5) to obtain the species ordering based on the species reconstruction

and reaction mapping errors. A total of N = 2500 test compositions are used in

the full space to compute errors. The justification for choosing this value of N

and the sensitivity of results to changes in N are discussed later in Section 2.5.3.

The first three stages of the algorithm for species selection based on the

species reconstruction error are illustrated in Fig.2.5. At each stage j (for

1 ≤ j ≤ 3), the error ǫjk (2.10) resulting from the addition of species k (for each

k ∈ I
uu
j ) to the set of represented species from the previous stage, Φg

j−1 is plotted.

The species producing the minimum error is selected at each stage. As N2 is the

only species in (2.5) containing nitrogen, it is a determined species and hence is
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Figure 2.5: Illustration of the first three stages of species selection based
on the species reconstruction error using the greedy algorithm.
At each stage the species producing the minimum error is se-
lected. At each stage, the determined and already selected
species are not included in the selection, and are marked by
a dashed line. The numbering on the x-axis shows the final
species ordering obtained at the end of the algorithm.

not considered for selection. At each stage the determined and already-selected

species, which are not part of the unrepresented undetermined species set, are

marked with a dotted line. The x-axis labels show the entire species ordering

obtained at the end of the algorithm. At stage 1, we see that the species CH4

produces 25% less species reconstruction error than other species, when used as

the represented species for dimension reduction, and hence CH4 is selected by

the greedy algorithm as the first “best” represented species, Φg
1 = {CH4}. At

stage 2, we pick the second species which when used along with the previously

selected good species, CH4, produces the minimum species reconstruction er-

ror, and as we see the species O2 with CH4 produces the minimum error, and
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Figure 2.6: Illustration of the working of the greedy algorithm for species
selection based on the species reconstruction error. The x-axis
shows the stages (1 to ns = 31) for the 31 species present in
the GRI-Mech 1.2 methane mechanism. At each stage, the un-
represented undetermined species are plotted with increasing
error (from bottom to top) and the species producing the min-
imum error is selected, which is marked on the x-axis. The
algorithm stops at stage 27, when nrs = ns − ne = 27 because
thereafter the species concentration are determined using ele-
ment conservation. The species ordering of the last four species
is inconsequential.

so O2 is the second species selected by the greedy algorithm, Φg
2 = {CH4, O2}.

At stage 3, we pick the third species which when used with the two previously

selected species, i.e., {CH4, O2} produces the minimum species reconstruction

error, which is found to be the species C2H4, and hence is selected in the third

stage, Φg
3 = {CH4, O2, C2H4}. The algorithm continues in this fashion until the

required number of represented species are selected.

The full species ordering based on the species reconstruction error is shown
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Figure 2.7: Plot showing the range of species reconstruction errors pro-
duced by the unrepresented undetermined species at each
stage of the species selection using the greedy algorithm. The
x-axis shows the stages (1 to ns = 31) for the 31 species present
in the GRI-Mech 1.2 methane mechanism. At each stage, the
species reconstruction error produced by adding each unrep-
resented undetermined species, is marked with a dot, and the
species that produce the minimum and maximum errors are
numbered. The species which minimizes the error is selected
at each stage.

in Fig.2.6. The figure illustrates the stage by stage selection of the best available

species using the greedy algorithm. At each stage j, the ordering of the un-

represented undetermined species, Φuu
j is shown, based on increasing species

reconstruction error ǫjk (2.10) from bottom to top. The x-axis labels list the best

species selected at the end of each stage, which corresponds to the bottom most

species (which minimizes the error) appearing in the list at that stage. One im-

portant observation we make is that at each stage the unrepresented undeter-

mined species are reordered significantly from the previous stage especially in
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the initial stages. For example, the species selected in stages 5 to 8 appear at the

top of the ordering (produce high error) in the initial stages. The primary reason

for this reordering is that the error at every stage depends on all the species se-

lected in the previous stages, and as a consequence the species selected at each

stage controls the error in the subsequent stages. As a result, the species selected

in the first few stages of the algorithm have a significant effect on the rest of the

species ordering.

Fig.2.7 shows the corresponding species reconstruction error values, ǫjk

(2.10) at each stage j. The error values, ǫjk are marked with a dot, and for

clarity, only the species which produce the minimum and maximum error are

numbered. We see that the range of errors at each stage is very narrow, except at

stages 8, 9 and 13 and the minimum error decreases monotonically with every

stage. At every stage, we also observe that certain species, if selected, result in

an increase in the species reconstruction error. This behavior is analyzed further

in the next section.

Fig.2.8 and Fig.2.9 show the same plots for species selection based on the re-

action mapping error. While we make similar observations in Fig.2.8 as for the

previous case, Fig.2.9 shows some interesting behavior after stage 16, where we

see that the minimum reaction mapping error stays constant and then increases

slightly at around stage 23 and 24 and then drops down again at stage 26. The

species 28 also consistently shows high errors after stage 16. It appears as if the

solution is “trapped” in a local minimum, where addition of any more species

does not result in any further decrease in error. This may be a shortcoming

of using the greedy algorithm, which picks the locally optimal species at each

stage without reconsidering the previous choices. As a consequence, the greedy
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Figure 2.8: Illustration of the working of the greedy algorithm for species
selection based on the reaction mapping error. The x-axis
shows the stages (1 to ns = 31) for the 31 species present in
the GRI-Mech 1.2 methane mechanism. At each stage, the un-
represented undetermined species are plotted with increasing
error (from bottom to top) and the species producing the min-
imum error is selected, which is marked on the x-axis. The
algorithm stops at stage 27, when nrs = ns − ne = 27 because
thereafter the species concentration are determined using ele-
ment conservation. The species ordering of the last four species
is inconsequential.

algorithm can get trapped in a local minimum and may give a sub-optimal so-

lution.

Nevertheless, from these results we can draw some important conclusions:

1. The greedy algorithm has been successfully implemented, and is able to

pick the best available species at each stage.

2. At least up to nrs = 16 (for the 31 species methane GRI-Mech 1.2 mecha-
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Figure 2.9: Plot showing the range of reaction mapping errors produced
by the unrepresented undetermined species at each stage of
the species selection using the greedy algorithm. The x-axis
shows the stages (1 to ns = 31) for the 31 species present
in the GRI-Mech 1.2 methane mechanism. At each stage, the
species reconstruction error produced by adding each unrep-
resented undetermined species, is marked with a dot, and the
species that produce the minimum and maximum errors are
numbered. The species which minimizes the error is selected
at each stage.

nism), the error decreases with each added represented species using the

greedy algorithm.

3. The error decreases by more than 30% in the first two stages, and on aver-

age, the error decreases by 8% with each added represented species in the

first 16 stages.

4. In order to achieve 1% and 0.1% levels of error, approximately 5 and 10

represented species are required, respectively.
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2.5.2 Worst Case Scenario

In this section, to stress more on the importance of carefully selecting the repre-

sented species for dimension reduction, we perform a series of worst case anal-

ysis by computing errors incurred when using a bad set of species compared to

using the species obtained from our algorithm.

To pick the “worst” species, we again use the same greedy algorithm de-

scribed in Section 2.4.3 with the exception that at every stage instead of picking

the unrepresented species which minimizes the error, we pick the species which

maximizes the error. From here on, we refer to this “worst” species selection al-

gorithm as the greedy-worst algorithm.

Fig.2.10 shows the worst species ordering obtained using the greedy-worst

algorithm based on the reaction mapping error. It can be clearly seen that the

error for this worst ordering of species remains almost constant with increase

in the dimension, nrs. Also the errors are orders of magnitude more than the

errors obtained with the species ordering using our species selection algorithm.

We see that the major species – CH4, O2, CO2 and H2O – are the last species

selected by the previous method. To check if manually including the major

species first improves the errors, we performed another worst-case test in which

we first manually selected the major species in the system – CH4, O2, CO2 and

H2O – and then picked the rest of the worst species using the greedy-worst algo-

rithm. The species ordering for this case based on the reaction mapping error

is shown in Fig.2.11. In this cases also, we see that including the major species

in the represented set does not solve the problem fully; the errors still stay very

high with the worst species ordering.
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Figure 2.10: Plot showing the reaction mapping errors produced by select-
ing the worst species, i.e. species with maximum error at each
stage of the greedy algorithm. At each stage, reaction map-
ping error in all the unrepresented undetermined species are
marked with a dot, and the species which produce the mini-
mum and maximum errors are numbered. The species which
maximizes the error is selected at each stage, which is marked
on the x-axis.

We can draw some important conclusions from these worst case scenarios:

1. Increase in the number of represented species (or, equivalently, the dimen-

sion of the reduced space) does not necessarily result in a reduction of

dimension reduction error.

2. A bad set of species can result in an error which is orders of magnitude

greater than the error resulting from a well chosen set of species.

3. Including major species does not always help; the errors can still remain

very high if the rest of the species are not well selected.
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Figure 2.11: Plot shows the reaction mapping errors produced by select-
ing the worst species, i.e. species with maximum error at
each stage of the greedy algorithm, with the major species:
CH4, O2, CO2 and H2O manually fixed first in the ordering.
At each stage, the reaction mapping error in all the unrep-
resented undetermined species are marked with a dot, and
the species which produce the minimum and maximum er-
rors are numbered. The species which maximizes the error is
selected at each stage, which is marked on the x-axis.

2.5.3 Sensitivity Tests

In this section we perform a series of tests to investigate the sensitivity of the

species ordering to changes in the number of test compositions, N , used to com-

pute errors; changes in various testing conditions like the pressure, initial tem-

perature and the equivalence ratio; changes in the definition of the error, ǫ; and

also to analyze how strongly the dimension reduction results depend on the

choice of represented species.
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Choice of test compositions

To compute accurate species orderings using the greedy algorithm, the errors

involved need to be computed accurately. Since the errors are computed on the

N chosen test compositions, the choice of test compositions is crucial.

At each stage of the greedy algorithm, for each candidate species in the un-

represented undetermined species set, the errors are computed at all the chosen

N testing compositions to find the species producing the minimum error. Se-

lecting a large number of testing compositions makes the algorithm expensive

and too small a value of N may not give accurate species orderings.

The species selected in the initial stages of the greedy algorithm are cru-

cial as, in all the results presented so far, we see that the species reconstruction

and the reaction mapping errors drop rapidly to below 10−2 in the first 8 to 10

species. Hence, N is chosen high enough such that the first 8 to 10 species in the

species ordering remain unchanged with any further increase in N .

Species orderings obtained with increasing N at φ = 1, T = 600K and

p = 1 atm is shown in Fig.2.12. From Fig.2.12(a) it is seen that the first 10 species

are identical with N = 2500 and N = 3000; whereas with N = 1000 only the

first species is the same. From Fig.2.12(b) we see that the tenth species differs

between N = 2500 and N = 3000; whereas with N = 1000 there are three species

which differ. At other testing conditions also, the species ordering results (not

presented here for brevity) show that the first 8 to 10 species remain unchanged

with N ≥ 2500 test compositions. Hence all the results in this paper are pre-

sented with N = 2500 test compositions.
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Figure 2.12: Displayed are the first ten species selected using the greedy
algorithm based on (a) the reaction mapping error and (b)
the species reconstruction error using the PaSR at φ = 1,
T = 600K and p = 1 atm with increasing number of test com-
positions, N , used to compute the errors.

Table 2.1: The following set of testing conditions (overall 12 combinations)
are considered for the PaSR tests.

Equivalence Ratio (φ) 1 0.8 1.2

Pressure (atm) 1 10

Initial Temperature (K) 600 1200
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Table 2.2: Displayed are the first ten species selected by the greedy algo-
rithm based on the reaction mapping error at all the 12 testing
conditions listed in Table 2.1.

φ = 1.0 φ = 1.0 φ = 1.0 φ = 1.0 φ = 0.8 φ = 0.8 φ = 0.8 φ = 0.8 φ = 1.2 φ = 1.2 φ = 1.2 φ = 1.2

T = 600 T = 1200 T = 600 T = 1200 T = 600 T = 1200 T = 600 T = 1200 T = 600 T = 1200 T = 600 T = 1200

p = 1 p = 1 p = 10 p = 10 p = 1 p = 1 p = 10 p = 10 p = 1 p = 1 p = 10 p = 10

1 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4

2 CO2 CO2 CO CO2 CO2 CO2 C2H6 C2H6 O2 CO2 O2 CO2

3 H2 H2 C2H6 CH2O H2 H2 OH CO CH3 H2 C2H6 H2

4 O2 H H2 C2H6 O2 O2 C2H2 CH2O C2H6 C2H6 CO2 C2H6

5 H C2H6 C2H4 H C2H4 C2H4 CH2CO H2 CO2 O CH2O CH2O

6 OH O CH2O H2 CH2O CH2O HCCOH O H2O CH2O H2 OH

7 O CH2O CH3 O CH3OH CO CH CH3 H CH3OH CH3 O2

8 CH2O OH HO2 CH3 HO2 O C CH3OH CH2O CH2 C2H2 HO2

9 CH3 O2 OH C2H2 C2H2 OH C2H C2H2 OH C2H3 C2H4 CO

10 HO2 HO2 H CH2CO CH2CO C2H2 HCCO CH2CO C2H2 CH C2H3 O

44



Table 2.3: Displayed are the first ten species selected by the greedy algo-
rithm based on the species reconstruction error at all the 12 test-
ing conditions listed in Table 2.1.

φ = 1.0 φ = 1.0 φ = 1.0 φ = 1.0 φ = 0.8 φ = 0.8 φ = 0.8 φ = 0.8 φ = 1.2 φ = 1.2 φ = 1.2 φ = 1.2

T = 600 T = 1200 T = 600 T = 1200 T = 600 T = 1200 T = 600 T = 1200 T = 600 T = 1200 T = 600 T = 1200

p = 1 p = 1 p = 10 p = 10 p = 1 p = 1 p = 10 p = 10 p = 1 p = 1 p = 10 p = 10

1 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4 CH4

2 O2 O2 O2 O2 O2 O2 O2 O2 O2 O2 O2 O2

3 C2H4 C2H4 C2H4 C2H6 C2H4 C2H4 C2H6 C2H6 C2H4 C2H4 H2O C2H6

4 C2H6 OH C2H6 C2H4 C2H6 OH C2H4 C2H4 CO2 C2H6 CO C2H4

5 OH C2H6 CO2 CH2O OH C2H6 CO2 CH2O H2 CH3 H2 CO2

6 CO2 CH3 H2 H2O CO2 O H2 OH H CO2 CO2 H2

7 H2 H CH2O CO H2 H CH2O CO2 CH2O H2O OH H

8 H O H CH3 H CH3 H H2 OH H C2H6 CH2O

9 CH2O CO2 OH OH CH2O CO2 OH O C2H2 H2 H OH

10 CH3 CH2O H2O H O CH2O HO2 HO2 CH3 CH3OH C2H4 HO2

45



Sensitivity to changes in testing conditions

To investigate the species ordering sensitivity to changes in PaSR testing condi-

tions, the species ordering are obtained at all of the 12 conditions listed in Table

2.1. The species orderings (first 10 species) obtained for these cases based on the

reaction mapping error are listed in Table 2.2 and based on species reconstruc-

tion error are shown in Table 2.3.

Next using these species ordering we performed two sets of tests:

1. Different PaSR tests at fixed species ordering:

We pick a species ordering obtained at a particular testing condition, and

then using this species ordering we perform PaSR tests at all the condi-

tions listed in Table 2.1 with dimension reduction and analyze the reac-

tion mapping and species reconstruction errors at various values of nrs.

We are interested in determining whether the error in all these cases de-

creases monotonically or if it shows some irregular trends.

2. Fixed PaSR test with different species orderings:

In this we perform a fixed PaSR test with dimension reduction using a se-

lected number of species orderings i.e, different sets of represented species

(obtained at different testing conditions listed in Table 2.1) and analyze

how the reaction mapping and species reconstruction errors vary with dif-

ferent choices of represented species.

Since we are more interested in the reaction mapping error which determines

the error in the represented species concentration at the end of the reaction time

step ∆t, we perform more tests based on the reaction mapping error than on the

species reconstruction error.
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Figure 2.13: Plot of the reaction mapping error in PaSR tests performed at
all the 12 conditions listed in Table 2.1 with dimension reduc-
tion (for 1 ≤ nrs ≤ 10) using represented species from the
species ordering obtained based on the reaction mapping er-
ror at φ = 1, T = 600K and p = 1 atm.

PaSR tests at fixed species ordering

We pick the species ordering based on the reaction mapping error obtained us-

ing the PaSR test at an equivalence ratio, φ = 1, initial temperature, T = 600K

and pressure p = 1 atm. Using this species ordering we perform PaSR tests with

dimension reduction for 1 ≤ nrs ≤ 10 at all the conditions listed in Table 2.1.

For each value of nrs, the first nrs number of species from the chosen species

ordering are used as represented species.

The reaction mapping error obtained at each value of nrs is plotted in

Fig.2.13. We make the following observations:
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Table 2.4: Displayed are the species orderings (first 10 species) obtained
using the greedy algorithm based on the reaction mapping error
at five selected testing conditions (from Table 2.1) with the four
major species: CH4, O2, CO2 and H2O manually fixed first in the
species ordering.

φ = 1.0 φ = 1.0 φ = 1.0 φ = 0.8 φ = 1.2

T = 600 T = 1200 T = 600 T = 1200 T = 1200

p = 1 p = 1 p = 10 p = 1 p = 1

1 CH4 CH4 CH4 CH4 CH4

2 O2 O2 O2 O2 O2

3 CO2 CO2 CO2 CO2 CO2

4 H2O H2O H2O H2O H2O

5 CH3 CH3 H2 CH3 CH3

6 H H CH2O OH H

7 C2H6 OH HO2 H OH

8 OH H2 CH3 CH2O H2

9 CH2O O CH3OH C2H6 HO2

10 C2H2 CO H2O2 HO2 CH3OH

1. For a given value of nrs, the error typically varies by a factory of 10 de-

pending on the conditions.

2. While the general behavior is for the error to decrease with increasing

value of nrs, there are many instances of the error increasing significantly:

for example, in one case (φ = 0.8, T = 600K and p = 10 atm), as the value

of nrs increases from 9 to 10, the error increases by a factor of 10.

48



Fixed PaSR test with various species ordering

In the greedy algorithm presented, all the species are treated equally and there

are no predefined “major” or “minor” species. But, in practice, it is often desir-

able to include the major species in the calculations. So at a few selected testing

conditions, we obtained species ordering using the greedy algorithm with the

major species CH4, O2, CO2 and H2O fixed first in the ordering. The species

ordering obtained (first 10 species) are listed in Table 2.4.

We performed PaSR tests with dimension reduction at 1 ≤ nrs ≤ 10 using

various species orderings:

• Fig.2.14 shows the reaction mapping error obtained using the PaSR test

performed at φ = 1, T = 600K and p = 1 atm with various species order-

ings based on the reaction mapping error. We see that the species ordering

obtained at the same testing conditions (φ = 1, T = 600K and p = 1 atm)

produces the lowest error at all values of nrs except at nrs = 10. The error

with this species ordering decreases by 10% on average with every stage,

while at other species orderings the error values are greater and at many

instances stay constant with increase in nrs. This case clearly demonstrates

that the greedy algorithm is successfully able to select “good” represented

species which produce low dimension reduction error.

• Fig.2.15 shows results for the PaSR test performed at a slightly higher tem-

perature of T = 1200K, φ = 1 and p = 1 atm. Here also we see that

the species ordering obtained at the same testing conditions (T = 1200K,

φ = 1 and p = 1 atm) produces the lowest error for nrs ≤ 7, thereafter the

error values are still low but slightly higher than species ordering obtained
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with major species fixed first and species ordering obtained at φ = 0.8,

T = 1200K and p = 1 atm. This again shows that the greedy algorithm

successfully captured the best species in the initial stages, but since the

greedy algorithm does not reconsider its choices, it fails to capture the

best possible set of represented species at higher values of nrs.

• Fig.2.16 shows results for the PaSR test performed at higher pressure of

p = 10, φ = 1 and T = 600K. Here we see that for nrs ≤ 3 the species

ordering obtained at the same testing conditions (p = 10, φ = 1 and

T = 600K) produces the lowest error, but soon is out-performed by some

of the other species orderings. In the range 5 ≤ nrs ≤ 9 the species or-

dering with major species fixed first produces the lowest error. For this

case, even though the greedy algorithm does not give the best possible

set of species at many values of nrs, the error with the species ordering ob-

tained at the same testing conditions decreases monotonically and remains

very close to the lowest error values achieved at all the values of nrs. The

other species orderings which produce lower errors, show a highly irregu-

lar trend, with the error increasing-decreasing by more than 10% at many

values of nrs.

• Fig.2.17 shows the results for lean premixed combustion at φ = 0.8, T =

1200K and p = 1 atm. In this case also we see behavior similar to the

previous case: the species ordering obtained at the same conditions (φ =

0.8, T = 1200K and p = 1 atm) produces lowest error for nrs ≤ 3; remains

close to the lowest error achieved at higher values of nrs, and decreases

monotonically.

• Fig.2.18 shows the results for a rich premixed combustion at φ = 1.2, T =

1200K and p = 1 atm. In this case, interestingly we see that the species
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Figure 2.14: Plot of the reaction mapping error in the PaSR test performed
at φ = 1, T = 600K and p = 1 atm with dimension reduction
(for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given
in Table 2.2 and Table 2.4.

ordering obtained using the greedy algorithm at the same conditions (φ =

1.2, T = 1200K and p = 1 atm) produces the lowest error for nrs ≤ 5 but

thereafter the error decreases at a very slow rate. This again could be a

case where the greedy algorithm got “trapped” in a local minimum and

as a consequence the error value almost stays constant with any further

addition of represented species. The other species orderings including the

species ordering with the major species fixed, start with very high errors

at low values of nrs, but show some improvement at higher values of nrs,

with the error values decreasing but not very significantly.

Apart from the individual observations made in each of the cases, the results
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Figure 2.15: Plot of the reaction mapping error in the PaSR test performed
at φ = 1, T = 1200K and p = 1 atm with dimension reduction
(for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given
in Table 2.2 and Table 2.4.

for all the five cases also show the following:

1. The species ordering obtained (without any constrained major species) at

the same testing conditions at which the PaSR test is performed, always

shows the lowest error at low values of nrs, suggesting that the greedy

algorithm successfully picks the best species in the initial stages (as it cer-

tainly does on the first stage).

2. The species ordering obtained at the same testing conditions at which the

PaSR test is performed, is found to produce a non-increasing error with

each addition of represented species for nrs ≤ 10 (even when no such

restrictions are enforced by the algorithm itself), which is not always true
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Figure 2.16: Plot of the reaction mapping error in the PaSR test performed
at φ = 1, T = 600K and p = 10 atm with dimension reduction
(for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given
in Table 2.2 and Table 2.4.

with other species orderings.

3. At low values of nrs, the error generated by the species ordering with ma-

jor species fixed is higher than that generated by other species orderings

in all the cases.

4. At high values of nrs, the greedy algorithm does not always give the best

possible set of represented species producing the lowest error. But, this

is an expected outcome of using a greedy algorithm as it picks the locally

optimum species at every stage and is not guaranteed to give the global

optimum set of species at all values of nrs.

In short, the results demonstrate that the greedy algorithm (within its own lim-
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Figure 2.17: Plot of the reaction mapping error in the PaSR test performed
at φ = 0.8, T = 1200K and p = 1 atm with dimension reduc-
tion (for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given
in Table 2.2 and Table 2.4.

itations) is able to produce a “good” set of represented species for a majority of

cases tested over a wide range of testing conditions.

Sensitivity to changes in the definition of error

The species ordering obtained using the greedy algorithm depends on the given

definition of error, ǫ, i.e., the dimension reduction error that we want to mini-

mize.

The dimension reduction error in the reaction mapping after time t starting

from the reconstructed composition, zDR(0) is given by ǫ(t,Φr).
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Figure 2.18: Plot of the reaction mapping error in the PaSR test performed
at φ = 1.2, T = 1200K and p = 1 atm with dimension reduc-
tion (for 1 ≤ nrs ≤ 10) using represented species from various
species orderings based on the reaction mapping error, given
in Table 2.2 and Table 2.4.

We have so far presented results based on two errors:

1. Species reconstruction error, ǫ(0,Φr)

2. Reaction mapping error, ǫ(∆t,Φr)

We have already seen that the species ordering obtained with these two defi-

nitions of error are significantly different, as seen in Fig.2.6 and Fig.2.8, and also

in the various species orderings obtained at different testing conditions in Table

2.2 and Table 2.3.

Among the two definitions of the error used, the species reconstruction error

is cheaper and easier to compute because it does not involve any ODE integra-
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tions. So, to examine how much reaction mapping error is incurred if we use

represented species selected based on the species reconstruction error instead

of the reaction mapping error, we perform a PaSR test at φ = 1, T = 600K and

p = 1 atm with dimension reduction using represented species from (i) species

ordering based on the reaction mapping; and (ii) species ordering based on the

species reconstruction error, and then compare the errors for the two cases. The

results are shown in Fig.2.19, and we see that the species ordering based on

the species reconstruction error results in higher reaction mapping errors than

species ordering based on the reaction mapping error, except at nrs = 1, 2 and 8

where they produce approximately the same error. Thus, the species ordering

based on the species reconstruction error may not work well for problems in-

volving the computation of reaction mappings, but it still provides a quick and

systematic way of obtaining a decent set of represented species to start working

with.

From the results presented so far, we see that there is no one good definition

of the error which will work all the time to select good species using the greedy

algorithm. A good definition of the error is more problem-specific, and depends

on the specifications of the problem we are working on and what we want to

achieve from using the dimension reduction method. If one is investigating a

steady state problem involving only species reconstructions, then an error based

at t = 0 will work best. In reactive flow problems, depending on the reaction-

time-step one can choose a specific value of time, t to define the error, or one may

also define an error averaged over the time from t = 0 to some specific time t.

However, note that the greedy algorithm presented in this paper is independent

of the definition of the error, and works unchanged with any given definition of

the error.
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Figure 2.19: Plot of the reaction mapping error in the PaSR test performed
at φ = 1, T = 600K and p = 1 atm with dimension reduction
(for 1 ≤ nrs ≤ 10) using represented species from species or-
derings obtained at the same conditions (φ = 1, T = 600K
and p = 1 atm) based on the reaction mapping and species
reconstruction errors, given in Table 2.2 and Table 2.3.

2.5.4 Computational Cost

In order to compare the computational cost involved in the dimension reduction

steps (species reconstruction and reaction mapping) and to assess the overall

cost of the greedy algorithm, the CPU times were measured on a 2.2 GHz Quad-

Core AMD Opteron(tm) Processor and are reported in this section.

The average CPU time taken per species reconstruction to compute z
DR(0) =

z
CE(r(0)) using CEQ, and the time taken to compute the reaction mapping,

z
DR(∆t) starting from z

DR(0) using DDASAC are shown in Fig.2.20. We see

that solving the full set of ODEs (2.1) using DDASAC to compute the reaction
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Figure 2.20: Plot showing the average CPU time taken (in micro-seconds)
per species reconstruction, i.e., to compute, zDR(0) given r(0)
using CEQ; and to compute the reaction mapping, zDR(∆t),
starting from z

DR(0) using DDASAC. The CPU times are mea-
sured on a 2.2 GHz Quad-Core AMD Opteron(tm) Processor.

mapping takes approximately 15 times more CPU time than that required for

performing a species reconstruction using CEQ.

The computation of full species ordering for a chemical mechanism involv-

ing ns species using the greedy algorithm on N chosen test compositions based

on:

1. the species reconstruction error involves O(N n2
s/2) species reconstruc-

tions using CEQ.

2. the reaction mapping error involves computation of O(N n2
s/2) species re-

constructions using CEQ and their reaction mappings using DDASAC.

The total CPU time taken to compute the full species ordering based on the

species reconstruction error, ǫ(0,Φr) and based on the reaction mapping error,

ǫ(∆t,Φr) is shown in Fig.2.21. Since the computation of the reaction mapping

alone takes 15 times more CPU time than that taken for the species reconstruc-

tion, we see that computing the full species ordering based on the reaction map-
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Figure 2.21: Plot showing the total CPU time taken (in hours) by the
greedy algorithm to compute the full species ordering for the
GRI-Mech 1.2 mechanism involving 31 species based on the
species reconstruction error, ǫ(0,Φr) and based on the reaction
mapping error, ǫ(∆t,Φr) using N = 2500 test compositions.
The CPU time is measured by running a serial implementa-
tion of the greedy algorithm on a 2.2 GHz Quad-Core AMD
Opteron(tm) Processor.

ping error takes approximately 25 times more CPU time than that required for

species ordering based on the species reconstruction error.

In Fig.2.21, the CPU timings are reported for computing the full species or-

dering. In practice, however, we are mostly interested in only the nrs most im-

portant species for a dimension reduction with nrs represented species. So, we

can stop once nrs number of species are selected using the algorithm, which in-

volves O(N ns nrs) number of computations. So, for selecting nrs species, with a

fixed number of test compositions, N , the algorithm cost increases linearly with

the number of species, ns in the system.
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2.6 Comparison with Time Scale Based Methods

As mentioned earlier, the RCCE and ICE-PIC methods are based on the obser-

vation that chemical systems involve wide range of time scales, and as a result

the reaction trajectories are attracted to a hierarchy of low dimensional slow in-

variant manifolds (SIMs). The key issue in the RCCE and ICE-PIC methods is

to identify the slow time scales or the slowly evolving species (know as repre-

sented species in our work) to best approximate the SIMs.

The greedy algorithm described in this paper provides one way of selecting

the representing species. One could also select represented species based on a

time scale analysis. Though we are unaware of any implementation of RCCE

in which species or constraints are selected based on a time scale analysis, but

there exist many methods for generating reduced reaction mechanisms based

on QSS [103], CSP [52, 94] and ILDM [12], wherein a time scale analysis is used

to identify the unimportant species and reactions in the detailed mechanism

which are eliminated to obtain reduced mechanisms.

It may be insightful to compare the species ordering obtained by the greedy

algorithm with the order in which species are removed in these reduced mech-

anism generating methods. In [52] an automatic reduction of chemistry with

CSP (ARC-CSP) method is developed to generate reduced mechanisms. In this

method, CSP is used to analyze perfectly stirred reactor (PSR) data (obtained

using a detailed mechanism) to identify and eliminate QSS species from the de-

tailed mechanism to obtain reduced mechanisms. The ARC-CSP method when

applied to develop a 10-step reduced mechanism from the GRI Mech 1.2 mecha-

nism (using PSR data from a wide range of operating conditions) identifies and
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eliminates 17 QSS species in the following order (see Fig. 5 in [52]): CH2(S),

C2H , HCO, CH3O, CH , C2H5, CH2OH , CH2, C2H3, H2O2, HO2, C, C2H6, CH3,

CH2CO, HCCO, CH3OH . The 10-step reduced mechanism retains the follow-

ing 13 species (in no particular order): CH4, O2, H2O, CO2, O, CO, H2, OH , H ,

C2H2, C2H4, CH2CO, HCCOH (the inert species N2 is not considered).

It is interesting to note that only 3 QSS species (CH3 (9th), HO2 (10th) and

CH2CO (13th)) appear in the first 13 species selected using the greedy algorithm

based on the reaction mapping error (which involves reaction kinetics) as seen

in Fig.2.9. Also, in the first 10 species selected by the greedy algorithm based

on the reaction mapping error at various testing conditions listed in Table 2.2, at

most 4 QSS species are seen in each case, and overall 8 out of the 17 QSS species

appear in Table 2.2. We note that 5 out of the 8 QSS species appearing in Table

2.2 are at the edge of the 10-step cut-off limit (Fig. 5 in [52]), and as pointed

out in [52], these 5 species: CH3OH , HCCO, CH2CO, CH3 and C2H6 have ap-

proximately the same normalized time scales and are hard to distinguish, and

hence are treated as a group of QSS species. However, in the greedy algorithm

the species are treated individually and are selected based on an error criterion,

and hence some of these species could possibly be selected in the early stages of

the algorithm if they produce the lowest error.

Finally, we note that the species CH4 appears 10th in Fig. 5, [52] based on

the time scale analysis, and any safety factor of α < 30 will generate a reduced

mechanism without the CH4 species. However, as we have seen, the greedy

algorithm selects CH4 as the optimum species (producing the minimum error)

at stage 1 in all the cases reported here, and so this clearly shows that a time

scale analysis based method for selecting represented species may not work at
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low values of nrs.

In summary, we do see some similarities between the species ordering ob-

tained using the greedy algorithm with the ordering in which species are re-

moved in time scale based reduced mechanism generating methods. However,

we also note that a time scale analysis based method alone may not give “good”

represented species for RCCE dimension reduction method, especially at low

values of nrs.

2.7 Limitations and Variants of the Greedy Algorithm

Based on the results reported here, we see that the current implementation of

the greedy algorithm does not always give a near-optimal set of species, espe-

cially at high values of nrs. This may be due to one or more of the following

limitations:

1. The greedy algorithm is shortsighted in nature and never reconsiders its

choices.

2. The species in the current implementation are treated individually with-

out considering any connections (imposed by the reaction mechanism) be-

tween species and treating (strongly connected) species in groups as is

done in many reduced mechanism building methods [53, 58].

To address some of these limitations, implementation of the following variants

of the greedy algorithm are being considered for future work:

1. Selection-Rejection Strategy:
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The inherent flaw in the greedy algorithm is that choices made in the pre-

vious stages are never reconsidered. To compensate for this drawback,

we can consider a selection-rejection algorithm, in which every 3rd or 4th

stage of the algorithm, we reject the worst species from the current set of

selected species and resume the algorithm. The cost of rejection goes lin-

early with number of selected species O(nrs), and so is fairly inexpensive

and may help in improving the results.

2. Selecting Species in Groups:

The greedy algorithm selects the best species at every stage, instead a vari-

ant of this algorithm would involve selecting species in groups of 2 to

3 species. So considering the case in which we want to select two good

species at every stage, then at stage 1 we perform tests with all possible
(

ns

2

)

number of sets of species and pick the set which produces the min-

imum error; next at stage 2 we test the remaining
(

ns−2
2

)

sets of species

to pick the next two good species; and so on until the required number

of species are selected. Obviously this is an expensive algorithm since the

number of tests performed scales as O(N n3
s), but by using a fewer number

of test points, N , the computational cost can be reduced. This approach is

expected to produce a more nearly optimal set of species.

2.8 Conclusions

An automated algorithm for selecting a good set of species for the accurate im-

plementation of dimension reduction methods has been presented. The follow-

ing conclusions can be drawn from the results presented in this paper
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1. The dimension reduction errors in RCCE are highly sensitive to the choice

of constrained species; errors can differ by orders of magnitude at the same

dimension with two different sets of represented species as seen in Fig.2.9

and Fig.2.11.

2. Constraints based on the major species concentrations are not always the

best constraints for the RCCE method as is evident from the results pre-

sented in Fig.2.14 to Fig.2.18.

3. At low values of nrs ≤ 5, the greedy algorithm is successfully able to select

a near-optimal set of represented species.

4. At high values of nrs, the greedy algorithm is not guaranteed to produce

near-optimal sets of represented species (see Fig.2.18) but nevertheless is

found to produce a good set of species for the majority of cases tested (as

demonstrated in Fig.2.14 to Fig.2.17) over a wide range of testing condi-

tions.

5. In all the cases tested, the species ordering generated by the greedy algo-

rithm for nrs ≤ 10, produces a non-increasing error with every addition of

represented species.
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CHAPTER 3

COMBINED DIMENSION REDUCTION AND TABULATION STRATEGY

USING ISAT-RCCE-GALI FOR THE EFFICIENT IMPLEMENTATION OF

COMBUSTION CHEMISTRY†

3.1 Abstract

Computations of turbulent combustion flows using detailed chemistry involv-

ing a large number of species and reactions are computationally prohibitive,

even on a distributed computing system. Here, we present a new combined

dimension reduction and tabulation methodology for the efficient implemen-

tation of combustion chemistry. In this study, the dimension reduction is per-

formed using the rate controlled constrained-equilibrium (RCCE) method, and tab-

ulation of the reduced space is performed using the in situ adaptive tabulation

(ISAT) algorithm. The dimension reduction using RCCE is performed by spec-

ifying a set of represented (constrained) species, which in this study is selected

using a new greedy algorithm with local improvement (GALI) (based on the greedy

algorithm). This combined approach is found to be particularly fruitful in the

probability density function (PDF) approach, wherein the chemical composition is

represented by a large number of particles in the solution domain. In this work,

the combined approach has been tested and compared to reduced and skeletal

mechanisms using a partially-stirred reactor (PaSR) for premixed combustion

of (i) methane/air (using the 31-species GRI-Mech 1.2 detailed mechanism and

the 16-species ARM1 reduced mechanism) and (ii) ethylene/air (using the 111-

†V. Hiremath, Z. Ren, and S. B. Pope. Combined dimension reduction and tabulation strategy
using ISAT-RCCE-GALI for the efficient implementation of combustion chemistry. Combustion
and Flame, 158(11):2113-2127, 2011.
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species USC-Mech II detailed mechanism, a 38-species skeletal mechanism and

a 24-species reduced mechanism). Results are presented to quantify the relative

accuracy and efficiency of three different ways of representing the chemistry:

(i) ISAT alone (with a detailed mechanism); (ii) ISAT (with a reduced or skele-

tal mechanism); and (iii) ISAT-RCCE with represented species selected using

GALI. We show for methane/air: ISAT (with ARM1 reduced mechanism) in-

curs 6% error, while ISAT-RCCE incurs the same error using just 8 or more rep-

resented species, and less than 1% error using 11 or more represented species,

with a two-fold speedup relative to using ISAT alone with the GRI-Mech 1.2 de-

tailed mechanism. And we show for ethylene/air: ISAT incurs 7% and 3% er-

rors with the reduced and skeletal mechanisms, respectively, while ISAT-RCCE

achieves the same levels of error 7% with just 18 and 3% with just 25 represented

species, and also provides fifteen-fold speedup relative to using ISAT alone with

the USC-Mech II detailed mechanism. With fewer species to track in the CFD

code, this combined ISAT-RCCE-GALI reduction-tabulation algorithm provides

an accurate and efficient way to represent combustion chemistry.

3.2 Introduction

Modern chemical mechanisms of real fuels involve hundreds or thousands of

species and thousands of reactions [64, 100]. Incorporating such detailed chem-

istry in the combustion flow calculations is computationally prohibitive, and

thus some form of modeling to reduce the computational cost is inevitable.

In the last two decades or so, numerous dimension reduction techniques

have been developed to reduce the computational cost of combustion chemistry.
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These include:

1. Skeletal Mechanisms: A skeletal mechanism consists of a selected subset

of the species and reactions from the detailed mechanism, and is appli-

cable to within certain accuracy, over the entire range of conditions (e.g.,

pressures, temperatures, equivalence ratios) of the detailed kinetic mech-

anism. Many methods have been developed to systematically generate

skeletal mechanisms from detailed mechanisms, such as the Directed Re-

lations Graph (DRG) [53], DRG with error propagation (DRGEP) [60] and

Simulation Error Minimization Connectivity Method (SEM-CM) [58].

2. Reduced Chemical Mechanisms (based on QSSA): The quasi-steady-state

approximation (QSSA) [11, 87] has been widely applied to develop re-

duced chemical mechanisms. The QSSA method involves the identifi-

cation of QSS species in the system, whose net rate of production is as-

sumed to be zero, thereby reducing the governing differential equation

for the QSS species into an algebraic relation. These algebraic relations are

used to eliminate the QSS species from the system. Reduced mechanisms

are generally valid only over a limited range of conditions (i.e., pressures,

temperatures, equivalence ratios) compared to skeletal mechanisms.

3. Dimension Reduction Methods: Another class of dimension reduction

techniques is based on the observation that chemical systems involve

reactions with a wide range of time scales. As a consequence, reac-

tion trajectories are attracted to lower-dimensional attracting manifolds

in the composition space. Computations can be performed in a reduced

space by identifying such low-dimensional manifolds, thereby reducing

the overall computational cost. Methods based on this idea include rate-
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controlled constrained equilibrium (RCCE) [41, 40], computational singu-

lar perturbation (CSP) [44], intrinsic low-dimensional manifolds (ILDM)

[55], trajectory-generated low-dimensional manifolds (TGLDM) [72], in-

variant constrained equilibrium-edge pre-image curve (ICE-PIC) [79] and

one-dimensional slow invariant manifold (1D SIM) [7].

4. Storage Retrieval Methods: In these approaches, combustion chemistry

computations are stored in a table, and are used to build inexpensive ap-

proximate solutions at a later stage of computation to reduce the overall

cost. Methods based on this idea include the structured look-up tabula-

tion [17], repro-modelling [93], artificial neural network (ANN) [18], in

situ adaptive tabulation (ISAT) [66, 49] and piecewise reusable implemen-

tation of solution mapping (PRISM) [92].

In recent times, combined methodologies have also been developed, wherein

reduced reaction mechanisms or dimension reduction methods are used in con-

junction with storage/retrieval methods, such as ISAT-QSSA [91], ISAT-RCCE

[89], and recently ICE-PIC with ISAT [77].

In reactive flow calculations, the species concentrations are governed by two

processes: chemical reaction and transport. We consider the important class

of solution methods in which a splitting scheme is used, where the chemical

reaction and transport processes are accounted for in two separate sub-steps.

In the computational modelling of turbulent combustion using PDF methods

[65], the fluid composition within the solution domain is represented by a large

number of particles. In a full-scale PDF calculation, more than 2 million parti-

cles may be used, and the solution can advance for more than 5000 time steps,

leading to approximately 1010 particle-reaction sub-steps. If such a calculation
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involves 100 species with the chemistry represented by a detailed mechanism

(without reduction or tabulation), then at each reaction sub-step, 100 coupled

ODEs need to be solved to determine the species concentrations, which can be

very expensive O(0.1) seconds and computationally prohibitive (i.e., 30 years

for 1010 reaction sub-steps). Instead a dimension reduction method (such as

RCCE or ICE-PIC) integrated with ISAT can be used to perform the reactive

flow calculations in terms of say 20 represented species; where the combined

reduction-storage methodology determines and tabulates (in situ) the reduced

space in terms of the 20 represented species based on the detailed mechanism.

This combined approach can reduce the reaction sub-step time to O(10) µs giv-

ing more than 104-fold speedup compared to a direct evaluation using ODE

integration (resulting in 30 hours for 1010 reaction sub-steps).

In our implementation of RCCE, which is integrated with ISAT [79, 89, 77,

78], a specified set of represented (constrained) species is used as constraints to

perform dimension reduction. The specification of good constraints is crucial

for the accuracy of dimension reduction, and recently we proposed a greedy al-

gorithm [31] for selecting good represented species. In this paper we introduce a

new Greedy Algorithm with Local Improvement (GALI) which can be used to gener-

ate an even better set of represented species by further reducing the dimension

reduction error obtained by the greedy algorithm at any given dimension. In

this study, we use GALI to select the represented species for performing dimen-

sion reduction with RCCE.

The combined reduction-tabulation methodologies primarily involve two

errors: (i) the tabulation error due to the use of ISAT; and (ii) the reduction er-

ror due to the use of either a reduced or skeletal mechanism or due to the use
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of fewer represented species in the dimension-reduction methods like RCCE.

The tabulation error is controlled by the specified ISAT error tolerance (ǫtol),

and the reduction error is controlled by the number of species retained in the

skeletal or reduced mechanism, and by the number of represented species used

in the dimension-reduction method. The overall computational cost of course

depends on the desired level of accuracy, and the lower the specified error tol-

erance or the larger the number of represented species, the more is the compu-

tational cost. There is a trade-off between accuracy and efficiency, and in this

study, we consider a net reduction-tabulation error (defined more precisely in

Section 3.8.3) of about 2% to be an acceptable level of accuracy. We use a low

ISAT error tolerance (ǫtol = 10−5) and select a sufficient number of represented

species with GALI to reduce the reduction-tabulation error below 2%.

The outline of the remainder of the paper is as follows: In Section 3.3 we de-

velop a mathematical representation for a gas-phase reacting system. Next, in

Section 3.4 we describe the partially-stirred reactor (PaSR) which is used for test-

ing the combined dimension reduction and tabulation approach in this study. In

the next two Sections 3.5 and 3.6 we briefly review the in situ adaptive tabulation

(ISAT) algorithm and the rate controlled constrained-equilibrium (RCCE) meth-

ods. A reader familiar with these concepts may skip these two sections. Follow-

ing this in Section 3.7, we present a brief overview of the greedy algorithm and

the details of the new GALI. Next, in Section 3.8 we describe the combined di-

mension reduction and tabulation methodology. Finally, in Sections 3.9 and 3.10

we present the results and draw conclusions.
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3.3 Representation of Chemistry

We consider a reacting gas-phase mixture consisting of ns chemical species,

composed of ne elements. The set of all species is denoted by Φ. The ther-

mochemical state of the mixture (at a given position and time) is completely

characterized by the pressure p, the mixture enthalpy h, and the ns-vector z

of specific moles of the species. (The specific moles of species i is given as

zi = Yi/wi = Xi/wmix, where Yi, Xi and wi are the mass fraction, mole frac-

tion and molecular weight of the species i, respectively, and wmix ≡
∑ns

i=1 Xiwi

is the mixture molecular weight.) To simplify the exposition, we consider an

adiabatic and isobaric system with a fixed specified pressure, p, and so the ther-

mochemical state is fully characterized by z, h.

It is useful to consider the species composition z to be an ns-vector or a point

in the ns-dimensional full composition space. With w denoting the ns-vector of

molecular weights of all the species, then, for realizability, z must satisfy the

normalization condition, wT
z = 1. (This corresponds to the species mass frac-

tions summing to unity.)

3.3.1 Reaction Trajectories

Due to chemical reactions, the chemical composition z evolves in time according

to the following set of ordinary differential equations (ODEs)

dz(t)

dt
= S(z(t)), (3.1)

where S is the ns-vector of chemical production rates determined by the chemi-

cal mechanism used to represent the chemistry.
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The reaction mapping, R(z, t) is defined to be the solution to Eqn.3.1 after

time t starting from the initial composition z. The reaction mapping obtained

by directly integrating the set of ODEs given by Eqn.3.1 is referred to as a direct

evaluation (DE). In this study, we use DDASAC [15] for direct evaluation.

3.4 Partially-Stirred Reactor (PaSR)

We are interested in studying turbulent combustion flow problems using the

LES/PDF approach. Computations of turbulent flames using the LES/PDF ap-

proach are computationally expensive. To demonstrate the working and ef-

ficiency of our combined dimension reduction and tabulation approach, we

instead consider the computationally cheaper partially-stirred reactor (PaSR),

which is a representative test case for the combustion problems of our interest.

A PaSR is similar to a particle PDF method applied to a statistically homoge-

neous flow. We can vary pressure, inflowing stream temperatures and the reac-

tion time step ∆t in the PaSR to be representative of conditions in an LES/PDF

calculation.

In this study, we consider the test case of a PaSR involving premixed com-

bustion of two different fuel/air mixtures: (i) methane/air and (ii) ethylene/air.

Unless specified otherwise, the default configuration studied in the PaSR

involves two inflowing streams: a stoichiometric premixed stream of given

fuel/air mixture at 600 K; and a pilot stream consisting of the adiabatic equilib-

rium products of the stoichiometric fuel/air mixture (corresponding to unburnt

gas temperature of 600 K). The mass flow rates of these streams are in the ratio

0.95:0.05. Initially (t = 0), all particle compositions are set to be the pilot-stream
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Table 3.1: The default values of various PaSR and ISAT parameters used
for the methane/air and ethylene/air premixed combustion test
cases.

Parameter methane/air ethylene/air

φ 1 1

T 600 K 600 K

p 1 atm 1 atm

τres 10 ms 100 µs

τmix 1 ms 10 µs

τpair 1 ms 10 µs

∆t 0.033 ms 0.33 µs

Np 100 100

ǫtol 10−5 10−5

S 1 GB 1 GB

composition. The pressure is atmospheric throughout.

Other important parameters involved in the PaSR for the methane/air and

ethylene/air premixed combustion cases are listed in the Table 3.1. The param-

eters include the equivalence ratio, φ; (unburnt) temperature of the inflowing

streams, T ; pressure, p; residence time, τres; mixing time scale, τmix; pairing time

scale, τpair; reaction time step, ∆t; number of particles, Np; ISAT error tolerance,

ǫtol; and ISAT table size, S.

The residence time for methane/air and ethylene/air premixed combustion

in PaSR is chosen small enough (relative to the chemical time scale) to intro-

duce a good range of non-equilibrium temperature and species compositions in
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Figure 3.1: Scatter plot of temperature (top) retrieved from 10 selected par-
ticles over 350 time steps and PDF of temperature (bottom) in
the statistically stationary state (time steps 100 and above) in-
side PaSR involving methane/air premixed combustion with
residence time τres = 10 ms. The equilibrium temperature is
2374 K.

the PaSR. As the residence time is lowered and approaches the blow-out limit,

the PaSR calculations become more computationally intensive. We have tried

to maintain a good balance between the computational cost and the range of

chemical compositions in the PaSR to perform tests. The temperature distribu-

tions inside PaSR for the methane/air and ethylene/air premixed combustion

is shown in Fig.3.1 and Fig.3.2, respectively.

The chemical mechanisms used to represent the chemistry for the methane

and ethylene fuels are listed in Table 3.2 along with the details about the number

of elements, species and reactions involved in these mechanisms.
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Figure 3.2: Scatter plot of temperature (top) retrieved from 10 selected par-
ticles over 350 time steps and PDF of temperature (bottom) in
the statistically stationary state (time steps 100 and above) in-
side PaSR involving ethylene/air premixed combustion with
residence time τres = 100 µs. The equilibrium temperature is
2500 K.

In our implementation of PaSR, computations can be performed using the

full set of species, Φ, in the full composition space (without any dimension re-

duction) or using a smaller set of represented species, Φr, using RCCE. For a

given test case, PaSR calculations are performed with and without dimension

reduction, and the compositions obtained with the two approaches are com-

pared to estimate errors involved in dimension reduction.

In the next two sections we review the concepts of ISAT and RCCE algo-

rithms. A reader familiar with these concepts may skip the next two sections.
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Table 3.2: The details of the chemical mechanisms used for methane and
ethylene. (The mechanisms with 4 elements do not include Ar.)

Fuel Mechanism Name Elements Species Reactions

Methane Detailed GRI-Mech 1.2 [24] 4 31 175

Reduced ARM1 [88] 4 16 12-step

Ethylene Detailed USC-Mech II (Optimized in 2009) [99, 84] 5 111 784

Skeletal Skeletal [23] (with Ar added) 5 38 212

Reduced Reduced (personal communication, based on [103]) 4 24 20-step
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3.5 In Situ Adaptive Tabulation (ISAT)

3.5.1 Introduction

ISAT is a tabulation algorithm which returns accurate approximations (within

a specified error tolerance) for computationally expensive multi-dimensional

functions using (previously evaluated) tabulated function values. The ISAT

algorithm has been applied in various fields [81, 28], but in particular it has

proved to be extremely fruitful in reducing the computational cost of evaluat-

ing the reaction mapping in combustion flow problems [49].

3.5.2 Overview of the ISAT Algorithm

In this section we briefly describe the key terms involved in the ISAT algorithm

which are referred to repeatedly in the following sections.

Consider the application of the ISAT algorithm for the evaluation of reac-

tion mappings in an adiabatic isobaric reactive system with a specified constant

pressure, p, such that the thermochemical state is fully characterized by {z, h}.

In such a system, given the initial composition z(0), enthalpy h, and the reaction

time step ∆t, ISAT aims to return the reaction mapping z(∆t) within a specified

error tolerance denoted by ǫtol. The initial input composition vector given to

ISAT is generally referred to as a query, and is denoted by x. The query vector

x, for example, in this case could be of the form

x = {z(0), hs(0),∆t}, (3.2)
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where hs ≡ hs(h, z) is the sensible enthalpy which is defined as

hs = h− h
fT

z, (3.3)

where h
f denotes the ns-vector of molar enthalpies of formation of the species.

For this query vector x, ISAT returns a mapping, which is denoted by f ,

which is given by

f = {z(∆t), hs(∆t), T (∆t)}, (3.4)

where z(∆t), hs(∆t) and T (∆t) denote the composition vector, the sensible en-

thalpy and the temperature, respectively, after time step ∆t.

Given a query vector x to ISAT, a series of steps are followed in the ISAT

algorithm to determine the mapping f , which are described in detail in [66, 49].

Here we list only the important definitions, and key events involved:

1. A stored entry in the ISAT table is referred to as a leaf.

2. The region around a leaf’s value of x in which a linear approximation to

f(x) can be returned within the specified error tolerance ǫtol is called the

region of accuracy of that leaf. These regions are approximated by hyper-

ellipsoids which are referred to as ellipsoids of accuracy (EOA).

3. Given a query x, a search is performed inside the ISAT table to find an EOA

which covers the query point x.

4. If such an EOA is found, then a linear approximation to the mapping f(x)

is returned and this event is referred to as a successful retrieve.

5. If the retrieve attempt is unsuccessful, then a direct evaluation of the map-

ping f(x) is performed by integrating Eqn.3.1.
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6. After the direct evaluation, a certain number of leaves close to the query

point x are selected for grow attempts. If the exact mapping obtained by

direct evaluation is found to be within the specified error tolerance (ǫtol) of

the linear approximation obtained from one of these leaves, then the EOA

of that leaf is grown to include the query point x and this event is called a

grow.

7. If all the grow attempts fail, then a new leaf is added to the ISAT table (if

not full) and this event is referred to as an add.

8. If the table size is full, then f(x) is returned without performing an add,

and this event is referred to as a direct evaluation (DE).

In the present study, ISAT is used to tabulate the reaction mapping, R(z, t), in

the full composition space (without dimension reduction), and also to tabulate

the reaction mapping in the reduced space (defined in Section 3.8.2) when used

in conjunction with dimension reduction. In the next section we describe the

RCCE dimension reduction method and its implementation.

3.6 Dimension Reduction

In this section we briefly describe the notation used in the RCCE dimension

reduction method; detailed descriptions are provided in [79, 77, 31].

In RCCE, the set of species Φ is decomposed as Φ = {Φr,Φu}, where Φ
r is

the set of represented species with cardinality nrs, and Φ
u is the set of unrepre-

sented species with cardinality nus, where nrs + nus = ns and nrs < ns − ne.
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The reduced representation of the species composition is denoted by r ≡

{zr, zu,e}, where z
r is an nrs-vector of specific moles of represented species, Φr;

and z
u,e is an ne-vector of specific moles of the elements in the unrepresented

species, Φu (for atom conservation). Thus, r is a vector of length nr = nrs+ne in

the reduced composition space, and the dimension of the system is reduced from

ns to nr < ns. At any time t, the reduced representation, r(t), is related to the

full composition, z(t), by

r(t) = B
T
z(t), (3.5)

where B is constant ns × nr matrix which can be determined for a specified set

of represented species.

3.6.1 Steps Involved in Dimension Reduction

In this section we briefly describe the four main steps involved in our imple-

mentation of RCCE. Since our implementation of RCCE is integrated with ISAT,

some of the steps in our implementation of RCCE differ from those of other

works found in the literature: those steps are highlighted and justified.

1. The first important step in the application of the RCCE dimension reduc-

tion method is the selection of the set of represented (constrained) species,

Φ
r. For a given set of represented species, Φr, the reduced representation

is given as r ≡ {zr, zu,e}.

Alternatively, in many of the RCCE implementations [35, 36] general lin-

ear constraints on species are specified. In our implementation of RCCE,

to simplify the user interface and specification of constraints, we use the

species specific moles of the represented species as the constraints.
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2. The next step is the species reconstruction, i.e., given a reduced represen-

tation r(0) at time t = 0, reconstruct an estimate of the full composition

denoted by z
DR(0).

In RCCE the species reconstruction is performed by computing the

constrained-equilibrium composition for the given constraints. In our im-

plementation of RCCE, the constrained-equilibrium composition is com-

puted using the CEQ [69] code, with the constraints given by the reduced

representation r. The constrained-equilibrium composition at r is denoted

by z
CE(r). So the reconstructed composition in RCCE is given as

z
DR(0) = z

CE(r(0)). (3.6)

3. The next step is to obtain the reaction mapping. Starting from the recon-

structed composition, zDR(0), the set of ODEs (3.1) is integrated numeri-

cally in the full space using DDASAC [15] to obtain the reaction mapping

after time t, denoted by z
DR(t), as shown in Fig.1 in [31].

A different approach for the RCCE method as suggested in [40] and also

used in [35, 36] is to integrate the rate equations for the constraint poten-

tials which is more economical than integrating the ODEs (3.1) directly. In

our implementation of RCCE, we chose the former approach for the ease

of combining RCCE dimension reduction method with ISAT, which is dis-

cussed in more detail in [89]. It should be noted that the reaction mappings

obtained using these two approaches are not the same, and they actually

provide two different approximations to the exact reaction mapping.

4. The final step involved in the dimension reduction method is reduction,

i.e., from the obtained reaction mapping after time t, zDR(t), compute the
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reduced representation denoted by r
DR(t) (shown in Fig.1 in [31]), given as:

r
DR(t) = B

T
z
DR(t). (3.7)

To summarize, the key steps involved in the RCCE dimension reduction

method are

1. Selection: Identifying good constraints or the set of represented species,

Φ
r for dimension reduction.

2. Species Reconstruction: Given the constraints, r(0), reconstructing the

full composition, zDR(0).

3. Reaction Mapping: Starting from the reconstructed composition z
DR(0),

computing the reaction mapping after time t in the full composition space

z
DR(t).

4. Reduction: From the reaction mapping z
DR(t), obtaining the reduced repre-

sentation r
DR(t) after time t.

3.6.2 Dimension Reduction Errors

In this section we define the various errors involved in the dimension reduction

process and describe the method employed to measure these errors using the

PaSR.

Given a composition, z(0) in the full composition space, the reaction mapping,

R(z(0), t) (for t ≥ 0) is more concisely denoted by z(t) (see Fig.4 in [31]).

For a given set of represented species, Φr, the reduced representation of the full

composition, z(0) is denoted by r(0) and is obtained by performing the reduction
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using (3.5) as

r(0) = B
T
z(0). (3.8)

At r(0), the reconstructed composition using a dimension reduction method

is denoted by z
DR(0). Starting from the reconstructed composition, the reaction

mapping, R(zDR(0), t) in the full composition space is more concisely denoted

by z
DR(t) (see Fig.4 in [31]).

Now for a representative test problem, to estimate the errors incurred using

a dimension reduction method, a number of test compositions are selected in

the full space. Let the number of test composition used be denoted by N . To

generate those test compositions, we perform a PaSR computation in the full

composition space (without dimension reduction) and then pick N distinct test

compositions (corresponding to adds in the ISAT table) in the full space and

denote them by z
(n)(0), for n = 1 toN ; and their corresponding reaction mappings

after a fixed constant time t are denoted by z
(n)(t).

At the N chosen compositions, z(n)(0), in the full space, and for a given set of

represented species, Φr, we denote the corresponding reduced representations by

r
(n)(0), the reconstructed compositions by z

DR(n)(0), and the reaction mappings

by z
DR(n)(t).

Note that, given z(0) and t, zDR(t) depends on the specification of the rep-

resented species, Φr. As needed, we show this dependence explicitly by the

notation z
DR(t,Φr).

At this stage, we define the error in the reaction mapping obtained after time
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t starting from the reconstructed composition to be

ǫ(t,Φr) =
[zDR(n)(t,Φr)− z

(n)(t)]rms

[z(n)(t)]rms

, (3.9)

where the operator [ ]rms is defined by, for example,

[z(n)(t)]rms =

√

√

√

√ 1
N

N
∑

n=1

||z(n)(t)||2, (3.10)

where ||z|| denotes the 2-norm.

In particular we have two important errors in the dimension reduction

method corresponding to t = 0 and t = ∆t:

1. Species Reconstruction Error: This is the error in reconstructing the full

composition given a reduced composition r(0) at t = 0 and is given by

Eqn.3.9 as ǫ(0,Φr).

2. Reaction Mapping Error: This is the error in the reaction mapping ob-

tained after time step ∆t (reaction time step) starting from the recon-

structed composition and is equal to ǫ(∆t,Φr).

3.7 Selection of Represented Species

In the RCCE dimension reduction method, the selection of represented species

for dimension reduction is an important task. In many of the RCCE applica-

tions, the constraints are found by a careful examination of the chemical reac-

tions involved in the system [35, 36, 27]. Ideally one would like to find the

optimal set of represented species that produces the minimum dimension reduc-

tion error, but finding such an optimal set of species is very difficult. Recently
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we proposed a new automated greedy algorithm [31] for selecting represented

species for the RCCE dimension reduction method, which showed promising

results. Based on this greedy algorithm, we have now developed a new Greedy

Algorithm with Local Improvement (GALI) which performs even better than the

original greedy algorithm proposed in [31]. In the following sections, we briefly

review the greedy algorithm and then present details about the GALI.

3.7.1 Greedy Algorithm

A greedy algorithm proceeds in stages, making the best (locally optimum)

choice at each stage while finding a solution [20]. Greedy algorithms are not

guaranteed to give the optimal solutions, but provide good solutions for many

mathematical problems.

In our greedy algorithm [31], we split the task of selecting nrs number of

represented species into nrs different stages, selecting the best available species

(one which minimizes the error) at each stage. In [31], results are reported of

RCCE dimension reduction tests using the greedy algorithm for PaSR computa-

tions involving methane/air premixed combustion at many equivalence ratios,

pressures and temperatures. The main conclusion drawn from the results pre-

sented in [31] is that the greedy algorithm works well at small values of nrs (say

≤ 5), but at higher values of nrs, the greedy algorithm is found to generate a

poor set of represented species in some cases.

As an attempt to further reduce the error obtained with the greedy algorithm

at high values of nrs, we have introduced an additional local improvement step to

the greedy algorithm which is described in the next section.
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3.7.2 Greedy Algorithm with Local Improvement (GALI)

We present a new method for further improving the dimension reduction er-

ror of the set of represented species obtained by the greedy algorithm. This is

achieved by performing a local improvement over the set of species selected by

the greedy algorithm at any given dimension.

In the greedy algorithm, at each stage, one new species (producing the min-

imum error) is added to the set of species selected in the previous stages. The

greedy algorithm does not allow for a species selected in the previous stages

to be “swapped” with another species producing lower error. For this reason,

a new local improvement step has been introduced in the greedy algorithm to

enable replacement of previously selected species in the greedy algorithm by

species which result in lower error. The idea behind the local improvement

step is to sequentially swap a species from the set of represented species ob-

tained from the greedy algorithm by a species from the set of unrepresented

species (one at a time) and check for improvement in error. (Only single species

swaps are considered to reduce the overall computations involved in the local

improvement step.) In the local improvement step, all possible species swaps

between the represented and the unrepresented set of species are performed to

check for improvement in error. Any species swap that results in improvement

in error is saved, and at the end of the local improvement step a new improved

set of species (with an error less than or equal to the error given by the greedy

algorithm) is generated.

The complete algorithm of first applying the greedy algorithm and later

improving the set of represented species by performing local improvement is

called the Greedy Algorithm with Local Improvement (GALI).
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The greedy algorithm is described in detail in [31]. Here we present the algo-

rithm for the local improvement step. In the greedy algorithm a fixed number

of test points, N = NG, are used to compute the error. The local improvement

step described here can be applied using a fewer number of test points, N = NL,

such that NL < NG, to reduce the computational cost. To explicitly specify the

number of test points used for computing the error, here we use the notation

ǫ (N, t,Φr) to denote the error (Eqn.3.9) computed using N test points. For a

given definition of error – species reconstruction with t = 0 or reaction map-

ping error with t = ∆t – we denote the error more concisely as ǫ (N,Φr).

Following the notation used in [31], the local improvement step at a given

value of nrs can be performed as follows:

1. Apply the greedy algorithm based on the given definition of error,

ǫ (NG,Φ
r), and obtain the set of nrs represented species denoted by Φ

g.

2. Let the set of represented species at any stage of the local improvement

algorithm be denoted by Φ
r. Initially, Φr = Φ

g. At any stage the set of

undetermined unrepresented species is denoted by Φ
uu (Φr).

3. Let the set of species obtained at the end of the local improvement step be

denoted by Φ
gi. Initially, we set Φgi = Φ

g (assuming no improvement).

4. Let Φr
jk denote the set of species obtained by swapping the jth species from

Φ
r with the kth species from Φ

uu (Φr).

5. We use NL test points inside the local improvement step to compute error.

The local improvement step involves the following loop:

for j from 1 to cardinality of Φr

for k from 1 to cardinality of Φuu (Φr)
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∗ form the set Φr
jk and evaluate ǫ

(

NL,Φ
r
jk

)

∗ if ǫ
(

NL,Φ
r
jk

)

< ǫ (NL,Φ
r) then reset Φr = Φ

r
jk

end for

end for

6. If Φr 6= Φ
gi, then save the set of species, Φgi = Φ

r, and rerun the previous

local improvement loop (5), else continue.

7. Check if Φgi generates lower error than Φ
g over the NG test points used in

the greedy algorithm. If ǫ (NG,Φ
gi) < ǫ (NG,Φ

g), then save Φ
gi else reset

Φ
gi = Φ

g.

In the above algorithm, the local improvement loop (steps 5 and 6) is guar-

anteed to terminate because of the strictly non-increasing error check being em-

ployed. In all the cases tested, the local improvement loop has never been exe-

cuted for more than three times. If needed, an upper bound can also be set on

the maximum number of times the local improvement loop can be executed.

At the end of the local improvement step, we obtain an improved set of

species with an error less than or equal to the error obtained by the greedy

algorithm.

3.7.3 Computational Cost

The computational cost of the greedy algorithm and the local improvement step

directly depends on the number of computations involved in the evaluation of

errors. For a fixed value of nrs, the number of computations involved are
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• greedy algorithm: O(nrsnsNG); and

• local improvement: O (nrs(ns − nrs)NLM),

where M is the average number of local improvement loops executed.

More quantitative results for the computational cost of the greedy algorithm

and local improvement are presented in the next section.

3.7.4 Comparison of Results

In this section we present results comparing dimension reduction error obtained

by the greedy algorithm and the improvements achieved by the local improve-

ment step.

We consider the PaSR with methane/air premixed combustion and study

two cases for which the greedy algorithm does not yield very good results (as

presented in [31]):

1. φ = 1.2, T = 1200 K and p = 1 atm;

2. φ = 0.8, T = 1200 K and p = 1 atm,

where φ is the equivalence ratio, T is the temperature of the inflowing premixed

stream and p is the pressure inside the PaSR.

For the above two cases we first apply the greedy algorithm for nrs = 1 to 15

and obtain the represented species ordering. Next, we apply the local improve-

ment step (as described in the previous section) over the species set obtained

from the greedy algorithm for nrs = 3 to 15. We skip nrs = 1 which is already the
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Figure 3.3: Reaction mapping error for methane/air premixed combustion
at φ = 1.2, T = 1200K and p = 1 atm as a function of number
of represented species, nrs, obtained with (i) Greedy algorithm
(using NG = 2500 test points) and (ii) GALI (using NL = 200
test points for local improvement). At each value of nrs, the
error achieved after each local improvement loop in the GALI
algorithm is marked with a solid circle and the number of suc-
cessful swaps (resulting in reduction in error) performed in
that loop are indicated in parenthesis. The test points are se-
lected from a PaSR run involving methane/air premixed com-
bustion at φ = 1.2, T = 1200K and p = 1 atm with chemistry
represented by the 31-species GRI-Mech 1.2 detailed mecha-
nism.

optimal, and nrs = 2 where the local improvement is not expected to give any

further improvement.

The dimension reduction error for case (1) φ = 1.2, T = 1200 K and p = 1 atm

is shown in Fig.3.3 and for case (2) φ = 0.8, T = 1200 K and p = 1 atm is shown

in Fig.3.4. In these figures, we see that the local improvement step reduces the

error at many values of nrs. In case (2), the greedy algorithm already performs
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Figure 3.4: Reaction mapping error for methane/air premixed combustion
at φ = 0.8, T = 1200K and p = 1 atm as a function of number
of represented species, nrs, obtained with (i) Greedy algorithm
(using NG = 2500 test points) and (ii) GALI (using NL = 200
test points for local improvement). At each value of nrs, the
error achieved after each local improvement loop in the GALI
algorithm is marked with a solid circle and the number of suc-
cessful swaps (resulting in reduction in error) performed in
that loop are indicated in parenthesis. The test points are se-
lected from a PaSR run involving methane/air premixed com-
bustion at φ = 0.8, T = 1200K and p = 1 atm with chemistry
represented by the 31-species GRI-Mech 1.2 detailed mecha-
nism.

quiet well (error is less than 10−4 for nrs > 12), so in Fig.3.4 we do not see

significant improvement with the local improvement step, however in case (1),

the greedy algorithm performs poorly (error remains constant at about 10−2 for

nrs > 4), and so in Fig.3.3 we see more than an order of magnitude reduction

in error for nrs > 10. In the figures, at each value of nrs, the reduction in error

achieved at the end of each local improvement loop is marked. We see that at

any nrs value, no more than three loops of local improvement are executed.
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Figure 3.5: The CPU time spent in selecting represented species based on
the reaction mapping error (i) using the greedy algorithm (with
NG = 2500 test points); (ii) performing local improvement
(with NL = 200 test points); and (iii) using complete GALI at
different values of nrs. The test points are selected from a PaSR
run involving methane/air premixed combustion at φ = 1.2,
T = 1200K and p = 1 atm with chemistry represented by the
31-species GRI-Mech 1.2 detailed mechanism. The CPU time
is measured by running a serial implementation of the greedy
algorithm on a 2.2 GHz Quad-Core AMD Opteron(tm) Proces-
sor.

The total CPU time taken for the greedy, local improvement and the overall

GALI for case (1) is shown in Fig.3.5. (The CPU times for case (2) are similar and

hence are not shown.) We see that the greedy algorithm takes approximately

20 minutes per species selection. The local improvement takes approximately

the same order of time as the greedy algorithm at all the values of nrs. The

combined cost of the GALI is therefore approximately twice the cost (40 minutes

per species selection) of the greedy algorithm, but the cost is still linear in the

number of represented species nrs.
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Note that here the cost of GALI has been computed for all the values of nrs,

and the CPU time taken at nrs = 26 is about 20 hours. However,

• for sufficient accuracy, nrs = 15 is adequate, and the CPU time for GALI at

nrs = 15 is around 10 hours;

• GALI needs to be applied only once (for one set of conditions and a spec-

ified value of nrs) and the same set of species is likely to be good in other

conditions [31]. (In [31] we have already shown that species selected at

one condition work well at other conditions, and with the addition of the

local improvement step, the combined GALI may work well over a wider

range of conditions.); and

• the cost of GALI is small compared to the savings achieved when applied

to LES/PDF which require 104-105 CPU hours.

In short, the local improvement step can be used to reduce errors in cases

where the greedy algorithm alone may not yield very good results.

3.8 Combined Dimension Reduction and Tabulation

In the previous two sections we described the tabulation algorithm using ISAT

and dimension reduction using RCCE. Both the methodologies are very good

in reducing the computational cost of combustion chemistry in their own per-

spectives, but when combined they can reduce the cost even further.
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3.8.1 Introduction

The ISAT algorithm has been successfully applied in combustion chemistry

problems involving up to ns ≤ 50 species. For problems in higher dimensions,

i.e. problems involving more than 50 species, the direct use of ISAT may not be

very efficient, due to the large table size and search times. Similarly, dimension

reduction can be used to represent the chemistry using a reduced number of

species, thereby reducing the cost of tracking species in a CFD code. But, if a

tabulation algorithm is not used in conjunction, the dimension reduction alone

cannot be very efficient due to the expensive species reconstruction and reaction

mapping involved in the algorithm (as described in Section 3.6) for computing

the reduced mapping. Our task is to integrate these two successful method-

ologies - tabulation and dimension reduction - to extract the maximum out of

both and make the combined algorithm accurate and efficient for combustion

chemistry problems.

In this combined strategy of dimension reduction and tabulation, we first

apply the dimension reduction method using RCCE by specifying a set of rep-

resented species (selected using the GALI algorithm) and then we tabulate the

reduced space using ISAT. This combined methodology can be applied to chem-

ical systems involving a large number of species (100 to 1000) by first apply-

ing the dimension reduction to reduce the dimensionality of the system to say

around 20 (depending on the level of accuracy needed) and then using the ISAT

to tabulate the reaction mapping in the reduced space. (For very large mecha-

nisms involving more than 1000 species, it may be more appropriate to use the

ISAT-RCCE-GALI approach on a smaller skeletal mechanism, which of course

will be less accurate but may be computationally more feasible.) Since the tabu-
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lation is done over the reduced space in a lower dimension, retrieving from the

ISAT table is very efficient. However, since the reaction mapping is computed

in the full space, constructing the ISAT table may be relatively costly. Neverthe-

less, for problems such as LES/PDF computation requiring very many queries,

the overall efficiency may be significantly improved.

3.8.2 Combined Reduction-Tabulation Algorithm

A simplified schematic of the combined dimension-reduction and tabulation al-

gorithm is shown in Fig.3.6. The first step (pre-processing) in this combined

reduction-tabulation approach is the specification of the represented species

for dimension reduction. Given the number of constrained species nrs, or a

dimension-reduction error tolerance ǫDR,tol, we apply GALI (using a represen-

tative PaSR configuration) to obtain the specified number of represented species

or enough number of represented species such that the dimension-reduction er-

ror (Eqn.3.9) is less than the specified error tolerance. Given the represented

species, the reduced representation is defined as r ≡ {zr, zu,e}.

In an isobaric adiabatic system with a specified fixed pressure, p, the chem-

istry is represented using this combined approach by the reduced set of vari-

ables, {r, h}. So, the only variables that need to be stored and carried (for

example by the particles in a PDF simulation) are the reduced variables, r

and h. Given the initial reduced composition r(0), the mapping after time

step ∆t is given (as described in Section 3.6.1 and shown in Fig.3.6) by first

performing species reconstruction to obtain z
DR(0), followed by computing

the reaction mapping z
DR(∆t) and then performing the reduction to retrieve
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Figure 3.6: Schematic of the combined dimension-reduction and tabula-
tion algorithm. The pre-processing step involves the selection
of represented species using GALI with a representative PaSR
test problem for a specified number of represented species, nrs,
or a specified dimension-reduction error tolerance, ǫDR,tol. The
choice of represented species is encapsulated in the specifica-
tion of the ns × nr matrix B, which relates the reduced compo-
sition r to the full composition z by r = B

T
z. At each reaction

fractional step, ISAT is invoked to retrieve the reduced map-
ping r(∆t). For an unsuccessful retrieve, the reduced mapping
is obtained using RCCE by performing species reconstruction
(using CEQ [69]), followed by computing the reaction mapping
with the detailed mechanism (using DDASAC [15]), followed
by reduction to obtain r(∆t).
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r(∆t) ≡ r
DR(∆t). Computing the exact mapping with dimension reduction is

even more expensive than computing the reaction mapping in the full compo-

sition space (i.e., getting z(∆t) from z(0)) due to the additional species recon-

struction and reduction steps involved. So dimension reduction alone is not

very efficient, except for the fact that the total number of variables that need to

carried in the CFD code is reduced, and so fewer scalar equations need to be

solved in the CFD code.

The dimension reduction when integrated with ISAT becomes much more

efficient. In addition to performing dimension reduction, the reduced map-

pings, r(∆t) are tabulated using ISAT. In this case, the query vector to ISAT

is given as

x = {r(0), hn
s (0),∆t}, (3.11)

where hn
s ≡ hn

s (h, r) is the nominal sensible enthalpy defined only in terms of

the reduced variables r, for example, as

hn
s ≡ h− h

f,rT
z
r, (3.12)

where h
f,r denotes the nrs-vector of molar enthalpies of formation of the repre-

sented species.

The mapping obtained from ISAT is given as

f = {r(∆t), hn
s (∆t), T a(∆t)}, (3.13)

where T a(∆t) denotes an approximated temperature after time step ∆t. (In

Fig.3.6, instead of x and f we only show r(0) and r(∆t) for brevity.) Since with

dimension reduction the composition of only the represented species is stored

in the ISAT table, the thermodynamic variables like temperature and density
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need to be approximated using the reduced representation, which is explained

in more detail in Appendix A.

In the combined approach shown in Fig.3.6, the exact mapping is computed

only when a grow or add is performed in ISAT. For a successful retrieve, the re-

duced mapping is returned directly using the stored information in ISAT. Since

the size of the query vector x and the mapping vector f are smaller, the ISAT

table size is also smaller, thus resulting in faster search and retrieve times.

To summarize, the combined dimension reduction and tabulation strategy

has the following advantages:

1. Fewer species need be carried and solved for in the CFD code – a signifi-

cant reduction in computational cost.

2. The ISAT table size is relatively smaller, leading to faster search and query

time.

3.8.3 Reduction-Tabulation Error

In this study, we compare the accuracy and performance of the following three

methodologies for representing chemistry:

1. ISAT: using ISAT directly to tabulate chemistry with a detailed chemical

mechanism (without any dimension reduction)

2. ISAT+SKELETAL/REDUCED: using ISAT to tabulate chemistry with a

skeletal or reduced chemical mechanism
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3. ISAT+RCCE: using the combined ISAT-RCCE reduction-tabulation algo-

rithm with represented species selected using GALI

The primary quantity of interest is the accuracy of the reaction mapping ob-

tained using these three different methodologies. We compute the error in-

volved in these three methods by considering the error in the reaction mapping

obtained using these methods relative to a direct evaluation using ODE inte-

gration with the detailed mechanism. The reaction mappings obtained using an

ODE integrator (we use DDASAC [15] in this work) typically involve very small

errors (relative to these methods) and hence can be deemed accurate. We refer

to the error involved in these methods as the reduction-tabulation error, which

for a direct use of ISAT with a detailed mechanism reduces to simply tabulation

error (as there is no reduction involved).

We measure the reduction-tabulation error using the PaSR test setup. We

first perform PaSR calculations in the full composition space (without dimen-

sion reduction) using the detailed mechanism and store particle compositions

and their reaction mappings computed using direct evaluation (with DDASAC)

after each reaction sub-step. Let the stored initial particle composition be de-

noted by z
(n)(0) and its mapping (after time step ∆t) by z

(n)(∆t) for n = 1 toN ,

where N denotes the total number of stored compositions and their reaction

mappings. We also store the initial enthalpy h(n)(0), and initial temperature

T (n)(0) (corresponding to z
(n)(0)), which are needed for computing the reaction

mapping in the aforementioned reduction-tabulation methodologies.

Using these stored compositions, the reduction-tabulation error is computed

by considering the error in the reaction mapping obtained using one of the three

aforementioned methods. At the stored compositions, we first obtain the com-
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Figure 3.7: The various compositions involved in the computation of
reduction-tabulation error. z(0) denotes an initial composition
in the full space. z(∆t) and zISAT (∆t) denote the reaction map-
pings obtained with direct evaluation (using DDASAC) and
ISAT, respectively in the full composition space using the de-
tailed mechanism. The composition of the represented species
at z(0) is denoted by z

r(0) and at z(∆t) by z
r(∆t). The reduced

mapping obtained using the reduction-tabulation algorithm is
denoted by z

r
RT (∆t).

position of the represented species used under the considered method. We de-

note (see Fig.3.7) the reduced representation corresponding to z
(n)(0) by z

r,(n)(0)

and that corresponding to z
(n)(∆t) by z

r,(n)(∆t). The reaction mapping starting

from z
r,(n)(0) obtained by the considered reduction-tabulation (RT) method is

denoted by z
r,(n)
RT (∆t).
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The reduction-tabulation error, denoted by ǫRT , is then given as

ǫRT =
[zr(∆t)− z

r
RT (∆t)]rms

[zr(∆t)− zr(0)]rms

, (3.14)

where the operator [ ]rms is defined previously in Eqn.3.10.

In particular, for the three aforementioned methods, the involved reduced

compositions are given as follows:

1. ISAT: since no reduction is involved in this case, we have

z
r(0) ≡ z(0), z

r(∆t) ≡ z(∆t) and z
r
RT (∆t) ≡ zISAT (∆t), (3.15)

where zISAT (∆t) denotes the reaction mapping obtained from ISAT (see

Fig.3.7). The error computed for this case is referred to as the tabulation

error.

2. ISAT+SKELETAL/REDUCED: in this case, we need to obtain the composi-

tion of the species involved in the skeletal or reduced mechanism from the

stored full compositions, z(t). Let zs(t) ≡ z
s(z(t)) denote the concentration

of species in the skeletal mechanism obtained from the full composition,

z(t), then we define

z
r(t) ≡ z

s(t)/(wsT
z
s(t)), (3.16)

where w
s denotes molecular weights of the species in the skeletal mecha-

nism, and z
s(t) is normalized to satisfy the realizability condition, wsT

z
s =

1. The reaction mapping, zrRT (∆t), is computed (using the skeletal mecha-

nism) starting from z
r(0) with the same initial temperature as z(0).

3. ISAT+RCCE: in this case, for the given set of represented species selected

using GALI, the reduced representation is simply the concentration of

the represented species denoted by z
r. The reaction mapping z

r
RT (∆t) is
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obtained using the combined reduction-tabulation algorithm with ISAT-

RCCE (see Fig.3.7).

As mentioned earlier, we consider a net reduction-tabulation error of about

2% (1% tabulation and 1% reduction) to be acceptable. In this study, we use an

ISAT error tolerance of ǫtol = 10−5, which gives a tabulation error of less than

1% for both methane/air and ethylene/air premixed combustion in the PaSR.

We vary the number of represented species, nrs, in the RCCE method to achieve

a combined reduction-tabulation error of less than 2%.

3.9 Results

In this section we present results for the partially-stirred reactor (PaSR) involv-

ing premixed combustion of (i) a methane/air mixture and (ii) an ethylene/air

mixture with PaSR settings as listed in Table 3.1 and chemistry represented by

the chemical mechanisms listed in Table 3.2.

We employ the previously mentioned three methods to represent chemistry

- (i) ISAT with a detailed mechanism; (ii) ISAT with a skeletal or reduced mech-

anism; and (iii) ISAT+RCCE - and compare the reduction-tabulation errors in-

volved in these methods.

We also compare the performance of ISAT under these various methods. To

gauge the performance of ISAT under a particular method, we perform a long

duration PaSR run involving over 109 queries and gather ISAT CPU time statis-

tics. We then compute and analyze the following two quantities:
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• build time: This is the time taken to add to and to build the table by growing

EOAs. It is the total time less the time spent retrieving.

• query time: This is the average time taken per query after the ISAT table

has been fully built with very few adds or grows being performed in the

table.

Out of these two, the primary quantity of interest is the query time, which

determines the speed of chemistry implementation i.e., the average time per

reaction sub-step per particle.

3.9.1 Methane Premixed Combustion

In this section we present results for the methane/air premixed combus-

tion. The PaSR computations involving premixed combustion of stoichiometric

methane/air mixture are performed as described in Section 3.4. The chemistry

is represented using the GRI Mech 1.2 detailed and the ARM1 reduced mecha-

nisms (details given in Table 3.2).

Represented Species

To select represent species for representing the chemistry with the combined

ISAT-RCCE reduction-tabulation algorithm, we apply GALI on the detailed GRI

Mech 1.2 mechanism based on the reaction mapping error. The error achieved

using the greedy algorithm with NG = 2500 test points and further improve-

ment in error using the local improvement with NL = 200 test points is shown

in Fig.3.8. We note that for nrs ≤ 17, the species reconstruction error obtained by
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Figure 3.8: Reaction mapping error for methane/air premixed combustion
as a function of number of represented species, nrs, obtained
with (i) Greedy algorithm (using NG = 2500 test points) and (ii)
GALI (using NL = 200 test points for local improvement). The
test points are selected from a PaSR run involving methane/air
premixed combustion with chemistry represented by the 31-
species GRI-Mech 1.2 detailed mechanism.

the greedy algorithm decreases exponentially with nrs, and has a value of about

10−3% at nrs = 17. We also note that for nrs ≤ 20, GALI gives only marginal (less

than 1%) improvement in error over the greedy algorithm at some dimensions,

but at higher dimensions (nrs > 20) we see more than an order of magnitude

reduction in error. At any given reduced dimension, nrs, we use the species

selected with GALI to perform dimension reduction with RCCE. The sets of

represented species obtained using GALI for nrs = 1 to 15 are listed in Table 3.3.

104



Table 3.3: Sets of represented species obtained using GALI (with 31-
species GRI-Mech 1.2 mechanism) for dimension reduction of
methane/air premixed combustion with RCCE for nrs = 1 to 15.

nrs Represented Species

1 CH4

2 CH4, CO2

3 CH4, CO2, H2

4 CH4, CO2, H2, O2

5 CH4, CO2, H2, O2, H

6 CH4, CO2, H2, O2, H, OH

7 CH4, CO2, H2, O2, H, OH, O

8 CH4, CO2, H2, O2, H, OH, O, CH2O

9 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3

10 CH4, CO2, H2, O2, H, OH, O, CH2O, C2H6, C2H4

11 CH4, CO2, H2, O2, H, OH, O, H2O, CH3, HO2, CO

12 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3, HO2, CO, H2O

13 CH4, CO2, H2, O2, H, OH, O, CH3OH, CH3, HO2, CO, H2O, CH2CO

14 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3, HO2, CO, H2O, CH2CO, C2H5

15 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3, HO2, CO, H2O, CH2CO, C2H5, CH2

Reduction-Tabulation Error

The errors incurred for the methane/air premixed combustion with chemistry

represented using the three described methods are shown in Fig.3.9. We see that

ISAT alone with the detailed mechanism incurs about 0.1% tabulation error and

ISAT with the ARM1 reduced mechanism incurs around 6% error. However,

with the ISAT-RCCE methodology
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• for nrs < 10, the error is mainly dominated by the RCCE dimension-

reduction error, which decreases exponentially (similar to Fig.3.8) with an

increase in the number of represented species, nrs, by about a factor of 10

for every 5 represented species added. (The magnitude of error in Fig.3.8

and Fig.3.9 are different because they are different measures of error.);

• the error is less than ISAT+REDUCED (ARM1 mechanism) with just 8 or

more represented species;

• the error is less than 1% with 11 or more represented species; and

• for nrs ≥ 14, the error (dominantly tabulation) is comparable to ISAT

alone, and hence cannot be reduced further by increasing nrs.

ISAT Performance

The ISAT query time for PaSR involving methane/air premixed combustion us-

ing different methods is shown in Fig.3.10. The ISAT+RCCE method is used

with 11 and 15 represented species (which correspond to less than 1% reduction-

tabulation errors, see Fig.3.9). We see that the combined reduction-tabulation

algorithm provides almost twice the speedup as ISAT alone, with a query time

of around 4 to 5 µs, compared to 9 µs using ISAT with the detailed mecha-

nism. The ISAT+REDUCED query time of 5 µs is comparable to ISAT+RCCE.

The ISAT build time (estimated by the y-intercepts of dashed-lines) is about the

same (≈ 0.6 hours) for all the methods. We also notice that ISAT+RCCE with

fewer represented species yields lower query time and overall runtime because

the total number of tabulated variables is reduced, and so the ISAT table size is

reduced, leading to faster retrieve times.
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Figure 3.9: Error incurred using (i) ISAT alone (with detailed mecha-
nism); (ii) ISAT+REDUCED (with the ARM1 reduced mech-
anism); and (iii) ISAT+RCCE (using nrs represented species)
with chemistry represented by the detailed mechanism. The er-
ror is computed by considering 105 compositions and their re-
action mappings (computed using ODE integration) obtained
from a PaSR run involving methane/air premixed combustion
with chemistry represented using the 31-species GRI-Mech 1.2
detailed mechanism.
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Figure 3.10: ISAT query time for a PaSR run (with over 109 queries) in-
volving methane/air premixed combustion using (i) ISAT
(with detailed mechanism); (ii) ISAT+REDUCED (with the
ARM1 reduced mechanism); and (iii) ISAT+RCCE with nrs

represented species and chemistry represented by the detailed
mechanism. The y-intercept of linear extrapolation (dashed-
line) gives an estimate of the ISAT build time for each case.
The CPU time is computed by performing (serial) runs on the
TACC Ranger cluster.

108



Table 3.4: ISAT statistics for the methane/air premixed combustion in
PaSR

method nrs queries retrieves grows adds direct evals CPU time

(×109) (percentage) (×104) (×104) (hours)

ISAT 31 1.021 99.99 9.554 4.350 0 3.26

ISAT+REDUCED 16 1.021 99.99 10.034 4.251 0 2.03

ISAT+RCCE 11 1.021 99.99 8.265 1.892 0 1.86

ISAT+RCCE 15 1.021 99.99 8.091 1.836 0 2.03
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The complete ISAT statistics for the various methods shown in Fig.3.10 are

listed in Table 3.4. We see that in all the methods 99.99% of the queries result

in retrieves, which shows the efficient use of ISAT tabulation. We also note

that the number of queries resulting in adds in ISAT+RCCE is less than half of

that in ISAT and ISAT+REDUCED methods, which as a consequence results in

relatively smaller table size and lower query time for ISAT+RCCE method.

3.9.2 Ethylene Premixed Combustion

In this section we present results for the ethylene/air premixed combustion.

The PaSR computations involving premixed combustion of stoichiometric ethy-

lene/air mixture are performed as described in Section 3.4. The chemistry is

represented using USC-Mech II detailed, skeletal and reduced mechanisms (de-

tails given in Table 3.2).

Represented Species

To select represented species for ethylene combustion, the greedy algorithm is

applied on the USC-Mech II detailed mechanism. The reaction mapping error

obtained using the greedy algorithm for nrs ≤ 32 with NG = 5000 test points is

shown in Fig.3.11. We see that the error decreases exponentially. In the same

plot, we also show the error obtained by applying the additional local improve-

ment step using GALI over the initial few values of nrs ≤ 11, and we see no

improvement in error except at nrs = 3. Since the GALI algorithm gets expen-

sive at higher dimensions, and we may not get significant improvement in error,

so we use the species obtained using the greedy algorithm to perform dimen-
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Figure 3.11: Reaction mapping error for ethylene/air premixed combus-
tion as a function of number of represented species, nrs, ob-
tained with (i) Greedy algorithm (using NG = 5000 test points)
and (ii) GALI (at some initial values of nrs using NL = 500 test
points for local improvement). The test points are selected
from a PaSR run involving ethylene/air premixed combus-
tion with chemistry represented by the 111-species USC-Mech
II detailed mechanism.

sion reduction using RCCE for ethylene combustion. The represented species

obtained with the greedy algorithm for nrs ≤ 32 are listed in Table 3.5.

Reduction-Tabulation Error

The errors incurred for the ethylene/air premixed combustion using different

methods are shown in Fig.3.12. We see that ISAT alone with the detailed mech-

anism results in slightly less than 1% tabulation error; ISAT with the skele-

tal mechanism results in slightly over 3% error; and ISAT with the reduced
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Table 3.5: Represented species selected using the greedy algorithm (with
111-species USC-Mech II mechanism) for dimension reduction
of ethylene/air premixed combustion using RCCE for nrs = 1 to
32.

Represented Species

C2H4, O2, CO2, H2O, OH, H, CH2O, HO2, O, H2, CH4, C2H2, C2H6, H2O2, C2H3,

CH2CO, C3H8, HCCO, CH2, CH3, CO, CH2CHO, C3H6, HCO, C2H5, C4H2, C4H6,

CH3O, C2H, HCCOH, CH, aC3H5

mechanism results is slightly over 7% error. However, the combined reduction-

tabulation methodology using ISAT+RCCE incurs error

• less than ISAT+REDUCED with just 18 or more represented species; and

• less than ISAT+SKELETAL with just 25 or more represented species; and

• less than 2% error with 31 or more represented species,

which shows that the combined reduction-tabulation approach shows good

error control even with relatively large mechanisms involving more than 100

species.

ISAT Performance

The query time computed for PaSR involving ethylene/air premixed combus-

tion is shown in Fig.3.13. Here the ISAT+RCCE is tested with 21, 25 and 32

represented species (which correspond to about 5%, 3% and 1% reduction-

tabulation errors respectively, see Fig.3.12). We see that ISAT-RCCE provides

more than fifteen-fold speedup, with a query time of around 24 µs compared

to 400 µs using ISAT alone with the detailed mechanism. The query times for
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Figure 3.12: Error incurred using (i) ISAT alone (with detailed mecha-
nism); (ii) ISAT+SKELETAL (using ISAT with skeletal mecha-
nism); (iii) ISAT+REDUCED (using ISAT with reduced mech-
anism); and (iv) ISAT+RCCE (using nrs represented species)
with chemistry represented by the detailed mechanism. The
error is computed by considering 105 compositions and their
reaction mappings (computed using ODE integration) ob-
tained from a PaSR run involving ethylene/air premixed
combustion with chemistry represented using the 111-species
USC-Mech II detailed mechanism.

ISAT+RCCE are comparable to ISAT+SKELETAL/REDUCED query times. In

this case, the build times for ISAT+RCCE (around 20 hours) are significantly

higher than for ISAT+SKELETAL/REDUCED (about 3 hours), owing to the

expensive adds performed in ISAT+RCCE in the initial stages which involve

species reconstruction and evaluation of reaction mapping based on the detailed

mechanism (as described in Section 3.6.1). However, when applied to LES/PDF

computations which require O(105) CPU hours, the build time for ISAT+RCCE

is still insignificant; and typically for such large runs, the ISAT table can be built
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Figure 3.13: ISAT query time for a PaSR run (of maximum 48 hours
with over 109 queries) involving ethylene/air premixed
combustion using (i) ISAT (with detailed mechanism); (ii)
ISAT+SKELETAL (using ISAT with skeletal mechanism); (iii)
ISAT+REDUCED (using ISAT with reduced mechanism); and
(iv) ISAT+RCCE with nrs represented species and chemistry
represented by the detailed mechanism. The y-intercept of
linear extrapolation (dashed-line) gives an estimate of the
ISAT build time for each case. The CPU time is computed
by performing (serial) runs on the TACC Ranger cluster.

once, saved and reused for later computations.

In this case with ISAT-RCCE (unlike for the methane/air premixed combus-

tion in Fig.3.10) we notice that:

1. the query time does not consistently decrease as the number of repre-

sented species is reduced; and

2. the overall runtime increases as the number of represented species is re-

114



duced.

This is presumably because the ISAT tables in the ISAT-RCCE cases have not

have been fully built yet due to the large build time of around 20 hours. The es-

timates for the query time for such a short run may not be very accurate. As the

number of represented species is reduced, we should expect to see a reduction

in the query time (and thus the overall runtime) for longer runs involving 1011

to 1012 queries.

The full ISAT statistics for the various runs shown in Fig.3.13 are listed in Ta-

ble 3.6. We again see that in all the methods more than 99.4% of the queries re-

sult in retrieves showing the high efficiency of ISAT tabulation. In this case, ow-

ing to the large number of species present in the detailed (111-species) and skele-

tal (38-species) mechanisms, the ISAT table size (1 GB) gets filled up quickly in

the ISAT and ISAT+SKELETAL methods, resulting in direct evaluation (DE) of

the unresolved queries using the expensive ODE integration. For ISAT alone

and ISAT+SKELETAL methods, more than 1.4 and 0.1 million queries result

in DEs, respectively. Here again, we note that ISAT+RCCE results in rela-

tively fewer adds compared to the combined adds + DEs in ISAT alone and

ISAT+SKELETAL/REDUCED methods.
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Table 3.6: ISAT statistics for the ethylene/air premixed combustion in
PaSR

method nrs queries retrieves grows adds direct evals CPU time

(×109) (percentage) (×105) (×104) (×106) (hours)

ISAT 111 0.304 99.49 1.447 0.498 1.392 47.12

ISAT+SKELETAL 38 1.052 99.94 5.070 3.692 0.125 10.25

ISAT+REDUCED 24 1.052 99.95 4.565 7.658 0 6.64

ISAT+RCCE 21 1.052 99.97 2.927 3.010 0 27.65

ISAT+RCCE 25 1.052 99.97 3.005 2.806 0 26.53

ISAT+RCCE 32 1.052 99.97 2.675 2.559 0 25.07
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3.10 Conclusions

Based on the results presented here, we can draw the following conclusions:

• The reduction-tabulation error results show that the combined ISAT-

RCCE-GALI algorithm can achieve errors comparable to ISAT alone (in

this case for ǫtol = 10−5) using a relatively small number of represented

species: 14 out of 31 species for the methane/air premixed case (see

Fig.3.9) and 32 out of 111 species for the ethylene/air premixed combus-

tion (see Fig.3.12).

• The ISAT-RCCE-GALI algorithm is also seen to achieve reduction-

tabulation errors lower than ISAT with skeletal or reduced mechanisms

with relatively fewer number of represented species. In methane/air pre-

mixed combustion, ISAT+REDUCED (16-species ARM1) error is achieved

with ISAT-RCCE with just 8 or more represented species (see Fig.3.9); and

in ethylene/air premixed combustion, ISAT-REDUCED (24-species) and

ISAT-SKELETAL (38-species) errors are achieved with ISAT-RCCE with

just 18 and 25 represented species, respectively (see Fig.3.12).

• The ISAT-RCCE-GALI algorithm is also computationally efficient result-

ing in a query time of around 4 µs (two-fold speedup) for the methane/air

premixed combustion using 11 to 15 represented species compared to 9

µs using ISAT with 31-species detailed mechanism (see Fig.3.10); and a

query time of around 24 µs (fifteen-fold speedup) for ethylene/air pre-

mixed combustion using 21 to 32 represented species compared to 400 µs

using ISAT with 111-species detailed mechanism (see Fig.3.13).

• The combined approach shows both good error control and performance.
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With fewer species to track in the CFD code, this combined ISAT-RCCE-

GALI approach provides a computationally accurate and efficient way of

representing combustion chemistry.

Here, we would also like to mention that the combined reduction-tabulation

procedure described in this work can also be used with the ICE-PIC dimension

reduction method [79, 77]. The GALI algorithm can be used to select repre-

sented species for ICE-PIC and the combined ISAT-ICE-PIC-GALI approach can

be applied for representing combustion chemistry.
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CHAPTER 4

COMPUTATIONALLY-EFFICIENT AND SCALABLE PARALLEL

IMPLEMENTATION OF CHEMISTRY IN SIMULATIONS OF

TURBULENT COMBUSTION†

4.1 Abstract

Large scale combined Large-Eddy Simulation (LES)/Probability Density Function

(PDF) parallel computations of reactive flows with detailed chemistry involving

large numbers of species and reactions are computationally expensive. Among

the various techniques used to reduce the computational cost of represent-

ing chemistry, the three approaches in widest use are: (1) mechanism reduction,

(2) dimension reduction, and (3) tabulation. In addition to these approaches, in

large scale parallel LES/PDF computations, we need strategies to distribute

the chemistry workload among the participating cores to reduce the overall

wall clock time of the computations. Here we present computationally-efficient

strategies for implementing chemistry in parallel LES/PDF computations us-

ing in situ adaptive tabulation (ISAT) and x2f mpi – a Fortran library for paral-

lel vector-valued function evaluation (used with ISAT in this context). To test

the strategies, we perform LES/PDF computations of the Sandia Flame D with

chemistry represented using a) a 16-species augmented reduced mechanism;

and b) a 38-species C1-C4 skeletal mechanism. We present three parallel strate-

gies for redistributing the chemistry workload, namely (a) PLP, purely local pro-

cessing; (b) URAN, the uniform random distribution of chemistry computations

†V. Hiremath, S. R. Lantz, H. Wang, and S. B. Pope. Computationally-efficient and scalable
parallel implementation of chemistry in simulations of turbulent combustion. Combustion and
Flame, 159(12):3096-3109, 2012.
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among all cores following an early stage of PLP; and (c) P-URAN, a Partitioned

URAN strategy that redistributes the workload only among partitions or sub-

sets of the cores. We show that among these three strategies, the P-URAN strat-

egy (i) yields the lowest wall clock time, which is within a factor of 1.5 and 1.7

of estimates for the lowest theoretically achievable wall clock time for the 16-

species and 38-species mechanisms, respectively; and (ii) for reaction, achieves

a relative weak scaling efficiency of about 85% when scaling from 2,304 to 9,216

cores and a relative strong scaling efficiency of over 60% when scaling from

1,152 to 6,144 cores.

4.2 Introduction

Computations of turbulent combustion flows using detailed chemistry involv-

ing a large number of species and reactions are computationally expensive.

Modern chemical mechanisms of real fuels involve hundreds or thousands

of species and thousands of reactions [64, 100]. Incorporating such detailed

chemistry in the combustion flow calculations is computationally prohibitive.

Among the various efforts put into reducing the computational cost of repre-

senting chemistry, the three approaches in widest use are: (1) mechanism reduc-

tion to reduce the number of species and reactions involved [53, 60, 58]; (2) di-

mension reduction to represent chemistry using a reduced number of variables

[41, 44, 55, 79]; and (3) tabulation to reduce significantly the cost of expensive

evaluations of the reaction mappings involving ODE integrations [66, 49, 92, 93].

In recent times, combined methodologies have also been developed, wherein

reduced reaction mechanisms or dimension reduction methods are used in con-

junction with tabulation [31, 32, 76, 75].
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Due to the high computational cost of turbulent combustion problems, most

of the modern day simulations are performed in parallel on multiple cores us-

ing distributed computing. Thus, in addition to the aforementioned techniques,

when performing large scale parallel LES/PDF computations, strategies are

needed to efficiently distribute the chemistry workload among the participating

cores to reduce the overall wall clock time of the computations [51, 50, 48, 86]. In

this paper we present parallel strategies for the implementation of chemistry us-

ing in situ adaptive tabulation (ISAT) [49] and x2f mpi – a Fortran 90/95 library

for parallel vector-valued function evaluation (used with ISAT in this context)

[48]. The parallel strategies are tested by performing LES/PDF simulations of

the Sandia Flame D [9].

The work here is presented mainly in the context of large scale parallel

LES/PDF computations of turbulent reactive flows, in which the ISAT algo-

rithm has proved to be particularly efficient at reducing the computational cost

by more than two to three orders of magnitude [49, 32]. However, the ISAT

algorithm has been successfully applied in many other fields like chemical en-

gineering [43], control [28], and solid mechanics [8]; and has also been imple-

mented in the commercial CFD package ANSYS Fluent [76, 75]. Hence, the par-

allel strategies presented in this work for implementing chemistry in LES/PDF

computations may have wider applications in other fields also.

The outline of the remainder of the paper is as follows: in Section 4.3 we

describe our hybrid LES/PDF solver; in Section 4.4 we describe the parallel

strategies implemented using ISAT and x2f mpi for implementing chemistry; in

Section 4.5 we describe the computational details for simulating Sandia Flame

D; in Section 4.6 we present performance results for different parallel strategies;
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and finally in Section 4.7 we state our conclusions.

4.3 Hybrid LES/PDF Solver

4.3.1 LES Solver

In this study we use an LES solver based on a Stanford LES code [62, 63]. The

LES solver solves the Eulerian transport equations for mass, momentum and

scalars using finite difference methods on structured non-uniform grids. It sup-

ports both Cartesian and cylindrical coordinate systems; is second order accu-

rate in space and time; and is parallelized (using MPI) by domain decomposi-

tion in two dimensions.

4.3.2 PDF Solver

We use the PDF solver, HPDF, developed at the Turbulence and Combustion

Research Group at Cornell [97]. The HPDF solver has second-order accuracy

in space and time; supports Cartesian and cylindrical coordinate systems; is

parallelized (using MPI) by domain decomposition in two dimensions; and has

a general interface to facilitate coupling with existing LES (or RANS) solvers. In

this work we use the “one-way” coupling in our LES/PDF solver as described

in [97], i.e., LES flow field data is used in the PDF solution, however there is

no feedback of temperature and density from the PDF to LES solution. The

LES solver uses its own assumed-PDF Flamelet model to obtain density and

temperature. However, the thermochemical statistics reported in this work are
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collected from the PDF particle data.

In HPDF, the thermochemical composition of the fluid within the solution

domain is represented by a large number of particles (see Fig.4.1). The HPDF

solver has three main components which account for:

1. transport: the motion of particles in the physical domain, including a

random-walk component to represent the effects of subgrid-scale turbu-

lent advection and molecular diffusion;

2. mixing: the change in composition of a particle due to mixing with neigh-

boring particles (which models the effects of molecular mixing); and

3. reaction: the change in composition of a particle due to chemical reaction.

These components are implemented in fractional steps using splitting schemes

[98].

In this study we use the first-order TMR splitting scheme (which is found to

perform as well as the second-order splitting scheme for jet flames [97]), which

denotes taking fractional steps of transport, T; mixing, M; and reaction, R in this

order on each time-step. The Kloeden and Platen (KP) [42] stochastic differential

equation (SDE) scheme is used to integrate the transport equations; and the mix-

ing is represented using the modified Curl [37] mixing model. In the remainder

of this section, we focus on the implementation details of the reaction fractional

step.
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Figure 4.1: LES/PDF simulation of the Sandia Flame D. Top: Instanta-
neous temperature distribution on a 2D cut-plane through the
axis of the computational domain. Dots in the plot indicate ev-
ery third grid node in the axial and radial directions. Bottom:
A 3D slice-view of the PDF particle temperature distribution
in the computational domain. Every fourth LES grid line is
shown.
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4.3.3 Chemistry Representation

We consider a reacting gas-phase mixture consisting of ns chemical species,

composed of ne elements. The thermochemical state of the mixture (at a given

position and time) is completely characterized by the pressure p, the mixture

enthalpy h, and the ns-vector z of specific moles of the species.

In our LES/PDF computations, we neglect acoustic interactions and com-

pressibility (under the “low Mach number” approximation), and assume that

the thermodynamic variables are decoupled from the small variations in pres-

sure about some fixed specified background pressure field, p = p0. Thus only p0

is coupled to the thermodynamic variables, and (given p0) the thermochemical

state is fully characterized by {z, h}. In the HPDF solver, the particles carry the

composition {z, h}.

In the reaction fractional step, a particle’s chemical composition z evolves (at

constant enthalpy h) in time according to the following set of ordinary differen-

tial equations (ODEs)

dz(t)

dt
= S(z(t)), (4.1)

where S is the ns-vector of chemical production rates determined by the chemi-

cal mechanism used to represent the chemistry.

The reaction mapping, R(z, t) is defined to be the solution to Eqn.4.1 after

time t starting from the initial composition z. The reaction mapping obtained

by directly integrating the set of ODEs given by Eqn.4.1 is referred to as a direct

evaluation (DE). We use DDASAC [15] for performing ODE integration.

Owing to the large cost of direct evaluation of reaction mappings involv-

ing large numbers of species, in situ adaptive tabulation (ISAT) is used in the
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HPDF solver to reduce the cost of chemistry calculations. In addition, we use

the x2f mpi library to distribute the chemistry workload efficiently among the

participating cores in large scale parallel LES/PDF simulations. The details of

the implementation are discussed in Section 4.4.

4.3.4 Domain Decomposition

The LES computations are performed on structured non-uniform grids in Carte-

sian or cylindrical coordinate system. We denote the grid used for LES compu-

tations by Nx×Ny×Nz (in the three principal directions). In performing paral-

lel LES/PDF computations (using the hybrid LES/HPDF solver) on Nc cores,

the computational domain is decomposed into Nc sub-domains and each core

performs the computations of one sub-domain. The domain decomposition is

done in the first two principal directions, and is denoted by Dx×Dy, where

DxDy = Nc. The domain decomposition is done such that Nx and Ny are ex-

act multiples of Dx and Dy, respectively. In addition, the domain decomposi-

tion in the LES solver is restricted by the grid size such that Dx ≤ Nx/2 and

Dy ≤ Ny/2, i.e., each slice in a given dimension must contain at least two grid

points. The HPDF solver has the capability to use its own domain decomposi-

tion independent of the LES solver, but in the current study, we use the same

domain decomposition in both the LES and HPDF solvers.
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4.3.5 Compute Cluster Architecture and Parallelization

For the sake of consistency, all the results presented in this work are obtained

on the TACC Ranger cluster. Each node on Ranger contains four AMD Opteron

Quad-Core 64-bit processors, i.e., 16 cores in all, with 32 GB of memory (2 GB

per core).

In our LES/HPDF solver, each sub-domain is assigned to one core (inde-

pendent of the cluster architecture), and the inter-core communication is imple-

mented using MPI. From the implementation point of view, the intra-node com-

munication between two cores on a single node is not treated differently from

the inter-node communication between two cores on two different nodes. This

ensures the code is highly robust and portable, properties that would be difficult

to achieve with a hybrid parallel implementation blending multithreading with

message passing [73]. Obviously, though, the actual MPI core-to-core commu-

nication time is affected by details of the cluster architecture and connectivity;

the influence of these factors will be discussed in Section 4.6.4.

4.4 Parallel Strategies for Implementing Chemistry

In performing parallel LES/PDF computations with chemistry tabulation us-

ing ISAT, each core has its own ISAT table for tabulating the chemistry. On the

reaction fractional step, the reaction mappings for all the particles in the com-

putational domain need to be evaluated. A particle whose reaction mapping

has been evaluated is called a resolved particle; and the act of resolving a particle

by successfully retrieving a linear approximation to the reaction mapping from
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an ISAT table is called a retrieve. In parallel computations, given a particle on a

core, the following ISAT operations can be invoked using x2f mpi in an attempt

to resolve the particle:

1. attempt to retrieve from the local ISAT table (also referred to as a “quick

try”);

2. if “quick try” fails, make one (or more) attempt(s) to retrieve from remote

ISAT table(s);

3. if all the retrieve attempts fail, do a direct evaluation (followed by addition

to the ISAT table) on the local core or on a remote core.

The goal is of course to resolve all the particles in the minimum possible wall

clock time by redistributing the chemistry workload among all the cores. But

this is not a trivial task because:

1. the time required to resolve a given particle is unknown ahead of time;

2. the time to resolve a particle may vary by 4 orders of magnitude, as the

retrieve time from an ISAT table is typically O(10)µs while a direct evalu-

ation may take O(105)µs (using DDASAC [15] for mechanisms involving

100 or more species);

3. furthermore, the probability of retrieving from an ISAT table depends on

the history and duration of the run.

The x2f mpi library [48] is used as an interface between the HPDF solver

(for the reaction fractional step) and the ISAT tables to redistribute the chemistry

workload (of resolving all the particles) efficiently among the participating cores

to reduce the overall wall clock time of the computations.
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A thorough discussion of the use of x2f mpi library in conjunction with ISAT

to redistribute chemistry workload is provided in [48]. Two of the strategies,

namely (i) Purely Local Processing (PLP) and (ii) Uniform Random Distribu-

tion (URAN), presented in [48], are described here in the context of LES/PDF

computations. Additionally, here we present a new strategy, Partitioned URAN

(P-URAN), which is shown to perform better than the PLP and URAN strate-

gies, and which scales well to large number of cores.

1. Purely Local Processing (PLP):

In this strategy, all the particles on a core are resolved (i.e., the reaction

mapping is evaluated) using the local ISAT table without any message

passing or load redistribution. This in some sense is the same as invoking

ISAT directly from HPDF on each core without using the x2f mpi interface.

The main advantages of this strategy are:

(a) ease of implementation;

(b) no communication cost;

(c) higher probability of retrieving particles from the local table;

and the main disadvantage is:

(a) load imbalance, especially between cores handling computation of

sub-domains in the reactive zone versus cores handling computation

of sub-domains in the coflow/air, leading to relatively high wall clock

time.

2. Uniform Random Distribution (URAN):

This strategy aims at achieving statistically ideal load balancing by

evenly distributing the chemistry workload among all the participating
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cores. The strategy involves one initial HPDF step of PLP to initialize the

local ISAT tables. In the subsequent steps, on each core, a “quick try” is

first made to attempt to resolve particles by retrieving from the local ISAT

table; following this, there is a uniform random distribution of all the unre-

solved particles to all the cores. This strategy thus ensures that every core

receives (approximately) the same number of particles to resolve, with a

similar distribution of particles from the reactive and non-reactive zones

of the computational domain.

The main advantage of this strategy is:

(a) close to ideal load balancing, after the initial “quick try” lookup;

and the disadvantages are:

(a) relatively costly all-to-all communication;

(b) lower probability of retrieving particles (due to the random distribu-

tion of unresolved particles over all the cores);

(c) poor scaling (to large number of cores) due to all-to-all communica-

tion.

3. Partitioned Uniform Random Distribution (P-URAN):

This is a new strategy which is a combination of the previous two, PLP

and URAN, strategies. This strategy works in two stages: in stage 1 (for

a specified duration of time) the PLP strategy is used to resolve particles

on all cores at each time step; then in stage 2 (for the remainder of the

time steps), the participating cores are partitioned into smaller groups, and

within each partition the URAN strategy is used to uniformly distribute

the chemistry workload among the cores in that partition.
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The advantages of this strategy are:

(a) relatively higher probability of retrieving from the local tables due to

the initial PLP stage;

(b) reduced communication cost compared to URAN (communication

restricted to within smaller partitions);

(c) good load balancing within partitions;

(d) good scaling to large number of cores;

and some of the disadvantages are:

(a) load imbalance among different partitions;

(b) the need to determine additional parameters: (i) duration of the PLP

stage; and (ii) size of the partitions.

To specify the parameters used in the P-URAN strategy, in the remainder

of the text we use the notation: P-URAN[τ , κ], where τ denotes the time

(in hours) spent in the PLP stage (in addition to the first initialization time

step); and κ denotes the size of the partitions, i.e., partitions of κ cores are

formed from the overall Nc cores used in the computations (which means

that the number of partitions used is Nc/κ).

Since the dominant load imbalance is caused in the radial direction in the

simulation of jet flames, in this study we choose κ to be a multiple of the

domain decomposition in the radial direction, Dy, and form partitions in

the axial direction by grouping together the domains in the radial direction

as shown in the schematic Fig.4.2 for applying P-URAN[τ , κ = 8] strategy

with Nc = 64, Dx = 16, Dy = 4. (As discussed later in Section 4.6.4, it
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Figure 4.2: A schematic showing LES/HPDF domain decomposition of
16×4 for Nc = 64 cores (indicated by cores ranked from 0 to
63), and formation of partitions of size κ = 8 (indicated by thick
lines) for applying the P-URAN[τ , κ = 8] strategy.

is also desirable to have Dy and κ to be exact multiples of the number of

cores per node on the compute cluster (for example 16 on Ranger)).

In addition to the PLP and URAN strategies, in [48] two more strategies are

presented: (i) the preferential distribution (PREF) strategy; and (ii) an “on the

fly” adaptive distribution strategy, which blends PLP, URAN and PREF. In [48],

the PREF and adaptive strategies are tested using the Partially-Stirred Reactor

(PaSR) using up to 64 cores, and are found to perform better than the PLP and

URAN strategies. However, in the current study, we do not find the PREF and

adaptive strategies performing any better than the PLP or URAN strategy when
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applied to the LES/PDF simulation of the Sandia Flame D using more than 1,000

cores, presumably due to one or more of the following reasons:

1. LES/PDF simulation of the Sandia Flame D exhibits significantly more

load imbalance (among the jet, pilot and coflow regimes) compared to the

PaSR setup used in [48], and so efficient redistribution of chemistry work-

load is harder for Sandia Flame D;

2. the PREF and adaptive strategies involve significantly more MPI commu-

nication than other strategies, and the communication may not scale well

to a large number of cores (more than 1,000) used in the current study.

We are still investigating these reasons, but nonetheless, the new P-URAN strat-

egy presented here is shown to perform within a factor of 1.5 to 1.7 of estimates

for the best that can be achieved (in terms of simulation wall clock time); and

scales well up to 9,216 cores.

4.5 LES/PDF Simulation of Sandia Flame D

To test the chemistry implementation we perform LES/PDF simulations of the

Sandia Flame D.

4.5.1 Sandia Flame D

The Sandia Flame D is a piloted CH4/Air jet flame operating at a jet Reynolds

number, Re = 22,400. All the details about this flame and the burner geometry
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can be found at [9]. Here we mention only some of the important aspects of this

flame.

The jet fluid consists of 25% CH4 and 75% air by volume. The jet flows

in at 49.6 m/s velocity at 294K temperature and 0.993 atm pressure. The jet

diameter, D = 7.2 mm. The pilot is a lean (equivalence ratio, Φ = 0.77) mixture

of C2H2, H2, air, CO2, and N2 with the same nominal enthalpy and equilibrium

composition as that of CH4/Air at this equivalence ratio. The pilot velocity is

11.4 m/s. The coflow is air flowing in at 0.9 m/s at 291K and 0.993 atm.

4.5.2 Computational Details

We perform LES/PDF simulation of the Sandia Flame D using the coupled

LES/HPDF solver. The simulation is performed in a cylindrical coordinate sys-

tem. A computational domain (see Fig.4.1) of 80D×30D×2π is used in the axial,

radial and azimuthal directions, respectively. A non-uniform structured grid

of size 192×192×96 (in the axial, radial and azimuthal directions, respectively)

is used for the LES solver. In the HPDF solver (for the base case), the number

of particles per LES cell (Npc) used is Npc = 40. With a total of 192×192×96 ≈

3.5 × 106 LES cells, an overall 140 × 106 particles are used in the computational

domain.

To represent the chemistry we consider two different mechanisms:

1. 16-species augmented reduced mechanism (ARM1) [88]; and

2. 38-species C1-C4 skeletal mechanism [23]. (This mechanism is devel-

oped especially for ethylene combustion, but is also applicable to methane
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flames.)

In this study, we are not interested in comparing the accuracy of representing

chemistry using these two mechanisms, but are only interested in studying the

parallel performance of chemistry implementation using these two mechanisms

involving different numbers of species.

A fixed ISAT error tolerance, ǫtol = 10−4 (which yields less than 3% tabula-

tion error for both the mechanisms), is used in this study. In addition, we spec-

ify a maximum allowed ISAT table size, S, per core. In the simulations, when

an ISAT table on a core becomes completely filled, then subsequent unresolved

queries on that core are resolved using direct evaluation. We typically specify

a maximum ISAT table size of S ≤ 1 GB because for tables of size over 1 GB,

the search and add times in ISAT become large and are sometimes comparable

to direct evaluation time. For the 16-species mechanism we specify a maximum

ISAT table size of S = 600 MB per core; and for the 38-species mechanism we

specify S = 1, 000 MB per core. In simulations with the 16-species mechanism,

none of the tables become filled over the duration of the runs covered in this re-

port, however with the 38-species mechanism some tables (near the flame front

with the PLP or P-URAN strategy) reach the maximum specified size limit. (For

mechanisms involving over 40 species, we typically use a dimension reduction

method like the rate-controlled constrained-equilibrium (RCCE) [41, 32] to re-

duce the number of tabulated variables to 20-30, thereby reducing the ISAT table

size [30]).
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4.6 Results

The LES/PDF simulation tests are performed in three phases (more computa-

tional details are given in the later sections):

• Phase 1: Base Case.

In this phase we perform an LES/PDF simulation of the Sandia Flame

D to obtain a statistically-stationary flame.

• Phase 2: Comparison of Parallel Strategies.

In this phase, starting from the statistically-stationary base case, we

compare the performance of various parallel strategies implemented us-

ing x2f mpi.

• Phase 3: Scaling Studies.

In this phase we perform weak and strong scaling studies with differ-

ent x2f mpi strategies using up to 9,216 cores.

All the simulations are performed on the Texas Advanced Computing Cen-

ter (TACC) Ranger cluster.

4.6.1 Base Case

We perform separate LES/PDF simulations of the Sandia Flame D with chem-

istry represented using the 16-species and 38-species mechanisms on 1,024

cores (using 64x16 domain decomposition) until a statistically-stationary state

is reached.

136



200
400
600
800

1000
1200
1400
1600
1800
2000

〈T
〉

(K
)

x/D = 15

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

〈Y
C
H

4
〉

×10
−1

0.0

0.5

1.0

1.5

2.0

2.5

〈Y
O

2
〉

×10
−1

0.0
0.2
0.4
0.6
0.8
1.0
1.2

〈Y
C
O

2
〉

×10
−1

0 1 2 3 4

r/D

0.0
0.5
1.0
1.5
2.0
2.5
3.0

〈Y
O
H
〉

×10
−3

x/D = 30

×10
−1

×10
−1

×10
−1

0 1 2 3 4 5 6

r/D

×10
−3

x/D = 45

Exp. Data

PDF/ISAT

×10
−1

×10
−1

×10
−1

0 1 2 3 4 5 6 7 8

r/D

×10
−3

Figure 4.3: Radial profiles of time-averaged density-weighted mean tem-
perature T , and mass fraction of species CH4, O2, CO2, OH at
axial locations x/D = 15, 30, 45 obtained from experimental
data and an LES/PDF simulation using the 38-species mecha-
nism.

After reaching the statistically-stationary state, for the simulation using the

38-species mechanism, we collect statistics for thermochemical quantities from

the PDF particle data time-averaged over 10,000 time steps (which corresponds

to about three flow through times based on the jet inlet velocity). Fig.4.3 and

Fig.4.4 show comparisons of radial profiles of azimuthally-averaged and time-

averaged density-weighted mean and standard-deviation statistics with the ex-

perimentally measured statistics [9] at axial locations x/D = 15, 30, 45. A
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Figure 4.4: Radial profiles of time-averaged density-weighted standard
deviation of temperature T , and mass fraction of species CH4,
O2, CO2, OH at axial locations x/D = 15, 30, 45 obtained from
experimental data and an LES/PDF simulation using the 38-
species mechanism.

good qualitative agreement between the simulated and experimentally mea-

sured statistics is observed, which is adequate for the current study as the main

focus is on the efficient parallel implementation of chemistry. There have been

many previous studies of the Sandia Flame D using PDF and LES based meth-

ods [101, 74, 85, 57, 59]. A slightly better prediction for the peak value of the

mean temperature at x/D = 15 is obtained in [101, 74], however overall a simi-

lar level of agreement for species mass fractions is observed in these studies.
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4.6.2 Comparison of Parallel Strategies

Starting from the respective base cases for the 16-species and 38-species mech-

anisms, we employ the PLP, URAN and P-URAN parallel strategies, and com-

pare the overall wall clock time for running a fixed number of simulation time

steps on 1,024 cores. To test P-URAN, we consider the P-URAN[0.2h,32] strat-

egy for the 16-species mechanism, and the P-URAN[0.1h,32] strategy for the

38-species mechanism. P-URAN sensitivity results to changes in the time spent

in the PLP stage (τ ) and the partition size (κ) are presented in the next section.

For the 16-species and 38-species mechanisms we perform Nt = 2, 000 and

Nt = 1, 000 simulation time steps, respectively. (We perform fewer simulation

time steps with the 38-species mechanism due to relatively expensive chemistry

and limited availability of compute hours on the TACC Ranger cluster.) The

timing results using different strategies are shown in Fig.4.5 and Fig.4.6 using

bar charts for the 16-species and 38-species mechanisms, respectively. The bars

show the breakdown of time spent in LES, HPDF (outside reaction) and Reac-

tion (including x2f mpi communication time, if any). Also shown is the Waiting

time, which is indicative of the load imbalance caused by reaction, with a lower

bound of zero indicating perfect reaction load balancing, and an upper bound

equal to the Reaction time for the extreme case where the complete reaction

load is concentrated on a single core at each time step. The method used to

compute these wall clock time statistics is explained in Appendix B. In these

figures, for comparison, we also show the wall clock time for the case where

the chemistry in the LES/HPDF simulation is represented using a single scalar

(mixture-fraction) based flamelet implementation (without using ISAT). Addi-

tionally we show two estimates of the best wall clock time that can be achieved
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Figure 4.5: LES/PDF simulation of Sandia Flame D with the 16-species
mechanism on Nc = 1, 024 cores. Wall clock time for 2,000
time steps along with breakdown of time spent in LES, HPDF
(outside reaction), Reaction (including x2f mpi communication)
and Waiting (average idle time) using different parallel strate-
gies. From bottom to top: (1) Flamelet - using mixture-fraction
based flamelet representation of chemistry; (2) Estimate (only
retrieves) - estimate based on performing only local retrieves
using pre-built ISAT tables; (3) Estimate (No Commun.) - esti-
mate based on perfect load balancing with no communication
cost; (4) P-URAN[0.2h, 32]; (5) PLP and (6) URAN.

using ISAT/x2f mpi if (i) all the cores have pre-built ISAT tables, and all the par-

ticles can be resolved by retrieving reaction mappings from the local tables; and

(ii) the communication cost is zero, and the chemistry workload, allowing for

a typical fraction of direct evaluations in addition to retrieves, is perfectly bal-

anced among all the cores. The method used to make the best wall clock time

estimates is explained in Appendix C.

A summary of relative wall clock times required for simulating the Sandia
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Figure 4.6: LES/PDF simulation of Sandia Flame D with the 38-species
mechanism on Nc = 1, 024 cores. Wall clock time for 1,000
time steps along with breakdown of time spent in LES, HPDF
(outside reaction), Reaction (including x2f mpi communication)
and Waiting (average idle time) using different parallel strate-
gies. From bottom to top: (1) Flamelet - using mixture-fraction
based flamelet representation of chemistry; (2) Estimate (only
retrieves) - estimate based on performing only local retrieves
using pre-built ISAT tables; (3) Estimate (No Commun.) - esti-
mate based on perfect load balancing with no communication
cost; (4) P-URAN[0.1h, 32]; (5) PLP and (6) URAN.

Flame D with the chemistry represented using different methods is given in

Table 4.1.

Based on these results, we can draw the following conclusions:

1. for both the mechanisms, the waiting time, which is indicative of the ex-

tent of the load imbalance, is maximum for PLP, minimum for URAN (due

to near-ideal load balancing), and moderate for P-URAN (mainly due to
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Table 4.1: Summary of relative overall wall clock times required for simu-
lating the Sandia Flame D (based on results presented in Fig.4.5
and Fig.4.6) using different methods for representing chemistry.

Method Chemistry Wall Clock Time

(species, ns) (rel. to LES/Flamelet) (rel. to LES/HPDF/Flamelet)

LES/Flamelet 1 1 0.3

LES/HPDF/Flamelet 1 3.2 1

LES/HPDF/PLP 16 11.9 3.7

LES/HPDF/URAN 16 12.6 3.9

LES/HPDF/P-URAN 16 8.6 2.7

LES/HPDF/PLP 38 33.9 10.6

LES/HPDF/URAN 38 19.5 6.1

LES/HPDF/P-URAN 38 17.3 5.4

load imbalance across partitions);

2. in the P-URAN strategy, for the 16-species and 38-species mechanisms re-

spectively, more than 40% and 60% of the overall wall clock time is spent

on reaction, confirming that reaction is the most expensive part of these

computations;

3. the P-URAN strategy yields the lowest wall clock time for both the mech-

anisms: more than 25% less than PLP or URAN for the 16-species mecha-

nism; and about 10% and 50% less than URAN and PLP, respectively for

the 38-species mechanism;

4. the wall clock time with P-URAN is within a factor of 1.5 and 1.7 of the best

wall clock time estimates (based on no communication) for the 16-species

and 38-species mechanisms, respectively;

142



5. the P-URAN strategy, compared to the simple single scalar based flamelet

representation, is more expensive by a factor of only 2.7 for 16-species and

5.4 for 38-species.

In short, we have shown that the P-URAN strategy performs much better

than the PLP and URAN strategies, and yields wall clock time within a factor

of 1.5 and 1.7 of estimates for the lowest theoretically achievable wall clock time

for the 16-species and 38-species mechanisms, respectively.

Here we have compared the relative performance of the three strategies after

the flame has reached a statistically-stationary state, and we find that the P-

URAN strategy performs the best. A great deal of computational time can be

expended reaching the statistically-stationary state, but even during these initial

computations the P-URAN strategy is expected to perform the best. A relatively

brief time should be spent in the PLP stage (in P-URAN) during these initial

computations, because the chemistry in the domain is evolving quickly, which

reduces the chances of a local retrieve.

P-URAN: Sensitivity Tests

In the previous section we considered specific strategies P-URAN[0.2h,32] (for

the 16-species mechanism) and P-URAN[0.1h,32] (for the 38-species mecha-

nism) for testing P-URAN. Here we perform sensitivity studies to see how P-

URAN performs with changes in the time spent in the PLP stage (τ ) and the

partition size (κ).

By definition, the P-URAN strategy has the following limits in which it re-

duces to the PLP or URAN strategy:
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• P-URAN[τ = ∞,κ] = PLP

• P-URAN[τ ,κ = 1] = PLP

• P-URAN[τ = 0,κ = Nc] = URAN

In our tests with the P-URAN strategy, we typically use a value of τ less

than 0.5 hours, and choose a partition size, κ, which is a multiple of the domain

decomposition in the radial (or lateral) direction, Dy, and is preferably closer to
√
Nc. In the sensitivity results presented here, we show that the wall clock time

with the P-URAN strategy shows very little sensitivity to changes in the values

of τ and κ in the typical range of values that we might use in our computations,

and consistently performs better than the PLP and URAN strategies. We have

not tried to study how the P-URAN strategy approaches the aforementioned

limits for extreme values of τ and κ.

First, we fix the partition size, κ = 32, and vary the time spent in the PLP

stage, τ , from 0 to 5 hours, and compute the overall wall clock time for running

Nt = 2, 000 time steps for the 16-species mechanism. The wall clock time with

different strategies is shown in Fig.4.7 along with breakdown of time spent in

LES, HPDF (outside reaction), Reaction and Waiting in the P-URAN tests. We

see that the P-URAN strategy shows very little sensitivity to changes in the time

spent in the PLP stage, and the lowest wall clock time is achieved near τ = 0.3h.

The overall wall clock time for the simulation increases by only about 1 hour as

the time spent in the PLP stage is increased from 0 to 5 hours. And in this entire

range, P-URAN consistently performs better than PLP and URAN strategies.

The reason for this can be understood by studying the breakdown of wall clock

time for the P-URAN tests presented in Fig.4.7. We see that as more time is spent

in the PLP stage, the Waiting time increases due to the initial load imbalance in
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Figure 4.7: P-URAN sensitivity tests with the 16-species mechanism. Top:
wall clock time for 2,000 time steps with (i) PLP; (ii) URAN;
and (iii) P-URAN[τ , 32] with time τ spent in PLP varied from 0
to 5 hours. Bottom: breakdown of wall clock time spent in LES,
HPDF (outside reaction), Reaction (including x2f mpi commu-
nication) and Waiting (average idle time) in the P-URAN tests.
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Figure 4.8: P-URAN sensitivity tests with the 16-species mechanism. Top:
wall clock time for 2,000 time steps with (i) PLP; (ii) URAN; and
(iii) P-URAN[0.2h, κ], with the partition size, κ = 16, 32, 64.
Bottom: breakdown of wall clock time spent in LES, HPDF
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and Waiting (average idle time) in the P-URAN tests.
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the PLP stage. However, a longer time spent in PLP in stage 1 increases the

chances of retrieving from the local ISAT tables in stage 2, and so reduces the

Reaction time in the stage 2 of P-URAN, thereby yielding approximately the

same overall wall clock time for the simulation. The relatively slow approach of

the P-URAN wall clock time towards the PLP time also shows that the stage 2 in

P-URAN significantly reduces the overall wall clock time relative to using only

PLP for the entire simulation. The P-URAN strategy with more time spent in the

PLP stage is expected to show better relative performance for longer simulations

due to increased chances of local retrieves. In these tests, out of the 2,000 time

steps, the number of steps completed in the PLP stage with τ = 0.5, 1, 3 and 5

hours is 112, 246, 977 and 1,665 respectively. In general when performing 24-

hour simulations using the P-URAN strategy, the data suggests using a value of

τ between 0.5 to 1 hour, which corresponds to performing about 100-200 time

steps (i.e., resolving O(107) particles per core) in the PLP stage.

Next, we fix the time spent in the PLP stage, τ = 0.2h and change the parti-

tion size, κ, to 16, 32 and 64. The results are shown in Fig.4.8. Here again, the

P-URAN strategy shows very little sensitivity to changes in the partition size.

This again is because of a balance achieved between the communication cost

and load imbalance. As seen in the breakdown of the wall clock time for the

P-URAN tests presented in Fig.4.8, smaller partitions reduce the communica-

tion cost, but increase the load imbalance between partitions and thus increase

the Waiting time. On the other hand, bigger partitions achieve better load bal-

ance and reduce the Waiting time, but result in more communication cost and

thus increase the Reaction time. For this reason, we suggest using a partition

size close to
√
Nc to strike a balance between the communication cost and load

imbalance.
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Table 4.2: Computational details of the weak-scaling tests performed for
the 16-species and 38-species mechanisms using the URAN and
P-URAN strategies.

Strategies Strategies

Nc Dx×Dy Npc (16-species mech.) (38-species mech.)

2,304 48×48 30 URAN, P-URAN[0.2h, 48] URAN, P-URAN[0.1h, 48]

4,608 96×48 60 URAN, P-URAN[0.2h, 48] URAN, P-URAN[0.1h, 48]

6,144 96×64 80 URAN, P-URAN[0.2h, 64] URAN, P-URAN[0.1h, 64]

9,216 96×96 120 URAN, P-URAN[0.2h, 96] URAN, P-URAN[0.1h, 96]

Sensitivity studies with the 38-species mechanism yielded similar results,

and hence are not presented here for conciseness.

4.6.3 Parallel Scalability

To assess the parallel scalability of our combined LES/HPDF solver to large

numbers of cores, in the next two subsections we study the weak and strong

scaling of our solver.

Weak Scaling

The weak scaling study determines how the computational time varies with

number of cores for a fixed workload per core. Accordingly, the overall problem

size is increased in proportion to the number of cores to measure the scalability

of the solver. Here the weak scaling tests consist of increasing the number of
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particles per cell (Npc) in proportion to the number of cores.

We perform weak scaling tests with the URAN and P-URAN strategies. Typ-

ically we use 30-50 particles per cell (Npc) in LES/PDF computations. We start

the weak scaling tests from 2,304 cores with Npc = 30 and go up to 9,216 cores

with Npc = 120. (We do not start the weak scaling tests from around 1,000 cores

to avoid an unrealistically large value of Npc at 9,216 cores.) The details of the

tests performed for the 16-species and 38-species mechanisms are provided in

Table 4.2. In each case, we perform an LES/PDF simulation for Nt = 1, 000

time steps. The wall clock time per time step (averaged over 1,000 time steps)

along with breakdown of time spent in LES, HPDF (outside reaction), Reaction

and Waiting for the 16-species and 38-species mechanisms is shown in Fig.4.9

and Fig.4.10, respectively. We see that the P-URAN strategy consistently per-

forms better than URAN on all four of the core counts for both the mechanisms,

and also shows better weak-scaling up to 9,216 cores than the URAN strategy.

For the 16-species mechanism, compared to results presented in Fig.4.5, in the

weak scaling results (Fig.4.9) the P-URAN strategy does not perform signifi-

cantly better than URAN because these are relatively smaller runs (1,000 time

steps) and we expect the wall clock time with P-URAN to improve for longer

runs due to increased probability of local retrieves and reduced communication

cost. In Fig.4.10, we notice that the Reaction time with the P-URAN strategy

is not monotonic, and the wall clock time slightly reduces when moving from

4,608 to 6,144 cores. This could simply be due to load variations on the compute

cluster. As mentioned in Appendix B, we typically observe a 5% variation in the

computed wall clock times on repeated runs of our solver.

In order to quantify the weak scaling behavior more accurately, we define the
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Figure 4.9: Weak scaling tests using the URAN and P-URAN strategies
with the 16-species mechanism (test details provided in Table
4.2) for Nt = 1, 000 time steps. Top: weak scaling - wall clock
time per time step spent in LES, HPDF (outside reaction), Reac-
tion and Overall. Bottom: breakdown of wall clock time spent
in LES, HPDF (outside reaction), Reaction (including x2f mpi
communication) and Waiting (average idle time).
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Figure 4.10: Weak scaling tests using the URAN and P-URAN strategies
with the 38-species mechanism (test details provided in Ta-
ble 4.2) for Nt = 1, 000 time steps. Top: weak scaling - wall
clock time per time step spent in LES, HPDF (outside reac-
tion), Reaction and Overall. Bottom: breakdown of wall clock
time spent in LES, HPDF (outside reaction), Reaction (includ-
ing x2f mpi communication) and Waiting (average idle time).
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weak scaling efficiency at Nc cores relative to a base case at Nb cores, denoted by

EW (Nc|Nb), as

EW (Nc|Nb) =
T (Nb)

T (Nc)
, (4.2)

where T (Nb) and T (Nc) denote the wall clock time using Nb and Nc cores, re-

spectively. Here we take the base case to be Nb = 2, 304 cores. The relative weak

scaling efficiency overall and of reaction for the 16-species and 38-species mech-

anisms using the URAN and P-URAN strategies is shown in Fig.4.11. We see

that

1. at higher core counts the relative weak scaling efficiency with P-URAN is

better than URAN by 5 to 10%;

2. with P-URAN the relative weak scaling efficiency of reaction at 9,216 cores

is close to 85% for both the mechanisms, and over 90% overall.

Strong Scaling

The strong scaling study determines how the computational time varies with

number of cores for a fixed overall problem size. For ideal strong scalability, the

time to solution for the LES/PDF solver would decrease in inverse proportion

to the number of cores employed (so-called linear speedup).

We perform strong scaling studies with just the P-URAN strategy on 1,152

to 9,216 cores. In these strong scaling tests, we use a fixed number of particles

per cell, Npc = 40, and increase the number of cores to see how different parts of

the code scale. We perform Nt = 2, 000 and Nt = 1, 000 time steps with the 16-

species and 38-species mechanisms, respectively. The computational details of

the tests performed are listed in Table 4.3. Here to determine the strong scaling,
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Table 4.3: Computational details of the strong-scaling tests performed for
the 16-species and 38-species mechanisms using the P-URAN
strategy.

Strategies Strategies

Nc Dx×Dy Npc (16-species mech.) (38-species mech.)

1,152 96×12 40 P-URAN[0.2h, 36] P-URAN[0.1h, 36]

2,304 96×24 40 P-URAN[0.2h, 48] P-URAN[0.1h, 48]

4,608 96×48 40 P-URAN[0.2h, 48] P-URAN[0.1h, 48]

6,144 96×64 40 P-URAN[0.2h, 64] P-URAN[0.1h, 64]

9,216 96×96 40 P-URAN[0.2h, 96] P-URAN[0.1h, 96]

we estimate the wall clock time per time step for each core count using two

methods:

1. by computing the average wall clock time per time step over the first

Nt×Nc/9216 time steps; this corresponds to the same average number of

particles evaluated per core for each core count;

2. by computing the average wall clock time per time step over the complete

Nt time steps; this corresponds to same overall workload independent of

core count.

Among these, the first estimate gives a more accurate measure of strong scaling

for the reaction due to approximately same number of particles evaluated per

core. The wall clock time per time step using the above two estimates (along

with breakdown of time spent in LES, HPDF (outside reaction), Reaction and

Waiting) for the 16-species and 38-species mechanisms is shown in Fig.4.12 and

Fig.4.13, respectively.
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Figure 4.12: Strong scaling tests using the P-URAN strategy with the 16-
species mechanism (test details provided in Table 4.3) for
Nt = 2, 000 time steps. Top: strong scaling - wall clock time
per time step spent in LES, HPDF (outside reaction), Reac-
tion and Overall. solid symbols, average over Nt×Nc/9216
time steps; hollow symbols, average over Nt time steps. Bot-
tom: breakdown of wall clock time spent in LES, HPDF (out-
side reaction), Reaction (including x2f mpi communication)
and Waiting (average idle time) for Nt time steps.
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Figure 4.13: Strong scaling tests using the P-URAN strategy with the 38-
species mechanism (test details provided in Table 4.3) for
Nt = 1, 000 time steps. Top: strong scaling - wall clock time
per time step spent in LES, HPDF (outside reaction), Reac-
tion and Overall. solid symbols, average over Nt×Nc/9216
time steps; hollow symbols, average over Nt time steps. Bot-
tom: breakdown of wall clock time spent in LES, HPDF (out-
side reaction), Reaction (including x2f mpi communication)
and Waiting (average idle time) for Nt time steps.
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In these results, we observe the following:

1. The LES solver does not show much, if any, parallel speedup in this range

of cores. (The Stanford LES code is found not to scale well beyond 500 to

1,000 cores.) However, even on 9,216 cores, the LES time represents just

10% of the total time, and so this is not a critical issue in these tests.

2. The HPDF solver shows some parallel speedup on up to 4,608 cores, but

flattens out beyond that.

3. The reaction part shows a monotonically decaying wall clock time on up

to 9,216 cores for both the mechanisms. Superficially, the data appear to fit

a power law, but the behavior could equally well be explained by a model

such as Amdahl’s Law.

4. Beyond 4,608 cores, the wall clock time of the parts of the code that do not

scale well starts becoming comparable to the reaction time, and hence the

overall speedup begins to deteriorate.

Similar to the relative weak scaling efficiency (Eqn.4.2), in order to quantify

the strong scaling behavior more accurately, we define the strong scaling effi-

ciency at Nc cores relative to a base case at Nb cores, denoted by ES(Nc|Nb), as

ES(Nc|Nb) =
Nb

Nc

×
(

T (Nb)

T (Nc)

)

, (4.3)

where in this case we take the base case to be Nb = 1, 152 cores. We measure the

relative strong scaling efficiency up to 9,216 cores, individually for LES, HPDF

(outside reaction), Reaction and Overall. The relative strong scaling efficiency

(with respect to the base case at Nb = 1, 152 cores) for the 16-species and 38-

species mechanisms is shown in Fig.4.14.

In these strong scaling results we notice:
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tion), Reaction and Overall using the P-URAN strategy. Top:
with the 16-species mechanism for a simulation of Nt = 2, 000
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1. at Nc = 9, 216 cores, the relative strong scaling efficiency of reaction for the

16-species mechanism is about 50% and for the 38-species mechanism is

close to 60%. However, up to Nc = 6, 144 cores, the relative strong scaling

efficiency of reaction stays above 60% for both the mechanisms;

2. the LES and HPDF parts show poor scaling, with respective relative strong

scaling efficiencies dropping below 30% and 40% beyond Nc = 6, 144 cores

for both the mechanisms;

3. the overall relative strong scaling efficiency drops below 50% and 60%

beyond Nc = 6, 144 cores for the 16-species and 38-species mechanisms,

respectively.

In short, these results show that the overall scaling still needs significant

improvement, especially in the LES and HPDF parts. However, the reaction

part alone with the P-URAN strategy shows acceptable strong scaling up to

6,144 cores.

Below we list a couple of possible reasons for not being able to achieve bet-

ter strong scaling for reaction with the current implementation of the P-URAN

strategy, and some ideas for improvement:

1. One possible reason for not achieving perfect scaling could be the increase

in the partition size (κ) used in the P-URAN strategy with the increase

in cores, Nc. As the partition size increases, the communication cost in-

creases, thereby worsening the scaling. Under the current partitioning

scheme (described in Fig.4.2), we choose the partition size, κ, to be an

exact multiple of the domain decomposition in the radial direction, Dy,

to achieve good load balance. So, at larger number of cores like Nc =
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9,216 with a domain decomposition of 96×96, we are forced to use a min-

imum partition size of κ = 96. For example, under the current partition-

ing scheme, if we use κ = Dy/2 = 48 for the 96×96 domain decompo-

sition, then this leads to a significant load imbalance between the parti-

tions involving the first 48 cores (handling the chemically reactive sub-

domains), and those involving the last 48 cores (handling the coflow/air

sub-domains) in the radial direction. One possible way to avoid this load

imbalance is to use κ = 48, but group every alternating ranked core in

the radial direction into one partition, i.e. for every Dy cores in the ra-

dial direction, group all the even ranked cores in one partition, and the

remaining odd ranked cores in another partition. This way we achieve

good load balancing with smaller partition size and reduced communica-

tion cost. This new partitioning scheme can similarly be extended to any

partition size κ = Dy/m, where m is some positive integer, by grouping

every mth ranked core into one partition. However, both the current and

the new suggested partitioning schemes use the a priori knowledge about

the direction of load imbalance (which in the simulation of turbulent re-

acting jet flows is the radial direction) to form the partitions. Ideally, one

would like to have an adaptive partitioning strategy to form the partitions

“on the fly” without using any a priori knowledge about the computational

problem being studied, and we are currently working on developing such

an adaptive strategy which might help improve the scaling.

2. Another possible reason for not achieving perfect scaling could be the use

of one ISAT table per core and MPI alone for communication and paral-

lelization. As the number of cores increase, the use of one ISAT table per

core leads to significant duplication of reaction mapping evaluation and
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addition of similar particle compositions to ISAT tables on multiple cores.

One possible way to reduce the duplication of work and data is to use one

ISAT table per processor shared by all the cores (4 to 16) on that processor.

In addition, hybrid MPI/OpenMP or Graphics Processing Unit (GPU) im-

plementation can be used to achieve better scaling. It would involve enor-

mous work for us to incorporate these ideas in our current implementation

of the LES/PDF solver, but it could be considered in future applications of

ISAT for other problems.

4.6.4 Generality of the Results

To conclude this section, we discuss the generality of the conclusions drawn

from this work. In particular, we consider the sensitivity of our results to

changes in the combustion problem being simulated and to changes in the com-

pute cluster architecture.

In this study the results are based on the simulation of a relatively simple

turbulent jet flame, the Sandia Flame D. However, we expect the conclusions

drawn from this work to be valid over a wider range of combustion problems of

interest. For instance, for the simulation of Sandia Flames E and F, which exhibit

significantly more local extinction than Flame D and are computationally more

expensive, we expect the P-URAN strategy to again yield the lowest wall clock

time. Relative to Flame D, the Flames E and F are expected to exhibit greater

load-imbalance between regions of flame front and coflow due to stronger tur-

bulent chemistry interactions, and as a result the PLP strategy should perform

poorly. The P-URAN strategy (with a partitioning scheme similar to the one
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used in this study) should perform better than the PLP and URAN strategies,

especially at large numbers of cores. Even for the simulation of turbulent flames

with different geometry, the P-URAN strategy with an appropriate partitioning

scheme is expected to perform better than the PLP and URAN strategies as it is

able to strike a good balance between the communication cost and load imbal-

ance.

In this study, all the simulations are performed on the TACC Ranger cluster.

Due to the generality of the MPI implementation in our solver, we expect the

results presented here to be relatively insensitive to changes in the cluster archi-

tecture. However, we do realize that by taking into account the cluster archi-

tecture and core-connectivity we may be able to come up with a superior map-

ping of the LES/PDF sub-domains onto nodes or cores. In the present study,

we have attempted to do this by assigning the MPI ranks in radial order, then

axial (as shown in Fig.4.2). As a consequence, each block of 16 sub-domains

in the radial direction is assigned to a single node (16 cores) on Ranger. Since

in the P-URAN strategy the communication is restricted to sub-domains in the

same partition, and partitions are set according to axial location, the current MPI

rank-assignment and partitioning schemes ensure that most of the MPI commu-

nication happens intra-node. To reduce inter-node communication still further,

we try to use a partition size κ which is an exact multiple of the number of

cores per node, which is 16 on Ranger. We thereby minimize the relatively slow

inter-node communication and take the best advantage of the faster intra-node

connectivity. Similar considerations are easily extended to other clusters, given

the ubiquity of architectures that feature multiple cores per node.
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4.7 Conclusions

We have successfully developed an integrated LES/HPDF/x2f mpi/ISAT

solver for performing turbulent combustion calculations with realistic combus-

tion chemistry. We have demonstrated a new parallel strategy, P-URAN, im-

plemented using the x2f mpi library for performing chemistry calculations effi-

ciently. In particular, we have shown that for performing LES/PDF calculations,

the P-URAN strategy:

• yields the lowest wall clock time among all the strategies tested;

• yields a wall clock time within a factor of 1.5 and 1.7 of estimates for the

lowest theoretically achievable wall clock time for the 16-species and 38-

species mechanisms, respectively;

• compared to the single scalar mixture-fraction based flamelet implemen-

tation, is more expensive by only a factor of 2.7 and 5.4 for the 16-species

and 38-species mechanisms, respectively;

• achieves a relative weak scaling efficiency for reaction of about 85% when

scaling from 2,304 to 9,216 cores; and

• achieves a relative strong scaling efficiency for reaction of over 60% when

scaling from 1,152 to 6,144 cores.

4.8 Acknowledgements

V.H.’s work on the methane ARM1 mechanism is supported by Office of En-

ergy Research, Office of Basic Energy Sciences, Chemical Sciences, Geosciences

163



and Biosciences Division of the US Department of Energy (DOE) under Grant

DE-FG02-90ER. The work of V.H. and S.R.L. on the ethylene mechanism is sup-

ported by Grant Number FA9550-09-1-0611 funded by the National Center for

Hypersonic Combined Cycle Propulsion, sponsored by the AFOSR and NASA

ARMD. S.R.L.’s initial work on this project was supported by NASA grant

NNX08AB36A. This research was also supported in part by the National Sci-

ence Foundation through TeraGrid resources provided by the Texas Advanced

Computing Center under Grant No. TG-CTS090020. S.B.P. has a financial in-

terest in Ithaca Combustion Enterprise, LLC., which has licensed the software

ISAT-CK used in this work.

164



CHAPTER 5

LARGE-SCALE PARALLEL SIMULATIONS OF TURBULENT

COMBUSTION USING COMBINED DIMENSION REDUCTION AND

TABULATION OF CHEMISTRY†

5.1 Abstract

Simulations of turbulent reacting flows with chemistry represented using de-

tailed kinetic model involving a large number of species and reactions are com-

putationally expensive. Here we present a combined dimension reduction and

tabulation strategy for implementing chemistry in large scale parallel Large-

Eddy Simulation (LES)/Probability Density Function (PDF) computations of tur-

bulent reacting flows. In this approach, the dimension reduction is performed

using the Rate Controlled Constrained-Equilibrium (RCCE) method, and tabula-

tion of the reduced space is performed using the In Situ Adaptive Tabulation

(ISAT) algorithm. In addition, we use x2f mpi – a Fortran library for parallel

vector-valued function evaluation (used with ISAT in this context) – to effi-

ciently redistribute the chemistry workload among the participating cores in

parallel LES/PDF computations to reduce the overall wall clock time of the

simulation. We test three parallel strategies for redistributing the chemistry

workload, namely (a) PLP, purely local processing; (b) URAN, the uniform

random distribution of chemistry computations among all cores following an

early stage of PLP; and (c) P-URAN, a Partitioned URAN strategy that redis-

tributes the workload within partitions or subsets of the cores. To demonstrate

†V. Hiremath, S. R. Lantz, H. Wang, and S. B. Pope. Large-scale parallel simulations of turbu-
lent combustion using combined dimension reduction and tabulation of chemistry. Proceedings
of the Combustion Institute, 34, 2013 (in press). DOI:10.1016/j.proci.2012.06.004
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the efficiency of this combined approach, we perform parallel LES/PDF com-

putations (on 1,024 cores) of the Sandia Flame D with chemistry represented

using a 38-species C1-C4 skeletal mechanism. We show that relative to using

ISAT alone with the 38-species full representation, the combined ISAT/RCCE

approach with 10 represented species (i) predicts time-averaged mean and stan-

dard deviation statistics with a normalized root-mean-square difference of less

than 3% (30 K) in temperature, less than 2% (0.02 kg/m3) in density, less than

2.5% in mass fraction of major species, and less than 8% in mass fraction of mi-

nor species of interest; and (ii) reduces the simulation wall clock time by over

40% with the P-URAN strategy.

5.2 Introduction

Detailed chemical mechanisms of hydrocarbon fuels may involve hundreds or

thousands of species and thousands of reactions [100, 82]. Incorporating di-

rectly such detailed chemistry in the combustion flow calculations is compu-

tationally prohibitive, even using distributed parallel computing. The current

efforts aimed at reducing the computational cost of representing chemistry can

be placed under three main categories: (1) mechanism reduction, the generation

of reaction mechanisms involving fewer species and reactions [53, 60, 58]; (2)

dimension reduction, the representation of chemistry using a reduced number of

variables [41, 44, 55, 79]; and (3) tabulation, the use of storage-retrieval methods

to reduce significantly the cost of expensive evaluations of the reaction map-

pings involving ODE integrations [66, 49, 92, 93]. Combined methodologies

have also been developed to use reduced reaction mechanisms or dimension

reduction methods in conjunction with tabulation [32, 76, 89].
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Since most of the modern day reactive flow simulations are performed in

parallel on multiple cores using distributed computing, in addition to the afore-

mentioned techniques, strategies are needed to efficiently distribute the chem-

istry workload among the participating cores to reduce the overall wall clock

time of the simulation [51, 50, 48, 86]. We recently demonstrated scalable paral-

lel strategies implemented using x2f mpi for the efficient redistribution of chem-

istry workload in large scale parallel Large-Eddy Simulation (LES)/Probability

Density Function (PDF) computations [29].

In this paper we further extend our LES/PDF solver with the capability of

representing chemistry using our combined dimension reduction and tabula-

tion approach [32]. In this approach, the dimension reduction is performed us-

ing the Rate Controlled Constrained-Equilibrium (RCCE) [41, 40, 38] method

followed by tabulation using the In Situ Adaptive Tabulation (ISAT) [66, 49] al-

gorithm. In [32], we tested our combined dimension reduction and tabulation

approach using the partially-stirred reactor for methane and ethylene chem-

istry, and the main conclusions drawn from this work are that the ISAT/RCCE

approach

• yields the same level of accuracy as other reduced (based on the Quasi-

Steady State Assumption, QSSA) or skeletal mechanisms with relatively

fewer represented species;

• yields significant speedup relative to using ISAT alone with the detailed

mechanism.

Here, for the first time, the ISAT/RCCE approach is being demonstrated in

the context of full-scale LES/PDF simulations of turbulent reacting flows using
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realistic chemistry. In this study, the accuracy and efficiency of this combined

approach is demonstrated by performing full-scale LES/PDF simulation of the

Sandia Flame D [9].

The outline of the remainder of the paper is as follows: in Section 5.3 we

describe our combined LES/PDF solver; in Section 5.4 we describe the com-

bined dimension reduction and tabulation strategy; in Section 5.5 we briefly

describe the parallel strategies implemented using x2f mpi for redistributing the

chemistry workload in large scale LES/PDF computations; in Section 5.6 we

present computational details for simulating the Sandia Flame D; in Section 5.7

we present simulation results; and finally in Section 5.8 we state our conclu-

sions.

5.3 Combined LES/PDF Solver

In this study we use a combined LES/PDF solver developed at Cornell as de-

scribed in more detail in [29, 97]. Below we mention some of the key aspects of

this solver.

5.3.1 LES Solver

The LES solver is based on a Stanford LES code [62, 63]. The solver uses struc-

tured non-uniform grids; supports cylindrical coordinate system; is second-

order accurate in space and time; and is parallelized (using MPI) by domain

decomposition in two dimensions.
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5.3.2 PDF Solver

The PDF solver, HPDF [97], has second-order accuracy in space and time; sup-

ports Cartesian and cylindrical coordinate systems; is parallelized (using MPI)

by domain decomposition in two dimensions; and has a general interface to

facilitate coupling with existing LES (or RANS) solvers.

In the PDF approach, the thermochemical composition of the fluid within

the solution domain is represented by a large number of particles. The HPDF

solver has three main components

1. transport: to account for the change in position of a particle due to advection

in the physical space (including a random-walk component to represent

the effects of subgrid-scale turbulent advection and molecular diffusion);

2. mixing: to account for the change in composition of a particle due to mixing

with neighboring particles (which models the effects of molecular mixing);

and

3. reaction: to account for the change in composition of a particle due to chem-

ical reaction.

These components are implemented in fractional steps using splitting schemes

[98]. In this study, to simulate the Sandia Flame D, we use the first-order TMR

splitting scheme (which is found to perform as well as the second-order splitting

scheme for jet flames [97]). The TMR splitting scheme denotes taking fractional

steps of transport, T; mixing, M; and reaction, R in this order on each time-step.

The Kloeden and Platen (KP) [42] stochastic differential equation (SDE) scheme

is used to integrate the transport equations; and the mixing is represented us-
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ing the modified Curl [37] mixing model. The reaction fractional step is im-

plemented using the combined dimension reduction and tabulation approach

which we will discuss in more detail in the later sections.

5.3.3 Domain Decomposition

The LES computations are performed on a structured non-uniform grid in the

cylindrical coordinate system. We denote the grid used for LES computations

by Nx×Nr×Nθ (in the axial, radial and azimuthal directions). In performing

parallel LES/PDF computations (using the combined LES/HPDF solver) on Nc

cores, the computational domain is decomposed into Nc sub-domains and each

core performs the computations of one sub-domain. The domain decomposition

is done in the first two principal directions x and r, and is denoted by Dx×Dr,

where DxDr = Nc. For instance, in this study we perform LES/PDF simulations

of the Sandia Flame D using a non-uniform LES grid of size Nx = 192, Nr = 192,

Nθ = 96 on Nc = 1, 024 cores using a domain decomposition with Dx = 64 and

Dr = 16.

5.4 Combined Dimension Reduction and Tabulation

In this section we briefly describe the combined dimension reduction and tab-

ulation approach used for representing chemistry using ISAT/RCCE. More de-

tailed description can be found in [32].
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5.4.1 Particle Representation

We consider a reacting gas-phase mixture consisting of ns chemical species,

composed of ne elements. We consider an isobaric system with a fixed speci-

fied pressure p, and so the thermochemical state of the mixture (at a given po-

sition and time) is completely characterized by the mixture enthalpy h, and the

ns-vector z of specific moles of the species.

In the reaction fractional step, a particle’s chemical composition z evolves (at

constant enthalpy h) in time according to the following set of ns coupled ordi-

nary differential equations (ODEs)

dz(t)

dt
= S(z(t)), (5.1)

where S is the ns-vector of chemical production rates determined by the chemi-

cal mechanism used to represent the chemistry.

Given a reaction fractional time step ∆t, the reaction mapping, z(∆t), is de-

fined to be the solution to Eqn.5.1 after time ∆t starting from the initial com-

position z(0). The reaction mapping obtained by directly integrating the set of

ODEs given by Eqn.5.1 is referred to as a direct evaluation (DE). We use DDASAC

[15] for performing ODE integration.

Owing to the large cost of direct evaluation of reaction mappings involv-

ing large numbers of species, we use a combined dimension reduction (using

RCCE) and tabulation (using ISAT) strategy for representing chemistry. This

combined methodology can be applied to chemical systems involving a large

number of species (100 to 1000) by first applying the dimension reduction to re-

duce the dimensionality of the system to say around 20 (depending on the level

of accuracy needed) and then using ISAT to tabulate the reaction mappings in
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the reduced dimension.

5.4.2 Dimension Reduction

In this section we briefly describe the procedure followed for dimension reduc-

tion in our implementation of the RCCE method; a more detailed description

can be found in [31, 32].

In our implementation of RCCE, to perform the dimension reduction we

specify a set of nrs represented (constrained) species selected from the full set of

ns species. Consequently, we have nus = ns − nrs unrepresented species.

The selection of good represented species is crucial for the accuracy of the

RCCE dimension reduction method. We have devised an automated Greedy

Algorithm with Local Improvement (GALI) [31, 32] to select good represented

species based on a specified measure of dimension reduction error. The greedy

algorithm selects represented species in stages one-by-one which minimizes the

specified measure of dimension reduction error [31].

The reduced representation of the species composition is denoted by r ≡

{zr, zu,e}, where z
r is an nrs-vector of specific moles of the represented species;

and z
u,e is an ne-vector of specific moles of the elements in the unrepresented

species (for atom conservation). Thus, r is a vector of length nr = nrs + ne, and

the dimension of the system is reduced from ns to nr. At any time t, the reduced

representation, r(t), is related to the full representation, z(t), by

r(t) = B
T
z(t), (5.2)

where B is a constant ns×nr matrix which can be determined for a specified set
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of represented species. (In general, the reduced representation in RCCE can be

a linear or non-linear function of the full representation [10].)

In the HPDF solver, with dimension reduction, the particles carry only the

reduced representation {r, h}. Given the reduced representation r, the temper-

ature T and density ρ are approximated using the method described in the Ap-

pendix of [32]. Later in the Results (Section 5.7.1) we show that this approxima-

tion method yields values of temperature and density that match closely with

those obtained with the full representation z.

Given the reduced representation at the beginning of the reaction fractional

step r(0), and the reaction fractional time step ∆t, the reduced reaction mapping

r(∆t) (at constant enthalpy) is computed using the following steps:

1. species reconstruction: given r(0), we compute the constrained-equilibrium

composition at constant enthalpy, zCE(r(0)), using CEQ [69];

2. reaction mapping: starting from z
CE(r(0)), we solve the full system of ns

ODEs Eqn.5.1 to obtain the reaction mapping, z(∆t);

3. reduction: we obtain the reduced reaction mapping as, r(∆t) = B
T
z(∆t).

The above steps of course make the computation of the reaction mapping

even more expensive than directly solving the full set of ODEs Eqn.5.1, due

to the additional species reconstruction and reduction steps. However, when

ISAT is used in conjunction with dimension reduction, the computational cost

is reduced significantly as explained in the next section.

A more efficient way of obtaining the reduced reaction mapping, r(∆t), is

to directly solve a reduced system of nr ODEs for the constraints, r, or for the
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constraint-potentials (as is done in the classical RCCE approach [35, 36]). We are

currently working on implementing this method which should give a further

improvement in performance. Nevertheless, even with our current implemen-

tation of RCCE, we achieve significant reduction in computational cost relative

to the detailed chemistry calculation as shown in this work.

5.4.3 Tabulation

We use in situ adaptive tabulation (ISAT) [66] for tabulating the reaction map-

pings. The ISAT algorithm has been successfully applied in many combustion

chemistry calculations involving up to ns ≤ 50 species [49, 32]. However, with

chemistry involving more than 50 species, the direct use of ISAT may not be

very efficient, due to the large table size and search times [32].

Hence, for chemistry involving more than say ns ≥ 30 species, we use the

RCCE dimension reduction method to represent the chemistry using a reduced

representation involving fewer nr variables. Note, for very large mechanisms

involving thousands of species, the direct use of RCCE/GALI may still result in

nr ≫ 30 to achieve an acceptable level of accuracy. In such cases it will be more

efficient to use ISAT/RCCE with a skeletal mechanism (based on the detailed

mechanism) involving hundreds of species.

We use ISAT to tabulate the reduced reaction mapping in the reduced dimen-

sion nr, which reduces significantly the overall computational cost because

1. the exact reduced reaction mapping is computed (using the steps listed in

the previous section) only for a small fraction of particles (typically less
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than 1%); and for the majority of the particles a linear approximation to

the reduced reaction mapping is obtained using the tabulated data;

2. since the tabulation is performed in a reduced dimension, nr, the ISAT

table size is reduced, which in turn reduces the table search and retrieve

times; and

3. since the particle compositions are also stored in a reduced dimension,

fetching particles from the memory is faster.

Consequently, the combined dimension reduction and tabulation approach

using ISAT/RCCE is found to give an additional speedup by a factor of O(10)

relative to using ISAT alone with the full representation for tests performed

using the 111-species C1-C4 USC Mech II detailed mechanism [32]. A more

detailed description of our combined dimension reduction and tabulation ap-

proach is provided in [32].

5.5 Parallel Strategies for Implementing Chemistry

In performing parallel LES/PDF computations on multiple cores using our

LES/HPDF solver with chemistry represented using the combined dimension

reduction and tabulation approach, each core has its own ISAT table for tab-

ulating the chemistry. On the reaction fractional step, the reaction mappings

for all the particles in the computational domain need to be evaluated. How-

ever, the chemical reactivity is in general not uniform across the entire domain.

For example, in simulation of jet flames, the sub-domains in the flame front are

chemically more reactive than sub-domains in the outer coflow/air. Thus, a
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direct call to ISAT on each core at the reaction fractional step can create load im-

balance among the cores, leading to increase in the overall simulation wall clock

time. Hence, at the reaction fractional step, we use parallel strategies imple-

mented using x2f mpi to redistribute the particles among the participating cores

for reaction mapping evaluation, thereby achieving a better load balance and

reducing the overall simulation wall clock time.

In [29], we presented three parallel strategies, denoted by PLP, URAN and

P-URAN, for redistributing the chemistry workload. We give a brief description

of these strategies below.

1. Purely Local Processing (PLP):

In this strategy, the reaction mapping of all the particles on a core is

evaluated using the local ISAT table without any message passing or load

redistribution. This in some sense is the same as invoking ISAT directly

from HPDF on each core without using the x2f mpi interface. This strategy

thus leads to significant load imbalance.

2. Uniform Random (URAN):

This strategy is the extreme opposite of the PLP strategy and aims

at achieving statistically ideal load balancing by evenly distributing the

chemistry workload among all the participating cores. The strategy in-

volves one initial step of PLP to initialize the local ISAT tables. In the

subsequent steps, on each core, first an attempt is made to retrieve the re-

action mapping of particles from the local ISAT table (also referred to as

a “quick try”). Following this, there is a uniform random distribution of

all the unresolved particles (for which “quick try” failed) to all the cores.

This strategy thus ensures that the workload is evenly balanced over all
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the cores, however, it also results in a large amount of all-to-all message

passing.

3. Partitioned Uniform Random (P-URAN):

This strategy aims at achieving a balance between communication cost

and load imbalance by using the PLP and URAN strategies over smaller

partitions of cores. The P-URAN strategy works in two stages: in stage

1, for a specified duration of time τ (hours) the PLP strategy is used to

resolve particles; then in stage 2, for the remainder of the time, the partici-

pating cores are partitioned into smaller groups of κ cores, and within each

partition the URAN strategy is used to uniformly distribute the chem-

istry workload among the cores in that partition. We use the notation

P-URAN[τ , κ] to describe the P-URAN strategy.

In [29], based on LES/PDF simulations of Sandia Flame D using ISAT alone

we showed that among the aforementioned three strategies, the P-URAN strat-

egy yields the lowest wall clock time. We also showed that the P-URAN strat-

egy shows good scaling up to 9,000 cores. In this work we use these strategies

in conjunction with combined dimension reduction and tabulation to compare

their relative performance. Here we focus more on the gains achieved using the

combined dimension reduction and tabulation approach and show that the sim-

ulation wall clock time can be further reduced using our combined ISAT/RCCE

approach without losing too much accuracy.
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5.6 LES/PDF Simulation of Sandia Flame D

To test the chemistry implementation we perform LES/PDF simulations of the

Sandia Flame D.

5.6.1 Sandia Flame D

The Sandia Flame D is a piloted CH4/Air jet flame operating at a jet Reynolds

number, Re = 22,400. All the details about this flame and the burner geometry

can be found at [9]. Here we mention only some of the important aspects of this

flame.

The jet fluid consists of 25% CH4 and 75% air by volume. The jet flows in at

49.6 m/s velocity at 294 K temperature and 0.993 atm pressure. The jet diameter

is D = 7.2 mm. The pilot is a lean (equivalence ratio, Φ = 0.77) mixture of

C2H2, H2, air, CO2, and N2 with the same nominal enthalpy and equilibrium

composition as that of CH4/Air at this equivalence ratio. The pilot velocity is

11.4 m/s. The coflow is air flowing in at 0.9 m/s at 291 K and 0.993 atm.

5.6.2 Computational Details

We perform LES/PDF simulation of the Sandia Flame D using the coupled

LES/HPDF solver. The simulation is performed in a cylindrical coordinate

system. A computational domain of 80D×30D×2π is used in the axial, radial

and azimuthal directions, respectively. A non-uniform structured grid of size

192×192×96 (in the axial, radial and azimuthal directions, respectively) is used
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for the LES solver. In the HPDF solver, the number of particles per LES cell (Npc)

used is Npc = 40. With a total of 192×192×96 ≈ 3.5 × 106 LES cells, an overall

140 × 106 particles are used in the computational domain. The simulations are

performed on 1,024 cores using a domain decomposition of 64×16 in the axial

and radial directions, respectively. All the simulations are performed on the

Texas Advanced Computing Center (TACC) Ranger cluster.

The chemistry is represented using the combined dimension reduction (us-

ing RCCE) and tabulation (using ISAT) approach with a C1-C4 skeletal mecha-

nism [23] involving ns = 38 species composed of ne = 5 elements. This mecha-

nism is developed especially for ethylene combustion, but is also applicable to

methane flames. In the future, we want to apply the methodology developed

here to study ethylene combustion.

The RCCE dimension reduction is performed by specifying nrs = 10 repre-

sented species (which is found to be a good number of represented species to

achieve less than 2% dimension reduction error based on our previous tests with

chemical mechanisms involving around 30 species [31, 32]), and so the reduced

representation has a dimension nr = nrs + ne = 15. This dimension reduction

from ns = 38 to nr = 15 results in a 60% reduction in the storage needed for par-

ticle composition and an 84% reduction in the storage per ISAT table entry. In

this preliminary study, we specify the represented species manually (to include

the major species of interest for which statistics had already been collected in

some of our previous LES/PDF simulations and for which experimental data

is available). However, in future studies with bigger mechanisms we will use

GALI [32] to select the represented species. In this work, we use the following

10 species as the represented species: CH4, O2, CO2, H2O, CO, H2, OH , H , O
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and HO2.

A fixed ISAT error tolerance, ǫtol = 10−4, is used in this study. At this error

tolerance, the ISAT tabulation error relative to direct evaluation (as defined in

[32]) is found to be less than 3%. In addition, we specify a maximum ISAT table

size of 1000 MB per core. In simulations with the 38-species full representation,

some ISAT tables become completely filled. However in simulations with the

combined ISAT/RCCE approach with 10 represented species, none of the ISAT

tables have a size of more than 200 MB.

5.7 Results

In this section we compare the computational time and statistics of thermo-

chemical quantities obtained using the combined dimension reduction and tab-

ulation approach with 10 represented species relative to using tabulation alone

with the 38-species C1-C4 skeletal mechanism.

In order to make the comparisons, we perform separate LES/PDF simula-

tions of the Sandia Flame D on 1,024 cores with chemistry represented using the

following two methods

1. ISAT: tabulation alone (no dimension reduction) with the 38-species full

representation; and

2. ISAT/RCCE: combined dimension reduction and tabulation with a re-

duced representation involving 10 represented species (specified in the

previous section) and 5 elements.
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In each case, we perform LES/PDF simulation to reach a statistically stationary

state. We then collect statistics for thermochemical quantities like temperature,

density, and species mass fractions time-averaged over 10,000 time steps. In

addition, in each case we perform simulations for 2,000 time steps using the

three parallel strategies PLP, URAN and P-URAN to compare their relative per-

formance. These simulations start from the statistically stationary state with

empty ISAT tables.

5.7.1 Comparison of Statistics

In this section we compare the radial profiles of mean and standard deviation

statistics of thermochemical quantities obtained from the PDF particle data from

the LES/PDF simulation using ISAT alone and using the combined ISAT/RCCE

approach.

The radial statistics are azimuthally-averaged at each time step, and are also

time-averaged over 10,000 time steps after reaching the statistically stationary

state. For a quantity ξ, we denote the density-weighted mean statistics by 〈ξ〉,

and the standard deviation by 〈ξ′′〉 which is defined as 〈ξ′′〉 ≡
√

〈ξ2〉 − 〈ξ〉2.

In Fig.5.1 and Fig.5.2, we show respectively the radial profiles of mean and

standard deviation of temperature T , density ρ, and mass fraction of species

CH4, O2, CO2, H2O, CO, H2, OH at axial locations x/D = 15, 30, 45, 60 obtained

from (i) an LES/PDF simulation using ISAT alone with the 38-species full rep-

resentation; (ii) an LES/PDF simulation using ISAT/RCCE with 10 represented

species; and (iii) experimentally measured statistics [9] (for reference).
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Figure 5.1: Radial profiles of time-averaged mean temperature T , density
ρ, and mass fraction of species CH4, O2, CO2, H2O, CO, H2, OH
at axial locations x/D = 15, 30, 45 and 60 obtained from (i) ex-
perimental data; (ii) an LES/PDF simulation using ISAT alone
with the 38-species full representation; and (iii) an LES/PDF
simulation using ISAT/RCCE with 10 represented species.
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Figure 5.2: Radial profiles of time-averaged standard deviation of temper-
ature T , density ρ, and mass fraction of species CH4, O2, CO2,
H2O, CO, H2, OH at axial locations x/D = 15, 30, 45 and 60 ob-
tained from (i) experimental data; (ii) an LES/PDF simulation
using ISAT alone with the 38-species full representation; and
(iii) an LES/PDF simulation using ISAT/RCCE with 10 repre-
sented species.
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We notice that the statistics obtained with ISAT/RCCE using 10 represented

species match very closely with the statistics obtained using ISAT alone with

the 38-species full representation. To quantify the difference between the statis-

tics obtained using ISAT/RCCE and ISAT alone, for each quantity ξ (mean or

standard deviation), we compute the normalized root-mean-square difference

(RMSD) denoted by ǫ(ξ) as follows

ǫ(ξ) =

[

ξr − ξf
]

rms

ξref
, (5.3)

where ξr and ξf denote respectively the quantities obtained using the reduced

representation with ISAT/RCCE and the full representation with ISAT alone;

and the operator [ ]rms denotes the RMSD computed over all the radial locations

at all the considered axial locations x/D = 15, 30, 45, 60. Here ξref is a refer-

ence value used for normalization, which is taken to be 1000 K for temperature

and 1 kg/m3 for density. For the species mass fractions, we take ξref to be the

maximum value of the mean statistics obtained for that species, max(〈ξ〉f ).

The reference value and the normalized RMSD computed using Eqn.5.3 for

all the quantities of interest is summarized in Table 5.1. We notice that the nor-

malized RMSD in the mean and standard deviation statistics is less than 3% (i.e.

30 K) for temperature; less than 2% (i.e. 0.02 kg/m3) for density; less than 2.5%

for species mass fractions of major species CH4, O2, CO2, H2O; and less than

8% for species mass fractions of minor species CO, H2, OH . In summary, these

results show that the combined ISAT/RCCE approach shows good error control

and the predicted statistics are well within acceptable level of accuracy (relative

to using ISAT alone with the full representation) for most engineering applica-

tions. These results also show that the density and temperature approximation

method used with the reduced representation in ISAT/RCCE [32] yields values

that match closely with those obtained with the full representation. A more care-
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Table 5.1: Normalized root-mean-square difference (RMSD) (see Eqn.5.3)
in mean and standard deviation statistics obtained using the re-
duced representation with ISAT/RCCE relative to full represen-
tation with ISAT alone. The quantities listed are temperature T ,
density ρ, and mass fraction of species CH4, O2, CO2, H2O, CO,
H2, OH .

Quantity Reference Value RMSD in 〈ξ〉 RMSD in 〈ξ′′〉

ξ ξref ǫ(〈ξ〉), percent ǫ(〈ξ′′〉), percent

T (K) 1000.0 2.92 1.95

ρ (kg/m3) 1.0 1.72 1.07

YCH4
1.5× 10−1 1.47 1.17

YO2
2.4× 10−1 2.10 0.93

YCO2
1.2× 10−1 1.50 0.81

YH2O 1.3× 10−1 2.24 0.92

YCO 5.7× 10−2 6.36 4.10

YH2
3.7× 10−3 7.87 5.29

YOH 2.7× 10−3 2.18 1.92

ful selection of represented species using GALI [32] should help further reduce

the differences between the reduced and full descriptions.

The experimentally measured statistics are qualitatively well captured by

the LES/PDF simulation, yet quantitatively we notice that some of the statis-

tics differ by around 20%. The discrepancies between the LES/PDF simulation

statistics and experimentally measured statistics can be attributed to (i) numeri-

cal and statistical errors in the simulation; (ii) experimental measurement errors;

and (iii) errors in the chemical kinetic models. However, study of these errors is

not the primary focus of this work. Similar level of agreement between the sim-

185



ulated and experimentally measured statistics is found in some of the previous

studies of Sandia Flame D [85, 33, 57, 59].

5.7.2 Computational Performance

In this section we compare the wall clock time required to perform LES/PDF

simulation of Sandia Flame D for 2,000 time steps using the combined

ISAT/RCCE approach relative to using ISAT alone. In addition we compare

the relative performance of the PLP, URAN and P-URAN parallel strategies. In

each case, the LES/PDF simulation is started from a fixed statistically stationary

state with empty ISAT tables. We measure a moderate ISAT build time (see [32])

of about 1 hour in these simulations, i.e., after 1 hour of simulation, most of the

particles are resolved by ISAT retrieves.

In Fig.5.3, the bottom three bars show the wall clock time taken to perform

2,000 simulation time steps using the combined ISAT/RCCE approach with 10

represented species with the PLP, URAN and P-URAN[0.2h,32] parallel strate-

gies. In each case, we also show the breakdown of time spent in LES, HPDF

(outside reaction), Reaction (including x2f mpi communication), and Waiting

(average idle time) as defined in [29]. We see that the P-URAN strategy yields

the lowest wall clock time among the three strategies. The Waiting time (av-

erage idle time), which is indicative of the load imbalance is maximum for PLP,

minimum for URAN and moderate for P-URAN (as also seen in our previous

studies [29]).

The LES/PDF simulation of Sandia Flame D using ISAT alone with the 38-

species full representation is performed using the PLP, URAN and P-URAN
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Figure 5.3: For LES/PDF simulation of Sandia Flame D, wall clock time for
2,000 time steps along with breakdown of time spent in LES,
HPDF (outside reaction), Reaction (including x2f mpi commu-
nication) and Waiting (average idle time) using different par-
allel strategies. Top: using ISAT alone with the 38-species
full representation with the P-URAN[0.2h, 32] parallel strat-
egy. Bottom three: using combined ISAT/RCCE with 10 repre-
sented species using (i) PLP; (ii) URAN; and (iii) P-URAN[0.2h,
32] parallel strategies.

strategies [29]. Among these the P-URAN strategy again yields the lowest

wall clock time. In Fig.5.3, for comparison, the top bar shows the wall clock

time for 2,000 time steps using the 38-species full representation with the P-

URAN[0.2h,32] strategy.

We notice that relative to the simulation using ISAT alone with the 38-species

full representation, the combined ISAT/RCCE approach with 10 represented

species using the P-URAN strategy
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Table 5.2: Cumulative ISAT statistics for the LES/PDF simulation of San-
dia Flame D using (i) ISAT alone and (ii) ISAT/RCCE with the
P-URAN parallel strategy.

method variables queries retrieves adds direct evals(∗) retrieve

(percent) (percent) (percent) time (µs)

ISAT 38 3× 10
11 99.974 5.572× 10

−3
1.665× 10

−3 8

ISAT/RCCE 15 3× 10
11 99.984 2.742× 10

−3 0.0 3

(∗) performed only if the ISAT table is completely filled.

1. yields more than 40% reduction in HPDF time (outside Reaction). This is

because with dimension reduction, the particles in PDF simulation carry

only the reduced representation (in this case involving 15 variables). As

a result, a) particles require 60% less storage, which in turn reduces the

particle communication cost; and b) less time is required for collecting

species (LES cell mean) statistics.

2. reduces the Reaction time by over 40% due to smaller ISAT table sizes and

faster retrieve times (statistics given in Table 5.2 and explained below);

and

3. consequently, reduces the overall wall clock time of the simulation by

more than 40%.

In Table 5.2, we list the ISAT statistics collected from the simulations with the

P-URAN strategy using a) ISAT alone with the 38-species full representation;

and b) ISAT/RCCE with 10 represented species. We see that in both the cases,

over 99.9% of the queries result in retrieves which shows the high efficiency

of ISAT tabulation. Compared to ISAT/RCCE with 10 represented species, the

simulation with 38-species full-representation results in almost twice the num-
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ber of adds, and also results in some direct evaluations because some of the

tables get completely filled. The average retrieve time with ISAT/RCCE is only

3 µs compared to 8 µs with ISAT alone.

5.8 Conclusions

We have successfully extended our LES/PDF solver with the capability of per-

forming turbulent combustion calculations with realistic combustion chem-

istry, wherein the chemistry in the PDF solver is represented using the com-

bined dimension reduction (using RCCE) and tabulation (using ISAT) approach.

The chemistry workload is efficiently redistributed using the P-URAN strategy

implemented using the x2f mpi library. We have shown that for performing

LES/PDF simulation of Sandia Flame D, relative to using ISAT alone with the

38-species full representation, the ISAT/RCCE approach with 10 represented

species (i) yields acceptable level of accuracy in mean and standard deviation

statistics of major thermochemical quantities of interest like temperature, den-

sity and species mass fractions; and (ii) reduces the overall simulation wall clock

time by more than 40% with the P-URAN strategy.
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CHAPTER 6

A STUDY OF THE RATE-CONTROLLED CONSTRAINED-EQUILIBRIUM

DIMENSION REDUCTION METHOD AND ITS DIFFERENT

IMPLEMENTATIONS†

6.1 Abstract

The Rate-Controlled Constrained-Equilibrium (RCCE) is a thermodynamic

based dimension reduction method which enables representation of chemistry

involving ns species in terms of fewer nr constraints. Here we focus on the

application of the RCCE method to Lagrangian particle Probability Density

Function based computations. In these computations, at every reaction frac-

tional step, given the initial particle composition (represented using RCCE),

we need to compute the reaction mapping, i.e., the particle composition at the

end of the time step. In this work we study three different implementations of

RCCE for computing this reaction mapping, and compare their relative accu-

racy and efficiency. These implementations include: (1) RCCE/TIFS (Trajectory

In Full Space): this involves solving a system of ns rate-equations for all the

species in the full composition space to obtain the reaction mapping. The other

two implementations obtain the reaction mapping by solving a reduced sys-

tem of nr rate-equations obtained by projecting the ns rate-equations for species

evaluated in the full space onto the constrained subspace. These implementa-

tions include (2) RCCE: this is the classical implementation of RCCE which uses

a direct projection of the rate-equations for species onto the constrained sub-

†V. Hiremath and S. B. Pope. A Study of the Rate-Controlled Constrained-Equilibrium Di-
mension Reduction Method and its Different Implementations, Combustion Theory and Mod-
elling, 2012, (in press). DOI:10.1080/13647830.2012.752109
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space; and (3) RCCE/RAMP (Reaction-mixing Attracting Manifold Projector):

this is a new implementation introduced here which uses an alternative projec-

tor obtained using the RAMP approach. We test these three implementations

of RCCE for methane/air premixed combustion in the partially-stirred reactor

with chemistry represented using the ns=31 species GRI-Mech 1.2 mechanism

with nr=13 to 19 constraints. We show that: a) the classical RCCE implementa-

tion involves an inaccurate projector which yields large errors (over 50%) in the

reaction mapping; b) both RCCE/RAMP and RCCE/TIFS approaches yield sig-

nificantly lower errors (less than 2%); and c) overall the RCCE/TIFS approach

is the most accurate, efficient (by orders of magnitude) and robust implementa-

tion.

6.2 Introduction

Recent advances on the experimental and theoretical fronts of the study of real

fuel chemistry have led to more accurate chemical mechanisms of real fuels in-

volving hundreds to thousands of species and thousands of reactions [82]. A

major challenge in the numerical study of turbulent combustion problems is the

accurate and efficient use of this detailed chemistry information in computa-

tions.

In a reacting flow computation, the species composition evolves by three

processes: advection, diffusion and chemical reaction. Here we focus on the

general class of solution methods in which a splitting scheme is used to account

for these processes in separate fractional steps. In particular we focus on the

turbulent combustion modeling using the Probability Density Function (PDF)
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methods [65] in which the chemical composition in the computational domain

is represented by a large number of particles. The particle composition evolves

due to mixing and chemical reaction which are treated in two separate fractional

steps. The main advantage of using PDF methods is that the chemical source

term in the species evolution equation is represented exactly, which enables the

use of detailed chemistry in combustion calculations. The PDF methods are

typically used in conjunction with Reynolds-averaged Navier-Stokes (RANS)

or Large-Eddy Simulation (LES) based approaches to perform turbulent com-

bustion simulations [56, 74, 97, 29].

A turbulent combustion simulation using PDF methods with detailed chem-

istry (without any simplification) entails solving (at each reaction fractional step

for each particle) a coupled set of ordinary differential equations (ODEs) for the

chemical species composition. These systems of ODEs are generally stiff owing

to the wide range of chemical time-scales present in the system, and thus com-

puting the solution is expensive. Due to this expensive cost involved in repre-

senting chemistry in turbulent combustion simulations, incorporating detailed

chemistry involving thousands of species is computationally prohibitive.

The current challenges of representing chemistry in turbulent combustion

simulations and the various approaches used are highlighted in [71]. In the

past two decades, numerous methods have been developed to tackle the expen-

sive cost involved in representing combustion chemistry. These methods can be

broadly classified into the following three categories:

1. Mechanism Reduction: this includes methods designed to generate

smaller skeletal mechanisms from the detailed mechanism by systemat-

ically removing unimportant species. Two prominent methods in this cat-
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egory are the Directed Relations Graph (DRG) [53]; and the DRG with

error propagation (DRGEP) [60].

2. Dimension Reduction: this includes methods used to represent chem-

istry using fewer “represented” variables based on the detailed chem-

istry. Methods in this category include the Quasi Steady-State As-

sumption (QSSA) [11, 87]; Rate-Controlled Constrained-Equilibrium

(RCCE) [41, 40]; Computational Singular Perturbation (CSP) [44]; In-

trinsic Low-Dimensional Manifolds (ILDM) [55]; Trajectory-Generated

Low-Dimensional Manifolds (TGLDM) [72]; Invariant Constrained

Equilibrium-Edge Pre-Image Curve (ICE-PIC) [79].

3. Tabulation: this includes storage-and-retrieval based methods, such as the

In Situ Adaptive Tabulation (ISAT) [66, 49]; Piecewise Reusable Imple-

mentation of Solution Mapping (PRISM) [92]; Artificial Neural Network

(ANN) [18].

The aforementioned methods have been successfully applied in various com-

bustion chemistry calculations, and they have enabled the use of detailed chem-

istry information in computations with acceptable level of accuracy and effi-

ciency.

In our research, we have focused on developing combined methodologies

[91, 89, 77, 32] which enables us to extract the best out of the aforementioned

three categories, thereby further reducing the cost of chemistry computations.

In particular, our recent efforts have been focused on developing a combined

reduction-tabulation strategy [32, 30] which involves dimension reduction of

chemistry using the RCCE method followed by tabulation using ISAT. This com-

bined ISAT/RCCE approach can be used with both detailed and skeletal mech-
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anisms. We have also developed an automated Greedy Algorithm with Local

Improvement (GALI) [32] to select “good” represented species for performing

dimension reduction with the RCCE method.

We have extensively tested this combined ISAT/RCCE/GALI methodology

for methane and ethylene chemistry with chemical mechanisms involving 20

to 100 species in a Partially-Stirred Reactor (PaSR) [31, 32] and also in full-

scale Large-Eddy Simulation (LES)/Probability Density Function (PDF) com-

putations of Sandia Flame D [30]. The main conclusions drawn from these tests

are that the ISAT/RCCE/GALI approach: (a) yields the same level of accuracy

as other reduced (using QSSA) and skeletal mechanisms with relatively fewer

represented species; and (b) results in speed-up by a factor of 2 to 15 relative to

using ISAT alone [32, 29].

In the RCCE dimension reduction method, the chemistry involving ns-

species is represented in terms of fewer nr-constraints. The reduced representa-

tion of chemistry using the RCCE dimension reduction method is denoted by an

nr-vector r. In PDF based simulations of reacting flows using the RCCE method,

given the initial reduced composition of a particle at the beginning of a reaction

time step, r(0), the task is to compute the reaction mapping, r(t), at the end of

the reaction time step t. There are different ways of implementing the RCCE

dimension reduction method to obtain this reaction mapping, and the present

paper studies the relative merits of these implementations.

Our implementation of RCCE [32] is different from the classical RCCE ap-

proach first introduced in [41] and further developed and tested in [40, 27, 38,

35, 36]. The Close Parallel Inertial Manifold (CPIM) method [90] describes yet

another way of implementing RCCE. The main focus of this paper is to com-
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pare these different implementations of RCCE for their relative accuracy and

efficiency. In particular we look at the following three implementations of the

RCCE:

1. RCCE/TIFS (Trajectory In Full Space): this is the implementation used in

our previous work [31, 32, 30] (described in Sec.6.4.1);

2. RCCE: this is the classical implementation introduced in [41] and further

developed in [40, 27, 38, 35, 36] (described in Sec.6.4.2);

3. RCCE/RAMP (Reaction-mixing Attracting Manifold Projector): this is a

new implementation (based on the CPIM [90] method) proposed here (de-

scribed in Sec.6.6).

To compute the reaction mapping, the RCCE/TIFS implementation solves a sys-

tem of ns ODEs in the full composition space for all the species. In contrast,

the RCCE and RCCE/RAMP implementations solve a reduced system of nr

ODEs for the constraints by projecting the full system of ODEs onto the con-

strained subspace. In this work we show that for small reaction time steps, all

the three aforementioned implementations yield similar levels of error. How-

ever, as the reaction time step increases, the RCCE/RAMP and RCCE/TIFS

implementations yield orders of magnitude smaller error than the RCCE im-

plementation. We show that the projector used in the RCCE implementation is

inaccurate which results in large errors in the reaction mapping at large reac-

tion time steps. We show that the RAMP approach provides a more accurate

projector and significantly reduces the error. We also show that the RCCE/TIFS

implementation is the most accurate, efficient and robust among the above three

implementations.
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The outline of the remainder of the paper is as follows: in Sec.6.3 we de-

scribe the general framework and notation used for representing chemistry in

our work; in Sec.6.4 we give an overview of the RCCE dimension reduction

method and describe the RCCE/TIFS and the classical RCCE implementations;

in Sec.6.5 we describe the projection issues involved in the implementation

of RCCE; in Sec.6.5.2 we describe the Close Parallel Inertial Manifold (CPIM)

method [90] and then in Sec.6.6 we extend it to the new Reaction-mixing Attract-

ing Manifold Projector (RAMP) method; in Sec.6.7 we describe the partially-

stirred reactor used for testing the different implementations of RCCE; and fi-

nally in Sec.6.8 we describe results to compare the relative accuracy and effi-

ciency of the three implementations; and in Sec.6.9 we state our conclusions.

6.3 Chemistry Representation

We consider a gaseous phase reacting flow consisting of ns chemical species

composed of ne elements. The thermochemical state of the fluid (at a given

position and time) is fully characterized by the pressure p, enthalpy h and an

ns-vector of species specific moles z. (It is often convenient to view z as a point

in the ns-dimensional composition space.)

For definiteness, we focus on the combined Large-Eddy Simulation

(LES)/Probability Density Function (PDF) simulations of turbulent reacting

flows, which has been our recent focus of attention [97, 29, 30]. In these sim-

ulations the thermochemical composition of the fluid is represented by a large

number of particles in the computational domain. The particle chemical compo-

sition evolves due to mixing and reaction, which are treated in separate fractional
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steps [98].

Furthermore, here to focus solely on the reaction fractional step and study

different implementations of the RCCE method, we use the computationally

cheaper representative test case of a Partially-Stirred Reactor (PaSR), which will

be described in more detail in Sec.6.7. The methodology described here though

is applicable to other time-stepping based reacting flow simulations as well.

To simplify the exposition, here we consider an adiabatic and isobaric reac-

tion fractional step, i.e., the enthalpy h and pressure p of a particle remain con-

stant over the reaction fractional step. In addition, to simplify things further,

we consider an isobaric flow so that pressure p is the same for all the particles.

Hence the thermochemical state is fully characterized by z and h. (Note that

these assumptions are made only to simplify the exposition and can be easily

relaxed if needed. In general pressure p can vary from particle to particle, and

changes in particle enthalpy h can be incorporated in other fractional steps in

the flow solver.)

As a consequence of the aforementioned assumptions, in the reaction frac-

tional step, the chemical composition of each of the particles in the compu-

tational domain evolves (at constant h and p) by the following set of rate-

equations

dz

dt
= S(z), (6.1)

where the ns-vector S denotes the chemical source term obtained from the chemi-

cal mechanism used for representing the chemistry. More precisely, the chemical

source term is given as

S(z) ≡ S(z, T (h, z), p). (6.2)

Since the temperature T is known in terms of h and z, and the pressure p is as-
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sumed to be constant, we henceforth use the more concise notation S(z), where

dependence on T and p is implicitly assumed.

Given the initial particle composition z(0) at t = 0, and a reaction fractional

time step t, we refer to the composition at the end of the reaction fractional step

z(t) as the reaction mapping. The reaction mapping obtained by directly inte-

grating the system of ODEs given by Eqn.6.1 is referred to as the exact solution

(since the ODE integration errors are relatively small). We use DDASAC [15] for

performing ODE integration.

6.4 Rate-Controlled Constrained-Equilibrium

Here we give a brief overview of the Rate-controlled Constrained-Equilibrium

(RCCE) dimension-reduction method and introduce the notation used in our

implementation. A fuller description can be found in [32].

In the RCCE method, the chemistry is represented by a reduced number

of nr (with typically nr ≪ ns) represented scalars or constraints. This reduced

representation of chemistry is denoted by an nr-vector r.

In our implementation of RCCE, to represent the chemistry using a reduced

representation we specify a set of nrs represented species selected from the full

set of ns species present in the chemical mechanism. The reduced representation

of chemistry is given as r = {zr, zu,e}, where the nrs-vector zr denotes the species

specific moles of the represented species and the ne-vector zu,e denotes the spe-

cific moles of elements in the unrepresented species (for element conservation).

Thus the chemistry is represented in a reduced dimension of size nr = nrs + ne
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instead of the full dimension ns. At any time t, the reduced representation r is

related to the full representation z as

r(t) = B
T
z(t), (6.3)

where B is a fixed ns × nr matrix determined by the choice of the represented

species.

It is often convenient to view the ns-dimensional composition space to be

composed of the nr-dimensional represented subspace (spanned by the columns

of the constraint matrix B) and its orthogonal complement nu-dimensional

(with nu = ns − nr) unrepresented subspace, such that together the represented

and unrepresented subspaces span the entire composition space. This helps vi-

sualize the ns-dimensional composition space in a 2D sketch (for example see

Fig.6.1) indicated by the represented (denoted by r) and unrepresented (denoted

by u) subspaces.

In general the reduced representation r can be any linear or non-linear func-

tion of the full representation z as described in [36, 10]. However, our choice

of the reduced representation for RCCE as described above makes the user in-

terface very simple – the user only needs to specify a set of represented species

and the rest is taken care of by the implementation. (This simple interface for

RCCE has also been incorporated in the commercial CFD package ANSYS Flu-

ent [76, 75].) In addition we have also developed an automated Greedy Algo-

rithm with Local Improvement (GALI) [32] which can be used to select “good”

represented species for the RCCE method. Selection of good represented species

or constraints is crucial for the overall accuracy of the RCCE method [36, 31]. In

the remainder of the text, we use the simple reduced representation given by

Eqn.6.3 to describe different implementations of the RCCE method.
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When using the RCCE method to represent chemistry in PDF based compu-

tations, the particles carry only the reduced representation of chemistry given

by r. In the reaction fractional step, given the initial reduced representation r(0),

the task is to compute the reduced reaction mapping r(t) at the end of the reaction

fractional time step t. In the following subsections we discuss the different im-

plementations of RCCE used to compute the reduced reaction mapping.

6.4.1 RCCE Implementation using Trajectory In Full Space

Here we briefly describe our implementation of RCCE. A more detailed descrip-

tion can be found in [31, 32].

In our implementation, the reduced reaction mapping is computed by fol-

lowing the three steps (which are illustrated in the sketch Fig.6.1) listed below:

1. species reconstruction: given the reduced representation r(0), the

constrained-equilibrium composition (at constant enthalpy h) is computed

using CEQ [68] and is denoted as

z
CE(0) ≡ z

CE(r(0), h). (6.4)

z
CE is a point on the Constrained Equilibrium Manifold (CEM).

2. trajectory in full space: starting from z
CE(0), the reaction trajectory (given

by Eqn.6.1) is integrated in the full space to obtain the reaction mapping

z(t).

3. reduction: from z(t), the reduced reaction mapping is obtained as r(t) =

B
T
z(t).
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Figure 6.1: Sketch of the composition space (indicated by represented
r and unrepresented u subspaces) illustrating the reaction
mapping computation using the RCCE/TIFS implementation.
Given the initial reduced composition at t = 0 denoted by
r(0), the reaction mapping r(t) is obtained in three steps (1)
computing the constrained-equilibrium composition at r(0) de-
noted by z

CE(0); followed by (2) integrating the trajectory
in full space (TIFS) to obtain z(t); followed by (3) reduction
r(t) = B

T
z(t).

We henceforth refer to our implementation of RCCE as RCCE/TIFS – Trajec-

tory In Full Space.

It is important to note here that the CEM is not an invariant manifold, i.e., a

reaction trajectory originating from a point on the CEM does not necessarily re-

main on the manifold. Thus the reaction mapping z(t) obtained in the step (2)

of the above RCCE/TIFS implementation need not be on the CEM (as depicted

in the sketch Fig.6.1). However, it should be appreciated that the primary objec-
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tive of the RCCE method being considered here is to obtain an accurate reduced

reaction mapping r(t), and it does not matter if the reaction mapping in the full

composition space, z(t), is not on the CEM. In fact, there exists an infinite num-

ber of compositions in the full composition space that yield the same reduced

reaction mapping given by r(t) = B
T
z(t). Here, using the TIFS approach, we

seek to obtain a reaction mapping z(t) that yields an accurate reduced reaction

mapping r(t).

6.4.2 Classical RCCE Implementation

Rate-Equations for the Constraints

Here we describe the classical implementation of RCCE first introduced in [41],

which involves solving a reduced set of nr rate-equations for the constraints to

compute the reduced reaction mapping r(t).

Given a composition z(t) at an instant of time, the reduced composition is

given using Eqn.6.3 as r(t) = B
T
z(t). From this relation we get the rate-of-

change of r(t) as

dr

dt
= B

T dz

dt
= B

T
S(z). (6.5)

Denoting the right-hand-side source vector by ṙ
e(z) ≡ B

T
S(z), we get the exact

rate-equations for r as

dr

dt
= ṙ

e(z). (6.6)

The classical RCCE implementation seeks to solve directly for the constraints

r using a set of rate-equations based on Eqn.6.6. To solve the rate-equations

Eqn.6.6 explicitly for the constraints r, we need a closure for the exact source
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vector on the right-hand-side ṙ
e(z) such that

dr

dt
= ṙ(r), (6.7)

where we denote the right-hand-side approximated source vector by ṙ and

henceforth refer to it simply as the source vector.

In the classical RCCE method [40], this closure is provided by assuming that

z is always on the CEM (see Eqn.(5.11) to Eqn.(5.17) in [40]), i.e., z ≡ z
CE(r),

which yields

ṙ ≡ ṙ
CE ≡ B

T
S(zCE(r)), (6.8)

and gives an explicit set of rate-equations for the constraints r as

dr

dt
= B

T
S(zCE(r)). (6.9)

Now given r(0), the reduced reaction mapping r(t) can be obtained by di-

rectly integrating the reduced set of rate-equations given by Eqn.6.9. We hence-

forth refer to this method as simply RCCE.

The closure provided by Eqn.6.8 in the classical RCCE implementation [40]

appears to be a simple and straightforward result. However, there is a logical

flaw in the result given by Eqn.6.8, which is based on inconsistent premises,

namely

1. z remains on the CEM, i.e. z ≡ z
CE(r); and

2. dz/dt = S(zCE(r)).

The composition z remains on the CEM, only if the chemical source term

S(zCE(r)) is entirely in the CEM, i.e., the CEM is an invariant manifold. How-

ever, since the CEM is not an invariant manifold, the reaction trajectory starting
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from a point on the CEM does not necessarily remain on the manifold, which

makes the above RCCE assumptions inherently flawed.

This hidden flawed assumption implied by Eqn.6.8 was first exposed in [90].

The notation used in [90] is different from our notation, and so for consistency,

we explain again this hidden assumption using our notation. In the RCCE

method, by solving a reduced system of rate-equations for the constraints, the

full composition z is assumed to remain on the CEM. Thus to obtain the source

vector ṙ, the chemical source term S is being implicitly projected onto the CEM. In

the closure provided by Eqn.6.8, the chemical source term S is implicitly being

projected in the unrepresented subspace i.e., the orthogonal complement of the

represented subspace spanned by the columns of B. This hidden projection is

illustrated in the sketch Fig.6.2. It is not obvious if this is an accurate projection,

and in fact it is shown in [90] that a more accurate projection is obtained by com-

puting the reaction source vector on a Close Parallel Inertial Manifold (CPIM).

We present results in the later sections which will confirm that the source vector

approximation provided by the RCCE method is not accurate.

Rate-Equations for the Constraint Potentials

Numerical integration of the rate-equations for the constraints given by Eqn.6.9

requires the computation of the constrained-equilibrium composition, zCE(r),

at each sub-step of the integration (as described in more detail in Sec.6.8.4). This

makes the numerical integration of Eqn.6.9 expensive.

To reduce the computational cost, an alternative implementation of RCCE is

described in Section 5.3 of [40] using the Rate Equations for the Lagrange Multi-
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Figure 6.2: Sketch of the composition space (indicated by represented r

and unrepresented u subspaces) illustrating the projections in-
volved in the RCCE method. Given a reduced composition
denoted by r, the classical RCCE implementation computes
the source vector ṙ by computing the chemical source term S

at the constrained-equilibrium composition z
CE (on the CEM)

and then projecting it back to the represented subspace giv-
ing ṙ = B

T
S. This implementation does not take into account

the non-invariance of the CEM manifold. Alternatively, one
could consider a projector denoted by P, which first projects
the source vector S onto the tangent plane of the CEM (denoted
by T) to account for the non-invariance, before projecting it
back to the represented subspace to yield ṙ = B

T
PS.
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pliers. This alternative implementation (also referred to as the Rate-equations for

the constraint potentials) transforms the Rate-equations for the constraints (given

by Eqn.6.9) into Rate-equations for the constraint potentials, thereby solving di-

rectly for the constraint potentials on the CEM and avoiding the need for com-

puting the constrained-equilibrium composition at each sub-step of the integra-

tion. This implementation has been further developed, implemented and tested

in [27, 38, 36].

It is important to note here that the above two implementations of RCCE are

mathematically equivalent and both the implementations make use of the closure

provided by Eqn.6.8 (see Eqn.(4.11), Eqn.(5.19) and Eqn.(5.20) in [40]). Numer-

ically, however, the solution obtained by the two implementations may differ

due to ODE integration errors. As the numerical integration sub-step time size

approaches zero (i.e., for very small ODE integration error tolerance), the two

implementations should yield the same solution and thus are consistent with

each other. (This has been discussed in a previous work: refer to Fig.1 and the

following discussion in [89].) As mentioned later in Sec.6.8.4, in this work we

use DDASAC for ODE integration with a relatively small error tolerance of 10−8.

Hence we expect both the implementations to yield similar solutions (within the

ODE integration error tolerance).

To assess the accuracy of the classical RCCE implementation, either of the

aforementioned implementations can be used. In this work, we use the former

implementation of RCCE, i.e., the implementation using the rate-equations for

the constraints, which will henceforth be simply referred to as the RCCE imple-

mentation.

Unlike the RCCE/TIFS implementation, both the aforementioned imple-
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mentations of RCCE (implicitly) attempt to accurately follow the CEM in the

full composition space to obtain the reaction mapping r(t). However, as will

be shown in the later sections, the projection (Eqn.6.8) used in the above imple-

mentations of RCCE yields an inaccurate reaction mapping.

In the next section we describe the CPIM method and then in the follow-

ing section we describe the new Reaction-mixing Attracting Manifold Projector

(RAMP), as an extension of the CPIM method, which provides a more accurate

projection for implementing the RCCE method.

6.5 Accurate Projection for the RCCE Method

It is clear that the exact rate-equations for the constraints are given by Eqn.6.6,

however we need a closure for the right-hand-side source vector denoted by ṙ.

In the previous section we showed that the closure provided by the RCCE

method is inaccurate because the CEM is not an invariant manifold. One way

to account for the non-invariance of the CEM is to replace the chemical source

term S in Eqn.6.8 by a projection of S onto the tangent plane of the CEM. Then,

consistently, the composition remains on the CEM.

To this end, let us consider a general ns × ns projection matrix P such that

the source vector ṙ is obtained (as shown in Fig.6.2) by

ṙ = B
T
PS. (6.10)

There are various choices available for the projection P:

1. project in the unrepresented subspace, as in RCCE;
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2. project in the CEM normal subspace;

3. project in the “fast” subspace, as given by ILDM [55] or CSP [44];

4. project using a thermodynamic projector [26];

5. project using a close-parallel manifold, as given by CPIM [90];

Projection (1) implied by RCCE is not accurate as will be shown in the later

sections. Projection (2) in the CEM normal subspace depends on the scaling of

represented variables and thus contains arbitrariness. Different projections can

be obtained if species composition is represented using mass fractions instead of

specific moles. Projections (3) and (4) provide more accurate projections, how-

ever their implementation is expensive and quite involved. Projection (5) pro-

vides a simple correction for the non-invariance of the CEM and an accurate

projection, but has issues involving unrealizability and negative entropy pro-

duction [90].

The projections given by ILDM, CSP and CPIM are based solely on the ther-

mochemistry. This can become problematic when reactions are not fast (e.g., at

low temperatures) leading to unrealizability and negative entropy production.

The Reaction-mixing Attracting Manifold Projector (RAMP) method introduced

below helps address some of these issues.

Here we first present a mathematical formulation for the CPIM method (sim-

ilar to that provided in [90], however using our notation), and then introduce

the RAMP method.
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6.5.1 Subspaces and Projections

In the following sections we work with subspaces and projections and so before

proceeding further we describe here the notation used for denoting subspaces.

The columns of the constraint matrix B are not necessarily orthogonal, and

it is more convenient to work in terms of orthonormal basis vectors for comput-

ing projections. Using the QR or SVD factorization of B we obtain a set of nr

orthonormal basis vectors (for the represented subspace) denoted by matrix R

of size ns × nr such that span(R) = span(B); and a set of nu orthonormal basis

vectors (for the orthogonal complement unrepresented subspace) denoted by

matrix U of size ns × nu such that span(U) = span(B)⊥.

Another important subspace is formed by the tangent vectors of the CEM.

Consider an ns × nr matrix T
CEM whose columns are the tangent vectors of the

CEM such that

T
CEM =

∂zCE

∂r
. (6.11)

The column vectors of TCEM span the tangent subspace of the CEM, however

the column vectors need not be orthogonal. Using the QR or SVD factorization

of TCEM we obtain a set of nr orthonormal basis vectors (for the CEM tangent

subspace) denoted by matrix T of size ns×nr such that span(T) = span(TCEM),

and a set of nu orthonormal basis vectors (for the orthogonal complement CEM

normal subspace) denoted by matrix N of size ns × nu such that span(N) =

span(TCEM)⊥.

We now have two sets of subspaces (or basis vectors) which together span

the full ns-dimensional composition space
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1. the represented-unrepresented subspaces spanned by {R,U}, respec-

tively;

2. the CEM tangent-normal subspaces spanned by {T,N}, respectively.

It should be noted that the represented-unrepresented subspaces are fixed once

the matrix B is known, whereas the CEM tangent-normal subspaces are local to

the CEM and vary as we move along the CEM.

Any ns-vector x in the full space can be decomposed in the following two

ways

x = R(RT
x) +U(UT

x), (6.12)

or

x = T(TT
x) +N(NT

x). (6.13)

6.5.2 Close Parallel Inertial Manifold

In the CPIM method, it is hypothesized that there is a manifold close-and-

parallel to the CEM which is invariant with respect to

dzCP (t)

dt
= S(zCP (t)), (6.14)

where z
CP is a point on the manifold. This means that any reaction trajectory

originating from a point on the manifold, by hypothesis, remains on the mani-

fold.

The steps involved in the CPIM method are illustrated in Fig.6.3. For a given

constraint r, the constrained-equilibrium composition on the CEM is denoted by

z
CE ≡ z

CE(r). The chemical source term at zCE is denoted by S
CE ≡ S(zCE).
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Figure 6.3: Sketch of the composition space (indicated by represented r

and unrepresented u subspaces) illustrating the projections in-
volved in the CPIM method. Given a reduced composition
r, the RCCE implementation computes the source vector ṙ

CE

by projecting the chemical source term S
CE computed at the

constrained-equilibrium composition z
CE onto the represented

space yielding ṙ
CE = B

T
S
CE . Alternatively, in the CPIM

method, a manifold close-and-parallel to the CEM is consid-
ered to evaluate the chemical source term S

CP (which lies en-
tirely in the CEM and CPIM tangent space denoted by T). In
the CPIM method, the source vector is given by ṙ

CP = B
T
S
CP ,

which can be rewritten in terms of a projector P such that
ṙ
CP = B

T
PS

CE .
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Now we consider a point zCP on the CPIM such that

B
T
z
CP = B

T
z
CE = r, (6.15)

and we denote

δzCP ≡ z
CP − z

CE. (6.16)

Since B
T δzCP = 0, this means that δzCP lies entirely in the unrepresented sub-

space, and so we can express

δzCP = UδuCP , (6.17)

where δuCP is an nu-vector in the unrepresented subspace spanned by U.

By the close-and-parallel assumption, zCP is close to z
CE , and so we can

express SCP ≡ S(zCP ) using a linear approximation about SCE as follows

S
CP = S

CE + JδzCP = S
CE + JUδuCP , (6.18)

where J is the Jacobian evaluated at zCE

J ≡ ∂S(zCE)

∂z
. (6.19)

Since the CPIM is invariant and parallel to CEM, at z
CP the chemical source

term S
CP ≡ S(zCP ) must be in the CEM tangent subspace. This enforces that

N
T
S
CP = 0, which gives

N
T
S
CE +N

T
JUδuCP = 0, (6.20)

and solving for δuCP we obtain

δuCP = L
−1
N

T
S
CE, (6.21)

where we denote

L ≡ −N
T
JU. (6.22)
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Substituting δuCP in Eqn.6.17 we obtain

z
CP = z

CE +UL
−1
N

T
S
CE, (6.23)

and using Eqn.6.18 we get

S
CP = (I+ JUL

−1
N

T )SCE. (6.24)

We now use S
CP to compute the source vector ṙ in the rate-equations for the

constraints Eqn.6.7 and denote it as

ṙ ≡ ṙ
CP ≡ B

T
S
CP . (6.25)

Thus the rate-equations for the constraints Eqn.6.7 using the CPIM approach are

given as

dr

dt
= B

T
S
CP , (6.26)

which can be re-written as

dr

dt
= B

T
PS(zCE(r)), (6.27)

where

P ≡ I+ JUL
−1
N

T , (6.28)

provides a more accurate projection of the chemical source term evaluated on

the CEM onto the tangent subspace.

The main issues involved in the CPIM method as highlighted in [90] are:

1. if the matrix L is ill-conditioned (especially at low temperatures) then the

composition z
CP can be unrealizable;

2. the linear approximation of SCP (for ill-conditioned matrix L) may lead to

negative entropy production.
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These issues were handled in the CPIM method [90] by considering a linear

combination of SCP and S
CE to ensure positive entropy production and realiz-

ability.

Here we present the Reaction-mixing Attracting Manifold Projector (RAMP)

[71] as an extension to the CPIM approach, which provides a much simpler way

of handling the unrealizability and negative entropy production issues.

6.6 Reaction-mixing Attracting Manifold Projector

In the RAMP approach, similar to CPIM, a hypothetical manifold close-and-

parallel to the CEM is considered, however now this manifold is assumed to be

invariant with respect to the following evolution equation

dzCP (t)

dt
= S(zCP (t))− ω(zCP (t)− z

CE(t)), (6.29)

where z
CP (t) is a point on the CPIM; zCE(t) ≡ z

CE(r = B
T
z
CP (t)) is a point

on the CEM such that BT
z
CP = B

T
z
CE ; and ω is a specified mixing (relaxation)

rate.

The inclusion of the additional mixing term in the evolution equation

Eqn.6.29 is inspired by the general class of reaction-diffusion manifolds as de-

scribed in [71], and in particular the REDIM method [13]. The inclusion of the

additional mixing term helps address the realizability issues encountered in the

CPIM approach, where the evolution equation Eqn.6.14 contains only the reac-

tion term.

For the RAMP approach, the invariance condition for the evolution equation
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Eqn.6.29 is given as

N
T

[

dzCP (t)

dt

]

= 0. (6.30)

Using the same notation as for the CPIM, we can express

dzCP (t)

dt
= S

CP − ωδzCP . (6.31)

Following the same steps as for the CPIM method we can express S
CP by a

linear approximation given by Eqn.6.18, and δzCP = UδuCP , which gives

dzCP (t)

dt
= S

CE + (J− ωI)UδuCP . (6.32)

Using the invariance condition we obtain

N
T
S
CE +N

T (J− ωI)UδuCP = 0, (6.33)

which gives

δuCP = L
−1
N

T
S
CE, (6.34)

where

L ≡ L(ω) ≡ −N
T (J− ωI)U. (6.35)

So the only difference from the CPIM method is the additional ωI term in the

definition of L. This term makes L better conditioned, because by assumption if

the close-parallel manifold is an attracting manifold (as is implicitly assumed),

then the eigenvalues of the Jacobian J have negative real parts, which are fur-

ther decreased by ω due to the introduction of the relaxation term in the evolu-

tion equation.

The new projector with the RAMP method (which is a function of the relax-

ation parameter ω) is given as

P(ω) ≡ I+ JUL
−1
N

T , (6.36)
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with L given by Eqn.6.35.

The source vector approximation given by the RAMP method is denoted as

ṙ ≡ ṙ
CP (ω) ≡ B

T
P(ω)S(zCE(r)). (6.37)

The rate-equations for the constraints Eqn.6.7 using the RAMP approach are

given as

dr

dt
= B

T
P(ω)S(zCE(r)). (6.38)

It is important to highlight here the properties of the RAMP method for the

two limiting values of the relaxation rate parameter ω:

1. ω = 0. From the definition of the evolution equation Eqn.6.29, it is obvious

that ω = 0 corresponds to the CPIM approach, with the projector P(ω =

0) = P provided by the CPIM method.

2. ω → ∞. From the definition of L (Eqn.6.35), we see that L−1(ω → ∞) = 0,

i.e., inverse of L is singular. This yields from Eqn.6.36, that P(ω → ∞) = I,

and the RAMP method corresponds to the classical RCCE implementa-

tion, since ṙ
CP (ω → ∞) = B

T
P(ω → ∞)SCE = B

T
S
CE = ṙ

CE .

In short this shows that the value of ω controls the closeness of the CPIM to

the CEM in the RAMP approach. For ω = 0, we obtain the CPIM method, and

for ω → ∞, the CPIM collapses with the CEM and we get back the classical

RCCE implementation. We will see in the results presented in the following

sections, that by choosing an appropriate value of ω in the RAMP approach, we

can address the unrealizability issues of the CPIM method and also account for

the non-invariance of the CEM-based RCCE method.
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Figure 6.4: Sketch of the composition space (indicated by represented r

and unrepresented u subspaces) illustrating reaction mapping
computation using the three implementations of the RCCE
method: RCCE/TIFS, RCCE and RCCE/RAMP. Given the ini-
tial reduced composition r(0), (1) the RCCE/TIFS implemen-
tation computes the reaction mapping by following the trajec-
tory in full space starting from z

CE(0) to obtain z(t) followed
by reduction to yield the reaction mapping r(t) [RCCE/TIFS]
= B

T
z(t); (2) the RCCE implementation solves a reduced sys-

tem of ODEs with source vector ṙ = B
T
S to obtain r(t) [RCCE];

and (3) the RCCE/RAMP implementation solves the reduced
system of ODEs (as in RCCE) using an alternative source vector
ṙ = B

T
PS to obtain r(t) [RCCE/RAMP].

6.7 Partially-Stirred Reactor

In this section we describe the partially-stirred reactor (PaSR) test case used to

study the three implementation of RCCE (illustrated in Fig.6.4) described in this

work:

1. RCCE/TIFS: the implementation used in our previous works (described
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in Sec.6.4.1);

2. RCCE: the classical RCCE implementation (described in Sec.6.4.2); and

3. RCCE/RAMP: the new implementation based on CPIM (described in

Sec.6.6).

To compare these different implementations of the RCCE method, we con-

sider methane/air premixed combustion in a partially-stirred reactor (PaSR). A

detailed description of the PaSR is provided in [66]: here we briefly describe the

details pertinent to the current study.

The PaSR can be used to study PDF particle implementation applied to a

statistically homogeneous flow. In the PaSR, the thermochemical composition

is represented by a fixed number of particles. The particle composition evolves

due to mixing and reaction in fractional steps. The mixing is implemented using

a pairwise mixing model [66]. Our implementation of PaSR allows the particle

chemistry to be represented in any one of the following ways

1. detailed chemistry with ns species, with reaction mapping computed us-

ing ODE integration (also referred to as direct evaluation);

2. detailed chemistry with ns species, with reaction mapping computed us-

ing ISAT;

3. reduced chemistry with nr represented variables using RCCE, with reac-

tion mapping computed using the combined ISAT/RCCE approach [32].

For methane/air combustion in the PaSR, we use the same operating condi-

tions as in [32]. The PaSR involves two inflowing streams: (1) a stoichiometric

premixed stream of methane/air mixture at 600 K; and (2) a pilot stream of
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equilibrium products of composition of stream 1. The streams flow into the

PaSR with a mass flow rate ratio of 0.95:0.05. Initially all the particles are set to

the pilot stream composition. The pressure is atmospheric throughout. Other

important parameters include: the number of particles, Np = 100; the residence

time, τres = 20 ms∗; the mixing time scale, τmix = 1 ms; and the pairing time

scale, τpair = 1 ms. The chemistry is represented using the GRI-Mech 1.2 mech-

anism involving ns = 31 species composed of ne = 4 elements.

We perform a PaSR simulation with a reaction time step, ∆t = 0.033 ms,

and reaction mapping computed using ISAT (with error tolerance, ǫtol = 10−5)

with the detailed mechanism. During the simulation, we save the compositions

of the first N particles that result in an add in the ISAT table (and so are dis-

tinct) denoted by z
(n)(0) and their reaction mappings z

(n)(∆t) for n = 1 to N .

We use these test compositions to study different implementations of the RCCE

method. In this work, in all the tests, we use N = 2, 500 test compositions.

Henceforth, we use t to denote a general reaction time step, and ∆t to denote

the exact time step ∆t = 0.033 ms used in the PaSR test to compute the reaction

mappings.

It is important to note here that, in the PaSR, reaction causes the particle com-

positions to move towards to a low-dimensional attracting manifold and mixing

causes the particle compositions to be pulled away from this manifold (as illus-

trated in Fig.6.5). Hence the test compositions at the beginning of the reaction

fractional step z
(n)(0) are expected to be away from the attracting manifold, and

the compositions at the end of the step z
(n)(∆t) are expected to be closer to a

low-dimensional attracting manifold. Unless otherwise specified explicitly, in

the following tests to study different implementations of RCCE we use the test

∗the residence time was misreported in [32] to be τres = 10 ms
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Figure 6.5: Sketch depicting a test composition z(0) and its reaction map-
ping z(t) in the full composition space (indicated by the repre-
sented r and unrepresented u subspaces). The reaction makes
the test composition move closer to a low-dimensional attract-
ing manifold. In the represented subspace, ṙe = B

T
S denotes

the exact source vector and ṙ denotes a source vector approx-
imation obtained using one of the RCCE implementations. In
addition, re(t) = B

T
z(t) denotes the exact reaction mapping

and r(t) denotes the reaction mapping obtained using one of
the RCCE implementations.

compositions from the beginning of the reaction fractional step z
(n)(0), which

typically will be encountered in real PDF computations. We use the test com-

positions z(n)(∆t) only in a few cases to study the validity of the CPIM approx-

imation.
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Table 6.1: Sets of represented species obtained using GALI (with 31-
species GRI-Mech 1.2 mechanism) for dimension reduction of
methane/air premixed combustion with RCCE for nrs = 9 to 15
(obtained from Table 3 in [32]).

nrs Represented Species

9 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3

10 CH4, CO2, H2, O2, H, OH, O, CH2O, C2H6, C2H4

11 CH4, CO2, H2, O2, H, OH, O, H2O, CH3, HO2, CO

12 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3, HO2, CO, H2O

13 CH4, CO2, H2, O2, H, OH, O, CH3OH, CH3, HO2, CO, H2O, CH2CO

14 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3, HO2, CO, H2O, CH2CO, C2H5

15 CH4, CO2, H2, O2, H, OH, O, CH2O, CH3, HO2, CO, H2O, CH2CO, C2H5, CH2

6.7.1 PaSR Tests to Study RCCE Implementations

We use the test compositions saved from the PaSR run in the full dimension to

study different implementations of the RCCE method. We perform RCCE tests

over a range of values of nrs from 9 to 15, corresponding to nr = nrs + ne in

the range 13 to 19 (which yield less than 3% reduction-tabulation error [32]) with

represented species selected using GALI. We use the same represented species

as those listed in Table 3 in [32], which are obtained using GALI for the same test

case – methane/air premixed combustion in PaSR with chemistry represented

using the 31-species GRI-Mech 1.2 mechanism – as used in the current study.

The relevant sets of represented species for nrs = 9 to 15 used in this study are

listed again in Table 6.1.

Now for a specified set of represented species for performing dimension re-

duction with RCCE, we form the constraint matrix B. At each selected particle
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composition z ≡ z
(n)(0) (and in some cases z ≡ z

(n)(∆t)) for n = 1 to N = 2, 500,

we then compute

• the chemical source term, S ≡ S(z);

• the exact source vector, ṙe = B
T
S (as illustrated in Fig.6.5);

• the reduced composition, r = B
T
z;

• the constrained-equilibrium composition, zCE ≡ z
CE(r);

• the chemical source term, SCE ≡ S(zCE);

• the orthogonal projections of S and S
CE onto the CEM tangent plane, de-

noted by St and S
CE
t , respectively; and the angles between S and St, and

S
CE and S

CE
t , denoted by ∠(S,St) and ∠(SCE,SCE

t ), respectively, to assess

the non-invariance of the CEM manifold;

• the source vector given by RCCE, ṙ ≡ ṙ
CE = B

T
S
CE ;

• the source vector given by RAMP, ṙ ≡ ṙ
CP (ω) = B

T
P(ω)SCE , for different

values of the relaxation rate ω;

• the exact reaction mapping r
e(t) = B

T
z(t) and reaction mappings r(t)

using the three implementations of RCCE (as illustrated in Fig.6.4 and

Fig.6.5).

In the following section we look at various scatter plots to analyze these data,

and in addition quantify and compare the errors involved in the three imple-

mentations of RCCE.
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6.8 Results

6.8.1 Non-Invariance

In this section we examine the “degree” of non-invariance of the CEM, by look-

ing at the angle between the chemical source term S
CE and its orthogonal pro-

jection S
CE
t on the CEM (denoted by ∠(SCE,SCE

t )). Fig.6.6 shows scatter plots of

∠(SCE,SCE
t ) versus temperature T computed using the test compositions saved

at t = 0 and t = ∆t. If the CEM were an invariant manifold, then we would

have ∠(SCE,SCE
t ) = 0. However, in these scatter plots we see that ∠(SCE,SCE

t )

is as large as 35o at both t = 0 and t = ∆t. This confirms that the CEM is not an

invariant manifold, and in fact the reaction trajectories could be moving away

from the manifold at large angles. This non-invariance introduces a large er-

ror in the RCCE implementation, in which S
CE is directly projected onto the

constrained subspace without accounting for this non-invariance.

We now examine the angle between the chemical source term S (computed at

the test composition) and its orthogonal projection onto the CEM St (denoted by

∠(S,St)), which gives a measure of the orientation of the chemical source term

S relative to the CEM. Fig.6.7 shows scatter plot of ∠(S,St) versus temperature

T computed using the test compositions saved at t = 0 and t = ∆t. Here we

see that at t = 0, the angle ∠(S,St) is relatively large (around 10o) because the

test compositions are pulled away from the attracting manifold due to mixing.

However, at t = ∆t, the angle ∠(S,St) is very small (less than 2o for T > 1000

K), which shows that the reaction takes the compositions closer to an attracting

manifold, and this attracting manifold is nearly parallel to the CEM (because

the angle is measured relative to the CEM). This observation confirms the CPIM
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Figure 6.6: Scatter plots of angle (in degrees) between the chemical source
term S

CE (evaluated on the CEM) and its orthogonal projection
onto the CEM S

CE
t versus temperature T computed using the

test compositions at t = 0 (top) and at t = ∆t (bottom).
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Figure 6.7: Scatter plot of angle (in degrees) between the chemical source
term S and its orthogonal projection onto the CEM St versus
temperature T computed using the test compositions at t = 0
(top) and at t = ∆t (bottom).
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idea that there exists an invariant manifold close-and-parallel to the CEM. This

is the reason why the CPIM and its extension RAMP are able to give a better

approximation for the RCCE source vector (as quantified in the results included

below).

6.8.2 Realizability and Entropy Production

Here we briefly examine the realizability and entropy production issues high-

lighted in the CPIM work [90] and mentioned in Sec.6.5.2, which are also perti-

nent to the extended RAMP approach.

The RCCE/TIFS implementation computes the reaction mapping following

the reaction trajectory in the full space by integrating the full system of ODEs

(Eqn.6.1) using the chemical source term S(z). Since there is no projection in-

volved in this method, there are no realizability or negative entropy production

issues in this implementation.

The RCCE implementation uses a reduced system of ODEs obtained by pro-

jecting the chemical source term S(z) directly onto the constrained subspace

given as ṙ = B
T
S(z). During the computation of the reaction mapping, the

chemical composition evolves through a series of constrained-equilibrium com-

positions on the CEM, and it is shown in [40] that this implementation ensures

(mathematically) non-negative entropy production and realizability.

The CPIM and RAMP approaches use an alternative projection P which

need not necessarily ensure non-negative entropy production as described in

[90]. There are two main concerns:
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1. for an ill-conditioned matrix L(ω), the composition z
CP (ω) may not be

realizable; and

2. the linear approximation S
CP (ω) (for ill-conditioned matrix L(ω)) may

lead to negative entropy production.

However, since z
CP (ω) does not directly appear in the definition of the projector

P(ω) given by Eqn.6.36, the realizability of zCP (ω) is not a major concern. It is

only the linear approximation to the chemical source term S
CP (ω) that directly

influences the projector, P(ω).

To analyze these issues we compute the following quantities using the saved

test compositions:

1. the minimum species composition in z
CP (ω) denoted by min(zCP ); and

2. the ratio of the entropy production given by the RAMP approach denoted

by ṡCP to the actual entropy production at the test composition denoted

by ṡ (which are defined below).

The entropy production rate ṡ at a test composition z is given as

ṡ = ηT (z)S(z), (6.39)

where η is the entropy gradient vector (at constant enthalpy h and pressure p)

given as

η =
∂s

∂z

∣

∣

∣

∣

h,p

= s− h

T
, (6.40)

where s and h are molar entropies and enthalpies, respectively.

The entropy production given by the RAMP approach denoted by ṡCP is

given as

ṡCP = ηT (zCE)PS(zCE). (6.41)
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First we look at the realizability issue. We consider the test compositions

saved at t = 0, and compute the minimum species composition in z
CP denoted

by min(zCP ) at each test composition. For z
CP to be realizable, we must have

min(zCP ) ≥ 0. Fig.6.8 shows the value of -min(zCP ) for a range of values of

ω from 0 to 109 s−1. Each subplot shows only the test compositions for which

z
CP is unrealizable, i.e. -min(zCP ) > 0. The title of each subplot indicates the

percentage of test compositions (out of the overall 2,500) for which we have an

unrealizable z
CP , i.e. -min(zCP ) > 0. In addition, in parentheses, we indicate

the percentage of these unrealizable compositions for which we have the value

of -min(zCP ) above a reference value of 10−12 (indicative of round-off error). For

this test case, we notice that at small values of ω, over 60% of the compositions

are unrealizable and some of them have relatively large negative compositions

in the order -10−4. However as the value of ω increases, the percentage of un-

realizable compositions decreases to less than 7% for values of ω > 105, and

less than 30% of these unrealizable compositions have min(zCP ) < −10−12. The

maximum magnitude of the negative species composition decreases to a value

of less than 10−6 for ω ≥ 105 s−1 and a value less than 10−22 for ω ≥ 108 s−1. As

described earlier, larger values of ω pull the CPIM manifold closer to the CEM

and improve the conditioning of the L(ω) matrix, thereby making more compo-

sitions z
CP (ω) realizable. Nonetheless, as mentioned earlier, since z

CP (ω) does

not directly appear in the definition of the projector P(ω), realizability of zCP (ω)

is not a major concern.

Next we look at the ratio of entropy productions, ṡCP/ṡ, as shown in Fig.6.9

for the same range of values of ω. We notice that for the current test case, none of

the test compositions yields a negative entropy production using the RAMP ap-

proach (even at ω = 0, which corresponds to the CPIM method). However, we
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sus temperature T computed using the saved test compositions
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ṡ

ω = 0
0.2

0.6

1.0

1.4

1.8

ω = 10

0.2

0.6

1.0

1.4

1.8

ṡC
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do notice that at small values of ω and at low temperatures, the entropy produc-

tion is significantly underpredicted (by about 80%) using the RAMP approach

compared to the actual entropy production at the test composition. We also no-

tice that for values of ω > 107, the entropy production (predicted by the RAMP

method) is overpredicted by 4 to 8 times in the temperature range around 1,000

K. At large values of ω, zCP approaches z
CE and S

CP approaches S
CE , which

in the temperature range around 1,000 K is misaligned with the CEM and S (as

inferred from Fig.6.6 and Fig.6.7), and this might be a possible reason for the

overprediction of entropy in this temperature range. We analyzed these quanti-

ties using test compositions saved at t = ∆t as well (results not included), and

observed a similar behavior.

In summary, compared to the CPIM method [90], the RAMP approach pro-

vides a good control over realizability and entropy production using the relax-

ation rate parameter ω.

6.8.3 Accuracy

In this section we look at three measures of error to compare the accuracy of

the three implementations of RCCE. The three measures of error (which are de-

scribed in more detail in the following sections) include:

1. source vector error: this is a measure of error in the source vector ṙ used in

the RCCE and RCCE/RAMP implementations relative to the exact source

vector ṙe;

2. reaction mapping error: this is a measure of error in the reaction mapping

r(t) obtained using the three implementations of RCCE, relative to the ex-
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act reaction mapping r
e(t) obtained without using the RCCE dimension

reduction;

3. reduction-tabulation error: this a measure of error in the reaction map-

ping obtained using the combined ISAT/RCCE methodology (as de-

scribed in our previous work [29]) with the three implementations of

RCCE.

Source Vector Error

We define the error in the source vector approximation ṙ(t) relative to the exact

source vector ṙe(t) (as illustrated in Fig.6.5) by

ǫ(ṙ(t)) =
[ṙ(t)− ṙ

e(t)]rms

[ṙe(t)]rms

, (6.42)

where the operator [x]rms is defined as

[x]rms =

√

√

√

√ 1
N

N
∑

n=1

‖x(n)‖2, (6.43)

with ‖x‖ denoting the vector 2-norm. We measure the error ǫ(ṙ(t)) at two dis-

crete times, t = 0 and t = ∆t, using the saved test compositions.

Fig.6.10 shows the source vector error ǫ(ṙ(t)) computed using the saved test

compositions at t = 0 and t = ∆t for the RCCE and RCCE/RAMP implemen-

tations using nrs = 11 represented species (listed in Table 6.1). For the RAMP

implementation, the error is computed for a range of values of relaxation rate ω

from 0 to 1010 s−1.

At t = 0, we notice that both the RCCE and RCCE/RAMP implementations

incur same error (around 20%) for small values of ω. We see a slight reduction in
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min(ǫ(ṙCP (ω)))

RCCE

0 101 102 103 104 105 106 107 108 109 1010

ω(s−1)

100

101

102

ǫ
(ṙ
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Figure 6.10: Source vector error in the RCCE and RCCE/RAMP (for vari-
ous values of ω) implementations at nrs = 11 computed using
test compositions saved at t = 0 (top) and t = ∆t (bottom).
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the source vector error using the RAMP approach (to about 11%) near ω = 107

s−1. Presumably this value of ω provides the best approximation for the test

compositions at t = 0 using the RAMP approach. As the value of ω further in-

creases, the error using the RAMP implementation again increases and reaches

the same value as with RCCE at ω = 109 s−1.

At t = 0, the test compositions are away from the attracting manifold (due

to mixing) and thus both RCCE and RCCE/RAMP yield a similar level of accu-

racy. However, at t = ∆t, we notice that for small values of ω the source vector

error using RCCE/RAMP is considerably smaller (around 2%) than the error

incurred using RCCE (over 50%). The test compositions at t = ∆t are closer

to an attracting manifold which is well approximated by the CPIM used in the

RAMP approach. The RCCE method incurs large errors due to the inaccurate

projection used to compute the source vector. The RAMP approach however

yields a more accurate projection (using the CPIM), which in turn provides a

more accurate source vector approximation as confirmed by these error mea-

surements. We do notice that as the value of ω increases beyond 104 s−1, the

error incurred by the RCCE/RAMP approach starts increasing and approaches

the same level as RCCE at ω = 109 s−1. This, as explained earlier, is because

for larger values of ω, the CPIM is pulled closer to the CEM, and the RAMP

approach yields the same source vector as the RCCE approach. In this case the

minimum error is attained at ω = 104 s−1. We computed the source vector er-

ror for a few other values of nrs (not shown), and observed a similar behavior.

The RCCE/RAMP and RCCE approaches yield similar levels of error at t = 0,

however RCCE/RAMP yields significantly lower errors at t = ∆t, and for this

test the minimum error is always achieved around ω = 104 s−1. For this reason,

in the following tests, we use a fixed value of ω = 104 s−1 in the RCCE/RAMP
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implementation.

We think the value of ω which provides the best source vector approximation

should be indirectly related to the flow mixing time scale, τmix. The mixing time

scale determines the extent to which particle compositions can move away from

the attracting manifold in the composition space. Similarly the ω value in the

RAMP approach controls the position of the CPIM relative to the CEM. Hence,

we think, a value of ω in the range 0.1/τmix to 10/τmix should provide good

source vector approximation. In this work we have τmix = 1 ms, which yields

the good range of values of ω to be from 100 to 10,000 s−1.

Fig.6.11 shows the source vector error ǫ(ṙ(t)) computed for a range of values

of nrs (using represented species listed in Table 6.1) at t = 0 and t = ∆t. For the

RCCE/RAMP implementation, we use a fixed value of ω = 104 s−1. Here again

we see that at t = 0 the errors using the two implementations are comparable,

however at t = ∆t, RCCE/RAMP yields an order of magnitude smaller error

than the RCCE.

Reaction Mapping Error

Here we compare the relative error in the reaction mapping r(t) obtained using

different implementations of RCCE relative to the exact reaction mapping r
e(t)

(as illustrated in Fig.6.5). For this, at each test composition z ≡ z
(n)(0) we de-

fine r(0) = B
T
z and then compute the reaction mapping using the following

methods (as illustrated in Fig.6.4 and Fig.6.5)

• Direct Evaluation: the exact reaction mapping, re(t) = B
T
z(t), where z(t)

is obtained using ODE integration in the full space starting from z;
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• RCCE/TIFS: r(t) = B
T
z(t), where z(t) is computed using ODE integration

in the full space starting from z
CE(r(0));

• RCCE: r(t) obtained by integrating the reduced system of ODEs (Eqn.6.7)

for the constraints starting from r(0) with the source vector ṙ ≡ ṙ
CE ; and

• RCCE/RAMP: r(t) obtained by integrating the reduced system of ODEs

(Eqn.6.7) for the constraints starting from r(0) with the source vector ṙ ≡

ṙ
CP .

We define the error in the reaction mapping r(t) as

ǫ(r(t)) =
[r(t)− r

e(t)]rms

[re(t)− r(0)]rms

, (6.44)

where the rms error is computed as before using Eqn.6.43.

Fig.6.12 shows the reaction mapping error ǫ(r(t)) for varying reaction time

step from t = 10−12 s to t = 10−2 s using the three implementations of RCCE

with nrs = 11 and nrs = 15 represented species (listed in Table 6.1). The RAMP

implementation uses a fixed value of ω = 104 s−1. For small reaction time steps,

we notice that all the three implementations yield similar reaction mapping er-

ror.

From the definition of the reaction mapping error Eqn.6.44, we find that as

t → 0 we get

lim
t→0

r(t) = r(0) + tṙ(0), and lim
t→0

r
e(t) = r(0) + tṙe(0), (6.45)

which gives

lim
t→0

ǫ(r(t)) =
[ṙ(0)− ṙ

e(0)]rms

[ṙe(0)]rms

, (6.46)

and hence

lim
t→0

ǫ(r(t)) = ǫ(ṙ(0)). (6.47)
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Figure 6.12: Reaction mapping error for varying reaction time step t at
nrs = 11 (top) and nrs = 15 (bottom) using the three imple-
mentations: RCCE/TIFS, RCCE and RCCE/RAMP. The gray
colored highlighted region shows the typical range of values
of t (from 1 µs to 1 ms) used in real LES/PDF computations.
The dashed line indicates t = ∆t.
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So for small reaction time steps, the reaction mapping error ǫ(r(t)) for the RCCE

and RCCE/RAMP implementations is the same as the corresponding source

vector error ǫ(ṙ(0)) at the same value of nrs as seen in Fig.6.11. Also, the reac-

tion mapping error for the RCCE/TIFS implementation is the same as the er-

ror for the RCCE implementation, since both use the chemical source term S
CE

computed at zCE(r(0)) for ODE integration.

At both nrs = 11 and nrs = 15, we notice that as the reaction time step in-

creases, the error in the RCCE/TIFS and RCCE/RAMP implementations starts

decreasing. This is because in the RCCE/TIFS implementation we solve the

full system of (unconstrained) ns ODEs which provides an accurate reaction

mapping; and in the RCCE/RAMP implementation the RAMP approach pro-

vides an accurate approximation for the source vector at large time steps (as

seen in Fig.6.10 and Fig.6.11). However, we notice that the error in the RCCE

implementation grows or remains constant for larger reaction time steps. This

is because the RCCE approach does not provide a good approximation for the

source vector (as seen in Fig.6.11), and so the error in the reaction mapping

grows for large reaction time steps. These results show that both RCCE/TIFS

and RCCE/RAMP approaches are accurate and yield similar levels of error:

however, the RCCE approach yields significantly larger errors at large reaction

time steps. Fig.6.12 highlights the typical range of values of reaction time step

t from 1 µs to 1 ms that we may use in real LES/PDF computations. We no-

tice that in this range the RCCE/TIFS and RCCE/RAMP implementations both

yield less than 4% and 2% errors at nrs = 11 and nrs = 15, respectively. How-

ever, the RCCE implementation yields over 30% error.
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Figure 6.13: Reaction mapping error for large reaction time steps t at nrs =
11 and nrs = 15 using the RCCE/TIFS implementation.

We notice that the error in the RCCE/TIFS and RCCE/RAMP implementa-

tions increases for time steps beyond t = 10−4 s. Ideally, the reaction mapping

error should approach zero for large reaction time t because both r(t) and r
e(t)

in the definition of ǫ(r(t)) Eqn.6.44 should reach the equilibrium composition as

t → ∞. The ODE integration using DDASAC becomes expensive at large reac-

tion time steps because the solution is computed by taking many smaller sub-

steps (as explained later in Sec.6.8.4). Thus we examine the reaction mapping

error at very large reaction time steps using the RCCE/TIFS implementation

alone and the results are presented in Fig.6.13. We find that, as expected, the

reaction mapping error approaches zero at very large reaction time steps over

103 s. The relatively large variations in the reaction mapping error for time steps

beyond t = 10−4 and the long time required for the error to reach zero can be
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attributed to different ignition delay times for different test compositions. Since

the test compositions obtained from PaSR have a wide range of initial tempera-

tures from 600 K to equilibrium temperature (around 2,400 K), the ignition delay

time for different test compositions can vary by orders of magnitude thereby re-

quiring a very long time for all the test compositions to reach equilibrium.

In summary these results show that both the RCCE/TIFS and RCCE/RAMP

implementations yield significantly smaller error than the RCCE implementa-

tion.

Reduction-Tabulation Error

In [32], we describe our combined dimension reduction and tabulation

ISAT/RCCE methodology. In this combined methodology, the reaction map-

ping computation using RCCE is tabulated using the ISAT algorithm to save

computational time in large scale LES/PDF computations [30]. Here we mea-

sure the combined reduction-tabulation error incurred using this ISAT/RCCE

methodology with RCCE implemented using the three methods described. We

use the same definition of error as in our previous work [32], given as

ǫRT =
[zr(∆t)− z

r
RT (∆t)]rms

[zr(∆t)− zr(0)]rms

, (6.48)

where z
r(0) and z

r(∆t) denote the composition of the represented species ob-

tained from z(0) and z(∆t), respectively; and z
r
RT denotes the reaction mapping

obtained using ISAT/RCCE. This error is measured for a fixed reaction time

step, t = ∆t = 0.033 ms, at different values of nrs. The rms error is computed

by considering N = 105 test compositions from a PaSR simulation (same as in

[32]).
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Figure 6.14: Combined reduction-tabulation error for a fixed reaction time
step, t = ∆t, at various values of nrs using the three imple-
mentations of RCCE: RCCE/TIFS, RCCE and RCCE/RAMP
with ISAT. The tabulation error (without reduction) is indi-
cated by the solid line labeled ISAT.

Fig.6.14 shows the combined reduction-tabulation error using a fixed reac-

tion time step t = ∆t for different values of nrs for the three implementations

of RCCE. (The RAMP implementation uses a fixed value of ω = 104 s−1.) A

fixed ISAT error tolerance of ǫtol = 10−5 is used which yields less than 1% tabu-

lation error as shown in Fig.6.14. As we observed in the reaction mapping error

results, here again we notice that the error incurred by the RCCE/TIFS and

RCCE/RAMP implementations is comparable and significantly smaller than

the RCCE implementation. For nrs > 9, the RCCE/TIFS and RCCE/RAMP

implementations yield less than 2% error, however the RCCE implementation

yields over 50% error.
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6.8.4 Computational Efficiency

In this section we compare the computational performance of the three imple-

mentations of RCCE. Each of the three implementations of RCCE involve solv-

ing a system of ODEs to compute the reaction mapping. We use DDASAC [15]

to perform ODE integration with an absolute error tolerance of 10−8.

Given a system of ODEs

dx

dt
= f(x), (6.49)

with initial condition x(0) and a time duration t, DDASAC returns the solu-

tion x(t) within a specified error tolerance. DDASAC uses a variable time step

predictor-corrector algorithm (involving backward-difference formulas (BDF)

for predictor and modified Newton iterations for the corrector) to compute the

solution. To solve a system of ODEs of the form Eqn.6.49 using DDASAC, we

need to provide functions to compute the right-hand-side source vector f(x)

and the Jacobian J(x) defined as

J(x) =
∂f(x)

∂x
. (6.50)

For the Jacobian, we also have the option to use DDASAC’s in-built finite dif-

ference approximation for the Jacobian.

For a given initial condition x(0) and time duration t, DDASAC takes mul-

tiple variable time steps to compute the solution, x(t). At each step the source

vector f(x) is evaluated, however the Jacobian is reevaluated only when needed

(based on an error estimate). The number of sub-steps and Jacobian evaluations

depends on the stiffness of the ODE equations and the specified error tolerance.

Considering the three implementations of RCCE, in the RCCE/TIFS imple-
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mentation, we solve a system of ns ODEs given as

dz

dt
= S(z), (6.51)

and in the RCCE and RCCE/RAMP implementations we solve a reduced sys-

tem of nr ODEs given as

dr

dt
= ṙ(r), (6.52)

where in the RCCE implementation ṙ = ṙ
CE and in the RCCE/RAMP imple-

mentation ṙ = ṙ
CP .

For the RCCE/TIFS implementation, we provide a function generated using

ADIFOR [1] to evaluate the Jacobian. However, due to the relatively complex

steps involved in the evaluation of ṙCE and ṙ
CP in the RCCE and RCCE/RAMP

implementations, respectively, using ADIFOR to generate functions for their

Jacobian is not the best approach (as it results in the generation of many sub-

functions). Hence we use DDASAC’s in-built finite difference approximation

for the Jacobian in the RCCE and RCCE/RAMP implementations. (The finite

difference approximation provides a slightly less accurate Jacobian compared

to ADIFOR.)

Fig.6.15 compares (on a log scale) the average cost of evaluating the source

vector for the three implementations; and the overall cost of evaluating the re-

action mapping using the three implementations. We see that the cost of evalu-

ating the chemical source term S (source vector for the RCCE/TIFS implemen-

tation) is only around 30 µs. Compared to this the cost of evaluating the source

vector for the RCCE implementation, ṙCE , is around 200 µs as it involves com-

puting the constrained-equilibrium composition z
CE which dominates the cost.

The cost of evaluating the source vector for the RCCE/RAMP implementation,

ṙ
CP , goes further up to about 1,000 µs. This is because in the RAMP approach: to
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Figure 6.15: Average CPU time required to compute the reaction map-
ping and other quantities involved in the RCCE/TIFS, RCCE
and RCCE/RAMP implementations at nrs = 11 with the re-
action time step t = ∆t. The quantities shown (from bot-
tom) include: constrained-equilibrium composition, zCE ; the
CEM tangent space, T; Jacobian, J; chemical source term, S;
source vector in RCCE implementation, ṙCE ; source vector in
RCCE/RAMP implementation, ṙCP ; and finally at the top the
reaction mapping r(t) using the three implementations.

compute the projector we need to compute the Jacobian J and the CEM tangent

subspace T which are expensive to evaluate.

The cost of evaluating the reaction mapping is directly related to the cost of

evaluating the source vector, and for this reason, we see that the RCCE/TIFS

implementation is cheapest (around 104 µs) and the RCCE/RAMP implemen-

tation is the costliest (around 106 µs, two orders of magnitude more than

RCCE/TIFS). The RCCE implementation is around five times more expensive
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than the RCCE/TIFS implementation.

For the RCCE implementation, there exists a mathematically equivalent al-

ternative implementation in terms of the constraint potentials as described in

[40, 27, 38, 36]. This implementation reduces the cost of evaluating the source

vector by avoiding the constrained-equilibrium calculations by transforming

the ODEs in terms of the constraint potentials. This implementation, how-

ever, poses some numerical issues as reported in [36], because constraint poten-

tials can attain very large values (constraint potential value corresponding to a

species with zero concentration must be infinite). Special transformation and

pre-conditioning methods [36] are used to resolve these problems. This alterna-

tive implementation may be computationally less expensive, however since this

implementation is mathematically equivalent to our current implementation of

RCCE, the accuracy is not improved by this alternative implementation.

In summary, these results show that the RCCE/TIFS implementation is the

most efficient among the three implementations of RCCE.

6.8.5 Robustness

In addition for a method to be accurate and efficient, it is also important for

the method to be robust and fail-safe. In large scale LES/PDF computations,

we compute the reaction mapping in the order O(1012) times, and we want our

ISAT/RCCE implementation to return an accurate, realizable reaction mapping

every time without failing.

In our tests with the three implementations of RCCE, we find the
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RCCE/TIFS approach to be most robust. We have tested this implementation

using the partially-stirred reactor for a wide range of chemical mechanisms,

represented species and testing conditions, and the method has never failed

[31, 32]. It has also been recently tested for performing large scale LES/PDF

simulations of the Sandia Flame D [30], and again the method worked without

any issues.

However, in the current study we encountered some test cases (at certain val-

ues of nrs e.g., nrs = 10 for which results are not included) where both the classi-

cal RCCE and RCCE/RAMP implementations failed to provide a realizable re-

action mapping or failed to converge within DDASAC. Both these implementa-

tions solve a reduced system of ODEs for the constraints by projecting the chem-

ical source term onto the constrained subspace. The projected source vector in

some occasions is found to yield negative unrealizable constraint compositions

during the DDASAC substeps. We were able to resolve some of these cases by

using a smaller error tolerance in DDASAC (which in turn forces DDASAC to

take smaller substeps), however, the overall implementation still failed for a few

test points.

6.8.6 Comparison with Previous Works

Here we have shown that the classical RCCE implementation yields significant

errors in the reaction mapping at large reaction time steps. However, many of

the previous works using the classical RCCE implementation report good ac-

curacy [27, 38, 35, 36]. There are two key differences in the implementation of

RCCE used in these previous works compared to our classical RCCE implemen-
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tation used in this work. In the previous works:

1. the rate-equations for the constraint potentials are solved to compute the

reaction mapping; and

2. general linear combination of species compositions are used as con-

straints.

As pointed out earlier, the rate-equations for the constraint potentials are math-

ematically equivalent to the rate-equations for the constraints, and thus the two

approaches should yield the same reaction mapping for similar constraints. The

accuracy of the RCCE method is very sensitive to the choice of the constraints

[38, 36, 31], and thus one possible reason for achieving good accuracy in these

previous works could be attributed to better selection of linear constraints. We

understand that the selection of linear constraints may in some cases provide

more accurate results with RCCE. Ideally, it would be very insightful to test the

three implementations of RCCE described in this work for linear constraints.

However, our current implementation of ISAT/RCCE [32] would require sig-

nificant changes to incorporate linear constraints, and hence we are unable to

perform these tests at this stage. Nonetheless, it should be noted that in the pre-

vious CPIM work [90], it is shown that even for the constraint potentials based

implementation using general linear constraints, the CPIM method yields better

accuracy than the RCCE implementation.

Moreover, it should be noted that most of the previous works [27, 35, 36] rely

more on qualitative comparison of temperature and species profiles against time

to assess the accuracy of the RCCE implementation versus the detailed mecha-

nism, which is a relatively weak test for determining the overall accuracy of the
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RCCE dimension reduction method. Furthermore, to the authors’ knowledge,

the sensitivity of the accuracy of the RCCE implementation to reaction time step

has not been studied carefully in any of the previous works.

6.9 Conclusions

In this study, we looked at three different implementation of the RCCE dimen-

sion reduction method:

1. RCCE/TIFS: involving the solution of the full system of ns ODEs;

2. RCCE: involving the solution of a reduced system of nr ODEs for the con-

straints, with source vector evaluated by projecting the chemical source

term evaluated on the CEM directly onto the represented subspace;

3. RCCE/RAMP: involving an implementation similar to RCCE, however

the source vector is evaluated using a more accurate RAMP approach

(based on the CPIM method).

From the results presented in this work we can draw the following conclu-

sions:

• the RCCE/TIFS implementation is the most accurate, robust and efficient

among the three implementations of RCCE;

• the RCCE implementation is based on an inaccurate projection of the

chemical source term onto the represented subspace, which does not take

into account the non-invariance of the CEM manifold and thus yields large

errors;
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• the RAMP approach provides a more accurate projection for the source

vector evaluation (based on the CPIM method) which significantly re-

duces the error;

• for the methane/air test case considered in this work, both RCCE/TIFS

and RCCE/RAMP implementations yield less than 2% error in the reac-

tion mapping compared to over 50% using the RCCE implementation;

• computationally, however, the RCCE/RAMP is an order of magnitude

more expensive than the RCCE/TIFS and RCCE implementations due to

the need for expensive Jacobian evaluations in the RAMP approach.

The RAMP approach, even though being expensive

• elucidates the inaccuracies in the projection employed in the classical

RCCE implementation;

• demonstrates the accuracy of the CPIM approximation;

• provides an alternative framework for the implementation of RCCE (and

possibly other related dimension reduction methods) based on the invari-

ant manifold concepts.
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CHAPTER 7

CONCLUSIONS

The main contributions of this work are the following:

1. We have developed a combined dimension reduction and tabulation

methodology for the accurate and computationally-efficient representa-

tion of combustion chemistry in reacting flow computations. In this com-

bined methodology, the dimension reduction is performed using the Rate-

Controlled Constrained-Equilibrium (RCCE) method followed by tabu-

lation using the In Situ Adaptive Tabulation (ISAT) algorithm. (Refer to

Chapter 3.)

2. We have developed an automated Greedy Algorithm with Local Improve-

ment (GALI) for selecting good represented species for use in the RCCE

method. (Refer to Chapters 2 and 3.)

3. We have shown that our implementation of RCCE using the Trajectory In

Full Space (TIFS) approach is the most accurate, efficient and robust imple-

mentation compared to some of the previous implementations of RCCE.

(Refer to Chapter 6.)

4. We have developed a new Partitioned Uniform Random (P-URAN) paral-

lel strategy using the x2f mpi Fortran library for the efficient and scalable

implementation of chemistry in large-scale parallel LES/PDF simulations

of turbulent combustion. (Refer to Chapter 4.)

5. We have extended our LES/PDF solver with the capability of representing

chemistry using our combined ISAT/RCCE approach, and have shown
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that this combined algorithm works accurately and efficiently and is scal-

able to large number of cores using the P-URAN parallel strategy. (Refer

to Chapter 5.)

The above combination enables us to perform accurate and computationally-

efficient large-scale LES/PDF simulations of turbulent reacting flows with de-

tailed chemistry involving hundreds of species. In this study we have shown

that

1. the combined ISAT/RCCE methodology yields order 103−104-fold speed-

up relative to direct evaluation with very good error control (refer to re-

sults presented in Chapters 3, 4 and 5);

2. for performing Sandia Flame D simulations, the P-URAN strategy yields

over 85% relative weak scaling efficiency and over 60% relative strong

scaling efficiency on up to 9,216 cores (refer to Chapter 4);

3. compared to an LES/PDF simulation of Sandia Flame D using the sim-

ple single-scalar based Flamelet representation, the simulation using

ISAT/RCCE with 15 represented variables (for a 38-species skeletal mech-

anism) is only 3.2 times more expensive (based on results presented in

Chapters 4 and 5).

The future challenges and opportunities lie in making the above algorithms

more adaptive and self-aware for performing simulations of real combustors

and complex devices, where there is limited a priori knowledge about the flame

structure and chemical reactivity. In such problems, decisions will need to be

made on-the-fly to achieve good accuracy and computational performance. To
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this end, the following aspects of our chemistry implementation can be made

more adaptive:

1. Adaptive species selection: In the current implementation we choose the

represented species a priori using the GALI algorithm. However, for more

complex problems, it will be more suitable to pick the required number of

represented species on-the-fly based on a local measure of the dimension

reduction error.

2. Adaptive chemistry: In addition to adaptive species selection, it is also

desirable to have the flexibility of choosing (either a priori or on-the-fly)

different sets of represented species and different chemical mechanisms

to represent chemistry in different regions of the computational domain

based on the local chemical reactivity. For instance, regions in coflow/air

can be represented accurately using relatively fewer species and smaller

mechanisms than regions in the flame front.

3. Adaptive partitioning strategy: The current simple partitioning strategy

used in the P-URAN strategy uses the a priori knowledge about the flame

structure and direction of load imbalance to form the partitions. In more

complex problems we may not have sufficient knowledge about the load

imbalance to form the partitions a priori. In such problems, it is more de-

sirable to have an on-the-fly partitioning strategy based on the local load

imbalance.
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APPENDIX A

APPROXIMATION OF TEMPERATURE AND DENSITY

In this section we describe how the temperature and density are approximated

using the reduced representation in the reduction-tabulation algorithm.

Approximation of Temperature

In the full composition space, given the composition z = {zr, zu} and tempera-

ture T, the enthalpy h is given as

h(z, T ) = h
T (T )z,

= h
rT (T )zr + h

uT

(T )zu,

= hr + hu, (A.1)

where h denotes molar enthalpies of species, and the superscripts r and u de-

note the represented and unrepresented components.

Given the full composition z and the total enthalpy h, the temperature T is

computed using Newton’s method which satisfies the following equation

h = h(z, T ). (A.2)

However, with dimension reduction, only the composition of represented

species are stored in the reduced representation, r = {zr, zu,e}. So, given the

reduced representation r and temperature T , the represented part of enthalpy,

hr, can be computed exactly, but hu needs to be approximated. Let the approxi-
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mated total enthalpy, ha, be given as

ha(r, T ) = h
rT (T )zr +

(

h
uT

(T )P
)(

E
uT

z
u
)

= hr + h
uT

(T )Pz
u,e, (A.3)

where E
u is the constant nus×ne element matrix for unrepresented species such

that zu,e = E
uT

z
u, and P is a specified constant nus × ne matrix. The question

now to be addressed is: how best to specify P? In the above approximation for

enthalpy, we are implicitly approximating z
u and hu as

z
u,a ≡ Pz

u,e, (A.4)

hu,a ≡ h
uT

(T )zu,a, (A.5)

which gives

ha = hr + hu,a. (A.6)

In the above approximation, it is important to note that

• z
u,a may not be realizable.

• z
u,a is used only to estimate h, ρ and T , and not to approximate z

u directly.

Note that one possible way of computing z
u,a is by performing a constrained-

equilibrium calculation, but this is relatively expensive and takes O(103) µs

compared to a typical query time of O(10) µs, and hence is avoided.

We define the approximation error in z
u,a as

δzu,a = z
u,a − z

u, (A.7)

and the approximation error in enthalpy as

δh = ha − h = hu,a − hu = h
uT

(T )
(

PE
uT − I

)

z
u. (A.8)
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For a given reduced representation, r = {zr, zu,e}, and enthalpy, h, the approxi-

mate temperature, T a is defined as

h = ha(r, T a), (A.9)

which is computed using Newton’s method.

In the next two subsections we describe two different methods for comput-

ing the matrix P for approximating the enthalpy, ha using Eqn.A.3.

Method 1

If zu is not know, then the best approximation for P that minimizes the error

(Eqn.A.8) in the approximated enthalpy, ha, is obtained by setting P equal to

the pseudo-inverse of EuT

. Let P = P1 = pseudo-inverse(EuT

), computed using

the SVD of EuT

.

Method 2

Assuming z
u is known at N test points, an improved approximation for en-

thalpy can be computed using this known information. Let the values of z
u

computed at these N test points be stored in an nus × N matrix, Zu. The error

in the approximated enthalpy, ha computed at the ith test point is given (in an

obvious notation) as

δhi = h
uT

i (T )
(

PE
uT − I

)

z
u
i . (A.10)

The vector huT

i (T ) is different for each test point and depends on the tempera-

ture at that point. Minimizing the overall error in the approximated enthalpy
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at all the test points using the above equation is not easy, and so we instead

minimize the error in approximating z
u given as

δzu,ai = z
u,a
i − z

u
i ,

=
(

PE
uT − I

)

z
u
i . (A.11)

Based on this error, the error in the approximated z
u at all the N test points is

denoted by the nus ×N matrix δZu,a and is given as

δZu,a = PE
uT

Z
u − Z

u (A.12)

We compute P which minimizes the error, ||δZu,a||2 as follows. Let the SVD of

Z
u be given as

Z
u = UΣV

T , (A.13)

and let the first ne vectors of U be denoted by the nus × ne matrix X. Then the

matrix P ≡ P2, which minimizes the error ||δZu,a||2 (Eqn.A.12) is given as

P2 = X(EuT

X)−1. (A.14)

So, we have two methods for computing the matrix P to approximate the

enthalpy and thus temperature:

1. P = P1 - easily computable, but not very accurate

2. P = P2 - accurate but requires some stored values of zu

In our current implementation, we start the computations by setting P = P1

and start storing z
u values as they are computed. After a certain number of zu

values have been stored, based on some error criterion, the matrix P is reset to

P2.
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Approximation of Density

Given the full composition z = {zr, zu}, the density, ρ, is computed using the

ideal gas law as follows:

ρ =
p

RuT
∑ns

i=1 zi
, (A.15)

where p is the pressure.

However, with dimension reduction, given only the reduced representation,

r, the sum
∑ns

i=1 zi is approximated as
ns
∑

i=1

zai ≡
nrs
∑

i=1

zri +
nus
∑

i=1

zu,ai , (A.16)

and the approximated density, ρa is given as

ρa =
p

RuT a
∑ns

i=1 z
a
i

. (A.17)

Approximation Errors

The approximation errors in temperature and density are computed by con-

sidering 105 test compositions from a methane/air premixed combustion in

the PaSR. The results are shown in Fig.A.1 and Fig.A.2. We see that less than

1% root-mean-square relative error is measured in the approximated density

and temperature relative to the exact values and those computed using the

constrained-equilibrium reconstruction, which is more than two orders of mag-

nitude more expensive than a typical ISAT query time and hence is avoided.

The time spent in approximating the temperature and density using the afore-

mentioned method is negligible compared to the ISAT query time. We also note

that in general the approximation error reduces as the number of represented

species, nrs, is increased.
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Figure A.1: The root-mean-square relative error in the approximated den-
sity, ρa, (computed using the RCCE reduced representation
for methane/air premixed combustion at various values of
nrs) relative to the exact density, ρ, and the density com-
puted using a (relatively expensive) constrained-equilibrium
reconstruction, ρCE . The errors are computed by consider-
ing 105 test compositions in the full composition space from
a methane/air premixed combustion in PaSR.
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Figure A.2: The root-mean-square relative error in the approximated tem-
perature, T a, (computed using the RCCE reduced represen-
tation for methane/air premixed combustion at various val-
ues of nrs) relative to the exact temperature, T , and the tem-
perature computed using a (relatively expensive) constrained-
equilibrium reconstruction, TCE . The errors are computed by
considering 105 test compositions in the full composition space
from a methane/air premixed combustion in PaSR.
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APPENDIX B

WALL CLOCK TIME STATISTICS AND ESTIMATES

In our combined LES/HPDF solver, we collect various wall clock time statistics.

Here we describe the method used to estimate the breakdown of the wall clock

time spent in LES, HPDF (outside reaction), Reaction and Waiting, as presented

in some of the results (figures) in this work.

In our LES/HPDF solver, at each time step n = 1 to Nt of a simulation per-

formed on Nc cores ranked from c = 0 to Nc − 1, we compute: the overall wall

clock time spent in that time step, tn,c; the part of the time spent within HPDF,

tP
n,c; and, within HPDF, the part of the time spent on Reaction (including x2f mpi

communication), tR
n,c. Cumulative wall clock time statistics can then be collected

on each core by summing over all the time steps as follows

Tc =
Nt
∑

n=1

tn,c, (B.1)

and similarly for T P
c and T R

c . For instance, Fig.B.1 shows the cumulative wall

clock time statistics collected from a Sandia Flame D simulation performed for

Nt = 2, 000 time steps on Nc = 1, 024 cores with the chemistry represented using

the 16-species mechanism with the P-URAN parallel strategy.

Now using these time statistics collected on each core, we estimate the global

wall clock time statistics for the entire run as follows. The LES and HPDF solvers

are synchronized (among all the cores) at the end of each time step, and so the

wall clock time spent in each time step, tn,c, and the wall clock time spent in

HPDF, tP
n,c, are approximately the same on all the cores, and so are the cumula-

tive times T and T P (as seen in Fig.B.1). Hence, we take the time statistics from

the core ranked c = 0 and estimate the overall wall clock time spent for the
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Figure B.1: LES/PDF simulation of the Sandia Flame D for Nt = 2, 000
time steps on Nc = 1, 024 cores with chemistry represented us-
ing the 16-species mechanism with the P-URAN[0.2h,32] par-
allel strategy. On each core ranked, c = 0 to 1,023, plotted are
the cumulative wall clock time spent on the computations, Tc;
the part of the time spent within HPDF, T P

c ; and within HPDF
the part of the time spent on Reaction (including x2f mpi com-
munication), T R

c .

computations as

T = T0 =
Nt
∑

n=1

tn,0, (B.2)

and the wall clock time spent within HPDF as

T P = T P
0 =

Nt
∑

n=1

tP
n,0, (B.3)

which gives the wall clock time spent within LES as

T L = T − T P. (B.4)

However, the wall clock time spent in Reaction, tR
n,c, is found to vary signifi-

cantly across the cores (as seen in Fig.B.1), depending on the strategy used for

264



implementing chemistry. So we estimate the overall wall clock time spent in

Reaction (including x2f mpi communication) to be the cumulative sum of the

maximum reaction time (at each time step, over all the cores) as follows

T R =
Nt
∑

n=1

max
c

(

tR
n,c

)

. (B.5)

The time spent in HPDF (outside reaction) is then given as

TH = T P − T R, (B.6)

and consequently we have

T = T L + TH + T R. (B.7)

In addition, we also estimate the average (idle) Waiting time as follows. On a

given time step, the “slowest” core is defined to be that which takes the greatest

time for reaction. The Waiting time is the average idle time of the other cores

spent waiting for the slowest core to complete, and is computed as follows

TW =
Nt
∑

n=1

1

(Nc − 1)

Nc−1
∑

c=0

(

max
c′

(

tR
n,c′

)

− tR
n,c

)

. (B.8)

Note that the Waiting time is in parallel with the Reaction time, and is indicative

of the extent of reaction load imbalance. The Waiting time has a lower bound

of zero indicating perfect reaction load balancing, and an upper bound equal

to the Reaction time for the extreme case where the complete reaction load is

concentrated on a single core at each time step.

In summary, in the figures, we plot the overall wall clock time, T ; the LES

time, T L; the HPDF (outside reaction) time, TH; the Reaction (including x2f mpi

communication) time, T R; and the Waiting time, TW.

It should be noted that typically we observe about 5% variation in the com-

puted wall clock times (on repeated runs of our solver with identical initial con-

ditions) due to load variations on the TACC Ranger cluster.
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APPENDIX C

BEST PERFORMANCE ESTIMATES

In the results presented in Fig.4.5 and Fig.4.6, we make estimates for the lowest

theoretically achievable wall clock time. These estimates are made using the

following method.

For both the mechanisms, we consider the LES/PDF simulation performed

on 1,024 cores using the URAN strategy (which achieves near-ideal load bal-

ancing), and find the core rank, c, with the maximum cumulative reaction time,

T R
c . On this core, we compute the total number of ISAT queries performed (i.e.,

particles resolved), Nq; the average ISAT query time, tq, (i.e., the average time

taken to resolve a particle using ISAT); and the average ISAT retrieve time, tr,

(i.e., the average time taken to retrieve a particle’s reaction mapping using the

ISAT table). For the 16-species mechanism, we find tq = 9µs and tr = 4µs; and

for the 38-species mechanism, we find tq = 32µs and tr = 12µs.

Now using these data, we make two estimates for the best wall clock time

for reaction:

1. Estimate (only retrieves) - estimate based on performing only local re-

trieves using pre-built ISAT tables. In this we estimate the reaction wall

clock time on all the cores to be the same, T R = T R
c = Nq×tr.

2. Estimate (No Commun.) - estimate based on perfect load balancing with

no x2f mpi communication cost, while allowing for a typical fraction of

direct evaluations to be performed in addition to retrieves. In this we

estimate the reaction wall clock time on all the cores to be the same,

T R = T R
c = Nq×tq.
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APPENDIX D

OPTION TO CHECKPOINT/RE-START ISAT TABLES

In our initial implementation of the LES/PDF solver (integrated with

ISAT/RCCE) [29, 30], on every re-start of a parallel simulation, the ISAT tables

on all the cores are built from scratch. For small mechanisms (involving less

than 30 species), the time required to build the ISAT table is often small (typi-

cally less than 1 hour). However, for larger mechanisms, the ISAT table build

time can be significantly larger (e.g., 24 hours) [32].

To reduce the time spent on building ISAT tables on every re-start of a sim-

ulation, we have implemented an option in our LES/PDF solver to checkpoint

the ISAT table on each core at the end of a simulation and then use these saved

ISAT tables to reinitialize the ISAT tables on the next re-start of the simulation.

Here we show that this method of checkpointing all the ISAT tables at the end

of a simulation and using them to re-start the simulation works effectively at

reducing the reaction and overall simulation time.

We demonstrate the effectiveness of checkpointing ISAT tables by perform-

ing LES/PDF simulations of the Sandia Flame D [9] with a 38-species C1-C4

skeletal mechanism [23]. The computational setup is the same as that described

in [29], i.e., the domain size is 80D×30D×2π; the LES grid size is 192×192×96;

and the number of PDF particles per LES cell is Npc = 40, which corresponds to

over 141 × 106 particles in the computational domain. We perform these simu-

lations on two core counts:

1. on 1,024 cores with a domain decomposition of 64×16 using the P-

URAN[0.2h,32] parallel strategy; and
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2. on 4,608 cores with a domain decomposition of 96×48 using the P-

URAN[0.2h,48] parallel strategy.

(A detailed description of the P-URAN parallel strategy can be found in [29].)

On both the core counts, we first perform a simulation starting from empty

ISAT tables for some NT time steps. At the end of the simulation, we checkpoint

all the ISAT tables. We then compare the performance of running the simulation

for another NT time steps by re-starting the simulation using the following two

options:

1. using empty ISAT tables; and

2. using the ISAT tables saved at the end of the previous run.

On 1,024 cores we perform NT = 500 time steps, which corresponds to around

6.9× 107 ISAT queries per core; and on 4,608 cores we perform 2,000 time steps,

which corresponds around 6.1×107 ISAT queries per core. In these simulations,

we use a maximum ISAT table size per core of 500 MB (which is found to work

efficiently for ISAT based on tests performed in a partially-stirred reactor) with

an error tolerance of ǫtol = 10−4.

All the simulations are performed on the TACC Ranger cluster. A major chal-

lenge in checkpointing all the ISAT tables when performing simulation on large

core counts is managing the input/output (I/O) and the storage space. In our

current implementation, we checkpoint the ISAT tables only once at the end of

the simulation and read the tables only once at the beginning of the simulation.

This reduces the I/O time and the frequency of read/write. (Frequent I/O on

large core counts can cause failures due to the limitations imposed by Metadata
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Figure D.1: Wall clock time for performing Sandia Flame D simulation on
1,024 cores for NT = 500 time steps (top); and on 4,608 cores for
NT = 2, 000 time steps (bottom) using the following two op-
tions: (i) Save-Restart None, i.e., starting the simulation using
empty ISAT tables; and (ii) Save-Restart All, i.e., starting the
simulation using saved ISAT tables from the previous run. In
each case, the breakdown of the time spent in LES, HPDF (out-
side reaction), Reaction (including communication) and Wait-
ing is shown.
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Server (MDS) used on parallel clusters like TACC Ranger.) Using our current

checkpoint implementation, we have not encountered any I/O or storage issues

in our simulations performed on the Ranger compute cluster.

Fig.D.1 shows the overall wall clock time for performing NT = 500 time

steps on 1,024 cores and NT = 2, 000 time steps on 4,608 cores using the afore-

mentioned two re-start strategies. On both the core counts we see a decrease

in the reaction time when the simulation is started using the saved ISAT tables

from the previous run. On 1,024 cores we see around 19% reduction in the reac-

tion time, and on 4,608 cores we see around 38% reduction in the reaction time.

On both the core counts, we also see a decrease in the Waiting time due to a

higher percentage of ISAT queries resulting in a successful retrieve and a better

load balancing achieved in the PLP stage of P-URAN. (It takes less than a cou-

ple of minutes to checkpoint and read an ISAT table of around 500 MB size, and

this time is negligible in these large-scale computations.)

More reduction in the reaction time on 4,608 core count may be attributed

to an indirect effect of achieving a better load balancing by the use of 96×48

domain decomposition with 96 partitions of 48 cores each, compared to a do-

main decomposition of 64×16 with 32 partitions of 32 cores each on 1,024 cores.

In the former, more cores are handling regions near the center-line and the re-

action workload is more uniformly distributed. The increase in walltime per

particle per time-step when going from 1,024 cores to 4,608 cores is attributed to

achieving only 60% relative strong scaling efficiency as measured in our previ-

ous scaling tests [29].

Fig.D.2 shows the percentage ISAT table filled (500 MB size) for performing

NT = 500 and NT = 2, 000 simulation time steps on 1,024 and 4,608 cores, re-
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Figure D.2: Percentage ISAT table filled (500 MB size) for performing San-
dia Flame D simulation on 1,024 cores for NT = 500 time steps
(top); and on 4,608 cores for NT = 2, 000 time steps (bottom).
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Figure D.3: Various ISAT operations performed (cumulative over all the
cores) during the Sandia Flame D simulation on 1,024 cores for
NT = 500 time steps (top); and on 4,608 cores for NT = 2, 000
time steps (bottom) using the following two options: (i) None,
i.e., starting the simulation using empty ISAT tables; and (ii)
All, i.e., starting the simulation using saved ISAT tables from
the previous run. The ISAT operations shown include (from
the top): number of queries; fraction of retrieves; fraction of
grows; fraction of adds; fraction of direct evaluations (DEs);
and fraction of unresolved queries (during the quick try stage
of P-URAN as explained in [29]).
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spectively. We see that 100% table is filled only on the cores handling the regions

in the middle of the computational domain where the fluid is most reactive due

to the mixing of fuel, pilot and oxidizer streams. In the other regions, the ISAT

tables are not yet completely filled.

Fig.D.3 shows a comparison of the various ISAT operations resulting from

the two simulations performed using different re-start strategies on 1,024 and

4,608 cores. On both the core counts, we see that the simulation re-started us-

ing the saved ISAT tables results in significantly fewer grows and adds in ISAT

and also fewer unresolved queries. This is because most ISAT queries result in

a successful retrieve due to the use of ISAT tables built in the previous run. We

do notice a relative increase in the direct evaluations (DEs) in the simulation

re-started using the saved tables due to the use of completely filled ISAT tables

(as seen in Fig.D.2) on the cores handling the regions in the middle of the do-

main. However, typically a grow or an add in ISAT can be three to four times

more expensive than a direct evaluation [49]. Thus, the significant decrease in

the fraction of adds and grows easily compensates for the cost involved in the

additional DEs.

In conclusion, we have shown that re-starting an LES/PDF parallel simula-

tion using the saved ISAT tables from the previous run can effectively help re-

duce the reaction and the overall simulation time. We have shown here that for

performing LES/PDF simulations of Sandia Flame D with a 38-species skeletal

mechanism, we have been able to reduce the reaction time by 20-40% by re-

starting simulation using the saved ISAT tables from the previous run. We have

also shown that our simple ISAT checkpoint implementation works without any

I/O or storage issues on up to 4,608 cores.
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