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Although there has been a long history of studying the diffusion of information
in various social science fields, existing theories are mostly built on direct obser-
vations in small networks or survey responses from large samples. As a result,
it is hard to verify or refute these theories empirically on a large scale. In recent
years, the abundance of digital records of online interactions has provided us for
the first time both explicit network structure and detailed dynamics, supporting
global-scale, quantitative study of diffusion in the real world. Using these large
scale datasets collected from social media sites, we are able to dissect and study
the process of information diffusion in its three components: people, informa-
tion, and network. This thesis mainly addresses a few long-standing questions
about each component, including: “who influences whom?”, “how do differ-
ent types of information spread?”, and “how does the network structure impact
the diffusion process?” In our search of answers for these questions, we real-
ize that these three components are interconnected, constantly interacting with
each other in real-world diffusion processes. Thus our results on each compo-
nent should not be taken in isolation but be viewed interdependently.

To understand who influences whom in today’s hybrid communication en-
vironment, we study people’s influence on social media based on their role in
the global media ecosystem. By categorizing Twitter accounts into elite (i.e.

celebrities, media outlets, organizations, and bloggers) and ordinary users, we



tind a striking concentration of attention on a minority of elite users, and sig-
nificant homophily within elite categories. On the other hand, following the
definition of “opinion leaders” in the classical “two-step flow” theory, we find
a large population of opinion leaders who serve as a layer of intermediaries
between the elite users and the masses.

The next question we ask is the role of content in the diffusion process. In
contrast to previous research on the virality of information, we switch our fo-
cus to the persistence of information, trying to understand why certain con-
tent keeps on spreading in social media for a long time while most does not.
First, we see an interaction effect, from both people and content, on the lifespan
of information. As a result, there is a significant difference in lifespan, for in-
formation broadcast by different categories of users. Second, we find a strong
association between the linguistic style of content and its temporal dynamics:
rapidly-fading information contains significantly more words related to nega-
tive emotion, actions, and more complicated cognitive processes, whereas per-
sistent information contains more words related to positive emotion, leisure,
and lifestyle.

In the end, we conduct a longitudinal study of the local and global structure
of several large social networks, asking how and where disengagement happens
in the social graph. We find that, although there is a significant correlation in
both arrival and departure among friends, the dynamics of departure behave
differently from the dynamics of arrival. In particular, for the majority of users
with a sufficient number (e.g., greater than 20) of friends, departure is best pre-
dicted by the overall fraction of active friends within a user’s neighborhood,
independent of the size of the neighborhood. We also find that active users tend

to belong to a core that is densifying and is significantly denser than the inactive



users, and the inactive set of users exhibit a higher density and lower conduc-
tance than the degree distribution alone can explain. These two aspects suggest
that nodes at the fringe are more likely to depart and subsequent departures are

correlated among neighboring nodes in tightly-knit communities.
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CHAPTER 1
INTRODUCTION

Information diffusion is the process of information spreading among people
in the society. Common examples of information diffusion include the spread
of rumors, beliefs, and behaviors. Having attracted a long-term interest from
scholars in different fields, the study of information diffusion is an essential el-
ement of many interesting problems, such as the diffusion of innovations [71],
the formation of public opinions [46, 82], and the adoption of new products [12].
Historically, most of the research in this area has been done through field ob-
servations and/or phone surveys [45, 71] over a small or sampled population.
Contfined by this methodology, results are usually based on the spread of a spe-

cific opinion or product in rather localized networks.

From the spread of telegraphy and telephony, to the wide popularity of so-
cial media, the development in digital communication tools has largely changed
the way we produce, share, and consume information. The advancement of
personal publishing technologies - such as the web, blogs, photo sharing sites,
online social networks, and micro-blogs - has made the process of creating and
disseminating content much easier and more decentralized. As a result, we are
entering - perhaps for the first time in human history - an age with an abun-
dance of information, of tools to generate and share information, of channels to
access information, and of freedom to select and filter information. As pointed
out by Herbert Simon [76], the factors that limit the speed and scale of today’s
diffusion process is no longer the availability of information, but the “attention
of its recipients”. In response to the scarcity of attention, it is the massive, vi-

brant, hybrid communication environment, in which ideas, opinions, and news



stories travel in an unforeseen speed, breaking the boundary between media,

striving for their audience [58].

In this context, diffusion theories from previous work are challenged both at
scale and at accuracy. Mostly drawn from single-medium, small-scale diffusion
of a particular opinion (or product), are these results still applicable in the viral
spread of YouTube videos or news stories over millions of people in various new
communication platforms? To answer this question, we need to conduct large
scale empirical studies on real-world diffusion processes over many different
communication channels. Such a task used to be unimaginable for diffusion re-
searchers. Nowadays, it has become not only possible but also necessary, for the
understanding of how information and behavior spread over large population

in the information world.

There are two material bases for the large-scale empirical studies presented
in this thesis: one is the recent availability of digital electronic records of hu-
man behaviors; and the other is the advancement in computing infrastructure to
handle the huge amount of data. The popularity of digital electronic communi-
cation tools offers great opportunities for us to obtain much better data on how
viral cascades actually happen. Comprising both explicit network structure and
detailed interaction dynamics, these data sets support large-scale, quantitative
studies on real-world diffusion processes. At the same time, big data requires
a whole range of new technologies to efficiently store and process large data
sets. In the past few years, we have experienced a rapid development in data-
intensive computing tools and platforms, especially, the availability of afford-
able high-performance computation resources (e.g., Amazon Elastic Compute

Cloud [1]), and the popularization of low-cost, easy-to-setup MapReduce [32]



environments (e.g., Hadoop [2], Pig [3]). These tools have made it possible to
work with the immense data sets, and to uncover interesting patterns of infor-

mation cascades in large on-line social networks.

These two elements are not only the foundation, but also the active ingre-
dients of our study. They largely expand the study of information diffusion,
from a traditional social science, to a natural science involving more quantita-
tive methods and more measurable, replicable results. Most of my work has
taken the natural science approach, aiming at qualitative understandings of dif-

fusion processes with quantitative evidences and mathematical models.

Leveraging the power of “big data” and data-intensive technologies, this
thesis focuses on the flow of information (and activity) in an on-line environ-
ment at a large scale — on-line social media and social networks over millions

of people.

In particular, we frequently study the spread of URLs on Twitter. As a highly
popular micro-blogging service, Twitter provides a natural environment for the
study of diffusion processes. Unlike other online social networks, Twitter is
expressly devoted to disseminating information in that users subscribe to the
information broadcast by other users; thus the network of potential adoption
can be reconstructed by crawling the corresponding “follower graph”. In ad-
dition, because of the need of users to share web content, with the restriction
of maximal tweet length as 140 characters, URL shortening services (e.g., bit.ly,
TinyURL, t.co, etc) are used widely, and effectively tag numerous pieces of in-
formation with unique and easily-identifiable tokens. As a result, we are able to
observe and trace essentially everything that is spreading on Twitter. Thus al-

though we have only one communication channel, we have a very high level of



resolution and coverage regarding what is being diffused. Meanwhile, although
it may be non-representative in some respects, Twitter is very representative in
at least one respect — namely it includes essentially all actors of any conse-
quence in the information diffusion process in the society: media outlets and
formal organizations of all sizes, bloggers, and public figures like celebrities, as
well as tens of millions of ordinary individuals. In this sense, it really is a com-

plete sample of one (admittedly narrow) slice through the diffusion landscape.

We also include studies that are based on data sets from on-line social net-
works and collaboration social networks, as both an extension and a comple-
ment to the results drawn from Twitter. The biggest difference between Twit-
ter and most other social networks is that social networks are usually built on
top of bi-directional friendship links, and assume a strong, consistent identity
provided by their users, whereas most of the edges in the Twitter network are
directed and non-reciprocal, and user identity is rather weak!. Such differences
give rise to some interesting and distinctive patterns for diffusion processes in
these two media, ultimately, making the communication through Twitter more
similar to traditional mass media broadcasting than to word-of-mouth style in-

formation exchange.

Considering information diffusion as the process of information traveling
among people through communication networks, we study three key components

of this problem:

e People, who are the “influentials” and whom are they influencing?

o Content, does different types of information spread differently?

LA small number of users with consistent, real identities are marked explicitly as “Verified
Accounts”



e Network, what can the macro- and micro-level structure of the network tell

us about the underlying mechanism that drives the diffusion process?

Centered around these questions, this thesis is structured in six chapters.
Chapter 1 contains an introduction and states the purpose of this work. Chap-
ter 2 includes the basic theories, models, and concepts used in this thesis. Chap-
ter 3, Chapter 4, and Chapter 5 each focuses on one of the three components
mentioned above - people, content, and network, respectively. They form the
core of this thesis, and will be introduced separately in the following sections
of this chapter. In the end, we conclude this work and offer some insights for

future work in Chapter 6.

1.1 The Influencer Problem

The role of the influentials as trend makers has been a center piece of many
classic theories on information diffusion process [46, 71]. The existence, and
the importance, of the influentials also populated by several best-selling books
such as The Tipping Point [38] and The Influentials [47]. Today, challenged by
the unbounded opportunity (and efforts) to reach the masses, marketers and PR
firms are especially eager to leverage the power of the influentials to “tip” their

products. But, who are the influentials?

Classic theories characterize the influentials as a group of very special peo-
ple. Dating back to the 50s, Katz and Lazarsfeld coined the term “opinion lead-
ers”. They claimed that, comparing to ordinary people, opinion leaders have

more social connections and are more media-savvy [46]. Later, scholars study-



ing the diffusion of innovations also suggested that opinion leaders usually own
“greater exposure to mass media than their followers”, “are more cosmopoli-
tan”, “have greater social participation” , “have higher socioeconomic status”,
and “are more innovative” [71]. Similar ideas were illustrated in best-selling
books, in which authors claims that the influentials are “connectors”, “mavens”,
and “salesmen” [38], and that influentials play their role actively and constantly,

disseminating ideas on various issues - from what to buy to who to vote for [47].

One critique to the classic theories is their lack of empirical supports. Al-
though intuitively sound, these theories about influentials are too general to be
operationalized or examined in practice. It was only since the abundance of
online interaction data that we saw a new line of empirical work on measuring
and quantifying personal influence in diffusion. Most of these work studied
influence in two aspects: personal attributes such as demographics and activ-
ities, and network attributes such as connectivity and position in the network.
Although both aspects are usually considered and studied, most work showed

the network attributes more relevant to personal influence [78, 11, 48, 54, 56, 22].

However, we find current knowledge on influence and influentials still lim-

ited for several reasons.

First, as most work focused on big cascades, the results can be biased to-
wards the “successful” events that are deemed to be rare. Given the very
high failing rate in social media, research [82, 11] argued that influentials have
a greater than average chance of triggering big cascades, but “only modestly

greater”, and their effect is much less reliable than practioners had expected.

Second, the context of influence is usually overlooked. Influence does not ex-



ist in vacuum. It needs to be exercised by people, with certain communication
medium. The context of influence is important, because individuals influence
can differ by their expertise [20], the subject [56], and the communication chan-

nels [87].

Last but not least, the inconsistency in existing influence metrics is problem-
atic, for two reasons. First, as existing empirical studies measure influence in
a variety of ways - from the size of diffusion tree to the probability of pass-
ing the cascade to the next hop, it is hard for researchers to compare the re-
sults quantitatively across studies. Second, the inconsistency also introduces
ambiguity: different types of influence are studied as a whole, regardless dif-
ferent mechanisms that operate behind them. Depending on its origin, there
are three well-known mechanisms for influence: interpersonal influence, ho-
mophily, and external factors. Accordingly, we need to be able to understand
and distinguish three types of influence. The interpersonal influence(a.k.a. so-
cial influence, induction) is attributed to the interaction between the influencer
and the influencee?, and the influencee’s adoption of certain idea or behavior
is purely induced by the earlier adoption of that idea or behavior by the influ-
encer. The homophily influence comes from the fact that the influencer and the
influencee share similar taste and interests, thus the influencee is more likely
to adopt even before interaction happens, no matter whether the influencer has
adopted or not. The last type of influence is induced by external factors, such as
the influencer’s expertise or authority in certain domain. The external influence
(a.k.a. confounding influence) does not require personal relationship between
the two, either involves much of the personal preference or taste. For example,

a person is more likely to follow a dietary plan suggested by a medical doctor

ZHere, and in the rest of this thesis, when we say influencee, we mean the person who are
influenced by the influencer.



than a random friend. Knowing these three types of influence, we notice that
the influence measured by different empirical metrics is in fact driven by very
different mechanisms. For example, the probability of single-hop transmission
is associated with a mix of all three types of influence; whereas, the size of big
diffusion trees (or the length of long diffusion chains) usually does not reflect
the interpersonal influence of the seeding node [78]°. Many previous work did
not recognize such difference in the source of influence, and studied the the ob-
served hybrid influence as if driven by a single mechanism. Consequently, they
may reach a much less accurate picture about the underlying diffusion process.
For example, it has been a common mistake to confuse homophily-driven dif-
fusion as influence-base contagion, and to over-estimate social influence. As a
result, we have seen an emerging line of research on distinguishing the induc-
tion influence from homophily influence. However, there is still little known
about the external influence: in most empirical studies, the exogenous influence

is mixed and treated as social influence.

In Chapter 3, we approach the influencer problem by focusing on the exter-
nal influence migrated from other media channels to online social media. First
of all, we consider online social media as a medium that carries a whole spec-
trum of communications, from personal and private interactions to mass media
broadcasting. We thus categorize users based on their role in the global commu-
nication ecosystem. To reduce the bias towards successful cascades, we study
the influence of each category of users in terms of visibility and the ability to
stimulate and sustain attention from other users. Our work makes three main

contributions:

3The reason behind is that, as some research has shown, personal influence can reach up to
three degrees from the ego [24].



e We introduce a folksonomy model for classifying users into “elite” and
“ordinary” users according to their role in the media ecosystem, further
classifying elite users into one of four categories of interest: media, celebri-
ties, organizations, and bloggers. Our selection of these five categories is
to cover a spectrum of communication styles, from mass media, to “mass-

personal”, to interpersonal.

e We investigate the distribution of attention among these categories, find-
ing that although audience attention is highly concentrated on a minority
of elite users, much of the information they produce reaches the masses
indirectly via a large population of intermediaries - local opinion leaders.
These local opinion leaders distributed among all classes of users, but are

more media-savyy and in general have more followers.

e We find that different categories of users emphasize different types of
content, and that content originated by different users exhibit dramati-
cally different characteristic persistency, ranging from less than a day to

months.

1.2 The role of content

Although it has been a common belief that different types of information spread
differently, the role of content in diffusion process has not been examined thor-
oughly and systematically. Most empirical work in this area focused on the
relationship between information virality and content [13, 42], while some ex-
plored the connection between the temporal patterns and the content - but at a

very high-level [41, 29]. Generally, due to the skewness of virality and the infor-



mal and sporadic nature of social media content, these studies are limited either
by the lack of observations, or — when viewed as content-base predictions —

by the relatively weak predictive power.

There are several major challenges here. First, the content (a.k.a. topic) itself
is difficult to track, especially when it travels and mutates across multiple media
channels over a long period time [58]. Second, predicting the virality of informa-
tion for each individual person is a very hard problem by itself [11, 79]. Third,
given the focus of past work on how people interact with information, mod-
eling such dynamics becomes extremely complicated with many unpredictable

elements involved [90, 91, 87, 11].

In Chapter 4, we study the role of content in diffusion process by showing
the relationship between the textual characteristics of content and its temporal
dynamics when spreading on Twitter. Our approach overcomes the challenges

mentioned above in the following ways.

First, we tackle the information tracking problem by taking advantage of
the URL shorteners (e.g. bit.ly, TinyURL, etc) commonly adopted by Twitter
users. Considering each webpage as a unit of information, the URL shortening
services tag a page with a unique token that is easily traceable in Twitter com-
munications. As a result, we able able to track the whole lifespan of a specific

webpage by the inclusion of the shortened URL in tweets.

Second, in response to the difficulty of predicting the virality (e.g., scale,
transmission probability), we shift our attention to the persistency of informa-
tion. We compare two extreme temporal patterns in the decay rate of URLs

embedded in tweets, defining a predicting task to distinguish between URLs

10



that fade rapidly following their peak of popularity and those that fade more
slowly. Our experiments show a strong connection between content and the

temporal dynamics of information.

Third, by studying the webpages instead of individual tweets, we have a
much richer, and more static corpus of content that allows us to simplify our
model by focusing on the textual content instead of the people or the highly
dynamics interactions among them, while still maintaining sufficient degree of
freedom to generate a meaningful set of features for our machine learning mod-

els.

In the end, another advantage of our approach is that if we can predict the
temporal pattern of information based on content alone, we will be able to do
that at a very stage, presumably when the information is first generated - which

can be of interest to practitioners.

In summary, Chapter 4 presents our study on intrinsic qualities of the con-
tent that may effectively determine the dissemination process, especially, the

persistence of information. Our two main contributions include:

e We build a classifier that predicts the decay/persistence of information
with textual features, providing one of the first empirical studies of the
connection between content and temporal variations of information diffu-

sion processes in online social media.

e We investigate the properties of the text that are associated with differ-
ent temporal patterns, finding significant differences in word usage and

sentiment between rapidly-fading and long-lasting information.

11



1.3 The network effect of disengagement

The structure of network is another interesting component of diffusion research.
Although the value of personal connectivity in promoting big cascades was rec-
ognized in early diffusion research [72, 46, 45], most classic work emphasized
more on the influencers and the content under diffusion. However, as we enter-
ing the “the connected age” [83] and living in “the web of influence” [24], the
importance of network structure in the process of information transmission and
consumption has become more and more prominent. Some of the most ground-
breaking work that highlights such importance might be the Small World net-
work model [84] and the PageRank algorithm [17]: the former shows us how
information can travel so fast over a very large population and the later tells us
how much we can trust the source of information - based on purely the link-
age structure. Inspired by these research, there has been a growing body of
work that study network structure systematically and computationally, at var-
ious scales. Here, we categorize these work into the following two categories:

local aspect and global aspect.

At a local level, many studies have shown the correlation of activity among
friends in online communities, and tried to understand the effect of neighbor-
hood structure on the clustering of behaviors (see examples in [5, 9, 28, 64, 73]).
Most of these work are built on the premise that user activity is contagious. As
such, a user is more likely to adopt new products or behaviors if his friends do
so [9,57]; and large cascades of behavior can be triggered by the actions of a few
individuals [38, 72]. With regard to the effect of local structure on the spread
of behavior, empirical work has shown that the adoption probability follows a

“diminishing return” curve in which it first grows rapidly with a small number

12



of adopted friends k, then gradually saturates and stops (or even declines) as
k gets large [9, 73]. Furthermore, the probability of a user adopting a behavior
not only correlates with the number of neighbors who have already adopted,
but also with the connectivity among his local neighborhood. For example, the
structural closeness of local community (measured by triadic closures or cluster
coefficient) has a significant effect on the probability of adoption [9, 73], how-
ever, such effect may differ by the types of content under diffusion [73] - idioms
and political topics saturate much faster than entertainment topics. Network
structure does not only interact with content, some new research also showed
the interaction between influence and structure. Burt [18] argued that, besides
personal characteristics, the positions in social networks is also very important
to opinion leaders. In particular, opinion leaders usually hold the position as
“bridges” between otherwise separate communities, thus are able to act as “in-
formation brokers”. Influence also decays as it travels away from the source:
Wau et al. found that the transmission probability decreases as the distance to
the center increases [86]. In [25, 26, 36], the authors extended this result and

argued that social influence only reaches three hops along the diffusion chain.

In addition to the research efforts on local structure, a number of studies
looked at global structure of networks, for the understanding of macro-level
dynamics of diffusion. First, given a specific diffusion model of local dynam-
ics (e.g., epidemic models, independent cascade models, threshold models, see
next chapter for details), the global structure of network can influence (and ex-
plain) certain characteristics of cascades that run on top of it. For example, in
[67], the authors simulated the propagation of computer virus in power-law net-
works, and argued that the persistence of some low-contagious virus is a result

of the scale-free structure of the network: when the transmission probability is
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less than one, an epidemic has much higher chance to occur in a scale-free net-
work than in a regular network. However, in a following-up work [34], Eguiluz
and Klemm showed that a virus with low transmission probability will have
very low chance to cascade in power-law networks, when the cluster coeffi-
cients are high. On the other hand, the global structure of the diffusion net-
work can also help us to understand the underlying mechanism that drives the
process. In many other work, the global structure of the diffusion network is
used as benchmark for generative models that simulate the mechanism of dif-
fusion [34, 41, 61]. By modeling the process of nodes arrival and edges creation,
these models can generate graphs with observed evolving macro-level struc-
tural properties such as degree distribution, edge densification, and diameters

shrinking.

While most existing work focuses on the growth of networks and the in-
crease of activity, our work differs by shifting efforts to the dynamics of user
departure from social networks, and the decline of activity. What leads people
to depart from their social networks? Is inactivity also contagious? Previous
studies on user churn in mobile phone networks suggest the existence of so-
cial influence at user’s disengagement. Dasgupta et al. showed in [30] that the
probability of a user churning grows with the number of contacts who already
churned. Richter et al. studied users in groups based on communication inten-
sity [70], finding a strong correlation between individuals” propensity to churn
and the group-level characteristics, especially, the (in)activity of the “leader”
of the group. Does the same group effect exist when people disengage from a
social network? A big difference here is the visibility of the behavior. In the
case of a mobile phone network, leaving the service usually involves notifying

existing contacts and signaling them about the disengagement; in online social
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networks, inactivity is less visible and thus should have less influence on others’
behavior. However, the extreme case in which all friends depart suggests that
there must be some effect. Given such effect, how would a graph evolve struc-
turally after it stops growing, or starts shrinking? There has been some recent
theoretical work on modeling the evolution of network structure in the process
of “unraveling” [15]. However, built on top of simple game theory principles,

these models are not yet examined by empirical data.

In Chapter 5, we study these questions empirically in the context of the
DBLP co-authorship network and a large online social network. We show that
the network effect of departure operates differently from the network effect of
formation. In particular, the departure of a user with few friends may be under-
stood most accurately as a function of the raw number of friends who are active.
For the majority of users with larger numbers of friends, however, departure is
best predicted by the overall fraction of activity within a user’s neighborhood,
independent of size. We then study global properties of the subgraphs induced
by active and inactive users, and show that active users tend to belong to a core
that is densifying and is significantly denser than the inactive users. Further,
the inactive set of users exhibit a higher density and lower conductance than
the degree distribution alone can explain. These two aspects suggest that nodes
at the fringe are more likely to depart and subsequent departures are correlated

among neighboring nodes in tightly-knit communities.
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CHAPTER 2
BACKGROUND

In this chapter, we will cover some fundamental theories, methods, and ap-
plications of information diffusion research. Although not complete, they con-
tain both theoretic and empirical work that are most related to our work, and

form the foundation for the research presented in the rest of this thesis.

Before jumping into the literature of information diffusion, we would like
to compare the diffusion of information with the physical diffusion process - in
which one material gradually diffuses and mixes with another material. There
are many similarities between these two processes: they are both familiar phe-
nomena that we see everyday; they both describe the transportation of one ma-
terial/information in a medium; they are both directional'; they both involve a
certain amount of randomness and irregularity. However, through the develop-
ment of physics, we have understood the physical diffusion phenomena much
better than information diffusion. We know the driving force of diffusion is the
“antigradient” of concentration?. And we know that although the movement
of individual particles is largely random, with an enormous amount of parti-
cles, the process can be described and modeled by a few mathematical formulas
(Fick’s law [4]). Using these formulas, we can predict very precisely how the dif-
tusive flux travel in medium: the speed, the scale, the density of mixed medium
at any time. Comparing to the study of physical diffusion process, our knowl-

edge on the diffusion of information is still very primitive. There has been sev-

'Physical diffusion goes from non-mixed state to well-mixed state; information diffusion
goes from the information source to others.

2There are multiple theories explaining the physical diffusion process, all the results we men-
tioned here are based on the classic theory - Fick’s law. A more recent theoretic framework from
the quantum mechanics point of view were developed by Albert Einstein [35].
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eral challenges when studying the process of information diffusion: it is much
less tangible, harder to measure or to run experiments, and perhaps less de-
terministic. However, with today’s extensive digital communication logs, and
infrastructures set up explicitly for information cascades (such as Twitter and
Pinterest), information diffusion process has become more and more tangible,
traceable, and measurable. As a result, we have reasons to believe that, soon in
the future, we will reach a comprehensive understanding of information diffu-
sion as what we did for physical diffusion. This chapter synthesizes some of the

most up-to-date progress in this direction, in three aspects:

1. The theories on the mechanism of diffusion: the essential piece for the
understanding of the phenomenon - what is the underlying driving force

of information diffusion?

2. Mathematical diffusion models: this line of work has brought diffusion
research to a quantitative, computational level, incorporating tools and
methods from physicists, mathematicians, economists, and computer sci-

entists to the research of information diffusion.

3. The predictability of virality: one of the most popular applications of dif-
fusion research, and the ultimate goal for most practitioners is to predict,

control, and generate viral cascades.

2.1 Mechanisms for diffusion

There are several social theories about the mechanism of how information

spread in population.
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One of the most popular theories is the social influence theory (also called
induction theory), which focuses on the viral spread of contagion through so-
cial contacts, and consider the reason that people adopt new ideas, behaviors,
and products is because their friends already did so. The social influence theory
assumes the causal relationship between individual’s activities and the activ-
ities of those they interact with, stressing the influence people received from
their friends when deciding whether to adopt new products or ideas. Social in-
fluence can be exerted through word-of-mouth or imitation. And the diffusion
process driven by social influence is also called social contagion as it spreads
through social interactions like epidemic diseases. There are many work study-
ing the effect of social influence in different settings, such as the diffusion of
innovations [77], the adoption of norms [8], and the spread of topics in blog-
spheres [43]. Among them, the most striking results are a series of studies on
longitudinal personal health data, claiming that obesity [25], happiness [36],

and smoking [26], are all contagious through social networks?>.

An alternative theory attributes homophily as the driving force of diffusion
process. Homophily, is the phenomenon that people tend to befriend with oth-
ers similar to them, in other words, “birds of a feather flock together”. As a re-
sult, products or ideas that are appealing to one’s friends are likely to be appeal-
ing to the ego as well, thus will naturally spread among the group of friends.
The key idea here is that individuals adoption is a result of their inherent char-
acteristics instead of their interactions with friends. Homophily, or “selection
mechanism”, has been studied by sociologists for a long history. People found

that social relationships such as friendships and marriages are more frequently

3There have been many debates around the validity of these results and methodology ap-
plied. For example, [27, 63] argues that the authors of these work mistaken environmental
factors and homophily as social influence.
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formed between people with similar demographics characteristics or cultural
background [55, 65]. Later work also found the homophily effect prevalent in
online social networks, contributing to correlated tastes, opinions, and online

behaviors among those who are alike [62, 51, 52].

The third explanation for the spread of products or actions in a social net-
work are exogenous factors that exist outside of the network (also referred as
contextual/confounding factors). Such exogenous factors include environment,
events, advertising exposure, qualities of the products under diffusion, etc. For
example, the popularization of hybrid cars in California between 2008 and 2009
can be attributed mostly to the state policies such as the tax credits, rebates,
and car pool privileges. In this case, two friends who both live in the bay area
may purchase a hybrid car one after another, however, their decisions are made
independently and mostly driven by the state incentives. Thus we can not con-
clude that one purchases a hybrid car because his friend did so, or people in bay
area have an inherent preference for hybrid cars (as people in this area may not
purchase hybrid cars any more after the policy ends). Although as prevalent
as homophily in real world settings, the importance of exogenous factors are
largely neglected in the studies of diffusion until very recently [7]. The nature
of information and external events can both drives the diffusion process. In their
study of the temporal dynamics of YouTube videos, Crane and Sornette found
a class of videos that do not spread virally through social networks, but still re-
ceive a lot of attention due to exogenous reasons such as the quality of videos
or their association with real world events [29]. Advertisement and brand ex-
posure has a long history driving the spread of products, and such effect still
exists on the on-line media. When studying how people “fan” Facebook pages

on Facebook social network, Sun et al found the set of fans grow in a large num-
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ber of short cascade chains, and the best predictor for the size of diffusion is
not the characteristics of individuals who first “fan” the page but the exposure
of the page on people’s news feed [78]. Location and environment also largely
constraints people’s behavior. In [27], Cohen-Cole et al re-examined the stud-
ies about the social contagions of health behaviors [25, 26, 36] and argued that
most of observed correlation of behaviors among friends can be explained by

environmental factors.

Diffusion processes driven by these three mechanisms have very similar
temporal and structural patterns, and are proved to be extremely difficult to
be distinguished from each other based on only observational data [6, 75]. As
a result, many studies, led by the viral story, have a strong bias towards the so-
cial influence while overlooking homophily and exogenous factors. However,
in most online and off-line settings, all these mechanisms usually take effect
simultaneously when the diffusion is taking place. For example, although the
state incentive policies may stimulated the sales of hybrid cars at the first place,
early adopters of hybrid cars may also have a very positive opinion about their
purchase and recommend it to their friends; at the same time, given the rel-
atively high income and education level of the early adopters, the homophily
principle may also determine that these people and their friends are naturally
more likely to appreciate and afford the “go green” lifestyle. These factors can
also interact with each other and generate a feedback effect that accelerates the
spread of new products and ideas [28], making it even more difficult to separate
one mechanism from the others. Although difficult, it is still important to iden-
tify the major mechanism that drives the diffusion in empirical studies, as it will
not only reveal the fundamentally different underlying social mechanisms, but

also predict the trend of the diffusion.
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Different diffusion mechanisms have different origins. Social influence is
usually triggered by other mechanisms such as social identity, trust, or mutual
utility, and is always operationalized through social networks. On the other
hand, the origin of homophily is individual’s preference and benefits of com-
municating with alike, and it usually operates through social selection, or envi-
ronmental /structural constraints [50]. In this case, both the social network and
the diffusion process running on top of it are results of homophily. Exogenous
factors are confound variables that are independent from the social network.
Many things can be confound variables, some are external and environmental
such as geographical conditions and seasons, some are more internal such as
the quality of content [29] and types of people [87] (see Chapter 3). Identifying
exogenous factors is crucial to diffusion research as it is necessary to control and
understand their effect before we can compare results from different datasets or
computer simulations. Also, as exogenous factors are not the properties of the
networks but elements related to environment, policy, culture, or psychology,
the study of them will connect diffusion research to many other disciplines and

bring our understanding about diffusion process to a higher level.

Distinguishing the underlying mechanisms can also help us to better predict
the pattern of diffusion process. Different mechanisms will lead diffusion pro-
cess into different directions in a long run. As authors in [28] pointed out, while
social influence usually leads to uniformity in entire social network, homophily
tends to fragment the network into smaller communities. On the other hand, the

effect of exogenous factors is usually more temporary and context-dependent.

Historically, most empirical studies have been built on top of the social in-

fluence mechanism and focused on the Word-of-Mouth(WOM) propagation of
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information. In recent years, there has been a rising concern on the mixture of
homophily and social influence and a number of work dedicated to tell them
apart [5, 28, 6, 7]. However, the effect of exogenous factors is still rarely studied,
especially, with empirical data. This can be due to mainly two reasons: first,
there has been a wide range of mathematical models and computational tools
developed based for analyzing network-based diffusions, thus it is natural to
apply these methods to newly available datasets; second, exogenous factors can
be latent, heterogeneous, context-sensitive, and usually involve expertise from
other domains (e.g. law, politics, communication, art, culture, psychology, en-
vironment), making it very difficult for social network researchers to observe
and study them with existing methods. In this thesis, we study diffusion of
information with special emphasis on the effect of exogenous factors, such as
the external role of users (see Chapter 3), and the linguistic characteristics of
content (see Chapter 4). Although we also present results on the correlation of
user disengagement in relation to local and global network structure (see Chap-
ter 5), we are aware that there may be other confound variables that we did not
include in the study, thus will not declare the causal relationship between the

disengagement of friends and the disengagement of the ego.

2.2 Diffusion models

People have long observed some regularities in diffusion process. Some first at-
tempt to depict such regularities can be traced back to French sociologist Gabriel
Tarde’s plot of “S-shaped” adoption curve [31]. As described by the S-shaped
curve, the adoption rate usually starts as low, rises up quickly, slows down later,

and eventually goes flat. Frank Bass later developed a more general model that

22



describes the process of diffusion as the interaction between existing and poten-
tial adopters, in a large population [12]. In Bass model, adoption rate F () can

be calculated using the following formula:

f@ =1 =F@)x(p+qFQ), (2.1)

where:

t is time;

F(z) is the adoption fraction (i.e., the ratio of adopted population to the

ultimate market potential population);

f(¢) is the rate of change of adoption fraction F(¢);

p is the coefficient of innovation, representing the “external influence or

advertising effect”;

q is the coefficient of imitation, representing the “internal influence or

word-of-mouth effect”.

Developed almost half century ago, Bass model has been one of the most
influential diffusion model in economics and marketing. One strength of Bass
model is that it insightfully incorporated two distinct diffusion mechanisms: the
social influence (word-of-mouth) mechanism and the exogenous factors mech-
anism. Using Bass model, the S-shaped curves can be understood as a special
condition for diffusion when advertising effect p equals to 0. Traditionally, Bass
model has been very powerful at predicting the impact of advertising effect p:
given that advertising has been the dominant force for product diffusion , if we
ignore the WOM effect, F(t) becomes a constant with value 1 — 11—7, thus can be
directly calculated with an empirical estimation of p. However, with the popu-

larity of on-line social networks, there has been more and more attention, and
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evidence on the WOM effect g. Sometimes, the entire ad campaign runs only
through WOM propagation (e.g., the early launch of Gmail), without any for-
mal advertising. In this context, Bass model becomes limited, as it assumes the
WOM effect ¢ is known, while in reality is it very difficult to measure or control
the WOM effect g, which can also vary from person to person. In summary, Bass
model can only describe the diffusion process at the population level, and it is

not able to capture the dynamics among individuals in the networks.

To study the diffusion process through social networks, people have ex-
ploited the similarity between the spread of information and epidemics through
social contacts, and adopted a series of epidemics models to describe social con-
tagions [10]. The key concept of classic epidemics models is the status of a host
(or node in social networks): a person is first susceptible(S) to the disease, then
becomes infected(I) (and thus infectious) after enough exposes to infectious con-
tacts, eventually, he will be recovered(R) (or removed, depending on the type of
disease). After recovered, a person can be immune to the disease for a certain
period of time, until he becomes susceptible again. Depending on the length
of immunity period, we can apply the SIR model in which all recovered peo-
ple have lifelong immunity, or the SIRS model which allows a recovered per-
son to become susceptible again. When studying the adoption of products or
behaviors, we can easily apply the epidemics model: after corresponding the
product to the disease, the potential customers are the susceptible nodes, the
existing customers are the infected nodes, the existing customers who used up
the product are recovered, and then recovered nodes become susceptible again
if they will possibly purchase the product again. SIR models are widely ap-
plied to simulate diffusion processes over large social networks. In [37], Girvan

et al used SIR model to explain and simulate periodic outbreaks of diseases.
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In [33], Dodds et al studied SIR models over small-world network [84], and
presented several strategies for preventing or facilitating diffusions over such
network structure. Many empirical studies also use SIR model as the frame-
work to describe real-world diffusion phenomena. For example, In [21], Cha
et al used SIR model to characterize the cascade of users “favorite” a photo in
Flickr network; and in [53], Kumar et al used two variants of the traditional SIR

model to model the diffusion of topics in blogsphere.

One problem of traditional epidemic models is that they assume a constant
propagation across the network, thus can not fully address the interpersonal dy-
namics of diffusion at the individual level. As a result, two classes of diffusion
models have been developed to better describe the adoption process for indi-
viduals in social networks. The first class are threshold models [40]. In threshold
models, each node u has an adoption threshold p, € [0, 1], and a set of connec-
tion weights w,,, for all nodes v that are connected to u. A node u will adopt the
product once the connection weights of his neighbors who already adopted the

product pass his adoption threshold, }; The more

vveEv already adopted = Pu:
recent class of these models are cascade models, which focus on the influence from
an adopted node u to his friends v, p,, € [0, 1]. In cascade models, after a friend
u adopts the product, node v will also adopt it with a probability p,,. These
two classes models have been proved to be statistically equivalent [39, 48]. In
applications, threshold models highlight the “accumulated effect” and can eas-

ily describe the “complex contagion” process [19], whereas cascade models are

more used for simulation of diffusion [39].

These diffusion models are very helpful at characterizing the diffusion pro-

cess and have formed the foundation of today’s diffusion research. New ex-
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tension to these models includes applying them on different topological struc-
tures [67, 34, 33], and adding constraints of the adoption threshold and the cas-
cade probability [86]. However, the network-based diffusion models are usually
applied with the assumptions that the underlying diffusion mechanism is so-
cial influence, and their parameters such as connection weight w,, and cascade
probability p,, are usually interpreted as personal influence from one person to
the other. Here, we would like to call for attention to the possible bias towards

social influence, and suggest to use these models more cautiously.

For most of the work presented in this thesis, we did not employ these mod-
els directly, but we adopted many concepts described in these models (e.g., sus-
ceptible, infectious, connection weight, cascade probability), and employed the

quantitative methodology derived from these models.

2.3 The predictability of virality

With viral videos and memes outbreak and circulating in the Internet almost
everyday, brands and politicians are eager to leverage the power of social net-
works and run online campaigns that “go viral”. The demand from the market,
contrasted with our lack of knowledge on the mechanism behind these viral
events, has catalyzed many studies focusing on modeling and predicting the
virality of diffusion process. In this line of work, virality is usually defined and

measured in three aspects:

1. Scale: the size of cascade tree originated from the original node. e.g., the

cascade Facebook fanning pages [78];
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2. Range: the maximal chain length in the diffusion network. e.g., reference

links between blog posts [60].

3. Transmission probability. As most existing research describe diffusion pro-
cess with epidemic models, transmission probability is the probability a
virus travels through a directional edge in the network and infects the
end node. In the context of social networks, transmission probability is
mapped to the success rate of interpersonal recommendations in electronic
market [56], the probability a tweet is retweeted by the followers of the
tweet’s author [11], and the likelihood a user mark a Flickr photo as fa-

vorite after seeing a friend doing so [22].

With the availability of electronic communication logs and large-scale com-
puting infrastructures, researchers are able to study these aspects of cascades -
together with other elements possibly related to these aspects - in great details.
However, in practice, it is still very difficult to engineer a success viral cam-
paign [11]. In fact, most marketers and public relation professionals still rely
heavily on experience and intuition when launching online campaigns, which
mostly received attention in a short time span [91, 29, 89, 87]. Although the vi-
rality is still the holy grail for marketers, there has been an ascending suspicion

on the whole idea of “predicting virality”.

In their Science article published in 2006, Salganik et al [74] explored the
unpredictability of song ratings, argued that, despite the quality of music, the
best predictor for a song’s popularity is actually the popularity itself: the songs
that received first few thumbs-ups usually rise up to be the hit, even if the first
thumbs-ups are given randomly. In this case, the virality is unpredictable until

it actually happens, and the first thumbs-ups seem to be crucial. Some later
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work [78, 11] further explored the relationship between virality and the early
dynamics of cascade, but the findings are rather negative. First, to generate a
big cascade, it is not enough to have only a few initial “thumbs-ups”, instead,
it requires a large number of seeds initiating small cascade chains altogether.
Second, most observable characteristics of the initiators can not predict the final
scale of the cascade. Meanwhile, some studies showed that the structure of the
subgraph induced by existing adopters do have a role in behavior adoption [9,
73, 60]. However, such role is not consistent in other studies [11], and may

depend heavily on the context of diffusion [19].

There are two major factors that might contribute to the difficulty of predict-
ing virality. First, as most studies observed, the long-tailed distribution of the
popularity of online content results in a skewed training set consisting of many
unsuccessful examples and only a few successful examples. While most ma-
chine learning algorithms are not robust to skewed training sets [69], the com-
mon practice of biased sampling can over-compensate the successful cases and
overlook the unsuccessful ones. As a result, most characteristics we discovered
in the positive class can also be found in the negative class - the predictive model
would fail to tell one from the other. Second, as we mentioned before, given the
fact that online communications is an integrated part of the global communica-
tion networks, there are many exogenous factors that can not be controlled or
observed in the communication channel where the data is collected. The com-
plexity and the fuzziness of real world diffusion process is innately inadequate

to be fully captured by epidemic models [11, 20].

Understanding the difficulty of this task does not mean that it is unsolvable.

We have seen tremendous progress towards a better understanding of the vi-
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rality, incorporating theories and methods from multiple fields (e.g., [19, 11]).
Among these efforts, we argue that, the most urgent task is to expand the defini-

tion of virality, and examine viral phenomena in new, and multiple, dimensions.

One of the most intriguing new dimensions is the temporal dynamics of cas-
cade. There has been a growing interest at studying the temporal patterns of
diffusion process [91, 29, 59, 58]. Most work in domain has concentrated on the
peak of popularity, studying how long it takes to reach the peak, the intensity of
the peak, or the interval between multiple peaks. These work has offered inter-
esting insights about diffusion process, such as the connection between content
and burstiness [29], and the rhythm of news propagation on social media [58].
While current work focus on bursty events, during our study of the spread of
information on Twitter, we discovered and explored a new class of cascades that
have been largely overlooked - persistent cascades*. We noticed that, although
skewed as well, the distribution of the lifespan of information has a much heav-
ier tail towards the end. In other words, there is a substantial amount of infor-
mation that is consistently tweeted over a long period of time, in the fast-paced
medium such as Twitter. When examining the persistent items in depth, we re-
alized that, most of them can not be characterized by any of the traditional met-
rics for virality: they do not receive many retweets, they do not spread through
long-chains, and they are usually not part of super-sized cascades. However, as
they generate comparably large interest that lasts for a significantly long period
of time, we believe that persistent content are interesting enough to be stud-
ied as “success” examples of diffusion as well. We thus propose a new metrics

for virality, namely, the longevity of information. In our work, we study in-

“In the few previous work that observed the persistent of certain content [29, 79], as most
efforts went to content with intense peaks of attention, long-lasting content is usually treated as
corner cases.
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formation longevity in relation to the initiator and the content (see Chapter 3
and Chapter 4). We show that, using textual features from the content, we can

predict the persistent of information at a high accuracy (Chapter 4).
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CHAPTER 3
EXOGENOUS INFLUENCE AND OPINION LEADERS ON TWITTER

The belief in influentials and their ability to tip the trend has been the funda-
mental premise of viral marketing [38, 14]. With a reported “more than $1 billion
spent a year on word-of-mouth campaigns targeting Influentials” [80], quanti-
fying personal influence has become not only a popular research topic, but also
a lucrative business'. Several work studied user influence on Twitter with dif-
ferent topological and activity measures [54, 20, 85]. Most of them found these
measures inadequate at describing the notion of influence on Twitter, only cap-
turing part of the dynamics observed. In addition, people noticed a significant
presence of “mass-media” communications on Twitter [54], and top users are
influential not only by “information value” but by the “name value” they hold
outside of Twitter [20]. Our work explored the mass-media aspect of Twitter,
and studied the influence of different categories of “elite” users, from “mass-
media” (e.g. newspapers, TV channels) to “mass-personal” (e.g., celebrities,

professional bloggers).

There is a distinct difference in the mechanisms that drive “mass” influ-
ence and “interpersonal” influence. According to classic communication the-
ories, mass influence is exerted through “oneway message transmissions from
one source to a large, relatively undifferentiated and anonymous audience”,
whereas, “interpersonal” influence plays out through “two-way message ex-

change between two or more individuals.”

!Companies that provide influence metrics have emerged and received large amount of at-
tention and financial investments. For example, Klout, Q score, and Appinions.
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Recent changes in technology, however, have increasingly undermined the
validity of the mass vs. interpersonal distinction. On the one hand, over the
past few decades mass communication has experienced a proliferation of new
channels, including cable television, satellite radio, specialist book and maga-
zine publishers, and of course an array of web-based media such as sponsored
blogs, online communities, and social news sites. Correspondingly, the tradi-
tional mass audience once associated with, say, network television has frag-
mented into many smaller audiences, each of which increasingly selects the in-
formation to which it is exposed, and in some cases generates the information
itself. Meanwhile, interpersonal influence has become amplified through per-
sonal blogs, email lists, and social networking sites to afford individuals ever
larger audiences. Together, these two trends have greatly obscured the histori-
cal distinction between mass and interpersonal influence, leading some scholars

to refer instead to “masspersonal” influence [81].

Twitter has showcased this erosion of traditional categories of influence. The
fragmentation of traditional media channels, along with the concomitant rise
of social media, have blurred the boundaries between mass and interpersonal
communications on Twitter. In particular, audiences associated with formerly
“mass” media have shrunk, while social media platforms have empowered in-
dividuals to communicate directly with large public audiences; that is, with-
out the intermediation of a media organization. To illustrate, the top ten most
followed users on Twitter are not corporations or media organizations, but in-
dividual people, mostly celebrities. Moreover, these individuals communicate
directly with their followers, often managing their accounts themselves, thus
bypassing the traditional intermediation of the mass media between celebrities

and fans. In addition to conventional celebrities, a new class of “semi-public”
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individuals like bloggers, authors, journalists, and subject matter experts, have
come to occupy an interesting role on Twitter, in some cases becoming more
prominent than traditional public figures such as celebrities and elected offi-
cials. Finally, in spite of these shifts towards masspersonal communication
on Twitter, media organizations, along with corporations, governments, and
NGO'’s all remain represented among highly followed users, and are often ex-

tremely active.

Twitter, therefore, provides an interesting context in which to study the ef-
fect of exogenous factors on social media, especially as Twitter—unlike televi-
sion, radio, and print media—enables one to easily observe information flows
among the members of its ecosystem. However, the effects (e.g. changes in be-
havior, attitudes, etc) remain difficult to measure on Twitter, and so our study
of influence is limited to the distribution of attention and the internsity of inter-

action within Twitter platform.

To this end, our paper makes three main contributions:

e We introduce a method for classifying users with their external status, us-
ing Twitter Lists, into “elite” and “ordinary” users. We further classify
elite users into one of four categories of interest—media, celebrities, orga-

nizations, and bloggers.

e We investigate the potential influence of these categories, based on how
their opinion reach and stimulate the public. We find that although au-
dience attention is highly concentrated on a minority of elite users, much
of the information they produce reaches the masses indirectly via a large

population of intermediaries.

e We show that different categories of users place slightly different emphasis
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on different types of content, and that different content types exhibit dra-
matically different characteristic lifespans, ranging from less than a day to

months.

This section is based on the joint work [87] with Jake Hofman, Winter Ma-
son, and Duncan Watts. Many thanks also go to Sid Suri and Sharad Goel for

insightful discussions.

3.1 Data And Methods

3.1.1 Twitter Follower Graph

In order to understand how information is flowing in the Twitter system, we
need to know the channels by which it flows; that is, who is following whom
on Twitter. To this end, we used the data shared? by Kwak et al. [54], which
included 42M users and 1.5B edges. This data represents a crawl of the follower

graph seeded with all users on Twitter as observed by July 31st, 2009.

3.1.2 Twitter Firehose

In addition, we were interested in the content that was being shared—
particularly bit.ly URLs—so that we could trace the flow of information through

the Twitter graph. We examined all tweets over a 223 day period from July 28,

2At the time of this study, the data was free to download from
http:/ /an kaist.ac.kr/traces/WWW2010.html
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2009 to March 8, 2010 using the data from the Twitter “Firehose”. From these 5B

tweets we observed 260M bit.ly URLs.

3.1.3 Twitter Lists

Our method for classifying users exploits a relatively recent feature of Twitter:
Twitter Lists. Since its launch on November 2, 2009, Twitter Lists have been
welcomed by the community as a way to group people and organize one’s in-
coming stream of tweets by specific sets of users. To create a Twitter List, a user
needs to provide a name (required) and description (optional) for the list, and
decide whether the new list is public (anyone can view and subscribe to this
list) or private (only the list creator can view or subscribe to this list). Once a
list is created, the user can add/edit/delete people in the list. As the purpose
of Twitter Lists is to help users organize people they follow, the name of the list
can be considered a meaningful label for the listed users. List creation therefore
effectively applies the “wisdom of crowds” to the task of classifying users, both
in terms of their importance to the community (number of lists on which they
appear), and also how they are perceived (e.g. news organization vs. celebrity,

etc.).

There is not yet a standard way to classify users by lists, or even a central por-
tal to obtain lists for all users. In order to capture the variety of users involved
in mass media, masspersonal, and interpersonal communication described pre-
viously in a reasonably parsimonious manner, we restrict our attention to four
classes of what we call “elite” users: media, celebrities, organizations (including

both public and private), and bloggers. In addition to these elite users, we also
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study the much larger population of “ordinary” users, as well as the relation-

ships between elite and ordinary users. >.

Given the rate limits established by Twitter’s API, moreover, crawling all
lists for all Twitter users (reportedly over 100M, where some users are included
on tens of thousands of lists) would be prohibitively time consuming. Thus
we instead devised two different sampling schemes—a snowball sample and
an activity sample—each with some advantages and disadvantages, discussed

below.

3.1.4 Snowball sample of Twitter Lists

The first method for identifying elite users employed snowball sampling. For
each category, we chose a number of seed users that were highly representative
of the desired category and appeared on many category-related lists. For each

of the four categories above, the following seeds were chosen:

Celebrities: Barack Obama, Lady Gaga, Paris Hilton

Media: CNN, New York Times

Organizations: Amnesty International, World Wildlife Foundation, Ya-

hoo! Inc., Whole Foods

Blogs*: BoingBoing, FamousBloggers, problogger, mashable. Chris-

brogan, virtuosoblogger, Gizmodo, Ileane, dragonblogger, bbrian017,

3Some third-party sites such as Listorious (http://listorious.com/) now maintain catego-
rized directories of Twitter Lists; however, their methodology is not sufficiently transparent for
our purposes. We also found their data largely not-up-to-date.

“The blogger category required many more seeds because bloggers are in general lower pro-
file than the seeds for the other categories
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hishaman, copyblogger, engadget, danielscocco, BlazingMinds, bloggers-
blog, TycoonBlogger, shoemoney, wchingya, extremejohn, GrowMap,
kikolani, smartbloggerz, Element321, brandonacox, remarkablogger,

jsinkeywest, seosmarty, NotAProBlog, kbloemendaal, JimiJones, ditesco

After reviewing the lists associated with these seeds, the following keywords

were hand-selected as representative of the desired categories:

o Celebrities: star, stars, hollywood, celebs, celebrity, celebrities-on-twitter,

celebrity-tweets, celebrity-list, celebrities, celebsverified
e Media: news, media, news-media

e Organizations: company, companies, organization, organisation, organi-
zations, organisations, corporation, brands, products, charity, charities,

causes, cause, ngo

¢ Blogs: blog, blogs, blogger, bloggers

Having selected the seeds and the keywords for each category, we then did
a snowball sample of the bipartite graph of users and lists (see Figure 3.1). For
each seed, we crawled all lists on which that seed appeared. The resulting “list
of lists” was then pruned to contain only lists whose names matched at least one
of the chosen keywords for that category. We then crawled all users appearing

in the pruned “list of lists”. We then repeated these last two steps.

Table 3.1 shows how many (a) users and (b) lists were obtained at each level
of the snowball sample. In total, 495, 000 users were obtained, who appeared on

7,000,000 lists. Because users can be listed in multiple categories (e.g., Oprah
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Figure 3.1: Schematic of the Snowball Sampling Method

Winfrey is frequently included in lists of “celebrity” and “media”), we next com-

pute a user u’s membership score in category c:

3.1)

e

=N
where n,, is the number of lists in category c that contain user u and N, is the
total number of lists in category c. We then assign each user to the category in
which he or she has the highest membership score. Users that appear in the

follower graph but not in the snowball sample are assigned to the “ordinary”

category.

3.1.5 Activity Sample of Twitter Lists

Although the snowball sampling method is convenient and is easily inter-
pretable with respect to our theoretical motivation, it is also potentially biased
by our particular choice of seeds. To address this concern, we also generate a
sample of users based on their activity. Specifically, we crawl all lists associated

with all users who tweet at least once every week for the entire observation
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Table 3.1: Snowball Sample

Level | celeb | media org blog

Uo 3 2 4 32

ly 2342 | 11403 1170 1347

u 3607 5025 | 20122 | 16317

L 30490 | 71605 | 4970 | 9546

u, | 108836 | 309056 | 115034 | 140251

b 91873 | 171912 | 22518 | 19946

Snowball Sample Activity Sample

category | # of users | # of lists | # of users | # of lists
celeb 108,836 | 91,873 22,803 | 68,810
media 309,056 | 171,912 66,300 | 145,176
org 115,034 22,518 19,726 16,532
blog 140,251 | 19,946 49,987 | 17,259

Table 3.2: Statistics of crawled lists. The number of users refers only to
people who appear in at least one list of the specific category.

period.

This “activity-based” sampling method, which yields 750,000 users and
5,000,000 lists (see Table 3.2 for comparison to the snowball method), is also
clearly biased towards users who are consistently active. Importantly, however,
the bias is likely to be quite different from any introduced by the snowball sam-
ple; thus obtaining similar results from the two samples should give us confi-

dence that our findings are not artifacts of the sampling procedure.

39



3.2 Distribution of attention

After categorizing people into categories, we can calculate the amount of atten-
tion sent and received by each category, at a global level. The approach we take
is to measure the reach of the “elite” categories, which can be considered as the
influence of each category, as well as an estimate of the impact of the informa-
tion introduced by each category. In other words, it is the maximal reach of the

information produced by each category.

3.2.1 Concentration of attention

With either sampling method, the initial categorization of users is quite coarse
and noisy as a result of the arbitrary labeling allowed in Twitter Lists. To filter
categories to the most representative users, we further rank the users in each
of the 4 elite categories by how frequently they are listed in each category, and
take only the top k users in each category, relabeling the remainder as “ordi-
nary” users. To determine the appropriate k, we measure the flow of informa-
tion from the four elite categories to an average “ordinary” user in two ways:
the proportion of people the user follows in each category, and the proportion
of tweets the user received from everyone the user follows in each category. We
sampled 100K random “ordinary” users and calculated the average information

flow from the “elite” users using these two measures.

Figure 3.2(a) shows that each category accounts for a significant share of
both the following links and also the tweets received by an average user, where

celebrities outrank all other categories, followed by the media, organizations,
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and bloggers. Also of note is that the bulk of the attention is accounted for by a
relatively small number of users within each category, as evidenced by the rela-
tively flat slope of the attention curves in Figure 3.2(a). In order to define which
users should be classified as “elites”, we seek a tradeoff between (a) keeping
each category relatively small, so as not to include users who are not distin-
guishable from ordinary users, while (b) maximizing the volume of attention
that is accounted for by each category. In addition, it is also desirable to make
the four categories the same size, so as to facilitate comparisons. Balancing these

requirements, we therefore choose 5K as a cut-off for the elite categories.

Consistent with this view, we find that the population of users identified
by the activity sample is somewhat different from the snowball sample: the
intersection of the two populations is only 20% (100,000 accounts). However,
the intersection of the top k users in each population increases as k decreases:
for the top 5,000 users in each category, the intersection is 41%, and for the top
1,000 users it is 51%. Thus, although the population of consistently active users
is somewhat different from those reached with the snowball sample, the most
frequently listed users in both populations tend to be similar. In addition, Figure
3.2(b) shows that the attention paid to the top k users in the four categories is
essentially the same as for the snowball sample. Thus in the rest of this chapter,

/AT /i

when we talk about “celebrity”, “media”, “organization”, “blog”, we mean the
top 5K users listed as “celebrity”, “media”, “organization”, “blog”, respectively,
drawn from the snowball sample. Table 3.3 shows the top 5 users in each of the

four categories.

To confirm the validity of these categories, we now consider the number of

URLs introduced by various categories. As Table 3.4 (left column) shows, the
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Figure 3.2: Average fraction of # following (blue line) and # tweets (red

line) for a random user that are accounted for by the top K elites
users crawled

vast majority of URLs are initiated by ordinary users, not by any of the elite
categories. This result, however, is deceptive: as we have just determined, our
elite categories number only 20K users in total, whereas we classify over 40M
users in the “ordinary” category. A more calibrated view is presented in the
right hand column of Table 3.4, which shows the per-capita number of URLs

originating from various categories. Here it is clear that users classified as “me-
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Table 3.3: Top 5 users in each category

Celebrity Media Org Blog
aplusk cnnbrk google mashable
ladygaga nytimes Starbucks | problogger
TheEllenShow asahi twitter kibeloco
taylorswift13 | BreakingNews | joinred naosalvo
Oprah TIME ollehkt dooce

Table 3.4: # of URLs initiated by category

category ~ #of URLs per-capita # of URLs

celeb 139,058 27.81
media 5,119,739 1023.94
org 523,698 104.74
blog 1,360,131 272.03
other 244,228,364 6.10

dia” far outproduce all other categories, followed by bloggers, organizations,
and celebrities. In contrast to the previous result, ordinary users originate on

average only about 6 URLs each—far fewer than any category of elite users.

Conceivably, our classification scheme above has omitted an important cat-
egory; that is, within the current “other” category may be hidden additional
categories of opinions. As Figure 3.3 shows, however, even the top 10,000 most
followed of these users accounts for a negligible fraction of attention among the

remaining population.
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Figure 3.3: Average fraction of # following (blue line) and # tweets (red
line) for a random user that are accounted for by the top K most
retweeted users in the “Other” category

3.2.2 Homophily of influence

As indicated above, the top 20K elite users account for almost 50% of all atten-
tion within Twitter; yet this population of users comprises less than 0.05% of the
population. In other words, although Twitter clearly reflects the conventional
wisdom that audiences have become increasingly fragmented, it nevertheless
shows remarkable concentration of information production and received atten-
tion among a relatively small number of actors. Even if the media has lost at-
tention relative to other elites, information flows have not become egalitarian

by any means.

The prominence of elite users raises the question of how these different cat-

egories listen to each other. To address this issue, we compute the percentage of
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Table 3.5: Information flow among the elite categories

% of friends in celeb in media in org in blog
celeb 30.56 3.63 1.99 1.64
media 3.59 16.67 2.07 2.15
org 3.62 3.33 7.38 2.65
blog 441 2.27 2.03 10.25

% of tweets | from celeb | from media | from org | from blog

celeb 38.27 6.23 1.55 3.98
media 391 26.22 1.66 5.69
org 4.64 6.41 8.05 8.70
blog 4.94 3.89 1.58 22.55

following links and received tweets among elite categories. Specifically, Table
3.5 shows the average percentage of friends/tweets category i get from cate-
gory j. Table 3.5 shows striking homophily with respect to attention: celebrities
overwhelmingly pay attention to other celebrities, media actors pay attention
to other media actors, and so on. The one slight exception to this rule is that
organizations pay more attention to bloggers than to themselves. In general, in
fact, attention paid by organizations is more evenly distributed across categories

than for any other category.

Figure 3.2, it should be noted, shows only how many URLs are received
by category i from category j, a particularly weak measure of attention for the
simple reason that many tweets go unread. A stronger measure of attention,
therefore, is to consider instead only those URLs introduced by category i that

are subsequently retweeted by category ;.
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Category of Twitter Users

B receive tweets from A

% of tweets received from

Celeb Media Org Blog
Celeb 3827 6.23 1.55 3.98
Media 3.91 2622 1.66 5.69
Org 4.64 641 8.05 870
Blog 494 3.89 158 22.55

Figure 3.4: Share of attention among elite categories

Before proceeding, it is helpful to differentiate between two mechanisms by
which information can diffuse in Twitter. The first is via retweeting, when a
user, having received a tweet, subsequently rebroadcasts it to his or her own
followers. In some instances, users retweet each other using the official retweet
function provided by Twitter, but in other cases they credit the retweet with
an informal convention, most commonly either “RT @user” or “via @user.” The
second mechanism is what we label reintroduction, where a user independently

tweets a URL that has previously been introduced by another user.

In addition to attention, Table 3.6 shows how much information originating
from each category is retweeted by other categories, while Table 3.7 shows how
much is subsequently reintroduced. As with attention, both retweeting and
reintroduction activities are strongly homophilous among elite categories; how-
ever, bloggers are disproportionately responsible for retweeting and reintroduc-
ing URLs originated by all categories. This result reflects the characterization of

bloggers as recyclers and filters of information; however, Table 3.6 and 3.7 also
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Table 3.6: RTs among categories

by celeb | by media | by org | by blog | by other TOTAL
celeb 4,334 1,489 | 1,543 5,039 | 1,070,318 | 1,082,723
media 4,624 40,263 | 7,628 | 32,027 | 5,204,719 | 5,289,261
org 1,570 2,539 | 18,937 | 11,175| 1,479,017 | 1,513,238
blog 3,710 6,382 | 5,762 | 99,818 | 3,457,631 | 3,573,303
other 34,455 93,934 | 86,630 | 318,537 | 34,814,456 | 35,348,012

Table 3.7: Re-introductions among categories

by celeb | by media | by org | by blog | by other TOTAL
celeb 2,868 1,239 522 1,664 488,229 494,522
media 1,678 | 205,165 | 2,439 9,681 | 2,006,888 | 2,225,851
org 816 1,511 | 8,628 3,711 610,373 625,039
blog 1,415 5644 | 1416 | 52,909 | 1,148,137 | 1,209,521
other 45,547 | 793,741 | 69,441 | 335,690 | 86,853,224 | 88,097,643

show that the total number of URLs either RT’d or reintroduced by bloggers is
vastly outweighed by the number retweeted or reintroduced by ordinary users.
Even though on a per-capita basis, therefore, bloggers disproportionately oc-

cupy the role of information recyclers, their actual impact is relatively minimal

(see Figure 3.4).
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Category of Twitter Users

- . A retweet B

# of retweets by
Celeb Media  Org Blog
Celeb 4,334 1489 1,543 5,039
Media 4,624 40,263 7,628 32,027
Org 1,570 2,539 18,937 11,175
og 3,710 6,382 5,762 99,818

Figure 3.5: RT behavior among elite categories

3.3 Revisiting two-step flow theory: what are the opinion lead-

ers?

The two-step flow theory, first proposed in the 50s, is still one of the most suc-
cessful theories that captured the dueling importance of mass media and inter-
personal influence. The essence of the two-step flow is that information passes
from the media to the masses not directly, as supposed by early theories of mass
communication, but rather via an intermediary layer of opinion leaders, who act
as filters and interpreters for their followers. Although deeply acknowledged
by marketers, it has been difficult to identify opinion leaders at a large scale,
or quantify their impact to the public. As we have already gathered a confi-
dent list of mass media accounts, it becomes a natural problem for us to verify
the two-step flow theory on Twitter, and ask, what are the opinion leaders, and
what proportion of the information originating from media sources is broadcast

directly to the masses, and what proportion is transmitted indirectly via some
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population of intermediaries. In addition, we may inquire whether these inter-
mediaries, to the extent they exist, are drawn from other elite categories or from
ordinary users, as claimed by the two-step flow theory; and if the latter, in what

respects they differ from other ordinary users.

Before proceeding with this analysis, we note that there are two ways infor-
mation can pass through an intermediary in Twitter. The first is via retweeting,
which occurs when a users explicitly rebroadcasts a URL that he or she has
received from a friend, along with an explicit acknowledgment of the source—
either using the official retweet functionality provided by Twitter or by making
use of an informal convention such as “RT @user” or “via @user.” Alterna-
tively, a user may tweet a URL that has previously been posted, but without
acknowledgement of a source; in this case we assume the information was in-
dependently rediscovered and label this a “reintroduction” of content. For the
purposes of studying when a user receives information directly from the me-
dia or indirectly through an intermediary, we treat retweets and reintroductions
equivalently. If the first occurrence of a URL in Twitter came from a media user,
but a user received the URL from another source, then that source can be con-
sidered an intermediary, whether they are citing the source within Twitter by
retweeting the URL, or reintroducing it, having discovered the URL outside of

Twitter.

To quantify the extent to which ordinary users get their information indi-
rectly versus directly from the media, we sampled 1M random ordinary users”,
and for each user, counted the number 7 of bit.ly URLs they had received that

had originated from one of our 5K media users, where of the 1M total, 600K had

>As before, performing this analysis for the entire population of over 40M ordinary users
proved to be computationally unfeasible.
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Figure 3.6: Percentage of information that received via an intermediary as
a function of total volume of media content to which a user is
exposed

received at least one such URL. For each member of this 600K subset we then
counted the number n, of these URLs that they received via non-media friends;
that is, via a two-step flow. The average fraction n,/n = 0.46 therefore repre-
sents the proportion of media-originated content that reaches the masses via an
intermediary rather than directly. As Figure 3.6 shows, however, this average
is somewhat misleading. In reality, the population comprises two types—those
who receive essentially all of their media-originating information via two-step
flows and those who receive virtually all of it directly from the media. Unsur-
prisingly, the former type is exposed to less total media than the latter. What
is surprising, however, is that even users who received up to 100 media URLs

during our observation period received all of them via intermediaries.
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Who are these intermediaries, and how many of them are there? In total, the
population of intermediaries is smaller than that of the users who rely on them,
but still surprisingly large, roughly 490K, the vast majority of which (484K, or
99%) are classified as ordinary users, not elites. To illustrate the difference, we
note that whereas the top 20K elite users collectively account for nearly 50%
of attention, the top 10K most-followed ordinary users account for only 5%.
Moreover, Figure 3.6¢ also shows that at least some intermediaries also receive

the bulk of their media content indirectly, just like other ordinary users.

Comparing Figure 3.6a and 3.6c, however, we note that intermediaries are
not like other ordinary users in that they are exposed to considerably more me-
dia than randomly selected users (9165 media-originated URLs on average vs.
1377), hence the number of intermediaries who rely on two-step flows is smaller
than for random users. In addition, we find that on average intermediaries have
more followers than randomly sampled users (543 followers versus 34) and are
also more active (180 tweets on average, versus 7). Finally, Figure 3.7 shows
that although all intermediaries, by definition, pass along media content to at
least one other user, a minority satisfies this function for multiple users, where
we note that the most prominent intermediaries are disproportionately drawn
from the 4% of elite users—Ashton Kucher (aplusk), for example, acts as an

intermediary for over 100,000 users.

Interestingly, these results are all broadly consistent with the original con-
ception of the two-step flow, advanced over 50 years ago, which emphasized
that opinion leaders were “distributed in all occupational groups, and on every
social and economic level,” corresponding to our classification of most inter-

mediaries as ordinary [46]. The original theory also emphasized that opinion
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leaders, like their followers, also received at least some of their information via
two-step flows, but that in general they were more exposed to the media than
their followers—just as we find here. Finally, the theory predicted that opinion
leadership was not a binary attribute, but rather a continuously varying one,
corresponding to our finding that intermediaries vary widely in the number of
users for whom they act as filters and transmitters of media content. Given the
length of time that has elapsed since the theory of the two-step flow was artic-
ulated, and the transformational changes that have taken place in communica-
tions technology in the interim—given, in fact, that a service like Twitter was
likely unimaginable at the time—it is remarkable how well the theory agrees

with our observations.
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3.4 The interaction between people and content

The results in Section 3.2.1 demonstrate the “elite” users account for a substan-
tial portion of all of the attention on Twitter, but also show clear differences in
how the attention is allocated to the different elite categories. As illustrated pre-
viously, users have natural preferences on content, and influence on Twitter is
topic-dependent [56, 20]. It is therefore interesting to consider what kinds of

content is being shared by these categories.

Given the large size of the URL population in our observation period (260M),
and the large number of ways in which one can classify content (video vs. text,
news vs. entertainment, political news vs. sports news, etc.), classifying even a
small fraction of URLs according to content is an onerous task. Bakshy etal [11],
for example, used Amazon’s Mechanical Turk to classify a stratified sample of
1,000 URLSs along a variety of dimensions; however, this method does not scale

well to larger sample sizes.

Instead, we restrict attention to URLs originated by the New York Times
which, with over 2.5M followers, is the second-most followed news organiza-
tion on Twitter after CNN Breaking News. NY Times, however, is roughly ten
times as active as CNN Breaking News, so is a better source of data. To classify
NY Times content, we exploit a convenient feature of their format—namely that
all NY Times URLs are classified in a consistent way by the section in which
they appear (e.g. US, World, Sports, Science, Arts, etc) °. Of the 6398 New
York Times bit.ly URLs observed, 6370 could be successfully unshortened and

assigned to one of 21 categories. Of these, however, only 9 categories had more

6h’t’cp: //www.nytimes.com/year/month/day/category/
title.html?ref=category
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than 100 URLs over the observation period, one of which—"NY region”—was
highly specific to the New York metropolitan area; thus we focused our atten-
tion on the remaining 8 topical categories. Figure 3.8 shows the overall RT and
reintroduction rates by category. World news is the most popular category, fol-
lowed by US news, business, and sports, where increasingly niche categories
like Health, Arts, Science, and Technology are less popular still. In general, the
overall pattern is replicated for all categories of users, but there are some minor
deviations: In particular, organizations show disproportionately little interest in
business and arts-related stories, and disproportionately high interest in science,
technology, and possibly world news. Celebrities, by contrast, show greater in-
terest in sports and less interest in health, while the media shows somewhat

greater interest in US news stories.

In addition, we also consider the accumulated RT /Reintroduction behavior
for a small selection of the most popular URLs. As Figure 3.9 shows, the link to
the official White House blog, which expressed the administration’s initial re-
sponse to the Haiti earthquake, was rebroadcast in largely the same manner by
all categories of users, as was the announcement of President Obama winning
the Nobel Peace Prize. By contrast, the news story announcing the unexpected
death of the actress Brittany Murphy was rebroadcast largely by bloggers, while
the breaking news about Tiger Woods” accident and affair was picked up mostly
by the news media and other celebrities. Finally, Figure 3.9 shows two examples
of URLs that exhibit very different patterns from news stories. First, the URL
for DealPlus, a website for “finding, discussing, and sharing thousands of deals
and coupons for all types of stores,” was popular among ordinary users, but al-
most completely ignored by all categories of elite users. And second, the video

for the song “Brick by Boring Brick,” by the band Paramore, was again reposted
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mostly by ordinary users, but in this case celebrities also reposted it. Although
this analysis is far from systematic, it suggests that different categories of users
respond to different sorts of content in ways that are consistent with our classi-

fication scheme.

3.5 Lifespan of content by category

In addition to different types of content, URLs introduced by different types of
elite users or ordinary users may exhibit different lifespans, by which we mean

the time lag between the first and last appearance of a given URL on Twitter.

Naively, measuring lifespan seems a trivial matter; however, a finite obser-
vation period—which results in censoring of our data—complicates this task.
In other words, a URL that is last observed towards the end of the observation
period may be retweeted or reintroduced after the period ends, while corre-
spondingly, a URL that is first observed toward the beginning of the observa-
tion window may in fact have been introduced before the window began. What
we observe as the lifespan of a URL, therefore, is in reality a lower bound on the
lifespan. Although this limitation does not create much of a problem for short-
lived URLs—which account for the vast majority of our observations—it does
potentially create large biases for long lived URLs. In particular, URLs that ap-
pear towards the end of our observation period will be systematically classified

as shorter-lived than URLs that appear towards the beginning.

To address the censoring problem, we seek to determine a buffer ¢ at both
the beginning and the end of our 223-day period, and only count URLs as hav-

ing a lifespan of 7 if (a) they do not appear in the first 6 days, (b) they first appear
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in the interval between the buffers, and (c) they do not appear in the last 6 days,
as illustrated in Figure 3.10(a). To determine ¢ we first split the 223 day pe-
riod into two segments—the first 133 day estimation period and the last 90 day
evaluation period (see Figure 3.10(b))—and then ask: if we (a) observe a URL
tirst appear in the first (133 — 6) days and (b) do not see it in the ¢ days prior to
the onset of the evaluation period, how likely are we see it in the last 90 days?
Clearly this depends on the actual lifespan of the URL, as the longer a URL lives,
the more likely it will re-appear in the future. Using this estimation/evaluation
split, we find an upper-bound on lifespan for which we can determine the ac-
tual lifespan with 95% accuracy as a function of 6. Finally, because we require a
beginning and ending buffer, and because we can only classify a URL as having
lifespan 7 if it appears at least 7 days before the end of our window, we need to
pick 7 and ¢ such that 7 + 25 < 223. We determined that 7 = 70 and ¢ = 70 suf-
ticiently satisfied our constraints; thus for the following analysis, we consider

only URLs that have a lifespan 7 < 70 7.

"We also performed our analysis with different values of 7, finding very similar results; thus
our conclusions are robust with respect to the details of our estimation procedure.
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Having established a method for estimating URL lifespan, we now explore
the lifespan of URLs introduced by different categories of users, as shown in
Figure 3.11(a). URLs initiated by the elite categories exhibit a similar distribu-
tion over lifespan to those initiated by ordinary users. As Figure 3.11(b) shows,
however, when looking at the percentage of URLs of different lifespans initiated

by each category, we see two additional results: first, URLs originated by media
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actors generate a large portion of short-lived URLs (especially URLs with 7 = 0,
those that only appeared once); and second, URLs originated by bloggers are
overrepresented among the longer-lived content. Both of these results can be
explained by the type of content that originates from different sources: whereas
news stories tend to be replaced by updates on a daily or more frequent basis,
the sorts of URLSs that are picked up by bloggers are of more persistent interest,
and so are more likely to be retweeted or reintroduced months or even years
after their initial introduction. Twitter, in other words, should be viewed as a
subset of a much larger media ecosystem in which content exists and is repeat-
edly rediscovered by Twitter users. Some of this content—such as daily news
stories—has a relatively short period of relevance, after which a given story is

unlikely to be reintroduced or rebroadcast. At the other extreme, classic mu-
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sic videos, movie clips, and long-format magazine articles have lifespans that
are effectively unbounded, and can seemingly be rediscovered by Twitter users

indefinitely without losing relevance.

To shed more light on the nature of long-lived content on Twitter, we used
the bit.ly API service to unshorten 35K of the most long-lived URLs (URLs that
lived at least 200 days), and mapped them into 21034 web domains. As Figure
3.12 shows, the population of long-lived URLs is dominated by videos, music,
and consumer goods. Two related points are illustrated by Figure 3.13, which
shows the average RT rate (the proportion of tweets containing the URL that
are retweets of another tweet) of URLs with different lifespans, grouped by the
categories that introduced the URL®. First, for ordinary users, the majority of
appearances of URLs after the initial introduction derives not from retweeting,
but rather from reintroduction, where this result is especially pronounced for
long-lived URLs. For the vast majority of URLs on Twitter, in other words,
longevity is determined not by diffusion, but by many different users indepen-
dently rediscovering the same content, consistent with our interpretation above.
Second, however, for URLs introduced by elite users, the result is somewhat the
opposite—that is, they are more likely to be retweeted than reintroduced, even
for URLs that persist for weeks. Although it is unsurprising that elite users gen-
erate more retweets than ordinary users, the size of the difference is neverthe-
less striking, and suggests that in spite of the dominant result above that content
lifespan is determined to a large extent by the type of content, the source of its
origin also impacts its persistence, at least on average—a result that is consistent

with previous findings [11].

8Note here that URLs with lifespan = 0 are those URLs that only appeared once in our
dataset, thus the RT rate is zero.
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Figure 3.13: Average RT rate by lifespan for each of the originating cate-
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3.6 Conclusion

In this chapter, we investigated the influencer problem by incorporating exoge-
nous influence into the context of Twitter. In particular, we find that although
audience attention has indeed fragmented among a wider pool of content pro-
ducers than classical models of mass media, attention remains highly concen-
trated, where roughly 0.05% of the population accounts for almost half of all
posted URLs. Within this population of elite users, moreover, we find that at-
tention is highly homophilous, with celebrities following celebrities, media fol-
lowing media, and bloggers following bloggers. Second, we find considerable
support for the two-step flow of information—almost half the information that
originates from the media passes to the masses indirectly via a diffuse interme-

diate layer of opinion leaders, who although classified as ordinary users, are
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more connected and more exposed to the media than their followers. Third, we
find that although all categories devote a roughly similar fraction of their atten-
tion to different categories of news (World, U.S., Business, etc), there are some
differences—organizations, for example, devote a surprisingly small fraction of
their attention to business-related news. We also find that different types of con-
tent exhibit very different lifespans: media-originated URLs are disproportion-
ately represented among short-lived URLs while those originated by bloggers
tend to be overrepresented among long-lived URLs. Finally, we find that the
longest-lived URLs are dominated by content such as videos and music, which
are continually being rediscovered by Twitter users and appear to persist indef-
initely. We will further investigate the role of content in the diffusion process in

next chapter.

By restricting our attention to URLs shared on Twitter, our conclusions are
necessarily limited to one narrow cross-section of the media landscape. An in-
teresting direction for future work would therefore be to apply similar methods
to quantifying influence via more traditional channels, such as TV and radio on
the one hand, and interpersonal interactions on the other hand. Moreover, al-
though our approach of defining a limited set of predetermined user-categories
allowed for relatively convenient analysis and straightforward interpretation,
it would be interesting to explore automatic classification schemes from which

additional user categories could emerge.
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CHAPTER 4
THE ROLE OF CONTENT

As shown in previous chapter, the content originated by different people exhibit
different lifespan. However, in practice, it is still quite difficult to predict to lifes-
pan of content using the its author alone (think of that bloggers can write about
a variety of things). In this chapter, we present a large scale empirical study cen-
tering at the textual characteristics of content, in relationship to the persistence
of information. Our goal is to look for intrinsic qualities of the content that effec-
tively affect the dissemination process, especially, resulting in different lifespans

of information. We make two main contributions:

e We build a classifier that predicts the decay/persistence of information
with textual features, providing one of the first empirical studies of the
connection between content and temporal variations of information in on-

line social media.

o We investigate the properties of the text that are associated with differ-
ent temporal patterns, finding significant differences in word usage and

sentiment between rapidly-fading and long-lasting information.

In the following sections of this chapter, we first provide an overview of the
data we are using for this study, then present a binary classifier that predicts
the persistence of URLs, using textual features from webpages pointed to by
the URLs. We further examine and discuss different aspects of the content that
are correlated with the difference in temporal patterns. In the end, we provide
some additional insights about the quality of YouTube videos in relationship to

the decay time.
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This chapter is based on the joint work [89] with Chenhao Tan, Jon Kleinberg,
and Michael Macy. Many thanks also go to the Social Dynamics Lab in Cornell

University, for very inspiring feedback and conversations.

4.1 Data

411 Summary

In this study, we used the dataset publicly shared by the authors of [91]', con-
sisting of approximately 20%-30% of all the tweets generated between June 1,
2009 and December 31, 2009. We only study the temporal patterns of bit.ly
URLs for two reasons, following the arguments of [87]. First, shortened URLs
have a unique token that is easily traceable in individual tweets. Second, the
associated webpages provide a much richer source of content beyond the 140-
character limit of tweets. From the total 476 M tweets contained in the dataset,
we find 118M distinct URLs embedded in 186M tweets. Among all the URLs,
nearly half of them (56M) are bit.ly URLs (i.e., start with http://bit.ly/). For
simplicity, we only extract the time series of bit.ly URLs and use them as a rep-
resentative sample of all temporal patterns. Considering that a large portion of
URLs mentioned in Twitter are spam and may not be able to provide meaning-
ful content, we restrict our study to the bit.ly URLs that appeared more than 10
times in retweets 2, which gives us 131K bit.ly URLs. We are able to crawl 117K
webpages pointed to by these bit.ly URLs, the remaining 14K URLs that we fail

to crawl are mostly misspelled or linked to webpages that no longer exist.

thttp:/ /snap.stanford.edu/data/twitter7.html
2We recognize a post as retweet when it contains “RT @” or “via @”.

65



We further restrict our study to URLs that are mentioned more than 50 times
in order to remove spam and have sufficient observations to measure temporal
dynamics, which leaves us with 21K URLSs. In the rest of this chapter, when we
talk about URLs and temporal patterns, we mean these 21K bit.ly URLs and the

temporal pattern in their time series.

4.1.2 Persistence of URLs

After extracting the data of interest, we first propose a quantitative metric of
persistence and present some insights on the overall temporal pattern of the

URLs we study.

As the focus of this study is how fast URLs fade, we measure decay rates fol-
lowing peak attention. For each URL y, let the hour of maximum attention (also
called the peak of attention) be hour 0. Then the decay time t, is defined as the
hour after the peak when the number of mentions first reaches 75% of the total.
Instead of measuring the time lag between the first and last mention of a given
URL [87], we intentionally choose to measure the time lag from the peak of at-
tention to the point when the URL fades away, as given the limited observation
window when the dataset was collected, it is not obvious to determine when
exactly a URL was first introduced or last appeared on Twitter. The distribution
of t, shows a long tail(see Figure 4.1), as found previously in the distribution of
URL lifespan [87]. Among all URLs we studied, the mean ¢, is 217.3 hour and

the median ¢, is 19 hours.

We further examine the relationship between #, and the overall popularity

of URLs. Figure 4.2 shows the average number of tweets and retweets accu-
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# of URLSs
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Figure 4.1: Distribution of URL decay time ¢,

mulated by each URL as a function of #,. Given the skewed distribution of z,,
we bin URLs by the integer part of log,(#,), and calculate the mean for each
bin. Although the persistent URLs are mentioned in slightly more tweets, the
rapidly-fading URLs do better at attracting retweets. This result is consistent
with previous findings that the longevity of information is determined not by
diffusion, but by independent generation of tweets of the same content over

time [87].

4.2 Predicting temporal patterns based on content

In this section, we formally define the temporal pattern classification task and

present our findings.
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Figure 4.2: URL overall popularity as a function of ¢,

4.2.1 Identifying information with two distinct temporal pat-

terns

We start by casting our question into a binary classification problem in which
class 1 is defined as consisting of those URLs with 7, < 6 and class 0 is defined
defined as consisting of those URLs with 7, > 24. In this way we get a positive
class with 7042 examples and a negative class with 6185 examples. We exclude
the 7K examples in the middle, as the data is much noisier and the persistence of
these URLs is ambiguous — our goal in this first exploration of persistence pre-
diction is to construct a well-defined and tractable task from which we can un-
derstand whether there are features that meaningfully separate rapidly-fading

URLSs from long-lasting ones.

To better illustrate our classification scheme, we apply the time series nor-
malization method introduced in [91] and calculate the centroid of time series

for each class, as shown in Figure 4.3. The two classes we define do in fact collec-
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tively exhibit very different temporal patterns: URLs of the positive class fade
away slowly, with periodic, multiple peaks of attention; URLs of the negative

class have a single spike and a rapid decay afterwards.

—— positive class
-—-— negative class

50
!

40

20

10

Time (hours)

Figure 4.3: Normalized time series centroids for two classes

4.2.2 Features

To predict the temporal class of URLs, we extract and experiment with the fol-
lowing four incremental sets of unigram features from the HTML webpages
linked by the URLs (one-character tokens and those that consist only of num-

bers are filtered out):

e Header. The text in the header of HTML, within tags “<title>",”<description>"
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Table 4.1: Feature size

Feature # of unique unigram terms
Header 18471
Header + URL 27433
Header + Body 59475
Header + Body + URL 76487

and “<keywords>".

e Header + URL. In addition to Header, this feature set also uses the
terms tokenized from the URL links embedded in the HTML (i.e.,within

“<href>"").

e Header + Body. In addition to Header, this feature set includes all the text

in the body of HTML.

e Header + URL + Body. This feature set combines all the features men-

tioned above.

As mentioned above, to get more meaningful unigram features, after tok-
enizing all the textual content into word terms, we filter the terms with length 1
(e.g., “s”, “t”) and the terms consisting of only numbers. As the dimension in-
creases tremendousely in the last 3 sets of features, we also filter the infrequent

terms (i.e., terms with total frequency less than 20). Table 4.1 gives a summary

of the number of features in each set.
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Table 4.2: Results for predicting lastingness of information

Feature Accuracy | Pos F1 | Neg F1
Header 0.6909 | 0.7399 | 0.6186
Header + URL 0.7177 | 0.7666 | 0.6423
Header + Body 0.7136 | 0.7664 | 0.6296
Header + Body + URL | 0.7224 | 0.7708 | 0.6478

4.2.3 Classifier performance

To predict the persistence of webpages, we employ a Support Vector Machine
(SVM)? classifier with a binary representation of unigram features (if a term ap-
pears in a webpage, the corresponding coordinate has value 1, and value 0 oth-
erwise). To work with high-dimensional features, we use the linear SVM kernel
for efficiency. We also apply the default parameters for SVM classifier for a fair
comparison among different sets of features. Table 4.2 gives the performance of

classifiers with different sets of features using 10-fold cross validation.

Table 4.2 shows that in general, the simple linear-kernel SVM classifier can
predict the persistent/rapidly-fading category of URLs with impressively high
accuracy (around 70%), as compared to 53% for always predicting positive.
Also, the F1 score for positive class is around 75%, which shows a remarkable
balance of precision and recall at identifying the persistent content. This re-
sult provides strong evidences for the connection between the content of HTML
pages and the persistence of the associated URLs. Moreover, comparing across
4 feature sets, we see that the more information we have about the content, the

better the classifier performs. This finding further confirms the relationship be-

3The SVM package we use is SVMLight, http://svmlight.joachims.org/
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tween textual content and the persistence of attention of the information.

4.3 How temporal patterns vary with types of content

The SVM classifier shows that the content provides enough information to pre-
dict persistence reasonably well. However, SVMs are not as effective at provid-
ing a readily comprehensible sense for which properties of the text are the most
related to the variations in temporal patterns. Here we address this question,
by looking more closely at the textual content and identifying the aspects that

exhibit the most significant difference across temporal classes.

4.3.1 LIWC analysis

Linguistic Inquiry and Word Count (LIWC) [68] is a widely used text anal-
ysis tool that maps words onto 60 pre-defined categories, covering linguistic,
psychological, and social dimensions. Using LIWC categories, we start by com-

paring the distribution of words across two classes.

We say a LIWC category occurs in a URL when we find at least one word
under that category from the header of the associated HTML page.* Figure 4.4

shows the percentage of occurrence for all LIWC categories in webpages from

4We also conduct the same analysis with text from the other 3 feature sets, however, since
the number of words increases markedly in these feature sets, and LIWC dictionary many times
maps a word into multiple categories, the binary vector for each URL is easily saturated and the
fw(®) curve becomes too flat to show interesting difference.
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Figure 4.4: Class distribution in 60 LIWC dimensions, using words from

HTML header

two classes. As illustrated by Figure 4.4, the two classes differ the most in the

following three groups of LIWC categories,

e Emotion: posemo (positive emotion), negemo (negative emotion).

e Cognitive process: cogmech (cognitive p

rocess), insight (words like think,

know, consider), incl (inclusive, words like and, with, include), discrep (dis-

crepancy, words like should, would, count).

e Part of speech: verb (common verbs),

auxverb (auxiliary verbs), preps

(prepositions), present (present tense, words like is,does, hear), future (fu-

ture tense, words like will,gonna).

To better see the trend in the frequency of specific categories as a function

of 1,, for each category w, we define f,(#) as the fraction of occurrences of w in

all URLs u for which ¢,

categories in Figure 4.5.
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Figure 4.5: Trending LIWC categories

Again, to balance the skewed distribution of 7,, we bin ¢, by integer part of
log,(t,), and plot the value f.(w) for each bin x (instead of hour x). In this way, the
later bins would still contain a substantial number of URLs so that the proba-
bilistic curve is smoother. Similar as in [13, 42] we find the sentiment of content
plays an important role in its dynamics: there is a clear trend of words with
positive emotion rising in the persistent content, and the opposite for words
with negative emotion. However, the amount of words related to affect stays
more or less constant across #,. We also see a drop of words related to cogni-
tive process when 1, increases, suggesting that, content associated with more
complicated cognitive process can be more viral [13], yet not so persistent. Not
surprisingly, we find that rapidly-fading content with more words related to
actions (verb, auxverb, preps) and tense (present, future), presumably because
these webpages contain more action-demanding, time-critical information that

expires after a certain event or time.
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4.3.2 Topic analysis

Although LIWC offers the most straightforward insights from the text, as a
manually-generated, pre-defined category system, it is limited by the under-
lying psycholinguistic concepts. To extend the dimensions of text described in
LIWC, we also build topic models that represent mixtures of words, and see
how these topics vary across our temporally-defined classes. For this we use
Latent Dirichlet Allocation (LDA)?, a flexible generative model for collections of
discrete data [16]. Here, we use it to find proper underlying generative proba-
bilistic semantics from content. We use the corpus consisting of the unigrams in
the two classes. With the topic distribution for each document, we try to study
whether the temporal patterns are correlated with “topics”. First, we will show
the probability of topics in the two classes and find those topics with significant
differences across different topics. Then we interpret these topics to find some
differences between persistent webpages and rapidly-fading webpages. As for
the details of running LDA, we use the features in “header+body” because we
find that when using features from URLs, the results will include some irregular

words, while with only “header”, it cannot include enough words in detail.

First, since the output of LDA provides a continuous value of topic weight
for each document, we cast it into binary by assigning 1 when the weight is
above the default value. For each topic, we compute the probability that one
document contains this topic in the positive class and in the negative class re-
spectively. More specifically, we conduct a paired t-test between the two classes
on each topic and find that, on 39 topics, the two classes are different at signif-

icance level @ = 5%. 24 of them are with p-value 0. This shows that these two

SWe use the software from http://www.cs.princeton.edu/~blei/lda-c/index.
html with the number of topics set to 50.
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classes differ significantly in the space of topics. Figure 4.6 shows topics distri-
bution in all 50 topics. We notice that the most significant differences occur at
topics 18, 25 (with a high probability in rapidly-fading webpages), and topics
32, 37 (with a high probability in persistent webpages).

A1 71 A A

—— positive class
negative class

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

topic

Figure 4.6: Class distribution in 50 LDA topics, using words from HTML
header and body

Providing a closer look at those topics, Table 4.3 shows top 20 words given
by the topic model. We see some similar phenomena as in previous section:
words related to strong - and mostly negative - emotions tend to appear more
in the topics highly weighted in rapidly-fading webpages. For example, nega-
tive words, such as “die”, “freaking”, “incredibly”, “incredible” and “destroy”,

show up in topic 18 and 25. In the topics associated with persistent webpages,

interestingly, we notice an increase of nouns.
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Table 4.3: LDA Topics

Topic 32 Topic 37 Topic 18 Topic 25
fred incident net die
net website dan gov
care subscriber fred tields

produce clean pack static
incident rates gov say
mas net impressed | expensive
office considering read read
hello potentially native york
julian die worm freaking
teen gov user seek
red money attempts destroy
democratic | donation treatment dear
boy dennis august supporters
tagging seek incredibly tagged
ways read incident office
opinion dislike potentially | microwave
read il talented | challenges
different | challenges die fred
british posted placed british
heads kind busy august

4.3.3 Trending words analysis

After measuring the content in LIWC categories and latent topics, in this part,

we examine the content with more details, trying to discover the nuance be-

tween classes at the word level. We calculate and compare the most represen-
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tative words in the two classes. Picking the words to describe a collection of
documents can be turned into a trend detection problem: let the webpages of
negative class be the corpus of early period and the webpages of positive class
be the later period, negative class can thus be described by the most significant
“falling words” whereas the positive class can be described by the most signifi-
cant “rising words”. To do so, we apply the methods as presented in [49] on the
Header feature set, and generate the top 20 trending words for each class (see

Table 4.4)°.

To get the words that are most meaningful, we filter all the numbers, and the
words with frequency less than 20 (mostly specific names) or greater than 400
(mostly stopwords and website names). As discussed in [49], trending words
identified by the three metrics have different bias. Words based on normalized
absolute change are biased towards words that are frequent in both classes. Words
selected by relative change are biased towards words frequent in one class but
not the other. Words selected by probabilistic change are the ones that based on
the frequency of occurrence in one class, most unlikely to be seen in the other
class. Although [49] recommends the probabilistic change as a metric that gives
the cleanest results, we find the selected words in all three categories highlight
interesting points that reinforce, and provide some intuitive basis for, the results

to emerge from the LIWC analysis earlier in this section.

e normalized absolute/relative change. First of all, we again find the per-
sistent content most represented by positive words (e.g. good, best, love).

In terms of the semantics of content, the persistent webpages are more re-

5We also tried the same method on the other three feature sets, but as the number of terms
largely increases, the data becomes too noisy to be described with a few words, and the results
are difficult to interpret.
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Table 4.4: Representative words for two temporal classes

Absolute change Relative change Prob. change
pos neg pos neg pos neg
twibbon cnn twibbon cnn small plan
marketing | google | marketing blogs mp3 net
support iphone contest source creative better
giveaway blogs trailer finest open girl
quot america review onion view file
free source support apple Vs touch
best apple vote house story smashing
contest onion | giveaway | iphone kids pictures
win finest big white ipod using
review app movie guardian | american | organizing
design house design google know cancer
trailer white quot users party game
vote jackson win app dj technology
big live good download use want
amp official best america star page
movie uk love jackson things single
good obama green public daily don
home iran week myspace care action
music michael funny today life watch
love guardian | version uk song need
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lated to art (e.g. music, movie), advertisement, and online marketing (e.g.
twibbon, marketing, giveaway, free, win, review), whereas the rapidly-fading
webpages contain more news (e.g. cnn, google, onion, guardian, blogs),

and names (e.g. michael jackson, white house, obama, iran, america, uk).

e probabilistic change. By this metric, we find the trending words for persis-
tent content are more associated with lifestyle (e.g. party, dj, care, life, song)
and family (e.g. kids, care, life), whereas the short-lived content again has
a higher portion of words related to time critical concepts (e.g. technology,

game), or action (e.g., plan, touch, using, want, action, watch, need).

These results are mostly consistent with the findings from the previous parts,
confirming the prominence of positive emotion in the persistent content, and the
fleetingness of content with many action and time-critical terms. The distinct
existence of news and art content of two classes supports the claim by authors
of [87] that the persistent content - although not as viral as news - exhibits more

association with art.

4.4 The quality and persistence of YouTube videos

In our dataset of 20K bit.ly URLSs, there is a significant portion (15%) of them
linked to YouTube videos. Among these linked videos, 707 are already removed
by the user and 2304 are still available online. Noting that the content of videos
may not be accurately represented by the text of the YouTube page, we conduct
a separate study of the persistence of YouTube videos, leveraging the user rating
tfeature YouTube provides - namely, likes and dislikes - to assess the content from

the quality perspective.
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First, Figure 4.7 shows the distribution of decay time #, for the 2304 available
YouTube videos. In contrast to the overall distribution of ¢, for all URLs (see

Figure 4.1), YouTube videos in general receive a longer span of attention.

# of URLs
50 100 150 200 250

T T T T

1 4 16 64 256 1024
ty

Figure 4.7: Distribution of #, for YouTube videos

We also study the user-rated quality of these 2304 videos as a function of ¢,.
Figure 8 shows two indicators of the quality (a) the average likes/dislikes rate,
(b) the ratio of bad videos, for videos in each bin of #,(the binning method is the
same as in previous sections). Interestingly, we find that although the quality of
video overall increases with 1,, there is a drop of quality in the middle - videos

with medium persistence seem to be of the worst quality.

Sampling videos with different #, values suggests a further way to break
the YouTube videos in our set into categories. We find that the most persistent
videos are mostly music videos, again underscoring the increasing appearance
of art-related topics in this class. On the other hand, many home-recorded video
clips have very small value of #,; as seen in Figure 4.2, content that fades away

quickly might not have lasting value, but in general is more viral.
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Figure 4.9: Average number of views and comments as a function of #,

Finally, in Figure 4.9, we consider the number of views and comments on
the videos in our set. We find an increase in views and comments particularly
for very large values of 7,, in a way that is more extreme than the variation in

the number of tweets from Figure 4.2, and that also forms an intriguing contrast
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with the trend in the number of RTs from that figure. Understanding how per-
sistence translates into these secondary popularity measures such as view count

is an interesting question.

4.5 Conclusion

In this chapter, we explore the relationship between content and the temporal
dynamics of information in the context of Twitter. In particular, we find that
using the textual features extracted from the content, we can predict the per-
sistence of information with high accuracy. Second, we employ different text
analysis techniques to understand the nature of content that contributes to per-
sistence. We examine and compare the fleeting and lasting content on three
aspects, including the psycholinguistic characteristics, trending words, and la-
tent topics distribution. We find that the persistent information is more related
to content with long-term value, such as positive emotions, life, family, and
art. On the other hand, the rapidly-fading content contains mostly time-critical
information that carries relatively more negative sentiments, demanding more

cognitive effort, or is associated with quick action.

By restricting our scope of study to the time series of bit.ly URLs mentioned
on Twitter, our findings can be limited to the types of social media and the dy-
namics of information they support. An interesting direction for future work
could be studying the content and temporal patterns of information across sys-
tems. One possibility is to use the transcribed content of TV, radio, together with
materials from online social media. Also, since we only predicted the persis-

tence of content for two extreme cases, it would be interesting to further inves-
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tigate the connection between content and persistence as a continuous variable.
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CHAPTER 5
NETWORK STRUCTURE AND THE SPREAD OF DISENGAGEMENT

There has been significant focus on the dynamics of propagation in social
networks, especially, with the local and global structure involved [66, 33, 11, 57,
9,73, 61, 41]. In many cases, such as the decision to become a member or use a
product, the story does not end at adoption. Instead, the user may decide at any
point to cease using the product, or to depart the community. It is not clear that
a decision of this type, to “reverse” a prior socially-mediated decision to adopt,
will follow the same dynamics as the original decision to adopt. In this chapter,
we study this question in the context of arrivals and departures within online

social networks.

A natural place to look for models of arrivals and departures is the existing
literature on the spread of infectious physical disease. These models often in-
clude a recovery component [66, 33], which is akin to a reversal of the decision to
become infected. Typically, however, this component assumes that an infected
user recovers based on properties of the immune system, without reference to
any social process. In our case, we are motivated by the metaphor of a user at
a party with friends. The user is more likely to attend upon discovering that
some number of friends will also attend. If some or all of the friends then opt
to depart, whether for a new party or to just go home, then the original user is
much more likely to follow suit. Hence, we anticipate to see the network effect

in both arrivals and departures.

We begin to address this question with a basic study of the temporal corre-
lation of arrivals and departures, and show that both processes introduce sig-

nificant correlation; in fact, we show that time intervals between the departure
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of friends are more tightly distributed than the equivalent distribution of gaps

between arrival of friends.

Assuming part of the temporal correlation is induced by social influence, we
might consider arrival as the propagation of a “join” virus, and departure as
simply the propagation of a new virus, in this case representing the decision
to cease usage. However, this formulation is at odds in reality. It is plausible
that seeing one friend join a social network, then two, then three, might impel a
user to join, as we see in prior work [9]. However, once a user has two hundred
friends, will the departure of one, then two, then three friends have a quali-
tatively different impact on the user’s likelihood to depart? Perhaps like the
decision to join, the decision to depart depends more on the number of active
friends than the number of inactive friends. Or perhaps departure is a funda-
mentally different decision that depends on an assessment of the pulse of the
neighborhood, captured more accurately by the fraction of friends who remain
active. At last, departure can be merely a symptom of some external process

that is driven mostly by exogenous factors rather than social forces.

We study this question in the context of the DBLP co-authorship graph and
a large social network, and argue that a hybrid of the social influence models
could characterize the observed temporal clustering rather accurately. While
number of active friends is known to be a strong predictor of joining a group,
for users with twenty or more friends, overall neighborhood activity, measured
by the fraction of friends who remain active, is by far the best predictor of like-
lihood to depart. Surprisingly, this likelihood is linear in the fraction of active
friends throughout almost its entire range, and the linear form is identical in

both slope and intercept for several different buckets of neighborhood size. Raw
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counts of inactive friends have low predictive power, and raw counts of active
friends, while stronger, remain weak compared to the overall fraction of active
friends. On the other hand, for users with fewer than twenty neighbors, the
actual count of active friends remains a strong predictor of likelihood to depart.
An intuitive interpretation of these findings is that users with few friends rely
heavily on the presence of individual friends, while users with more friends stay
for the neighborhood atmosphere - they are pushed one unit closer to departure
by each successive fraction of existing friends observed to depart(this phenom-
ena is particularly relevant for the DBLP dataset where many nodes have very

small degree).

From this emerging local picture of behavior, we may then ask how arrival
and departure dynamics interact with the global structure of the graph. In par-
ticular, we seek to understand where departures happen in the graph. It is pos-
sible, for example, that departures tend to occur as high-status users in the core
of the graph choose to depart in search of the next big thing. Alternately, it
is possible that departure happens first at the “fringes” of the graph, and then
spreads inwards from there. We study this problem by computing the average
induced degree(or density) and conductance of the subgraphs of active and in-
active users through time, and comparing these results to thought experiments
in which each node decides independently whether to remain active. These
experiments allow us to conclude that a core of active nodes remains at much
higher internal density than the set of inactive nodes. We also compare the den-
sities observed against the expected density and conductance under a planted
degree constraint model. The results suggest that although the inactive set of
nodes densifies, its densification is not just a consequence of the degree distri-

bution, but really a consequence of well-connected cluster of nodes from the
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fringes departing. We reach the picture that departures happen from the fringes
and spread to their immediate neighborhoods, while an internal dense core of

active nodes survives.

Most of the content in this chapter is adapted from the joint work [88] with
Atish Das Sarma, Alex Fabrikant, Silvio Lattanzi, and Andrew Tomkins. Many

thanks also to Google Research for providing data and computing resources.

5.1 Data

In this chapter, we study the dynamics of arrival and departure using a snapshot
of the DBLP co-authorship graph and a well-known social network. As pre-
vious research [9] showed that the co-author network largely reassembles the
dynamics of online social networks in forming individual communities, we are
interested at testing whether this similarity persists in the forming and degen-
erating of the entire social graph. The DBLP snapshot that we consider contains
1 million nodes and around 1.8 millions edges, for each author we store his/her
co-authors and the year of the last publication. Furthermore for each author
to author edge we also store the year of the first publication. In the rest of the
paper we will refer to it as DBLP. The social network dataset we study contains
260 millions of users and 17 billion edges (as observed by August, 2011). For
each user, we have the timestamp of signup and last login, and for each edge,
we have the timestamp of edge creation. In the rest of the paper we will refer to

this network as SN.

To study the pattern of user arrivals and departures, we first describe each

user at each timestamp as either active or inactive, based on his most recent ac-
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tivity time. Given a snapshot of the SN network at time ¢, we consider a user
inactive if his last login time is earlier than two months prior to ¢, and consider
a user active otherwise!. Given a snapshot of the DBLP network at time ¢, we
consider a user inactive if he/she has not published any paper in the earlier than
tive year prior to ¢, and consider a user active otherwise. Note that our results
do not depend on the time frame that we used. In fact, they hold for two quite
different networks and time frames. Considering all the possible exogenous fac-
tors that may affect people’s activities in these two networks, the consistency of
our results suggests that there might be some internal process that is fundamen-
tal to human social interactions and gives rise to the dynamics of arrivals and

departures observed and studied in this chapter.

5.2 Arrival and departure correlation among friends

In this section, we study the basic properties of arrival and departure. We wish
to understand whether users typically arrive and/or depart together in social
networks. However, we cannot directly compare gaps between arrivals and
departures of friends, as networks are not stationary—consider for example the
case of a network that grows very rapidly during a brief period, resulting in a
flurry of temporally-proximate arrivals, leading to a mistaken conclusion that

arrivals tend to be tightly clustered in time.

We must therefore normalize in some way against global rates of arrival and

departure, which we do by the following technique. Given a snapshot of the

! As most online social network or social game sites use Monthly-Active-Users(MAU) as a
standard way to measure the number of engaged users, we double the cutoff window to 2-
month for a more conservative threshold to determine a user has departed.
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network at time ¢, we consider two samples of user-pairs, one in which the pair
of users are friends, and another in which the pair of users is chosen uniformly
from all possible pairs®. We then consider the distribution of the gap in arrival
time between pairs in the two cases. Differences in these distributions will then

highlight temporal correlation of arrivals of friends compared to strangers.

To study departures, we adopt the same technique. We consider only inac-
tive users, and generate again a set of pairs of friends, and another set of pairs
chosen uniformly at random. For a fixed time ¢, we define the last login time of
inactive users as their departure time. We pick 1M pairs for each of these four
sample groups, and compute the Cumulative Distribution Function (CDF) for
these distributions. In Figure 5.1, we plot the CDF curves, showing the percent-
age of friends(co-authors)/strangers who joined and left the SN(DBLP) within

n days(years) of each other.
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Figure 5.1: The CDF curve for the difference in arrival and departure time be-
tween friends and random pairs of users.

The CDF for both arrivals and departures of friends lies significantly above

2Technically, it is possible for a random pair to be a pair of friends, however, given the service
policy that each user has a rather small upper-bound for the number of friends, the chance of a
random pair being friends is negligible.
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the CDF for random pairs, indicating that friends both arrive and depart to-
gether, in comparison to the control group of random pairs. As the figure shows,
in the case of SN, 43% of random pairs depart within 200 days of one another,
while 61% of friends depart within the same period. We find similar pattern in
the time interval of arrival - only 31% of random pairs arrive within 200 days,
but 45% of friends arrive within the same period. This observation is even more

evident in DBLP, where the solid and dashed lines show stronger separation.

To quantify the differences, we plot in Figure 5.2 the distribution of absolute
difference in the CDF values at each time, for arrivals and departures. The corre-
lation of departures in SN is seen to be stronger than the correlation of arrivals,
although the two gaps peak around roughly the same value. However, arrivals
and departures behave almost identically in DBLP, suggesting the dynamics of

arrival and departure are more similar in collaboration networks than in social

networks.
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Figure 5.2: Gap between CDF curves.

The temporally correlated activities between friends have been observed and

modeled before [9, 64, 5], mostly in the form of adopting a new behavior or
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product within an existing social network. However, given that there is not
a single underlying social network that might be accountable for the joining
of new users, are those models still applicable in the scenarios of arrival? To
answer this question, we will now focus on individual users, and study one’s

arrival in position of his local neighborhood.

Since we have no information on friendship outside the networks we are
studying, we use the eventual set of friends acquired by a user at the snapshot
time ¢ to approximate the set of friends he had before arrival, and ask whether
those friends join before or after the user. For DBLP, we see the “diminishing
returning” curve (Figure 5.3(c)) as found in previous research [9]. In SN (Fig-
ure 5.3(a)), however, the probability of a user signup increases near-linearly as
the number of adopted friends increases. The expected fraction of friends join-
ing before the user is 0.5, as the friend network is undirected and each edge con-
tributes one pair in which a joins before b, and one pair with b before a. Thus, for
regular graphs (of constant degree), the mean fraction of friends already signed
up will be 0.5. The results are shown in Figure 5.3. True social networks are
of course non-regular, and while the distribution of plot (Figure 5.3(b)) appears
largely symmetrical, there are some outliers. In particular, in SN there are more
than 20 times as many users who signed up after all of their eventual friends
did, compared to users who signed up before any of their friends. This follows
from the many low-degree nodes who join in response to an invitation but do
not subsequently engage with the network. In DBLP, the peaks at 0%, 25%, %,
50%,..., 100% (Figure 5.3(d)) can be explained by the substantial number of au-
thors with only one publication, as they have a very small set of co-authors. Al-
though the plot in Figure 5.3(d) is largely symmetrical but is slightly skewed to

the left. This shows that there are more authors whose collaboration networks
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grow than ones who stay with their early collaborators. Overall, we posit a
weak network effect for new users in both networks, which may not be enough

to actively engage users after they sign up.
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Figure 5.3: Count and Fraction of friends already signed-up when user signs up.

Our conclusion from these graphs is that friends tend to arrive and depart
together, but at least for SN, departures are more tightly clustered than arrivals.
We also find interesting nuances in the dynamics of arrivals, in comparison to
previous research. In the next section, we will look more closely at departures,

learning the how neighborhood activities affect one’s likelihood to depart.
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5.3 Local Neighborhoods

Figure 5.1 shows a strong correlation in arrivals and departures for friends; now
we will go beyond single-edges and study how such correlation is presented in

the entire neighborhood of a node.

5.3.1 Dependence on local properties

To better understand how a user’s departure corresponds to his local commu-
nity, we look at the probability of a user’s departure in relation to the following

four properties of the user’s neighborhood.

e number of active friends;
e fraction of active friends;
e number of inactive friends;

e number of inactive friends who left in the past 6 months;

We use a similar method as in [9] to calculate the probability of a user be-
coming inactive, as a function of the number of active friends: we first take two
snapshots (#, t;) of the network, three months apart in SN and three years apart
in DBLP; we then find all pairs (u, k) such that u is active at the time of first
snapshot #), and has k friends who are also active at #y; p(k) is calculated as the
fraction of such pairs (u, k) for a given k such that u had left the network at the
time of second snapshot #,. In other words, p(k) is the fraction of active users
who left the network in the next three months, given that k friends were active at

the first snapshot time. Figure 5.4(a) and Figure 5.4(c) shows the curves of p(k)
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at three different #,. In a similar way, we can fix the fraction of friends f who are
active at time 1y, and calculate the probability p(f) of an active user leaving the
network as function of f (see Figure 5.4(e)). Note that in all figures involving
the fraction of active/inactive friends, we exclude all nodes with no friends in
SN (around 10% of all active users as of 2011/1/1). Among those users, 35% of

them left within three months.

Not surprisingly, Figure 5.4(a), Figure 5.4(c) and Figure 5.4(e) show that as
more and more friends stay active, a user is less and less likely to be inactive.
The curve of p(k) (see Figure 5.4(a)) also matches very well with what has been
seen in other domains [9], exhibiting the “diminishing returns” property. This
observation indicates that the marginal gain of having each additional active
friend is quite significant for users with a small number of active friends, but
rather negligible when a user already has many, say more than 50, active friends.
In contrast, in Figure 5.4(e), we do not see such a “diminishing returns” trend,
but a steeper, and almost constant rate of decrease in the probability of depar-
ture throughout the course when the fraction of active friends increases. This
is an interesting observation that has not been previously seen (specifically in

various positive influence studies).

To see how the inactivity of the neighborhood determines the departure of a
user, we also plot the probability of departure as a function of number of inac-
tive friends, in Figure 5.4(b) and Figure 5.4(d). The curves in Figure 5.4(b) and
Figure 5.4(d) show an interesting trend of decreasing slope through time: while
the probability of a user departing increases with the growth in the number of
inactive friends initially, it becomes more and more insensitive to the value of

k in the later curves. This phenomenon is quite intriguing to us: if the depar-

96



ture of friends do have certain predictive power on the departure of the user, as
shown in the earlier curves, why is such predictive power diminished so much
in the latest years? To answer this question, we note that we are counting the
number of inactive friends as prior to the time of each snapshot, but many of
them could have been inactive for a long time thus could hardly account for the
dynamics of the network at the snapshot time. Figure 5.4(f) confirms this idea,
showing that the curves we see in Figure 5.4(b) are somewhat misleading - in
general, the probability of user’s departure constantly grows with the number

of friends r who recently became inactive (when r is not too small).

5.3.2 Interaction between local properties

The results of the previous section provide qualitative evidence that an individ-
ual’s probability of departure is related to the activeness of his neighborhood.
However, does that apply to all users? Do the highly connected users act differ-
ently than the more marginally connected ones? Is the probability of departure
sensitive to the degeneration of neighborhood, or is it a step function that will
only drop once there are less than k active friends, as modeled in [15]? To ad-
dress these questions, we compute the probability of user’s departure in SN in
relation to the interaction between local properties, such as neighborhood de-
gree and the fraction of active friends in the neighborhood. More specifically,
we control the degree and the fraction of active friends separately, and look at

how the probability of departure changes under each condition.

In Figure 5.5(a), we divide users into three groups based on their degrees,

and plot the probability of departure as a function of the number/fraction of
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active friends, for each group separately. We note that for users with different
levels of connectivity in the network, the curves of p(f) (Figure 5.5(a)) are quali-
tatively identical. This result demonstrates again that the fraction of friends who
are active has a stronger effect on the probability of an individual’s departure,

regardless of the size of the user’s neighborhood.

We also aggregate users by the fraction of active/inactive friends, and show
how the probability of departure depends on the number of active/inactive
friends for each group (see Figure 5.5). There are two things we note from Fig-
ure 5.5: First, for users with different fractions of inactive friends, there is a big
gap between their probabilities of departure - for example, compared to users
with less than 10% friends left (blue line in Figure 5.5(c)), users who have more
than 50% friends left (red line in Figure 5.5(c)) are 10 times more likely to leave
as well. Second, once the user is in an inactive part of the neighborhood, the
raw count of inactive friends has little effect in determining the probability of
the user’s departure (green line in Figure 5.5(b)). Note that the blue line in Fig-
ure 5.5(b) is very noisy because there are very few people in a highly obsolete
neighborhood but still with a substantial amount of active friends. We still plot

it just to be symmetric with Figure 5.5(c).

5.3.3 Predict the departure of user

Given a strong correlation between the probability of a user becoming inactive
and the inactivity of his friends, the next question is, can we actually predict
individuals’s departures based on local properties? In this section, we model

the departure of users using simple linear regression models and decision tree
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classifiers. In particular, we will focus exclusively on SN because we have a

richer set of features available.

To start, we formalize our problem as a binary classification task in which
class 1 is defined as consisting of those users who were active as of Jan 1st, 2011
(o) and departed within two months after #,, and class 0 is defined as consisting
of those who stayed active for two months after #,. We then randomly sample
500K examples for each class, from all the users who were active at 7. Note that
in our data, there are 90% negative and only 10% positive cases; our sampling

scheme provides a more balanced distribution of examples of both classes.

We extract two sets of local features for each user:

e Neighborhood features. The local structural properties of the user’s direct
neighborhood, including the number of friends who already departed, the
number of friends who are active, the number of friends who departed
recently (six months prior to 1), and the fraction of friends who departed

recently.

o Activity features. The properties reflecting user’s participation to activities
in the network, including the number of contents he received, the number

of contents he sent, and the number of status updates.

To predict the departure of users, we train a simple decision tree (REPTree)
classifier on our examples. Table 5.1 gives the performance of the classifier with

different sets of features under 10-fold cross validation.

Table 4.2 shows that relying on only local features of individuals, the simple
decision tree classifier can predict the departure of user with high accuracy (75%

with all features, as compared to 50% for always predicting one class). This

100



Table 5.1: Predict user departure with decision tree

Feature Accuracy | F1 pos | ROC area

Neighborhood | 0.694 0.694 0.755

Activity 0.730 0.735 0.801

All 0.755 0.761 0.833

result demonstrates a strong connection between user’s local properties and the
propensity of departure. Moreover, comparing across 3 sets of features, we see
that although the activity features are most effective, neighborhood features can

also provide rather accurate insights on the departure of users.

5.4 Structural trends in network topology

In this section, we explore the overall structural changes that occur in the net-
work as a result of the departure of existing users, as well as the steady arrival of
new users. Topological changes have been studied in the context of new nodes
arriving but here we pay specific attention to how the global structure changes

in the process of the departure or decline of user activities.

To get a sense of the how the structure of the network evolves over time, we
tirst study the distribution of nodes (Figure 5.6) and edges (Figure 5.7) among
active and inactive parts of the network. For nodes, we notice that although the
total number of users keeps on increasing steadily, the number of active users
has stopped growing for a long time (see Figure 5.6). For edges, we look at
the edges between active nodes (Figure 5.7(a) and Figure 5.7(d)), edges between

inactive nodes (Figure 5.7(b) and Figure 5.7(e)), and the edges across active and
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inactive nodes (Figure 5.7(c) and Figure 5.7(f)), and plot the ratio between the

actual number of edges over the expected value over time.
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Figure 5.6: Distribution of nodes in active and inactive sub-networks

Here, the expected number of edges is computed based on the total number
of edges, |E|, in the network and the number of nodes in each of the active and
inactive sets. The expected number of edges of any type is the expected number
of edges if the the total |E| edges are placed between randomly chosen pairs of

nodes.

To understand the overall structure among the sets of active and inactive
nodes, we also study the density and conductance of these two sub-networks in
the rest of this section. Here the active sub-network consists of the active nodes

and the edges among them, and the inactive sub-network is similarly defined.

Figure 5.8 and plots the overall density of the active (5.8(a) and 5.8(c)) and
inactive (5.8(b) and 5.8(d)) set of nodes, as a function of time. For comparison,

we also plot the expected densities of the respective sets, as determined by the
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of edges over the expected number of edges (formed in random
process).

number of active and inactive nodes and edges and the degree distributions.

We use the definition density of a set of nodes (or average induced degree)
used in [23], where the density of a set of nodes is the number of edges between
the nodes divided by the number of nodes; i.e. for a set of nodes S, density(S) =
% (here E(S,S) contains all edges (u,v) such that u,v € §). Therefore, the
density of set S is half of the average induced degree of the set of nodesin §. In
order to compare the the density we observe for the set of active nodes and the
set of inactive nodes, we define an expected density for each sub-network. The

expected density of the inactive set of nodes could be computed simply as the

density of the entire graph times the fraction of inactive nodes.
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However, we even use a stronger baseline to see if the trends we observe
are a result of a trend more than just that of degrees. Therefore, we compute
expected density subject to the overall degree constraints on active and inactive

nodes as follows.

Consider each edge as occupying two slots (end points), each slot being in
either S, (the active set of nodes), or §; (the inactive set of nodes); therefore
S.US; = V(G). Let the fraction of all these slots that are in S; be P; (which
is the number of edges going across the active and inactive sub-network plus
twice the number of edges in the inactive sub-network); therefore the number
of such slots occupied in S, is P, = (1 — P;). Suppose that all the |E| edges were
randomly placed in two slots each, with probabilities determined such that in
expectation we respect P; and P,, then we consider the induced density of this
process as the expected density (for respective sub-networks). Notice that this
is a more stringent baseline for our comparison. Therefore, an edge is contained
in the inactive sub-network with probability P? and so the expected density of
the inactive set is (|[E |Pl.2) /IS. Similarly the expected density of the active sub-

network can be computed.

The plots on these densities in Figure 5.8 shows that the density of the active
set density(S ,) increases rapidly with increase in time. However, as shown in the
plot on distribution of edges in Figures 5.7, as the number of edges in the active
sub-network continue growing, the density of the active sub-network is only
marginally higher than its expected density. On contrast, the density of inac-
tive sub-network is significantly higher than the expected density, even condi-
tioned on the degree distribution. This further confirms the fact that departure

is correlated across edges, as shown in our local analysis. The nodes that are
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Figure 5.8: Density of the active and inactive sub-networks

departing are still probably at the periphery of the network (since the inactive
set has much lower density than the active set), but these inactive nodes con-
tinue to be internally well-connected because of a higher-than-expected density.
This strengthens the evidence from previous sections that a node’s likelihood to

become inactive is strongly associated with neighboring inactivity.

After studying the connectedness within the active/inactive sub-network
separately, we now look at the connection of each sub-network to the rest of

social graph, to get a more complete picture about where departures happen
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and spread in the network. We use conductance to measure the amount of pos-

sible connections between different sets of nodes in a network.
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Figure 5.9: Conductance of the active and inactive sets

Conductance of a set of nodes S, ¢(s), first defined in [44], is measured as
o(S) = % Here E(S, V(G)$§) contains all edges (u,v) such thatu € S,v ¢ S,
and |E(S)| = 2|E(S,S)| + |E(S, V(G)$)|. So notice that conductance is always less
than 1, and any set with more than half its edges going across to the complement
set has a conductance of more than 1. We again measure the conductance of
sets §, and §; through time and compare with their expected conductances (see

Figure 5.9). The computation of expected conductance is also performed in a

similar manner to as described previously for expected density.

We see a similar trend in conductance (Figure 5.9) as seen for densities. The
conductance of the active set of nodes S, ¢(S,) remains less than the conduc-
tance expected for this set. This suggests that there are fewer edges going across
from S, to the inactive set §; and far more edges within S, itself, than would
be expected. The conductance plots for the set of inactive nodes however is

again more contrasting. ¢(S;) remains far lower than the expected conductance.
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Nodes that are becoming inactive continue to have many more edges within,
than one would expect. This clearly suggests that the inactive set of nodes are
influencing neighbors to inactivity. Yet again, the absolute conductance value
still suggests that nodes at the periphery of the network are more susceptible to

becoming inactive.

The takeaway from these plots are two fold. Firstly, of course, these trends
corroborate our findings from the previous sections suggesting that there is a
strong correlation among inactivity in neighboring nodes . However, these plots
on global measures such as density and conductance also suggest a picture of
the evolving network. With the active sub-network’s density being much higher
than the inactive, and the inactive set showing higher than expected density and
lower than average conductance, we are led to believe that nodes in the core of
the network are much more likely to survive, while nodes at the periphery are
more susceptible to departure, probably by a combination of external forces and

the neighborhood inactivity.

5.5 Conclusion

We have studied the dynamics of user departure from online social networks
and collaboration networks, from the perspectives of local and global network
structure. We considered the predictive power of local neighborhoods on the
behavior of nodes as well as studied global changes in the network topology.
At the local level, we studied individuals and the dynamics in their local neigh-
borhood, measured the probability of user arrival and departure in relation to

the activity of their friends. Our findings are threefold: first, there is a strong
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clustered effect in the timing of departure among friends while this is not as
visible in arrivals; second, although both numbers and fractions of neighbor-
hood (in)activity are correlated to the probability of the individual’s departure,
the fraction of inactive friends has arguably the better predictive power on the
departure probability, providing an interesting complement to literature on ar-
rivals which shows number of active friends as the most predictive of these
measures; third, once a significant fraction of friends depart, the overall con-
nectivity of individuals in the entire network does not have predictive power
as to whether the user will leave the network. At the global level, we looked
at the trend of network topological properties over the past few years, showing
that as the network evolves, users at the peripheral region of the network are
more likely to depart in groups; yet an internal core of the network survives and

densifies over time.

We want to emphasize that our results do not prove a causal relationship
between the departure of friends and the departure of a user. What we have
observed and modeled is only correlated actions among neighbors, and we are
aware of the possible factors that can contribute to, or actually lead to, the de-
parture of users. For example, internally, users with similar personal traits may
tend to leave the network altogether; externally, the emergence of competing
services may draw users away from the original network. Our model provides
one possible explanation on the emergence of observed pattern, but does not ex-
clude other explanations. Our goal is to offer a space for building better models

of how people tune out of social networks, in additional to how they sign up.
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CHAPTER 6
CONCLUSION

This thesis explored three major aspects of information diffusion process: in-
fluencers, content, and network structure. In Chapter 3, we revisited the influ-
encer problem by incorporating exogenous influence into the context of Twitter,
and showed a very high concentration of attention on a small number of “elites”
identified by their role in the global communication environment. We also no-
ticed that there is a significant amount of long-lived content on Twitter, and
longevity of information is related to both the type of initiator and the nature of
content. In Chapter 4, we further studied the longevity of information, explored
the relationship between content and the temporal dynamics of information on
Twitter. We demonstrated the strong connection between content and the per-
sistency of information, and found some unique characteristics for rapid-fading
content and long-lasting content, respectively. In Chapter 5, we studied the
local and global structure of several social networks to understand the spread
of inactivity. We found that, departures, more than arrivals, are highly corre-
lated among neighboring nodes. Also, the decay of activity first happens in the
fringe of networks, then spreads to neighbors in tightly-knit communities, leav-
ing a very well-connected central active core that survives and densifies through

time.

Building on top of current research, our exploration on these aspects of dif-

tusion process highlights the following three contributions.
First, we study the “virality” of diffusion with new aspects.

Instead of bursty events, we focus on the longevity of information, studying
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lifespan of information in social media. We notice that, although both skewed,
the distribution of lifespan has a much heavier tail, than the distribution of cas-
cade scale. In Chapter 3 and Chapter 4, we compare the lifespan of information
by its initiator and content, and ask what makes certain things so persistently
eye-catching in a world where information is overly rich and attention is re-

markably scarce [76]. Our major findings include:

e The longevity of information is determined to a large extent by the exoge-

nous qualities of the information, not by social contagion.

e Content picked up by certain group of users (e.g., bloggers) are in gen-
eral of more persistent interest, as these users actively perform the role of

“information filter” on online social media.

e There is a strong correlation between the content and the temporal dy-
namics of information. Content with cultural/intelligent value are more
likely to persist. At the text level, rapidly-fading information cntains sign-
ficantly more words related to negative emotion, actions, and more com-
plicated cognitive processes, whereas the persistent information contains

more words related to positive emotion, leisure, and lifestyle.

e The decay of attention, although much less visible, also has a network
effect that coordinates the disengagement in online social networks among

friends.

On the other hand, we also look at the “negative” virality - the virality of “in-
activity”. In Chapter 5, we study the arrival and departure dynamics of large
social networks, and show that user disengagement —- similar to user engage-

ment — is correlated among neighbors, but operates slightly differently.
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Second, we examine the exogenous properties of actors and artifacts beyond
the closed, single-medium communication network. For example, by looking
in-depth at the textual characteristics, we find that the persistent attention to
certain content can be better explained by the innate quality of the content, in-
dependent from the mechanism of how it spreads in the network. We also find
that, despite the connectivity and demographics, certain users are more influen-
tial on social media because of their established role (and fame) from the world
outside social media. These results suggest that, diffusion process should be
studied in context, considering the socio-cultural factors that constantly interact

with the information cascade.

Third, we study different components of diffusion not only by themselves,
but also the interaction between them. As information diffusion is an inter-
active process between people and content, mediated by the communication
networks, different components of diffusion do not exist in isolation. People
with high influence tend to cluster together [7], and the location in the network
can tell us a lot about a person’s status [48, 9]. In our work, we show that dif-
ferent people have different preference of content and individual’s influence is

topic-dependent.

Besides these findings, this thesis is also an attempt to demonstrate the inter-
disciplinary research methodology. Although most of the results are quanti-
tative and are drawn from analysis on large online datasets, I have worked
closely with experts from various fields including sociologists, computer sci-
entists, psychologists, communication scholars, and political scientists. During
this process, I try to conduct my research with not only computational meth-

ods but also theories and insights from different fields. As a result, I hope our
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tindings are not limited to online social networks, but can also help uncover the

nature of information diffusion process across online and off-line spaces.

In the future, I would like to extend my research cross media platforms, net-
works, and even between on-line and off-line spaces. Joining social media data
with real world events, I will look forward to studying the effect of informa-
tion, in a broad socio-cultural context. One of my ongoing projects is to study
the role of social media in social movements, for better understanding on how
the propagation of information leads (or reflects) societal changes. To do so,
we have collected a large number of tweets and twitter networks related to big
social movements (i.e., Middle East Revolution, Occupy WallStreet Movement).
Using effective algorithms for community detection, hub detection, trend detec-
tion, and opinion mining, we will be able to identify the informal structure of
massive communication networks for social movements and study the diffusion

of ideology and behaviors across organizational /geographical boundaries.

In summary, I am deeply intrigued by the developing characteristics of in-
formation diffusion in online social media. Thanks to the Internet and social me-
dia technologies, I believe that we are heading towards a more democratic era
where revolutions can be started by ordinary people and the power to change
is in the hands of the masses. As part of this process, social media sites such as
Facebook and Twitter have also evolved from friendship networks to a much
broader platform for organizing social/political changes and communicating
with various communities. I hope my work can help understand this move-

ment and foster the effective flow of information in the society.
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