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ABSTRACT 

This thesis considers several models for representing the distribution of the annual maximum 

flood at a site when the annual maximum flood series corresponds to the maximum of two 

distinct annual flood series. A joint model, that incorporates correlation between the two series, 

is theoretically correct. However, in most cases, a simpler mixture model essentially does as 

well. The simple mixture model, which assumes independence between the two distinct series, 

is a special case for the joint model; it provided a good description of the distribution of the 

annual maxima above some critical probability, when in our case the risk due to rainfall floods 

dominated. That critical probability is determined by the distribution of each population, and 

also the correlation between them.  

A method recommended by William Kirby uses only the events recorded in the annual 

maximum series to develop conditional flood risk models for both processes; the resulting 

flood risk model for the annual maximum series is a weighted function of the two. When 

compared to use of a single 3-parameter lognormal model, the Kirby Method usually provide 

more precise estimates of flood quantiles.  

Overall, for many cases and for extreme quantiles, both the just-rainfall model that models 

only rainfall, and the mixture model that assumes rainfall and snowmelt maxima are 

independent, provide flood quantile estimates that are as accurate as use of the full Joint 

model.  
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CHAPTER 1 

1   INTRODUCTION 

A common problem in hydrology is that annual maximum series are composed of events that 

may arise from distinctly different processes, such as rainfall and snowmelt (Stedinger et al., 

1993). Cudworth (1989) indicates that a mixture could also be the result of distinctly different 

hydrological factors, such as infiltration, cover, channel roughness, and antecedent conditions, 

with differences possibilities related to time of year. In areas where high flows are generated 

by more than one distinct hydrologic process, peak discharge data can be considered to be 

drawn from populations with different statistical characteristics. Elliot et al. (1982) provide 

data and illustrate the identification of snowmelt and rainfall peak floods in the Rocky 

Mountains of the Western United States. Waylen and Woo (1982) provide an example of a 

flood record that is composed of distinct rainfall and snowmelt events in British Columbia, 

Canada. Watt et al. (1989) discusses different types of floods and the separation of floods in 

British Columbia according to the generating mechanism: spring snowmelt, autumn/winter 

rain and rain-on-snow, summer rain in smaller basins and particularly unusual flood caused 

by glacier melt, ice-jam break-up, and dam breaks. U.S. Army Corps of Engineers (1958) 

describe separating the data into distinct and independent populations using different criteria. 

IACWD (1982) describes flood frequency procedures adopted by federal agencies in the 

United States. They note that when annual maximum series are the result of distinct series, 

separate frequency curves for each series can be combined. The three examples given are rain 

and snowmelt, tropical storms and general cyclonic storms, and along the Gulf Coast 

hurricane and non-hurricane storms. 
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Frequency analysis for such situations can be conducted using several methods. Watt et al. 

(1989) discussed 3 methods for estimating flood flows, water levels, or frequencies for design 

purpose when flows and water levels change relatively slowly; Monte Carlo simulation and an 

engineering judgment approach are recommended. Jarrett and Costa (1982) investigate the 

flood hydrology of foothill streams in Colorado using a multidisciplinary study, where the 

peak flows were classified into to populations according to metrological causes and then 

combined assuming populations are independent. ASCE (1996, p. 490-91) also suggests that 

when the mixed population is the combination of two distinct and independent processes, the 

combined flood risk would be the summation of the risks of each population minus their 

product; that is equivalent to estimating their non-exceedance probability by the product of 

the non-exceedance probability for each series.  Cudworth (1989, pp. 2057; 219-20) provide a 

general discussion of mixed populations in the Western United States and suggest developing 

a combined frequency relationship as was suggested by ASCE (1996) 

 This thesis focuses on several methods for performing flood frequency analysis with such 

records: the Mixture Method, Joint Distribution Method, Kirby Method, One Single 

Distribution Method, and Just-Rainfall Method for extreme events. The Mixture Method is an 

easy way to do flood frequency analysis when we assume that the values drawn from each 

population are statistically independent, which may not be true (Cudworth, 1989; Stedinger et 

al., 1993). One advantage of the Mixture Method is that with an N-year record, N 

observations are available to fit each distribution, thus there are 2N observations available in 

total. However, when the flood peaks in each year from each population are dependent, a 

fundamental assumption employed by the Mixture Method is incorrect. Chapters 2 and 4 
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explores the range of the cross-correlation between the two series for which the Mixture 

Method provides an accurate representation of the joint distribution. 

The Joint Distribution Method provides a correct and general framework for describing a 

mixture of two distributions that allows the values in each population to be cross-correlated. 

When the values drawn from each population are selected independently, the calculation 

process is the same with the Mixture Method. Thus, the Mixture Method is a special case for 

the Joint Distribution Method. The calculation process for the Joint Distribution Method is 

more complicated than that for the mixture method because it requires a representation of the 

joint distribution of the two flood series. 

The Kirby Method is a third approach to derive a flood frequency distribution describing a 

mixture of two different and potentially dependent processes. It was developed by William 

Kirby, and was described by Charles Parrot and Jery Stedinger in their correspondence  

(Parrot, personal communication, 2011) It does not generate the joint distribution of the two 

series. Rather it employs the conditional distributions of rainfall and snowmelt floods given 

that they are also annual maxima. Because the Kirby Method uses conditional probabilities, 

we can use the Kirby Method even when the values drawn from different populations are 

dependent. The Kirby Method divides the annual maximum flood series into subsets 

corresponding to the annual maxima that came from each population. Thus for an N-year 

record, the number of observations available in total is just N instead of 2N. Moreover, as will 

be shown, conditional distributions of the rainfall or snowmelt floods that are also the annual 

maxima can be significantly different from the complete data sets; this can make it difficult to 

specify the appropriate conditional distributions to use to describe the rainfall or snowmelt 
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floods that are also the annual maxima even that we know the distributions of the complete 

data sets. 

We are also interested in describing the annual maximum series with one simple single 

distribution. Although the mixed population is composed of events that arise from distinctly 

different processes, our study shows that one simple single distribution (3-parameter 

lognormal distribution in our case) works when describing the mixed population.  

Moreover, we also explore the performance of just modeling the rainfall data as 

approximation of annual maximum distribution. Because the really large floods are almost 

always rainfall events, the Just-Rainfall Method can be reasonable. 

This thesis is organized as follows: Chapter 2 describes the frequency procedures of each 

method for mixed populations. Chapter 3 explores the range within which the Mixture 

Method or the Just-Rainfall Method works. Chapter 4 provides a more detailed analysis of 

these methods using Monte Carlo simulation. Chapter 5 provides conclusions. 



 

5 

CHAPTER 2 

2   Different Procedures for Mixed Populations 

2.1 Mixture Method 

This section introduces the theory and computation process of the Mixture Method and 

provides an example. 

2.1.1 Theory 

Stedinger et al. (1993) indicate that for an N-year record, the annual maximum flood for the t
th

 

year Qt can be viewed as the maximum of the maximum rainfall event for the t
th

 year Rt and 

the maximum snowmelt event for the t
th

 year St: 

 max ,t t tQ R S    For t=1, 2… N  (1) 

Let the cumulative distribution functions (CDFs) of the rainfall and snowmelt variables be 

denoted FR(R) and FS(S). Then if the magnitudes of the rainfall and snowmelt events R and S 

are statistically independent, meaning that knowing one has no effect on the probability 

distribution of the other, the CDF of the annual maxima Q 

is 

 ( ) ( ) ( )Q R SF q P Q q F q F q     (2) 

Modeling the two component series separately is most attractive when the annual maximum 

series is composed of components with distinctly different distributions which are 

individually easy to model because classical two-parameter Gumbel or lognormal 
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distributions describe them well, and such a simple model provides a poor description of the 

composite annual maximum series. 

A concern is that this method as formulated assumes the rainfall and snowmelt events in each 

year are statistically independent. Experiments reported below explore the performance of this 

method when the assumption above is not valid. The examples indicate that when the 

correlation is weak between the values selected from each population, the approximation 

works well. Moreover, because the really large floods are dominated by the rainfall events, the 

Mixture Method would still be attractive as long as the snowmelt events don’t significantly 

influence the certain range of the mixed population within which we are interested. 

2.1.2 Computation Method 

To use equation (2), one needs to fit the CDFs FR and FS given the rainfall and snowmelt 

samples by computing estimates of FR and FS using some reasonable distribution (here we use 

lognormal distribution) to obtain an estimator of distribution of the annual maximum. 

Although not requited, for an N-year record, we generally assume both the rainfall and 

snowmelt series have the same sample size of N. 

Consider how to fit FR and FS with lognormal distribution. Lognormal distribution is an easy 

and convenient model which has been long and widely used in water resources. An early 

study of lognormal distribution can be dated back to Hazen (1914). And Chow (1954) reviews 

many of the applications of this distribution. Studies about fitting 2- and 3-parameter 

lognormal distributions can be found in Wilson and Worcester (1945), Cohen (1951), 

Aitchison and Brown(1957), Sangal and Biswas (1970), Burges et al. (1975), Giesbrechat and 

Kempthorne (1976), Charbeneau (1978), Stedinger (1980), etc. 
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In general, lognormal distribution can be described as follows: 

Let μR and σ
2

R be the real-space moments of the rainfall events, we have: 

ln( )
( ) RL

R

RL

r
F r





 
  

 
  (3) 

2
2

2
ln 1 R

RL

R






 
  

 
  (4) 

21
ln( )

2
RL R RL      (5) 

And FS can be obtained in the same way. Then one can use the simple expression in (2) to 

obtain an estimator of distribution of the annual maximum, where 

ln( )ln( )
( ) ( ) ( ) S LRL

Q R S

RL S L

qq
F q F q F q



 

   
     

   
  (6) 

Plots of the CDFs FR, FS, and FQ are provided in the following section. 

2.1.3 Example 

We use the Gumbel distribution parameters provided by Waylen and Woo (1982) to get our 

lognormal distribution parameters in order to simulate a real situation. Waylen and Woo (1982) 

model the snowmelt and rainfall floods in the Cascade Mountains separately using simple 

Gumbel distributions and use them to provide a good fit to the annual floods which are 

produced by mixed processes, where 

  ( ) exp exp ( )F x x       (7) 

And their parameters are shown in Table 1. 
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Table 1. Gumbel Parameters given by Waylan and Woo (1982) 

Gumbel Rainfall Snowmelt 

α 0.0098 0.030 

β 140.1 142.2 

Use the parameters provided by Waylen and Woo (1982) , we have (Lowery and Nash, 1970): 

1.281



   (8) 

0.45      (9) 

where µ and σ are the real-space moments. 

Then use the estimation method provided by equation (4) and (5), we have the lognormal 

parameters (to four digits) reported in Table 2. 

Table 2 Parameters of LN Distributions R and S 

lognormal Rainfall Snowmelt 

μ 198.9 161.4 

σ 130.7 42.70 

μL 5.113 5.050 

σL 0.5991 0.2601 
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To better understand the characteristics of the rainfall and snowmelt probability distributions, 

Figure 1 provides plots of the PDFs of the populations, where 

 
2

2

ln( )1
( ) exp

22

RL

R

RLRL

r
f r

r



 

 
  

  

  (10) 

 
2

2

ln( )1
( ) exp

22

S L

S

SLSL

s
f s

s



 

 
  

  

  (11) 

 

Apparently most snowmelt floods fall within [50m
3
/s 350m

3
/s]. Because the rainfall 

population has a much larger variance than the snowmelt population, one can see in Figure 1 

that really large annual maximum floods will be rainfall events. On the other hand, because 

snowmelt floods will not be less than 50m
3
/s, annual maximum floods will almost always 

exceed that value.  
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Given the lognormal parameters reported in Table 2, we provide plots of the CDFs FR, FS, and 

FQ in Figure 2, with FR, FS obtained using (3) and FQ obtained using (6). 

 

Figure 2 shows that the annual maximum curve is a little to the right of the snowmelt curve 

when q is small while the annual maximum curve is almost identical with the rainfall curve 

when q is large (above 300 m
3
/s). 

Because the cross-correlation between same-year rainfall and snowmelt floods is not 

considered in the Mixture method, the results obtained using Equation (6) are independent of 

any correlation between rainfall and snowmelt floods; the two are assumed to be independent. 

A concern is the accuracy of the Mixture Method when rainfall and snowmelt floods in the 

same year are correlated.  The next section introduces that concern while Chapter 3 provides a 

detailed study of that issue. 
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2.2 Joint Distribution Method 

This section introduces the theory and computation process of the Joint Distribution Method 

and provides an example. 

2.2.1 Theory 

A Joint Distribution Method can make use of a joint probability distribution for the two series. 

For the situation when the values drawn from each population are dependent, the probability 

that the annual maximum flood is less than q is: 

  ,( ) , ( , )
q q

Q R SF q P R q S q f r s drds
 

        (12) 

However, it is usually difficult or even impossible to do the integration in (12) analytically. So 

we have to use numerical methods to calculate the CDF and the PDF of the annual maxima.  

2.2.2 Computation Method 

Based on the conditional density function for R given S, we have: 

  |( ) , ( | ) ( )
q q

Q R S SF q P R q S q f r s f s drds
 

        (13) 

For a joint normal distribution, the conditional distribution of ln(R) given S=s is: 

  2 2ln( ) | ~ (ln( ) ), (1 ) ( 0)RL
RL SL RL

SL

R S s N s s


    


 
     

 
  (14) 

where ρ is the correlation between the log-space rainfall and log-space snowmelt floods (not 

of the correlation between the real-space rainfall and snowmelt data). The correlation between 

the real-space rainfall and snowmelt floods is (Stedinger, 1981)  
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2 2

exp( ) 1
( , )

exp( ) 1 exp( ) 1

RL SL

RL SL

Corr R S
 

 




       

  (15) 

thus 

|
2 2

ln( ) (ln( ) )

( | ) ( 0, 0)
(1 )

RL
RL SL

SL

R S

RL

r s

F r s r s


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

 

  
    

      
 

 
 

  (16) 

For the rainfall-snowmelt problem, when R and S have a bivariate lognormal distribution, we 

can transform the real-space data sets into their log-space values. However, the integration for 

the Joint Normal Distributions is still impossible analytically even though integration of both 

the transformed rainfall and snowmelt distributions is possible analytically. So a numerical 

method, Simpson’s rule, is applied. 

To use Simpson’s rule, we need to break up the interval of the snowmelt floods [0, s] into 2m 

(m is a integer) subintervals, where 

2

s
s

m
    (17) 

js j s   j=0, 1 ... 2m  (18) 

       

       

| |

| 0 0 | 2 2

| 2 1 2 1 | 2 2

1

( ) ( | ) ( ) ( | ) ( )

| |
3

4 | 2 |

q q q

Q R S S R S S

R S S R S m S m

m

R S j S j R S j S j

j

F q f r s f s drds F r s f s ds

s
F q s f s F q s f s

F q s f s F q s f s

  

 



 


 


    



  



  (19) 
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We can also solve equation (12) by discretizing R instead of S. The reason why we discretize 

S instead of R is that R is the more critical distribution for large-flood risk, so handling that 

dimension analytically can yield a more accurate result for less effort. If S-distribution had no 

impact on the result, then our numerical computation would be exact because it handles R 

analytically. However, as in our case, S-distribution does have an impact on the result, 

especially when the annual maximum is small, so we may get a better result if we use a 

coarser grid for S when dealing with the situation where the annual maximum is small. 

Using the conditional distribution of R given S as given in equation (16) and the 

approximation method provided by equations (19), we can calculate the CDFs of the annual 

maxima use the Joint distribution. 

2.2.3 Example 

A Joint Bivariate Lognormal Distribution is used to construct a joint distribution model that 

allows computation of the distribution of the annual maximum as a function of the 

distributions and the cross-correlation between the two series. When the cross-correlation 

between the two series is zero, the joint distribution model would yield the same answer as the 

mixture model: the mixture model is actually a special case for the joint distribution model. 

Given the lognormal parameters reported in Table 2, we provide plots of the CDFs FR, FS, and 

FQ in Figure 3a and 3b as the correlation ρ between the log-space rainfall and snowmelt 

floods changes, with FQ obtained using (19). Note that Figure 3b is just an expanded scale of 

Figure 3a: 
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Figure 3 displays the annual maximum curves. Those curves follow the snowmelt curve when 

q is small, and are almost identical with the rainfall curve when q is larger than 300m
3
/s. 

When ρ=0, the annual maximum curve is identical with the curve calculated using the 

Mixture Method. For ρ≠0, the Mixture Method is no longer correct, and there is a noticeable 

difference for ρ as small as 0.2. For a large correlation, the annual maximum distribution 

almost equals the snowmelt distribution for small q. When ρ=1, the annual maximum curve is 

identical with the snowmelt curve when q is small and is identical with the rainfall curve 

when q is large, and the change point is at the intersection of the rainfall and snowmelt 

cumulative distribution curves. 

Chapter 3 explores the range within which the Mixture Method provides a good 

approximation of the distribution of the annual maximum. 

2.3 Kirby Method 

This section introduces for the Kirby Method and develops the theory, provides parameter 

estimators, and illustrates the character of the conditional distributions. Examples are 

provided. In particular section 2.3.3 shows how the conditional distributions for rainfall and 

snowmelt maxima that are also annual maxima differ from the distribution for rainfall and 

snowmelt maxima. 

2.3.1 Theory 

When we only have the annual maxima series, and not the individual rainfall and snowmelt 

series, a method developed by W. Kirby can be adopted. The Kirby model fits a conditional 

probability distribution to snowmelt maxima and rainfall maxima that are also the annual 

maxima for their year.  Thus it obtains the distribution of the overall maxima by weighting the 
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two CDFs by the probably of each. It does not assume that the two separate series are 

independent: it only needs to estimate the probability that an annual maximum flood is a 

snowmelt or rainfall event. 

Charles Parrot and Jery Stedinger described the procedure in their correspondence(Parrot, 

personal communication, 03/07/2011). Useful definitions include:    

R’ is a rainfall maxima that is also an annual maxima 

PR = probability that a rainfall maxima is also an annual maximum = P{R>S}  

S’ is a snowmelt maxima that is also an annual maxima 

PS = probability that a snowmelt maxima is also an annual maximum =P{S>R} 

For the Kirby Method, the key conceptual relationship, which allows computation of non-

exceedance and exceedance probabilities for any threshold q, is described by the following 

event tree: 

 

Using the Total Probability Theorem with the partitions R>S and R< S, yields 

' '( ) { } { ' } { ' } ( ) ( )Q R S R R S SF q P Q q P R q P P S q P F q P F q P          (20) 
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One can derive PR, PS and the conditional distributions FR’(q) and FS’(q) from the joint 

distribution of R and S in section 2.2. In particular, using fRS(r,s) = fR|S(r|s)fS(s)，one can 

organize the computations as follows 

|

|

{ } ( , ) ( | ) ( )

[1 ( | )] ( )

R RS R S S
s s

R S S

P P R S f r s drds f r s f s drds

F s s f s ds

   

 





   

 

   


  (21) 

where integration first over r yields the conditional CDF FR|S(r,s). Because PR + PS = 1, PS is 

easily obtained as: 

1S RP P    (22) 

To obtain FQ(q) using equation (20), we need FR’(q) and FS’(q). FR’(q) can be computed using 

'

| | |

( ) { ' } { }/ { }

1 1
( | ) ( ) ( | ) ( | ) ( )

R

q q q

R S R S R S
s

R R

F q P R q P R q and R S P R S

f r s f s drds F q s F s s f s ds
P P 

     

      
  (23) 

The PDF for R’ is obtained by differentiating equation (23) yielding 

' |

1
( ) ( | ) ( )

q

R R S

R

f q f r s f s ds
P 

    (24) 

The CDF and PDF for S’ are obtained by similar computations. Thus 

'

| | |

( ) { ' } { }/ { }

1 1
( | ) ( ) ( | ) ( | ) ( )

S

q q q

S R S R S R
r

S S

F q P S q P S q and S R P S R

f s r f r dsdr F q r F r r f r dr
P P 

     

      
  (25) 

' |

1
( ) ( | ) ( )

q

S S R

S

f q f s r f r dr
P 

    (26) 
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Equations (20)-(26) show that the log-space moments (μRL, σRL, μSL, σSL) of the two 

populations and the correlation ρ between the log-space variates influence the distributions of 

the Rainfall and Snowmelt floods that are also the annual maxima, denoted R’ and S’, the next 

two sections explore those relationships . 

2.3.2 Estimation of parameters 

Given an annual maxima flood series {Qt}, one can estimate PR, PS, FR’(q), and FS’(q) from 

the sample observations, rather than using the theoretical relationships above. 

Let nr and ns be the number of rainfall and snowmelt floods that are also the annual maxima in 

{Qt} ( r sn n n  ), one can estimate ˆ
RP , ˆ

SP  as: 

ˆ r
R

n
P

n
   (27) 

ˆ ˆ1s
S R

n
P P

n
     (28) 

One can get the rainfall and snowmelt floods that are also the annual maxima, {Rr’} and {Ss’}, 

by extracting the rainfall and snowmelt floods that are also the annual maxima from {Qt}. 

Then by fitting {Rr’} and {Ss’} using a reasonable distribution, one obtains an approximations 

for FR’(q) and FS’(q). 

The distribution of {Rr’} and {Ss’} can be appreciably different from the distribution of the 

individual annual maximum series {Rt} and {St}. Thus one may have difficulty specifying the 

appropriate distribution for R’ and S’, even when they know the distribution of the complete 

data. Examples in the next section illustrate this concern. 

2.3.3 Illustration of Kirby Conditional distributions  
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To illustrate the concerns voiced above, we compare the distributions of the complete rainfall 

and snowmelt series R and S, with the distributions of the rainfall and snowmelt floods R’ and 

S’ that are also annual maxima. We also compute analytically the means and variances of the 

rainfall and snowmelt floods R’ and S’ that are also the annual maxima. A comparison of 2-

parameter lognormal distributions that have those log-space moments with the actual 

distribution of R’ and S’, demonstrates that rainfall floods that are also the annual maxima do 

not have a 2-parameter lognormal distribution, even though R and S did. The distribution of 

snowmelt floods that are also annual maxima is very close to a 2-parameter distribution in our 

examples. We also illustrate the precision of approximations of FR’ and FS’ provided by a 3-

parameter lognormal distribution. 

First, consider the comparisons of the complete rainfall and snowmelt maximum flood 

distributions for R and S, versus the rainfall and snowmelt flood distributions for R’ and S’ 

that are also the annual maxima. Equations (10)-(11) in section 2.1.3 provide the PDFs of the 

complete rainfall and snowmelt floods R and S. Equations (20)-(26) above provide the 

distributions of the rainfall and snowmelt floods R’ and S’ that are also the annual maxima. 

Analytical integration in (20)-(26) is in general impossible. However, we can integrate 

numerical using Simpson’s rule by discretizing R and S into {ri} and {si} with the length of 

each interval having values Δr and Δs.  In our example, we use Δr=Δs=q/2m, thus we have: 

 

 
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  (29) 
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In practice we cannot have an infinite number of points, but a large upper bound can be 

selected so that, [1-FR|S(s2j|s2j)]fs(s2j)≈0. For our examples, we use q=1200m
3
/s as an upper 

bound.  

The CDFs and PDFs of the rainfall floods that are also the annual maxima can be obtained as 

follows: 

 

' | |

| 0 | 0 0 0 | 2 | 2 2 2
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R
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       

       

' |

| 0 0 | 2 2

| 2 1 2 1 | 2 2

1

1
( ) ( | ) ( )

| |
3

4 | 2 |

r

R R S

R

R S S R S m S m

R

m

R S j S j R S j S j

j

f r f r s f s ds
P

s
f r s f s f r s f s

P

f r s f s F r s f s



 






 


    







  (31) 

Figure 4 provides comparisons of the PDFs of the complete rainfall and snowmelt series and 

the PDFs of the floods that are also the annual maxima, as the correlation ρ between the two 

annual maxima series changes. The PDFs of the complete rainfall and snowmelt series are 

obtained using equation (10)-(11). The PDFs of the rainfall and snowmelt floods that are also 

the annual maxima are obtained using equation (31).  
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In Figure 4a rainfall floods that are also the annual maximum R’ have a larger mean and a 

smaller variance than the complete rainfall data; moreover the lower tail of the distribution is 

very different from the complete data set R-distribution, and essentially has a lower bound 

provided by the snowmelt floods in each year. As the correlation ρ between the log-space 

Rainfall and Snowmelt floods increases from 0.5 to 0.9, the mean μR of R’’ increases, and the 

PDF of the rainfall floods R’ that are also the annual maximum becomes peakier. With a large 

ρ, the larger rainfall events are with high probability the annual maximum, and the smaller 

rainfall events, are less than the snowmelt flow in that year; this moves the R’ distribution to 

the right of the R distribution. There is a similar shift as ρ increases from 0 to 0.5, but the 

change is relatively modest. 
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Figure 4b shows that the snowmelt floods S’ that are also the annual maximum have nearly 

the same mean and similar variance as the complete snowmelt data when ρ is not large. As the 

correlation ρ between the log-space Rainfall and Snowmelt floods becomes larger (ρ = 0.9 in 

the example), the PDF of the snowmelt floods S’ that are also the annual maximum becomes 

peakier, with a smaller variance and smaller the mean. In this high correlation case, the larger 

snowmelt events generally occur in years with large rainfall events, which are larger and thus 

are the annual maximum; however, the smaller snowmelt events are generally with very small 

rainfall events, so that the snowmelt value is the annual maximum. Thus the distribution of S’ 

is to the left of the S distribution. There is a similar shift as ρ increases from 0 to 0.5, but the 

change is relatively modest. 
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Because we are interested the moments of both populations, and the relationship between 

them (measured by the log-space correlation), we computed the ratio of the means, standard 

deviations, and skewnesses of the floods that are also the annual maxima R’ and S’ and those 

of the complete rainfall and snowmelt series R and S (μR’/μR, σR’/σR, γR’/γR, μS’/μS, σS’/σS, 

γS’/γS) as the correlation ρ.  

To calculate the moments of the rainfall and snowmelt floods that are also the annual maxima 

by Monte Carlo simulation, we can generate samples of the rainfall and snowmelt series, {Rt} 

and {St}. We know that the complete snowmelt floods can be described as 

2ln( ) ~ ,SL SLs N       (32) 

And given the snowmelt floods, the rainfall floods can be described as: 

  2 2ln( ) | ~ (ln( ) ), (1 )RL
RL SL RL

SL

R S s N s


    


 
    

 
  (33) 

where ρ is the correlation between the log-space rainfall and snowmelt populations instead of 

the correlation between the real-space rainfall and snowmelt data.  

Then we determine the annual maxima, {Qt}, and the rainfall and snowmelt maxima that are 

also the annual maxima, {Rr’} and {Ss’}, for their year. The log-space moments of the rainfall 

floods that are also the annual maxima can be estimated as (we use log-space moments 

because our research shows that for lognormal distribution, use the log-space moments is 

more accurate and stable than the real-space moments): 

'
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r
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    (34) 



 

24 
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And '
ˆ

R  and 2

'
ˆ

R  can be obtained by solving equation (4)-(5), then 
 
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We can also get those moments theoretically: 

' '( )R Rrf r dr



    (36) 

2 2

' ' '( ) ( )R R Rr f r dr     (37) 
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







. Use equation (4)-(5), we can obtain the log-space moments of 

R’ theoretically. Using equation (10)-(11), we can find the 2-parameter lognormal 

distributions that has those log-space moments.  

The moments of the logarithm of the snowmelt floods that are also the annual maxima can be 

obtained in the same way. 

The analysis is repeated for different values of the real-space and log-space moments of the 

complete snowmelt population resulting in a different relationship between snowmelt and 

rainfall in their competition to be the annual maximum (in our case, we get the moments 

theoretically). We kept the real-space moments of the complete rainfall population and the 

coefficient of variation of the complete snowmelt population CV=σS/μS constant, and varied 

the median ratio MR/S=Med[R]/Med[S]=1.5, 1.07, 0.75 to get different moments of the 

snowmelt population, where Med[R]=exp(μRL) and Med[S]=exp(μSL). (See values listed Table 

2, MR/S=1.07.) This changes the probability PR that the annual maximum is a rainfall event. In 
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particular, MR/S=1.5, 1.07, 0.75 correspond to PR ≈ 0.8, 0.5, 0.3 with the exact value 

dependent upon ρ, given the adopted coefficients for R and S. See results in Figure 5 which 

displays µR’/µR, R’/R, and  R’/R , which is the ratio of the R’ moment to the R moment. 
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In figure 5, because the snowmelt floods dominate the lower tail of the mixed population, R’ 

lacks many of the smaller values in the R distribution, so R’ has a larger mean, with a smaller 

standard deviation, than the complete rainfall data. Figure 5 also shows that R’ generally has a 

larger skewness as well. When PR>0.5, the larger ρ, the smaller the μR’; for PR≤0.5, the larger 

ρ, the smaller μR’. No matter how the median ratio changes, the largest σR’ occurs when ρ=0.5. 

No matter how the median ratio changes, the γR’ is relatively constant for ρ≤0.9.  

 

Just as figure 5 showed how the moments of R’ changed relative to those of R, figure 6 shows 

how the moments of S’ change relative to S. 
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Figure 6 shows that the S’ distribution doesn’t always have a larger mean and standard 

deviation than S; the relationship depends on ρ and PR. For the cases in the figures,  the values 

of μS’ and σS’ decrease with ρ . For these cases in the figures, γS’ is always smaller than γS. 

When ρ>0.7, γS’/γS decreases rapidly as  increases. 

Now consider if the rainfall and snowmelt floods that are also the annual maxima have 2-

parameter lognormal distributions. The moments of the rainfall and snowmelt floods series 

that are also the annual maxima and of their logarithm can be obtained either numerically by 

integrating the appropriate analytical expressions as in figures 5 and 6, or by Monte Carlo 

simulation. 

 

With the moments calculated above, Figure 7 provides the comparison of the lognormal 

distributions which have the log-space moments of the rainfall and snowmelt data that are 

also the annual maxima and the PDFs of the rainfall and snowmelt data that are also the 

annual maxima. 
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Figure 7 shows the differences between the distributions of the rainfall and snowmelt data that 

are also the annual maxima, and the lognormal distributions that have the same real and log-

space moments: One can see that the distributions of the rainfall data that are also the annual 

maxima does not match the lognormal distributions with the same real and log-space 

moments. However, the distributions of the snowmelt data that are also the annual maxima 

closely match the lognormal distributions with the same moments. The reason the lognormal 

distributions can provide a good description of S’ is that for ρ≤ 0.5, the distributions of S and 

S’ are almost identical’ for ρ= 0.9, the S’ distribution is a little more symmetric but is still well 

described by a 2-parameter lognormal distribution. However for ρ near one, an unrealistic 
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case for floods, the S’ skew goes negative and a lognormal distribution would be an 

unsatisfactory model. 

There is another way to check if R’ or S’ has 2-parameter lognormal distribution. Consider the 

skew defined as
 

3

3

E x 





 . For 2-parameter lognormal distribution we have the 

relationship (Stedinger (1980): L = 3 CV + CV
3
, with  2exp 1LCV   .  

Thus if the skew of R’ and S’ equal L, a 2-parameter lognormal distribution is likely to be 

a good model. Figure 8 displays the skew ratios R’/LR’, S’/LS’, as the correlation ρ 

between log-space rainfall and snowmelt populations changes with MR/S=1.5, 1.07, 0.75. 
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Figure 8a shows that R’/LR’<0.98 when MR/S=1.5, PR≈0.8 for all ρ, otherwise, 

R’/LR’>1.02. Figure 8b shows that 0.98<R’/LR’<1.02 when ρ<0.7. In practice the 

correlations ρ between the log-space population is usually smaller than 0.7, thus we may use 

2-parameter lognormal distribution to describe S’ in most cases. When ρ>0.7, R’/LR’ drops 

rapidly and eventually goes to negative. when ρ=0.9, R’/LR’=0.75, yet Figure 7b shows 2-

parameter lognormal distribution provides a good approximation to S’, we assume that is 

because γS’ is small, and the difference between γS’ and γLN2-S’ is not as visible as γR’ and γLN2-R’; 

see Table 3. 
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Table 3 Comparisons of real Skews and CV
3
+3CV when MR/S =1.07 

Skewness γR’ γLN2-R’ γS’ γLN2-S’ 

ρ=0 1.49 1.41 0.79 0.77 

ρ=0.2 1.48 1.42 0.80 0.80 

ρ=0.5 1.47 1.44 0.81 0.81 

ρ=0.9 1.59 1.39 0.49 0.63 

 

Because we are concern more about the upper tail of the mixed population, which has little to 

do with snowmelt population, we may still use a 2-parameter lognormal distribution to fit S’ 

even when ρ is large. Another advantage of using a 2-parameter instead of 3-parameter 

lognormal distribution to fit S’ is that we would have one parameter fewer to estimate when 

dealing with small samples. An example of choosing the proper number of parameters is 

provided in Lu and Stedinger (1992). 

Because we are concern more about large floods, which most are rainfall events, a more 

accurate estimator of R’ is attractive. 

Consider the situation when fitting {Rr’} and {Ss’} using 3-parameter lognormal distribution. 

A 3-parameter lognormal distribution is a more general form of the lognormal distribution, 

which includes an additional shift parameter . Stedinger (1980) recommends a procedure that 

combines the moment method already studied for the 2-parameter distribution with a quantile 

estimator of the lower bound . The lower bound estimator is 
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 
22 2ˆ ˆ ˆ ˆln 1 /L      

 
  (42) 

Here ˆ
pX and 1

ˆ
pX  are the largest and smallest values of the observations, and ˆ

L  and 2ˆ
L are the 

mean and variance of the log-space data, ̂ and 2̂ are the mean and variance of the real-space 

data. When the sample size is larger than 100, we use p=0.05. 

If R’ can be described using 3-parameter lognormal distribution, we can also get the 3 

parameters theoretically. In our case, we store the cumulative probability pi with respect to 

each value  'RF r  obtained using (30), and we can find a value ra such that 

   ' ' 1R a R aF r p F r     (43) 

Use the secant method, we search for a root using 
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We also know that for a 3-parameter lognormal distribution, 

' 'exp( )p RL p Rlr z       (45) 

0.5 'exp( )RLr      (46) 

Thus we can get all 3 parameters with rp, r0.5, r1-p. And the parameters for snowmelt 

population can be obtained in the same way. In our case, R’ can be well described by LN3, 

and the parameters are obtained using equations (43)-(46). 

Figure 9 displays the comparisons of the 3-parameter lognormal distributions which have the 

moments rainfall floods R’ that are also the annual maxima, and the distributions of the 

rainfall floods R’ that are also the annual maxima as the correlation ρ between the log-space 

rainfall and snowmelt floods and the moments of the populations change, where the moments 

of the rainfall floods R’ that are also the annual maxima are obtained use equation (36)-(37), 

(45)-(46), and the PDFs of the rainfall data R’ that are also the annual maxima are obtained 

with equation (31). 
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Figure 9 shows that 3-parameter lognormal distribution works much better than 2-parameter 

lognormal distribution when describing the rainfall data that are also the annual maxima. And 

as ρ and MR/S change, 3-parameter lognormal distribution can still well describe the rainfall 

data that are also the annual maxima.  

In this analysis, a 3-parameter lognormal distribution is employed when describing the rainfall 

data that are also the annual maxima R’, while 2-parameter lognormal distribution is 

employed when describing the snowmelt data that are also the annual maxima S’.  The values 

of PR, PS, FR’, and FS’ were computed  using equation (30). The results should be identical 

with the results calculated using the Joint Distribution Method. The two are compared in 

figure 10.  
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Figure 10a displays the CDFs FQ as the correlation between the log-space rainfall and 

snowmelt floods ρ changes, where FQ is obtained using (20), FR’ is described by 3-parameter 

lognormal distribution, and FS’ is described by a using 2-parameter lognormal distribution.  
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Figure 10c compares the results calculated using the Kirby Method (LN3), and the results 

calculated using the Joint Distribution Method.  
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Figure 10c shows that use 3-parameter lognormal distribution to describe the rainfall floods 

that are also the annual maxima R’ and use 2-parameter lognormal distribution to describe 

snowmelt data that are also the annual maxima S’ provides a very accurate description of the 

annual maximum distribution obtained directly using the joint distribution method. 

 

2.4 Fitting the Annual Maximum Floods using a single 3-parameter distribution 

This section explores the opportunity of describing the annual maxima using a single 

distribution. Here a 3-parameter -parameter lognormal distribution is adopted. Section 2.3.3 

provides equations for fitting a LN3 to flood series; see equations (38)-(42) . When the true 

quantiles are known, equation (43)-(46) are recommended. 
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Figure 11 compares of the CDFs for the annual maximum series calculated using a single 3-

prarameter lognormal distribution using equation (43)-(46), and the CDFs calculated using the 

Joint Method. 

 

The CDFs calculated using a single 3-parameter lognormal distribution are very similar, but 

not quite identical, with the CDFs calculated using the Joint Distribution Method. 

2.5 Use of a  Just - Rainfall Distribution 

When we are only concern with large floods, which are almost always rainfall events, 

modeling just the rainfall events as an approximation to the annual maximum distribution may 

be easy, simple, and accurate solution. 
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To apply the Just-Rainfall Method, we fit the rainfall maximum series with a 2-parameter 

lognormal distribution (in our case, the moments of the 2-patameter lognormal rainfall 

population are listed in Table 2.), and use the rainfall quantile to approximate the mixed 

population quantile. 

Figure 3 shows the CDFs of the Rainfall, Snowmelt and mixed population as the correlation ρ 

between the log-space rainfall and snowmelt events changes. The figure shows that the Just-

Rainfall Method does not represent well the lower quantiles; however, there is to be a critical 

probability, which here is denoted PC, above which the just-rainfall model provides a very 

good approximation of flood risk. As shown below, that threshold varies with MR/S, as one 

should expect. If the median ratio MR/S is much larger than 1, then the rainfall process should 

dominate, however, if MR/S is on the order of 1 or less, the largest annual maxima would 

generally be a mixture of rain and snowmelt events. 

Figure 12 is a repeat of Figure 3, except that the MR/S ratio has 3 values, 0.75, 1.00, and 1.51. 

The moments of the rainfall and snowmelt populations are listed in Table 2; the CDFs of the 

annual maximum population are calculated using the correct Joint Distribution Method. 



 

45 
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Consider Figure 12a with MR/S=1.5, so the by eye the critical probability appears to be PC≈0.6 

because the rainfall distribution dominates above 175 m
3
/s.  In Figure 12b, MR/S=1, and the 

critical probability is about PC≈0.85.  Finally in figure 12c, MR/S=0.75, so the critical 

probability is PC≈0.95 because the snowmelt process dominates flood risk over a wide range 

of flows, but not the very largest extremes. Figure 12abc shows that MR/S is the dominate 

factor that influences PC. The correlation ρ has a modest impact on the critical probability PC 

above which the joint model CDF cannot be distinguished from the rainfall-on model.  

Chapter 3 explores the computation of PC. 
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CHAPTER 3 

3   Range of Applicability 

The Mixture model gives the correct probabilities of the annual maximum flood when the 

rainfall and snowmelt series are independent, because that is what it assumes. When the two 

series are correlated, the mixture model may be inaccurate, when the correlation ρ between 

the log-space populations is large. However, as shown in Figure 12, there is a critical 

probability PC, dependent upon the values of the parameters, above which the Mixture Model 

is still accurate regardless of the value of  because in this example, the rainfall risk 

dominates snowmelt floods above that frequency. In fact, the mixture model in these cases can 

be equivalent to a model that considers only the risk from rainfall floods, which in this thesis 

is called the “Just-Rainfall Model.” This chapter uses the Mixture Model to develop a simple 

formula for Pc.  

3.1 A Formula for PC using the mixture model 

Consider the PDF for floods that results from use of the mixture model: 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

Q R S SR
S R S R R S

F q F q F q F qF q
F q F q F q f q F q f q

q q q q

  
    

   
  (47) 

where FR(q) and FS(q) are the CDFs of the rainfall and snowmelt populations, which are 

defined in equation (3); fR(q) and fS(q) are the PDFs of the rainfall and snowmelt floods, 

which are defined in equation (10) and (11). Equation (47) indicates that the upper tail of the 

mixed population, describing the risk of flooding at level q, is the weighted average of the 

rainfall risk fR(q) and the snowmelt risk fs(q), where the CDFs are the weights. Thus the 

critical probability PC describes the point beyond which F
S
(q) f

R
(q) F

R
(q) f

S
(q) . If beyond  
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 q, F
S
(q) f

R
(q) F

R
(q) f

S
(q)  , then the rainfall risk is much greater than the snowmelt risk at 

and beyond q, . Using a 2-parameter LN model for rainfall, 

ln( )
( ) ( ) ( ) ( )

p RL

Q p R p S p S p

RL

q
p F q F q F q F q





 
     

 
  (48) 

Thus  

ln( ) ( )

( ) ( )
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RL S p S p

q F q p

F q F q




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S p
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F q
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 
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  (51) 

Equation (51) assumes that when rainfall is the dominant risk for flows great then q, which 

means we can assume  FS(q)≈1.  This is generally the case when rainfall is the dominant risk 

of flooding, and the rainfall distribution has a thicker more extreme upper tail than the 

snowmelt distribution. In these case, the Just-Rainfall model will also be attractive because 

the mixed population is dominated by rainfall events in the upper tail, which is when FS(qp) is 

almost 1. Use of a Just-Rainfall Method is illustrated by Lamontagne et al. (2012). 

For our case, we define the critical non-exceedance probability ( ) ( )C R SP F q F q to be the 

point where ( ) ( ) 10 ( ) ( )S R R SF q f q F q f q . Here a factor of 10 seems sufficient in a practical 

definition of dominance. The next section explores the behavior of PC for different sets of 

model parameters.   
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3.2 Value of PC with different parameters 

To explore the behavior of PC, this section considers a range of cases that have rainfall and 

snowmelt distributions with different parameters. To define different cases, we fix the mean 

and variance of the rainfall population R, and the coefficient of variation of the snowmelt 

population CV=σS/μS. The median ratio MR/S was assigned values between 0 to 4 to generate 

different values of the mean and variance of the snowmelt population. For a LN2 distribution, 

Med[R]=exp(μRL), Med[S]=exp(μSL). In Table 2, and MR/S=1.07. Changing MR/S changes the 

probability PR that the annual maximum is a rainfall event. 

Figure 13 displays the relationship between PR and  the median ratio MR/S and correlation ρ 

between the rainfall and snowmelt maximum series. PR is least sensitive to MR/S when  = 0 , 

and most sensitive with  = 0.9. For a high correlation, PR is simply the point where the two 

CDFs cross, whereas for low cross-correlation, PR depends upon the point where the two 

CDFs cross and the variance of each series describing the probability that one by chance 

happens to be larger than the other. 
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Figure 13 shows that both ρ and MR/S influence PR. In our lognormal case, when MR/S=1, 

μRL=μSL and PR=PS=0.5 for all ρ; this can be understood by thinking about the values in log 

space where the difference log(R) – log(S) would have a normal distribution with zero mean. 

Thus the probability that R > S will be 50% for any cross-correlation and different values of 

the variance of each series.  

We identified the points PC where ( ) ( ) 10 ( ) ( )S R R SF q f q F q f q  for different cases numerically 

using the secant method (see in Section 2.3.3). Figure 14 displays PC as a function of MR/S. 

The correlation ρ between the log-space rainfall and snowmelt populations is not considered 

in the definition of PC.  It should not be necessary to include , because beyond a cumulative 
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probability corresponding to PC, the rainfall series should dominate the flood risk, regardless 

of the value of .  

 

Values of PC describe the CDF value below which the Mixture Method or Just-Rainfall Model 

may provide invalid results. As shown in Figure 12abc, if PC were defined using the Joint 

Model, the largest values of PC for  ≥ 0, would be obtained with  = 0.  Thus use of the 

mixture model (Joint model with  = 0) is conservative in that it defines a smaller interval (PC 

to 1) within which the mixture or just-rainfall model is expected to be accurate. 

Although the Joint Distribution Method is theoretically correct, when the parameters must be 

estimated from small samples, the Mixture Method can give more accurate results than the 

Joint Distribution Method because the Joint Distribution Method requires estimation of an 
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additional parameter: the cross-correlation between the two series. Cross correlation 

estimators are relatively inaccurate (Stedinger, 1981). And when the mixed population is 

completely dominated by the rainfall floods, the Just-Rainfall Model should provide the same 

or even better results than the Mixture Method. These issues are explored in a Monte Carlo 

study in Chapter 4. 
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CHAPTER 4 

4   Monte Carlo Study 

This Chapter provides an evaluation of the performances of different flood frequency 

estimators in small samples with a mixed population. The performance of each method is 

considered as a function of the correlation ρ between the maximum log-space rainfall and 

snowmelt events, and the distributions of the two series.  

Stedinger  (1980) suggests that performance criteria should reflect the impact that 

misspecification of those parameters might have on the planning process, its 

recommendations, and the social benefits achieved. Following Griffis and Stedinger (2007) 

who discuss different performance criteria, the Mean Squared Error  MSE[ln( q̂p )], for p=0.90, 

0.99, is the primary statistic employed in this study, though other probabilities were examined. 

The MSE was computed using the formula 

Re
2

1Re

1
ˆ[ln( )] ln( ) ln( )

N

p p p

i

MSE q q q
N 

      (52) 

For a lognormal distribution , MSE[ln(qp)] is independent of μL (corresponding to a scaling of 

both flood series), and RMSE[ln(qp)]/σL would be independent of σL, where σL, is a shape 

parameter of the real-space lognormal distribution.  

4.1 Experiment 

A Monte Carlo study determined the MSE[ln( pq )] (p=0.90, 0.99) of each methods when the 

flood distributions have different moments (MR/S =1.5, 1.0, 0.75), and different ρ=0, 0.2, 0.5, 

0.9; considering several sample sizes N=25, 50, 100. We also report in an appendix 
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MSE[ln( pq )] (p=0.63, 0.88, 0.96, which are the corresponding critical probability when MR/S 

=1.5, 1.0, 0.75, and PR≈0.8, 0.5, 0.3). The reason we choose those values is that by calculating 

MSE[ln( pcq )] when PR≈0.8, 0.5, 0.3, we can check whether our estimator for PC is valid. 

Table 4a provides the real and log-space moments for the theoretical rainfall and snow melt 

distributions consider here as a function of the median ratio of the two populations 

distributions MR/S (to 4 digits). 

Table 4a. Real and Log-space moments as a function of MR/S 

MR/S 1.5 1.007 0.75 

Moments Rainfall Snowmelt Rainfall Snowmelt Rainfall Snowmelt 

μ 198.9 114.6 198.9 172.0 198.9 229.3 

σ 130.7 30.33 130.7 45.49 130.7 60.65 

μL 5.113 4.708 5.113 5.113 5.113 5.401 

σL 0.5991 0.2601 0.5991 0.2601 0.5991 0.2601 

PC 0.63 0.88 0.96 

Table 4b provides the calculated probability the annual maximum is a rainfall event PR as a 

function of MR/S (MR/S =1.5, 1.00, 0.75, PC=0.63, 0.88, 0.96) and ρ (ρ=0, 0.2, 0.5, 0.9). 
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Table 4b. PR with respect to MR/S and ρ 

Med[R]/Med[S] 1.5 1.00 0.75 

ρ PR 

0 0.73 0.50 0.33 

0.2 0.75 0.50 0.32 

0.5 0.78 0.50 0.29 

0.9 0.86 0.50 0.23 

The Monte Carlo analysis considered the estimation of the model parameters with small 

samples. When fitting the mixture model employing two-parameter lognormal distributions 

for R and S, we need to estimate 4 parameters μRL, σRL, μSL, and σSL. Maximum likelihood 

estimators were employed corresponding to the log-space sample mean and variance. When 

fitting the Joint Distribution Method, we also need to estimate the cross-correlation of the 

logarithms  ρ, so there are 5 parameters in total. Equation (53)-(54) was used to get ρ.  

When fitting the Kirby Method, we fit R’ with 3-parameters lognormal distribution using the 

quantile lower bound estimator and the real-space sample mean and variance as suggested in 

Stedinger (1980). See equations (34)-(35) in Chapter 2. The distribution of S’ was again 

described with a 2-parmameter lognormal distribution using maximum likelihood estimators., 

PR was estimated using the observed frequency, as in equation (27). So there are 6 parameters 

in total. When fitting a Single LN3 Method, we just need to fit the annual maxima with 3-

pamrameter lognormal distribution, so there are 3 parameters. Again the quantile lower bound 
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estimator was used with the real-space sample mean and variance. When fitting the Just-

Rainfall Method, we need to fit the complete rainfall series with a 2-parameter lognormal 

distribution, so there are 2 parameters, fit using the maximum likelihood estimators.  

To estimate the cross-correlation ρ between the log-space rainfall and log-space snowmelt 

data, where the rainfall or snowmelt series are each independent random variables, the 

maximum likelihood estimator in Stedinger (1980) was employed, which equals 

2ˆ
ˆ

ˆ ˆ
RS

RL SL




 
   (53) 

  
1

1
ˆ ˆ ˆln( ) ln( )

1

n

RS i RL i SL

i

r s
n

  


  

   (54) 

Equation (38)-(42) in Chapter 2 discussed how to fit 3-parameter lognormal distribution; we 

used the quantile lower bound estimator with the sample mean and variance of the real data. 

This method is applied when fitting the rainfall events that are also the annual maxima R’, and 

the annual maximum floods. Note that when the sample size of {R’} or {S’} is smaller than 

10, we substitute a 3-parameter lognormal distribution to fit the annual maxima instead of 

fitting them separately. This avoided the unstable results that could result from trying to 

describe the R’ and S’ distributions with too few observations. 

4.2 Results 

MSE[ln( pq )] (p=0.90, 0.99, and PC) will be used to compare different methods when the real 

flood distributions have different rainfall maximum probabilities PR (PR≈0.3, 0.5, 0.8) and 

correlations ρ (ρ=0, 0.2, 0.5, 0.9) with different sample size N (N=25, 50, 100). The true qp 

(p=0.90, 0.99, PC) was computed using the Joint Distribution Method with the real parameters; 
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qp values are reported in Table 5 (to 4 digits). One can observe that across the values 

considered, the quantile vary very little, if at all; in particularly, for p > PC,  should have no 

visible effect on qp. That is the case for the examples in Table 5. The results of the Monte 

Carlo analysis are listed in Tables 6-11 and Figures 15-20. 

Table 5    qp as a function of MR/S and ρ  

MR/S=1.5, Pc=0.63 

ρ q0.63(m
3
/s)  q0.88(m

3
/s)  q0.96(m

3
/s)  q0.90(m

3
/s)  q0.99(m

3
/s)  

0 204.7 336.1 474.5 358.3 669.9 

0.2 204.1 336.1 474.5 358.3 669.9 

0.5 203.2 336.1 474.4 358.3 669.9 

0.9 202.8 336.1 474.5 358.3 669.9 

MR/S =1.00, Pc=0.88 

ρ q0.63(m
3
/s)  q0.88(m

3
/s)  q0.96(m

3
/s)  q0.90(m

3
/s)  q0.99(m

3
/s)  

0 229.7 338.9 474.6 359.9 669.9 

0.2 226.5 338.4 474.6 359.6 669.9 

0.5 220.1 337.3 474.6 358.9 669.9 

0.9 206.5 336.1 474.5 358.3 669.9 

MR/S =0.75, Pc=0.96 

ρ q0.63(m
3
/s)  q0.88(m

3
/s)  q0.96(m

3
/s)  q0.90(m

3
/s)  q0.99(m

3
/s)  

0 273.5 364.7 479.4 381.2 670.1 

0.2 269.6 362.6 479.0 379.5 670.1 

0.5 262.0 357.2 477.5 374.7 670.0 

0.9 246.4 341.3 474.6 361.0 669.9 

 

Table 6 and Figure 15 report the value of  MSE[ln( 0.99q )] of each of five method: mixture 

using two LN2 distributions, the joint distribution using two LN2 distributions and their 
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cross-correlation, the Kirby method using an LN3 distribution to describe rainfall, a single 

LN3 distribution for the annual maximums, and a Just-rainfall LN2 distribution. Because we 

use a 3-parameter lognormal distribution to fit the annual maxima instead of fitting R’ and S’ 

separately when the sample size of {R’} or {S’} is smaller than 10, we don’t report a 

MSE[ln( 0.99q )] of the Kirby method when N=25 in Figure 15a. 

 

Table 6  MSE[ln( 0.99q )] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0547  0.0544  
 

0.0742  0.0547  

0.2 0.0542  0.0557  
 

0.0708  0.0542  

0.5 0.0554  0.0532  
 

0.0699  0.0554  

0.9 0.0553  0.0539  
 

0.0627  0.0553  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0541  0.0543  
 

0.0869  0.0549  

0.2 0.0524  0.0531  
 

0.0823  0.0531  

0.5 0.0540  0.0556  
 

0.0821  0.0544  

0.9 0.0535  0.0539  
 

0.0785  0.0535  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0485  0.0476  
 

0.0760  0.0548  

0.2 0.0497  0.0475  
 

0.0747  0.0554  

0.5 0.0481  0.0505  
 

0.0750  0.0519  

0.9 0.0543  0.0537  
 

0.0923  0.0553  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0269  0.0275  0.0435  0.0425  0.0269  

0.2 0.0264  0.0266  0.0408  0.0397  0.0264  
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0.5 0.0270  0.0268  0.0410  0.0394  0.0270  

0.9 0.0273  0.0276  0.0374  0.0362  0.0273  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0267  0.0267  0.0466  0.0504  0.0268  

0.2 0.0268  0.0262  0.0465  0.0497  0.0268  

0.5 0.0261  0.0268  0.0464  0.0483  0.0262  

0.9 0.0274  0.0265  0.0500  0.0456  0.0274  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0247  0.0249  0.0431  0.0462  0.0261  

0.2 0.0253  0.0259  0.0446  0.0474  0.0268  

0.5 0.0260  0.0257  0.0452  0.0477  0.0270  

0.9 0.0269  0.0265  0.0562  0.0552  0.0271  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0131  0.0133  0.0241  0.0227  0.0131  

0.2 0.0130  0.0132  0.0237  0.0223  0.0130  

0.5 0.0136  0.0129  0.0240  0.0223  0.0136  

0.9 0.0130  0.0134  0.0229  0.0205  0.0130  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0134  0.0133  0.0270  0.0293  0.0134  

0.2 0.0133  0.0133  0.0267  0.0294  0.0133  

0.5 0.0133  0.0139  0.0272  0.0282  0.0133  

0.9 0.0134  0.0134  0.0278  0.0252  0.0134  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0132  0.0128  0.0268  0.0301  0.0137  

0.2 0.0128  0.0128  0.0261  0.0297  0.0132  

0.5 0.0129  0.0133  0.0266  0.0297  0.0131  

0.9 0.0136  0.0136  0.0303  0.0344  0.0137  

*Table 6 is based on 5000 replicates of each combination; a 90% confidence interval for true values of 

MSE is less than ±5% 
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Figure 15 shows that for p = 99%, the performance of the Mixture Method, Joint Distribution 

Method, and Just-Rainfall Method are almost identical, and they produce the most accurate 

estimators. When estimating really large quantiles, the simple Mixture Method or Just-

Rainfall Method would be good choice because snowmelt distribution does not affect the 

quantile estimator. 

We don’t report MSE[ln( 0.99q )] of the Kirby method when N=25 in Figure 15a. However, in 

Figure 15b and 15c the LN3 and Kirby Methods do not do as well as the Mixture, Joint, or 

Just-Rainfall Method. When MR/S = 1.5, the single LN3 Method does a little better than the 

Kirby method; as shown in figure 12a, this is a situation where in the rainfall distribution 

dominates flood risk over most of the range of likely values, and in particular the large floods. 

However, for MR/S = 1 and 0.75, the Kirby method is a little better. When MR/S = 0.75, the 

annual maximum distribution shown in Figure 12c is mostly snowmelt events, with just the 

upper tail defined by the rainfall flood risk. As a result, the annual maximum series has a very 

large positive skew in real and in log space, making quantile estimates for the upper tail 

highly unreliable. A more physical representation of that argument is this.  MR/S= 0.75 

illustrates the kind of situation wherein use of separate models of the two populations is 

highly advantageous because most of the annual maximum flood events are snowmelt floods, 

whereas the largest floods are rainfall events. Thus a model that separates the two phenomena, 

such as the Kirby method, can better resolve the rainfall flood risk and thus provide a more 

accurate estimate of upper quantiles, even though it uses more parameters with the same 

number of data points employed with the single LN3 distribution. The differences are modest, 

but important to understand. OF course, if one has the whole maximum series for the rainfall, 



 

62 

the Just-Rainfall estimator does better because it has more information on the rainfall 

distribution. 

For N=50 and 100, when MR/S=1.5, the Kirby Method works worse than a Single LN3 

Method; when MR/S=1, the Kirby Method works a little better than a Single LN3 Method 

except for ρ=0.9; when MR/S=0.75, the Kirby Method generally works better than a Single 

LN3 Method. Although the Kirby Method has 6 parameters to fit while a Single LN3 Method 

has only 3, the Kirby Method may work better because the conditional distribution for R’ has 

a smaller skewness than the distribution of the annual maxima, which has a large positive 

skew. Thus to determine which of the two is more accurate requires knowing the parameters 

of the problem. 

As one would expect, all of the methods work better as the sample size N increases. 

 

Table 7 reports, and figure 16 displays the MSE[ln( 0.90q )] of the five estimators for different 

MR/S, ρ and sample size N. Again we don’t report MSE[ln(q0.9)] of the Kirby method when 

N=25. 

 

Table 7.  MSE[ln( 0.90q )] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0265  0.0263  
 

0.0288  0.0267  

0.2 0.0262  0.0268  
 

0.0280  0.0264  

0.5 0.0266  0.0258  
 

0.0289  0.0267  
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0.9 0.0267  0.0261  
 

0.0289  0.0267  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0221  0.0220  
 

0.0214  0.0273  

0.2 0.0214  0.0225  
 

0.0208  0.0258  

0.5 0.0228  0.0244  
 

0.0227  0.0261  

0.9 0.0247  0.0262  
 

0.0276  0.0263  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0129  0.0128  
 

0.0157  0.0313  

0.2 0.0139  0.0128  
 

0.0159  0.0314  

0.5 0.0149  0.0147  
 

0.0158  0.0280  

0.9 0.0213  0.0198  
 

0.0188  0.0268  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0130  0.0134  0.0142  0.0148  0.0131  

0.2 0.0127  0.0130  0.0136  0.0143  0.0128  

0.5 0.0133  0.0130  0.0143  0.0151  0.0133  

0.9 0.0133  0.0135  0.0147  0.0150  0.0134  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0113  0.0112  0.0124  0.0114  0.0131  

0.2 0.0117  0.0113  0.0127  0.0117  0.0133  

0.5 0.0115  0.0124  0.0130  0.0120  0.0128  

0.9 0.0126  0.0129  0.0144  0.0148  0.0133  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0061  0.0062  0.0073  0.0093  0.0167  

0.2 0.0066  0.0067  0.0079  0.0096  0.0168  

0.5 0.0076  0.0075  0.0086  0.0097  0.0156  

0.9 0.0123  0.0102  0.0116  0.0112  0.0136  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 
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0 0.0064  0.0065  0.0071  0.0077  0.0064  

0.2 0.0064  0.0064  0.0070  0.0076  0.0064  

0.5 0.0067  0.0063  0.0073  0.0080  0.0067  

0.9 0.0064  0.0066  0.0075  0.0078  0.0064  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0056  0.0057  0.0063  0.0061  0.0065  

0.2 0.0057  0.0059  0.0064  0.0061  0.0066  

0.5 0.0059  0.0065  0.0068  0.0063  0.0065  

0.9 0.0063  0.0066  0.0071  0.0075  0.0066  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0031  0.0030  0.0037  0.0063  0.0106  

0.2 0.0032  0.0032  0.0040  0.0064  0.0100  

0.5 0.0040  0.0037  0.0045  0.0064  0.0086  

0.9 0.0075  0.0053  0.0066  0.0070  0.0068  

*Table 7 is based on 5000 replicates of each combination; a 90% confidence interval for true values of 

MSE is less than ±5% 
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Figure 16 shows that when MR/S=1.5, PR≈0.8, PC=0.63<0.9, the influence of snowmelt floods 

on q0.9 would be invisible, thus the Mixture Method, Joint Distribution Method, and Just-

Rainfall Method work almost identical with each other, and they all work well. For N=50 and 

100, the Kirby Method works better than a Single LN3 Method, but not as well as the other 3 

methods. 

When MR/S=1, PR=0.5, PC=0.88≈0.9, the influence of snowmelt floods on q0.9 becomes visible. 

MSE[ln(q0.9)] for the Mixture Method and the Joint Distribution Method increases with ρ.. 

Except for ρ = 0.9, the Just-Rainfall Method doesn’t work as well as the Mixture and Joint 

Distribution Method, particularly for small N. For N=50 and 100, a Single LN3 Method 

works a little better than the Kirby Method except for ρ=0.9, but not as well as the Mixture 

Method or the Joint Distribution Method.  

When MR/S=0.75, PR≈0.3, PC=0.96>0.9, the influence of snowmelt floods on q0.9 is important. 

Surprisingly the Mixture method is a little better than the Joint Distribution Method except for 

ρ =0.9. The Just-Rainfall Method does poorly in this case. The Single LN3 Method does 

poorly, as expected. The Kirby Method does surprisingly well, and not much worse than the 

Joint method for ρ ≤ 0.5, even though it uses less data. 

 

To better understand the results, we also provide the Bias and Variance of each method when 

estimating q0.99 and q0.9, where 

1Re

1
[ln( )] ln( ) ln( )

N

p pp

i

Bias q q q
N 

  
    (55) 

MSE =Variance+Bias2   (56) 
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Table 8 and Figure 17 report Bias[ln(q0.99)] of each method. 

Table 8  Bias[ln( 0.99q )] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0160  -0.0144  
 

-0.0744  -0.0160  

0.2 -0.0112  -0.0138  
 

-0.0590  -0.0113  

0.5 -0.0174  -0.0166  
 

-0.0567  -0.0174  

0.9 -0.0182  -0.0163  
 

-0.0381  -0.0182  

  MR/S=1, PR=0.5, PC=0.88 

0 -0.0198  -0.0138  
 

-0.1175  -0.0207  

0.2 -0.0156  -0.0115  
 

-0.1114  -0.0163  

0.5 -0.0129  -0.0127  
 

-0.1019  -0.0132  

0.9 -0.0183  -0.0186  
 

-0.0902  -0.0183  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 -0.0035  -0.0077  
 

-0.1152  -0.0128  

0.2 -0.0049  -0.0106  
 

-0.1104  -0.0139  

0.5 -0.0068  -0.0077  
 

-0.1149  -0.0128  

0.9 -0.0106  -0.0170  
 

-0.1326  -0.0122  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0056  -0.0068  -0.0409  -0.0391  -0.0056  

0.2 -0.0088  -0.0073  -0.0420  -0.0392  -0.0088  

0.5 -0.0056  -0.0062  -0.0350  -0.0296  -0.0056  

0.9 -0.0099  -0.0088  -0.0239  -0.0192  -0.0099  

  MR/S=1, PR=0.5, PC=0.88 

0 -0.0037  -0.0096  -0.0533  -0.0805  -0.0038  

0.2 -0.0031  -0.0071  -0.0469  -0.0721  -0.0032  

0.5 -0.0073  -0.0068  -0.0548  -0.0733  -0.0073  

0.9 -0.0118  -0.0062  -0.0727  -0.0623  -0.0118  
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  MR/S=0.75, PR≈0.3, PC=0.96 

0 -0.0007  -0.0010  -0.0485  -0.0901  -0.0039  

0.2 -0.0022  -0.0048  -0.0468  -0.0891  -0.0054  

0.5 -0.0082  -0.0037  -0.0526  -0.0933  -0.0106  

0.9 -0.0047  -0.0091  -0.0872  -0.1027  -0.0054  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0067  -0.0029  -0.0288  -0.0250  -0.0067  

0.2 -0.0043  -0.0032  -0.0277  -0.0222  -0.0043  

0.5 -0.0041  -0.0056  -0.0258  -0.0166  -0.0041  

0.9 -0.0048  -0.0028  -0.0178  -0.0044  -0.0048  

  MR/S=1, PR=0.5, PC=0.88 

0 -0.0042  -0.0027  -0.0370  -0.0642  -0.0043  

0.2 -0.0074  -0.0029  -0.0423  -0.0684  -0.0074  

0.5 -0.0034  -0.0001  -0.0370  -0.0554  -0.0034  

0.9 -0.0029  -0.0052  -0.0367  -0.0324  -0.0029  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 -0.0022  -0.0012  -0.0351  -0.0789  -0.0036  

0.2 -0.0031  -0.0028  -0.0307  -0.0764  -0.0044  

0.5 -0.0020  -0.0053  -0.0281  -0.0745  -0.0029  

0.9 -0.0043  -0.0029  -0.0468  -0.0867  -0.0047  

*Table 8 is based on 5000 replicates of each combination; a 90% confidence interval for true values of 

MSE is less than ±5% 
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Figure 17 show that the Mixture, Joint, and Just-Rainfall Method yield much smaller Bias 

than the Kirby Method and a Single LN3 Method. Perhaps this should have been expected 

because fitting 3-parameter LN distribution to a highly skewed distribution is most likely to 

results in quantile estimators in at least modest biases. Mixture, Joint and Just-rainfall fit 2-

parameter lognormal distributions which yield quantile estimators with much less if any 

appreciable bias (in log-space).  

For N=50 and 100, when MR/S=1.5, the Kirby Method yields larger Bias than a Single LN3 

Method, it also has larger MSE than a Single LN3 Method; when MR/S=1, the Kirby Method 

yields smaller Bias than a Single LN3 Method except for ρ=0.9, it also has smaller MSE than 

a Single LN3 Method except for ρ=0.9; when MR/S=0.75, the Kirby Method yields smaller 

Bias than a Single LN3 Method, it also has smaller MSE than a Single LN3 Method most of 

the time.  

 

Table 9 and Figure 18 report Var[ln(q0.99)] of each method. 

Table 9  Var[ln( 0.99q )] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0545  0.0542  
 

0.0687  0.0545  

0.2 0.0541  0.0555  
 

0.0674  0.0541  

0.5 0.0551  0.0529  
 

0.0666  0.0551  

0.9 0.0550  0.0536  
 

0.0612  0.0550  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0537  0.0541  
 

0.0731  0.0545  

0.2 0.0522  0.0530  
 

0.0699  0.0528  
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0.5 0.0539  0.0554  
 

0.0717  0.0542  

0.9 0.0532  0.0535  
 

0.0704  0.0532  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0485  0.0476  
 

0.0627  0.0546  

0.2 0.0497  0.0474  
 

0.0625  0.0552  

0.5 0.0480  0.0505  
 

0.0618  0.0517  

0.9 0.0542  0.0534  
 

0.0747  0.0552  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0269  0.0274  0.0418  0.0410  0.0269  

0.2 0.0263  0.0265  0.0391  0.0382  0.0263  

0.5 0.0269  0.0267  0.0398  0.0385  0.0269  

0.9 0.0272  0.0275  0.0368  0.0358  0.0272  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0267  0.0266  0.0438  0.0439  0.0268  

0.2 0.0267  0.0262  0.0443  0.0445  0.0268  

0.5 0.0261  0.0267  0.0434  0.0429  0.0261  

0.9 0.0272  0.0265  0.0447  0.0417  0.0272  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0247  0.0249  0.0408  0.0381  0.0261  

0.2 0.0253  0.0259  0.0424  0.0395  0.0268  

0.5 0.0259  0.0257  0.0424  0.0390  0.0269  

0.9 0.0269  0.0265  0.0486  0.0447  0.0271  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0131  0.0133  0.0233  0.0221  0.0131  

0.2 0.0130  0.0131  0.0229  0.0218  0.0130  

0.5 0.0135  0.0129  0.0234  0.0220  0.0135  

0.9 0.0130  0.0134  0.0225  0.0205  0.0130  
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  MR/S=1, PR=0.5, PC=0.88 

0 0.0133  0.0133  0.0256  0.0252  0.0134  

0.2 0.0132  0.0133  0.0250  0.0247  0.0132  

0.5 0.0133  0.0139  0.0258  0.0252  0.0133  

0.9 0.0134  0.0134  0.0265  0.0241  0.0134  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0132  0.0128  0.0256  0.0239  0.0137  

0.2 0.0128  0.0128  0.0251  0.0239  0.0132  

0.5 0.0129  0.0133  0.0258  0.0241  0.0131  

0.9 0.0136  0.0136  0.0281  0.0269  0.0137  

*Table 9 is based on 5000 replicates of each combination; a 90% confidence interval for true values of 

MSE is less than ±5% 



 

73 

 

 

 



 

74 

Table 8-9 and Figure 17-18 show that the Mixture, Joint, and Just-Rainfall Method yield much 

smaller bias and variances than the Kirby and a Single LN3 Method. The differences between 

the MSE[ln(q0.99)] of the Kirby Method and a Single LN3 Method are mostly caused by 

different Bias. 

Table 10 and Figure 19 show Bias[ln( 0.90q )] of each method. 

Table 10  Bias[ln( 0.90q )] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0098  -0.0067  
 

-0.0610  -0.0102  

0.2 -0.0044  -0.0076  
 

-0.0531  -0.0048  

0.5 -0.0094  -0.0086  
 

-0.0551  -0.0096  

0.9 -0.0099  -0.0087  
 

-0.0491  -0.0100  

  MR/S=1, PR=0.5, PC=0.88 

0 -0.0009  0.0015  
 

-0.0239  -0.0166  

0.2 -0.0001  0.0017  
 

-0.0263  -0.0137  

0.5 0.0026  -0.0006  
 

-0.0336  -0.0090  

0.9 -0.0030  -0.0106  
 

-0.0638  -0.0104  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0117  0.0099  
 

0.0141  -0.0691  

0.2 0.0158  0.0067  
 

0.0134  -0.0650  

0.5 0.0245  0.0081  
 

0.0099  -0.0509  

0.9 0.0545  0.0018  
 

0.0045  -0.0143  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0028  -0.0034  -0.0238  -0.0404  -0.0029  

0.2 -0.0053  -0.0037  -0.0256  -0.0417  -0.0054  

0.5 -0.0035  -0.0035  -0.0263  -0.0390  -0.0035  
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0.9 -0.0048  -0.0046  -0.0345  -0.0372  -0.0048  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0027  -0.0004  -0.0077  -0.0025  -0.0068  

0.2 0.0043  -0.0001  -0.0060  -0.0042  -0.0046  

0.5 0.0022  -0.0011  -0.0102  -0.0165  -0.0058  

0.9 -0.0021  -0.0024  -0.0246  -0.0472  -0.0082  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0079  0.0069  0.0029  0.0294  -0.0628  

0.2 0.0105  0.0042  0.0023  0.0266  -0.0602  

0.5 0.0188  0.0043  0.0025  0.0229  -0.0506  

0.9 0.0553  0.0018  0.0190  0.0221  -0.0099  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0046  -0.0014  -0.0161  -0.0327  -0.0046  

0.2 -0.0025  -0.0015  -0.0138  -0.0304  -0.0026  

0.5 -0.0026  -0.0033  -0.0152  -0.0305  -0.0026  

0.9 -0.0032  -0.0011  -0.0255  -0.0306  -0.0032  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0002  0.0009  -0.0014  0.0080  -0.0070  

0.2 -0.0012  0.0005  -0.0036  0.0022  -0.0085  

0.5 0.0028  0.0014  -0.0006  -0.0040  -0.0035  

0.9 0.0040  -0.0037  -0.0078  -0.0280  -0.0012  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0036  0.0039  0.0026  0.0367  -0.0634  

0.2 0.0070  0.0026  0.0041  0.0361  -0.0600  

0.5 0.0193  0.0007  0.0033  0.0342  -0.0462  

0.9 0.0538  0.0014  0.0122  0.0329  -0.0102  

*Table 10 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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As was expected, Figure 19 shows that when MR/S=1.5, PR≈0.8, PC=0.63<0.9, the Mixture 

Method, Joint Distribution Method, and Just-Rainfall Method yield much smaller |Bias| than 

the Kirby Method and a Single LN3 Method. For N=50 and 100, the Kirby Method yields 

smaller Bias than a Single LN3 Method. 

When MR/S=1, PR=0.5, PC=0.88≈0.9, for N=50, |Bias[ln(q0.9)]| of a Single LN3 Method is a 

little smaller than that of the Kirby Method when ρ<0.5.  But |Bias[ln(q0.9)]| of a Single LN3 

Method is a little larger than that of the Kirby Method for N=100 for all ρ.  

When MR/S=0.75, PR≈0.3, PC=0.96>0.9, there is a clearly positive relationship between 

Bias[ln(q0.9)] of the Mixture Method and ρ. the Joint Distribution Method yields the smallest 

Bias of all the methods. The Just-Rainfall Method can have large biases because it neglects 

the snowmelt process. For N=50 and 100, the Kirby Method yields smaller Bias than a Single 

LN3 Method.  

 

Table 11 and Figure 20 shows Var[ln(q0.9)] of each method. 

Table 11  Var[ln(q0.9)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0264  0.0262  
 

0.0251  0.0266  

0.2 0.0262  0.0268  
 

0.0251  0.0263  

0.5 0.0266  0.0257  
 

0.0259  0.0266  

0.9 0.0266  0.0260  
 

0.0265  0.0266  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0221  0.0220  
 

0.0208  0.0271  

0.2 0.0214  0.0225  
 

0.0201  0.0256  
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0.5 0.0228  0.0244  
 

0.0216  0.0260  

0.9 0.0247  0.0261  
 

0.0236  0.0262  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0128  0.0127  
 

0.0155  0.0265  

0.2 0.0136  0.0128  
 

0.0157  0.0272  

0.5 0.0143  0.0146  
 

0.0157  0.0254  

0.9 0.0183  0.0197  
 

0.0188  0.0266  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0130  0.0133  0.0136  0.0131  0.0131  

0.2 0.0127  0.0130  0.0129  0.0126  0.0127  

0.5 0.0133  0.0130  0.0136  0.0136  0.0133  

0.9 0.0133  0.0135  0.0135  0.0136  0.0133  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0113  0.0112  0.0124  0.0114  0.0131  

0.2 0.0116  0.0113  0.0126  0.0117  0.0133  

0.5 0.0115  0.0124  0.0129  0.0117  0.0128  

0.9 0.0126  0.0129  0.0138  0.0125  0.0133  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0060  0.0062  0.0073  0.0085  0.0127  

0.2 0.0065  0.0067  0.0079  0.0089  0.0131  

0.5 0.0073  0.0074  0.0086  0.0092  0.0130  

0.9 0.0092  0.0102  0.0113  0.0107  0.0135  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0064  0.0065  0.0068  0.0067  0.0064  

0.2 0.0064  0.0064  0.0068  0.0067  0.0064  

0.5 0.0067  0.0063  0.0071  0.0071  0.0067  

0.9 0.0064  0.0066  0.0069  0.0069  0.0064  
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  MR/S=1, PR=0.5, PC=0.88 

0 0.0056  0.0057  0.0063  0.0060  0.0064  

0.2 0.0057  0.0059  0.0064  0.0061  0.0065  

0.5 0.0059  0.0065  0.0068  0.0063  0.0065  

0.9 0.0063  0.0066  0.0071  0.0067  0.0066  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0031  0.0030  0.0037  0.0050  0.0066  

0.2 0.0032  0.0032  0.0040  0.0051  0.0064  

0.5 0.0036  0.0037  0.0045  0.0052  0.0065  

0.9 0.0046  0.0053  0.0065  0.0059  0.0067  

*Table 10 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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In general, the Kirby Method and One LN3 Method have larger Bias than the other methods, 

that is because distribution for R’ and annual maxima has a larger skewnesses and thus is 

more difficult to fit with a 3-parameter distribution. By combining Bias and Variances, we can 

explain the MSE results. More details are provided in appendix. 
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CHAPTER 5 

5   Summary and Conclusions 

This thesis considers several models for representing the distribution of the annual maximum 

flood at a site when the available annual maximum flood series corresponds to two distinct 

annual flood series. The two series might correspond to late spring and summer rainfall versus 

winter and early spring snowmelt. Often a snowmelt population has a low Coefficient of 

Variation (CV) and thus provides a lower bound on the annual maximum, while the rainfall 

population has a higher CV and determines the upper tail of the annual maximum distribution. 

1. The classic mixture model assumes that the annual maximums produced by both 

processes are independent, which is actually a special case for the Joint model. It has been 

recommended by many other authors (Cudworth, 1989, Stedinger et al., 1993;  ASCE, 

1996). Here 2-parameter lognormal distributions are used to model rainfall maxima, and 

the snowmelt maxima. When the values drawn from the populations are independent, the 

CDF of the annual maximum is then simply the product of the CDFs of the two 

populations. However, when the values drawn from each population are correlated, the 

Mixture Method will provide a biased estimator, especially when describing the lower tail 

of the mixed population, where the snowmelt events provide the lower bound of the mixed 

population. Nevertheless, because the rainfall population dominates the upper tail of the 

mixed population, when describing the upper tail, even large correlations between the two 

series may have little effect on the accuracy of the mixed population model. Actually, 

there is a critical probability above which flood risk is dominated by the rainfall events 

and cross-correlation has no impact. A method is provided to compute such thresholds. 



 

83 

2. When we do not have a record of the annual maxima for both series, but the rainfall and 

snowmelt floods that are also the annual maxima can be identified, a model provided by 

W. Kirby can be employed.  The Kirby method does not assume that the two separate 

series are independent. Instead it estimates the probability an annual maximum flood is a 

snowmelt or rainfall event. This manuscript shows what the conditional Kirby 

distributions look like as a function of the parameters of the joint distribution model. The 

conditional distribution can be more complicated than the complete component series. In 

particular for our case wherein rainfall events are the largest floods, it is as if the rainfall 

series had a lower bound determined by the snowmelt distribution; as a result, the PDF 

peaks of the rainfall floods that are also the annual maxima moves to the right side of the 

PDFs of the complete rainfall series and is peakier than the PDFs of the complete data sets. 

The effect on the snowmelt distribution seems small, but we can still find that the PDFs of 

the snowmelt floods that are also the annual maxima are peakier than the PDFs of the 

complete snowmelt series.  

3. In practice, a concern is which model should be used to get a reliable description of flood 

risk, given limited data. If data on both annual maximum series are available, and the two 

series are independent, then the mixture model is the natural choice: it is correct and uses 

all the data. Moreover, it was found to be relatively accurate for modest correlations 

between the two series. If the two series are cross-correlated by a substantial amount, then 

one can adopt the Joint Distribution model unless the focus is on the upper tail (above the 

critical probability), which is dominated by the rainfall events in our example.  

4. The Monte Carlo analysis provided significant insight into the performance of the Kirby 

method. An advantage of the Kirby method is that works with only the annual maximum 



 

84 

series, which may be all a hydrologist has in practice. The mixture and Joint distribution 

methods cannot be used in those cases. However, in practice, the Kirby method has the 

disadvantage that it uses only the N annual maxima, and thus may provide less precise 

quantile estimators in many cases. This may mean that there is insufficient number of 

observations to estimate one of the two conditional distributions with any reliability. Here 

we assumed one needs at least 10 observations and did not consider samples with only 25 

observations. The Monte Carlo analysis demonstrated that if one can, it is always better to 

use the Joint Distribution model if one has access to the two series. 

5. The Kirby method was also compared with use of a single 3-parameter lognormal 

distribution to model that also used only the annual maximum series. As suggested by the 

theoretical analysis, the rainfall conditional distribution needed by the Kirby method was 

modeled using 3-parameter lognormal distributions because a single 2-parameter 

lognormal distribution would not be consistent with the data. The conditional snowmelt 

distribution needed by the Kirby method was modeled using 2-parameter lognormal 

distribution. Thus the choice was between use of one 3-parameter distribution with the 

whole annual maximum series, and using two lognormal distributions (LN3 for rainfall 

and LN2 for snowmelt) with each modeling a subset of the entire series. In general, the 

Kirby Method works a little better because the distribution for the annual maxima has a 

larger skewness than the distribution of the rainfall floods that are also the annual maxima, 

which makes the annual maxima more difficult to fit.  

6. When the mixed population is completely dominated by one population, in our case 

rainfall floods, just modeling the dominant population would yield accurate results. 
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Overall, this thesis has considered the challenge of estimating flood risk when the annual 

maximum flood series is the maximum of two dominant annual maximum flood series, which 

in this presentation are considered to be snowmelt and rainfall events. In other applications 

they could be winter and spring, or winter and summer series that arise from different storm 

types. Or they could be winter storms and unusual tropical hurricanes whose seasons might 

overlap. When data on both series are available, the mixture model was found to be relatively 

accurate for modest correlation between the two series. If the mixed population is completely 

dominated by one population, just modeling the mixed population with a distribution that 

represents the dominant process would be sufficient. The Kirby Method or a Single 

Distribution Method that only uses the annual maximum series to develop a flood risk model 

was found to have several challenges when making developed of precise flood-risk estimates 

because they need to fit the mixed population with relatively more complicated distributions 

that have more parameters using fewer observations.  Additional research should consider the 

case wherein the individual rainfall and snowmelt distributions need to be described by 3-

parameter distributions such as the log-Pearson type 3 distribution (perhaps with regional 

skew) or a GEV distributions. A similar case to that considered here is when the individual 

series have Gumbel distributions, but the annual maxima might be described by a GEV 

distribution.  
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Appendix 

Table 12-14 and Figure 21-23 report MSE[ln(q0.63)], Bias[ln(q0.63)], and Var[ln(q0.63)] for each 

combination, where 0.63 is the critical probability when MR/S=1.5, PR≈0.8. Note that we don’t 

provide MSE[ln(q0.63)], Bias[ln(q0.63)], and Var[ln(q0.63)] of the Just-Rainfall Method in 

Figure 21-23 because in this case the Just-Rainfall Method would be just wrong. We don’t 

provide MSE[ln(q0.63)], Bias[ln(q0.63)], and Var[ln(q0.63)] of the Kirby Method when N=25 in 

Figure 21a 22a 23a because of the highly probability that the sample size of the rainfall or 

snowmelt events that are also the annual maximum is smaller than 10. 

Table 15-17 and Figure 24-26 report MSE[ln(q0.88)], Bias[ln(q0.88)], and Var[ln(q0.88)] for each 

combination, where 0.88 is the critical probability when MR/S=1, PR≈0.5. We don’t provide 

MSE[ln(q0.88)], Bias[ln(q0.88)], and Var[ln(q0.88)] of the Kirby Method when N=25 in Figure 

24a 25a 26a because of the highly probability that the sample size of the rainfall or snowmelt 

events that are also the annual maximum is smaller than 10. 

Table 18-20 and Figure 27-29 report MSE[ln(q0.96)], Bias[ln(q0.96)], and Var[ln(q0.96)] for each 

combination, where 0.96 is the critical probability when MR/S=0.75, PR≈0.3. We do not 

provide MSE[ln(q0.96)], Bias[ln(q0.96)], and Var[ln(q0.96)] of the Kirby Method when N=25 in 

Figure 27a 28a 29a because of the highly probability that the sample size of the rainfall or 

snowmelt events that are also the annual maximum is smaller than 10. 

Table 12.  MSE[ln(q0.63)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0124  0.0123  
 

0.0124  0.0156  

0.2 0.0125  0.0131  
 

0.0128  0.0150  
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0.5 0.0131  0.0139  
 

0.0139  0.0150  

0.9 0.0139  0.0149  
 

0.0159  0.0150  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0058  0.0059  
 

0.0078  0.0325  

0.2 0.0064  0.0065  
 

0.0080  0.0278  

0.5 0.0091  0.0075  
 

0.0088  0.0216  

0.9 0.0200  0.0105  
 

0.0110  0.0157  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0036  0.0037  
 

0.0049  0.1055  

0.2 0.0044  0.0040  
 

0.0052  0.0976  

0.5 0.0068  0.0042  
 

0.0052  0.0803  

0.9 0.0172  0.0039  
 

0.0057  0.0533  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0062  0.0063  0.0074  0.0064  0.0076  

0.2 0.0062  0.0066  0.0075  0.0065  0.0074  

0.5 0.0068  0.0071  0.0078  0.0073  0.0077  

0.9 0.0071  0.0076  0.0079  0.0084  0.0076  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0029  0.0028  0.0037  0.0043  0.0233  

0.2 0.0035  0.0031  0.0042  0.0046  0.0198  

0.5 0.0055  0.0039  0.0047  0.0049  0.0143  

0.9 0.0152  0.0052  0.0077  0.0060  0.0081  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0017  0.0018  0.0021  0.0025  0.0956  

0.2 0.0022  0.0020  0.0023  0.0027  0.0887  

0.5 0.0042  0.0021  0.0025  0.0029  0.0738  

0.9 0.0143  0.0019  0.0027  0.0034  0.0454  

n=100 Mixture Joint Kirby LN3 R-LN2 
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ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0031  0.0032  0.0040  0.0033  0.0039  

0.2 0.0032  0.0033  0.0041  0.0034  0.0038  

0.5 0.0035  0.0036  0.0044  0.0038  0.0039  

0.9 0.0035  0.0038  0.0042  0.0043  0.0037  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0013  0.0014  0.0018  0.0024  0.0194  

0.2 0.0017  0.0016  0.0021  0.0026  0.0165  

0.5 0.0036  0.0020  0.0024  0.0029  0.0104  

0.9 0.0137  0.0027  0.0040  0.0037  0.0041  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0009  0.0009  0.0011  0.0014  0.0928  

0.2 0.0012  0.0010  0.0012  0.0015  0.0851  

0.5 0.0031  0.0010  0.0013  0.0016  0.0694  

0.9 0.0124  0.0010  0.0013  0.0020  0.0420  

*Table 12 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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Table 13.  Bias[ln(q0.63)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0019  0.0055  
 

0.0081  -0.0142  

0.2 0.0092  0.0022  
 

0.0070  -0.0052  

0.5 0.0092  0.0009  
 

-0.0035  -0.0045  

0.9 0.0092  -0.0017  
 

-0.0187  -0.0025  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0031  0.0023  
 

0.0171  -0.1286  

0.2 0.0147  0.0023  
 

0.0160  -0.1144  

0.5 0.0441  0.0042  
 

0.0182  -0.0834  

0.9 0.1046  0.0037  
 

0.0252  -0.0212  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0011  -0.0003  
 

0.0051  -0.3010  

0.2 0.0151  -0.0016  
 

0.0046  -0.2863  

0.5 0.0435  -0.0005  
 

0.0070  -0.2561  

0.9 0.1034  0.0000  
 

0.0164  -0.1962  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0027  0.0027  0.0108  0.0127  -0.0097  

0.2 0.0036  0.0020  0.0075  0.0067  -0.0085  

0.5 0.0079  0.0002  0.0037  -0.0012  -0.0037  

0.9 0.0102  -0.0008  -0.0101  -0.0153  -0.0002  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0020  0.0009  0.0056  0.0205  -0.1253  

0.2 0.0166  0.0005  0.0058  0.0207  -0.1089  

0.5 0.0429  0.0016  0.0057  0.0208  -0.0826  

0.9 0.1032  0.0044  0.0170  0.0262  -0.0230  



 

91 

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0010  0.0004  0.0029  0.0083  -0.2969  

0.2 0.0146  -0.0005  0.0011  0.0070  -0.2849  

0.5 0.0418  -0.0006  0.0013  0.0083  -0.2577  

0.9 0.1043  0.0008  0.0072  0.0190  -0.1941  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0009  0.0016  0.0067  0.0120  -0.0121  

0.2 0.0035  0.0013  0.0081  0.0095  -0.0073  

0.5 0.0073  -0.0005  0.0066  0.0008  -0.0032  

0.9 0.0082  0.0004  -0.0005  -0.0165  -0.0017  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0009  0.0007  0.0034  0.0223  -0.1254  

0.2 0.0142  0.0006  0.0029  0.0224  -0.1126  

0.5 0.0433  0.0014  0.0035  0.0241  -0.0819  

0.9 0.1068  0.0000  0.0127  0.0321  -0.0177  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0006  0.0002  0.0016  0.0092  -0.2985  

0.2 0.0146  0.0000  0.0009  0.0097  -0.2854  

0.5 0.0432  -0.0005  0.0000  0.0107  -0.2562  

0.9 0.1038  0.0002  0.0001  0.0212  -0.1953  

*Table 13 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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Table 14.  Var[ln(q0.63)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0124  0.0123  
 

0.0124  0.0154  

0.2 0.0125  0.0131  
 

0.0128  0.0149  

0.5 0.0130  0.0139  
 

0.0139  0.0150  

0.9 0.0138  0.0149  
 

0.0156  0.0150  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0058  0.0059  
 

0.0075  0.0160  

0.2 0.0062  0.0065  
 

0.0077  0.0148  

0.5 0.0071  0.0075  
 

0.0084  0.0147  

0.9 0.0091  0.0105  
 

0.0104  0.0153  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0036  0.0037  
 

0.0049  0.0149  

0.2 0.0042  0.0040  
 

0.0051  0.0156  

0.5 0.0049  0.0042  
 

0.0052  0.0148  

0.9 0.0065  0.0039  
 

0.0054  0.0148  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0062  0.0063  0.0073  0.0062  0.0075  

0.2 0.0062  0.0066  0.0074  0.0064  0.0074  

0.5 0.0067  0.0071  0.0078  0.0073  0.0077  

0.9 0.0070  0.0076  0.0078  0.0081  0.0076  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0029  0.0028  0.0037  0.0039  0.0076  

0.2 0.0032  0.0031  0.0041  0.0042  0.0079  

0.5 0.0036  0.0039  0.0046  0.0044  0.0075  

0.9 0.0046  0.0052  0.0074  0.0053  0.0076  
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  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0017  0.0018  0.0021  0.0024  0.0074  

0.2 0.0020  0.0020  0.0023  0.0026  0.0075  

0.5 0.0025  0.0021  0.0025  0.0028  0.0074  

0.9 0.0034  0.0019  0.0026  0.0030  0.0077  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0031  0.0032  0.0039  0.0032  0.0037  

0.2 0.0032  0.0033  0.0040  0.0033  0.0037  

0.5 0.0034  0.0036  0.0044  0.0038  0.0039  

0.9 0.0034  0.0038  0.0042  0.0041  0.0037  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0013  0.0014  0.0018  0.0019  0.0037  

0.2 0.0015  0.0016  0.0021  0.0021  0.0038  

0.5 0.0018  0.0020  0.0024  0.0023  0.0037  

0.9 0.0023  0.0027  0.0038  0.0027  0.0038  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0009  0.0009  0.0011  0.0013  0.0037  

0.2 0.0010  0.0010  0.0012  0.0014  0.0037  

0.5 0.0013  0.0010  0.0013  0.0015  0.0038  

0.9 0.0017  0.0010  0.0013  0.0016  0.0039  

*Table 14 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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Table 15.  MSE[ln(q0.88)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0245  0.0243  
 

0.0259  0.0248  

0.2 0.0242  0.0248  
 

0.0253  0.0244  

0.5 0.0246  0.0239  
 

0.0264  0.0247  

0.9 0.0247  0.0242  
 

0.0269  0.0247  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0195  0.0193  
 

0.0184  0.0255  

0.2 0.0189  0.0199  
 

0.0179  0.0239  

0.5 0.0203  0.0218  
 

0.0196  0.0242  

0.9 0.0223  0.0242  
 

0.0243  0.0244  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0108  0.0107  
 

0.0135  0.0323  

0.2 0.0117  0.0108  
 

0.0138  0.0321  

0.5 0.0130  0.0123  
 

0.0137  0.0280  

0.9 0.0204  0.0166  
 

0.0163  0.0251  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0121  0.0123  0.0128  0.0131  0.0121  

0.2 0.0118  0.0121  0.0123  0.0129  0.0118  

0.5 0.0123  0.0121  0.0129  0.0137  0.0123  

0.9 0.0124  0.0125  0.0135  0.0139  0.0124  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0099  0.0098  0.0108  0.0098  0.0122  

0.2 0.0103  0.0099  0.0111  0.0101  0.0124  

0.5 0.0103  0.0112  0.0115  0.0102  0.0119  

0.9 0.0114  0.0120  0.0131  0.0128  0.0124  
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  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0050  0.0051  0.0061  0.0081  0.0186  

0.2 0.0055  0.0056  0.0066  0.0083  0.0183  

0.5 0.0067  0.0062  0.0071  0.0085  0.0164  

0.9 0.0126  0.0085  0.0101  0.0101  0.0128  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0059  0.0061  0.0063  0.0068  0.0060  

0.2 0.0060  0.0060  0.0062  0.0068  0.0060  

0.5 0.0062  0.0059  0.0066  0.0072  0.0062  

0.9 0.0060  0.0061  0.0068  0.0072  0.0060  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0049  0.0049  0.0054  0.0053  0.0061  

0.2 0.0050  0.0052  0.0056  0.0053  0.0062  

0.5 0.0052  0.0058  0.0060  0.0054  0.0060  

0.9 0.0058  0.0061  0.0065  0.0064  0.0061  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0025  0.0025  0.0030  0.0056  0.0130  

0.2 0.0027  0.0026  0.0033  0.0056  0.0121  

0.5 0.0036  0.0030  0.0037  0.0057  0.0098  

0.9 0.0083  0.0044  0.0057  0.0067  0.0066  

*Table 15 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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Table 16.  Bias[ln(q0.88)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0090  -0.0058  
 

-0.0559  -0.0096  

0.2 -0.0036  -0.0068  
 

-0.0490  -0.0041  

0.5 -0.0084  -0.0078  
 

-0.0520  -0.0088  

0.9 -0.0090  -0.0079  
 

-0.0480  -0.0091  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0016  0.0034  
 

-0.0132  -0.0193  

0.2 0.0024  0.0035  
 

-0.0162  -0.0160  

0.5 0.0063  0.0012  
 

-0.0241  -0.0100  

0.9 0.0021  -0.0096  
 

-0.0562  -0.0096  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0098  0.0081  
 

0.0173  -0.0881  

0.2 0.0151  0.0052  
 

0.0166  -0.0828  

0.5 0.0266  0.0068  
 

0.0144  -0.0662  

0.9 0.0664  0.0037  
 

0.0159  -0.0211  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0025  -0.0029  -0.0205  -0.0370  -0.0027  

0.2 -0.0048  -0.0033  -0.0225  -0.0388  -0.0050  

0.5 -0.0032  -0.0032  -0.0239  -0.0373  -0.0033  

0.9 -0.0042  -0.0042  -0.0336  -0.0370  -0.0043  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0037  0.0009  -0.0032  0.0063  -0.0103  

0.2 0.0059  0.0010  -0.0019  0.0039  -0.0073  

0.5 0.0051  -0.0001  -0.0058  -0.0084  -0.0070  

0.9 0.0023  -0.0020  -0.0184  -0.0412  -0.0078  
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  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0066  0.0056  0.0033  0.0313  -0.0821  

0.2 0.0104  0.0032  0.0025  0.0288  -0.0784  

0.5 0.0217  0.0035  0.0032  0.0263  -0.0662  

0.9 0.0672  0.0030  0.0256  0.0319  -0.0171  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0044  -0.0012  -0.0136  -0.0300  -0.0044  

0.2 -0.0023  -0.0013  -0.0114  -0.0282  -0.0024  

0.5 -0.0024  -0.0030  -0.0130  -0.0293  -0.0024  

0.9 -0.0030  -0.0009  -0.0243  -0.0312  -0.0030  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0010  0.0015  0.0015  0.0160  -0.0105  

0.2 0.0002  0.0011  -0.0005  0.0102  -0.0112  

0.5 0.0054  0.0018  0.0022  0.0032  -0.0050  

0.9 0.0079  -0.0035  -0.0038  -0.0233  -0.0011  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0029  0.0031  0.0028  0.0381  -0.0828  

0.2 0.0076  0.0020  0.0039  0.0376  -0.0783  

0.5 0.0224  0.0004  0.0030  0.0367  -0.0621  

0.9 0.0659  0.0019  0.0145  0.0420  -0.0175  

*Table 16 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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Table 17.  Var[ln(q0.88)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0244  0.0242  
 

0.0228  0.0247  

0.2 0.0242  0.0247  
 

0.0229  0.0244  

0.5 0.0245  0.0238  
 

0.0237  0.0247  

0.9 0.0246  0.0241  
 

0.0246  0.0247  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0195  0.0193  
 

0.0182  0.0252  

0.2 0.0189  0.0199  
 

0.0177  0.0237  

0.5 0.0202  0.0218  
 

0.0190  0.0241  

0.9 0.0223  0.0241  
 

0.0211  0.0243  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0107  0.0106  
 

0.0132  0.0245  

0.2 0.0115  0.0107  
 

0.0135  0.0252  

0.5 0.0123  0.0123  
 

0.0135  0.0236  

0.9 0.0160  0.0166  
 

0.0161  0.0246  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0121  0.0123  0.0124  0.0117  0.0121  

0.2 0.0118  0.0121  0.0118  0.0113  0.0118  

0.5 0.0123  0.0121  0.0123  0.0123  0.0123  

0.9 0.0124  0.0125  0.0123  0.0125  0.0124  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0099  0.0098  0.0108  0.0098  0.0121  

0.2 0.0103  0.0099  0.0111  0.0101  0.0124  

0.5 0.0102  0.0112  0.0115  0.0102  0.0119  

0.9 0.0114  0.0120  0.0127  0.0111  0.0123  
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  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0050  0.0051  0.0061  0.0071  0.0118  

0.2 0.0054  0.0056  0.0066  0.0075  0.0122  

0.5 0.0062  0.0062  0.0071  0.0078  0.0120  

0.9 0.0081  0.0085  0.0095  0.0090  0.0125  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0059  0.0061  0.0062  0.0059  0.0059  

0.2 0.0059  0.0060  0.0061  0.0060  0.0060  

0.5 0.0062  0.0059  0.0064  0.0064  0.0062  

0.9 0.0060  0.0061  0.0062  0.0062  0.0060  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0049  0.0049  0.0054  0.0051  0.0060  

0.2 0.0050  0.0052  0.0056  0.0052  0.0060  

0.5 0.0052  0.0058  0.0060  0.0054  0.0060  

0.9 0.0057  0.0061  0.0065  0.0059  0.0061  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0025  0.0025  0.0030  0.0041  0.0061  

0.2 0.0027  0.0026  0.0033  0.0042  0.0059  

0.5 0.0031  0.0030  0.0037  0.0044  0.0060  

0.9 0.0040  0.0044  0.0055  0.0050  0.0062  

*Table 17 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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Table 18.  MSE[ln(q0.96)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0373  0.0370  
 

0.0450  0.0373  

0.2 0.0368  0.0378  
 

0.0430  0.0369  

0.5 0.0375  0.0361  
 

0.0432  0.0376  

0.9 0.0375  0.0366  
 

0.0405  0.0375  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0353  0.0352  
 

0.0428  0.0377  

0.2 0.0341  0.0350  
 

0.0411  0.0360  

0.5 0.0355  0.0369  
 

0.0429  0.0367  

0.9 0.0363  0.0367  
 

0.0461  0.0365  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0264  0.0260  
 

0.0309  0.0375  

0.2 0.0275  0.0259  
 

0.0311  0.0382  

0.5 0.0274  0.0287  
 

0.0313  0.0356  

0.9 0.0327  0.0346  
 

0.0403  0.0375  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0183  0.0187  0.0236  0.0243  0.0183  

0.2 0.0179  0.0181  0.0223  0.0230  0.0179  

0.5 0.0185  0.0182  0.0230  0.0233  0.0185  

0.9 0.0186  0.0189  0.0222  0.0219  0.0186  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0178  0.0177  0.0230  0.0235  0.0182  

0.2 0.0180  0.0175  0.0229  0.0237  0.0184  

0.5 0.0175  0.0182  0.0230  0.0240  0.0179  

0.9 0.0186  0.0181  0.0248  0.0258  0.0186  
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  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0134  0.0135  0.0172  0.0177  0.0179  

0.2 0.0139  0.0143  0.0182  0.0184  0.0185  

0.5 0.0145  0.0150  0.0189  0.0188  0.0185  

0.9 0.0166  0.0176  0.0234  0.0228  0.0187  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0089  0.0091  0.0123  0.0128  0.0089  

0.2 0.0089  0.0090  0.0121  0.0125  0.0089  

0.5 0.0093  0.0088  0.0126  0.0127  0.0093  

0.9 0.0089  0.0092  0.0124  0.0117  0.0089  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0089  0.0089  0.0123  0.0129  0.0091  

0.2 0.0089  0.0090  0.0122  0.0131  0.0091  

0.5 0.0090  0.0094  0.0125  0.0134  0.0090  

0.9 0.0092  0.0092  0.0128  0.0137  0.0092  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0071  0.0070  0.0097  0.0108  0.0094  

0.2 0.0070  0.0071  0.0098  0.0109  0.0091  

0.5 0.0074  0.0077  0.0106  0.0111  0.0090  

0.9 0.0084  0.0092  0.0125  0.0130  0.0094  

*Table 18 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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Table 19.  Bias[ln(q0.96)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0127  -0.0103  
 

-0.0745  -0.0128  

0.2 -0.0076  -0.0105  
 

-0.0626  -0.0077  

0.5 -0.0131  -0.0122  
 

-0.0615  -0.0131  

0.9 -0.0137  -0.0121  
 

-0.0485  -0.0137  

  MR/S=1, PR=0.5, PC=0.88 

0 -0.0118  -0.0076  
 

-0.0722  -0.0161  

0.2 -0.0095  -0.0061  
 

-0.0706  -0.0129  

0.5 -0.0075  -0.0074  
 

-0.0713  -0.0100  

0.9 -0.0133  -0.0143  
 

-0.0853  -0.0140  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0117  0.0090  
 

-0.0266  -0.0197  

0.2 0.0116  0.0051  
 

-0.0264  -0.0196  

0.5 0.0106  0.0052  
 

-0.0344  -0.0153  

0.9 0.0081  -0.0103  
 

-0.0611  -0.0092  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0041  -0.0050  -0.0350  -0.0469  -0.0041  

0.2 -0.0069  -0.0054  -0.0363  -0.0469  -0.0069  

0.5 -0.0045  -0.0047  -0.0335  -0.0401  -0.0045  

0.9 -0.0071  -0.0065  -0.0336  -0.0332  -0.0071  

  MR/S=1, PR=0.5, PC=0.88 

0 -0.0017  -0.0061  -0.0304  -0.0432  -0.0031  

0.2 -0.0007  -0.0045  -0.0260  -0.0405  -0.0020  

0.5 -0.0046  -0.0045  -0.0312  -0.0485  -0.0055  

0.9 -0.0094  -0.0041  -0.0499  -0.0629  -0.0098  
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  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0085  0.0077  -0.0110  -0.0065  -0.0122  

0.2 0.0074  0.0040  -0.0107  -0.0091  -0.0132  

0.5 0.0045  0.0029  -0.0137  -0.0169  -0.0142  

0.9 0.0099  -0.0055  -0.0287  -0.0375  -0.0037  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 -0.0055  -0.0021  -0.0246  -0.0360  -0.0055  

0.2 -0.0034  -0.0022  -0.0225  -0.0327  -0.0034  

0.5 -0.0033  -0.0044  -0.0225  -0.0293  -0.0033  

0.9 -0.0039  -0.0019  -0.0264  -0.0229  -0.0039  

  MR/S=1, PR=0.5, PC=0.88 

0 -0.0027  -0.0016  -0.0179  -0.0297  -0.0035  

0.2 -0.0053  -0.0018  -0.0209  -0.0345  -0.0060  

0.5 -0.0020  0.0003  -0.0163  -0.0330  -0.0025  

0.9 -0.0017  -0.0044  -0.0239  -0.0384  -0.0020  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0036  0.0044  -0.0063  0.0030  -0.0125  

0.2 0.0031  0.0024  -0.0033  0.0023  -0.0126  

0.5 0.0059  -0.0009  -0.0036  -0.0020  -0.0083  

0.9 0.0085  -0.0019  -0.0118  -0.0238  -0.0036  

*Table 19 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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Table 20.  Var[ln(q0.96)] 

n=25 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0371  0.0369  
 

0.0394  0.0371  

0.2 0.0368  0.0377  
 

0.0391  0.0368  

0.5 0.0374  0.0360  
 

0.0394  0.0374  

0.9 0.0373  0.0364  
 

0.0381  0.0373  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0351  0.0352  
 

0.0375  0.0374  

0.2 0.0340  0.0350  
 

0.0361  0.0358  

0.5 0.0354  0.0368  
 

0.0379  0.0366  

0.9 0.0361  0.0365  
 

0.0388  0.0363  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0263  0.0260  
 

0.0302  0.0371  

0.2 0.0273  0.0259  
 

0.0304  0.0378  

0.5 0.0273  0.0287  
 

0.0301  0.0353  

0.9 0.0327  0.0345  
 

0.0365  0.0374  

n=50 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0183  0.0187  0.0223  0.0221  0.0183  

0.2 0.0178  0.0181  0.0210  0.0208  0.0178  

0.5 0.0184  0.0182  0.0219  0.0217  0.0184  

0.9 0.0186  0.0188  0.0210  0.0208  0.0186  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0178  0.0177  0.0221  0.0217  0.0182  

0.2 0.0180  0.0175  0.0222  0.0221  0.0184  

0.5 0.0175  0.0182  0.0220  0.0216  0.0178  

0.9 0.0185  0.0181  0.0223  0.0219  0.0185  
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  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0133  0.0134  0.0171  0.0176  0.0178  

0.2 0.0138  0.0143  0.0181  0.0183  0.0183  

0.5 0.0145  0.0150  0.0188  0.0185  0.0183  

0.9 0.0165  0.0176  0.0226  0.0214  0.0186  

n=100 Mixture Joint Kirby LN3 R-LN2 

ρ MR/S=1.5, PR≈0.8, PC=0.63 

0 0.0089  0.0091  0.0117  0.0115  0.0089  

0.2 0.0089  0.0090  0.0116  0.0115  0.0089  

0.5 0.0093  0.0088  0.0121  0.0118  0.0093  

0.9 0.0089  0.0092  0.0117  0.0112  0.0089  

  MR/S=1, PR=0.5, PC=0.88 

0 0.0089  0.0089  0.0120  0.0120  0.0090  

0.2 0.0089  0.0090  0.0118  0.0119  0.0090  

0.5 0.0089  0.0094  0.0122  0.0123  0.0090  

0.9 0.0092  0.0091  0.0123  0.0122  0.0092  

  MR/S=0.75, PR≈0.3, PC=0.96 

0 0.0071  0.0069  0.0097  0.0108  0.0093  

0.2 0.0070  0.0070  0.0098  0.0109  0.0090  

0.5 0.0074  0.0077  0.0106  0.0111  0.0090  

0.9 0.0083  0.0091  0.0123  0.0125  0.0094  

*Table 20 is based on 5000 replicates of each combination; a 90% confidence interval for true values 

of MSE is less than ±5% 
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