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Ground based water resources monitoring systems are often difficult to maintain consistently in 

developing countries. The decline in the number of stations, data quality and changes in the data 

holding policy has made water resources data less reliable for use in operational purposes. The 

objective of this dissertation is, therefore, to evaluate the utility of existing freely available 

remotely sensed images to monitor water resource systems. In this dissertation Moderate 

Resolution Imaging Spectroradiometer (MODIS) images were evaluated on the basis of their 

capability to (1) measure total suspended solid (TSS) and turbidity and generate historical TSS 

data, (2) estimate the water storage variation of Lake Tana and (3) monitor the state of biomass 

in the upper Blue Nile basin . The usability of historical TSS data in hydrologic modeling is also 

tested. Lake water samples were collected concurrent with the satellite overpass over the lake at 

the entry location of Gumera River, a major tributary to the lake. Reflectance in the red and near 

infrared (NIR) 250 m-pixel images taken on sampling days were correlated and validated using 

measured TSS and turbidity. The validated correlations were applied to the ten year image 

archive of MODIS to generate a 10-year TSS time series for the lake. In addition, MODIS 

images of the years 2002 – 2003, where the lake level variation was at its minimum, were used to 

generate the lake near-shore bathymetric model. The new near-shore bathymetric model 



 

reproduced water level measurements with a better accuracy than the existing bathymetric model 

of the lake. 

The usability of the TSS data was tested by initializing a hydrologic model for the Gumera 

watershed using the Soil and Water Assessment Tool (SWAT). The ten year TSS data generated 

were used to calibrate the model. The model was capable of predicting the monthly TSS 

variation. The potential of MODIS images in monitoring biomass recovery was also assessed at 

river basin scale. The enhanced vegetation index (EVI) – land surface temperature (LST) relation 

is used to map the trend in the disturbance of plantations put in place as conservation measures. 

In this dissertation the potential of satellite imagery as a data gap filling alternative to ground 

based monitoring systems in data scarce regions is tested.
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CHAPTER 1: INTRODUCTION 

Human ability to numerically model water resource systems has progressed enormously with 

advances in computational power and the understanding of processes at finer scale (Silberstein, 

2006). However, water resources data collection at varying scales is expensive, so that modelers 

often tend to conceptualize processes based on simplified views of nature (Dozier, 1992) or  

match the observed data even if the underlying premises are unrealistic (Kirchner, 2006). In 

addition,  collection of water resource data,  especially in developing countries, are characterized 

by inadequate monitoring, gaps in observations, a decline in the number of stations, chronic 

under funding and differences in processing and quality control (Vörösmarty et al., 2001, Harvey 

and Grabs, 2003). Our ability today  to monitor extreme events with ground based systems is less  

than it was 45 years ago (Macauley and Vukovich, 2005). 

Space–borne remote sensing has become a potential data source to model land and water 

resource systems. Remote sensing offers advantages over a single point ground measurement in 

that it provides an overview of the hydrologic regime and its interaction with other systems. 

Remote sensing has been used for many purposes: Prigent et al. (2001) used multiple satellite 

data sets to quantify seasonality and the extent of inundation. Site specific equations are also 

developed to measure turbidity (Chen et al., 2009, Shen et al., 2010),  suspended sediment 

concentration (Jiang et al., 2009, Nechad et al., 2010), chlorophyll–a (Fiorani et al., 2006, Wang 

et al., 2010a), phytoplankton (Kwiatkowska and McClain, 2009), cyanobacterial blooms (Kutser 

et al., 2006)  and other physical water quality parameters (Liu et al., 2003, Hu et al., 2004). 

Smith et al. (1996) and Alsdorf et al. (2000) developed a satellite based method (synthetic 

aperture radar) to measure water levels in the main channels of rivers, upland tributaries 
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and floodplain where it is impossible to install permanent gauging stations or in areas that are 

virtually inaccessible (Birkett, 1998). Unganai and Kogan (1998), Wang and Qu (2007), Bolten 

et al. (2010) and many others developed image based drought monitoring tools. Passive 

microwave, thermal and radar images are being used for soil moisture retrieval (Kerr et al., 2001, 

Verstraeten et al., 2006, Naeimi et al., 2009). 

Various remote sensing platforms are available to collect water and earth science data. SPOT, 

Landsat, Advanced Space borne Thermal Emission and Reflection Radiometer (ASTER), 

ENVISAT advanced synthetic aperture radar (ASAR), Moderate Resolution Imaging 

Spectroradiometer (MODIS), and Advanced Very High Resolution Radiometer (AVHRR) 

images are the most widely used data sources in earth science applications. Using these data 

requires an understanding of the potentials and limitations of the data sets. Spatial and temporal 

resolution, data size, processing requirements, scale of application and ease of availability are 

factors that need to be taken into consideration in selecting the image source. In the research 

described in this dissertation MODIS images and data products are used. MODIS images provide 

the advantage of near daily availability, increased sensitivity (Hu et al., 2004) and consistent 

atmospheric correction. MODIS images are validated products (LPDAAC, 2010) that can be 

directly used in applications without further processing and hence are suitable for novice users.  

A very good showcase for the possibilities that satellite images can offer in developing countries 

for improving the hydrologic monitoring system in the Upper Blue Nile basin, Ethiopia is the 

estimation of suspended sediment in lakes, estimation of water volume variation in storages and 

biomass monitoring at river basin scale.  Current suspended sediment concentration 

measurements are based on rating curves that assume a unique relationship between sediment 

concentration and discharge. However Tilahun et al. (2012) showed that sediment concentration 
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tends to decrease with increased discharges in the peak of the rainfall season and as such a 

unique relationship does not exist. Siltation at gauging stations, bank overflow, unstable cross 

section or a combination of these factors (SMEC, 2008) further degrade the reliability of 

sediment rating curves. Models relying on these measurements are susceptible to very large error 

and uncertainly (Alsdorf et al., 2003). Climate change and the rapidly changing geography 

of water supply and use had added up to the uncertainty of measurements (Vörösmarty et al., 

2000). A robust and cost effective monitoring mechanism will be an indispensible tool for water 

resources managers to evaluate water quality benefits of soil and water conservation works in the 

upland watershed, allocate water to most economically vital use (vis-à-vis hydropower, 

irrigation, navigation etc.) and assess state of biomass at basin or country scale. 

In this dissertation the main hypothesis is that satellite imagery, and especially MODIS, is a cost 

effective and robust tool that can replace ground based observations and can be used 

operationally. Therefore the main goals of this study are to use MODIS images as the main data 

source for water resources system modeling in data scarce regions. In order to validate the 

methods used we selected a study area where relatively longer hydrologic data is available. In 

this dissertation we assessed the potential of MODIS images to reproduce historic sediment 

concentrations in water bodies, quantify storage variation in lakes and monitor the state of 

biomass at basin scale. 

In chapter 2 of this dissertation, MODIS images are used for near–real time monitoring of total 

suspended solids (TSS) and turbidity in the Blue Nile basin (Ethiopia). A relationship was 

developed after examining which band (or possibly band combinations) provides the most 

accurate prediction of the concentration in the lake.  Using the 10–year MODIS images archive 
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and the established relationship a 10 year time series of sediment concentration was generated 

for Lake Tana near the Gumera River mouth. 

In (Chapter 3) of  this thesis the modified soil and water assessment tool – a variable area source 

(SWAT–VAS) model implemented by Easton et al. (2008) is run for Gumera watershed in the 

upper Blue Nile basin in order to simulate the 10 year sediment concentration in Lake Tana 

determined in chapter 2. In this chapter the link between lake water quality and land cover was 

also assessed using the Enhanced Vegetation Index (EVI) as a proxy for land cover.  

A potential application of remote sensing in water volume monitoring is also assessed (Chapter 

4). The potential of MODIS images for use in lake area mapping through the use of the 

normalized difference vegetation index (NDVI) (Tucker, 1979) and normalized difference water 

index (NDWI) (Gao, 1996) is evaluated using an existing bathymetric model. The images are 

also used to improve the bathymetric models near lake shore. The improved bathymetric model 

is validated by comparing predicted lake levels with measured levels. These prototype methods 

can be applied to estimate the change in storage volume due to inflow of sediment from streams 

draining to the lake. 

A relatively recent application of MODIS images is in monitoring biomass using an image based 

disturbance index (DI) (Mildrexler et al., 2007). The index is applied to map areas of biomass 

recovery in the last five years (2008 – 2012) within the upper Blue Nile basin (Chapter 5). In 

addition, the biomass recovery trend is evaluated at the sub basin level by comparing field 

observations with soil and water conservation work inventory. The results of this research 

provide a basis for evaluating the potential and limitations of using available remotely sensed 
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data for sediment monitoring in lakes, estimating lake water volume and monitoring the state of 

biomass at the basin or national scale. 

The major shortfall of currently available images is the coarse spatial resolution. Nonetheless 

even with the existing limitation the images are capable of capturing anomalies in terms of lake 

water turbidity, lake area dynamics and biomass recovery. With new remote sensing platforms 

(Chapter 6) and diverse data collection missions scheduled for launch the use of remotely sensed 

data in water resources modeling is likely to expand. Consequently, the present shortcomings in 

spatial, temporal, spectral and radiometric resolutions will also improve. 
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CHAPTER 2: EVALUATING SUITABILITY OF MODIS-TERRA 

IMAGES FOR REPRODUCING HISTORIC SEDIMENT 

CONCENTRATIONS IN WATER BODIES: LAKE TANA, ETHIOPIA 

Abstract 

Government and NGO funded conservation programs are being implemented in developing 

countries with the potential benefit of reduced sediment inflow into fresh water lakes. However, 

the effectiveness of these programs is difficult to ascertain due to limited historical data on 

sediment concentration in lakes and rivers due to prohibitive costs to developing economies. 

Remote sensing can potentially aid in monitoring sediment concentration. With almost daily 

availability over the past ten years and consistent atmospheric correction applied to the images, 

Moderate Resolution Imaging Spectroradiometer (MODIS) 250–m images are potential 

resources capable of monitoring future concentrations and reconstructing historical sediment 

concentration records. In this paper, site-specific relationships are developed between reflectance 

in the near-infrared (NIR) images and three factors: total suspended solids (TSS), turbidity and 

Secchi depth for Lake Tana near the mouth of the Gumera River. The first two sampling 

campaigns on November 27, 2010 and May 13, 2011 are used for calibration.  Reflectance in the 

NIR varies linearly with turbidity (R2 = 0.89) and TSS (R2 = 0.95).  Secchi depth fit best to an 

exponential relation with R2 of 0.74. The relationships are validated using a third sample set 

collected on November 7, 2011 with RMSE of 11 Nephelometric Turbidity Units (NTU) for 

Turbidity, 16.5 mg/l for TSS and 0.12 meters for Secchi depth. Using the relationship for TSS, a 

10-year time series of sediment concentration in Lake Tana near the Gumera River was plotted.  

It was found that after the severe drought of 2002 and 2003 the concentration in the lake 



26 
 

increased significantly. The results showed that MODIS images are potential cost effective tools 

to monitor suspended sediment concentration and obtain a past history of concentration for 

evaluating the effect of best management practices.  

2.1 Introduction 

Reduced sediment inflow decreases sedimentation of reservoirs, ensures sunlight penetration in 

lake water, improves the productivity of the whole food web in the aquatic system (Vijverberg et 

al., 2009), increases zooplankton growth (Lind et al., 1992) and makes water supply disinfection 

more effective (Gadgil, 1998).  In the Ethiopian highlands, conservation practices are being 

instituted by the government and NGO’s to reduce soil erosion and thereby reduce sediment 

concentration in streams. Despite millions of dollars invested (Nedessa and Wickrema, 2010), 

very few measurements are available with which to evaluate the effectiveness of these 

interventions.  In a few cases, soil and water conservation practices have decreased sediment 

concentrations (Herweg and Ludi, 1999, Nyssen et al., 2008). However, in general there is not a 

downward trend in sediment concentrations (Tilahun et al., 2012). Some studies suggest that 

70% of reservoirs built in the last 20 years have serious siltation problems and that the useful life 

will end well before the dam design period (Haregeweyn et al., 2006).With the construction of 

new hydroelectric dams in Ethiopia it becomes more and more  important to assess the 

effectiveness of conservation practices. One of the ways that this can be accomplished is by 

measuring sediment concentration in water bodies (Delmas et al., 2011).  

Intensive sampling of either sediment concentration (gravimetric) or turbidity (by optical Secchi 

disk) on many locations is  prohibitively expensive and has led to efforts to map these parameters 

using remotely sensed images (Forget and Ouillon, 1998, Froidefond et al., 1999, Myint and 
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Walker, 2002, Hu et al., 2004, Chen et al., 2007, Nechad et al., 2010, Wang et al., 2010b). Table 

1 gives some of the relationships between remotely sensed reflectance and sediment 

concentration. All are  site specific (Liu et al., 2003) due to two factors: first the combination of 

subjective criteria used by researchers in atmospheric correction, with  empirical calibration 

factors for correcting the sensitivity of the sensor (Froidefond et al., 1999) and second, the 

infinite combinations of diverse water constituents which creates a wide variation in the spectral 

reflectance of shallow waters (Baban, 1993, Chami et al., 2006). In this paper a site specific 

relationships is developed for mapping TSS, turbidity and Secchi depth on Lake Tana. The 

relationship developed for TSS is used to construct a ten year sequence of suspended sediment 

concentrations for the Gumera River that flows to Lake Tana.  

2.1.1 Remote sensing platform 

The use of remotely sensed images for sediment concentration estimation has to strike a balance 

between ease of access and processing, sensitivity to change in water color, and temporal 

resolution of the remotely sensed data. In addition, the rigorous atmospheric correction required 

in using remotely sensed images  has been a major source of uncertainty in the past because of 

the extreme sensitivity of most atmospheric correction algorithms to subtle changes in the visible 

spectrum (Werdell et al., 2010, Jolivet et al., 2007). Recent developments in remote sensing have 

enabled the global science community to have access to images with consistent atmospheric 

correction applied to them. One such achievement is the MODIS–Terra version–5 validated 

Stage 2 products (LPDAAC, 2010). Other advantages are that MODIS has detectors in spectral 

regions that provide direct estimates of atmospheric scattering and absorption (Li et al., 2003, 

Kaufman et al., 1998)  leading to a more consistent atmospheric correction. The release of these 

products avoids the effort required for sensor calibration and atmospheric correction. The 
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accuracy of these products has been confirmed at many  locations and time periods (LPDAAC, 

2010). MODIS images are also available on a daily basis, and that MODIS medium–resolution 

images (250m) provide the advantage of increased sensitivity for suspended solid observation in 

that these bands are 4–5 times more sensitive than the L7–ETM+ bands (Hu et al., 2004).  

Correlations between MODIS–measured reflectance and turbidity, total suspended matter 

(TSM), suspended sediment concentration (SSC) and/or TSS have been reported by several 

authors. The equations and correlations from the most recent studies using MODIS images to 

quantify water quality parameters are presented in Table 2-1. 

Table 2-1: Correlations between different MODIS bands reflectance and water quality 
parameters suggest site specific regression equations 

Parameter Equation1 r2  

TSS (mg/l) 

0.0052�(���	
(��
������  
for 0.0058<(Rb1-Rb2)<0.0076 

0.1915�(�	�.�	��
�  
for 0.0035<Rb1<0.0062 

 

0.90 

 

0.90 

 

(Hu et al., 2004) 

TSM (mg/l) −1.91 + 	1140.25		 ×	R�� 0.89 (Miller and McKee, 2004) 

Turbidity (NTU) 1203.9	 × 	R���.�
� 0.73 (Chen et al., 2007) 

SSC (mg/l) −23.03	 + 	60.24	 ×	(R�	 	− 	R��� 0.73 (Wang and Lu, 2010) 

Log(TSS) (mg/l) 

 

0.1497�!�.
�"#$%&
'((��� $%&
'((�
�) *+ 

1.5144 #,-.��(�/	� ,-.��(�/��) * − 0.5755 

0.61 

0.72 

(Wang and Lu, 2010) 

                                                 
1 R refers to reflectance and b followed by a number refers to band number, for example Rb1 refers to reflectance 
from band one. For MODIS images band 1 represents the NIR, band 2 the red and band 5 the SWIR wavelengths. 
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2.2 Materials and methods 

Lake Tana (Figure 2-1) is situated on the basaltic plateau of the north-western highland of 

Ethiopia (12°N, 37°15’E, and 1,800 m altitude) covering an area of over 3,000 km2.  

 

Figure 2-1: In this 13 June 2000 MODIS image, a turbid plume flows into the lake turning the 
shore and stream mouth locations to reddish brown and raising the water reflectance 

The lake drains a catchment area of 16,000 km2. Six permanent rivers and 40 small seasonal 

rivers feed the lake. The shallow lake (average depth 9 m) is Ethiopia’s largest lake, containing 

half the country’s freshwater resources, and is the third largest in the Nile Basin (Vijverberg et 

al., 2009). The most pronounced advantage of Lake Tana is its storage capacity, in that it 

accommodates a live storage which amounts to more than two times that of the five largest 
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reservoirs in Ethiopia†, rendering a relatively low cost per unit of utilizable water (Gebeyehu, 

2004). A bathymetric survey undertaken in 2006 showed that the lake has a maximum depth of 

15 m and stretches 65 km west-east and 74 km south–north (Ayana, 2007). The main rainy 

monsoon season begins in June and lasts through September and temperature varies between day 

time extremes of 30°C to night lows of 6°C. The minimum recorded annual precipitation  was 

966 mm in the year 2002 and the annual maximum was 1998 mm in the year 1997(Yilma and 

Awulachew, 2009).   

2.2.1 TSS, Turbidity and Secchi depth measurements 

Three campaigns were carried out to collect water samples and measure Secchi depth within 15 

minutes of the time of the satellite overpass over Lake Tana near the mouth of the Gumera River, 

which has a mean flow of 34 m3/sec during the rainy season. Separate campaigns were 

conducted during the mornings of November 27, 2010, May 13, 2011 and November 7, 2011. 

Samples were collected along transects parallel to the shore during each overpass (Figure 2-2). 

Ground measurements were done within about ± 30 minutes of the seconds-long satellite 

overpass (i.e. a 1 hour period centered on 10:30 AM). Concurrent measurements are crucial as 

sediment concentrations during high streamflow or wind can change quickly (Petus et al., 2010). 

At each location along the sampling path, bulk water samples were collected from the upper 0.2 

m of the water column in a 750 ml container for turbidity and TSS analysis. GPS coordinates of 

sampled locations were also recorded. During sampling the commonly known algal bloom areas 

are excluded to avoid uncertainties in the measurement.  

 

                                                 
†Gilgel Gibe, Koka, Finchaa, Amerti, and Melka Wakena, provide an aggregate storage capacity of about 4.4 billion 
m3, compared to Lake Tana's live storage of 9 billion m3 
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Figure 2-2: Three sampling campaigns were conducted near the outlet of Gumera River in Lake 
Tana: During the dry season May 13, 2011 and shortly after the end of the rainy season on 
November 27, 2010 and November 7, 2011  

Total suspended solids measurements were made in the laboratory by drawing 10 ml aliquot 

from a well mixed container, centrifuging for ten minutes at 4000 rpm, pouring off supernatant, 

separating and drying the retained solids, and weighing (Queenan et al., 1996). Turbidity 

measurements were made using a Hach 2100N turbidimeter calibrated using formazin solution. 

2.2.2 MODIS data 

The MODIS-Terra satellite has been acquiring images of the entire globe since 2000 in 36 

spectral bands with 250-m, 500-m, and 1,000-m spatial resolutions.  The red (620-670 nm) and 

NIR (841-876 nm) bands labeled ‘MOD09GQ’ are available on a nearly daily basis at 250m 
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spatial resolution. These bands are sensitive for turbid water applications (Hu et al., 2004) . A 

number of previous studies have successfully used MODIS 250 m images to establish a 

reflectance–TSS, reflectance–turbidity and  reflectance–Secchi depth  relationships (Chen et al., 

2007, Dall'Olmo et al., 2005, Kutser et al., 2006, Miller and McKee, 2004, Petus et al., 2010). In 

this study MODIS Terra data are used because our field samples were taken in the morning 

corresponding to Terra’s imaging time. MODIS red and NIR 250 m images corresponding to the 

field water sampling dates (i.e. 27 November 2010, 13 May 2011 and 7 November 2011) were 

downloaded from the USGS site using MODIS Reprojection Tool Web Interface (MRTWeb)†. 

The following table summarizes the observations for the respective dates. 

Table 2-2: Numbers of lake samples collected for the campaign days (Appendix A1) 

Parameter Unit 
Calibration Validation 

Nov 27, 2010 

# of samples 

May 13, 2011 

# of samples 

Nov 7, 2011 

# of samples 

Turbidity NTU 54 51 30 
TSS Mg l-1 54 51 34 
Secchi Depth m 54 51 30 

2.2.3 MODIS reflectance relationship to TSS, turbidity and Secchi depth 

In order to obtain the relationship between the MODIS reflectance and indicators of sediment 

concentration in the lake a multiple regression analysis was performed on various combinations 

of red and near infrared red (NIR) bands (Table 2-3). Following the work of Wang et al. (2010b), 

several combinations of bands were used (e.g. sum, the difference and ratio of reflectance of the 

two bands ) to increase the goodness of fit of the regression equations. Normalized ratios (NIR to 

red), band sum and band difference are used along with single band regression. Samples from the 

first two campaigns of November 27, 2010 and May 13, 2011 are used to establish the relation 

                                                 
† https://mrtweb.cr.usgs.gov/ 
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(i.e. calibration) and the third sample collected on November 7, 2011 was used to validate the 

relation. The goodness of fit of the models is evaluated based on the resulting coefficient of 

determination (R2).  Adjusted R2 is also calculated for each regression to test if an improvement 

in the R2 is due to the inclusion of a band to the regression model or a random chance. For the 

validation step, the accuracies of predicted TSS, turbidity and Secchi depth were assessed by root 

mean square error (RMSE). 

2.2.4 Determining historical record of Lake sediment concentration near Gumera 

River 

Images for a 10-year time span (2000-2009) NIR images of the area in the vicinity of the 

Gumera River outlet into Lake Tana were downloaded from the USGS MODIS archive via 

MRTWeb. Cloud contaminated images were excluded and the images were masked with the 

water sampling location polygon. This location is consistently more turbid during the rainy 

season (Figure 2-1). A mean reflectance raster image is created for each month. In each mean 

reflectance image the pixel with the largest reflectance is identified using the Getis–Ord Gi* 

statistic data mining technique (Getis and Ord, 2010).  The Getis–Ord Gi* statistic is given by: 

01∗ = ∑ 56,898�:; ∑ 56,8<8=
<8=

>?@<∑ A6,8� BC∑ A6,8<8=
 D�<8=
 E

<B

    (Equation 2-1) 

 

Where FG is the TSS value for pixel J, H1,G is the spatial weight between feature i and j, n is equal 

to the total number of pixels,  I;	 is mean of the TSS values within the cut off distance given by 

I; = ∑ 98<8=
J  and K = L∑ 98�<8=
J − (I;�	 
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In this method each of the pixels within the delineated entry location will be looked within the 

context of its neighbouring pixels. The local sum for a pixel and its neighbours is compared 

proportionally to the sum of all features; when the local sum is much different than the expected 

local sum, and that difference is too large to be the result of random chance, a statistically 

significant z score results. For statistically significant positive z scores, the larger the z score is, 

the more intense the clustering of high values or a hot spot (Mitchell, 2005). 

2.3 Results 

The relationship between MODIS reflectance to TSS, turbidity and Secchi depth are given in 

Table 2-3. In all band combinations a linear relationship was observed between the tested NIR 

and red combinations of MODIS bands and either TSS, turbidity and Secchi depth. The 

relationship between MODIS reflectance to NIR band was consistently superior to other 

combinations. The calibrated regressions between TSS, turbidity, Secchi depth and the 

reflectance in the NIR band, MNO� were, in order of decreasing r2: 

PQQ = 2371.× MNO� − 62.8      Equation 2-2  

where TSS is in mgl-1, S = 54 and T < 0.001 and r2 = 0.95 

PVWXYZY[\ = 3209 × MNO� − 50.1     Equation 2-3 

where turbidity is in NTU, S = 43 and T < 0.001 and r2 = 0.89 

Q�]]ℎY	Z�T[ℎ = 0.38	 × ���	.	×_`a(     Equation 2-4 

where Secchi depth is in meters, S = 73 and T < 0.001 and r2 = 0.74 

Applying these equations to the November 7, 2011 image resulted in a root mean square error 

(RMSE) of 16.5 mg l-1, 15.6 NTU and 0.11 m in comparison to measured TSS, turbidity and 
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Secchi depth respectively. The scatter plot for observed and estimated turbidity, TSS, and Secchi 

depth and the residual of these estimates are shown in Figure 2-3. The residuals were distributed 

within ±5 mgl-1 for TSS, ±8 NTU for turbidity, and ±0.06 m for Secchi depth. 

Table 2-3: Estimation statistics for various band combinations; bold numbers have the largest R2 

Turbidity (N=45, mean = 100.03 NTU) 

Band Combination R
2
 Adjusted R

2
 Standard error Significance F 

NIR 0.89  16.57 0.000 
NIR/Red 0.76 0.75 25.26 0.000 
NIR + Red 0.08 0.06 49.4 0.063 
Red - NIR 0.48 0.47 37.04 0.000 (b�Z − cdb� (b�Z + cdb�⁄  0.69 0.68 28.6 0.000 

TSS (N=54, mean = 48.43 mg l
-1
) 

NIR 0.95  10.77 0.000 
NIR/Red 0.89 0.88 16.86 0.000 
NIR + Red 0.76 0.76 24.34 0.000 
Red - NIR 0.86 0.85 18.96 0.000 (b�Z − cdb� (b�Z + cdb�⁄  0.88 0.88 16.92 0.000 

Secchi depth (N=73, mean = 0.22m) 

NIR 0.74  0.02 0.000 
NIR/Red 0.58 0.57 0.03 0.000 
NIR + Red 0.50 0.49 0.03 0.000 
Red - NIR 0.38 0.36 0.03 0.000 (b�Z − cdb� (b�Z + cdb�⁄  0.57 0.56 0.03 0.000 
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Figure 2-3: Scatter plot of water reflectance (ρ) against observed Turbidity, TSS and Secchi depth using different band combinations. 
The NIR band gives the best fit for all the parameters.

  

37 

) against observed Turbidity, TSS and Secchi depth using different band combinations. 
The NIR band gives the best fit for all the parameters. 

 

) against observed Turbidity, TSS and Secchi depth using different band combinations. 



38 
 

 

Figure 2-4: November 7, 2011 data is used to validate turbidity (a), TSS (b) and Secchi depth (c); 
and associated residuals (d through f)  

(c) 
(f) 

(e) 
(b) 

(d) 
(a) 
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The 10-year mean monthly time series data of maximum concentration observed at the river 

mouth in Lake Tana is depicted in Figure 2-5. The pixel with the highest z score for the Getis–

Ord Gi* statistic is identified for the mean monthly images of the river mouth. The minimum 

concentration before 2004 was within the 80 – 100 mgl-1 range. In 2004, the minimum 

concentration shifted to about 200 mgl-1. Greatest concentration reached the lake with the 2004 

floods after which the annual peak concentration becomes approximately within the range of 450 

– 600 mgl-1. 

 

Figure 2-5: Comparison of TSS at river mouth on Lake Tana and a gauging station upstream the 
river mouth 

2.4 Discussion 

A single band regression equation performed the best in this case. The NIR band consistently 

yielded the highest coefficient of determination. Both TSS and turbidity exhibit a linear 

relationship (Equation 2-2 and 2-3) with the NIR band with a small offset (~1.5 to 2.5%). The 

linear relationship is in agreement with other studies (Han and Rundquist, 1994, Doxaran et al., 
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2002, Ma and Dai, 2005, Wang et al., 2009). Early work (Morel and Prieur, 1977) also showed 

that the reflectance of an optically deep, homogeneous body of water would be proportional to a 

ratio of the backscattering to total attenuation (i.e. absorption + backscattering).   Since most of 

the scattering is in the forward direction, absorption (a) is usually large relative to the 

backscattering (bb) and the approximate relationship is then = /�f  . In the infrared, where the 

absorption is predominantly due to water and the scattering is predominantly due to the 

suspended matter, it is reasonable to expect that the reflectance would be roughly linearly 

proportional to measures of the suspended load so long as the scattering properties are consistent 

over the range of observation. The small offset in the regression can be attributed to the 

uncertainty of the fit, at least for low concentrations. As the magnitude of TSS measured in the 

water samples is small, a low concentration from low reflectance values is associated with 

significant uncertainty. This is because a small error rapidly leads to a large relative error. 

Previous studies recommended the use of band combination to overcome such deficiencies (Hu 

et al., 2004, Wang and Lu, 2010). The red band was used in this research to exploit any 

advantages in improving the model. Three band combinations (band ratio, band combination and 

band difference) are applied but all yielded a lower R2 in comparison to the single band 

regression. The band ratios including the NDVI yield better R2 as compared to other 

combinations. The reason for the red band to fail to strongly correlate to TSS is likely explained 

by the effect of residues of aerosol that may remain in the visible bands after the atmospheric 

correction procedure (Wang et al., 2009). The linear relation of TSS with NIR was fairly stable 

over the sampling seasons and the same equation is used to generate the 10 year TSS time series 

(Figure 2-5).  
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In spite of high correlations observed between the NIR band and TSS and turbidity, it was 

evident that MODIS–Terra band 2 is not sensitive enough to detect turbidity variations below 60 

NTU (Figure 2-6). For higher turbidity, it was found that the regression equations are fairly 

stable across varying seasons (two end-of rainy seasons and one dry season). 

A strong linear relation (R2=0.88, p≤0.001) is observed between TSS and turbidity (Figure 2-6). 

This suggests turbidity in the lake is mainly due to suspended solids and not from inflow of color 

causing materials. As the watershed is predominantly cultivated land (with little dispersed bush 

land) the inflow of color causing agents is minimal. However, the increased application of 

fertilizer  (from none to 8.5 kg N ha-1yr-1 and 9.8 kg P ha-1yr-1 (Haileslassie et al., 2005)) and the 

subsequent flow of this into the lake will facilitate algal growth and hence increased biological 

turbidity. Nevertheless Han (2005) showed that the effect of algae on the TSS–reflectance 

relation was minimal at wavelengths between 700 and 900 nm. The effect of algae on TSS 

measurement was minimized by avoiding algal bloom areas during the sampling. The strong 

linear relationship is also useful in that it will enable using turbidity as a surrogate for TSS 

concentrations. Turbidity measurements can be automated in-situ and hence enable a nearly 

continuous TSS measurement.  

Figure 2-7 depicts the dynamics between TSS concentration and flow (Figure 2-7(a)) and TSS 

concentration and water level in lake (Figure 2-7(b)).  Peak concentration in the lake showed an 

increasing trend in the 2000 – 2004 periods with flow showing no trend for the same time period. 

The reduction in water level started in 2001 with the installation of five additional gates to the 

controlling weir which was initially operated by two gates (McCartney et al., 2010). Lake level 

declined at a rate of 0.5 m per year and reached historic minimum level (1784.6m) in 2003. The 
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minimum sediment concentration increased from 100 to 250 mg/l after 2002 due to a 

combination of late wet season flows and water withdrawal for hydropower generation.   

 

Figure 2-6: Strong correlation between TSS and turbidity indicates, turbidity below 60 NTU 
correlates poorly to the NIR or any of the band combination  

The occurrence of TSS peak before flow peak is attributed to the loose soil condition at the start 

of the rainy season. The loose soil that is easily washed off cause the suspended solids 

concentrations peak before the rainy season gets fully underway. Concentrations in rivers in the 

beginning of the monsoon season are high and then decrease gradually (Steenhuis et al., 2009, 

Tilahun et al., 2012). In contrast, the runoff coefficient and discharge are small in the beginning 

of the rainy season and increase until the end of July where after the runoff coefficient becomes 

nearly constant (Liu et al., 2008). As the rainy season progresses, the soil becomes more 

cohesive and ground water begins to contribute to stream flow, further diluting the sediment 

concentration. TSS estimates from the regression equation are much smaller in comparison to 

data from a rating curve (Figure 2-5). The river gradient at entry to the lake is so small that flow 

velocity is low. The flood water then spreads over the river delta dropping the sediment load. 

Consequently, relatively less muddy water reaches the lake.  

y = 0.6x - 11
R² = 0.88

0
20
40
60
80

100
120
140
160
180
200

50 100 150 200 250 300 350

T
S
S
, 
m
g
/l

Turbidity, NTU



43 
 

  

 

Figure 2-7: Time series plots for a) reflectance derived TSS time series for Lake Tana near mouth of Gumera River (2000–2009); a 
jump in the dry season TSS concentration and a spike in the peak for the years 2003 – 2004 was due to the consecutive drought years 
in 2002 and 2003 which brought much sediment but less water and b) comparison between lake level and TSS concentration variation, 
higher dry season concentration coincides with lower lake water level 
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The change in the dry season concentration at the end of the year in 2002 coincides with the 

consecutive drought years (2002 – 2003) and as a consequence the lowering of the lake by about 

two meters from the long term mean. In this time, the dry season TSS concentration shifted from 

about 100 mg/l to 250 mg/l (Figure 2-7 (a)). With a much reduced outflow during low water 

levels the residence time for the water, which is three years in normal seasons (Kebede et al., 

2006), will increase considerably. This facilitates further mixing of the turbid plume with the 

lake water, rendering it a brownish color.   Successive images collected right at the beginning of 

the rainy season show the spreading of the plume over the larger part of the lake. Thus, when the 

flood of the following season reaches the lake, the TSS concentration is already at a higher TSS 

level and hence the TSS extraction process catches this phenomenon resulting in TSS peaks for 

the years 2003 and 2004 (Figure 2-7 (b)). Satellite images of May through October 2002 (Figure 

2-8) are used to show how the plume spreads over the lake. The mean monthly TSS map at the 

river mouth is overlain with TSS contour lines (Figure 2-9). 
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Figure 2-8: Spreading of turbid plume in the year 2002; river mouths appear relatively clean (a) just before the start of the rainy 
season; (b through f) as the rainy season begins, the reddish turbid plume appears at the entry location; (g through J) the plume spreads 
along the shore and over a wider area; (k and l) with a reduced outflow from the lake during this typically low flow season the plume 
spreads to cover the whole lake 
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22 July 23 August 6 July 2 July 

25 June 11 June 6 June 
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Figure 2-9: 2000-2009 mean monthly reflectance-derived TSS (mg l-1) at river mouth depicting the annual cycle of alteration in the 
water clarity are constructed using the SURFER software
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2.5 Conclusion 

Unlike discharge data, which are measured generally on a daily basis, sediment concentration 

data often result from infrequent water quality monitoring campaigns. A robust statistical 

relationship was constructed between TSS, turbidity and Secchi depth and remotely sensed 

reflectance at the entry location of Gumera River. The established regression equations can be 

used to provide synoptic water quality at the river entry and hence helps to assess how soil and 

water conservation investments pay dividends. The availability of MODIS images on an almost 

daily basis provides the opportunity to monitor sediment inflow dynamics especially in the dry 

season and during the beginning of the rainy season, during which the peak of the sediment 

arrives the lake. Thus, the use of MODIS images in TSS and turbidity measurement supersedes 

the higher spatial resolution images in (e.g. Landsat ETM+, ASTER) due to much higher 

temporal resolution. MODIS images also provide the advantage of increased sensitivity (Hu et 

al., 2004). 

The regression equations may also be applied to adjacent watersheds feeding Lake Tana that 

have similar soils and geological formations, as these are expected to have similar particle size 

characteristics and hence similar reflectance characteristics (Horsburgh et al., 2010). However 

the transferability of the regression equations developed here should be verified. Thus, similar 

regression equations have to be established for other major contributing rivers, at minimum with 

a validation sampling campaign and possibly including more training sampling campaigns. The 

work is important enough to consider extending the regression equations to cover the whole lake. 

Time series TSS generated from the established regression equations can then be used to 

calculate an annual inflow and outflow sediment budget and then estimate loss of lake storage 
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capacity. However the estimation of total suspended solids within the lake requires profiling 

vertical TSS concentrations at representative sites, or making defensible assumptions regarding 

the vertical distribution (Li et al., 2003). The correlation between measured TSS and total 

sediment, once established, can be used to determine the total inflowing sediment.  The 

knowledge of TSS has great importance in modeling the inflow of nutrients and contaminants 

which has implications for eutrophication, algal blooms and degradation of aquatic habitat 

(Smith, 2008). A better understanding of the movement of the turbid plume can also be used in 

hydrodynamic modeling of the lake. 
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CHAPTER 3: MODELING TOTAL SUSPENDED SOLID EMISSION 

IN GUMERA WATERSHED (ETHIOPIA)  

Abstract 

Modeling sediment concentration in Ethiopia at intermediate to large scale is hampered by lack 

of historic sediment concentration data. Considerable flow and sediment concentration modeling 

work had been done on Gumera watershed. The models simulate sediment concentration at a 

gauging station upstream of Lake Tana where the river is flowing. None of these studies had 

modeled TSS emissions by the river to Lake Tana as there are no TSS measurements at the river 

mouth. In this study a 10 years TSS time series data generated from remotely sensed images 

generated using a regression equation established by field water sample analysis and 

concurrently taken MODIS/Terra 250 meter images of the near infra red (NIR) band is used to 

calibrate and validate a soil and water assessment tool variable source area (SWAT–VSA) 

model. The result showed that TSS at the river mouth can be replicated with a Nash–Sutcliffe 

efficiency of 0.39 for calibration and 0.32 for validation periods. Given the inaccessibility and 

costliness to measure TSS at river mouths to a lake the results found here are considered modest. 

3.1 Introduction 

Over dependency on agriculture as a source of livelihood and high population pressure in 

Ethiopia are inducing deforestation, expansion of agriculture to marginal lands and steep slopes, 

degradation of the environment (Zeleke and Hurni, 2001, Bewket and Sterk, 2005). This has 

increased erosion and siltation and reduced water quality in the Blue Nile basin (Awulachew et 
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al., 2008). Suspended sediment reduces sunlight penetration and thus modifies biological activity 

which will affect the whole food web in the aquatic system (Lind et al., 1992) and can result in 

eutrophication (Webster, 2005). Sediment reduces reservoirs storage capacity adversely affecting 

hydropower generation and irrigation (Ananda and Herath, 2003). FAO (1986) estimates an 

annual loss of over 1.9 billion tons of soil from the Ethiopian highlands of which only 

approximately 122 million tons reach the Ethiopia border (Ahmed and Ismail, 2008). The eroded 

soil creates turbid plumes in lakes such as Lake Tana in the Nile basin. These plumes can be 

used as an important marker of the catchment contribution to lake sedimentation. In one study 

Ayana et al. (in press) determined using MODIS the concentration in Lake Tana near the mouth 

of the Gumera River for a ten year period.  

Modelling of the processes governing erosion and sedimentation can help our understanding of 

issues in terms of the critical factors controlling erosion and associated sediment transport. 

However, sediment modeling in Ethiopia has generally not been very successful because of both 

limited sediment data for validation. At the same time the underlying hydrology of tropical sub-

humid areas is not understood very well.  Initial modeling attempts used models developed in the 

US and Europe with a temperate to sub–humid climate, [e.g. Agricultural Non–Point Source 

Pollution (AGNPS) model (Haregeweyn and Yohannes, 2003, Mohamed et al., 2004), Soil and 

Water Assessment Tool (SWAT) (Setegn et al., 2008) and WEPP (Zeleke, 2000)].  Runoff 

predictions in these models are based on the SCS curve number that is not suitable with the 

monsoon climate condition in the Ethiopian landscape (Liu et al., 2008, Bayabil et al., 2010, 

Tilahun et al., 2012).   More recently water balance models and modifications of SWAT taking 

topography into account have been more successful in predicting runoff (Easton et al., 2008, 

Steenhuis et al., 2009, Tilahun et al., 2012) . 
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Unfortunately, these improved models have been tested for a limited extent because of the 

general lack of time series of sediment concentrations in the various reaches of the basin. 

Especially there is little known about concentration in lakes. In this chapter we modeled TSS 

emission in to Lake Tana from Gumera watershed using SWAT–VSA model. The SWAT–VSA 

uses topography to determine the curve numbers to predict the saturated excess runoff and then 

predict the sediment concentrations. A ten years TSS time series data generated from remotely 

sensed images for Lake Tana at the river mouth (Ayana et al., in press) is used to calibrate and 

validate the model. The Gumera watershed is selected for the existing knowledge base with 

respect to the stream discharge modeling (Conway, 2000, Kebede et al., 2006, Tarekegn and 

Tadege, 2006, Setegn et al., 2008, Chebud and Melesse, 2009a, Chebud and Melesse, 2009b, 

Wale et al., 2009, Setegn et al., 2010, Kebede et al., 2011, Setegn et al., 2011, White et al., 

2011). As there are no TSS measurements at the river mouth none of these studies had modeled 

TSS emissions. The objective of this study is to model TSS emissions by Gumera River into 

Lake Tana. The results will provide scientific basis for using TSS time series generated from 

MODIS reflectance measurements in lieu of sediment data from rating curves. The link between 

lake water turbidity and land cover is also assessed using the Enhanced Vegetation Index (EVI) 

as a proxy.  

3.2 Material and methods  

3.2.1 Study area 

The Gumera catchment drains an area of about 1280 km2, (Figure 3-1). The watershed drains 

into Lake Tana, a fresh water lake and source of the Blue Nile. Agriculture being a dominant 

activity in the area represents 96% of the watershed and only 4% is forested.  
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Figure 3-1: Study area 

Elevation of the Gumera watershed ranges from 1792 to 3712 m. About 51% of the watershed 

has a slope less than 15%, with 33% within the range of 15–30% and the remaining 16% of the 

area is above 30%. Haplic luvisols2 is the dominant soil covering 73% of the watershed area and 

15% chromic luvisols (FAO and ISRIC, 2009). The watershed climate and vegetation are 

characteristic of a sub-humid zone with a high diurnal temperature variation between day time 

                                                 
2 Luvisols are soils with a marked textural difference within the soil profile, with depleted clay in the surface 
horizon and accumulation in a subsurface horizon (http://www.isric.org accessed November, 2012) 
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extremes of 30°C to night lows of 6°C. Rainfall may reaches up to 2,000 mm per year falling in 

one rainy season from May to October with July to August the wettest (Vijverberg et al., 2009). 

Gumera River drains in to Lake Tana and is 75 kilometers long. The average discharge over a 33 

years period is 34.4 m3/sec. Minimum in this period was 0.04 m3/sec and the maximum was 406 

m3/sec (FDRE–MoWE). 

3.2.2 Model description 

SWAT is a process–based continuous basin–scale hydrological model designed to predict the 

impact of land management practices on water, sediment and agricultural chemical yields. 

SWAT has been applied to catchments ranging few (Chanasyk et al., 2003) to hundreds of 

thousands square kilometers with varying soils, land use and management conditions (Chanasyk 

et al., 2003, Arnold et al., 2007). The model components include: climate, hydrology, erosion, 

soil temperature, plant growth, nutrients, pesticides, land management, channel and reservoir 

routing. SWAT divides a basin into sub–basins each connected through a stream channel. The 

sub–basins are further divided in to Hydrologic Response Units (HRUs). An HRU is a unique 

combination of soil and vegetation. SWAT simulates hydrology, vegetation growth, and 

management practices at the HRU level. Easton et al.  (2008) re–conceptualize SWAT for 

mountainous areas by using the topographic wetness index in combination with land use to 

define the HRU. The water balance is simulated by SWAT using the following equation: 

Qhi = Qh% + ∑ (bjfkJ1l� − m>nop − qf − H>rrs − m&5�  Equation 3-1 

Where, 

 Qhi   : Soil water content at time t in mm 

 Qh%  : Initial soil water content in mm 
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 bjfk  : Amount of precipitation on day i in mm 

 m>nop : Amount of surface runoff on day i in mm 

 qf : Amount of evapotranspiration on day i in mm 

 H>rrs : Amount of percolation on day i in mm 

 m&5 : Amount of return flow on day i in mm 

 

More detailed descriptions of the model can be found in Arnold et al. (1998).   

3.2.3 Model Setup 

The model setup involved five steps: (1) data preparation (2) sub-basin discretization and HRU 

definition (3) sensitivity analysis, calibration and validation 

3.2.3.1 Data 

The spatial data required in SWAT are the Digital Elevation Model (DEM), soil, and land use 

data. Point data required include weather, river discharge and TSS. These are used for prediction 

and calibration of streamflow and TSS. 

DEM, Soil and Land Use data 

A 30 m by 30 m resolution DEM (Figure 3-1) was obtained from the Ethiopian Railways 

Corporation (ERC). The DEM was used to delineate the watershed, analyze the drainage patterns 

of the land surface terrain and generate the topographic wetness index (Beven and Kirkby, 1979). 

Sub-basin parameters such as slope gradient, slope length of the terrain, and the stream network 

characteristics such as channel slope, length, and width were derived from the DEM. The soil 
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data is acquired from the new Harmonized World Soil Database (HWSD) which was updated by 

FAO-UNESCO.  Important soil parameters, textural and physicochemical properties such as 

available water content (AWC), bulk density, hydraulic conductivity, organic carbon content and 

soil texture are included in the database. The land use map of the study area used by was 

obtained from ministry of water resources Ethiopia (BCEOM, 1999). The final land use classes 

are assigned as 31% agriculture - generic (AGRL), 64% agriculture – close grown (AGRC), 4% 

meadow brome grass (BROM), 0.5% pine (PINE) and 0.09% urban (URMD) (Appendix B, 

Figure B1–2). 

Weather Data 

Two options are available to enter meteorological data. SWAT will either read the daily 

meteorological data or will generate them using the weather generator model. The weather 

variables used in this study are daily precipitation, minimum and maximum air temperature, 

relative humidity and wind speed data for the 1992 – 2009 time span. These data were obtained 

from Ethiopian National Meteorological Agency (NMA) for stations located within and near the 

watershed. In order to fill gaps in some of the data the weather generator file created by White et 

al. (2011) was used. 

Discharge and TSS 

Daily river discharge for Gumera River is available since 1976. The data was obtained from 

FDRE – MoWE. Daily discharge data from January 2000 to December 2009 are used to calibrate 

and validate the model. This time span is selected for its overlap to 10 year lake sediment 

concentration data determined from MODIS images (chapter 2). 
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 Enhanced Vegetation Index (EVI) data 

The vegetation biomass measured using enhanced vegetation index (EVI). Comparison is made 

between EVI and TSS using ten year 1 km resolution mean monthly MODIS/Terra EVI time 

series data extracted for Gumera watershed. 

3.2.3.2 Sub-basin discretization and HRU definition 

In the standard SWAT sub-basin discretization is made based on the slope, soil and land use 

percentage thresholds. Sub-basins are divided into hydrologic response units (HRUs).  An HRU 

is the smallest unit in SWAT defined on the basis of a unique combination of slope, soil type and 

land use. In SWAT–VSA HRUs are defined using topographic wetness index  in combination 

with land use (Easton et al., 2008). In this way the saturation excess runoff from variable source 

areas which is the dominant process in Ethiopian highlands (Steenhuis et al., 2009) is 

incorporated into SWAT. Once Sub–basin discretization is completed parameters to represent the 

watershed process is selected. This will be based on the process sensitivity to these parameters 

(Appendix B1). 

3.2.3.3 Sensitivity analysis 

The sensitivity analysis tool in SWAT is used in ranking parameters based on their influence in 

governing flow or sediment. This is an important step in the modeling process as it helps in 

identifying the parameters to calibrate which otherwise will become very complex and 

computationally time consuming. Moreover the variation in sensitivity of parameters as the 

result of using two differently derived data sets will be important to understand the underlying 

process, like in the case of sediment deposition in the flood plain adjacent to the lake.  
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3.2.3.4 Calibration, validation and uncertainty analysis 

SWAT calibration uncertainty programs (SWAT–CUP), linked to ArcSWAT is used to calibrate 

the model and perform uncertainty analysis (Figure 3-2). The SWAT–CUP program includes 

five calibration routines (SUFI–2, ParaSol, GLUE, MCMC and PSO).  Previous detailed studies 

had shown sequential uncertainty fitting (SUFI–2) program  performs better for Gumera 

watershed (Setegn et al., 2008).  

In this study calibration of monthly flow and TSS was performed from 2000–2006 with the first 

year as a warm up period and the validation period is 2007–2009. The water balance was 

calibrated first and then the TSS was considered. The model parameters are checked for 

maintaining their physical meaning (i.e. whether they are within the specified limits). The 

performance of the simulation was evaluated using the Nash–Sutcliffe coefficient of efficiency 

(Nash and Sutcliffe, 1970), the p–factor and r–factor (Rouholahnejad et al., 2012). In addition 

percent bias (PBIAS) and ratio of the root-mean-square error (RSR) to the standard deviation of 

measured data are used to evaluate the model output (van Griensven et al., 2012). 

The Nash–Sutcliffe coefficient of efficiency is computed as: 

tuv = w − ∑ xyz,{�yz,|}~�z=w∑ xyz,|�y�|}~�z=w      Equation 3-2 

Where, yz,{ is simulated quantity (flow or TSS), yz,| is measured quantity and y�|	is mean of 

the measured quantity. 

For p-factor the 95 percent prediction uncertainty (95PPU) is calculated at the 2.5% and 97.5% 

levels of the cumulative distribution of an output variable obtained through Latin hypercube 
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sampling. The average distance Z̅ between the upper and the lower 95PPU is used to calculate 

the r–factor expressed as (Abbaspour, 2008): 

W − ��][-W = j;���     Equation 3-3 

 

Uncertainty is an inherent characteristic of hydrologic models. The uncertainty may be due to 

model simplification, under or over representation of processes, or due to processes unknown to 

the modeler (Abbaspour, 2008). The spatial variability of precipitation particularly in under 

gauged dry and mountainous areas, which is a typical characteristics of the watershed under 

consideration is a major source of uncertainty  (Arnold et al., 2007). These uncertainties should 

be properly addressed and quantified for the models to be usable in decision making. In SUFI–2 

a measure, p–factor is used to quantify the degree to which all uncertainties are accounted. The 

p–factor is the percentage of measured data bracketed by the 95% prediction uncertainty 

(95PPU) (Abbaspour, 2008). 



 

Figure 3-2: A schematic linking of SWAT and SUFI
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: A schematic linking of SWAT and SUFI–2 (Rouholahnejad et al., 2012

 

Rouholahnejad et al., 2012) 
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3.3 Results 

Table 3-1 shows the results of the sensitivity analysis for the monthly simulation. The channel 

erodibility factor (CH_EROD) and the sediment transport coefficient (SPCON) were the most 

sensitive parameters3 governing TSS in the lake at the river mouth.  

Table 3-1: Sensitive parameters 

Parameter Fitted Value Range 
CN2 0.074 ±0.25 

ALPHA_BF 0.89 0-1 

SURLAG 2.80 1-10 

CH_EROD* 0.24 0-0.6 

REVAPMN 471.75 0-500 

SPCON* 0.005 0.001-0.01 

CANMAX -0.21 ±0.25 

ESCO 0.15 0-1 

CH_K2 16.28 0-150 

GW_REVAP 0.06 0-0.2 

USLE_C -0.08 ±0.25 

*   sediment parameters 
 

Four variables consist of p_factor, r_factor, R2 and NSE computed for all types of objective 

functions. The Nash–Sutcliffe objective function yields the best result Table 3-2. Other statistical 

variables were used for better judgment. The modeled values for the same are used in plotting 

the output (Figure 3-3 and Figure 3-4). 

 

                                                 
3 List of parameters and explanation is given on Appendix B, Table B1–3 
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Table 3-2: Monthly statistical coefficients for discharge and sediment calibration and validation 

Variable Period R2 ENS PBIAS RSR 

Discharge 
Calibration 0.79 0.75 21.4 0.50 

Validation 0.81 0.64 21.7 0.60 

TSS 
Calibration 0.39 0.34 -9.4 0.8 

Validation 0.32 0.21 -2.2 0.8 

 

Table 3-3: (a) Statistical analysis on best objective function for the calibration period 

(Discharge|TSS) 

 Objective 
function 
  

Variables 

p_factor r_factor R
2
 NS BR

2
 

 BR2 0.85 1.0 0.59 16.60 0.89 0.24 0.86 -5.79 0.68 0.24 
Chi2 0.85 1.0 0.61 15.68 0.73 0.42 0.66 0.42 0.44 0.18 
 Mult 0.85 1.0 0.59 16.42 0.89 0.35 0.81 0.15 0.61 0.12 
 NS 0.85 0.33 0.61 0.32 0.79 0.39 0.75 0.34 0.54 0.20 

 R2 
0.74 1.0 0.41 16.65 0.86 0.46 0.39 -94.3 0.30 0.08 

Sum 0.85 1.0 0.62 14.5 0.89 0.24 0.49 -0.02 0.35 0.11 
 

(b): Statistical analysis on best objective function for the validation period 

(Discharge|TSS) 

 Objective 
function 
  

Variables 

p_factor r_factor R
2
 NS BR

2
 

 BR2 0.69 1.0 0.53 34.25 0.86 0.44 0.74 -0.91 0.55 0.43 
Chi2 0.69 1.0 0.53 34.91 0.89 0.38 0.70 -0.16 0.51 0.24 
 Mult 0.69 1.0 0.53 32.32 0.91 0.30 0.73 -0.45 0.53 0.24 
 NS 0.69 0.33 0.55 36.97 0.81 0.32 0.64 0.21 0.44 0.17 

 R2 0.33 1.0 0.31 28.98 0.86 0.51 0.35 -4.88 0.29 0.12 
Sum 0.69 1.0 0.53 33.98 0.82 0.42 0.67 0.18 0.47 0.32 

 



 

 

Figure 3-3: Monthly calibration and validation output for (a) 
used (measured in blue, modeled in red and points are daily TSS estimates
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alibration and validation output for (a) monthly flow and (b) TSS; sediment data derived from MODIS images is 
points are daily TSS estimates) 
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(b) TSS; sediment data derived from MODIS images is 
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Figure 3-4: Comparison of measured and simulated (a) flow and (b) TSS
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3.4 Discussion 

Like any water quality model, SWAT must first accurately simulate the hydrologic processes 

before it can realistically predict pollutant transport. The predicted and observed flow resulted in 

Nash–Suttcliffe efficiency of 0.8 for both calibration and validation periods (Figure 3-3(a)). The 

results from previous modeling are provided on Table 3-4.  For TSS the efficiency is 0.39 for 

calibration and 0.32 for validation period. 

Table 3-4: Summary of model efficiencies from previous studies 

Parameter Time scale NSE Remark 
Calibration Validation 

Flow 

Daily 0.62 0.60 (Setegn et al., 2008) 
Daily 0.64 0.63 (White et al., 2011) 
Daily 0.81 - (Easton et al., 2010) 

 

The results can be evaluated on the basis of the three criterion recommended by Van Griensven 

et al. (2012). These criterions are fitness to observations, fitness to reality and fitness to purpose. 

Fitness to observations refers to the difference between the observed and simulated values. 

Fitness to reality evaluates how well a model represents the physical process while maintaining 

parameters within their meaningful range and fitness to purpose accounts on how well certain 

watershed characteristics which the model output is needed to address are taken into 

consideration. 

Based on the model fitness to observations criteria models are considered fit if NSE >0.5 and 

RSR≤ 0.7, and if PBIAS is ±25% and ±55% for flow and sediment respectively for a monthly 

time step (van Griensven et al., 2012). Moriasi et al. (2007) indicated NSE between 0 and 1 are 
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generally viewed as acceptable.  In this perspective though the TSS simulations are acceptable it 

still falls short of fitness to purpose. The RSR and the PBIAS criterion are satisfied. Simulated 

flow satisfies the entire criterion for fitness to purpose including the dry season flow. PBIAS 

values tend to vary more, among different auto–calibration methods, during dry and wet years 

(Moriasi et al., 2007). The wet season flow is especially important as it carries the major 

proportion of the TSS into the lake. The PBIAS for flow indicates slight under estimation bias 

which will eventually degrade the TSS simulation outcome.  With respect to the model fitness to 

reality the parameter values are checked with respect to the recommended ranges and found to be 

all the parameters within range (Table 1). The average sediment yield is greater than 10 metric 

ton per ha which is within the estimated ranges of other studies (Hurni, 1988, Hawando, 1997, 

Tebebu et al., 2010).  The model fitness to purpose was the major criteria applied in assessing the 

usability of MODIS images generated TSS time series data. Despite a modest NSE for both 

calibration and validation (0.39 for calibration and 0.32 for validation) periods the model could 

bracket not more than 33% of the MODIS generated TSS data in the calibration period and 22% 

of it in the validation period.  Two major assumptions may have played a critical role in creating 

the “black holes”. The first assumption is that the regression equations used to generate the time 

series are stable over the last ten years. While the land cover and the economic activity in the 

watershed seems unchanged over the last ten years the factors affecting the optical characteristics 

of the water are far complicated than this.       

In assessing the link between land cover change and lake water quality the mean monthly EVI 

values for the watershed are compared with the TSS estimates from MODIS images. The EVI is 

the most sensitive biotic component of terrestrial ecosystems to alteration (Potter et al., 2003). 



 

These alterations follow the vegetation phenology on both the cultivated and fallow area.  

Agricultural activities are intense during the rainy season (June

agriculture fields are open for grazing. 

(i.e. increase in TSS) with a decline in EVI. 

Figure 3-5: Comparison of lake water 
of the rainy season where the EVI is at its lowest and declines with a pick in EVI

At the start of the rainy season TSS peaks as the loose soil is washed in to the streams after the 

first few rain events. By the time the EVI peaks the sediment concentration starts to sharply 

decline. It can also be seen that flow peaks often precedes EVI peaks. 
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These alterations follow the vegetation phenology on both the cultivated and fallow area.  

Agricultural activities are intense during the rainy season (June–August) and in the dry season 

agriculture fields are open for grazing. The plot in Figure 3-5 shows a decline in water quality 

(i.e. increase in TSS) with a decline in EVI.  

Comparison of lake water turbidity and EVI, turbidity starts to pick at the beginning 
of the rainy season where the EVI is at its lowest and declines with a pick in EVI

At the start of the rainy season TSS peaks as the loose soil is washed in to the streams after the 

n events. By the time the EVI peaks the sediment concentration starts to sharply 

decline. It can also be seen that flow peaks often precedes EVI peaks. This is consistent with 

previous findings which reported sediment peaks before flow peaks (Steenhuis et al., 2009

an increased biomass in the rainy season Long term water quality variation shows a decrease in 

EVI and an increase in turbidity. Trends of EVI and turbidity also support the ass

between the two in that while EVI is very slightly declining over the 10 years turbidity is 

increasing in a comparably slow but increasing trend. But this relation alone could not justify 

TSS = 0.06x - 1933.7
R² = 0.0644

EVI = -3E-06x + 0.344
R² = 0.0007
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n events. By the time the EVI peaks the sediment concentration starts to sharply 

This is consistent with 

Steenhuis et al., 2009).With 

an increased biomass in the rainy season Long term water quality variation shows a decrease in 

EVI and an increase in turbidity. Trends of EVI and turbidity also support the association 
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land cover as a driver for lake water quality. The lake water quality in association with the 

processes in the flood plain and the lake water level should be examined and incorporated in 

future modeling efforts.  

3.5 Conclusion 

In this study the emission of TSS from the Gumera watershed into Lake Tana was modeled using 

the SWAT hydrological model. The model was calibrated and validated with a modest 

performance. The simulation over a period of 10 years (2000–2009) allowed an estimation of the 

annual average emissions of TSS in to Lake Tana. Given the complicated sediment transport 

processes that are not fully understood, the data mining techniques applied in constructing the 

TSS time series and the short image time series used give modest results. Harmel et al. (2006) 

noted that the uncertainty in using manual single point random time grab sampling could be in 

excess of 50% and -5.3–4.4% due to the method used in sample analysis. For a satellite overpass 

during transient flow conditions on ground a much higher or lower than the day's mean TSS 

could be reported. The inability to incorporate the major landscape element (i.e. the flood plain) 

to the model adds up to the reduced accuracy in the model output. Van Griensven et al. (2012) 

showed such landscape elements may have large impact on the hydrological and nutrient cycle. 

Taking all possible combinations of source of uncertainty care should be taken in using 

regression statistics for model evaluation.  
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CHAPTER 4: APPLICATION OF MODIS IMAGES FOR SHORE 

AREA MONITORING AND BATHYMETRIC MODEL GENERATION 

Abstract 

A technique to map lake area is developed using the 250-m and 500-m resolution MODIS–Terra 

images and is tested over Lake Tana, Ethiopia where daily observed lake level data are available. 

Satellite based lake area estimates were obtained from two simple image calculation procedures: 

Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index 

(NDWI) enhanced NDVI (ENDVI). The area calculated from the images is compared with area 

estimates using existing bathymetry. The precision of both the ENDVI and NDVI area estimates 

was good but the accuracy was poor, suggesting the existing bathymetric model is not applicable 

for the near shore area where lake bottom depth are extrapolated. A new bathymetric model 

using MODIS images reproduced the water level with RMSE of 0.20 m as compared to 0.87 

using the existing bathymetric model.  Despite their unavailability on cloudy days, MODIS 

images can be a valuable tool for lake area mapping and can be used together with radar images 

to overcome the seasonal problems with cloud cover. 

4.1 Introduction 

Population increase and climatic change are putting an increasing pressure on the available water 

supply in the world requiring better management of our water resources (Ingram, 2008).  In order 

to manage water, especially in times of extremes such as droughts and floods, knowledge about 

the quantity of water and how this quantity will be distributed in the system is needed. While in 
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developed countries well maintained ground based methods can measure the “water status” in 

developing countries these systems fail due to limited financial and institutional capacity. The 

goal of this paper is to evaluate to what degree remotely sensed images can replace ground based 

storage characteristics measurements namely lake surface area and water level.  

Various remotely sensed images and image synthesis have been used to map lake area. White 

(1978) used Landsat–1 images to map reservoir area in New Mexico. Duane Nellis et al. (1998) 

observed temporal and spatial variation in Tuttle creek reservoir in Kansas using Landsat TM 

data. Liebe et al. (2005) used Landsat ETM+ images to measure lake surface area in Ghana. Ma 

et al. (2007) used 10 day synthesis SPOT/VEGETATION images to monitor change in Ebinur 

Lake area. Liebe et al. (2009) developed a method to monitor small reservoirs using ENVISAT 

ASAR† images along with the storage characteristics of the reservoirs. Radar images offer the 

advantage of image availability on cloudy days. However, these images require image processing 

skills and can be difficult to interpret due to partly submerged vegetation, the effect of Bragg 

scattering and adjacent flat smooth shorelines (Liebe et al., 2005). Temporal and spatial 

resolutions also affect the dependability of the images. ENVISAT ASAR, Landsat ETM+ and 

ASTER pass over only once every 16 days and are less suitable for flood forecasting for 

example. Moreover, the spatial resolution of these satellite products results in massive data 

volumes. Pax–Lenney and Woodcock (1997) have shown that coarse spatial resolution imagery 

is often a necessary trade–off in order to keep the data volumes reasonable and to allow 

sufficiently frequent temporal coverage. Hence, one needs a reliable method to extract accurate 

information from medium to low resolution image sources. 

                                                 
† Advanced Synthetic Aperture Radar 
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Finally, atmospheric correction applied on these images has become a major source of 

uncertainty. This is because different end users apply different algorithms for atmospheric 

correction. However, recently remotely sensed images have become available on daily bases that 

are uniformly corrected for atmospheric effects. One such achievement is the MODIS–Terra 

version–5 validated products.The MODIS–Terra version–5 images with its sweeping 2,330 km 

wide field of view (FOV) are designed to provide measurements in large–scale global dynamics 

including changes in Earth's cloud cover, radiation budget and processes occurring in the oceans, 

on land, and in the lower atmosphere. MODIS collects data for every point of the earth’s surface 

every 1–2 days in 36 discrete spectral bands. The spatial resolutions of MODIS bands are 250-m 

(bands 1, 2), 500-m (bands 3–7) and 1000-m (bands 8–36) (LPDAAC, 2010). The release of 

these products has alleviated the previous drawbacks since images of smaller data size with 

consistent atmospheric correction are made available daily. MODIS images provide the 

advantage of increased sensitivity (Hu et al., 2004). In addition, retrieval of MODIS images has 

been made easier with a web based interactive tool available to preview, select and re–project the 

images. The MODIS–Terra version–5 images incorporate quality rating products that include the 

cloud state, which are important when selecting images during the rainy season in which 

frequent heavy clouds overshadow the lake. We used these images to estimate the area of Lake 

Tana, Ethiopia where a significant amount of lake level data is also available. 

4.2 Study Area 

Lake Tana (Figure 4-1) is situated on the basaltic plateau of the north–western highland of 

Ethiopia (12° N, 37° 15’ E, and 1 800 m altitude) covering an area of over 3000 km2. The lake 
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drains a catchment area of 16,000 km2. Six permanent rivers and 40 small seasonal rivers feed 

the lake. The shallow lake is Ethiopia’s largest lake, containing half the country’s freshwater 

resources, and is the third largest in the Nile Basin (Vijverberg et al., 2009). A bathymetric 

survey undertaken in 2006 had shown that the lake has a maximum depth of 15 m and stretches 

65 km west–east and 74 km south–north (Ayana, 2007).The most pronounced advantage of Lake 

Tana is its storage characteristics, in that it store flow of the rainy season (June to September) for 

use in the remaining dry season. (Vijverberg et al., 2009).  The lake storage amounts to more 

than two times that of the five large reservoirs in Ethiopia†, rendering a relatively low cost per 

unit of utilizable water (Gebeyehu, 2004).  

 

Figure 4-1: MODIS 250m true colour image of Lake Tana and its catchment (13 June 2000). At 
the start of the rainy season large turbid plume is flowing in to the lake turning the shore and 
stream entry locations to reddish brown, raising the water reflectance. 
                                                 
† Gilgel Gibe, Koka, Finchaa, Amerti, and Melka Wakena, provides an aggregate storage capacity of about 4.4 
billion m3 
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4.3 Materials and Methods 

4.3.1 Lake bathymetry and area  

A bathymetric model relates the water level to the water surface area at that water level. Ayana 

(2007) developed the bathymetric model for Lake Tana in 2006.  The model was derived from 

the interpolation of 4424 depth measurements using the kriging interpolation method (Burrough 

et al., 1998). The interpolation fits to test points with R2 of 0.98 and resulted in the following 

relationship: 

1.1774101.1108106 32736 +×+×−×= −−− AAAH                Equation 4-1 

where H is the water surface elevation in meters at the given lake surface area A (in square 

meters) (Ayana, 2007).  

Depth measurements were restricted to one kilometre from the lake shore due to depth limits for 

instrument operation and boat access, necessitating extrapolation of the lake bottom surface for 

locations beyond the survey line. As the result the error variance around the lake shore was 

estimated to be as high as 2.50 meters (Ayana, 2007). Lake levels for the 2000–2006 times span 

were obtained from the Ministry of Water Resources (MoWR), Ethiopia. 

4.3.2 Image data  

Two distinct sets of MODIS–Terra version–5 images of 250-m and 500-m resolution were 

downloaded. The images incorporate quality rating products, including the cloud state, which is 

important when selecting images during the rainy season when frequent heavy clouds 

overshadow the lake (LPDAAC, 2010). To obtain a wide spread in measured areas we used a 
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measured lake level data plot when selecting MODIS images. The first set of eighteen images 

downloaded coincided with high and low lake levels during the 2000–2006 time spans. In order 

to improve the near lake shore bathymetry we selected a second set of 47 images between 2002 

and 2003 at which time the lake level is at its lowest.    In this set, two to five images were 

selected for each month maintaining a five to nine day interval except during months in the rainy 

phase of the monsoon when MODIS images were not usable due to cloud cover over the lake. 

For each image bands, 1, 2, and 6 were used; Band 1 is the red band spanning 620–670 nm, band 

2 is a near infrared (NIR) band spanning 841–876 nm and band 6 is a short wave infrared 

(SWIR) band spanning 1628–1652 nm. 

4.3.3 Data analysis 

Two simple metrics (or indices) and a supervised classification are used to determine lake 

surface area at several lake level stages. The potential of the improved MODIS image data sets to 

map lake area is assessed using thresholds of: Normalized Difference Vegetation Index (NDVI), 

and NDWI enhanced Normalized Difference Vegetation Index here in after referred to as 

Enhanced NDVI (ENDVI).  

Metric 1: Normalized Difference Vegetation Index (NDVI): is a measure of the degree of 

greenness in the vegetation cover of a land surface and can therefore effectively discriminate 

between clear water and land surface including  papyrus (Cyperus papurus)  (Adam and 

Mutanga, 2009). The NDVI is derived from reflectance measurements in the red (band 1) and 
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near infrared bands (band 2) centred at 645nm and 858nm, respectively. The NDVI is calculated 

as†: 

c��d = (_`a(�_����(_`a(�_���� = (_��<���_��<�
�(_��<���_��<�
�     Equation 4-2 

NDVI values range from -1 to 1, with values near zero corresponding to un-vegetated land and 

values approaching 1 corresponding to dense vegetation.  Because water absorbs strongly in the 

infrared, the NDVI for water is generally negative.  In this study, a pixel is designated ‘water’ if 

the NDVI is less than zero (Tucker, 1979). 

The advantage of the NDVI is that it only requires two bands and is therefore simple to use. In 

the literature (Rees, 2001) it has been noted, however, that the reliability of the NDVI in 

estimating the lake surface is affected  by sediment in the water.  Sediment increases the 

reflectance in both the red and IR and can complicate the discrimination (Ma et al., 2007).  This 

could be even more of a problem with submerged vegetation which would elevate the reflectance 

in the IR. Lake Tana has sediment in the water at the start of the rainy season when the lake level 

is at its lowest and the loose soil at the shores is washed into the lake water near the shore. Re–

suspension of the sediment at the shore will also be increased by the inflowing sediment rich 

flood waters from the rivers. 

Metric 2: Enhanced NDVI (ENDVI): In order to overcome the shortcoming of NDVI for 

sediment rich water, an enhancement procedure is introduced that uses bands 2 an 6 (as 

expressed in the Normalized Difference Water Index, NDWI) to distinguish between land and 

turbid water when the NDVI is positive.  The NDWI is a satellite–derived index from the NIR 

                                                 
† ρband refers to reflectance of a given band, for example ρRed refers to reflectance from red band 



 

(band 2, 858 nm) and short wave infrared

NDWI is calculated as: 

c�hd = (_`a(�_��a(�(_`a(�_��a(� =
According to the ENDVI metric a

the NDWI is greater than zero. Thus,

ENDVI = if (NDVI<0, “water

The work flow diagram (Figure 4

Figure 4-2: Work flow for area estimation
83 

(band 2, 858 nm) and short wave infrared (SWIR) (band 6, 1240 nm) (Gao, 1996

�� = (_��<���_��<���(_��<���_��<���    Equation 

a pixel is assigned to ‘water’ if the NDVI is less than zero and 

Thus, 

water” else if NDWI>0, “water” else “land”) Equation 

4-2) summarizes the processes applied in the method.

: Work flow for area estimation 

Gao, 1996) channels. The 

Equation 4-3 

less than zero and 

Equation 4-4 

) summarizes the processes applied in the method. 
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Supervised classification consists of two processes, training and classification. Supervised 

classification uses information about the known distribution of classes to initiate the process 

(Rees, 2001). In this work, two classes are defined “Water” and “Land” based on the 

characteristics of user-supplied samples of water and land in each image. In this study, the 

maximum likelihood classification algorithm within ENVI, an image processing tool, is used in 

the classification process. The maximum likelihood classification assumes that spectral values of 

training pixels are normally distributed according to a multivariate normal (Gaussian) probability 

density function. Each pixel is assigned to the class to which it is most likely to belong based on 

the probability distribution of the training data. Two dimensional scatter plots of the red (band 1) 

and near infrared bands (band 2) are used in ENVI to identify the training pixels for the 

supervised classification. 

4.3.4 Comparison of satellite based methods 

The NDVI, ENDVI and supervised classification had resulted in six maps for each selected 

image in 250 m and 500 m resolutions. The areas derived using these images were compared to 

the areas obtained from the bathymetric model (Equation 4-1) using the lake level data for the 

image date.   The residual variance (RMSE) and coefficient of determination (R2) between the 

area from the bathymetric model and from the metrics (NDVI and ENDVI) were used to 

evaluate the accuracy of the methods. 

4.4 Results and discussion 

Lake surface areas extracted from MODIS images and the corresponding lake areas obtained 

from the bathymetric model (Equation 4-1) are shown on Table 4-1. The lake level (column 2) is 
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the measured gauge level at the selected date for which the images are analyzed. In the next 

columns (columns 4–9) the areas mapped using NDVI (Equation 4-2), ENDVI (Equation 4-3) and 

supervised classification are shown for both the 250m and 500m resolution images. 
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Table 4-1: Comparison of image–mapped lake surface area and the area determined from the storage characteristic curve 

Image 

Date 

Lake water 
level at 

image date, 
m 

Area, bathymetric model km2 

 (Equation 4-1) 

Area from MODIS image 
NDVI NDWI enhanced NDVI Supervised Classification 

250m 500m 250m 500m 250m 500m 

10-Sep-00 1787.52 3087 3024 3005 3025 3004 3054 3014 
16-Sep-00 1787.58 3091 3032 3015 3037 3016 3025 2971 
17-Sep-01 1787.46 3082 3034 3026 3027 3024 3053 3026 
20-Sep-01 1787.46 3082 3013 2985 3005 2983 3073 2980 
21-Sep-01 1787.50 3085 3010 2992 3010 2986 3098 3017 
22-Sep-01 1787.47 3083 3032 3012 3032 3010 3069 3032 
22-Sep-02 1786.41 3001 3010 2981 3010 2978 3004 2943 
24-Sep-02 1786.42 3002 2962 2935 2962 2931 3003 2880 
10-Jun-03 1784.32 2822 2944 2943 2946 2940 2849 2797 
12-Jun-03 1784.40 2830 2942 2943 2944 2940 2862 2817 
26-Sep-03 1786.62 3017 2983 2947 2982 2980 3027 2759 
28-Sep-03 1786.64 3019 3003 2984 3003 2980 3010 2993 
9-Jun-04 1784.89 2873 2960 2958 2962 2956 2945 2971 
4-Oct-05 1786.50 3011 3003 2986 3003 2980 3012 2926 
7-Oct-05 1786.54 3012 3011 2989 3011 2986 2536 3041 
10-Oct-05 1786.53 3010 2988 2971 2990 2966 2146 2517 
15-Jun-06 1784.88 2873 2916 2901 2921 2897 1921 2222 
16-Jun-06 1784.87 2872 2945 2933 2950 2928 2291 2725 
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Table 4-2: Correlation between lake area derived from MODIS images and the storage 
characteristics curve 

Method NDVI ENDVI Supervised Classification 

Image Resolution 250m 500m 250m 500m 250m 500m 

RMSE, km2 

High lake level 47 66 48 66 286 177 
Low lake level 84 80 86 79 457 277 

Overall accuracy 

RMSE, km2 67 130 66 76 352 215 
R2 0.81 0.61 0.83 0.64 0.23 0.27 

 

 

Figure 4-3:Correlation between bathymetric model and image mapped lake surface area (a) 
250m images and (b) 500m images 

Areas mapped from NDVI and ENDVI are compared with surface areas determined from the 

bathymetric model of the lake. The image–based reservoir area using ENDVI correlates slightly 
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better with the bathymetry–based reservoir area (R2 = 0.83) (Figure 4-3(a)) than the NDVI (R2 = 

0.81) (Figure 4-3(b)).  

 
 

 
 

Figure 4-4:A scatter plot of the NIR versus red bands, ordinary image classification methods 
(e.g. supervised classification used here) often fail to overcome shortcomings in image quality 
due to contamination. In the September 22, 2002 image the classification more accurate due to 
the clean image where as in the October 10, 2005 image defective pixels are classified as two 
classes (seen in cyan and turquoise colours) 
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Supervised classification did not perform well (Figure 4-4). Using all the 18 images, the 

supervised classification resulted in an R2 value of 0.23 for the 250m and 0.27 with the 500m 

resolution. The poor correlation was due primarily to contaminated pixels (Figure 4-4). The 

supervised classification outperforms the metrics when applied to clean images (e.g. 10 Sept. 

2000; 17 Sept. 2001; 22 Sept. 2002; 10 June 2002; 12 June 2003; 28 Sept. 2003; and 4 Oct. 

2004) with an R2 of 0.92 and 0.87 for 250m and 500m resolution respectively. 

The metrics also performed differently at higher ( ≥1786.5m) and lower (< 1786.5m) water 

levels and also at different image resolutions (Table 4-2). At higher lake levels both metrics 

resulted in comparable results while at lower water levels both methods are found to be less 

sensitive to image resolution. The overall accuracy of the metrics is only marginally improved 

after enhancement using the ENDVI, although the enhancement of the NDVI maps using NDWI 

renders them less sensitive to change in image resolution. Generally the ENDVI metric is less 

sensitive to image resolution in that with increased resolution (from 500 to 250m) the resulting 

improvement in RMSE is only 13% while for the NDVI metric 49% is obtained (Table 4-2). It is 

important to note here that the improvement in accuracy resulted in a fourfold increase in data 

volume and hence one should make a compromise between acceptable level of accuracy and 

costs associated with data storage issues. 

Despite the good agreement as measured by R2 between the bathymetric model and the satellite 

derived products, estimates of Lake area differed significantly (Table 4-1). MODIS NDVI and 

ENDVI area estimates for lake levels below an elevation of 1786m4 were less than levels from 

the bathymetric model estimated area with Equation 4-1. Area estimates from MODIS are 

consistently larger than estimates using Equation 4-1 for lake water levels above 1786m. Thus 

                                                 
4 All elevations in meters above mean sea level 
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the precision of the measurements between the NDVI and ENDVI methods with the bathymetric 

survey derived data was good but the accuracy was poor. In this section we will examine why the 

area estimates do not agree. To do this we selected 47 images in the period from January 2002 to 

December 2003 where the lake level decreased by over 2.50m. The 2002 images were used to 

derive the bathymetric model and the 2003 images are used to validate the accuracy of the model 

by calculating back the lake level. A new bathymetric model is generated using the ENDVI 

metric mapped lake surface area and the measured lake level of the image date.   

Table 4-3: Calibration (2002) and validation (2003) of MODIS derived near shore bathymetric 
model 

Date 
Measured 
level 

Estimated 
level using 
existing 
bathymetric 
model 

Area 
Estimate 
from 
MODIS 

Estimated level 
using MODIS 
modified 
bathymetric 
model 

Error5 

∆1 ∆2 

(1) (2) (3) (4) (5) (6) (7) 

23-Jan-02 1786.53 1786.83 3034.20 1786.50 -0.30 0.03 
30-Jan-02 1786.52 1786.82 3033.29 1786.48 -0.30 0.04 
4-Feb-02 1786.45 1786.69 3023.20 1786.28 -0.24 0.17 

10-Feb-02 1786.38 1786.68 3022.07 1786.25 -0.30 0.13 
15-Feb-02 1786.33 1786.74 3027.06 1786.35 -0.41 -0.02 
20-Feb-02 1786.32 1786.64 3018.69 1786.18 -0.32 0.14 
24-Feb-02 1786.3 1786.75 3027.87 1786.37 -0.45 -0.07 
7-Mar-02 1786.16 1786.59 3014.93 1786.11 -0.43 0.05 

16-Mar-02 1786.08 1786.50 3007.64 1785.96 -0.42 0.12 
8-Apr-02 1785.87 1786.50 3007.69 1785.96 -0.63 -0.09 

22-Apr-02 1785.74 1786.52 3009.62 1786.00 -0.78 -0.26 
29-Apr-02 1785.66 1786.57 3013.22 1786.07 -0.91 -0.41 
8-May-02 1785.66 1786.46 3004.74 1785.90 -0.80 -0.24 

14-May-02 1785.45 1786.15 2980.11 1785.39 -0.70 0.06 
21-May-02 1785.4 1786.24 2987.08 1785.54 -0.84 -0.14 
11-Jun-02 1785.24 1786.32 2993.79 1785.67 -1.08 -0.43 

5-Jun-02 1785.32 1786.42 3001.52 1785.83 -1.10 -0.51 
26-May-02 1785.42 1786.37 2997.39 1785.75 -0.95 -0.33 

2-Jul-02 1785.38 1786.21 2984.61 1785.48 -0.83 -0.10 
16-Jul-02 1785.44 1786.03 2969.86 1785.18 -0.59 0.26 

                                                 
5 ∆1 and ∆2 refers to lake level estimate error using the existing and modified bathymetric model respectively 
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7-Nov-02 1786.32 1786.67 3021.54 1786.24 -0.35 0.08 
30-Nov-02 1786.15 1786.63 3017.99 1786.17 -0.48 -0.02 
25-Nov-02 1786.19 1786.58 3014.45 1786.10 -0.39 0.09 

5-Dec-02 1786.08 1786.46 3004.68 1785.90 -0.38 0.18 
11-Dec-02 1786.06 1786.53 3010.10 1786.01 -0.47 0.05 
16-Dec-02 1786.02 1786.58 3014.61 1786.10 -0.56 -0.08 
21-Dec-02 1785.98 1786.39 2999.59 1785.79 -0.41 0.19 
30-Dec-02 1785.88 1786.49 3007.21 1785.95 -0.61 -0.07 
17-Jan-03 1785.76 1786.49 3007.15 1785.95 -0.73 -0.19 
26-Jan-03 1785.67 1786.49 3006.83 1785.94 -0.82 -0.27 
2-Feb-03 1785.64 1786.46 3004.42 1785.89 -0.82 -0.25 
9-Feb-03 1785.56 1786.44 3003.56 1785.87 -0.88 -0.31 
3-Mar-03 1785.42 1786.21 2984.45 1785.48 -0.79 -0.06 

25-Feb-03 1785.43 1786.41 3000.66 1785.81 -0.98 -0.38 
16-Feb-03 1785.52 1786.41 3000.61 1785.81 -0.89 -0.29 
26-Mar-03 1785.18 1786.15 2980.21 1785.39 -0.97 -0.21 
18-Mar-03 1785.24 1786.21 2984.78 1785.49 -0.97 -0.25 
10-Mar-03 1785.32 1786.22 2985.79 1785.51 -0.90 -0.19 

2-Apr-03 1785.08 1786.12 2977.05 1785.33 -1.04 -0.25 
13-Apr-03 1785.07 1785.79 2949.95 1784.77 -0.72 0.30 
20-Apr-03 1784.98 1785.91 2959.93 1784.98 -0.93 0.00 

20-May-03 1784.74 1785.79 2949.89 1784.77 -1.05 -0.03 
11-May-03 1784.8 1785.70 2942.81 1784.63 -0.90 0.17 
29-Apr-03 1784.91 1785.83 2953.81 1784.85 -0.92 0.06 

29-May-03 1784.66 1785.75 2947.10 1784.72 -1.09 -0.06 
8-Jun-03 1784.64 1785.84 2954.56 1784.87 -1.20 -0.23 

21-Jun-03 1784.59 1785.64 2938.03 1784.53 -1.05 0.06 
 

The modified equation for the shore area is given by: 

3.17240205.0 += AH     Equation 4-5 

The new bathymetric model suggested a linear surface around the lake shore in contrast to the 

cubic polynomial fitted by the initial model (Figure 4-5).  The accuracy of the new bathymetric 

model is validated by estimating the lake water level (Table 4-3) using lake area from 2003 

images. The RMSE for such water level estimate using the new MODIS derived bathymetric 

model is reduced to 0.20 from 0.87 using the initial bathymetric model. The area estimate by the 

bathymetric survey is much smoother as one would expect when the points are extrapolated from 
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smooth lake bottom. The measurements of the bathymetric survey (that were taken to 

approximately 1km off the shoreline) do not overlap with the satellite derived images.  

 

 

Figure 4-5:a) Comparison of measured and estimated lake levels using January 2002 to 
December 2003 MODIS images b) Near shore bathymetry generated from MODIS images was 
capable of capturing lake water level more accurately than existing bathymetric model 
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In Figure 4-5(b) the area estimated from MODIS images and by the bathymetric survey is plotted 

as a function of the lake level.  The new bathymetry (Figure 4-5) suggested a steep bank just 

offshore from approximately 1784.5m to 1786.5m elevation and then a shelf that has a slight 

slope. During the wet season, as the velocity of the incoming water breaks abruptly at entry to 

the lake, the sand settles at the shore. The remaining silt load remains in suspension and spreads 

slowly into the lake. With the longer water residence time (Kebede et al., 2006) part of the silt 

load then settles over a larger area forming a relatively flatter bottom. 

4.5 Conclusion 

The use of MODIS–Terra version–5 images as a tool for lake area mapping offers the advantages 

of higher temporal resolution and reduced data size. The higher temporal resolution enables an 

analysis of short term, yet significant changes in lake area and monitoring of coastal areas. 

Further investigations must be carried out to assess to what lake size the MODIS images are 

capable to map area. At the beginning of the rainy season where the lake level is at its lowest, the 

effect of exposed lake shore vegetation compounds with the sediment plume and degrades the 

accuracy of the methods. Combined with the easy retrieval tools available and the simple 

mapping techniques that we tried to demonstrate in this research, the potential of MODIS–Terra 

version–5 images to monitor lake area is high. There is a high correlation between lake areas 

predicted by MODIS and from the bathymetric survey indication that the MODIS area estimates 

are consistent in time. The bathymetric survey of Ayana (2007) did not measure the depth of the 

lake within 1 km from the shore because of inaccessibility of the shore and therefore the satellite 

derived water level lake area relation is likely more accurate than the bathymetric survey. 
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A major drawback with MODIS images is cloud contamination. However the metrics (i.e., 

NDVI and ENDVI) used are found to be foolproof for images slightly contaminated by cloud as 

compared to the commonly applied classification algorithms (e.g. supervised classification). 

Monitoring is more critical during the rainy season as the lake area varies abruptly due to high 

inflow from streams draining to the lake.  But this may be difficult due to high cloud cover over 

the lake. Therefore, radar images will be an ideal substitute during such gaps. Methods 

developed using ENVISAT ASAR images have resulted in a coefficient of correlation as high as 

0.95 (Liebe et al., 2009). However, MODIS images have proved to be increasingly important 

resources in resource mapping because these data are robust, inexpensive, simple to use, and 

provide frequent synoptic coverage.  
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CHAPTER 5:  MONITORING STATE OF BIOMASS RECOVERY IN 

THE BLUE NILE BASIN USING IMAGE BASED DISTURBANCE INDEX  

Abstract 

The heavy dependence of the Ethiopian rural population on natural resources, particularly land, 

to maintain their livelihood is an underlying cause for the degradation of land and other natural 

resources. The Ethiopian highlands, which are the center of major agricultural and economic 

activities, have been eroding for many years. Various actors have undertaken reforestation 

programs with an aim to mitigate the land degradation problem; however, the status of these 

plantations has never been evaluated at a basin scale. The image based disturbance index (DI) 

measure the status of the ecosystem on the basis of the ratio of long-term enhanced vegetation 

index (EVI) and the land surface temperature (LST). This study applied the DI to assess the 

current state of biomass in the upper Blue Nile basin with a focus on areas where degradation 

mitigation measures are implemented through reforestation campaigns. The DI maps are 

validated through field visits on 19 selected sites and inventory data obtained from WFP over 

five sites. The results showed that the largest expansion of plantations has taken place in five sub 

basins and is between 6 to 8.5% of the sub basin area with expansion in the remaining eleven sub 

basins ranging from 3 to 5%.  Despite the very low annual rate of expansion it can be concluded 

that the mitigation measures implemented through reforestation campaigns contribute to the total 

recovered forest area. 
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5.1 Introduction 

Land degradation is a major problem in Ethiopia. It takes place in the form of soil erosion, gully 

formation, soil fertility loss and severe soil moisture stress, which is partly the result of loss in 

soil depth and organic matter (Hagos et al., 1999). The excessive dependence of the Ethiopian 

rural population on natural resources, particularly land, as a means of livelihood is an underlying 

cause for land and other natural resources degradation (Bekele, 2008). Agriculture accounts for 

45 percent of the gross domestic product (GDP), 85 percent of export revenue and 80 percent of 

employment (EPA, 1997). The demand for farm land, timber, fuel wood and grazing lands drives  

the overexploitation of forest resources (Gebremedhin et al., 2003) in the Ethiopian highlands 

where the bulk of the population lives. As a consequence the Ethiopian highlands have 

experienced accelerated soil erosion for many years.  

The annual soil erosion in Ethiopia ranges from 16 tons/ha/yr to 300 tons/ha/yr depending 

mainly on the slope, land cover, and rainfall intensities (Hawando, 1997, Tebebu et al., 2010). A 

reclamation study by the Food and Agriculture Organization (FAO) estimated the degraded area 

on the highlands at 27 million ha of which 14 million hectares is very seriously eroded with 2 

million hectares of this having reached a point of no return (Constable and Belshaw, 1986). High 

population growth and the need for further agricultural expansion into marginal areas of fragile 

soils or critical habitats for biodiversity will lead to significant environmental degradation and 

deterioration of resilience for future environmental shocks unless intervention measures are 

introduced (Jagger and Pender, 2003). 

With an aim to mitigate land degradation problems in Ethiopia, the federal and local 

governments and various NGO’s have undertaken soil and water conservation measures.  World 
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Food Program (WFP) “Project 2488”, Managing Environmental Resources to Enable Transitions 

to More Sustainable Livelihoods (MERET) project,  the Millennium “one man two tree” 

campaign, and other similar initiatives are part of the ambitious soil and water conservation 

efforts that have been made by the Ethiopian government (Nedessa and Wickrema, 2010). Some 

studies show that by the mid 1980s, nearly 180,000 hectares had been afforested and 460,000 

hectares had been treated through soil conservation practices (Admassie, 1998),  together 

amounting to 5% of the area in the highlands requiring conservation (Shiferaw and Holden, 

1999).  

5.2 Review of the Disturbance theory 

The capacity of the landscape to sustain biomass longer is an important marker of its state of 

degradation. Such capacity can be improved by measures such as increasing organic matter, 

deeper plow depth (in agricultural fields), conservation of water on the landscapes and better 

drainage infrastructure (in waterlogged areas). In this research context, biomass longevity refers 

to the landscape’s ability to support the growth of vegetation that has been put in place through 

past reforestation campaigns. Such plantings are sustainable only when there is enough water 

available for photosynthesis and human interference is controlled. These plantations avoid 

further degradation by reducing rainfall impact and interrupting surface runoff. Because of the 

cooling effect of vegetation on the ground, soil evaporation is reduced, and infiltration is 

facilitated, making more water available for the increased biomass. 

The evaluation of the state of biomass can be made by quantifying biomass disturbance 

trajectories using vegetation indices (Michener and Houhoulis, 1997, Ruiz and Garbin, 2004, Jin 

and Sader, 2005, Van Leeuwen, 2008, Ferreira et al., 2010, Spruce et al., 2010). Here, the image 
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based DI tool suggested by Mildrexler et al. (2007) is used to assess the trend in the area 

expansion of these plantations. The method is used to assess the status of the biomass on the 

basis of the ratio of long-term enhanced vegetation index (EVI) and the land surface temperature 

(LST) as measured by Moderate Resolution Imaging Spectroradiometer (MODIS). 

Vegetation indices and land surface temperature are the most vulnerable biotic and abiotic 

components, respectively, of a terrestrial ecosystem to detectable alteration during disturbance 

events (Mildrexler et al., 2007). The EVI, which is sensitive to vegetation changes, is calculated 

from red, near infrared, and blue bands (Huete et al., 2002).  

q�d = 0 × (NO���rj�(NO����×�rj��	×�$nr���   Equation 5- 1 

 

where NIR, Red and Blue are surface reflectance at the respective bands, L is the canopy 

background adjustment factor, C1, C2 are the coefficients of the aerosol resistance term, 

L=1, C1=6, C2=7.5 are coefficients in the EVI algorithm and G (gain factor)=2.5 (Huete et al., 

1994, Huete et al., 1997). 

Vegetated areas generally yield high EVI values as they reflect more in NIR but low in the 

visible band.  More importantly LST is strongly related to vegetation density due to the cooling 

effect of the vegetation through latent heat transfer (Coops et al., 2009). Thus higher vegetation 

density results in lower land surface temperature. Capitalizing on these phenomena, long term 

measurements in the form of remotely sensed images can be used to see the temporal change in 

the biomass in the larger spatial extent of the river basin. Causes for disturbance should however 

be properly identified. 
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There are various causes for changes in biomass that result in positive or negative disturbances. 

Drought and wildfire are major stressors that affect forest ecosystem functioning and processes 

(Van Leeuwen, 2008). A number of studies have mapped fire disturbance using the EVI (Coops 

et al., 2009, Forzieri et al., 2010). Disease, geological incidences (land slide, volcano etc), 

infrastructure expansion, resettlement and clear cutting also cause positive disturbance. 

Vegetation recovery due to reforestation and irrigation result in negative disturbance values.  

 

Figure 5-1: The disturbance index plot (Mildrexler et al., 2007) explains the undergoing process; 
instantaneous events (e.g. wild fire) causes a sharp decline of biomass and a recovery taking 
place over extended time  

Disturbances may also be short lived or prolonged (Figure 5-1). The usual cycle of cropping and 

harvesting cause increased EVI and reduced LST at peak vegetation season followed by reduced 

EVI and increased LST at harvest. On the other hand drought, disease and urbanization result in 

prolonged reduction in the EVI and thereby an increase in LST for longer duration. Thus the 

length of prevalence of the disturbance index tells the type of phenomena causing the disturbance 
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(positive or negative). Seasonal increases or decreases in DI that occur, mainly due to vegetation 

phenology, fall within an explainable range of variability. 

Various image sources are available for use in the DI calculation. Although high spatial 

resolution satellite images may offer a more detailed view of land surfaces, their limited area 

coverage and temporal sampling have restricted their use to local research rather than large scale 

monitoring (Ruiz and Garbin, 2004). To be used for regional scale studies, the high spatial 

resolution images require significant image processing skills. For example using Landsat 

TM/ETM images for vegetation monitoring in the upper Blue Nile basin requires the mosaicking 

of 17 image tiles, applying geometric correction, radiometric normalization and transformation, 

cloud screening, and atmospheric correction. The fact that the images are not taken on the same 

dates further complicates the atmospheric correction making these images challenging for use by 

professionals with limited remote sensing data processing skills. On a regional scale and in 

heterogeneous environments, such as the Blue Nile region, moderate resolution images are 

preferred over finer resolution images for their reduced data volume, processing requirement and 

increased temporal coverage. Ruiz and Garbin  (2004) used AVHRR 8 km images to estimating 

the burn area for tropical Africa. Coops et al. (2009) and Mildrexler et al. (2009) applied 

Moderate Resolution Imaging Spectrophotometer (MODIS) images to monitor a large swath of 

area in Northern America. In this study archives of satellite data from MODIS are used. Despite 

their relatively coarse resolution these images have been successfully used to study vegetation 

cover change at regional to global scales (Hill et al., 2008). MODIS images provide the 

advantages of high temporal resolution, smaller data volume and require minimum technical skill 

for analysis. More importantly, in using MODIS images, much of the uncertainty associated with 

atmospheric corrections can be avoided. 
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The objective of this research is to evaluate the state of the conservation measures in the upper 

Blue Nile basin which are put in place through reforestation campaigns using the DI computed 

with MODIS images. The resulting DI maps are validated through field visits to areas flagged by 

the analysis and independent inventory data from WFP. The expected outcome of this study is a 

measure of the total recovered area, spatial distribution of the recovered areas within the basin 

and the recovery trend. As equivalent tools are currently nonexistent, the results of this research 

will help decision makers to apply similar methods to monitor the recovery trend of biomass in 

conserved areas for the future. It will also help to identify location of areas in which reforestation 

has been successful so as to recommend those practices for scaling up at a river basin scale. 

5.3 Method and materials 

5.3.1 Study area 

The Blue Nile is located between 16° 2’ N and 7° 40’ N latitude, and 32° 30’ E and 39° 49’ E 

longitude (Figure 5-2). It has an estimated area of 311,437 sq. km (Yilma and Awulachew, 

2009).  The Blue Nile Basin (Abbay), with a total area of about 200,000 square kilometers (20% 

of Ethiopia‘s land mass), and accommodating 25% of the population, is one of the most 

important river basins in Ethiopia. About 40% of agricultural products and 45% of the surface 

water of the country are contributed by this basin (Erkossa et al., 2009). The Blue Nile represents 

about 8% of the total Nile catchment area but contributes about 60% of the flow of Nile at 

Aswan, Egypt. A highland plateau, steep slopes adjoining the plateau that tilt to the west and the 

western low lands with gentler topography characterizes the Basin. The steep slopes and the 

plateaus extend from 1700m (Bahir Dar) to 4000 m (North east highlands) above sea level. 

Geologically the basin is comprised of 32% exposed crystalline basement, 11% sedimentary 
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formations and 52% volcanic formations. The dominant soil texture is Vertisol, covering about 

15% of the Basin (Gebrehiwot et al., 2011). The Blue Nile basin has a short rainy season that 

that extends from March to May, a main rainy season that extends from June to September and a 

dry season extending from October to February. The rainfall within the basin shows high 

seasonality with the peaks in July. The annual rainfall in the Blue Nile ranged from 880 to 2200 

mm (Taye and Willems, 2012). 

 

Figure 5-2: Upper Blue Nile basin (also called Abbay Basin) and selected ground validation sites 
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5.3.2 Methodology 

5.3.2.1 DI map development 

The DI map is developed by computing the ratio of annual maximum composite LST and EVI on 

a pixel by pixel basis, such that: 

�d1 = ���6��� ��O6���⁄∑ (������ ��O���⁄ �;;;;;;;;;;;;;;;;;;;;;;;;;6B
     Equation 5- 2 

 

where DIi is the Disturbance Index (DI) value for year i, LSTimax is the annual maximum eight-

day composite LST for year i, EVIimax is the annual maximum 16-day EVI for year i, LSTmax is 

the multiyear mean of LSTmax up to but not including the analysis year (i−1) and EVImax is the 

multiyear mean of EVImax up to but not including the analysis year (i−1). The DI is a 

dimensionless value that, in the absence of disturbance, approaches unity. 

The annual LSTmax and EVImax values are computed for each of the 10 years (2003-2012) and the 

LSTmax for each year is then divided by the corresponding EVImax value on a pixel-by-pixel 

basis, resulting in a ratio of LSTmax to EVImax from 2003 to 2012. These annual DI layers are 

then divided by the long-term average of the index for that pixel, averaged over all previous 

years. For example the DI for the year 2005 is calculated as the ratio of LSTmax to EVImax of 

2005 divided by the multiyear mean for the years previous to 2005 (i.e. mean of 2003 and 2004). 

Any DI values within the range of natural variability will be considered as having undergone no 

change; whereas, pixels outside of this central range are flagged as subject to disturbance. 



106 
 

The biophysical relationship outlined by Nemani and Running (1997) is also tested for validity. 

For each land cover type the annual maximum LST and EVI raster are produced and the mean of 

the raster values recorded as mean-maximum LST and mean-maximum EVI. 

5.3.2.2 Identifying disturbed areas  

Coops et al. (2009) recommends values within ±1 standard deviation of the long term mean be 

considered as within the natural variability range.  Both instantaneous (fire, disease and the like) 

and prolonged (drought, urbanization and the like) phenomena extend out of this natural range of 

variability. Therefore a departure higher than ±1 standard deviation will be flagged as potential 

disturbance areas. The ability of the calculated DI to capture these phenomena should be verified 

by a field survey in strategically selected flagged areas. In addition the validation work involves 

the compilation and thorough review of ancillary data collected from organizations 

implementing reforestation campaigns. 

5.3.3 Data 

5.3.3.1 Image and vector data 

MODIS images of eight day maximum LST (MOD11A2) and 16-day EVI (MOD13A2) products 

from 2002 to 2010 are downloaded. The ISLSCP II MODIS IGBP6 Land Cover (Friedl et al., 

2010) data is used to stratify mean-maximum LST and EVI over the study area.   The data 

consists of 18 land cover types with water, forest Shrub land, savanna, cropland, built-up, snow 

and barren land as main categories. Vector data layers are used extract the DI values to analyze 

biomass recovery patterns at sub basins level. The disturbed area (Positive or negative) for the 16 

                                                 
6 International Satellite Land – Surface Climatology Project, Initiative II MODIS  International Geosphere – 
Biosphere Program 
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sub basins is extracted and the total area calculated for each sub basin on a year by year basis. 

Boundaries for validation sites are manually digitized and imported into a handheld GIS.  

5.3.3.2 Field data 

Based on the DI map generated, nineteen sites were selected and field campaigns were carried 

out to compare the DI map results with actual ground conditions, to verify the type and extent of 

the disturbance and peasants’ perception of the different conservation measures. Semi-structured 

interviews with key informants were conducted at several households. Focus group discussions 

were held to facilitate information exchange on the environmental impact of the disturbance 

areas and the overall participation of the community in initiating, undertaking and sustaining the 

gains. 

5.3.3.3 Ancillary data for validation  

Ancillary data includes details on watershed conservation and micro irrigation projects within the 

basin.  As irrigated areas certainly add to the negatively disturbed area (which may wrongly be 

considered as recovered areas) the field validation campaigns helps in identifying irrigated areas 

and exclude them from the area calculation of recovered areas.  

The data on conservation work with in the basin is obtained from agricultural bureaus of Amhara 

region and WFP MERET project (Figure 5-3). The ancillary data includes list of location, areas 

and time of implementation of plantations (Appendix D, Table D1–5). The land covers where the 

SWC works concentrate are assumed to be those where no existing agricultural activity takes 

place. Thus water bodies, grasslands, permanent wetlands, croplands and urban/built-up areas are 

masked out.  On the remaining land cover types, the areas showing biomass recovery trends are 
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taken to be pixels with DI values less than one standard deviation from the long-term mean. The 

total recovering area is then calculated for the 16 sub basins in the 2004 – 2012 time span. The 

proportion of the recovering area to the sub basin area is used to standardize the results and for 

ease of comparison. 

 

Figure 5-3: Districts of community managed watershed projects in Amhara region, five of the 
districts are used to validate the DI maps, Source: MERET project, 
https://sites.google.com/site/meretproject04/ (visited November 2012) 
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5.4 Result and discussion 

5.4.1 Validity of disturbance trajectory 

Figure 5-4 shows the biophysical relationship between mean-maximum LST and mean-

maximum EVI for the 2003-2012 dataset. The figure depicts the disturbance trajectory for the 

different ISLSCP II MODIS IGBP land cover types (Appendix D, Tables D1–2 and D1–3). 

 

Figure 5-4: Biophysical relationship between mean-maximum EVI and LST (2003-2012), higher 
land surface temperature is associated with low biomass due to lower latent heat transfer. Land 
surface temperature on barren, open shrub, savanna and woody savanna peaked in 2011 with 
reduced EVI 

The mean-maximum LST and mean-maximum EVI are strongly negatively correlated with 

higher LST associated to low biomass due to lower latent heat transfer. This validates the 

hypothesis that the energy balance relationship for the land cover grouping is related to the 
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disturbance trajectory. High mean-maximum LST values are not anomalies, instead are effect of 

fire seasonally set to clear agricultural fields and stimulate growth. As the fire removes all 

biomass the evaporative cooling potential diminishes and albedo increases due to a blackened 

surface (Running, 2008). 

5.4.2 Biomass recovery trend 

The long term (i.e. ten years) average DI for the selected land cover classes was 1.47 and for the 

whole basin was 1.53 with standard deviations 0.64 and 0.69, respectively. The threshold value 

for one standard deviation below long term mean is thus 0.83 (i.e. 1.47 – 0.64). Field visits 

helped to identify that the majority of the areas identified as spots of biomass recovery are 

plantations initiated by the previous government after the 1984 drought. Eucalyptus tree 

dominate plantations with considerable mix of coniferous tree and some indigenous trees in the 

central and south east of the basin. This is in agreement with the national statistics in that out of 

the reported 161,000 ha that the state planted up to the year 1989 Eucalyptus accounts for more 

than  55% (EFAP, 1994). 

Table 1 shows the area of recovered biomass for the years 2008 – 2012, reclassified based on the 

threshold given as proportion of the sub basin area. Taking Lake Tana sub basin as an example 

the results for 2008 and 2012 can be interpreted. In 2008 1.3 percent of the sub basin area had 

LST to EVI (i.e. DI) ratio, which is less than one standard deviation to the long term DI, whereas 

in 2012 the area expanded to 3.5 percent of the sub basin area. The results of the DI analysis 

showed a negative biomass recovery trend for 12 out of the 16 sub basins. North Gojjam, Dabus, 

Rehad and Tana basins showed a positive biomass recovery trend.  
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Table 5-1: Biomass recovery trend (2008 – 2012) as percentage of area ((ha/ha)×100) recovered 
at sub basin level (Appendix D, Figure D1–1) 

NAME 

08 09 10 11 12 

Area proportion with DI below 1 
standard deviation of the long term 

mean 

Anger 1.4 1.2 2.5 2.2 0.7 

Beles 1.3 0.3 1.9 0.5 0.9 

Beshelo 4 8.5 2.7 2.1 2.3 

Dabus 1.3 0.7 2 1.7 2 

Didessa 1.1 4 4 1.4 0.9 

Dinder 1.7 0.3 2 0.4 0.5 

Fincha 3.7 3.5 5.6 2.5 1.8 

Guder 1.5 1.3 8.4 1.1 1.2 

Jemma 4.4 3.8 6 5.2 2.7 

Muger 3.3 1.5 6.9 4.4 1.5 

North Gojjam 1.1 2.1 5.2 1.8 4.4 

Rahad 0.6 0.2 1.4 0.8 0.4 

South Gojjam 2.6 1.7 3.5 2.8 1.6 

Tana 1.3 2.7 2 2.2 3.5 

Welaka 5.8 2.8 3.9 2.6 2.3 

Wenbera 1.4 0.7 0.8 1.5 0.8 

 



112 
 

 

Figure 5-5: a) Sub basins (b – e) DI maps for 2008 – 2012, green areas are recovering areas; 
irrigated land adjacent to the Blue Nile River (Sudan) appears as a recovering area due to the 
year round high biomass availability due to adequate water supply and energy availability for 
photosynthesis 

(e) (f) 

(a) (b) 

(c) (d) 
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The five sub basins with largest biomass recovery are Muger, Dabus, Weleka, Dinder and Beles. 

The recovered areas represent 6 to 7% of the sub basins. Fincha, Wenbera, Tana, South Gojjam 

and Anger sub basins are least recovering with recovered areas of 3 to 4%. The total basin level 

biomass recovery is 2% as of 2012. The annual recovered area is in a declining trend in all the 

sub basins except Tana and North Gojjam sub basins. The positive trend in these two sub basins 

may be explained by the steady increase in irrigated land at Koga irrigation (Tana sub basin) 

scheme which expands to 6,000 ha towards the end of 2011 (Eguavoen and Tesfai, 2012). In 

North Gojjam sub basin a considerable expansion of commercial eucalyptus plantations have 

been observed during the field visit. 

5.4.3 Comparison with ancillary data 

Plantations initiated after the 1984 famine have become the dominant features of the Ethiopian 

highland landscapes. With a relatively longer protection the plantations survive deforestation 

except in the case of those plantations planned for fuel wood consumption. The plantation 

campaigns are aimed at dislodging farmers from steep slope areas and cover the land with 

plantation. In 80% of the field validation sites visited farmers responded that planning was not 

participatory. In all of these plantations community participated against their will and often times 

land for plantation is acquired by evicting farmers plowing the steep slopes. Bewket and Sterk 

(2002) reported similar observations. Recent SWC works had implemented a different approach 

in that the activities are undertaken as a community managed SWC projects. Even though the 

outcome of these conservation works cannot be seen on the DI analysis output as in the case of 

the large plantations undertaken by the previous government comparison of reported recovered 

area is found to be consistently identical with over all biomass recovery trend of the sub basins in 

which these projects are situated Figure 5-6.  



114 
 

 

Figure 5-6: Biomass recovery trend in five community managed watersheds supported by 
MERET project since 2003 are compared with the biomass recovery trend in their respective sub 
basin with similar biomass recovery trajectories observed at both scales. 

Recovered area statistics of five watersheds in two sub basins as recorded by WFP are compared 

with the DI maps for the sub basins where these watersheds are located.  Four watersheds are in 

Meket, Tenta, Ambassel, and Mekdela provinces located within Beshelo sub basin and one 

watershed in Goncha province which is located in the North Gojjam sub basin (Figure 5-6). The 

total recovered area in these watersheds showed similar trend (Figure 5-7) to their respective sub 

basin.  The low level of total recovered area in 2008 in the sub basins is identical to the total 

recovered area in the provinces. 
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Figure 5-7: The trend in total recovered area of Beshelo and North Gojjam sub basins determined 
from the DI analysis was identical to the biomass recovery trend reported by community 
managed SWC trend in five community managed watersheds supported by MERET project since 
2003 are compared with the biomass recovery trend in their respective sub basin with similar 
biomass recovery trajectories observed at both scales. The cumulative area is expressed as the 
percentage of the sub basin area. 

5.5 Conclusion 

Tracking state of biomass recovery trend is necessary step in evaluating the effectiveness of 

SWC measures. The DI tool was previously tested on continental US using two years of MODIS 

EVI and LST products (2003 – 2004). It was difficult to represent the range of natural variability 

using two years data. In this research ten years (2003 – 2012) data was used in applying the tool 

to monitor state of biomass in the Blue Nile River basin. As the result disturbance detection of 

ecosystems with high inter annual variability is improved and false disturbance detection are 

minimized.   The DI maps can be also be easily updated with additional year of data. 

Nonetheless precaution should be made in interpreting the maps. With number of irrigation 

projects under implementation it is also important to note that inflated biomass recovery figures 

may result. The interpretation on the index should thus be further rectified by masking out 

irrigation land. The major limitation of the method is its shortfall in detecting small scale and 
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fragmented SWC works. This shortfall is attributed to the coarser resolution EVI and LST data 

availability. Such SWC works are typical in community managed watersheds and should be 

quantified in some way. Additional steps are required to apply the method for use in small scale 

SWC using finer resolution images.  

The implementation strategy of the plantations determines their sustainability. The top-down 

approach in the past did not bring about significant results. Plantations are often associated with 

subsidence of the ground water level mainly manifested by drying up of local springs. The 

current community managed SWC approach is instrumental in uprooting past oversight and 

instate a participatory approach. The investment returns of the new approach are yet to be seen in 

the future. The cost – benefit analysis of investment on SWC should incorporate the change in 

soil composition, water availability, production of woody biomass, and crop and horticultural 

productivity. In this regard the DI can be applied as a typical tool to measure the production of 

woody biomass.  
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CHAPTER 6: CONCLUSION 

6.1 Major findings 

In this dissertation we investigate the possibility of using Moderate Resolution Imaging 

Spectroradiometer (MODIS) products for water resources management.  We explore its use in 

measuring sediment concentrations in lakes, in determining lake surface area and in assessing the 

degree of degradation of the land surface in the Blue Nile Basin.  In addition, we use a 10-year 

sediment data series inferred from MODIS imaginary to calibrate sediment predictions using the 

SWAT model. MODIS images provide the advantage of increased sensitivity, reduced data 

volume, near daily availability and easy retrieval. Consistent atmospheric correction is applied to 

MODIS images. This avoids the uncertainty due to the use of varying atmospheric correction 

algorithms applied by users.  

In general MODIS images could represent the sediment concentration in Lake Tana well (based 

on the statistical measures) as long as the turbidity was greater than 60NTU.  We found that total 

Dissolved Solids (TSS) and turbidity were linear functions of the NIR band and Secchi depth 

was exponentially related to the NIR.  

Using the calibrated relationship of TSS and NIR in Lake Tana a 10 year historic record of 

sediment concentration was constructed.  SWAT-VSA was used to simulate these 

concentrations. Since the sediment concentration in the lake was about 100 times lower than in 

the river 20 km upstream of the lake we concluded that channel erodibility and the sediment 

transport coefficients were the most significant in modeling the lake sediment concentrations. 
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Overall Nash–Sutcliff efficiencies were, in the range of 0.3 to 0.4 indicating that more research is 

needed in using watershed models in simulating the lake sediment concentration.  

In exploring MODIS images application for water volume estimation, comparison was made 

between lake area estimate from MODIS images and that of the existing bathymetric map using 

lake level measurements as a validation parameter. We found that the MODIS estimates 

appeared to be more accurate than existing bathymetric survey.  Traditional bathymetric maps 

extrapolate bottom elevations to the inaccessible shores without taking the near shore shelf of 

sediment deposition into consideration.  A method is proposed to refine the near shore 

bathymetric survey with data obtained from simultaneous measurements of lake area (from 

MODIS) and lake level.  

Applying the energy interaction based vegetation classification approach for quantifying land 

degradation at basin scale was found to be a promising tool that can be easily updated with 

additional years of data.  Previous methods of determining biomass at river basin scale was 

traditionally done by applying classification algorithms to satellite images of selected time 

intervals (often a decade) that essentially is based on statistical inference. This dissertation 

research showed that energy interaction fundamentals based vegetation classification is more 

realistic than statistical aggregations.  

6.2 Sources of uncertainty 

Like any other physical measurements satellite data are not immune from uncertainties. These 

uncertainties may arise from sensor degradation, change in atmospheric correction algorithm or 

combinations of these. As the satellites age sensors onboard also gets degraded (Wang et al., 

2012). Most of the time sensor degradation effects are eliminated by adjusting the image 
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production process as new version of a data begins to be released. For example present studies 

show that the sensor degradation in MODIS had resulted a 0.001 – 0.004 Yr-1 decline in NDVI 

(Wang et al., 2012). Other uncertainties may originate from the object being imaged. Reflectance 

characteristic of water for example is very complex that established regression equations may 

quickly become obsolete. This necessitates planning of a sampling routine for regular updating 

of the equations. 

6.3 Future prospects for using satellite imagery in water resources 

monitoring 

Some of the data collection missions in line for launch include Global Precipitation measurement 

(GPM7), Soil Moisture Active Passive (SMAP8), Surface Water Ocean Topography (SWOT9), 

Cold Regions Hydrology High-resolution Observatory (CoReH2O) and Gravity Recovery and 

Climate Experiment (GRACE II10). GPM mission is an international network of satellites that 

provide global observations of rain and snow. With its capability to measure light rain and falling 

snow (< 0.5 mm hr-1) in middle and high latitudes GPM provides further improvement over the 

existing Tropical Rainfall Measuring Mission (TRMM). SMAP will provide global soil moisture 

measurements which will be used to study processes that link the water, energy and carbon 

cycles. SWOT mission is designed to cover the world’s ocean and freshwater bodies with 

repeated high resolution elevation measurements giving observation in water volumes in rivers 

lakes and wetlands. CoReH2O is intended to improve modeling and prediction of water balance 

and streamflow in snow and glacier covered basins, water and energy cycles at high latitudes 

                                                 
7 http://pmm.nasa.gov/GPM  
8 http://smap.jpl.nasa.gov/mission/  
9 http://swot.jpl.nasa.gov/mission/  
10 http://www.csr.utexas.edu/grace/  
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through high resolution observations of freshwater stored as snow (Rott et al., 2010). GRACE II 

has become instrumental to model the relative amount of water stored near the surface and 

underground by detecting changes in Earth’s gravity. With these missions the use of remotely 

sensed data in water resources modeling will ever expand and consequently present 

shortcomings in spatial, temporal, spectral and radiometric resolutions will also improve. 

However uncertainties in using image derived data in hydrologic modeling should be addressed 

in further detail. 
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APPENDIX A: CHAPTER TWO 

Appendix A1:  

Table A1- 1: Calibration data sets for Total suspended solids11 

November 27, 2010 

X Y 
Reflectance 
(NIR band) 

Reflectance 
(Red band) TSS (mg/l) 

334536 1316787 0.0549 0.0784 70 
334561 1317015 0.0357 0.0849 10 
335226 1317558 0.1036 0.0811 180 
335584 1317525 0.0313 0.0954 10 
335995 1317248 0.1016 0.0862 150 
336406 1316922 0.0320 0.1006 20 
337127 1316783 0.0483 0.0990 50 
337762 1316817 0.1130 0.1057 240 
338095 1316887 0.0344 0.1042 20 
338337 1316846 0.0391 0.1022 30 
338462 1316507 0.0391 0.1022 30 
338805 1316212 0.0402 0.1001 50 
339114 1316332 0.0428 0.0988 60 
339599 1316484 0.0444 0.0943 70 
340062 1316838 0.0559 0.0988 70 
340534 1317310 0.0868 0.1065 135 
340739 1317836 0.0361 0.1032 20 
341261 1318446 0.0419 0.1029 30 
341568 1318966 0.0385 0.1053 20 
341851 1319554 0.0477 0.1068 40 
341996 1319909 0.0418 0.1070 40 
342471 1321109 0.0372 0.1070 20 
342639 1321877 0.0336 0.1083 10 
342792 1322846 0.0352 0.1083 20 
342799 1323557 0.0331 0.1089 10 
342795 1324309 0.0318 0.1082 10 
342702 1325102 0.0329 0.1071 10 
342513 1326048 0.0283 0.1051 10 

                                                 
11 Only measured values used in the calibration are provided 
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342476 1326931 0.0532 0.1001 60 
343074 1326921 0.0712 0.1041 90 
343904 1327079 0.0373 0.1089 20 
344508 1327741 0.0360 0.1093 30 
345436 1328420 0.0816 0.0810 130 
345763 1328889 0.0664 0.0942 100 
346170 1329836 0.0405 0.1108 40 
346324 1330338 0.0420 0.1132 30 
346316 1331065 0.0397 0.1125 30 
346321 1330771 0.0397 0.1125 30 
346309 1331068 0.0397 0.1125 40 
346626 1331894 0.0376 0.1124 30 
347278 1332416 0.0379 0.1112 20 
347732 1333217 0.0421 0.1134 40 
348046 1333851 0.0453 0.1104 50 
348325 1334519 0.0686 0.0941 100 
348406 1335158 0.0480 0.1160 40 
May 13, 2011 

336656 1319735 0.0335 0.151 10 
334851 1317479 0.0306 0.1403 10 
334597 1316916 0.0328 0.1378 30 
341834 1325582 0.0396 0.155 30 
338290 1321686 0.0393 0.1508 30 
340075 1323579 0.0433 0.1501 30 
345055 1329060 0.0485 0.1356 40 
345670 1330293 0.0454 0.1376 50 
346800 1331547 0.0528 0.1288 70 
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Table A1- 2: Validation data set for Total suspended solids (collected on November 7, 2011) 

X Y 
Reflectance 
(NIR band) 

Measured 
TSS 
(mg/l) 

Predicted 
TSS 
(mg/l) 

333323 1310045 0.0312 11 10 
334967 1317882 0.0323 14 20 
336337 1317934 0.0327 15 20 
333819 1309893 0.0330 15 20 
338854 1318653 0.033 15 10 
334465 1309575 0.0335 17 30 
335705 1317983 0.0336 17 30 
335231 1309332 0.0337 17 30 
336743 1310684 0.0357 22 30 
336760 1311043 0.0374 26 40 
336627 1311377 0.0374 26 40 
336300 1312007 0.0387 29 40 
335927 1312517 0.0390 30 50 
334576 1317780 0.0391 30 40 
338322 1317789 0.0393 30 50 
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Table A1- 3: Calibration data sets for turbidity 

November 27, 2010 

X Y 
Reflectance 
(NIR band) 

Reflectance 
(Red band) 

Turbidity 
(NTU) 

334561 1317015 0.0357 0.0849 73.9 
335226 1317558 0.1036 0.0811 307.5 
338095 1316887 0.0344 0.1042 68.0 
338462 1316507 0.0391 0.1022 81.0 
338805 1316212 0.0402 0.1001 83.0 
340062 1316838 0.0559 0.0988 97.0 
340534 1317310 0.0868 0.1065 274.0 
341261 1318446 0.0419 0.1029 88.1 
341568 1318966 0.0385 0.1053 74.7 
341851 1319554 0.0477 0.1068 98.0 
341996 1319909 0.0418 0.1070 85.0 
342476 1326931 0.0532 0.1001 104.7 
343074 1326921 0.0712 0.1041 194.6 
343904 1327079 0.0373 0.1089 61.4 
345436 1328420 0.0816 0.0810 172.0 
345763 1328889 0.0664 0.0942 176.2 
346170 1329836 0.0405 0.1108 84.7 
346324 1330338 0.0420 0.1132 88.4 
346316 1331065 0.0397 0.1125 69.0 
346321 1330771 0.0397 0.1125 65.0 
346309 1331068 0.0397 0.1125 84.3 
346626 1331894 0.0376 0.1124 64.0 
347278 1332416 0.0379 0.1112 61.0 
347732 1333217 0.0421 0.1134 73.0 
348046 1333851 0.0453 0.1104 71.0 
348325 1334519 0.0686 0.0941 119.4 
348406 1335158 0.0480 0.1160 79.4 
May 13, 2011 
337712 1321032 0.0344 0.1522 67.0 
336270 1319358 0.0332 0.1522 67.5 
337264 1320423 0.0326 0.1532 67.9 
336656 1319735 0.0335 0.1510 69.8 
334597 1316916 0.0328 0.1378 74.0 
341834 1325582 0.0396 0.1550 79.4 
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338290 1321686 0.0381 0.1525 80.6 
338822 1322264 0.0397 0.1528 81.7 
340967 1324634 0.0409 0.1541 84.4 
339207 1322669 0.0400 0.1528 87.6 
342467 1326670 0.0419 0.1517 88.6 
340075 1323579 0.0446 0.1512 93.2 
345055 1329060 0.0460 0.1393 96.2 
345670 1330293 0.0454 0.1376 98.1 
346305 1331291 0.0494 0.1317 106.0 
343545 1327333 0.0508 0.1357 119.0 
346800 1331547 0.0528 0.1288 120.0 
344312 1328096 0.0531 0.1320 122.0 
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Table A1- 4: Validation data set for turbidity (collected on November 7, 2011) 

X Y 
Reflectance 
(NIR band) 

Measured 
Turbidity 

(NTU) 

Predicted 
Turbidity 

(NTU) 
331468 1309487 0.0297 45.2 56.4 
334990 1314511 0.0299 45.8 58 
332765 1309988 0.0300 46.2 57 
331785 1309755 0.0302 46.8 59 
333323 1310045 0.0312 50.0 63 
334967 1317882 0.0323 53.5 67 
336337 1317934 0.0327 54.8 64 
333819 1309893 0.0330 55.8 64 
338854 1318653 0.033 55.8 67 
334465 1309575 0.0335 57.4 63 
335705 1317983 0.0336 57.7 71 
335231 1309332 0.0337 58.0 69.8 
336743 1310684 0.0357 64.5 72.6 
336627 1311377 0.0374 69.9 76 
336760 1311043 0.0374 69.9 73 
336300 1312007 0.0387 74.1 77.2 
335927 1312517 0.0390 75.0 75 
334576 1317780 0.0391 75.4 76 
338322 1317789 0.0393 76.0 81 
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Table A1- 5: Calibration data sets for Secchi depth 

November 27, 2010 

X Y 
Reflectance 
(NIR band) 

Reflectance 
(Red band) 

Secchi 
depth (m) 

348046 1333851 0.1479 0.1104 0.08 
346626 1331894 0.1036 0.1124 0.1 
346316 1331065 0.0712 0.1125 0.12 
346321 1330771 0.0816 0.1125 0.12 
346309 1331068 0.1016 0.1125 0.12 
347732 1333217 0.1130 0.1134 0.12 
346324 1330338 0.0686 0.1132 0.14 
335120 1314836 0.0868 0.0702 0.14 
347278 1332416 0.1036 0.1112 0.14 
345436 1328420 0.0549 0.0810 0.17 
346170 1329836 0.0664 0.1108 0.17 
344985 1327826 0.0532 0.0823 0.18 
342513 1326048 0.0444 0.1051 0.19 
342245 1326526 0.0453 0.1055 0.19 
343904 1327079 0.0477 0.1089 0.19 
344131 1327440 0.0480 0.1076 0.19 
345763 1328889 0.0559 0.0942 0.19 
343074 1326921 0.0465 0.1041 0.2 
338462 1316507 0.0372 0.1022 0.21 
341851 1319554 0.0397 0.1068 0.21 
342234 1320410 0.0402 0.1064 0.21 
342639 1321877 0.0418 0.1083 0.21 
342795 1324309 0.0421 0.1082 0.21 
342476 1326931 0.0460 0.1001 0.21 
344508 1327741 0.0483 0.1093 0.21 
340534 1317310 0.0385 0.1065 0.22 
340062 1316838 0.0379 0.0988 0.24 
341261 1318446 0.0391 0.1029 0.24 
341568 1318966 0.0397 0.1053 0.24 
341996 1319909 0.0397 0.1070 0.24 
342792 1322846 0.0419 0.1083 0.24 
342702 1325102 0.0428 0.1071 0.24 
339599 1316484 0.0376 0.0943 0.25 
336406 1316922 0.0344 0.1006 0.27 
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338095 1316887 0.0360 0.1042 0.27 
339114 1316332 0.0376 0.0988 0.27 
342471 1321109 0.0405 0.1070 0.27 
342799 1323557 0.0420 0.1089 0.27 
335995 1317248 0.0342 0.0862 0.29 
338337 1316846 0.0361 0.1022 0.29 
340739 1317836 0.0391 0.1032 0.29 
334536 1316787 0.0318 0.0784 0.3 
334561 1317015 0.0320 0.0849 0.3 
337762 1316817 0.0357 0.1057 0.3 
334839 1316255 0.0313 0.0653 0.31 
335226 1317558 0.0331 0.0811 0.31 
337127 1316783 0.0352 0.0990 0.31 
338805 1316212 0.0373 0.1001 0.31 
334889 1317431 0.0329 0.0811 0.32 
335584 1317525 0.0336 0.0954 0.32 
334717 1315785 0.0283 0.0679 0.34 
May 13, 2011 
346800 1331547 0.0528 0.1288 0.145 
343545 1327333 0.0508 0.1357 0.160 
344312 1328096 0.0531 0.1320 0.160 
345670 1330293 0.0454 0.1376 0.170 
339207 1322669 0.0400 0.1528 0.175 
342467 1326670 0.0419 0.1517 0.175 
340075 1323579 0.0446 0.1512 0.180 
346305 1331291 0.0494 0.1317 0.180 
345055 1329060 0.0460 0.1393 0.190 
340967 1324634 0.0409 0.1541 0.200 
334597 1316916 0.0328 0.1378 0.205 
338290 1321686 0.0381 0.1525 0.205 
338822 1322264 0.0397 0.1528 0.205 
341834 1325582 0.0396 0.1550 0.215 
337264 1320423 0.0326 0.1532 0.225 
336270 1319358 0.0332 0.1522 0.240 
337712 1321032 0.0344 0.1522 0.245 
333896 1313483 0.0314 0.1461 0.285 
334157 1314120 0.0312 0.1461 0.290 
333062 1311931 0.0331 0.1634 0.320 
333576 1312922 0.0313 0.1563 0.335 
333277 1312361 0.0309 0.1572 0.340 
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Table A1- 6: Validation data set for Secchi depth (collected on November 7, 2011) 

X Y 
Reflectance 
(NIR band) 

Measured 
Secchi depth 
(m) 

Predicted 
Secchi depth 
(m) 

331785 1309755 0.0302 0.26 0.24 
332765 1309988 0.0300 0.26 0.27 
333323 1310045 0.0312 0.26 0.24 
333819 1309893 0.0330 0.25 0.23 
334224 1316705 0.0029 0.37 0.35 
334364 1317572 0.0058 0.35 0.32 
334465 1309575 0.0335 0.25 0.27 
334576 1317780 0.0391 0.24 0.27 
334725 1315693 0.0040 0.36 0.34 
334788 1316112 0.0048 0.36 0.3 
334894 1313555 0.0014 0.37 0.34 
334967 1317882 0.0323 0.26 0.27 
334990 1314511 0.0299 0.26 0.24 
335052 1314899 0.0007 0.38 0.35 
335178 1313195 0.0005 0.38 0.35 
335231 1309332 0.0337 0.25 0.27 
335583 1312923 0.0029 0.37 0.35 
335705 1317983 0.0336 0.25 0.26 
335927 1312517 0.0390 0.24 0.21 
336300 1312007 0.0387 0.24 0.21 
336337 1317934 0.0327 0.25 0.26 
336585 1309267 0.0027 0.37 0.36 
336627 1311377 0.0374 0.24 0.21 
336743 1310684 0.0357 0.25 0.27 
336760 1311043 0.0374 0.24 0.23 
337388 1317525 0.0003 0.38 0.34 
338322 1317789 0.0393 0.24 0.27 
338854 1318653 0.033 0.25 0.27 
339162 1320012 0.0023 0.37 0.36 
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APPENDIX B: CHAPTER THREE 

Appendix B1:  

Figure B1- 1: Topography (top) and soil topographic index (bottom) maps 
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Figure B1- 2: HRUs (top) and land use (bottom) 
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Table B1- 1: TSS time series used in SWAT-VSA model 

 
Month 

Flow 
(m3/s) 

TSS (mg/l) from 
MODIS images 

W
a
rm
–
u
p
 p
er
io
d
 

Jan-00 4.38 173.6 

Feb-00 2.74 197.41 

Mar-00 1.89 238.12 

Apr-00 2.66 97.98 

May-00 1.87 112.3 

Jun-00 13.36 107.44 

Jul-00 107.51 204.06 

Aug-00 172.2 207.96 

Sep-00 53.66 178.96 

Oct-00 48.08 88.27 

Nov-00 13.2 55.04 

Dec-00 5.43 45.13 

C
a
li
b
ra
ti
o
n
 p
er
io
d
 

Jan-01 3.26 62.64 

Feb-01 2.02 62.21 

Mar-01 1.8 168.92 

Apr-01 1.38 154.26 

May-01 1.88 152.98 

Jun-01 14.65 143.99 

Jul-01 92.67 300.97 

Aug-01 137.8 244.05 

Sep-01 57.89 195.95 

Oct-01 14.11 151.93 

Nov-01 6.14 146.95 

Dec-01 3.83 101.11 

Jan-02 2.92 122.17 

Feb-02 2.11 83.66 

Mar-02 2.07 215.99 

Apr-02 1.79 190.84 

May-02 1.24 203.63 

Jun-02 23.79 390.03 

Jul-02 91.69 478.87 

Aug-02 155.66 632.06 

Sep-02 80.29 364.23 

Oct-02 12.73 191.90 

Nov-02 7.06 76.07 
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Dec-02 5.36 47.89 

Jan-03 3.98 56.14 

Feb-03 3.24 57.11 

Mar-03 3.29 132.81 

Apr-03 2.48 159.65 

May-03 2.35 149.18 

Jun-03 14.48 387.01 

Jul-03 89.95 916.65 

Aug-03 174.63 916.37 

Sep-03 156.33 569.09 

Oct-03 46.86 335.56 

Nov-03 8.29 300.13 

Dec-03 5.3 300.04 

Jan-04 3.81 261.60 

Feb-04 3.24 352.12 

Mar-04 2.66 252.61 

Apr-04 3.09 548.35 

May-04 2.49 496.42 

Jun-04 9.46 775.54 

Jul-04 77.13 607.80 

Aug-04 104.72 1051.45 

Sep-04 52.67 412.95 

Oct-04 20.53 392.65 

Nov-04 8.19 331.00 

Dec-04 5.45 286.51 

Jan-05 4.02 217.60 

Feb-05 3.3 187.48 

Mar-05 3.63 312.42 

Apr-05 2.63 364.98 

May-05 3.45 316.94 

Jun-05 13.93 431.79 

Jul-05 75.3 498.97 

Aug-05 119.49 704.49 

Sep-05 129.77 325.74 

Oct-05 40.01 260.64 

Nov-05 9.04 248.33 

Dec-05 5.88 193.37 

Jan-06 4.28 207.38 

Feb-06 3.49 266.87 
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Mar-06 3.32 280.87 

Apr-06 3.28 346.97 

May-06 6.59 437.56 

Jun-06 17.34 444.13 

Jul-06 88.99 532.00 

Aug-06 213.63 259.82 

Sep-06 142.39 247.06 

Oct-06 24.36 246.75 

Nov-06 9.52 234.88 

Dec-06 5.79 258.91 

C
a
li
b
ra
ti
o
n
 p
er
io
d
 

Jan-07 4.05 230.49 

Feb-07 2.84 195.27 

Mar-07 2.48 222.56 

Apr-07 2.2 304.98 

May-07 3.6 493.01 

Jun-07 44.2 440.63 

Jul-07 114.49 386.07 

Aug-07 145.94 285.02 

Sep-07 169.87 292.91 

Oct-07 29.86 247.09 

Nov-07 10.79 139.96 

Dec-07 7.53 147.86 

Jan-08 4.38 164.10 

Feb-08 2.74 236.80 

Mar-08 2.41 292.33 

Apr-08 4.74 411.15 

May-08 6.62 492.72 

Jun-08 39.1 582.58 

Jul-08 158.11 472.24 

Aug-08 229.45 328.16 

Sep-08 106.92 350.37 

Oct-08 13.75 231.19 

Nov-08 13.36 187.56 

Dec-08 7.53 246.61 

Jan-09 4.38 178.61 

Feb-09 2.84 233.09 

Mar-09 2.48 237.95 

Apr-09 2.2 252.17 

May-09 3.21 377.48 
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Jun-09 4.4 406.49 

Jul-09 108.32 339.61 

Aug-09 204.92 473.76 

Sep-09 87.44 439.72 

Oct-09 23.63 250.56 

Nov-09 13.8 220.66 

Dec-09 7.53 239.02 
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Table B1- 2: Output of sensitivity analysis in SWAT 

Parameter Rank Mean 
Ch_N2 1 4.130 
Spcon 2 3.720 
Cn2 3 2.780 
Alpha_Bf 4 1.700 
Spexp 5 0.949 
Usle_P 6 0.425 
Esco 7 0.393 
Ch_K2 8 0.324 
Surlag 9 0.226 
Sol_Awc 11 0.133 
Sol_K 13 0.098 
Gwqmn 14 0.087 
Canmx 15 0.074 
Gw_Delay 18 0.042 
Revapmn 19 0.022 
Epco 20 0.018 
Gw_Revap 21 0.015 
Sol_Alb 22 0.013 
Ch_Cov 33 0.000 
Ch_Erod 33 0.000 
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Table B1- 3: SWAT calibration parameters (Arnold et al., 2007) 

Parameter Explanation 

Flow 

CN2 Moisture condition II curve number 
ALPHA_BF Base flow recession constant 
GW_DELAY Delay time for aquifer recharge 
GWQMN Threshold water level in shallow aquifer for base flow 
GW_REVAP Groundwater re-evaporation coefficient 
ESCO Soil evaporation compensation coefficient 
EPCO Plant uptake compensation factor 
CH_N2 Manning’s n for main channel 
CH_K2 Effective hydraulic conductivity of channel (mm/hr) 
SOL_AWC Available water capacity (mm) 
SOL_K Saturated hydraulic conductivity (mm/hr) 
SOL_ALB Moist soil albedo 
CANMX Maximum canopy storage 

REVAPMN 
Threshold water level in shallow aquifer for base flow 
(mm) 

SURLAG Surface runoff lag coefficient 

USLE_C 
Minimum value for the cover and management factor 
for the land cover 

Sediment 

SPCON Coefficient in sediment transport coefficient 
SPEXP Exponent in sediment transport equation 
CH_COV Channel cover factor 
USLE_P USLE support practice factor 
CH_EROD Channel erodibility factor (cm/hr/Pa) 
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APPENDIX C: CHAPTER FOUR 

Appendix C1:  

Table C1- 1: Comparison of lake area estimates using MODIS NDVI (250m) and Storage 
characteristic curve 

Date 
Lake water 

Level (MoWE) 

Lake area from 
MODIS NDVI 

(250m) 

Lake area from 
Storage 

Characteristics curve 
10-Sep-00 1787.52 3025 3086 
16-Sep-00 1787.58 3037 3091 
17-Sep-01 1787.46 3036 3082 
20-Sep-01 1787.46 3015 3082 
21-Sep-01 1787.50 3010 3085 
22-Sep-01 1787.47 3032 3083 
22-Sep-02 1786.41 3004 3001 
24-Sep-02 1786.42 2962 3002 
10-Jun-03 1784.32 2946 2822 
12-Jun-03 1784.40 2944 2830 
26-Sep-03 1786.62 2982 3017 
28-Sep-03 1786.64 3003 3019 

9-Jun-04 1784.89 2973 2873 
4-Oct-04 1786.50 3003 3008 
7-Oct-05 1786.54 3011 3011 

10-Oct-05 1786.53 2995 3010 
15-Jun-06 1784.88 2921 2872 
16-Jun-06 1784.87 2950 2872 
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Table C1- 2: Comparison of lake area estimates using MODIS NDVI (500m) and Storage 
characteristic curve 

Date 
Lake water Level 

(MoWE) 

Lake area from 
MODIS NDVI 

(500m) 

Lake area from 
Storage 

Characteristics curve 
10-Sep-00 1787.52 3004 3087 
16-Sep-00 1787.58 3016 3091 
17-Sep-01 1787.46 3024 3082 
20-Sep-01 1787.46 2983 3082 
21-Sep-01 1787.50 2986 3085 
22-Sep-01 1787.47 3008 3083 
22-Sep-02 1786.41 2973 3001 
24-Sep-02 1786.42 2924 3002 
10-Jun-03 1784.32 2940 2822 
12-Jun-03 1784.40 2940 2830 
26-Sep-03 1786.62 2942 3017 
28-Sep-03 1786.64 2981 3019 

9-Jun-04 1784.89 2956 2873 
4-Oct-04 1786.50 2981 3008 
7-Oct-05 1786.54 2986 3011 

10-Oct-05 1786.53 2966 3010 
15-Jun-06 1784.88 2897 2873 
16-Jun-06 1784.87 2928 2872 

 

 

 

 

 

 

 

 

 

 



145 

 

Table C1- 3: Comparison of lake area estimates using MODIS ENDWI (250m) and Storage 
characteristic curve 

Date 

Lake water 
Level 

(MoWE) 

Lake area from 
MODIS 

ENDWI (250m) 

Lake area from 
Storage 

Characteristics curve 
10-Sep-00 1787.52 3025 3087 
16-Sep-00 1787.58 3037 3091 
17-Sep-01 1787.46 3036 3082 
20-Sep-01 1787.46 3015 3082 
21-Sep-01 1787.50 3010 3085 
22-Sep-01 1787.47 3032 3083 
22-Sep-02 1786.41 3010 3001 
24-Sep-02 1786.42 2962 3002 
10-Jun-03 1784.32 2946 2822 
12-Jun-03 1784.40 2944 2830 
26-Sep-03 1786.62 2982 3017 
28-Sep-03 1786.64 3003 3019 

9-Jun-04 1784.89 2962 2873 
4-Oct-04 1786.50 3002 3008 
7-Oct-05 1786.54 3011 3011 

10-Oct-05 1786.53 2995 3010 
15-Jun-06 1784.88 2921 2873 
16-Jun-06 1784.87 2950 2872 
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Table C1- 4: Comparison of lake area estimates using MODIS ENDWI (500m) and Storage 
characteristic curve 

Date 

Lake water 
Level 

(MoWE) 

Lake area from 
MODIS 

ENDWI (500m) 

Lake area from 
Storage 

Characteristics curve 
10-Sep-00 1787.52 3004 3087 
16-Sep-00 1787.58 3016 3091 
17-Sep-01 1787.46 3024 3082 
20-Sep-01 1787.46 2983 3082 
21-Sep-01 1787.50 2986 3085 
22-Sep-01 1787.47 3010 3083 
22-Sep-02 1786.41 2978 3001 
24-Sep-02 1786.42 2931 3002 
10-Jun-03 1784.32 2940 2822 
12-Jun-03 1784.40 2940 2830 
26-Sep-03 1786.62 2980 3017 
28-Sep-03 1786.64 2980 3019 

9-Jun-04 1784.89 2956 2873 
4-Oct-04 1786.50 2980 3008 
7-Oct-05 1786.54 2986 3011 

10-Oct-05 1786.53 2966 3010 
15-Jun-06 1784.88 2897 2873 
16-Jun-06 1784.87 2928 2872 
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APPENDIX D: CHAPTER FIVE 

Appendix D1:  

Figure D1- 1: Biomass recovery on year by year basis 

 

 

  

 

y = -0.05x + 1.8

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
  
p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

ANGER

y = -0.2x + 5

0

2

4

6

8

2008 2009 2010 2011 2012A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

JEMMA

y = -0.07x + 1.2

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

BELES

y = -0.1x + 3.8

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

MUGER

y = -0.9x + 6.9

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

BESHELO

y = 0.6x + 0.9

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

NORTH GOJAM



148 

 

 
 

y = 0.2x + 0.8

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

DABUS

y = 0.03x + 0.6

0

2

4

6

8

2008 2009 2010 2011 2012A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

RAHAD

y = -0.3x + 3.3

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

DIDESSA

y = -0.09x + 2.7

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

SOUTH GOJAM

y = -0.2x + 1.7

0

2

4

6

8

2008 2009 2010 2011 2012A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

DINDER

y = 0.4x + 1.2

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

TANA

y = -0.5x + 4.8

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

FINCHA

y = -0.7x + 5.7

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

WELAKA



149 

 

 

  

y = -0.07x + 3

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

GUDER

y = -0.05x + 1.2

0

2

4

6

8

2008 2009 2010 2011 2012

A
re
a
 p
ro
p
o
rt
io
n
, 
h
a
/h
a

Year

WENBERA



150 

Figure D1- 2: Total area recovered as proportion of sub basin area for five years (2008 – 2012) 
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Figure D1- 3: Comparison of recovered area proportion to the immediate previous year 
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Table D1- 1: Biome stratified mean-maximum Enhanced Vegetation Index (EVI) and mean-maximum land surface temperature (LST) 
(2003–2012) 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Land cover EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST 

ENF 0.57 51 0.58 51 0.57 50 0.56 49 0.56 50 0.57 50 0.50 51 0.56 49 0.52 49 0.53 50 

EBF 0.63 40 0.62 40 0.61 41 0.59 40 0.61 39 0.61 40 0.59 39 0.60 40 0.57 43 0.56 41 

DNF 0.49 53 0.63 49 0.48 49 0.52 48 0.45 47 0.45 49 0.42 46 0.48 51 0.48 49 0.58 49 

MF 0.59 50 0.57 50 0.57 49 0.55 49 0.56 49 0.56 50 0.54 49 0.54 49 0.53 50 0.53 49 

CS 0.46 52 0.41 53 0.43 51 0.40 51 0.44 51 0.42 52 0.36 52 0.40 51 0.37 52 0.39 52 

OS 0.35 51 0.34 52 0.33 51 0.33 51 0.34 50 0.33 53 0.32 51 0.32 50 0.31 54 0.32 52 

WSAV 0.61 46 0.59 46 0.58 45 0.56 45 0.60 44 0.57 46 0.56 44 0.58 44 0.55 56 0.53 46 

SAV 0.51 49 0.45 50 0.45 48 0.44 49 0.49 47 0.45 50 0.43 48 0.47 47 0.43 52 0.43 50 

G 0.47 51 0.42 51 0.42 50 0.41 51 0.43 49 0.42 52 0.39 49 0.41 49 0.39 51 0.40 51 

PWET 0.62 50 0.59 50 0.59 50 0.57 49 0.61 48 0.58 48 0.56 49 0.57 50 0.55 49 0.55 50 

C 0.51 48 0.46 48 0.49 48 0.47 48 0.47 47 0.49 51 0.42 47 0.48 47 0.44 61 0.42 50 

URB 0.34 52 0.31 52 0.31 51 0.30 52 0.32 51 0.31 52 0.31 51 0.30 50 0.29 54 0.29 52 

CNATVEG 0.54 46 0.53 46 0.53 46 0.51 45 0.51 44 0.52 46 0.51 45 0.49 44 0.49 48 0.47 47 

BAR 0.40 55 0.40 56 0.40 54 0.38 55 0.39 55 0.39 55 0.36 54 0.39 55 0.38 57 0.37 55 
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Table D1- 2: Biome stratified standard deviation for maximum Enhanced Vegetation Index (EVI) and maximum land surface 

temperature (LST) (2003–2012) 

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Land cover EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST EVI LST 

ENF 0.14 10 0.13 9 0.14 10 0.14 10 0.14 10 0.14 9 0.11 10 0.14 11 0.13 11 0.14 9 

EBF 0.11 10 0.11 10 0.11 9 0.10 9 0.11 10 0.11 10 0.10 10 0.11 10 0.10 17 0.11 9 

DNF 0.04 9 0.11 9 0.05 11 0.16 10 0.08 11 0.11 8 0.15 10 0.09 9 0.12 5 0.05 10 

MF 0.13 8 0.12 8 0.13 8 0.12 8 0.12 8 0.13 7 0.12 8 0.12 8 0.12 11 0.12 7 

CS 0.15 8 0.17 8 0.15 7 0.15 8 0.15 8 0.15 7 0.17 8 0.15 8 0.15 11 0.15 8 

OS 0.16 9 0.16 8 0.16 8 0.15 9 0.15 9 0.16 8 0.15 8 0.15 9 0.15 23 0.15 8 

WSAV 0.17 10 0.15 10 0.15 9 0.15 10 0.17 10 0.15 10 0.15 10 0.16 10 0.15 25 0.16 9 

SAV 0.20 11 0.20 10 0.20 9 0.20 10 0.21 10 0.20 10 0.20 10 0.21 11 0.20 28 0.20 9 

G 0.18 10 0.19 9 0.19 8 0.18 10 0.18 10 0.19 9 0.18 9 0.19 11 0.18 25 0.18 9 

PWET 0.12 6 0.11 6 0.11 6 0.11 6 0.13 6 0.11 6 0.12 6 0.12 7 0.11 6 0.12 6 

C 0.17 10 0.18 9 0.18 9 0.17 10 0.18 10 0.17 9 0.18 9 0.17 11 0.18 28 0.18 9 

URB 0.16 8 0.18 8 0.17 7 0.16 9 0.16 8 0.17 7 0.17 7 0.15 9 0.16 14 0.15 7 

CNATVEG 0.10 7 0.10 7 0.10 6 0.09 7 0.10 7 0.10 6 0.09 7 0.11 8 0.10 12 0.10 6 

BAR 0.21 6 0.22 6 0.21 6 0.21 7 0.21 7 0.21 6 0.19 6 0.21 7 0.20 13 0.20 6 
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Table D1- 3: ISLSCP II MODIS IGBP12 Land covers data nomenclature 

Symbol  Land cover 
ENF Evergreen Needle forest 
EBF Evergreen Broadleaf  forest 
DNF Deciduous Needle forest 
MF Mixed Forest 
CS Closed Shrub 
OS Open Shrub land 
WSAV Woody Savannas 
SAV Savannas 
G Grasslands 
PWET Permanent Wetlands 
C Croplands 
URB Urban 
CNATVEG Crop/Natural Vegetation Mosaic 
BAR Barren 

 

  

                                                 
12 International Satellite Land – Surface Climatology Project, Initiative II MODIS International Geosphere – 
Biosphere Program 
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Table D1- 4: Proportion of sub basin area undergone minus one and plus one standard deviation disturbance from the long term mean 
DI 

NAME 

2004 2005 2006 2007 2008 2009 2010 2011 2012 
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ANGER 2.61 0.00 5.48 0.00 0.56 0.00 9.71 0.00 1.42 0.00 1.24 0.00 2.45 0.00 2.16 0.00 0.69 0.00 

BELES 1.14 0.00 0.60 0.00 0.40 0.00 3.58 0.00 1.32 0.00 0.34 0.00 1.90 0.00 0.52 0.00 0.89 0.03 

BESHELO 2.70 0.01 1.05 0.00 2.35 0.00 15.74 0.00 3.99 0.00 8.47 0.00 2.72 0.00 2.11 0.00 2.27 0.00 

DABUS 1.50 0.01 1.77 0.00 1.10 0.00 4.66 0.00 1.29 0.00 0.68 0.00 2.03 0.00 1.67 0.00 2.04 0.00 

DIDESSA 3.30 0.00 3.95 0.00 2.01 0.00 11.63 0.00 1.08 0.00 4.22 0.00 3.98 0.00 1.35 0.00 0.85 0.00 

DINDER 1.80 0.00 0.75 0.00 0.51 0.00 3.93 0.00 1.73 0.00 0.33 0.00 2.00 0.00 0.37 0.00 0.47 0.00 

FINCHA 9.92 0.02 12.33 0.00 5.47 0.00 12.47 0.00 3.65 0.00 3.45 0.00 5.61 0.00 2.51 0.02 1.76 0.02 

GUDER 9.59 0.00 7.10 0.00 2.16 0.00 7.00 0.00 1.49 0.00 1.25 0.00 8.39 0.00 1.13 0.00 1.21 0.17 

JEMMA 6.29 0.01 2.11 0.00 3.15 0.00 9.86 0.00 4.39 0.00 3.77 0.00 5.95 0.00 5.23 0.03 2.68 0.05 

MUGER 2.26 0.01 2.54 0.00 1.23 0.00 5.72 0.00 3.33 0.00 1.53 0.00 6.87 0.00 4.35 0.00 1.49 0.11 

NORTH GOJJAM 10.68 0.01 1.69 0.00 3.09 0.00 4.31 0.00 1.10 0.00 2.05 0.00 5.18 0.00 1.80 0.00 4.43 0.01 

RAHAD 1.17 0.00 0.45 0.01 0.42 0.00 1.91 0.00 0.56 0.00 0.17 0.00 1.35 0.00 0.79 0.00 0.38 0.00 

SOUTH GOJJAM 5.26 0.00 4.16 0.00 1.89 0.00 4.62 0.00 2.59 0.00 1.73 0.00 3.54 0.00 2.77 0.00 1.62 0.09 

TANA 7.25 0.01 2.16 0.00 2.52 0.00 1.48 0.00 1.26 0.00 2.69 0.00 2.01 0.01 2.19 0.04 3.50 0.03 

WELAKA 7.39 0.04 2.02 0.00 2.00 0.00 14.01 0.00 5.82 0.00 2.84 0.00 3.89 0.00 2.55 0.00 2.31 0.04 

WENBERA 3.14 0.00 3.74 0.00 0.73 0.00 5.63 0.00 1.41 0.00 0.66 0.00 0.75 0.00 1.45 0.00 0.75 0.00 
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Table D1- 5: Amhara Region MERET Project watersheds 

No 

Region Amhara 

Zone  Woreda 

Watershed sites 

Area 

(Ha) 

Year of 

intervention  

started (E.C)  

Rehabilitated 

land year to 

Date(Ha) 

Coverage 

in %Year 

to Date  Remark # Name of CBWS 

1 E/Gojjam 

Enebsie 
  
  
  

  

  
  
  
  

4 

Guansa  435 1999 346 80 

as of 2011 

Teja baje 461 1999 411 89 
Feresmeda 305 1999 264.25 87 
Adefwoha 662 1999 631 95 
Total 1863 1652 89 

Goncha 
  

  
  
  
  
  
  

  
  

  
  
  
  
  
7 

Woybla 532 2002 505 95 

as of 2011 

Wochit wuha 556 1999 313.59 56 
Betabate 486 1999 176.635 36 
Tiwa 632 1999 492.87 78 
Berbere 1023 1999 758.75 74 
Jensemariam 830 1999 509.4 61 
Kechinwonz 344 1999 267.15 78 
Total 4403 3023 69 

2 N/Gondar 

Adiarkay 
  
  
  
  
  

  
  
  
  
  
5 

Ambaber 302 1999 0 

as of 2011 

Gualbuya 350 1999 0 
Mai-Teklit 512 2007 0 
Damota 365 1999 0 
Dagarob 381 1999 0 
Total 1910 1442 75 

East Belessa 
  

   

  
  
  
3 

Molesh 250 1999 189 76 

as of 2011 

Azmarsh 300 1999 182.25 61 
Amba 250 1999 121.5 49 

Total 800 492.75 62 

West Belessa 
  
   

  
  
  
3 

Lamgered 270 2006 175.5 65 

as of 2011 

Zaya 417 2006 279.39 67 
Jandeb 343 2006 219.52 64 
Total 1030 674 65 

Janamora   Deresigie 824 1999 613.8 75 as of 2010 
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6 

Denkoloko 1125 1999 456.96 41 
Enchet kab 278 1999 165.5 59 
Sabra 600 1999 256.56 43 
Serebar 1125 1999 403.6 36 
Abo 1500 1999 682.76 46 
Total 5453 2579.18 47 

3 N/Shoa 

Menzmama 
  
  
  

  
  
  
3 

Awa Kola 379 1999 284.75 75 

as of 2011 

Dasa Hana 474 1999 260.7 55 
Fila  326 1999 218.42 67 
Total 1179 764 65 

4 

N/wolo 

Lasta 
  
  
  
  
  
  

  
  
  
  
  
  
6 

Darewa 726 1999 578.75 80 

as of 2011 

Debre Loza 987 1999 579.63 59 
Bilbala 705 1999 525.75 75 
Genete Mariam 409 1999 218.4 53 
Irfa 996 1999 711.8 71 
Kumemesk  531 1999 292.92 55 
Total 4353 2907 67 

S/Wollo 

Delanta 
  
  
  
  

  
  
  
  
4 

Chercharit 620 2000 475.09 77 

as of 2011 

Terrie 574 2000 415.8 72 
Chebreko 244 2000 190.5 78 
Deber 302 2000 265 88 
Total 1739 1346.39 77 

N/wolo 

Gidan 
  
  
  
  
  

  
  
  
  
  
5 

Tigremender 904 1999 416.76 46 

as of 2011 

Agewyie 587 1999 227.25 39 
Zagolzafe 594 1999 188.07 32 
Betehara 400 2000 234.9 59 
Chebermesk  540 1999 139.83 26 
Total 3025 1206.81 40 

Kobo 
  
  
  

  
  
  
3 

 Tekulesh 289 1999 197 68 

as of 2011 

Shehoch 967 1999 638 66 
Gedeba 493 1999 238 48 
Total 1749 1073 61 

Meket 
  
  

  
  
  

Warkaye 1187 1999 619.43 52 

as of 2011 
Addis Amba 795 1999 723.45 91 
Dabza 767 1999 621.27 86 
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6 

Tirtrit 1015 1999 659.75 65 
Denkena 572 1999 357.87 63 
Zibe 1545 1999 505.4 33 
Total 5881 3155.4 54 

as of 2010 5 Oromiya 

Bati 
  
  
  
  

  
  
  
  
4 

Kamie 396 1999 0 
Gariro 396 1999 0 
Salmane 508 1999 0 
Jeljedi 304 1999 0 
Total 1604 613.6375 38 

6 S/Gondar 

Ebinat 
  
  
  
  

  
  
  
  
4 

Deregeha 1110 2002 0 

as of 2010 

Akuha 830 2002 0 
Abina 596 2002 0 
Serawdie 730 2002 0 
Total 3266 2230 68 

Simada 
  
  
  

  
  
  
3 

Dereke wonze 577.2 1999 458.2 79 

as of 2011 

Gorer 371.5 2006 317.25 85 
Geta mado 828.4 1999 361.35 44 
Total 1777.1 1137 64 

7 S/Wollo 

Ambasel 
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
9 

Tisa-totito 681 1999 556.09 82 

as of 2011 

Limo-aromba 706 1999 568.95 81 
Robit-dehadit  1068 1999 846.81 79 
Minchu-minchu 587 1999 491.07 84 
Yebar-saledila 434 1999 329 76 
Kolet-guba 412 1999 322 78 
Dino-dino 512 1999 401 78 
Golbo-woleti 692 1999 544 79 
Chefe-gamara 935 1999 761 81 
Total 6027 4820 80 

Kalu 
  
  
  
  
  
  
  

  
  
  
  
  
  
  
7 

Borkenashana 1092 2000 966.42 89 

as of 2011 

Addis alem 780 2000 641.16 82 
Bistima/Adamie 411 2000 355.515 87 
Worseye 780 2000 670.8 86 
Aref Lebie 425 2000 354.875 84 
Dirma 346 2000 275.07 80 
chekortie 490 2000 436.1 89 



160 

Total 4324 3700 86 

Kutaber 
  
  
  
  
  

  
  
  
  
  
5 

Dire 630 1999 393 62 

as of 2011 

Abaselama 406 1999 293 72 
Kundi 427 1999 214 50 
Yekumba 403 1999 198.5 49 
Tebela 535 1999 213.75 40 
Total 2401 1312.25 55 

Mekedela 
  
  
  
  
  
  

  
  
  
  
  
  
6 

Meyana 389 2001 204 52 

as of 2011 

Mekena 3733 2001 2896.75 78 
Molla defer 731 2001 633 87 
Yesiga 2128 2001 1446.38 68 
Tiwat tay 673 2005 382.53 57 
Abatklie 547 2003 498.5 91 
Total 8200 6061.16 74 

Tenta 
  
  
  
  
  
  

  
  
  
  
  
  
7 

Tigosh 903 2000 727.91 81 

as of 2011 

Biruhtesfa 798 2000 648.57 81 
Meguat 800 2000 680.00 85 
Meslaye 1303 2000 908.26 70 
Dewot 1075 2000 827.75 77 
Tedat 1263 2000 921.63 73 
Total 6141 4714 77 

Worebabo 
  
  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
  
9 

Chali 566 1999 430.15 76 

as of 2011 

Kuno Wokilo 490 1999 409.4 83 
Guha chali 694 1999 638.25 92 
Bokeksa chali 581 1999 493.85 85 
Adamie meia 582 1999 462.69 80 
Gendebash wokilo 481 1999 355.74 74 
Gubusa miea 745 1999 525.1 71 
Fito mille 758 1999 515.4 68 
Gedero wokilo 499 1999 399 80 
Total 5395 4230 78 

8 WagHemera 

Sekota 
  
  
  

  
  
  
3 

Wateb 950 1999 882 93 

as of 2011 

Dibakuan 1130 2007 675.4 60 
Berbero 437 2003 261.66 60 
Total 2517 1819 72 
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Ziquala 
  
  
  

  
  
  
3 

Abitaba 238 1999 168.98 71 

as of 2011 

Bisku 292 1999 175.08 60 
Alidery 320 1999 192 60 
Total 850 536 63 

Total 23 115   75888 51489 68   

 

 




