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Structure of solvent-free grafted nanoparticles: Molecular dynamics
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The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecu-
lar dynamics simulations and density-functional theory. At low temperatures and moderate to high
oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the
oligomer brush configuration obtained from the simulations can be explained by a density-functional
theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the
structure factor at small wave numbers attains a value much smaller than the corresponding hard-
sphere suspension, the first peak of the pair distribution function is enhanced due to entropic attrac-
tions among the particles, and the oligomer brush expands with decreasing particle volume fraction
to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the
theory and are likely caused by steric repulsions of the expanded corona chains. © 2011 American

Institute of Physics. [doi:10.1063/1.3638179]

. INTRODUCTION

Our understanding of statistical mechanics of simple lig-
uids has seen a remarkable growth over the last decades,' and
a considerable shift of focus towards understanding systems
with higher complexity is currently taking place. An impor-
tant line of research in soft matter is the study of nanoparticle
suspensions.>? There is already a significant body of litera-
ture describing their structural and transport properties,” and
offering new ways for controlling their self-assembly.'%-!2
Of particular interest for the present study are nanoparticle
organic hybrid materials (NOHMs),'3"'® novel hybrid sys-
tems consisting of a hard (inorganic) core and a soft (or-
ganic) oligomer corona. Experiments have showed that by
varying the molecular weight and grafting density of the arms
and core particle size, systems can be designed with proper-
ties that span glasses, stiff waxes and gels (at high volume
fractions), to simple liquids (at low volume fractions). The
oligomer chains grafted to the nanoparticles not only prevent
nanoparticle aggregation due to van der Waals attractions or
depletion interactions, but also provide sufficient fluidity for
the system to relax to a disordered equilibrium state even in
the absence of an added solvent.

An oligomer grafted nanoparticle may begin to resem-
ble a star polymer when the size of the core is much smaller
than the radius of gyration of the oligomers; such an equiv-
alence has been demonstrated for isolated particles.'” The
Daoud-Cotton model?” provides a scaling theory for the prop-
erties of polymer brushes on curved surfaces®'2* and in star
polymer solutions.?"?*23 Star polymer solutions interacting
through pairwise steric-repulsive potentials have been shown
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to exhibit increased structure with increasing temperature®®2’

as a result of the expansion of the polymer chains with
temperature.

Oligomer-grafted nanoparticles have been considered in
previous theoretical studies in a phantom solvent to deter-
mine the effects of a single”® and multiple grafted chains®
on their structure. Particular emphasis has been placed re-
cently in computational studies on self-assembly of grafted
nanoparticles into shapes such as disks,'' cubes,* rods,*'-3?
and spheres.’334

While theoretical studies of sterically stabilized particles
have usually considered high molecular weight grafted poly-
mers in the presence of a solvent, a recent study by Yu and
Koch® has addressed the equilibrium structure of solvent-
free oligomer-grafted nanoparticles using a coarse-grained
density-functional theory. In Ref. 35, the tethered oligomers
were treated as an incompressible fluid. Lagrange undeter-
mined multipliers were used to enforce the constraint that the
monomer number density remains constant within the fluid
volume. Since all the surrounding nanoparticles contribute to
this number density, the minimization of the oligomer free en-
ergy subject to this constraint leads to non-pairwise-additive
potentials. Analytical results could be obtained nonetheless
using a “weak field” approximation valid in the limit where
the radius of gyration of the oligomers is large compared with
the core radius, so that the contribution of each nanoparticle
to the local monomer concentration is small. The incompress-
ibility assumption is expected to hold when the attractive en-
ergy among the monomers is strong relative to the thermal
energy.

In this paper, we focus on the effect of NOHMs archi-
tecture, including oligomer molecular weight and core radius,
on the equilibrium structure of NOHMs, using coarse-grained
molecular dynamics simulations (MD) and density-functional
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theory. In the MD simulations, each tethered oligomer is
composed of 5 to 15 monomer beads connected with stiff
springs which approximate freely jointed chains, with a cut-
and-shifted Lennard-Jones (LJ) potential between their beads.
We examine the structure factor and pair probability of the
cores, the core-oligomer-bead correlation, and the structure of
the oligomer brush. Computations at modest temperatures are
used to explore the behavior of solvent-free NOHMs systems,
whereas higher temperature simulations yield void spaces be-
tween the oligomers which may be interpreted in terms of the
effects of an implicit solvent.

To obtain a density-functional theory appropriate for
comparison with the molecular dynamics simulations, the in-
compressibility constraint invoked in Ref. 35 must be relaxed.
In the modified theory, the free energy of the fluid of tethered
oligomers includes a spring energy modeling the configura-
tional free energy of the chains and the free energy density
of a liquid of Lennard-Jones monomers. The local monomer
number density results from the contributions of oligomers
from all the neighboring particles. We will see that this for-
mulation leads to results that agree with the incompressible
NOHMs theory of Ref. 35 when the temperature is small such
that kg7 < ¢, where ¢ is the potential well depth of the LJ pair
potential. The theory captures the qualitative changes in the
pair probability, structure factor, and oligomer brush height
observed in the MD with increasing temperature.

The paper is organized as follows. Section II contains
details of the coarse-grained MD model, and the simulation
methods. Section III describes the theoretical methodology.
Results for the structure of oligomer grafted nanoparticles are
presented in Sec. IV. Section V summarizes the conclusions.

Il. SIMULATION METHODS

The system consists of N oligomer-grafted nanoparticles.
Each nanoparticle is represented as a spherical core with f
attached chains. Each chain is composed of Ny, beads (or
monomers). The core and monomers have radii a. and ay, re-
spectively. We set the diameter of the monomers o = 2ay, as
the unit of length; the core radius is a. = 2.5¢. The oligomer
grafting density is fixed as ps = f/(4ma?) = 0.320 2 un-
less stated otherwise. Interactions between monomers are de-
scribed by the cut-and-shifted Lennard-Jones potential with
¢ and o as the energy and range parameters, and the cutoff
distance r. = 2.50,

V12 (a\6_ (o), (2)°
v <[ @ () ()] =
0 r>re
(1
The initial bead of each chain is rigidly attached to the core

surface; other monomers along a chain are connected with
their neighbors via a stiff harmonic spring,

Via(r) = k(r — Ip)?, 2)

where [y = o is the equilibrium length of the spring, and
k =10000¢/0? is the spring constant. The core—core and
core—monomer interactions are modelled as purely repulsive
Weeks-Chandler-Andersen (WCA) potentials®® with modi-
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fication taking into account the difference in the particle
ag 37
sizes,

12 6
Ve (r) = 4e |:(r"—AJ) — (rfAij) +0.25] r < Fmin ’
0 7 > Fmin
3)
where rmin = 2'/%(a. 4+ a.) and Ao = 2(a. — a,) for core—
core interaction, and rmin = 2'/%(ac +ay) and Agp = (ac
— ap) for core—monomer interaction. The energy and inter-
action range parameters are chosen to be the same for these
interactions such that .. = &4, = € and o, = o, = 0. The
choice of a purely repulsive interaction was based on the
fact that typical inorganic nanoparticles and organic polymers
have strongly unfavorable mutual interactions.

Simulations were performed in a cubic box of length L;
periodic boundary conditions and the minimum-image con-
vention were applied in all three directions. The simulations
were performed by the large-scale atomic/molecular mas-
sively parallel simulator (LAMMPS) package®® which takes
advantage of a neighbor-list construction and communication
algorithm, speeding up simulations when the ratio of sizes
of the particles becomes large.’® Figure 1(a) shows a typ-
ical configuration of a nanoparticle and Fig. 1(b) shows a
solvent-free oligomer-grafted nanoparticle system with chain

(a)

(b)

FIG. 1. (a) A nanoparticle with N, = 10; (b) a system of 350 nanoparticles
with Ny, = 5 at volume fraction ¢ = 0.181, and 7* = 2.5. The oligomer
beads are transparent for visualization purposes in (a) and (b).
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114901-3 Solvent-free grafted nanoparticles

length Ny, = 5. The mass of a particle scales linearly with
volume, so that m, = m and m. = ma?/a} for the mass of
the oligomer bead and core, respectively.

Simulations were performed in the NV E ensemble af-
ter equilibration in the NV T ensemble at the desired tem-
perature. The equations of motion were integrated by the
velocity-Verlet algorithm. Time averaging was conducted for
0(107) time steps after equilibration. The time step was
set to 8t = 0.004t, where 7 = 0(%)1/2 is the unit of time.
The reduced simulation units for the thermodynamic vari-
ables are: T* = kgT /e and P* = Po3/e. All simulations
were performed at atmospheric pressure, which closely cor-
responds in reduced units to P* = 0. This is achieved in
the following way: for a given density, the temperature was
chosen so that in the NV E ensemble the average reduced
pressure was close to zero. The concentration of the cores
can be described using the volume fraction, ¢. = N *Fa?/L?
and number density p. = N/L3, while the number density
and volume fraction of the beads in the interstitial space
between the cores are pp, = NfNm/(L3 — N%”aé) and ¢y
=ZalNfNn/(L> = N%a}).

lll. THEORY

In the finite-core NOHMs model of Ref. 35, a pure
NOHMs system was considered, consisting of hard cores and
bead-spring oligomers attached to the centers of the cores
with only one bead per chain at the free end of each spring.
The monomer beads were treated as an incompressible fluid
filling the interparticle space. In the MD simulations, the
tethered-oligomer fluid is not strictly incompressible. How-
ever, the Lennard-Jones attractions among the monomers re-
sist variations in the monomer number density. To capture
this effect, we introduce the coarse-grained model shown in
Fig. 2(a). In place of the incompressibility constraint we will
incorporate a contribution to the free energy of the oligomers
associated with the LJ interactions among a locally homoge-
neous fluid of monomers coming from all the adjacent cores.
In the theory these LJ interactions correspond to the pair po-
tential in Eq. (1) with no cutoff. To accurately mimic the LJ
interactions in the MD we use the same number of beads per
oligomer Ny, as are used in the MD simulations. However, to
simplify the theory, we consider these beads to form a clus-
ter localized at the end of the oligomer. We only consider the
translational free energy of each monomer group’s center of
mass and the oligomer configuration is described by linear
springs with a rest length of zero. Whereas the stiff springs in
the MD simulations connecting the neighboring monomers
only differ from hard rods for computational convenience,
the soft spring in the theory models the effect of the chain’s
configurational entropy. We parameterize the stiffness of the
oligomer springs with the radius of gyration R, of an ideal,
unattached, linear chain such that the spring energy is defined
by Fypring = i%rfz with r; being the distance between the
spring free end and the core center. The normalization of the
configurational probability of each oligomer is

/ G(rodrs = 1, )
\4
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FIG. 2. (a) Schematic of the coarse-grained particle-scale model considered
in this work. The big central spheres are the hard cores and the smaller dashed
hollow beads represent the monomers. Each group of N, monomers com-
poses an oligomeric chain with the group’s center of mass (smallest solid
bead) being connected to the core with a linear spring. In this model the
number of oligomers per particle and the number of monomers per chain
are adjustable parameters f and Np,, and for clarity we only illustrate a few
oligomers and monomers here. (b) A cartoon illustrating a homogeneous LJ
monomers with a local volume fraction within the interparticle space. The
size of the monomers is smaller than the cores and the springs are not shown
for simplicity. In evaluating the local free energy density due to LJ interac-
tions the connectivity of the beads is neglect; however, the spring energy in
the overall expression for the free energy models the entropic penalty due to
the beads’ connection to the core.

and the mean-square distance of the spring free end from the
core center in the absence of chain—chain interactions is

(rf) = f riG(rp)dr; = 6R; (5)
\4

with V being the suspension volume. For simplicity, we re-
late the value of R, in the theory to Ny, and o from the MD
simulations using a model for unattached freely jointed chains
(FIC) and obtain = = [(42E3)N,p]2 %

The theory exploits a weak oligomeric-field approxima-
tion valid when Ry > ac, so that the monomers that fill any
region of space come from many different cores. In this
limit, we can use different approximations over two different
length scales. For separations of order a. hard-core interac-
tions dominate, while the oligomeric interactions dominate at
separations of order R,. In the latter region, we can neglect
the detailed packing configuration of the particles and as-
sume that the particles simply fill a fraction ¢, of the space.
The condition ,oCRg >> 1 also allows us to close the equa-
tions governing the oligomer concentration and the core ra-
dial distribution function by neglecting correlations smaller
than 0(1/,0CR§) or O(aS/R;’) as justified in Ref. 35.

We assume that the oligomers can relax quickly com-
pared with the cores. Therefore we can first formulate
the fluid phase free energy at equilibrium for a given
particle configuration. The fluid phase free energy con-
tains the oligomer-configurational entropy, spring energy,
and monomer—monomer interactions. Assuming that the
monomer radius is much smaller than the core radius, we can
identify a mesoscopic volume in the interstitial space contain-
ing a large number of monomers and consider this volume to
have the free energy density of a homogeneous LJ fluid with
the local monomer concentration. Betancourt-Cérdenas et al.
have proposed an equation of state for the LJ fluid based on
a second order perturbation scheme for the excess free en-
ergy of the system at the same temperature and density as
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the ideal gas.*! They then fit the free energy to a power se-
ries in the bulk volume fraction of the LJ fluid defined by
the temperature-dependent effective hard-core diameter. We
have used their results for the free energy of the LJ fluid in-
cluding the first order perturbation. We neglect the second
order contributions, which are shown to be small in their
work. We neglect the temperature dependence of the effective
hard core diameter, approximating it as o. Therefore the ex-
cess Helmholtz free energy per monomer accounting for the
monomer—monomer interactions is

Ory(oy) = O () + kT D y(s), ©)

where @} is the free energy of the reference hard sphere
monomer fluid, @ is the first order perturbation to the
free energy due to the LJ interaction. This free energy
per monomer is a direct function of the local monomer
volume fraction in the fluid phase defined by ¢;(rs)
= %‘f_};l‘ ZlN:l C;(rg, r;) at re. Here 1 — ¢, in the denomina-
tor takes into account that the cores occupy a fraction ¢, of
the volume and C;(r¢, r;) is the concentration at a position r¢
of oligomers that are attached to particle i at r;. For a system
of N particles, each of which has f tethered oligomers com-
posed of Ny, monomers, the fluid phase free energy is written
as

s —Z/C(rf,r, ) [InCitrr. A — 1]
B

d
(rs — 1;)> Ci(ry, rl)+ N Ci(rg, r)drg,

4R2
N

where Ay, is the thermal de Broglie wavelength of the beads.
Since each oligomer consists of Ny, beads, Ny, C;(ry, r;) is the
concentration of monomer beads from particle i. In this ex-
pression, the first term represents the ideal gas Helmholtz free
energy of each Ny,-monomer group’s center of mass, the sec-
ond term accounts for the spring energy, and the last term is
introduced for the LJ interactions among the monomers and
@y is also a function of the oligomer concentration field. In a
liquid, the attractive interactions lead to very little variation of
the total volume fraction and so we may expect this last term
to approximate an incompressibility constraint especially at
small T*.

The equilibrium concentration field of the oligomers can
be determined by minimizing the fluid phase free energy with
respect to variations in C; subject to the constraint that the
probability of finding the oligomers attached to a given parti-
cle is normalized,

/ C,‘ (l'f, I‘i)dl’f = f (8)
14
This constraint can be applied by defining the Lagrange func-
tion,
2
L [Ci(re, )] = Wl Z)\i |:/v Ci(re, r;)dr — fi| ;

i=1

©))
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where the Lagrange multipliers A; enforcing the normaliza-
tion make up a discrete set with one multiplier for each par-
ticle. For a given particle configuration, the minimization
8L¢/8C;(rg, r;) yields

1 1
Ci(rp, 1) = —e¢ ri— — (rp—1;)?
(rg, ri) Al xp[ 4R§(f )

0,
re + ¢b( f) ad)b

N P 10
T Wl | P . - (10)

When R; > a}, many particles’ oligomers contribute to
the local fluid density at ry and each particle’s oligomers
only cause a small O(a’/ R;’) disturbance to the fluid den-
sity. Therefore we can linearize the monomer volume frac-
tion and the LJ free energy per monomer by writing ¢y (rs)

6<I> 9D Rl
= ¢b + ¢}/g(rf)’ d)L.]|l‘f = q)gj - ¢b(rf) and «3¢EJ |l'f = 3(15:]
6 (DLJ

¢p(r) with @), being evaluated using the average

bead Volume fraction ¢b The deviation of the bead volume
fraction from its average ¢;(ry) = O(a’/ Rg). Keeping terms
up to linear order in ¢; (rf) for the LJ interactions and making
use of Eq. (6), we obtain

Ci(rs, ;) = fA;Br)G(re —r;), (11)

_oprp)?
where G(ry —r;) = (4m Ré “3e % s the probability of
finding a monomer bead in the absence of particle interac-

’ . P
Ny (re) fLy with fLJ = [ add;tj + ¢b 833))2”
b

accounts for the change in the monomer concentration due
to particle interactions, and A; is a normalization constant.
When Rg’ > af, we can write B(ry) = 1+ B'(ry) and A;
=14+ A; where the perturbations B'(r;) and A are
O(ag/Rg). In particular, B'(rf) = — Ny, (re) fis.

The total concentration of oligomers obtained by
summing oligomers attached to all cores is C(ry)
=3V Cilrr.vy) = po fI1 + %1. Following the pro-
cedure used in Ref. 35, we derive an equation for the
conditional average concentration (C;)(r¢|r;) with one core
particle fixed at r; as

(C)1(rglry) = (Cy)1(relry)

tions, B(rf) = e~

+Pc/ 8ec(r2 — 1){(Ca)(r¢|ry, rp)dr;
%

’
oy [1 N <¢b>1(rf|r1>]’ )
o
where p. = % = #, (C1)1(rf|ry) is the conditional average

of the concentration field of oligomers attached to particle 1
given that particle 1 is fixed at ry, (C,),(r¢|r;, 1) is the condi-
tional average of the concentration field of oligomers attached
to particle 2 given that particles 1 and 2 are fixed at r; and r,
and g..(r, — ry) is the radial distribution function. Under the
weak-field approximation,

(Ci)i(relr) = f[1+ (A} (rifr) + (B) 1 (rer DG (rg — 1ry),

13)
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(Co)a(relry, 1) & f1 4 (A})1(r2|r2)

+ (A))a(r2|ry, 1) 4+ (B)1(relry)
+ (B') 1 (re|r)1G (ry — 12), (14)
8cc(ry — 1) =1+ hys(ry —ry) + he(ry —ry), (15)

where hys is the total correlation function of the reference
hard sphere suspension without the oligomers and Ay is the
perturbation to the hard sphere pair distribution function due
to the oligomers. The conditional average field variables and
hy are of O(aS/Ré). Substituting Egs. (13)—(15) into Eq. (12)
and retaining terms of order one yields

G(rp—ry)+ ,Oc/[

)1(r2]r2) + (A})a(rary, 12)

N(relry) + hus(r, —rp)
p (pp)1(relry)
c P .

b

+ (B')1(r¢lry) + (B

+ hi(ry —r)]G(ry — ro)dry = (16)

Application of the normalization conditions for (C;); and
(C2), and Fourier transformation of Eq. (16) yield the
field variables required to obtain the oligomer concentration
field to O(ag/Rg),

(B')1(a) = =N fis(d), (@)

_ G@[1 + pehus(@) + pehi(@)]
plG@? 1 - y7m]

(an

(A9, (q) = —(B) (@G(q), (18)

Wnwin) = - [ B @GCada (19)
@n) Jy,

with Vq being an unbounded wave number space. As q

— 0, G(0) = 1. The Fourier transform of F(x) and the in-

verse transform of F(s) are defined by F(s) = [ F(x)e™"*dx

and F(x) = ﬁ [ E(s)e’**ds.

We apply a density-functional approach similar to Ref. 35
to solve for the radial distribution function. The grand poten-
tial 2 of the entire system given that a chosen particle labeled
1 is at the origin can be expressed as a functional of the one-
body density profile of other non-chosen particles labeled 2
around particle 1, pl(r) = pcgec(r), with r being r, — ry,

Q[pl0)] = Fa[pl)] + FS[pl0)] + F2p(r)]
+ f PO VI(F) — pldr, (20)
1%

where the ideal gas part of the free energy functional of the
cores is

1d[pc( )]
kgT

with A, being the thermal de Broglie wavelength of the par-
ticles,  is the chemical potential of the particles, V; is the
external potential due to the hard-sphere excluded volume of
the fixed particle 1, F!IS is the excess free energy contributed
from the hard spheres, and FUid is the excess free energy

/ AO[[pmAY] - 1)dr @)

J. Chem. Phys. 135, 114901 (2011)

contributed from the fluid phase oligomers. For a given core
configuration, the free energy of the oligomers is smeared
out as a “mediated interparticle potential” between the cores.
Therefore we obtain F1d by conditionally averaging the fluid
phase free energy shown in Eq. (7) over the configuration of
N — 1 particles given that particle 1 is fixed at the origin,

Feilptm] | Fe
keT — \ksT/,

r2
= /\;(Cl 11’1C1A ) (l'f|0)+ |:m — 1:|

x (C1)1(r¢|0)dre
+ / pL(r) f (C2InCA3), (|0, 1)
Vv \%4

2
n [% — 1} (Cy)o(re]0, r)dredr

+ N (Coou i+ Mo )
ke T 1 PrLi(re f kT PC
< f (Cob1)a(re]0, r)drydr, 22)

1%

where r is the position of neighboring core particles labeled 2
and ry is the position of beads.

At equilibrium, the minimization §2[p.(r)]/8pL(r) =0
and application of equal chemical potential of the neighboring
particles, i = ppuk = Ulr— o0, yield

PUT) = pegec(r) = peexp {cyd(®) — cigd, — Vi(r)/ksT

+c(r) — e} (23)
where the one-body direct correlation functions
are  defined by cla(r) = ——S(ng[(;[ﬁg(rr)}/kBT)v Citd b
__5<Fé:s[5pé<(rr>)]/kﬂ>|r_m’ <1>(r) 8<Fé1““§f)i3]/kar>’ and
) = wa As justified in Ref. 35, under

the weak-field approximation and the separation of length
scales, Ry /a. > 1, we can obtain the core pair probability ex-

pressed in Eq. (15) with 1 + hys(r) = eles=clis y=Vi®)/ks T
and h¢(r) ~ [cgl)(r) - cfg] Again, keeping dominant con-
tributions from these variations of the free energy allows us
to neglect the coupling between hys and Ay and we have

Dy A SER L]/ ks T) D)y~ _ SESIpD/ ke T)
G~ - T and oys(n N e
Therefore we can directly evaluate hys by solving

the Ornstein—Zernike equation with the Percus—Yevick
approximation,"** as done in Ref. 35. Substitution of the
field variables A; and B(ry) into F4[pl(r)]/kgT shown in

Eq. (22), truncation of the higher order correlations between
fluid |t
the particles, and functional differentiation W

finally yield to O(a]/R}),

1 0 (A (r']0
”) / (A 10, 8220100 4
14

SuksT ¢y Shy(r)

1 oY B')1(r{]0)
_2 1_ Ly f 0 f
/ ( fuiksT a¢b> (Bl T 8he(r)

he(r) = 2 f <1 -

dr,.
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This integral is convergent since the changes in the field vari-
ables due to the pair probability is important only within a dis-
tance ~ R, from the fixed particle 1. When particle 2 is deep
in the bulk §(A%)>(r'|0, r)/8h(r) and §(B’)1(r|0)/8he(r) are

2f (k7 5 — 1) G@PI1 - G@PII + pehiis(@)]

J. Chem. Phys. 135, 114901 (2011)

essentially zero. After making use of the convolution theo-

~

rem and the expressions for (B’);(q) and ([{’2’ ),(q), in Fourier
space we obtain

hi(q) = =~

The static structure factor of the cores is defined by
S(qQ=1+ ochiis Q) + pcﬁf(q) and the core pair probability
gcc(r) can be obtained by taking the inverse Fourier transform
of ¢ in Eq. (25) and adding the hard sphere pair probability.
In statistical mechanics the value of S(0) quantifies the com-
pressibility of a single-component fluid.! We can see from
Eq. (17) that for a finite LJ attraction well fi is also finite
and the monomer density fluctuations due to a fixed particle
at very large length scales is determined by the compressibil-
ity of the system or the static structure factor when q — 0. In
fact, Eq. (25) shows that for a finite fi, h¢(0) = 0 and S(0) re-
tains the value of the reference hard sphere system at q = 0.
On the other hand, in the asymptotic limit as the attraction
well is deep such that fi; — oo, we obtain m — 0 and
Eq. (25) can be reduced to Eq. (29) in Ref. 35 for incompress-
ible single-component NOHMs systems.

Some results for the static structure factor at a fixed ¢,
and different 7* calculated from the current LJ theory are
compared with the results of the incompressible theory® and
the reference hard sphere suspension in Fig. 3. We can see
that at each temperature S(q) shows hard-core correlations at
large g and as we decrease ¢ the deficit of particles around a

Incompressible
------ Theory with 7% =2
— .= Theory with 7* =3
Theory with 7% =4
Hard spheres

~——

S(q)

FIG. 3. Theoretical predictions for the static structure factor S as a function
of the scaled wave number ¢ - 2a. for NOHMs with ¢, = 0.169, f = 25,
and Rg/a. = 0.540 at different 7*. The monomer density as a function of T*
was taken to be equal to the MD simulation values: p, = 0.576 for T* = 2,
pp = 0.395 for T* = 3, and pp, = 0.228 for T* = 4. The solid line indicates
the incompressible oligomeric fluid theory of Ref. 35 and the dashed-dotted
line a hard sphere suspension. The inset shows the rise in S(g) for the LJ
theory at extremely small g.

Pec I:G(q)z — 1= m]z —

(25)

2f (ks ol = 1) G@rll - Geay]

fixed particle corresponding to the length scale of R, occurs.
This deficit is then followed by a plateau region at moderate to
large length scales (roughly between 0.5 < g - 2a. < 2.5 for
the temperatures investigated here) characterizing suppressed
density fluctuations. Eventually, as g approaches zero, S(g)
rises and yields S(0) for the reference hard sphere system.
The plateau region spans a larger range of ¢ with decreas-
ing T*. For the incompressible case, the deficit of the particle
continues as ¢ — 0 leading to S(0) = 0.

IV. RESULTS AND DISCUSSION

The core volume fraction in solvent-free NOHMs can
be altered by changing the oligomer grafting density, chain
length, or temperature at zero pressure. In this study, we fix
f but vary Ny, and T*. We have studied three different sys-
tems, with chain length N, being equal to 5, 10, and 15. A
wide range of temperatures (7* = 1.0 up to 4.5) and volume
fractions at zero pressure have been explored. Theoretical re-
sults are obtained based on the input parameters from the MD
simulations: T*, py, ¢, f, and Np,. The values of R,/a. cho-
sen in the theory are 0.394 for 5-mer chains, 0.540 for 10-mer
chains, and 0.652 for 15-mer chains based on the FIC model.
This indicates that the comparison of theory and MD simula-
tion requires extending the theory beyond the weak field limit
Rg/a. > 1 for which it was derived.

When the thermal energy is sufficiently weak, the limit of
high fiy can be achieved and the system is nearly incompress-
ible. In Fig. 4, the core radial distribution function, g..(r), and
the static structure factor for a system with 25 10-mer chains
per particle at T* = 1 obtained from simulations and theory
are plotted. The results obtained from the current LJ theory
and from Yu and Koch’s previous incompressible theory?> are
indistinguishable at the scale of the graph. Both theoretical
and simulation results for g..(r) show enhanced peaks and a
smaller distance between the first and second peaks than the
reference hard sphere suspension. Specifically, the maximum
value of the first peak predicted by the theory is 2.16, which
is comparable with the value 2.24 obtained from the simula-
tions and larger than the value 1.57 for hard spheres. These
observations are qualitatively different from Ref. 35 where
Ry/a. was greater than 1 and the oligomers generally pro-
duced a soft shell around the hard cores and reduced the con-
tact value of g..(r). Here we have fairly small R,/a. and the
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FIG. 4. (a) The radial distribution function g as a function of the scaled in-
terparticle distance r/2a. for the system with f = 25, Ny, = 10, ¢. = 0.169,
and pp = 0.774 at T* =1 predicted by the current LJ theory with Rg/a.
= 0.540 and the simulations. The results for the reference hard sphere sus-
pension and for the incompressible system (Ref. 35) for the same f, ¢, and
Ry /ac are also shown. (b) The corresponding comparison of the static struc-
ture factor S as a function of the scaled wave number ¢ - 2a.. The lines are
defined as in (a). The inset shows the rise in S(g) for the LJ theory at ex-
tremely small g.

stiff space-filling oligomers yield a substantial attraction be-
tween the neighboring particles. The next nearest neighbors
experience a similar attraction leading to a more structured
core pair probability. While the theories predict the first peak
at r = 2a. = 50, the peaks are shifted to larger particle sep-
arations in the simulations. In the MD model, the first layer
of monomers are rigidly grafted to the nanoparticle and this
limits the ability of the cores to penetrate into separations be-
tween core-plus-grafted-monomer diameter 70 and the core
diameter So. As a result, the simulations yield a gradual rise
of g..(r) over the range 5-7¢ rather than the step change cor-
responding to hard sphere repulsion.

Figure 4 shows that the structure factor obtained by the-
ory and simulation of NOHMs at T* = 1 is greatly reduced
compared to the hard sphere result when ¢ - 2a. < 2. This in-
dicates that a core excludes almost exactly one neighboring
core from a neighborhood around its center. In the incom-
pressible theory, S(0) = 0, whereas in the theory and simula-
tions for LJ monomer interactions S reaches a plateau value
around 0.01. At very small g, the theory predicts that S(g) will
rise and reach the hard sphere value at g = 0. This rise is not
observed in the simulations. However, both theory and simu-
lations indicate that density fluctuations are strongly damped
at large length scales. Both theoretical and simulation S(g)
exhibit peaks corresponding to nearest and next nearest neigh-
bor interactions for g - 2a. > 3. These peaks in the MD sim-
ulations are enhanced relative to the hard sphere peaks due to

J. Chem. Phys. 135, 114901 (2011)
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FIG. 5. (a) The radial distribution function g.. as a function of the scaled
interparticle distance r/2a. predicted by the LJ theory for different systems
at T* = 1 and f = 25: (1) the base system with p, = 0.774, (2) the system
with increased Rg/ac but same ¢ and py as (1), and (3) the system with
increased Ry /a. and decreased ¢; pp, = 0.769. (b) Similar to (a) but 7* = 1
and Rg/ac = 0.540: (1) the same base system as (a), (2) the system with f
doubled but same ¢, and py, as (1), and (3) the system with doubled f and
decreased ¢¢; pp = 0.774. (c) Simulation results: (1) base system with 7*
=1 and pp, = 0.774, (2) with longer chain length, 7* = 1, and p, = 0.769,
and (3) with higher grafting density, T7* = 1.25, and p, = 0.775.

the enhancement of the core—core repulsion by the first layer
of grafted monomers as discussed above.

After justifying the incompressible nature of the system
at T* = 1, it is of interest to investigate the effects of chang-
ing the chain length, grafting density, and the core volume
fraction on the core pair probability at 7" = 1 and pp, = 0.77.
In Fig. 5, we choose the case of f =25, N, =10, Ry/a.
= 0.540, and ¢. = 0.169 to be our base system and compare
gec(r) for different cases obtained from the theory and simu-
lations. While in the simulations at fixed 7* and pp we cannot
vary the grafting density or the chain length without changing
¢, in the theory we can change the geometrical parameters
independently. In the following comparison, we retain the
same LJ attraction among the monomers under 7* = 1 and
atmospheric pressure. Therefore, when we change R, or f but
not ¢, in the theory we vary the number of beads in the cluster
forming an oligomer. Figure 5(a) illustrates the theoretical
predictions when we maintain a constant grafting density.
If we first change the radius of gyration without changing
the core volume fraction (curve (2)), we find that increasing
the radius of gyration has a softening effect on the core
pair probability yielding damped peaks compared with the
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base case; the first peak is shifted outward slightly while the
outward shift of the second peak is more pronounced. If we
then decrease ¢, with increasing R, the softening effect pro-
gresses and the peaks are shifted further because the stretched
oligomers at lower core volume fraction increase the range
of the interparticle interactions. The simulation results in
Fig. 5(c), curve (2) for the corresponding 15-mer system
shows a similar lowering and outward shift of the peaks rel-
ative to the 10-mer system. Figure 5(b) shows the theoretical
predictions of the pair probability changes when the radius
of gyration is fixed. If we first double the grafting density
without varying the core volume fraction (curve (2)), the in-
creased oligomer grafting density yields a stronger oligomer
mediated interaction and a more structured g..(r). If we then
decrease ¢, with increasing f (curve (3)), the peaks in g..(r)
are even more pronounced and the separation between the
first and second peaks is reduced relative to the base case.
Even though the core concentration is quite low (¢, < 0.1),
high grafting density at small Ry /a. yields a stronger entropic
attraction among the particles. The simulation results in curve
(3) of Fig. 5(c) qualitatively agree with the theoretical
prediction of higher peaks and a smaller distance between
the first and second peak of the pair probability. Both the first
and second peaks in the simulation are shifted outward at
higher grafting density relative to the base case. This effect
is not captured by the theory. At such a high grafting density
there could be non-negligible packing/layering effects of the
monomer beads which yields even larger effective core size.

While the structural changes due to variations in the ge-
ometry of NOHMs at a fixed low temperature provide di-
rect information about how the incompressible, space-filling
oligomers influence the distribution of nanoparticles in the ab-
sence of solvent, temperature plays a more complex role in
determining the equilibrium structure of the NOHMs system.
When temperature changes, the importance of the LJ attrac-
tion relative to the thermal energy also changes. As these vari-
ations occur at fixed chain length and surface grafting density,
the equilibrium core volume fraction and the monomer num-
ber density change to achieve the atmospheric pressure con-
dition. As can be seen from Fig. 6, the core—core radial dis-
tribution function for systems with different chain lengths at
various temperatures generally exhibits typical liquid-like be-
havior. In all cases the core particles are well dispersed with a
single length scale of the core size shown in g... This implies
that the attached chains prevent the cores from aggregating.
From the simulation results as well as the representative the-
oretical results, we see that as temperature increases the po-
sitions of the peaks are shifted outward. Under the zero pres-
sure condition, increasing T* results in decreased ¢.. In the
theory, one can vary T* and ¢, independently. When the sys-
tem is more compressible at higher 7*, we expect to see less
structured g.. with more damped peaks for a given ¢.. How-
ever, lower core volume fraction leads to larger interparticle
spacing for oligomers to fill, which then produces a stronger
tendency for oligomers to stretch out and should yield more
enhanced and shifted peaks in g... The net effect of changing
both T* and ¢, is to shift the first peak of g, outward with
little change in its height as seen in the theoretical results of
Fig. 6(c) and the simulations in Fig. 6(b).

J. Chem. Phys. 135, 114901 (2011)
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FIG. 6. Radial distribution function for nanoparticles at various tempera-
tures: (a) simulation results for N, = 5; (b) simulation results for Ny, = 15;
and (c) theoretical results for Ry /a = 0.652 corresponding to Ny, = 15.

While the theory and simulation in Figs. 6(c) and 6(b)
both predict an outward shift of the peak of the radial distribu-
tion function for N, = 15, the shift is much more dramatic in
the simulations. We believe that this difference arises from an
enhancement of the steric repulsion between the NOHMs in
the simulations with increasing 7* due to changes in the chain
configuration. In the simulations, the increasing temperature
at a given pressure leads to significantly smaller monomer
number densities in the fluid phase. The small values of py,
at large T* imply a significant amount of free space among
the monomers which might be viewed as being filled with an
added “phantom solvent” that reduces the ‘“net” monomer—
monomer attraction. As a result, increasing 7™ is equivalent
to creating a better solvent condition for the hairs and mak-
ing the monomer—monomer excluded volume more impor-
tant. This enhanced excluded volume will make the oligomer
brushes expand providing steric repulsion between the cores
at increasing radial distances. This excluded volume effect is
not captured in the theory where we use an ideal freely jointed
chain to set the radius of gyration of the linear-spring-bead
oligomers.

The outward shift of the first peak in g, in the simu-
lations in Fig. 6(b) due to better solvent conditions at in-
creasing temperature is consistent with previous studies of
star polymer solutions”’ and sterically stablized colloidal
suspensions.** In Ref. 27 a pairwise additive steric repulsive
potential was used to model the interactions of star poly-
mers in solution. The range of this repulsion was set based
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on experimental observations of the hydrodynamic radius of
the polymers which was observed to increase with increas-
ing temperature. The simulations then showed that the first
peak in the radial distribution function shifted outward with
increasing temperature. In a similar manner, Ref. 43 modelled
sterically stabilized colloids using an interparticle potential
with an effective hard-sphere diameter that included the brush
height. The brush height increased with increasing Kuhn step
and temperature.

The outward shift of the peak of the radial distribution
function for NOHMs with shorter oligomers, Ny, = 5, illus-
trated in Fig. 6(a) is smaller than for NOHMs with longer
oligomers, Ny, = 15, illustrated in Fig. 6(b). In the theory, the
shorter oligomers yield a stronger entropic attraction because
it is harder for the short, stiff oligomers to fill the interparti-
cle space. The theory, therefore, also predicts a more modest
outward shift in the peak for shorter oligomers. At the lowest
temperature 7* = 2.25, the simulation results for N, = 5 ex-
hibit solid-like features such as a highly enhanced first peak
and a split in the second peak. As the temperature is decreased
further for this case, the dynamics of the system slow to the
point where an equilibrium state was not computationally ac-
cessible.

As one measure of the oligomeric-fluid structure, we con-
sidered the pair correlation function for an oligomer bead rel-
ative to a core center g.,(r), which is plotted along with g..(r)
for T* =4.5 and 2.0 in Figs. 7(a) and 7(b). At T* = 2.0,
ge(7) has three peaks near the core particle (r < 507) corre-
sponding to the packing of the first layers of oligomer beads
in the brush. At larger distances, gq,(r) decays and reaches
a minimum, r &~ 8.60. As seen in Fig. 7, this minimum is
correlated with the first peak observed in the g..(r). This is
understandable, since the probability of finding an oligomer
bead at that distance is reduced due to the volume of the
nearest neighboring cores. These correlations, although not
as pronounced, extend to larger distances. As we increase
the temperature (decrease density) these correlations become
weaker and at 7% = 4.5 the minimum de-correlates and oc-
curs at a position different than the position of the first peak
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FIG. 7. Simulation results for core-core and core-bead correlation functions
for two different temperatures for systems with nanoparticles with chain
length Ny, = 10. (top) T* = 4.5; (bottom) T* = 2.0.
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of ge.(r). If the oligomeric fluid were incompressible, as it
would be for small enough 7%, the oligomer bead density
in the available fluid space, ,of)(r) = pPp&eb(M)(1 — @)/ Pe(r),
would be independent of radial position. In Fig. 7(b) we see
that the bead density has a weaker variation than g,(r) in-
dicating that oligomers are attempting to fill the space be-
tween the cores but not doing so uniformly. At T* = 4.5,
the variations of the fluid density are as strong as the varia-
tions of g.,(r) suggesting that the oligomeric fluid is highly
compressible.

Temperature also affects the extent of density fluctua-
tions at different length scales, as characterized by the static
structure factor at different wave numbers. From the theoret-
ical predictions, we can see that the general behavior of the
static structure factor for the system of f =25, N, = 10,
and R,/a. = 0.540 shown in Fig. 8(a) at three different tem-
peratures remains the same as that illustrated in Fig. 3. In
particular, with decreasing ¢ we see hard-core correlations
followed by a plateau region with suppressed density fluc-
tuations and finally the curve rises to the value of the refer-
ence hard sphere suspension at ¢ = 0. As T increases the
region of suppressed S corresponding to a deficit of neigh-
boring particles occurs at smaller ¢ and the value of S(g) in
the plateau region, g - 2a. ~ 0.2 — 2, is larger. These observa-
tions indicate that the system is more compressible at higher
temperatures. The theoretical predictions agree qualitatively
with the simulation results in terms of the location and depth
of the particle deficit region. The simulations show enhanced
peaks in the hard-core correlation region due to the steric re-
pulsion associated with the chain packing, an effect that is ab-
sent in the theory because of the neglect of the effect of chain
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FIG. 8. (a) The static structure factor S as a function of the scaled wave
number ¢ - 2a. for the system with f = 25 and Ny, = 10 at different 7*
predicted by the theory and the simulations. (b) The value of S at g - 2ac
~ (.56, the smallest wave number accessible in the simulations for the same
system, as a function of 7* predicted by the simulations and the theory. At
each temperature ¢ and py, for the theory are the same as the corresponding
simulation values. Error bars for the simulation data in part (b) are smaller
than the symbol size.
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FIG. 9. Root-mean-square distance between the chain center of mass and
the core center for the system of f = 25 and Ny, = 10 as a function of T*
predicted by the simulations and the theory. At each temperature ¢, and py,
for the theory are the same as the corresponding simulation values. The inset
shows simulation results of ¢, as a function of temperature. Error bars for the
simulation data are smaller than the symbol size.

packing on their conformations. The value of S(0) determines
the compressibility of the single-component NOHMs fluid. In
the simulations, we can estimate the compressibility from the
S(q) value at the smallest wave number g, allowed by the
periodic boundary conditions. As can be seen from Fig. 8(b),
the compressibility of the system increases with temperature
and the theoretical values of S (gnin) are reasonably close to
the simulation results at all temperatures.

We turn now to characterizing the structure of the
oligomer brushes attached to the cores. In our theory,
the chain configuration is captured by a linear spring with
all the monomers belonging to a chain being placed at the
same position, the free end of the tethered spring. Therefore,
the quantity that the theory can predict directly is the root-
mean-square distance between the chain center of mass and
the core center, (R%)"/2. In Fig. 9, we compare theoretical
and simulation results for this measure of the chain stretch-
ing for NOHMs with f = 25, Ny, = 10, and Ry /a. = 0.54 at
different T*. As shown in the inset of this figure, each tem-
perature corresponds to a different core volume fraction from
the simulations and higher 7* leads to lower ¢.. The theory
indicates that chains must stretch to fill the interparticle space
so that (R2)!/? grows with decreasing ¢, corresponding to
increasing 7*. The simulation shows a similar trend although
the chain stretches less at high 7* than predicted by the the-
ory. The quantitative differences between the theory and sim-
ulation indicate limitations of the theory resulting from the as-
sumption of ideal freely jointed chains. These differences are
likely to increase when chain packing effects become more
important, in particular for higher grafting densities than the
ones studied in this work.

A measure of the chain conformation that provides more
insight into the tendency of oligomer brushes on neighbor-
ing particles to interpenetrate is the root-mean-square distance
between the center of the core and the ends of its tethered
oligomer chains, (R%)!/2. The average core—core separation
can be approximated using the core number density as pc 13,
We can then define the degree of interpenetration as the differ-

ence between (R%)"/2 and p; '° /2. From the representative
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FIG. 10. Simulation results for the degree of interpenetration between the
nanoparticles with N, = 10 (diamonds), with the square-root of the mean-
square of end-to-center distance (circles), and an estimate of the average dis-
tance between the core particles (squares). Error bars are smaller than the
symbol size.

simulation results shown in Fig. 10 for Ny, = 10, we find that
the mean-square end-to-center distance increases with tem-
perature consistent with the results for (R2)!/? in Fig. 9. As
noted above, a part of this increase is caused by the tendency
of the chains to fill the interparticle space and is consistent
with the increase in p. 173, However, if we examine the in-
terpenetration, we observe two temperature regimes. Below
a threshold of T* & 2.5, the interpenetration is constant sug-
gesting that the chains cooperate to fill the interparticle space
as predicted by the theory. At higher temperatures, however,
the interpenetration decreases with increasing temperature. At
these high temperatures, the monomer—monomer attraction is
small and the chains are filled with void space which may
be viewed as a phantom solvent. The NOHMs then begin to
act like star polymers** or sterically stabilized colloids*® in
a theta or good solvent where the strong excluded volume of
the star arms/brushes leads to entropic repulsion between the
stars/colloids. The brush then expands with increasing tem-
perature as the solvent quality becomes better*’ and the strong
steric repulsion of the brushes decreases the interpenetration
of the brushes of neighboring NOHMs.

Finally, it is of interest to see how much freedom the
core has to wander relative to its tethered oligomers. This
is quantified by the average distance between the center
of the core, r., and the center-of-mass of the corona, r¢y.
Figure 11 shows this distance normalized by the root-
mean-square end to center distance (R2)Y? as func-
tion of temperature. The results show that the core of
NOHMs with large chains can deviate significantly from
the corona center-of-mass particularly at lower tempera-
tures. Under these conditions the chains strongly inter-
penetrate and the interstitial space is filled by a fluid of
oligomers tethered to many neighboring cores as envi-
sioned by the theory. The chains and core then can sam-
ple many possible configurations while the chains still fill
the interstitial space. Smaller chains give less possible con-
figurations and the core is closer to the center of its
tethered oligomers. At high temperatures, the chains stretch
because they are in a phantom solvent and again this reduces
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FIG. 11. Simulation results for the average distance of the core from the
center of mass of the oligomer corona for different chain lengths as function
of temperature. Error bars are smaller than the symbol size.

the freedom of the core to move relative to the center of mass
of its tethered oligomers.

V. CONCLUSIONS

We have used coarse-grained molecular dynamics sim-
ulations and density-functional theory to explore the equi-
librium structure of NOHMs, which consist of nanoparticles
with grafted oligomeric chains and no added explicit solvent.
The simulations and theory confirm the experimental obser-
vation that the geometry of NOHMs including nanoparticle
size and oligomer molecular weight can strongly influence the
properties of these fluids.

At low temperatures and for oligomers with 10 or
15 monomer beads, the qualitative trends in the simulated
NOHMs structure can be explained by a density-functional
theory that treats the tethered oligomers as a fluid that fills
the interparticle space. This tethered fluid experiences an en-
tropic penalty when the chains must stretch to fill the inter-
stices and an enthalpic penalty when the local fluid density
changes. In particular both theory and simulations show that
the structure factor at small wave numbers is greatly reduced
relative to the reference hard sphere value. The reduction in
the structure factor increases with decreasing temperature as
the oligomeric fluid becomes less compressible. The require-
ment that the oligomers fill the interstitial space leads to an
entropic attraction between the cores, which causes the peak
of the core—core pair distribution function to be larger than
that of a hard sphere suspension with the effect increasing
with decreasing chain length. At moderate temperatures, the
chains stretch in proportion to the increase in the interparticle
spacing as predicted by the theory.

At higher temperatures, the chains expand faster than the
interparticle spacing and the increase in the brush height is
larger than that predicted by the theory. The radial position of
the first peak of the core—core pair distribution also increases
at high temperature at a rate larger than that predicted by the
theory. At temperatures larger than 7* & 2.5 the density of
oligomer beads within the interstitial fluid decreases and the
void spaces between the monomers may be viewed as being
filled by a phantom solvent. The trends seen in the simulations

J. Chem. Phys. 135, 114901 (2011)

are then consistent with previous results for star polymers and
polymer-stabilized colloids in solvents. In particular, the in-
creased brush height can be attributed to the increasingly good
solvent quality at higher temperatures. Likewise, the outward
shift of the peak in the pair distribution function can be at-
tributed to an increasingly strong steric repulsion associated
with oligomer brushes in good or theta solvents.
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