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Studies of natural populations reveal that tremendous phenotypic variation

in immune function exists within species. Selection on extant variation drives

the short term evolution of the immune response, potentially resulting in the

temporary maintenance of genetic variation in populations or in the fluctuation

of allele frequencies. Immune response genes also frequently show evidence of

elevated rates of adaptive evolution between species. I used two approaches to

study how genetic variation within a population is related to long term evolu-

tionary patterns. From an in-depth study of the pathogen recognition molecule

Eater, I find evidence for a recent partial selective sweep in a single popula-

tion of Drosophila melanogaster. The putatively selected allele has a significantly

higher level of gene expression, suggesting that gene regulation rather than

protein structure is the target of selection. In a broader study of over 200 im-

mune genes using target enrichment and high-throughput sequencing, I find

that genes with the highest rates of adaptive evolution between species have

low levels of variation within a population. This suggests that selective sweeps,

which reduce variation, occur in rapidly evolving genes. Genes that recognize

infection and transduce signal within the immune response have low levels of

variation consistent with selective sweeps, supporting the idea that these two

aspects of the immune system are subject to elevated pathogen pressures.



Our ability to understand the selective pressures that shape the antibacterial

immune response is limited by our lack of knowledge about the epidemiology

of disease in natural populations. I have performed a survey of natural bacterial

pathogens in wild populations of D. melanogaster in Ithaca, New York, with the

aim of understanding the rates, distributions, and identities of bacterial infec-

tions in the wild. I find that 0.3% to 2% of wild flies are infected with a diverse

array of opportunistic pathogens. The identification and subsequent character-

ization of natural pathogens will lead to a better understanding of the selective

pressures that drive the evolution of the insect immune response. A complete

understanding of the evolution of resistance to infection requires consideration

of the short term evolutionary dynamics measured through population genetics

and phenotypic study of individuals and their pathogens within populations.
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CHAPTER 1

POPULATION GENETICS OF INSECT IMMUNE RESPONSES*

1.1 Introduction

The immune system that we can observe and measure today is but a snapshot

of a dynamic and evolving process, a moment in an ongoing genetic battle be-

tween hosts and their pathogens. Indications of this conflict are etched in the

genome as signatures of adaptive evolution in the host immune system. These

evolutionary signatures can also be read experimentally to give insight into the

nature of host-pathogen interactions. This chapter will examine the evolution-

ary genetics of insect immune systems over both short and long timescales. In

several instances, comparisons and contrasts will be drawn between species

with distinct ecologies in order to elucidate commonalities and idiosyncrasies

of insect immune evolution.

Adaptive evolution can manifest in evolutionarily favored amino acid sub-

stitutions within genes as well as in genomic diversification of gene families.

Both processes can be measured by comparing homologous genes and gene

families across related species. Adaptive amino acid evolution is generally de-

tected as a significantly elevated rate of amino acid substitution relative to an

expectation based on the evolutionary rate at genetically silent positions (Mc-

Donald and Kreitman, 1991; Yang et al., 2000; Anisimova and Liberles, 2007)

(Figure 1.1). Adaptive gene family expansion can be inferred from an increased

rate of duplication relative to that of other gene families in the genome (Hahn

* Presented with minor modifications from the originally published book chapter ”Juneja,
P., Lazzaro, B. P., 2009. Population genetics of insect immune responses. In: Insect Infection and
Immunity: Evolution, Ecology and Mechanisms, edited by Stuart Reynolds and Jens Rolff.”
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Figure 1.1: Detecting adaptive evolution in the genome
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et al., 2005). The recent availability of whole-genome sequences from several

insect species allows such comparisons to be made on a wide scale.

Innate immunity, which is shared by homology between vertebrates and

insects, is hardwired within the genome and lacks the antibody production

that characterizes the adaptive immune response of higher vertebrates. The

insect innate immune system is capable of recognition and subsequent eradi-

cation of microbes and multi-cellular parasites through humoral and cellular

defense mechanisms (reviewed in Lemaitre and Hoffmann (2007)). Humoral

immunity is mediated by production of microbicidal peptides, enzymes, ox-

idative free radicals, and other compounds that are secreted directly into the

insect hemolymph (blood). The humoral defense against microbial infection

is genetically well understood in D. melanogaster. Invading microbes are de-

tected by recognition molecules performing surveillance, signal is transduced

through two primary signaling pathways, and defense is effected in part by

abundantly produced antimicrobial peptides (AMPs). The two signaling path-

ways, termed the Toll and Imd pathways, are conserved between invertebrates

and vertebrates. Cellular immunity is defined by encapsulation or engulfment

of infective agents by circulating hemocytes. It has been less well characterized

at the genetic level, although some genes that mediate cellular recognition and

trigger phagocytic engulfment of microbes have been identified. A distinct pro-

cess, RNA silencing (RNAi), allows specific detection and eradication of RNA

viruses (Wang et al., 2006a). It is expected that functional diversity within the

immune response will translate into variation in the selective pressures on dif-

ferent components of the defense response. This chapter will examine the evo-

lutionary genetics of immune defense, interpreting molecular evolutionary pat-

terns in light of protein function to draw insight into how the immune response

3



adapts to pathogen pressures.

1.2 Evolutionary Patterns in the Antimicrobial Immune Re-

sponse

Immune genes tend to evolve more quickly and adaptively than non-immune

genes in both vertebrates and insects (Murphy, 1993; Schlenke and Begun, 2003;

Nielsen et al., 2005; Waterhouse et al., 2007; Sackton et al., 2007). This adap-

tive evolution is evidenced both by elevated rates of amino acid substitution

between species and by elevated rates of duplication within gene families. The

availability of whole genome sequences allows for quantitative contrasts to be

made between immune and non-immune genes, as well as for comparisons

between functional classes of immune response genes. The recent complete

genome sequencing of twelve species of fruit flies in the genus Drosophila has

allowed particularly fine measurement of rates of substitution and genomic re-

arrangements between closely related species. More distant comparative ge-

nomic analyses can be achieved by comparing genome sequences of Drosophila,

the mosquitoes Anopheles gambiae and Aedes aegypti, the honey bee Apis mellifera

and the red flour beetle Tribolium castaneum (Figure 1.2).

Genome comparisons between species reveal the distinct selective pressures

acting on each species through its unique life history. For example, the honey

bee Apis mellifera has apparently reduced copy number in immune-related gene

families, perhaps reflecting decreased emphasis on immunological defense due

to hygienic behavior in the hive (Evans et al., 2006). Mosquitoes have expan-

sions in gene families thought to play defensive roles against pathogens borne

4



Figure 1.2: Phylogeny of select insect species with sequenced genomes.
The melanogaster species group and melanogaster species sub-
group are indicated. Gene family expansions and contrac-
tions were evaluated among Drosophila (fruit flies), Anophe-
les gambiae (African malaria mosquito), Aedes aegypti (yellow
fever mosquito), Apis mellifera (honey bee) and Tribolium cas-
taneum (red flour beetle) and within the genus Drosophila.
Adaptive amino acid evolution measurement, which requires
shorter phylogenetic distances, was primarily performed in
the melanogaster species group within Drosophila (Tamura et al.,
2004; Savard et al., 2006; Clark et al., 2007).
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in vertebrate blood (Christophides et al., 2002; Waterhouse et al., 2007). Inter-

pretation of these comparisons is often limited, however, because identification

of most immune genes in insects stems from functional characterization in only

a few species, and primarily in D. melanogaster. Novel defense mechanisms in

functionally uncharacterized organisms will not be detected through homol-

ogy searching of genome sequences if they are too divergent to be detected by

similarity at the DNA sequence level. Additionally, extremely rapidly evolv-

ing genes may diverge too quickly to be identified in comparisons between

distantly related species. Genomic comparisons will gain power with increas-

ing functional characterization of non-model systems and the accumulation of

whole-genome sequences for phylogenetically dispersed organisms.

Comparative genomic and molecular evolutionary analyses have revealed

that not all genes in the immune system evolve along the same trajectories.

Genes in broadly defined functional categories differ in evolutionary mode, sug-

gesting contrasting selective pressures based on gene function. The supporting

data and potential selective pressures that drive these evolutionary patterns will

be considered in detail.

1.2.1 Toll and Imd Signaling Pathways

Nearly all core signaling proteins in the Imd and Toll pathways are maintained

as strict orthologs among Drosophila species (Sackton et al., 2007) and between

Drosophila and mosquitoes (Christophides et al., 2002; Waterhouse et al., 2007),

honey bees (Evans et al., 2006), and Tribolium (Zou et al., 2007). Despite this

maintenance of orthology, however, these signaling genes show unexpectedly
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Figure 1.3: A schematic illustration of an idealized D. melanogaster im-
mune responsive cell illustrating prominent proteins required
for the activation of a humoral immune response and receptors
involved in defensive phagocytosis. Proteins whose gene fam-
ilies have experienced considerable genomic turnover within
the genus Drosophila and among Drosophila, Anopheles, Aedes,
Apis and Tribolium are outlined in heavy black. Gray shaded
proteins have been implicated as evolving adaptively at the
amino acid sequence level in D. melanogaster and/or D. simu-
lans. (Reproduced with permission from Lazzaro (2008).)

high levels of amino acid divergence between D. melanogaster and mosquitoes

and considerable evidence of adaptive evolution within Drosophila (Schlenke

and Begun, 2003; Jiggins and Kim, 2007; Sackton et al., 2007; Waterhouse et al.,

2007; Kafatos et al., 2009) (Figure 1.3).
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The adaptive evolution of innate immune signaling pathways is dramati-

cally illustrated by proteins in the Relish cleavage complex of the Imd signal-

ing pathway (Figure 1.4). Relish is a NF-κB family transcription factor that is

cytoplasmically bound in the absence of infection. Activation of the Imd sig-

naling pathway leads to phosphorylation of Relish, caspase-mediated cleavage

of the Relish inhibitory domain, and translocation of the activated transcrip-

tion factor to the nucleus. Several proteins in the cleavage complex (Dredd,

dFADD, IKKb, IKKγ, and Relish itself) appear to be evolving adaptively in D.

melanogaster, Drosophila simulans, and/or the melanogaster species group. Adap-

tive mutations are disproportionately located in protein domains important for

the release of activated Relish: the Relish autoinhibitory domain and cleaved

linker, the Dredd caspase domain, the dFADD death domain, and the IKKb ki-

nase domain (Begun and Whitley, 2000; Schlenke and Begun, 2003; Jiggins and

Kim, 2007; Sackton et al., 2007) (Figure 1.4). Adaptive evolution of the Relish

complex is not universal among Drosophila, but is restricted to certain species in

the melanogaster group (Levine and Begun, 2007; Sackton et al., 2007). In an inter-

esting parallel, the Relish gene of Nasutitermes termites also evolves adaptively,

again with positively selected mutations localized in and around the caspase

cleavage site and linker (Bulmer and Crozier, 2006), suggesting convergence of

selective pressures in these distantly related insects. Nor is adaptive evolution

in Drosophila restricted to the Relish complex. Many other signal transduction

genes in the Imd and Toll pathways (imd, spirit, persephone, Toll, dorsal, necrotic)

also show evidence of rapid evolution in Drosophila (Schlenke and Begun, 2003;

Jiggins and Kim, 2007; Sackton et al., 2007).

One hypothesis to explain the preponderance of adaptive mutations in sig-

naling genes is that at least some pathogens may actively interfere with host

8



Figure 1.4: Adaptive evolution in the Relish complex. Caspase cleavage
of the phosphorylated Relish spacer region allows the NF-
kB domain to be translocated to nucleus, where it drives ex-
pression of immune response genes. IKKγ and IKKβform a
complex through interaction at coiled-coil domains, and IKKβ

phosphorylates Relish. The caspase Dredd is activated by
dFADD via interaction at death inducing domains and forms
a complex with Relish. Putative Relish activation domains
are indicated in grey. Positively selected sites (posterior prob-
ability > 0.75) are indicated (=significant at P<0.01; =signifi-
cant at P<0.02) and reflect selection along the D. melanogaster
branch (Relish, IKKβ, or dFADD) or across the melanogaster
(Dredd) species group (Sackton et al., 2007). Taxonomic lin-
eages where these genes appear to have evolved adaptively are
indicated beneath each gene name (Begun and Whitley, 2000;
Schlenke and Begun, 2003; Jiggins and Kim, 2007; Sackton et al.,
2007). (CC=coiled-coil domain; DID=death inducing domain;
DD=death domain; P=phosphorylation site; C=caspase cleav-
age site)
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immune signaling (Begun and Whitley, 2000). Such pathogens could include

bacteria that inject immunomodulatory molecules into host cells, immunosup-

pressive fungi and parasitoid mutualistic polydnaviruses (reviewed in Schmid-

Hempel (2008)). In the Relish example, pathogen interference with the assem-

bled cleavage complex could drive co-evolutionary adaptation in several pro-

teins. Alternatively, interference with a single important member of the complex

could drive adaptation in that member while promoting compensatory adapta-

tions in the interacting proteins to retain host function. Such compensatory mu-

tations may occur throughout the signaling pathway, amplifying the evidence

of natural selection in this gene set (DePristo et al., 2005). The convergence of

adaptive evolution of genes within the Relish complex in different insect species

suggests that some of these genes are common targets of pathogens.

1.2.2 Antimicrobial Peptides (AMPs)

The humoral immune response culminates in the production of effector

molecules that kill invading microbes. One well-studied class of effector

molecules is antimicrobial peptides. Most AMPs are short cationic peptides

whose microbicidal activity is mediated by direct interaction with the negatively

charged lipid membranes of bacteria and fungi (Zasloff, 2002; Lemaitre and

Hoffmann, 2007; Yeaman and Yount, 2007). Antimicrobial peptides drew early

attention as potential sites of host-pathogen co-evolution (Clark and Wang,

1997; Ramos-Onsins and Aguadé, 1998; Date et al., 1998) because of their direct

role in the lysis and targeted killing of pathogens. However, systematic study

of AMP genes, first in D. melanogaster and more recently across six Drosophila

species, has failed to uncover evidence of adaptive evolution at the amino acid
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level (Lazzaro and Clark, 2003; Jiggins and Kim, 2005; Sackton et al., 2007).

Drosophila AMP genes do, however, show extremely high rates of gene fam-

ily expansion and contraction (Sackton et al., 2007). This high rate of genomic

turnover extends to other taxa and is characteristic of most AMPs (Figure 1.3).

In fact, the majority of Drosophila AMPs have no identifiable homologs in the

genomes of mosquitoes, honey bees or Tribolium (Christophides et al., 2002;

Evans et al., 2006; Waterhouse et al., 2007; Zou et al., 2007). Instead, these in-

sects each have their own unique peptide families (Bulmer and Crozier, 2004;

Waterhouse et al., 2007; Evans et al., 2006; Zou et al., 2007). In some cases, AMP

families in different species independently converge on similar tertiary struc-

tures and presumably functions (Broekaert et al., 1995). Thus, while antimi-

crobial peptides as a functional class of protein are ubiquitous among higher

eukaryotes, there appears to be little homologous retention of peptides over

evolutionary time.

The levels of sequence constraint seen in Drosophila do not characterize AMP

evolution in all taxa. Genomic duplication of antimicrobial peptide genes is oc-

casionally coupled with adaptive diversification at the amino acid level, pre-

sumably reflecting functional divergence (Tennessen, 2005; Yeaman and Yount,

2007). Genes encoding a termite-specific class of AMPs, termicins, have indepen-

dently duplicated or triplicated in several termite species, with one duplicate

typically sustaining mutations that decrease the polarity of the peptide (Bulmer

and Crozier, 2004). These changes, which are driven by positive selection on

amino acid sequence, result in peptides with divergent charges. Similarly, the

mosquito A. gambiae has duplicated members within the defensin family (Das-

sanayake et al., 2007). Again, expansion is coupled with elevated rates of amino

acid substitutions that change polarity, suggesting adaptive value to having two

11



defensins with slightly different polar affinities. Previous studies in vertebrate

AMP families have also found evidence of duplication coupled with positive se-

lection, although in these cases peptide charge is maintained (reviewed in Ten-

nessen (2005) and Yeaman and Yount (2007)). There is compelling evidence from

insects and vertebrates that gene family expansion can sometimes allow adap-

tive diversification of peptide function (Tennessen, 2005).

AMPs are remarkably efficient at combating infection. Resistance in mi-

crobes is seldom observed in nature, and when it is, it tends to arise in special-

ized pathogens that are likely to be under strong selective pressure to resist this

form of defense (see Samakovlis et al. (1990) and Zasloff (2002)). There are sev-

eral possible explanations for why it may be difficult for most bacteria to evolve

resistance. One common AMP mechanism is to disrupt membrane integrity

though biochemically simple mechanisms, such as forming open pores (Zasloff,

2002; Yeaman and Yount, 2007). The ability of microbes to evolve resistance to

such activities may be limited. However, heritable variation for resistance can

be created and selected upon in microbial populations in the laboratory (Perron

et al., 2006). In natural contexts, hosts simultaneously produce an array of AMPs

that differ in charge, hydrophobicity, structure and activity, probably ensuring

that most pathogens are susceptible to at least a subset of them. This is concep-

tually similar to the application of multiple antibiotics in clinical settings and

may serve to delay or eliminate the evolution of resistance (Yeaman and Yount,

2007). If pathogens are slow or fail to evolve resistance to peptides, there may

be little selective pressure on insect hosts to adapt their AMPs at the amino acid

level over modest evolutionary time. However, divergent bacteria and fungi

display a range of susceptibilities to individual peptides (Zasloff, 2002), so di-

versification in AMP function may be selectively favored in instances when a
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host shifts to a new ecological niche and is immediately presented with a novel

and distinct set of pathogen pressures.

1.2.3 Recognition Molecules in the Humoral Response

The humoral immune response is activated when circulating recognition fac-

tors are stimulated by highly conserved microbial compounds. Gram-negative

binding proteins (GNBPs) and peptidoglycan recognition proteins (PGRPs) ac-

tivate the humoral response after recognizing microbial cell wall peptidogly-

cans and β-glucans. Some members of the PGRP family downregulate the

immune response by degrading free peptidoglycan into non-immunogenic

monomers (Lemaitre and Hoffmann, 2007).

PGRP and GNBP gene families generally evolve under purifying selection

over short evolutionary time, but have undergone substantial genomic turnover

on the lineages that separate Drosophila from mosquitoes, honey bees and Tri-

bolium (Evans et al., 2006; Waterhouse et al., 2007; Zou et al., 2007; Kafatos et al.,

2009) (Figure 1.3). Most GNBPs and PGRPs do not appear to have experienced

recent adaptive evolution in Drosophila (Schlenke and Begun, 2003; Jiggins and

Hurst, 2003; Jiggins and Kim, 2006; Sackton et al., 2007), mosquitoes (Little and

Cobbe, 2005), or the crustacean Daphnia (Little et al., 2004). A notable excep-

tion, however, is a Drosophila PGRP which shows strong indications of adap-

tive evolution. PGRP-LC, an alternatively spliced gene that sits atop the Imd

signaling cascade, has sustained a two amino acid insertion in the PGRP-LCa

isoform in species of the melanogaster subgroup. This insertion is predicted to

alter the binding specificity of that isoform, and appears to have been positively
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selected in conjunction with several additional adaptive substitutions (Sackton

et al., 2007). Interestingly, the alternatively spliced binding domains of PGRP-LC

show evidence of either recent independent duplication or concerted evolution

in D. melanogaster and A. gambiae (Christophides et al., 2002). These patterns po-

tentially reflect lineage-specific selection for recognition of distinct microbes. In

another exception, limited positive selection was also detected in GNBP genes

of Nasutitermes termites (Bulmer and Crozier, 2006). In this case, it was hypoth-

esized that adaptation of recognition capability was driven by a shift in ecology

as previously herbivorous termite species adapted to feed on decaying matter,

exposing them to a novel community of pathogens.

One potential explanation for the observation that PGRPs and GNBPs tend

to exhibit little indication of adaptive amino acid evolution is that these proteins

recognize highly conserved pathogen sugar moieties. The cell wall components

recognized by these proteins are indispensable for most microbes, and, gener-

ally speaking, may not be easily modifiable. There thus may be little pressure

on these genes to adapt over short time periods. Additionally, these recognition

proteins are active against molecules that are conserved across a wide range of

microbial taxa. There are, however, a limited number of examples of positive

selection on PGRPs and GNBPs. Coupled with the observations of gene family

duplication and divergence among species, instances of positive selection may

reflect bursts of diversification as recognition function is fine-tuned to species-

specific selective pressures.
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1.2.4 Recognition Molecules in the Cellular Response

Recognition is also a necessary prerequisite for pathogen clearance via cel-

lular immunity, and several gene families have been identified that encode

membrane-bound phagocytic receptors. Phagocytosis is also promoted by ”tag-

ging” of microbes with extracellularly secreted opsonins. Several genes en-

coding both phagocytic receptors and opsonins show evidence of adaptive

amino acid evolution within the genus Drosophila (Sackton et al., 2007) and fre-

quent genomic turnover within Drosophila and between Drosophila and other in-

sects (Evans et al., 2006; Zou et al., 2007; Waterhouse et al., 2007; Sackton et al.,

2007) (Figure 1.3). In Drosophila, recognition genes are significantly more likely

to show evidence of positive selection than genes with signaling or microbici-

dal functions (Sackton et al., 2007). This difference is largely driven by recogni-

tion genes that trigger the cellular response, with nine of ten recognition genes

that yield significant evidence of positive selection having been either experi-

mentally confirmed to be involved in phagocytosis or homologous to known

phagocytosis genes. Specifically, these are genes encoding thioester-containing

proteins (Jiggins and Kim, 2006; Sackton et al., 2007), the eater and nimrod fam-

ilies (Sackton et al., 2007), the class C scavenger receptors (Lazzaro, 2005), and

the CD36 homolog epithelial membrane protein (emp) (Sackton et al., 2007).

Thioester-containing proteins (TEPs) have been directly implicated as op-

sonins mediating the cellular clearance of microbes including bacteria and

malaria-causing Plasmodium in Drosophila and Anopheles (Levashina et al., 2001;

Blandin and Levashina, 2004; Stroschein-Stevenson et al., 2006). Proteolytic

cleavage of a hypervariable spacer, or ”bait,” domain exposes the thioester mo-

tif, which then covalently binds microbes and labels them for phagocytosis.
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TEPs appear to be hotspots of adaptation in several species. In D. melanogaster,

there are six Tep genes, four of which have intact thioester domains and thus

are likely to function as opsonizing agents (Blandin and Levashina, 2004). One

of four of the intact Teps show evidence of adaptive divergence between D.

melanogaster and D. simulans and three show evidence for directional selection

in the melanogaster species group (Jiggins and Kim, 2006; Sackton et al., 2007)

(Table 1.1). Interestingly, one of the adaptively evolving Tep genes is consti-

tutively expressed at higher levels in European than African populations of D.

melanogaster, suggesting that expression of this Tep may be locally adapted (Hut-

ter et al., 2008). Tep genes in mosquitoes and the more distantly related crus-

tacean Daphnia also show evidence of adaptive amino acid evolution (Little

et al., 2004; Little and Cobbe, 2005). In all cases, positively selected amino acid

mutations are overrepresented in the bait domain that is cleaved to expose the

thioester motif. It is unknown whether the proteases that cleave TEPs are pro-

duced by host or pathogen, so it is not yet possible to say whether adaptation

in this domain is due to co-evolution with pathogen proteases or with pathogen

molecules that interfere with host proteolysis.

Tep gene families are expanded in mosquitoes, with 13 Tep genes found in

the Anopheles gambiae genome and 8 in the Aedes aegypti genome (Christophides

et al., 2002; Waterhouse et al., 2007). The expansions in size of the Tep gene fam-

ily appear to have been independent in each of these two taxa and potentially

reflect elevated pressure on cellular immunity. The A. gambiae Tep1 gene is seg-

regating for two sharply divergent alleles, one of which, when homozygous,

confers absolute resistance to experimental infection with the rodent malaria

Plasmodium berghei (Blandin and Levashina, 2004; Baxter et al., 2007). Individ-

uals homozygous for the susceptible allele sustain robust P. berghei infections.
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These two alleles differ by multiple amino acid substitutions, including several

that are clustered around the thioester domain. It is currently unclear which

substitutions cause the phenotypic differences in susceptibility, or whether it is

an epistatic phenotype involving substitution in multiple domains of the pro-

tein. Both alleles are found at high frequencies in natural populations (Obbard

et al., 2008), suggesting selective forces maintain these two alleles in the wild.

This system provides a tantalizing opportunity to understand the mechanisms

that lead to the maintenance of immune response polymorphisms in a natural

context.

Whole-genome comparisons within the genus Drosophila indicate that, in

striking contrast to recognition molecules that trigger the humoral response,

recognition molecules that initiate the cellular response show abundant evi-

dence of adaptive evolution. Deeper investigation of the Tep gene family reveals

that adaptive evolution extends beyond Drosophila to include mosquitoes and

Daphnia, and demonstrates extant functional variation in a mosquito Tep gene.

The signals of adaptive evolution suggest that these recognition molecules inter-

act with evolutionarily labile pathogen motifs or that, like signaling molecules

in humoral defense, they are potentially subject to interference by pathogen-

produced proteins.

1.2.5 Summary

The diverse evolutionary trajectories of various genes in the insect immune re-

sponse (Figure 1.3) can be interpreted in light of their molecular functions and

interactions with pathogens. Pathogen recognition molecules that stimulate the
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humoral response interact with highly conserved microbial cell wall compo-

nents. Although obligate pathogens are sometimes able to reduce their cell

walls to escape detection, most microbes are evolutionarily constrained because

they must also be able to persist in non-infectious environments. Similarly, there

may be few ways in which microbes can evolve resistance to antimicrobial pep-

tides, especially when host insects simultaneously employ multiple peptides

with distinct activities. If there is little adaptation in pathogens to escape host

humoral recognition and antibiotic killing, then it may be expected that there

would be little indication of adaptive amino acid evolution in the host genes

over short evolutionary time. Both humoral recognition factors and antimicro-

bial peptides exhibit rapid rates of genomic duplication and deletion, and in

some taxa, duplication is coupled with a burst of amino acid diversification that

presumably increases breadth of function.

In contrast, signal transduction proteins in the humoral immune response

are largely maintained in strict orthology across insect species, but frequently

show indications of adaptive amino acid evolution within species. A hypothe-

sized explanation is that the strong maintenance of orthology in these pathways

makes them attractive targets for immune suppression by generalist pathogens.

This may be a particularly successful strategy for microbes that are unable to

evade or resist the recognition and microbicidal stages of humoral immunity.

Gene duplication and diversification are not commonly observed here, perhaps

because this is not a successful strategy for escaping pathogen interference. Ge-

nomic retention of a duplicated gene that can be manipulated by pathogens

would be detrimental because host signaling function would be impaired. In-

stead, rapid fixation of amino acid “escape” variants in signaling genes seems

to be the most effective host strategy, and coordinate compensatory mutation in
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physically interacting proteins may amplify the signal of adaptive evolution in

this functional category.

Recognition factors and opsonins in the cellular immune response evolve

both by adaptive amino acid evolution and frequent genomic turnover. In

general, little is known about the specific activities and recognition profiles of

these genes, making it difficult to interpret the evolutionary patterns in a func-

tional context. The evolutionary genetics, however, do lead to functional pre-

dictions, including that the cellular recognition factors bind evolutionarily labile

pathogen epitopes or are subject to pathogen interference, both of which could

drive rapid amino acid evolution. At the moment, virtually nothing is known

about the molecular evolution or population genetics of host genes that drive

phagocytosis after pathogen recognition. Microbes are capable of manipulat-

ing host cells both to promote and inhibit phagocytic uptake (Schmid-Hempel,

2008), leading to the prediction that genes encoding the machinery of phagocy-

tosis will, like genes in humoral signaling pathways, show abundant evidence

of adaptive evolution.

1.3 Evolutionary Patterns in the Antiviral Immune Response

Early characterization of the immune response primarily focused on antimicro-

bial defense. Antiviral defense is at least partially distinct from that against

microbes, and currently is only poorly understood. Both the Toll and Imd path-

ways are activated during the course of some viral infections; however only

the Toll pathway seems to confer protection (Lemaitre and Hoffmann, 2007).

RNA interference (RNAi) provides an independent mechanism of defense that
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is specific against RNA viruses (Wang et al., 2006a). Viruses are formidable op-

ponents for the immune system. They are capable of rapid evolution owing to

their fast generation times, large population sizes, high mutation rates and ob-

ligate pathogen lifestyles. These factors hint that the evolutionary patterns of

antiviral defense genes will be different from those described previously for the

antimicrobial defense.

Short term evolution of an antiviral defense gene has been studied at the

D. melanogaster locus ref(2)P, which is proposed to function in the Toll path-

way (Avila et al., 2002). This locus is polymorphic for alleles that explain a large

component of the variation in susceptibility or resistance to the rhabdovirus

Sigma (Contamine et al., 1989; Bangham et al., 2007, 2008). A single domain,

termed PB1, of ref(2)P is required for viral replication (Carre-Mlouka et al., 2007).

Sigma is infective if a permissive allelic variant of this domain is present, but not

with a restrictive allele or genetic knock-out of the domain. This domain has an

excess of amino acid polymorphisms (Wayne et al., 1996), consistent with nat-

ural selection acting to maintain allelic diversity. A random sample of ten phe-

notypically random alleles identified six amino acid polymorphisms in the PB1

domain (Wayne et al., 1996). A single complex mutation, with a single glycine

residue substituted for glutamine and asparagine residues, was found on re-

strictive but not permissive alleles. The remaining polymorphisms are shared

by both restrictive and permissive alleles. The frequency of the complex mu-

tation varies between populations, ranging from absent in some African and

European populations to 23% in some North American populations (Bangham

et al., 2007). There is greatly reduced variation in the restrictive haplotype in

a North American population, suggesting that it has recently risen to high fre-

quency by directional selection (Figure 1.1). This indicates that selection is act-
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ing on localized spatial scales, likely in concert with Sigma virus, which also

varies in frequency and genotype between populations (Carpenter et al., 2007).

The fact that there is an excess of nonsynonymous polymorphism in ref(2)P

PB1 domain but that only a single complex mutation separates restrictive and

permissive alleles suggests that current Sigma virus populations have become

adapted to some of the remaining polymorphisms. Indeed, analysis of all com-

binations of polymorphisms on the restrictive allele in artificially generated con-

structs indicates that no fewer than two of the three mutations are required to

create a restrictive allele (Carre-Mlouka et al., 2007). These data suggest a model

wherein novel mutations have been driven to high frequency by directional se-

lection, but that the sweeps are incomplete because the virus quickly adapts

to the increasingly common allele before it fixes in the population. Host resis-

tance then requires the repeated reintroduction of novel restrictive mutations.

The most escalated rates of evolution are expected when host and pathogen

are co-evolving, such that host adaptations to “escape” infection are met by a

gene-for-gene pathogen adaptation to maintain virulence (Dawkins and Krebs,

1979). Over the evolutionary long term, there is evidence for elevated amino

acid substitution at this domain, with more adaptive mutations becoming fixed

in D. melanogaster when compared with D. simulans, a species in which Sigma

infection is rare or absent (Wayne et al., 1996). Restrictive polymorphisms that

are driven to high frequencies during partial selective sweeps will fix by genetic

drift more often than mutations that are selectively neutral over their entire evo-

lutionary history, which may lead to elevated amino acid divergence between

species.

A distinct pathway using RNAi presents an important defense against RNA
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viruses. In D. melanogaster, double-stranded viral RNA (dsRNA) is recognized

and cleaved into small interfering RNA (siRNA) by Dicer-2 (Wang et al., 2006b).

These siRNAs then guide cleavage of matching RNA via formation of a RNA-

induced silencing complex (RISC). Some viruses produce proteins that suppress

RNA silencing. For example, Drosophila picornavirus C produces a dsRNA-

binding protein that interferes with Dicer-2 activity and promotes viral estab-

lishment and proliferation (van Rij et al., 2006). Dicer-2, along with RISC genes

R2D2 and Argonaute-2, are amongst the most rapidly evolving genes in the D.

melanogaster genome. These anti-viral genes, but not their paralogs with house-

keeping regulatory function, show indications of adaptive evolution by recur-

rent fixation of novel amino acid mutations (Obbard et al., 2006).

The unique patterns of evolution of antiviral defense yield a useful system

for integrating measures of short term and long term evolution. In the case

of ref(2)P in D. melanogaster, rapid evolution is driven by a gene-for-gene in-

teraction between host and virus, and is evidenced by reduced genetic varia-

tion within the selectively favored allele in the short term and increased amino

acid divergence in the long term. Rates of long term evolution in RNAi antivi-

ral genes in D. melanogaster are dramatically higher than the genome average.

Evidence suggests that the selective pressures are different from those that act

on antimicrobial defense, leading to elevated rates of evolution. This may re-

flect either rapid viral evolution or high host specificity in viruses, either of

which would facilitate co-evolution. Like humoral signaling pathways in the

antimicrobial defense, RNAi pathways are also subject to pathogen interference

to overcome host defenses, indicating that they too are a potential site of di-

rect conflict. Thus, evidence from both types of defense suggests that sites of

pathogen interference display elevated evolutionary rates. As antiviral defense
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becomes better characterized at the molecular level, this system will yield fur-

ther insights into genetic adaptation to pathogen pressures and serve as a com-

parison for evolutionary patterns observed in antimicrobial defense.

1.4 From Genotype to Phenotype

All the patterns discussed thus far have pertained to the long term evolution

of the immune system. It is important to remember, however, that all adaptive

evolution is based on phenotypic polymorphism that segregates in populations

at some point in time. Indeed, extant natural populations harbor considerable

genetic variation for immunocompetence. This segregating phenotypic varia-

tion is the substrate for short term evolution. Understanding its genetic basis

and the forces governing its persistence is essential for predicting the evolu-

tionary response to natural or artificial perturbations in infectious pressure in

natural populations.

In organisms with well characterized genomes, it is possible to directly

test the phenotypic effects of allelic variation in pre-chosen ”candidate” genes

though genotype-phenotype association mapping. These studies have been em-

ployed most effectively in D. melanogaster. For instance, natural allelic variation

in the ref(2)P gene clearly determines resistance to the vertically-transmitted

Sigma virus in D. melanogaster females in an almost purely Medelian fash-

ion (Contamine et al., 1989; Bangham et al., 2008). Genetic variation in Sigma

viral transmission through males, however, does not map to ref(2)P (Bangham

et al., 2008). Variation in the ability of D. melanogaster to suppress bacterial in-

fection has been mapped to polymorphisms in pathogen recognition factors and
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signaling genes within the Toll and Imd pathways (Lazzaro et al., 2004, 2006).

Expression levels, but not polymorphisms, of antimicrobial peptides are also as-

sociated with resistance to infection (Sackton et al., 2010). These observations,

coupled with evaluation of transcriptional activity of the immune system, indi-

cate that signaling flux through the Toll and Imd pathways is a tremendously

important determinant of resistance to bacterial infection. In contrast to the an-

tiviral resistance determined by ref(2)P, polymorphisms mapped in the antibac-

terial association studies each make relatively small contributions to variance

in the resistance phenotype, suggesting that resistance to bacterial infection is a

combinatorial function of multiple genes of individually small effect. Even in

sum, the mapped antibacterial factors do not explain the entirety of the genetic

variance, indicating that other unstudied genes also contribute to variation in

resistance.

If pathogen infection can be so detrimental to the condition of the host,

and host alleles that confer high resistance to infection exist in natural popula-

tions, why then does resistance not spread to all individuals? Genetic tradeoffs,

whereby immunocompetence comes at a cost to another phenotype within an

organism, can constrain natural selection from fixing resistant genotypes (Roff

and Fairbairn, 2007). Potential costs of resistance include direct damage to host

tissues due to immune activity and correlated reduction in investment in other

physiological traits, including alternative immune functions, metabolism, and

reproduction. Which investment strategy is most favorable will depend on the

strength of pathogen pressures and on selection acting on other fitness traits of

the organism.

An experimental approach that has been used to study genetic tradeoffs is
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artificial selection for increased resistance to infection and subsequent measure-

ment of correlated changes in other fitness traits. This method identifies costs

of resistance, defined as changes in traits that reduce fitness in selected lines

compared with unselected lines. Artificially selecting the Indian meal moth,

Plodia interpunctella, for increased resistance to granulosis virus infection led to

correlated increases in larval development time and pupal weight and a de-

crease in egg viability in selected lines (Boots and Begon, 1993). Selection in D.

melanogaster for resistance to parasitoid or fungal infection led to a correlated

decreases in larval competitive ability and adult fecundity, respectively, in the

absence of infection (Kraaijeveld and Godfray, 1997, 2008). Costs that are mea-

sured in artificial selection lines should be interpreted with caution, however,

as selection experiments can sometimes result in the fixation of rare alleles with

large phenotypic effects that are not representative of functional genetic varia-

tion in natural contexts. For example, A. gambiae mosquitoes selected for refrac-

toriness to Plasmodium infection achieve this through an increased melanization

response (Collins et al., 1986) and high levels of cellular oxidative free radicals

that are extremely damaging to host cells (Kumar et al., 2003). Natural resis-

tance in wild populations of A. gambiae, however, is generally accomplished

with a melanization-independent mechanism (Riehle et al., 2006), and is likely

to be less costly or damaging than mechanisms seen in laboratory-selected lines.

A more relevant, but much subtler, measurement of genetic tradeoffs is ob-

tained by measuring genetic correlations between traits in naturally occurring,

unselected genotypes. This is commonly done by measuring phenotypes in

genetic clones or in individuals’ with known genetic relatedness and estimat-

ing the genetic contribution to the phenotype. In D. melanogaster, genotypes

with high resistance to bacterial infection had low fecundity in the absence of
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infection in a food-limited environment (McKean and Nunney, 2008). In the

pea aphid Acyrthosiphon pisum, clonal lines with high resistance to attack by

the parasitoid wasp Aphidius ervi had reduced fecundity (Gwynn et al., 2005).

However, in this case, resistance to parasitoids can be conferred by bacterial en-

dosymbionts, so the genetic basis for this tradeoff may be mediated by factors

outside the host genome. In both examples, the cost of resistance is a decrease

in reproductive fitness.

The ultimate goal is to identify the genetic architecture underlying tradeoffs.

Quantitative trait locus (QTL) mapping has been used to locate these genetic

regions. This approach relies on contrived crosses between chosen parents to

established phenotypically variable recombinant progeny. Genetic markers are

then genotyped at periodic intervals across the genome, allowing the localiza-

tion of genomic regions encoding the phenotypic variation without relying on a

priori ”candidate” genes. QTL mapping, however, lacks the resolution to iden-

tify specific genes or alleles. In the red flour beetle T. casteneum and in the bum-

ble bee Bombus terrestis, simultaneous mapping of immune and fitness traits

found that loci associated with immune phenotypes occasionally co-localized

with QTL involved in fecundity, viability and body size (Zhong et al., 2005; Wil-

fert et al., 2007a). There are two potential genetic mechanisms that could cause

genetic correlations between immune and fitness traits. Genetic correlations can

be caused by pleiotropy, where a single gene influences multiple traits. Trade-

offs are due to antagonistic pleiotropy, where a single allelic variant of a gene

has a positive effect on one trait but a negative effect on the other. Alternatively,

allelic variants of distinct genes affecting the two traits may be in linkage dise-

quilibrium due to physical proximity on a chromosome, and thus these variants

are coordinately passed to the offspring. Selection acts simultaneously on traits
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that are correlated by either pleiotropy or linkage disequilibrium. However,

only antagonistic pleiotropy places a long term constraint on selection because

recombination can degrade correlations based on linkage disequilibrium. QTL

mapping relies on experimentally generated linkage disequilibrium that spans

much greater physical distances than are observed in natural populations, so it

is relevant to follow QTL-based studies of genetic correlations with field-based

studies to determine whether the traits co-segregate in nature.

Tradeoffs have also been identified within the immune response. For exam-

ple, in B. terrestis, lines selected for increased resistance to trypanosome infec-

tion also had a higher investment in a phenoloxidase response coupled with a

lower investment in antimicrobial peptide response (Wilfert et al., 2007b). The

Egyptian cotton leafworm, Spodoptera littoralis, demonstrated positive genetic

correlations amongst hemocyte density, cuticular melanization, and phenoloxi-

dase activity, but a negative genetic correlation between hemocyte density and

lysozyme-like antibacterial activity (Cotter et al., 2004). A different result is ob-

tained from females of the mealworm beetle Tenebrio molitor, where cuticular

melanization shows a negative genetic correlation with hemocytes and phe-

noloxidase, suggesting that the genetic architecture of these correlations can

vary between species (Rolff et al., 2005). These results demonstrate that in-

creased investment in one component of the immune response can come at a

cost to other immune functions, and indicate the potential for tradeoffs within

the immune response to place constraints on the evolution of global resistance.

Thus far, all resistance measures have been considered only in a single envi-

ronment; however, the optimal immune strategy can be expected to vary based

on environmental conditions (Lazzaro, 2008). Selective pressures are heteroge-
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neously distributed in the environment. Abiotic factors such as daylength, tem-

perature, and moisture vary between populations, affecting development time,

metabolic flux, and other traits, and also altering the composition of pathogen

communities and nutrient availability. Allelic variants in some genes respond

differently to changes in the environment, termed genotype-by-environment

interactions. If a genotype is particularly favored in certain conditions, lo-

cal adaptation to the proximate environment can occur. Temperate and tropi-

cal populations of D. melanogaster varied significantly in their resistance to the

generalist fungal pathogen Beauveria bassiana (Tinsley et al., 2006) and bacte-

rial pathogen Providencia rettgeri (Lazzaro et al., 2008). Considerable genotype-

by-environment interaction was observed in resistance of D. melanogaster to P.

rettgeri infection across multiple temperatures. Despite that observation, tem-

perate populations were on average more resistant to P. rettgeri than the tropi-

cal one at lower temperatures, which potentially reflects adaptation to the local

temperature. Spatial heterogeneity in the environment can lead to the mainte-

nance of multiple resistance alleles if local adaptation is sufficiently strong to

withstand erosion by migration and gene flow.

The magnitude, or even the existence, of genetic tradeoffs can also vary be-

tween environments. In natural and laboratory settings, infestation by the mite

Macrocheles subbadius negatively affects the fertility and body size of its host,

Drosophila nigrospiracula (Luong and Polak, 2007). There is genetic variation for

resistance to mites, which in this case is mediated by an avoidance behavior. It

has been demonstrated that, similar to D. melanogaster selected for parasitoid

resistance, lines selected for mite resistance also suffer a cost in terms of de-

creased larval competitive ability. Manipulating the environment with high

temperatures and increased larval density to create stressful conditions tends
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to increase costs of resistance. For instance, in previously considered exam-

ples from D. melanogaster, resistance to bacterial infection was correlated with

low fecundity only in a food-limited environment (McKean and Nunney, 2008),

and larval success of parasitoid-resistant larvae was compromised only under

crowded conditions (Kraaijeveld and Godfray, 1997). In all of these cases, se-

lection can act independently on the traits in a non-stressful environment but

the traits are constrained to each other under resource-limited conditions. Ge-

netic variation for different allocations of resources between resistance and fit-

ness traits can be maintained by environmental heterogeneity since the optimal

investment strategy will be context-dependent (Roff and Fairbairn, 2007). Selec-

tion on these variants will be inefficient because tradeoffs will only be apparent

in certain conditions.

The host immune response faces a special obstacle in evolving immunity: the

immune system must respond to living organisms that are themselves free to

evolve. Its pathogen ’environment’ is capable of rapid evolution, often much

more quickly than the host. Analogous to genotype-by-environment interac-

tions, a genotype-by-genotype interaction occurs when the efficacy of a host

resistance genotype is dependent on the genotype of the pathogen. Antagonis-

tic pleiotropy can occur in this context if resistance to one pathogen genotype

comes with susceptibility to another. The specificity of these interactions can

allow for temporal fluctuations in host and parasite genotypes in a frequency

dependent manner. Such fluctuations are generally difficult to measure experi-

mentally, but have been observed in natural populations of the snail host Pota-

mopyrgus antipodarum and trematode parasite Microphallus sp. as well as in the

crustacean host Daphnia magna and bacterial parasite Pasteuria ramosa (Dybdahl

and Lively, 1998; Decaestecker et al., 2007). In both cases, resistant host geno-
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types are at an advantage when they are rare because their infective parasite

genotypes are also rare, allowing resistant host genotypes to then to rise in fre-

quency. This leads to a time-lagged increase in the infective parasite genotype,

causing the host advantage to decline, subsequently reducing the frequency first

of the host genotype and then the parasite genotype. This type of co-evolution is

probably rare, occurring only when a parasite infects a narrow species range of

hosts, allowing for specific, reciprocal adaptation, and when the parasite greatly

reduces the fitness of the host such that selective pressure on resistance is high.

In reality, many parasites are likely adapting to multiple hosts and impose only

small reductions of fitness, placing more diffuse selective pressures on their

hosts.

Environmental heterogeneity in pathogens and pathogen genotypes can

lead to spatial adaptation to local pathogen pressures (Woolhouse et al., 2002).

Genotype-by-genotype interactions between hosts and pathogens allow for

adaptation to proximate pathogen pressures. Experimental evolution has been

used to demonstrate the potential for local adaptation. In an experiment where

P. ramosa was serially passaged for several generations on D. magna, it evolved

high levels of infectivity on the host used for passage and in some cases lost vir-

ulence on non-passaged hosts (Little et al., 2006). This indicates that parasites

can adapt to current hosts, perhaps at a cost of infecting alternate hosts, in only

a few generations. Spatial variation in resistance can be detected by comparing

the success of infection between host-parasite combinations that are either sym-

patric (local) or allopatric (foreign). Although most theoretical models predict

that the parasite should be most successful in sympatric infections, in practice

both parasite local adaptation and maladaption are observed (Woolhouse et al.,

2002). In A. gambiae, a locus that was found to control encapsulation response
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to the malaria parasite Plasmodium falciparum was strongest against allopatric

infections (Niare et al., 2002). Another locus restricting infection intensity was

strongest against sympatric infections. Despite the opposite directions of these

responses, both findings demonstrate population variation in resistance. In

some cases, host resistance and parasite virulence have been observed to co-

vary. The parasitoid Asobara tabida has been reported to have the highest viru-

lence in the Mediterranean and lower virulence in northern Europe (Kraaijeveld

and Godfray, 1999). D. melanogaster, the host, was observed to have the high-

est resistance in the Mediterranean and southern Europe, and low resistance in

northern Europe, evidence of adaptation to local parasitoid pressures.

Tremendous variation in immunocompetence exists in extant natural pop-

ulations. Tradeoffs within the immune response and between immunocompe-

tence and other fitness components constrain the ability of natural selection to

drive resistant genotypes to fixation. Variation in tradeoffs is maintained in

part by environmental variation, whereby the costs associated with a partic-

ular genotype are context-dependent. Genotype-by-environment interactions

and local adaptation can potentially lead to the maintenance of multiple poly-

morphisms in heterogeneous environments. Furthermore, the pathogen ”envi-

ronment” is itself evolving. These forces in combination oftentimes limit the

evolution of a single globally resistant genotype.

1.5 Conclusion

Genes involved in the immune response show signals of rapid evolution, with

the precise evolutionary mode varying among components of the immune sys-
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tem. Extant populations harbor tremendous genetic and phenotypic variation

in resistance, providing the substrate upon which selection acts. Examination

of both evolutionarily ancient and current patterns has only rarely been per-

formed. The most complete example is from the ref(2)P locus in D. melanogaster,

which is polymorphic for the ability to permit or restrict Sigma virus infection.

In natural populations, this locus shows evidence for elevated polymorphism,

partial selective sweeps, and spatial heterogeneity in allele frequencies, all of

which reflect an on-going battle between host and pathogen. These polymor-

phisms also often become fixed, driving long term adaptive amino acid evolu-

tion. Other parts of the immune system could be equivalently studied, such as a

polymorphic locus in the mosquito A. gambiae that confers resistance to malaria.

In general, characterization of forces that facilitate or inhibit the spread of host

resistance through populations, combined with genome-scale comparisons be-

tween species, will allow the linkage of short term and long term patterns to

fully define the lability and constraint on adaptive evolution across the immune

system.

Understanding the factors that influence the evolution of the immune re-

sponse has important ramifications for diverse fields of study. Evaluation of

the feasibility of applications such as the proposed engineering of transgenic

disease vector insects to control transmission and the use of pathogens to im-

plement biological control of pest populations benefits from the most complete

understanding possible of how resistance arises and propagates through nat-

ural populations. These are inherently evolutionary biological questions. The

evolutionary dynamics of insect-pathogen interactions also has clinical impor-

tance insofar as insects can serve as model hosts for humans. Evolutionary in-

ferences about how pathogens interact and interfere with different components
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of the immune system inform studies in molecular immunology. Advances in

immunology, in turn, will test these predictions and identify new sets of genes

and pathways in a wider range of organisms, further broadening the field of

evolutionary genetics.
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CHAPTER 2

DIVERSITY OF BACTERIA ASSOCIATED WITH THE HEMOLYMPH OF

WILD-CAUGHT DROSOPHILA MELANOGASTER

2.1 Abstract

Although Drosophila melanogaster is one of the genetically best-characterized or-

ganisms in science, knowledge of its ecology lags far behind. This is a major

handicap for understanding evolution and providing context for function of the

immune system system. Identifying the bacteria that are naturally associated

with these flies can potentially tell us a great deal about whether the immune re-

sponse evolved to fight pathogens, to maintain symbionts, or both. To this end,

I surveyed bacteria from the hemolymph of wild-caught D. melanogaster from

an Ithaca, New York, population over three years. I developed culture- and

PCR-based detection methods that could be applied to the hemolymph of indi-

vidual flies and demonstrate that culturing methods can successfully be used to

detect hemolymph-borne bacteria. I found that between 0.3% and 2.0% of flies

had infections that could be detected by culturing methods. Infections were

caused by a taxonomically diverse array of bacteria that varied in virulence in

subsequent reinfection experiments. No bacterium other than the intracellular

symbiont Wolbachia pipientis was detected regularly by PCR, suggesting the ab-

sence of any other prevalent bacteria in the hemolymph, although limitations in

the application of the PCR-based method precluded drawing firm conclusions

about overall infection frequency. My data suggest that the D. melanogaster pop-

ulation sampled lacks bacterial specialist pathogens and symbionts other than

W. pipientis, and reveal that bacterial infection of the hemolymph of wild D.
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melanogaster is rare and caused by an assortment what appear to be opportunis-

tic pathogens.

2.2 Introduction

Recent years have seen a great expansion in our understanding of the genet-

ics of insect immune responses, particularly focusing on antibacterial immunity

in Drosophila melanogaster, but our understanding of the natural pathogens that

shape the evolution of this response has grown at a much slower rate. From

studies in other insects, we know that a wide variety of bacteria-host interac-

tions exist, ranging from commensal to mutualist to pathogenic. Some of these

bacteria are maintained and some are cleared, in part due to the activity of the

host immune response (Reynolds and Rolff, 2008). Characterization of the bac-

teria that are naturally associated with D. melanogaster will lead to a better un-

derstanding of the function and evolution of its immune system. This study

was aimed at identifying bacteria from the hemolymph of individual wild flies

using a combination of culture-dependent and culture-independent methods.

Studies in other insects reveal a number of different types of bacteria-host

interactions. In mutualistic interactions, the presence of bacteria benefits the

host nutritionally, defensively, or otherwise, and the bacteria benefits by using

the host as a habitat and as a source of nutrients. In some cases, mutualists are

highly adapted to their host to the extent that they are obligate, having special-

ized or reduced genomes that specifically code genes that aid the host (Reynolds

and Rolff, 2008). Mutualistic bacteria can sometimes be found concentrated

within specialized host cells called bacteriocytes, although they can often also
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be found in the hemolymph (Feldhaar and Gross, 2009). Pathogenic bacteria,

which cause harm to the host, are also known and may have specific adapta-

tions to increase virulence. Commensal bacteria, on the other hand, may benefit

from their hosts while causing neither harm nor benefit. Little is known about

identities of bacteria that are associated with D. melanogaster in nature and about

the types of interactions in which they participate.

Some effort has been placed in recent years on increasing our knowledge of

wild and lab bacteria associated with D. melanogaster. Corby-Harris et al. (2007)

looked at the diversity of microbes internally and externally associated with

whole flies from different geographic locations. A total of 74 OTU’s belonging to

Proteobacteria, Firmicutes, and Bacteroidetes were identified in flies from 11 North

American populations (7-30 OTU’s per population) of wild D. melanogaster. A

study by Cox and Gilmore (2007) found 25 OTU’s from the above three phyla

plus Actinobacteria associated with wild D. melanogaster from a single North

American population. They also found a high prevalence of Enterococcus species

in laboratory-reared flies. These Enterococcus species are commonly thought to

be commensal but Cox and Gilmore (2007) found that pathogenicity could be

induced by overexpressing a single gene. In both studies cited above, the pre-

dominant bacteria in wild-caught flies were Proteobacteria. Both of these studies

were performed on pools of 5 or 10 flies so the properties of individual flies are

unknown.

Similar studies from other insect species reveal differences in the diversity

and structure of microbial communities associated with various insects. A study

of Anopheles mosquitoes found several bacteria in the midgut that were intracel-

lular and related to known insect symbionts (Lindh et al., 2005). Although it is
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not known whether these bacteria provide a nutritional benefit to mosquitoes,

studies of a variety of insects show that symbionts are most likely to be found

in insects that feed on specialized or nutritionally-poor diets such as blood or

plant phloem (Feldhaar and Gross, 2009). This suggests that there would be dif-

ferences between the microbial communities associated with mosquitoes and

those found with D. melanogaster, which is not surprising given their dramat-

ically different life histories. A survey of the midguts of gypsy moth found

that bacterial species diversity was highly influenced by food substrate (Brod-

erick et al., 2004), again pointing to the importance of environment in struc-

turing microbial communities. Bacterial community complexity is substantially

higher in humans than in insects, with hundreds of phylotypes predominantly

from the phyla Bacteriodetes and Firmicutes (Eckburg et al., 2005) being found

in the human gut compared with only several dozen phylotypes seen in some

insects (Broderick et al., 2004; Lindh et al., 2005; Cox and Gilmore, 2007; Corby-

Harris et al., 2007).

Rigorous comparison among microbial survey studies is difficult because of

the multitude of different approaches used. Many studies use a combination

of culture-based methods and/or non-culture-based methods (Broderick et al.,

2004; Lindh et al., 2005; Eckburg et al., 2005; Cox and Gilmore, 2007; Corby-

Harris et al., 2007). Culture-based methods are useful because they allow isola-

tion of bacteria for subsequent experiments. However, it is estimated that less

than 1% of bacteria can be cultured from some environments, especially those

that greatly differ from the culture medium (Schloss and Handelsman, 2006).

Non-culture-based methods also have problems. Sequencing of cloned PCR

products introduces uncertainty due to nucleotide incorporation errors dur-

ing amplification, ligation biases, and primer-dependent amplification success.
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High-throughput sequencing is prone to a higher rate of sequencing error than

Sanger-based methods (Johnson et al., 2006). DNA extraction methods can in-

fluence the relative recoveries of Gram-positive versus Gram-negative bacteria

because of the relative difficulty in lysing the cell walls of Gram-positive bac-

teria (Broderick et al., 2004; Corby-Harris et al., 2007). These caveats must be

kept in mind and data should be interpreted within the context of how it was

collected.

In this study, I conducted a survey of the bacteria present in the hemolymph

of wild-caught D. melanogaster from a single population across three different

years. I isolated bacteria using a culture-based method in which the cultured

bacteria were identified by direct sequencing and retained for subsequent char-

acterization of virulence. Bacteria were also identified by a culture-independent

nested-PCR method that partly but not completely distinguished between bac-

teria in the hemolymph versus on the cuticle of the fly. Wild D. melanogaster

were occasionally found to carry the bacterial symbiont Wolbachia pipientis and

were found to have a low level of infection in the hemolymph from a wide range

of other bacteria.

2.3 Materials and Methods

Wild D. melanogaster were collected from Little Tree Orchards in Newfield,

Tompkins County, New York, or from residential areas in Ithaca, New York. All

males were identified to species level using morphological characters. Females

could not definitively be excluded from being D. simulans using morphology.

However, male D. simulans were only observed in October and were always at
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Table 2.1: Number of infected flies and flies sampled by month and year.

Year Month Number of
infected flies

Number of
flies sampled

2005 June 1 37
July 0 85
August 2 264
September 6 229
October 0 0
Year Total 9 615

2006 June 4 138
July 11 521
August 7 297
September 1 233
October 2 94
Year Total 25 1283

2008 June 0 0
July 0 0
August 0 173
September 1 191
October 0 0
Year Total 1 364

a very low frequency, and this month was only minimally represented in one

year of sample collection (Table 2.1). Collections were always performed in the

mornings over piles of discarded apples or apple pomace using aerial sweep

nets. Flies were placed in empty Drosophila vials (25x95 mm; Laboratory Prod-

ucts Sales #L284051) with slightly damp cotton to avoid dessication and stored

on ice to slow bacterial growth and to prevent over-heating. The time between

collection and the extraction of hemolymph was from one to four hours. Sam-

ples were collected from June to September 2005, June to October 2006, and

August to September 2008 (Table 2.1).

In the lab, flies were anesthetized using carbon dioxide and then immobi-

lized on index cards using mucilage glue (Ross Kraft). Groups of 15-30 flies were

surface sterilized for 20 minutes using UV irradiation in a Spectrolinker XL-

1000 UV Crosslinker (Spectronics Corporation) at default settings. Hemolymph
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(∼0.05 µl per fly) was extracted from individual flies using pulled glass micro-

capillary tubes and placed into 50 µl of ddH2O in 200 µl PCR tubes (USA Sci-

entific #1402-2900). All water used in this experiment was filter sterilized (pore

size 0.2 µm), and all equipment was cleaned with 10% bleach between uses. Be-

tween 16 and 79 flies were sampled on any given day. A total of 2,262 flies were

surveyed during the course of the study. Between 1 and 11 negative controls

were included on each sampling day where empty microcapillary tubes were

evacuated into water. Hemolymph samples were plated on tryptic soy agar (BD

Difco) 100x15mm plates. A 25 µl aliquot of hemolymph was pipetted onto each

plate and spread using a glass spreader. The remaining 25 µl of hemolymph

was stored at -80◦C until PCR could be performed.

The sampling methodology varied slightly among years. In 2005, a micro-

manipulator was used to withdraw hemolymph by capillary action and nitro-

gen gas was used to evacuate hemolymph into PCR tubes. In 2006 and 2008,

hemolymph was extracted manually instead of using a micromanipulator and

was evacuated from the microcapillary tubes using a microcapillary bulb (VWR

#53507-268) instead of using nitrogen gas, which greatly increased the speed of

extractions. Between experimental days, UV irradiation (20 minutes) was used

in addition to bleach to remove amplifiable DNA from water and all equipment

used for the extractions. In 2008, flies were not incapacitated using glue. In-

stead, flies were anesthetized during UV irradiation by using ether or by using

carbon dioxide emanating from dry ice. Instead of using a glass spreader, each

hemolymph sample was spread by holding the sample vertically so that the

sample would flow downwards on the plate in a straight line. This method re-

quired that each plate be opened and exposed to air only once as opposed to the

two openings when using a glass spreader and thus further minimized the risk
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of contamination.

2.3.1 Culture-Dependent Survey

Plates with hemolymph samples were stored upside down and allowed to grow

aerobically at room temperature (∼24◦C) for 10 days with light. After 10 days,

the number of colony forming units (CFUs) was recorded along with any notes

about colony location or appearance. Colonies with unique morphologies (in-

cluding size, shape, pigmentation, and texture) on each plate were restreaked

onto fresh tryptic soy plates and grown at 24◦C. Each isolate was used for PCR

reactions and Taq-amplified using primer set 1A in years 2005 and 2006 and

primer set 1B in 2008 (Table 2.2). PCR products were prepared for sequencing by

one hour of incubation at 37◦C with 0.5 µl Exonuclease I and 0.5 µl shrimp alka-

line phosphatase and then directly sequenced. DNA sequences were assembled

and aligned in CodonCode Aligner (CodonCode Corp.). Identities were deter-

mined by submitting sequences to Sequence Match in Michigan State’s Riboso-

mal Database Project (Cole et al., 2009). 16S rDNA sequences offer little resolu-

tion at the species level, thus genus level assignments were made by matching

sequences to the genus of the nearest type species. In several cases, sequence

identities below 97% were observed, indicating potential novel species (Cox

and Gilmore, 2007; Corby-Harris et al., 2007). These sequences were assigned

to the nearest genera for identification purposes. When multiple highly similar

sequences were obtained, isolates were assigned to the same Operation Taxo-

nomic Units (OTUs) if they were at least 97% similar.

Colonies with unique morphologies from each hemolymph sample plate
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were used to inoculate tryptic soy broth (BD Difco) and grown for 24-72 hours

with shaking at 24◦C. Liquid cultures were frozen at -80◦C with a final concen-

tration of 15% glycerol. In two cases, bacteria were unable to grow in liquid cul-

ture and thus were not retained. One representative from each OTU was chosen

for characterization of bacterial virulence in the wild type Oregon R strain of D.

melanogaster. Bacteria were grown in liquid culture for two days at 24◦C and

diluted to 1.0 O.D. (600 nm) using a spectrophotometer. Gram-negative bacte-

ria grew to higher densities (∼109 CFUs/ml) than Gram-positive bacteria (∼108

CFUs/ml) at an optical absorbance of 1 O.D., so Gram-positive bacteria were

concentrated to 10 O.D. prior to infection. Groups of ten flies aged three to five

days were infected by being pricked by a minuten pin that had been dipped

into bacterial culture. Groups of flies were maintained at room temperature in

fly vials, and mortality was scored five days post-infection. Two to three repli-

cates were performed with each bacterium.

2.3.2 Culture-Independent Survey

A protocol was developed to directly amplify bacteria from the hemolymph of

individual flies. The polymerase Tth was previously found to perform well in

the presence of inhibitors (Panaccio and Lew, 1991), and it was able to amplify

bacterial DNA directly from the hemolymph. A nested PCR protocol was em-

ployed to allow for efficient amplification of small amounts of starting template

DNA (referred to as PCR protocol version 1 from this point on and used in

2005 and 2006). For Round 1 of PCR, 21 µl ddH2O with hemolymph was com-

bined with 2.5 µl 10X Tth PCR buffer (Roche), 0.5 µl 10 µM forward and reverse

primers from primer pair1A (Table 2.2), 0.5 µl 10 mM dNTPs, and 0.125 µl Tth
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Table 2.2: List of primer pairs used for PCR

Primer
Set

Forward
Primer

Reverse
Primer

1A 8F1

AGAGTTTGATCCTGGCTCAG
1492R1

GGTTACCTTGTTACGACTT

2A 8F1

AGAGTTTGATCCTGGCTCAG
806R2

GGACTACCAGGGTATCTAAT

3A 515Fm3

GTGCCAGCMGCCGGGGTA
1492R1

GGTTACCTTGTTACGACTT

1B 8Fm4

AGAGTTTGATCMTGGCTCAG
1492Ry5

GGYTACCTTGTTACGACTT

2B 8Fm4

AGAGTTTGATCMTGGCTCAG
806R2

GGACTACCAGGGTATCTAAT

3B 515Fm3

GTGCCAGCMGCCGGGGTA
1492Ry5

GGYTACCTTGTTACGACTT
Primer pairs ending in ”A” were used for the PCR protocol version 1 and those end-
ing in ”B” were used for PCR protocol version 2. All primers are given in the 5’ to 3’
orientation.
1 Weisburg et al., 1991
2 Nikkari et al., 2002
3 Frey et al., 2006
4 Schütte et al., 2008
5 Schloss and Handelsman, 2006

polymerase (Roche). PCR cycling conditions were 1 cycle of 2 minutes at 94◦C,

10 cycles of 94◦C for 30 seconds, 53◦C for 30 seconds, and 72◦C for 2 minutes,

15 cycles of 94◦C for 30 seconds, 53◦C for 30 seconds, and 72◦C for 2.5 minutes,

and 1 cycle of 72◦C for 7 minutes. First round PCR products were treated with

1 µl of a 1:1 solution of Exonuclease I and shrimp alkaline phosphatase for 60

minutes at 37◦C and 15 minutes at 80◦C to remove primers from the first round.

For round 2 of PCR, 2.5 µl of treated product from the first round was added

to 20.75 µl ddH2O, 2.5 uL 10X Thermopol PCR buffer, 0.5 µl 10 µl forward and

reverse primers from primer pair 2A or 3A (Table 2.2), 0.5 µl 10 mM dNTPs, 0.25

µl Taq polymerase. PCR cycling conditions were 1 cycle of 2 minutes at 95◦C, 25

cycles of 95◦C for 30 seconds, 53◦C for 30 seconds, and 72◦C for 2 minutes.
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In 2008, a few modifications were made to increase representation of Gram-

positive bacteria (referred to as PCR protocol version 2 from this point on).

A lysozyme incubation step was included before the first round of PCR, with

hemolymph samples incubated in water with 1 µl of 0.01 mg/ml lysozyme at

37◦C for 30 minutes immediately before beginning PCR. Primer pairs 1B re-

placed primer pair 1A, 2B replaced 2A, and 3B replaced 3A. The replacement

primers were degenerate at specific positions that allowed annealing to a wider

range of bacterial sequences. The amount of primer added to each reaction was

also doubled.

In 2006, samples were analyzed by terminal restriction fragment length poly-

morphism (t-RFLP), which allows the simultaneous detection of multiple 16S

rDNA sequences present in a single sample (Frey et al., 2006). Combinations

of primer pairs and restriction enzymes were identified that produced the max-

imum number of unique terminal fragment sizes predicted from the culture-

based results. Samples were amplified using PCR protocol version 1 except the

nested PCR reaction used fluorescent-labeled primers NED-8F or VIC-1492R

(Applied Biosystems). Excess primers were removed using Sephadex columns.

Primer set 2A was digested with DpnII (5 units; New England Biosystems) and

primer set 3A was digested with MspI (5 units; New England Biosystems) in

the recommended digestion buffers. Samples were digested overnight at 37◦C

and then ethanol precipitated. Samples were loaded with LIZ1200 size stan-

dard (Applied Biosystems) and formamide and sent for fragment analysis to

the Cornell Life Sciences Core Laboratories Center. In 2006, many samples an-

alyzed using this approach were found to contain a single 16S rDNA sequence

and therefore in 2008, sample PCRs were directly sequenced.
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2.3.3 Controls

Several controls were performed to test the accuracy and sensitivity of these

methods. I isolated Providencia alcalifaciens, Serratia marcescens, Staphylococcus

pasteuri, Exiguobacterium acetylicum, or Pseudomonas fluorescens from wild-caught

flies using the previously described procedures and used them for control tests

because they represent a diversity of phyla. To test the ability of UV irradi-

ation to remove viable bacteria and bacterial DNA from the surfaces of flies,

lab-reared flies were allowed to walk around on bacterial lawns for 24-48 hours

in groups of 20. Flies were then subjected to 0 or 20 minutes of UV irradiation

before having their hemolymph extracted. Hemolymph was plated as described

earlier and/or retained for PCR.

To test the sensitivity of hemolymph extractions, Oregon R flies were ar-

tificially infected with test bacteria and then hemolymph was extracted 12 to

96 hours post-infection. Individual fly carcasses were homogenized in 500 µl

tryptic soy broth, and an aliquot was plated with a WASP spiral plater (Don

Whitley Scientific Ltd.) to measure whole-fly bacterial load of flies that also had

hemolymph extracted. The number of colonies per fly was estimated using a

counter associated with the plater. In some cases, plates with fly carcass ho-

mogenates were incubated at 37◦C to reduce growth of bacteria endogenous to

fly stocks in the laboratory. S. pasteuri and E. acetylicum rarely grew to high den-

sities in Oregon R flies. seml mutant flies (obtained from L. Pham and D. Schnei-

der), which are immunocompromised because they lack a functional PGRP-SA

bacterial recognition gene, were used to test growth of these two bacteria in

susceptible flies. Between 6 to 18 flies were sampled with each bacterium (Ta-

ble 2.3).
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2.4 Results

2.4.1 Controls

Hemolymph extractions performed on artificially infected flies were found to be

sensitive for detecting cultivable bacteria at above 105 CFU per fly (Table 2.3). In

three out of five cases, S. pasteuri at a density of 103-104/fly could be detected. In

all cases, the bacteria that were recovered from the hemolymph were the same

bacteria that were used for infection. In one out of 29 cases, a fly carcass that

had greater than 105 CFU had no bacteria in the hemolymph extract. In one out

of 6 cases, a fly carcass that had no test bacteria had a single colony recovered

from the hemolymph.

UV irradiation was found to be highly effective at removing cultivable bac-

teria from the surface of flies prior to hemolymph extraction (Table 2.4). Cul-

tivable bacteria were frequently collected in hemolymph samples of lab flies

that were exposed to bacteria but not surface sterilized. This presumably re-

flects surface contamination being collected with the hemolymph sample. Cul-

tivable bacteria were never collected in hemolymph samples of healthy lab flies

that were externally exposed to bacteria and subsequently treated with UV ir-

radiation.

In control tests, colonies were occasionally found around the edges of cul-

ture plates. These are likely to be contaminants since hemolymph was plated in

the center of the plates and also because these spurious colonies were occasion-

ally found on negative control plates. However, out of over 150 control plates,

negative controls were never observed to have more than 5 colonies and had a
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Table 2.4: Testing the ability of UV irradiation (20 minutes) to remove cul-
tivable bacteria from the surface of flies

Bacterium # colonies in hemolymph
sample (+UV)

# colonies in hemolymph
sample (-UV)

P. fluorescens 0(8) 0(3),1,2
P. alcalifaciens 0(4) 0,1,TNTC
S. marcescens 0(3) 0,1,TNTC
E. acetylicum 0(4) 0,1,5
S. pasteuri 0(15) 0(6),3,4,30,60,TNTC(3)

The number of isolates with a particular # of colonies in the hemolymph
sample is indicated in parentheses if the number is greater than 1. TNTC
indicates that bacterial load is greater than ˜200 CFU.

single colony over 80% of the time. Thus, a minimum of 5 colonies was required

to be considered a true infection. This is a conservative criterion set to ensure

that contamination was never called a true infection.

PCR protocol version 2 was able to detect all test bacteria in hemolymph

samples whereas PCR protocol version 1 was biased against detection of certain

Gram-positive bacteria. In particular, the incorporation of a lysozyme digestion

step and the increase in primer concentration in PCR protocol version 2 were

found to be necessary for detecting the Gram-positive bacteria E. acetylicum.

PCR protocol version 2 was found to be relatively sensitive for detecting bacte-

rial DNA in the hemolymph (Table 2.5). Ten of twelve infections with over 100

CFUs were PCR positive, whereas 5 of 8 infections below 100 CFUs were posi-

tive. This suggests that the ability of PCR to detect bacteria in the hemolymph

may have a slight dependence on the level of infection.

UV irradiation was not efficient at removing bacterial 16S rDNA from the

surface of flies (Table 2.6). In two instances, 16S rDNA sequences of test bacteria

were recovered from flies after UV irradiation. In one case, the sequence con-
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Table 2.5: Testing the sensitivity of hemolymph extractions for recovering
bacterial 16S rDNA from hemolymph of individual artificially
infected flies with different densities of infections

PCR + PCR -
Bacterium 5-100 colonies >100 colonies 5-100 colonies >100 colonies
P. alcalifaciens
(9 flies)

2 3 3 1

P. fluorescens
(6 flies)

2 4 0 0

E. acetylicum
(2 flies)

0 2 0 0

S. pasteuri
(3 flies)

1 1 0 1

tained mutations consistent with what would be expected after UV radiation,

which crosslinks thymine bases. Also, there was a high level of background

bacterial 16S rDNA from an unknown source (see Table 2.6 PCR/Sequencing

Results), which could be bacteria on the surface or inside the fly or contamina-

tion from PCR reagents. This result makes it difficult to say conclusively that

16S amplicons are derived from the hemolymph of the fly.

2.4.2 Culture-Dependent Survey

A total of 2,262 flies were sampled in 2005, 2006, and 2008, yielding a total of

35 isolates of bacteria that were found in high density in the culture step (Fig-

ure 2.1). Staphylococcus sp. 1 (which was used as a test bacterium for control

experiments and is referred to as its nearest match (>99.5%) at the species level,

S. pasteuri) was recovered the most frequently (9 times), but the majority of bac-

terial OTUs were recovered once or twice. The bacteria that were recovered

represented 3 phyla: Firmicutes, Proteobacteria, and Actinobacteria. The frequency

of infection varied between 0.27% in 2008 and 1.95% in 2006. Years 2006 and
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Figure 2.1: Genera of cultivable bacteria obtained from the hemolymph of
wild-caught flies in 2005, 2006, and 2008

2008 had significantly different rates of infection (Fisher’s exact test, p=0.0174),

although this difference was not significant after Bonferroni correction. In 2005,

the highest number of isolates was obtained in September while in 2006 the

highest number of isolates was obtained in July (Figure 2.2). There was no sig-

nificant difference in the number of isolates obtained from flies with and with-

out W. pipientis, for cases where the W. pipientis infection status was known.

The virulence of bacteria recovered from the hemolymph of wild-caught flies

varied greatly upon experimental reinfection, with some bacteria causing less

than 10% mortality and others causing greater than 40% mortality in experi-

mentally infected flies (Figure 2.3). Bacteria that were recovered with the great-

est frequency were the least virulent.
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Figure 2.2: Number of isolates of cultivable bacteria obtained from the
hemolymph of wild-caught flies in 2005, 2006, and 2008

A phylogenetic tree of cultivable bacteria in the phylum Firmicutes shows

the relationship of samples obtained from the hemolymph of wild-caught flies

to their nearest type species and to cultivable bacteria obtained from negative

controls (Figure 2.4). In two cases, sequences obtained from negative controls

closely match those obtained from the hemolymph of wild-caught flies.

2.4.3 Culture-Independent Survey

Samples collected in 2005 were not analyzed by PCR because the use of non-UV

irradiated water for sample collection was found to introduce DNA contami-
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Figure 2.3: Virulence of cultivable bacteria obtained from the hemolymph
of wild-caught flies. Oregon R lab flies were artificially infected
for each isolate, and bacteria were classified as causing low (0-
10%), intermediate (20-40%) or high (>40%) levels of mortality.

nation. Samples collected in 2006 were analyzed using PCR protocol version

1 and t-RFLP. The only bacterium that was identified using this approach was

W. pipientis, which was present in 64% of males and 57% of females that were

sampled (n=99 males, n=54 females). This frequency of infection by W. pipien-

tis has previously been seen in other populations of D. melanogaster (Hoffmann

et al., 1998). The primers used in PCR protocol version 1 were a perfect match

to Wolbachia and this result probably reflects a bias towards the recovery of this

bacterium.

The poor concordance of PCR results with culture-based results led to the
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Figure 2.4: Neighbor-joining tree of the bacterial phylum Firmicutes show-
ing the relationship of cultivable isolates obtained from the
hemolymph with nearest type species and negative control iso-
lates. All isolates are labeled with a code that specifies the date
of collection, the fly number on the day of collection, and the
isolate number within the fly. Negative controls (NC), which
occasionally yielded fewer than fives colonies, are indicated to
show the relationship of contaminants to hemolymph isolates.
The bar represents 2% sequence divergence.
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Table 2.7: Bacteria associated with wild-caught flies and identified using
PCR. A total of 77 flies were sampled on August 16, 2008. Four-
teen hemolymph samples were PCR positive and could be di-
rectly sequenced (shown here). Ten hemolymph samples were
PCR positive but were mixed or degraded and could not be di-
rectly sequenced.

Phylum Family Genus # of samples
Proteobacteria Rhodocyclaceae ? 1

Pseudomonadaceae Pseudomonas 2
Anaplasmataceae Wolbachia 4
Incertae sedis Enhydrobacter 1
Enterobacteriaceae Serratia 1
Enterobacteriaceae ? 1
Burkholderiaceae Ralstonia 1
Incertae sedis 5 ? 1

Actinobacteria Dermabacteraceae Brachybacterium 1
Firmicutes Lactobacillaceae Lactobacillus 1

? indicates that bacterium could not be identified to the genus level.

development of PCR protocol version 2 that was much more efficient at recov-

ering test bacteria in control experiments. The primers used in this protocol

were degenerate and thus less likely to be biased towards W. pipientis detec-

tion. Samples collected in 2008 were analyzed using PCR protocol version 2

and direct sequencing. There was a high rate of contamination in the negative

controls of samples analyzed from this year which likely reflects the increased

sensitivity of this technique. The frequency and identities of the bacteria that

were identified using this method are shown in Table 2.7 from a single collec-

tion day (August 16, 2008) where all 11 negative controls were blank. None of

the samples collected on this day yielded culture-positive results so no conclu-

sion can be drawn about the performance of PCR at recovering cultivable bacte-

ria. On this day, 56 samples were PCR negative, 14 samples were PCR positive

and could be directly sequenced, and 9 samples were PCR positive but were

mixed or degraded and could not be identified by direct sequencing. Because
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the control experiments showed that DNA sequences recovered by PCR cannot

be conclusively said to be coming from the hemolymph of flies, some of these

DNA sequences may be coming from the surface of the fly. The recovery of

W. pipientis, which cannot be a surface contaminant, suggests that at least some

of the other sequences came from the hemolymph. Lactobacillus, Pseudomonas,

and Serratia species have previously been reported in association with the gut

or whole body of D. melanogaster (Cox and Gilmore, 2007; Corby-Harris et al.,

2007), and I recovered Pseudomonas and Serratia species using the culture-based

methods.

PCR protocol 2 recovered a wider array of bacteria than PCR protocol 1, sug-

gesting that the modifications that were made improved the procedure. The fre-

quency of W. pipientis recovered from field samples in 2006 using PCR protocol

1 was between 57% and 64%. Using PCR protocol 2, W. pipientis was confirmed

to be present in only 5% of samples collected in 2008, but may have been present

in as much as 18% of the samples if mixed or degraded PCR positive samples

that were not identifiable by direct sequencing also contained W. pipientis. Fluc-

tuations in W. pipientis prevalence are not unusual in natural populations of D.

melanogaster (Hoffmann et al., 1998), and thus it is not clear if the difference in W.

pipientis frequencies between 2006 and 2008 reflects variations in years or proto-

cols. However, PCR protocol 2 appears to be substantially less biased towards

W. pipientis recovery than PCR protocol 1.

57



2.5 Discussion

This study identified cultivable bacteria representing 21 OTUs from the

hemolymph of wild-caught flies. The performance of the culturing method was

found to be sensitive for detecting a wide range of bacteria provided that they

were present in high densities within the fly. The culturing method was able to

distinguish between bacteria inside and outside the fly. I developed methods for

detecting bacteria from hemolymph samples using a nested PCR approach. The

final protocol was sensitive for detecting bacteria in the hemolymph. Unfortu-

nately, the sterilization technique was not 100% efficient at removing bacterial

DNA from the surface of flies so bacteria identified by PCR could not conclu-

sively be demonstrated to be coming from the hemolymph of flies.

The culturing method is likely to be good at detecting many of the bacteria

that are present in the hemolymph. Environments such as soil and water with

notoriously low rates of concordance between culture and non-culture-based

experiments are generally nutrient poor (Handelsman, 2004). In contrast, in-

sect hemolymph is nutrient rich and should be well represented by the artificial

media that were used for collecting cultivable bacteria. In a survey of bacteria

from the midguts of gypsy moths using culture and PCR methods, (Broderick

et al., 2004) found that roughly two thirds of the bacteria identified were cultur-

able. Surveys of bacteria causing blood infections in humans find moderate to

high concordance between culture and PCR methods (Bloos et al., 2010; Tsalik

et al., 2010). Thus, it is likely that my culturing technique recovered many of the

bacteria that are present in the hemolymph of the flies sampled here.

The PCR method developed here is very sensitive for recovering bacterial
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DNA from hemolymph samples of individual flies. Lysozyme digestion of cell

walls and use of degenerate primers for PCR amplication greatly increased the

breadth of recovery of diverse bacterial phyla. Unfortunately, UV irradiation

alone was not adequate for removing bacterial DNA from the cuticle of flies,

and therefore we were unable to distinguish between the hemolymph and out-

side of flies. If a more robust sterilization technique were developed, perhaps

using hypochlorite in combination with UV irradiation, then this PCR technique

could be used to identify bacterial DNA localized in the hemolymph. Also,

since this technique allows amplification of bacterial DNA from complex sam-

ples containing PCR inhibitors, it would be useful for other applications where

the sample volume is too small to allow DNA extraction.

Over 98% of all D. melanogaster sampled in the course of this study did

not have cultivable bacteria in their hemolymph. Between 0.27% and 1.95%

of flies were infected in any given year, and there was a significant difference

in the infection rate between two of the years which may represent variation in

environmental conditions that influenced bacterial growth. The low infection

rates observed are consistent with the idea that the hemolymph is free of bac-

teria in healthy insects (Bakula, 1969). Although this idea has long been held

as fact, recent studies have provided evidence that this conventional wisdom

is not always true. For example, cultivable Bacillus and Staphylococcus species

are routinely recovered from the hemolymph of larval and adult Solenopsis fire

ants (Tufts and Bextine, 2009). Another study identified cultivable Novosphin-

gobium, Escherichia, Pseudomonas, and other species from the hemolymph of lab

colonies of Anopheles gambiae (Garver et al., 2008). D. melanogaster domino mu-

tants, which lack hemocytes, have high levels of bacteria, including Staphylo-

coccus and Providencia species, in their hemolymph (Braun et al., 1998). This
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suggests that perhaps the presence of bacteria in the hemolymph is associated

with reduced immune competence. Our study implies that the hemolymph

only rarely harbors non-W. pipientis bacteria in D. melanogaster and suggests that

the immune system does an adequate job at keeping the hemolymph free of in-

fection.

The virulence estimates of the cultivable bacteria suggest that the sampling

strategy recovered more weakly virulent than highly virulent bacteria. This

most likely represents a bias in our study for the recovery of less pathogenic

bacteria since our sampling strategy required that flies be in flight and therefore

relatively healthy. Presumably, flies infected with very virulent bacteria would

become less active and thus not be sampled as often. It is also possible that the

virulence levels obtained from experimentally infecting lab-reared flies do not

reflect actual pathology experienced by flies living in the wild, which may be

subject to a multitudes of additional stresses.

We identified bacteria belonging to the phyla Actinobacteria (n=5), Firmicutes

(n=11), and Proteobacteria (n=5). Two previous studies have thus far also ex-

amined the bacteria associated with wild-caught flies using mainly PCR-based

methods (Cox and Gilmore, 2007; Corby-Harris et al., 2007) (Figure 2.5). Both

studies found a prevalence of Proteobacteria and also identified Bacteriodetes as-

sociated with the guts and whole bodies of flies. (Corby-Harris et al., 2007) did

not find Actinobacteria associated with the wild-caught flies. The low proportion

of Proteobacteria identified in our study relative to previous studies may reflect

differences between sampling techniques. For example, DNA extraction meth-

ods and PCR amplification can bias against recovery of Gram-positive bacteria

such as Actinobacteria and Firmicutes (Corby-Harris et al., 2007). Alternatively,
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several of the Proteobacteria identified in our study included Serratia, Providencia,

and Pseudomonas, which were all found to be highly virulent and thus are less

likely to be sampled using our sweep net sampling strategy. Of the 16 genera

identified in the culture-based survey, Staphylococcus, Leuconostoc, Providencia,

Serratia, Pseudomonas, and Acetobacter have previously been reported in associ-

ation with either the gut or whole body of D. melanogaster. The concordance

of the bacteria between the hemolymph, gut and whole fly suggests that these

bacteria are being acquired from the environment, either through the gut or the

cuticle. This also suggests that the community of bacteria to which flies are ex-

posed to depends on the environment it lives in. The fact that infection is rare

suggests that these bacteria opportunistically cause infections when the host is

immunocompromised.

The array of bacteria that was identified in this study suggests that wild

flies face risk of infection from a diverse rather than narrow spectrum of bacte-

ria. We have also not found any evidence for a prevalent co-evolving bacterial

pathogen such as Pasteuria, which is found in Daphnia, or of bacteria closely

related to previously described mutualists of other insects, other than the pre-

viously described W. pipientis. Both of these findings have implications for our

expectations about the evolution of immune response in D. melanogaster. The di-

versity of potential pathogens suggests selection for a broad rather than specific

antibacterial immune response. Recognition proteins within the host humoral

immune system respond to a vast array rather than a specific subset of poten-

tial pathogens as is expected given the breadth of potential pathogens that they

face. Host-pathogen co-evolutionary arms races are expected to lead to high

rates of adaptive evolution. The lack of a tightly co-evolving bacterial pathogen

is perplexing given the observation that the immune response is rapidly evolv-
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Figure 2.5: Distribution of bacterial phyla recovered in association with D.
melanogaster and from the blood of humans with sepsis. The
numbers in the pie charts indicate the number of isolates be-
longing to each phylum.

ing (Sackton et al., 2007), and suggests that viral and eukaryotic pathogens and

parasites with more narrow host ranges may be important drivers of rapid evo-

lution in the immune system. Our understanding of the evolution of the an-

tibacterial immune response is limited by our lack of knowledge of how natu-

ral pathogens interact with hosts, and further study of these natural pathogens

should elucidate mechanisms of adaptation in the host immune response.
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CHAPTER 3

PROVIDENCIA SNEEBIA SP. NOV. AND P. BURHODOGRANARIEA SP.

NOV., NOVEL SPECIES ISOLATED FROM WILD DROSOPHILA

MELANOGASTER*

3.1 Abstract

Multiple isolates of the genus Providencia were obtained from the hemolymph

of wild-caught Drosophila melanogaster fruit flies. Sixteen isolates were distin-

guished from the six previously described species based on 16S rDNA sequence.

These isolates belong to two distinct groups, which we propose each comprise

previously undescribed species. Two isolates, designated AT and BT , were char-

acterized by DNA sequence at the fusA, lepA, leuS, gyrB, and ileS housekeeping

genes, whole-genome DNA-DNA hybridizations with their nearest relatives,

and utilization of substrates for metabolism. The closest phylogenetic relatives

of AT are BT (86.9% identity at the housekeeping genes) and P. stuartii DSMZ

4539T (86.0% identity). The closest phylogenetic relatives of BT are AT (86.9%

identity) and P. stuartii DSMZ 4539T (86.6% identity). Described species in this

genus share between 84.1% and 90.1% identity. DNA-DNA relatedness between

AT -BT , AT -P. stuartii, and BT -P. stuartii all resulted in less than 25% hybridiza-

tion. In addition, patterns of utilization of amygdalin, arbutin, esculin, salicin,

D-sorbitol, D-trehalose, D-inositol, D-adonitol and D-galactose distinguish AT

and BT from other members of this genus. AT and BT therefore represent novel

species, for which the names Providencia sneebia sp. nov. (AT =DSM 19967

* Presented with minor modifications from the originally published article ”Juneja, P., Laz-
zaro, B. P., 2009. Providencia sneebia sp. nov. and P. burhodogranariea sp. nov., novel species
isolated from wild Drosophila melanogaster. International Journal of Systematic and Evolutionary
Microbiology 59(5):1108-11.”
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=ATCC BAA-1589) and P. burhodogranariea sp. nov. (BT =DSM 19968 =ATCC

BAA-1590) are proposed.

3.2 Introduction

The genus Providencia, in the family Enterobacteriaceae, currently has six de-

scribed species. Members of this genus have repeatedly been found in associa-

tion with humans, insects, and many other vertebrate and invertebrate animals

in both pathogenic and nonpathogenic contexts (Penner and Hennessy, 1979;

Muller et al., 1986; Yoh et al., 2005; Somvanshi et al., 2006). We describe here

two novel Providencia species isolated as from the hemolymph of field-captured

Drosophila melanogaster fruit flies.

3.3 Materials and Methods

D. melanogaster were collected in State College, Pennsylvania, USA, in 1998

and 2001. Individual flies were surface sterilized by UV irradiation prior

to hemolymph extraction with pulled glass microcapillary needles. The

hemolymph was used to inoculate 1 mL liquid cultures of brain heart infusion

(BHI). Liquid cultures were grown aerobically for 24 hours at 37◦C. Enriched

cultures were then streaked on BHI agar plates, and individual colonies were

selected for identification. Seventeen out of 337 total D. melanogaster yielded

bacterial isolates assignable to the genus Providencia based on sequence at the

16S rDNA, amplified using primers fd1 and rp2 as described by Weisburg et al.

(1991). These isolates clustered into four groups based on 16S rDNA sequence
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(978 nucleotides), termed ”A”, ”B”, ”C” and ”D” (Figure 3.1). The sole iso-

late belonging to group ”C” was subsequently identified as P. rettgeri based on

metabolic profile and DNA sequence at housekeeping genes (described below).

The remaining isolates did not closely match described species. Isolates AT ,

A75, A91, A101, A102, BT , B18, B97, D, D37 were chosen for further charac-

terization. These isolates were compared to Providencia type strains P. stuartii

DSM 4539T , P. alcalifaciens DSM 30120T , P. heimbachae DSM 3591T , P. rustigianii

DSM 4541T , P. rettgeri DSM 4542T , and P. vermicola DSM 17385T , all obtained

from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ;

Braunschweig, Germany).

Metabolic characteristics were determined from single colonies grown for

24 hours at 37◦C on Luria broth agar plates. Metabolic profiles were deter-

mined with API 20E and API 50CH test strips (BioMérieux, Inc., Marcy-l’Etoile,

France). Inocula for API20E strips were prepared in distilled water, and inocula

for API 50CH strips were prepared using the API 50 CHB/E medium. Assays

were interpreted after 30 hour incubations at 25◦C. Test strips were run at least

twice for AT , BT , and all described type species except P. rustigianii. Test strips

were run once for P. rustigianii and non-type strains of the novel species.

3.4 Results and Discussion

The metabolic profiles of novel isolates were distinct from each other and from

all described Providencia species (Table 3.1). Results for previously described

species varied slightly from published reports by (Hickman-Brenner et al., 1983;

Farmer 3rd et al., 1985; Somvanshi et al., 2006). These deviations may be due to
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Figure 3.1: Phylogenetic tree based on sequence from the 16s rDNA
(978 nucleotides), showing the positions of novel type species
within the genus Providencia. Sequences for Proteus mirabilis,
Photorhabdus luminescens, Yersinia pestis, Erwinia carotovora, and
Escherichia coli were obtained from GenBank. Bootstrap val-
ues on each node are based on 1000 replicates. The positions
of P. heimbachae and P. stuartii in this phylogeny are recipro-
cally exchanged relative to those in a previously published tree
based on this locus (Somvanshi et al., 2006), though the topol-
ogy of the trees is the same. Sequences directly obtained in
this study match those deposited into GenBank by Somvanshi
et al. (2006). The discrepancy therefore appears to result from a
clerical error in the construction of the tree by Somvanshi et al.
(2006). Bar indicates 1% sequence divergence.
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differences in the test methods, temperatures, and reaction durations employed

by different authors. Isolates AT , A75, A91, A101, and A102 all had identical

metabolic profiles. Isolates BT , B18, B97, D, and D37 had identical metabolic

profiles, except for amygdalin, L-rhamnose, and D-sorbitol, for which there was

variation among isolates in their substrate utilization (Table 3.1). The Providencia

species represented by AT is uniquely able to utilize D-sorbitol and D-xylose. In

contrast to all previously described species of Providencia, isolates AT and BT are

able to utilize D-trehalose.

Partial sequences of five housekeeping genes (fusA, 616 nucleotides; lepA,

735 nucleotides; leuS, 412 nucleotides; gyrB, 817 nucleotides; ileS, 920 nu-

cleotides) were obtained from the ten novel isolates and from the six described

Providencia type species. Housekeeping genes were amplified and sequenced

using a combination of degenerate primers described by (Santos and Ochman,

2004) and Providencia-specific custom primers (Table 3.2). PCR products were

prepared for sequencing by one hour incubation with the enzymes exonuclease

I (USB Corporation) and shrimp alkaline phosphatase (USB Corporation) and

sequenced using ABI BigDye Terminator chemistry on an Applied Biosystems

Automated 3730 DNA Analyzer. In some cases, amplicons were agarose gel pu-

rified prior to sequencing. Sequences were aligned using CodonCode Aligner

(CodonCode Corporation). Phylogenetic analysis was performed using MEGA

version 3.1 (Kumar et al., 2004) both on alignments of individual genes and on

an alignment of a concatenation of all six genes. Distances were calculated based

on Jukes-Cantor corrected percent divergence, and clustering was performed by

neighbor-joining. Bootstrap values from 1,000 replications were used to assess

confidence at each node.
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Table 3.1: Differentiation of Providencia strains based on metabolic sub-
strate reactions

All bacteria were tested under aerobic conditions. Multiple isolates of P. sneebia (AT , A75, A91,
A101 and A102) and P. burhodogranariea (BT , B18, B97, D, and D37) were tested and yielded
virtually identical results (see main text). Each strain was tested at least twice, except P.
rustigianii and non-type strains of the novel species, which were each tested once. All strains
were positive for tryptophane deaminase‡ and oxidation/fermentation of D-glucose‡§, glyc-
erol§, D-ribose§, D-fructose§, D-mannose§, N-acetylglucosamine§, and potassium gluconate§.
All strains were negative for β-galactosidase‡, arginine dihydrolase‡, lysine decarboxylase‡,
ornithine decarboxylase‡, H2S production‡, acetoin production‡ (given as positive for all
strains in (Somvanshi et al., 2006), gelatinase‡, and oxidation/fermentation of D-melibiose‡§,
D-arabinose§, L-arabinose§, L-xylose§, methyl β-D-xylopyranoside§, L-sorbose§, dulcitol§,
methyl α-D-mannopyranoside§, methyl α-D-glucopyranoside§, amygdalin§, D-cellobiose§, D-
lactose§, D-saccharose§, inulin§, D-melezitose§, D-raffinose§, amidon§, glycogen§, gentiobiose§,
D-turanose§, D-tagatose§, D-fucose§, L-fucose§, and potassium 5-ketogluconate§. Test strips
did not give repeatable results within isolates for citrate utilization‡ and indole production‡ so
results from these assays are not presented. (Key: +, positive; –, negative; v, variable between
strains; ?, variable within isolate; w, weak)

Characteristic 1 2 3 4 5 6 7 8 9
urease + - - ?* + - - - -
utilization of:
L-arabinose‡ - + + + w* - w* - -
D-adonitol§ - + + + + - - + +
amygdalin‡ + - v - + - - - -
D-arabitol§ + + + + + - - + -
L-arabitol§ - - - + + - - +* -
arbutin§ + - - - + - - - -
erythritol§ - - - + ?* - - +* -
esculin§ + - - - +* - - - -
D-galactose§ - - - + + + + + -
inositol‡ - + + + + w - + -
D-inositol§ - + + + +* + - + -
2-ketogluconate§ - w + + +* - - +* -
D-lyxose§ - - - -* -* +* - -* -
D-maltose§ - - - - - - - +* -
D-mannitol‡ + + + + + - - - -
D-mannitol§ + + + + + - - -* -
L-rhamnose‡ - - v - - + - - +
L-rhamnose§ - - - - + - - + -
salicin§ + - - - + - - - -
D-sorbitol‡ + v v - - - - - -
D-sorbitol§ + - - - - - - - -
D-sucrose‡ - ? ? - - - -*¶ - -*
D-trehalose§ + + + - - -#¶ - - -
xylitol§ - - - - - + - - -
D-xylose§ w - - - - - - - -
‡API 20 E test strip
§API 50 CH test strip
*results differ from those previously published by Somvanshi et al., 2006
#results differ from those previously published by Farmer et al., 1985
¶results differ from those previously published by Hickman-Brenner et al., 1983

69



Table 3.2: PCR primer sequences for specific amplification of Providencia
sp., P. burhodogranariea, or P. sneebia housekeeping genes

Gene Target Organism Primer Name Primer Sequence (5’-3’)
leuS Providencia sp. leuS-prov-F TGCTGGCGYTGTGAYAC

leuS-prov-R AAACACCCCAGTCACG
P. burhodogranariea leuS-provB-F ATCACCTTTGATGTCGCTGA

leuS-provB-R GAAACACCCCAATCACGTAAA
P. sneebia leuS-provA-F GTTTACACAACGCGTCCAGA

leuS-provA-R AACACCCCAATCACGTAAGC
fusA Providencia sp. fusA-prov-F GGACTGGATGGAGCAGGA

fusA-prov-R TGCAGAACCACAGGTAACCA
lepA P. burhodogranariea lepA-provB-F AATGGCGTCTCAGGTTCTTG

lepA-provB-R GCATCACGAAATGATTCATAA
P. sneebia lepA-provA-F CCGTATTATTCAGATTTGTGGTG

lepA-provA-R TGACTGGGAATAAACCTGCAT
ileS Providencia sp. ileS-prov-F CCGATTGAACACAAAGTTGAA

ileS-prov-R AGATCCCACCATGCTTGA
gyrB Providencia sp. gyrB-prov-F TATCGGTGATACCGACGATGG

gyrB-prov-R CGCARTTTATCTGGGTT

The percent divergence among described Providencia species across the con-

catenated housekeeping genes ranged from 9.9% between P. alcalifaciens and P.

rustigianii to 15.9% between P. stuartii and P. heimbachae (Figure 3.2). Within

the ”A” group of novel isolates, the maximum observed divergence was 0.3%.

Based on this level of sequence similarity, AT , A75, A91, A101, and A102 are

considered to belong to the same species. Within the ”B” and ”D” groups of

isolates, the maximum observed divergence was 0.2%. The ”B” and ”D” groups

of isolates differed by only 6.3%, lower than the minimum divergence observed

between described Providencia type species. Based on their sequence similarity

and nearly identical metabolic profiles, BT , B18, B97, D, and D37 are consid-

ered to belong to the same species. BT differed from AT by 13.1% and P. stuartii

by 13.4%. AT differed from P. stuartii by 14.0%. These percent divergences fall

well above the minimum percent divergence observed between described Prov-

idencia species, supporting the hypothesis that AT and BT represent distinct and
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novel Providencia species.

Figure 3.2: Phylogenetic tree based on concatenated sequence from the 16S
rDNA, fusA, lepA, leuS, gyrB, and ileS loci (4478 nucleotides)
showing the positions of novel type species within Providen-
cia. Sequences for Proteus mirabilis, Photorhabdus luminescens,
Yersinia pestis, Erwinia carotovora, and Escherichia coli were ob-
tained from GenBank, and the accession numbers are given in
parentheses. Bootstrap values on each node are based on 1000
replicates. Bar indicates 2% sequence divergence.

DNA-DNA hybridizations were performed between all pairs of AT , BT , and

P. stuartii DSM 4539T , which was inferred to be the nearest described relative

based on DNA sequence at the housekeeping genes. DNA isolations and DNA-

DNA hybridizations were performed by the DSMZ following the methods de-

scribed by (De Ley et al., 1970; Cashion et al., 1977; Huss et al., 1983). The re-
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association value for the AT -P. stuartii DSM 4539T pairing was 13.0% (average

of 12.7% and 13.3% obtained from two separate measurements). The reassocia-

tion value for the BT -P. stuartii DSM 4539T pairing was 18.8% (average of 13.8%

and 23.8% obtained from two separate measurements). The reassociation val-

ues for the AT -BT pairing was 13.1% (average of 7.6% and 18.6% obtained from

two separate measurements). Previous studies have reported reassociation val-

ues that range from 22 to 49% between species in this genus (Hickman-Brenner

et al., 1983; Muller et al., 1986; Somvanshi et al., 2006). The results from the

DNA-DNA hybridizations fall well below the 70% reassociation threshold rec-

ommendation of Wayne et al. (1987) for designation of a new species. These

results indicate that AT and BT are significantly distinct from each other and

from their nearest described relative in Providencia.

The results from the sequence, hybridization, and metabolic analysis meet

the requirements outlined by Wayne et al. (1987) for designating a bacterial

species as novel. Based on these results, AT , A75, A91, A101, and A102 be-

long to a single novel species for which the name Providencia sneebia sp. nov. is

proposed. Likewise, BT , B18, B97, D, and D37 belong to a single novel species

for which the name Providencia burhodogranariea sp. nov. is proposed.

3.5 Description of Providencia sneebia sp. nov.

Providencia sneebia (snee’bia. N.L. fem. adj. sneebia of “S.N.E.E.B.,” the name of

a series of informal academic gatherings at Cornell University where properties

of these bacteria were extensively discussed).

This species, like others in the genus Providencia, is a Gram-negative rod-
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shaped bacterium. Colonies grown on LB agar for 48 hours at 37◦C are up to

4 mm in diameter, white, opaque, glossy, and convex. Growth occurs faster at

37◦C than at 25◦C. P. sneebia is unique in the genus Providencia for being able to

produce acid from amygdalin, arbutin, esculin, salicin, D-xylose, D-sorbitol and

D-trehalose but not from D-inositol, D-adonitol or D-galactose.

The type strain is of Providencia sneebia is AT (=ATCC BAA-1589T =DSM

19967T ). This and other non-type strains were isolated from Drosophila

melanogaster captured in an apple orchard in State College, Pennsylvania.

3.6 Description of Providencia burhodogranariea sp. nov.

Providencia burhodogranariea (bu.rho.do.gran.ar’iea. L. n. granaria barn; pref. bu-,

rhodo- meaning big, red; Big Red Barn being the name of the building where

academic discussions of these bacteria were held).

This species, like others in the genus Providencia, is a Gram-negative rod-

shaped bacterium. Colonies grown on LB agar for 48 hours at 37◦C are up to

4 mm in diameter, white, opaque, glossy, and convex. Growth occurs faster at

37◦C than at 25◦C. After 24 to 48 hours of growth, P. burhodogranariea colonies

express brown pigmentation in their centers. P. burhodogranariea is unique in the

genus Providencia for being able to produce acid from D-adonitol, D-trehalose

and D-inositol but not from D-galactose.

The type strain of Providencia burhodogranariea is BT (=ATCC BAA-1590T

=DSM 19968T ). This and other non-type strains were isolated from Drosophila

melanogaster captured in an apple orchard in State College, Pennsylvania.
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CHAPTER 4

HAPLOTYPE STRUCTURE AND EXPRESSION DIVERGENCE AT THE

DROSOPHILA CELLULAR IMMUNE GENE EATER*

4.1 Abstract

The protein Eater plays an important role in microbial recognition and defensive

phagocytosis in Drosophila melanogaster. We sequenced multiple alleles of the

eater gene from an African and a North American population of D. melanogaster

and found signatures of a partial selective sweep in North America that is local-

ized around the second intron. This pattern is consistent with local adaptation

to novel selective pressures during range expansion out of Africa. The North

American sample is divided into two predominant haplotype groups, and the

putatively selected haplotype is associated with a significantly higher gene ex-

pression level, suggesting that gene regulation is a possible target of selection.

eater alleles contain from 22 to 40 repeat units that are characterized by the pres-

ence of a cysteine-rich NIM motif. NIM repeats in the structural stalk of the

protein exhibit concerted evolution as a function of physical location in the re-

peat array. Several NIM repeats within eater have previously been implicated in

binding to microbial ligands, a function which in principle might subject them

to special evolutionary pressures. However, we find no evidence of elevated

positive selection on these pathogen-interacting units. Our study presents an

instance where gene expression rather than protein structure is thought to drive

the adaptive evolution of a pathogen recognition molecule in the immune sys-

* Presented with minor modifications from the originally published article ”Juneja, P., Laz-
zaro, B. P., 2010. Haplotype structure and expression divergence at the Drosophila cellular im-
mune gene eater. Molecular Biology and Evolution 27(10):2284-99.” Permission to reproduce article
obtained from the Society of Molecular Biology and Evolution.
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tem.

4.2 Introduction

All living organisms have a vital need to protect themselves against pathogen-

esis, and hosts are thus constantly being forced to adapt their defenses to novel

and reciprocally evolving pathogens and parasites (Ebert, 2000). Population ge-

netic analyses can answer questions about the role of local adaptation in driv-

ing rapid evolution and the geographic distribution of selected alleles, as well

as help determine the relative importance of selection on standing genetic vari-

ation versus on novel variants introduced by mutation. Additionally, popula-

tion geneticists studying host-pathogen relationships can localize the specific

targets of selection within proteins and determine whether these correspond

to domains that interact directly with pathogens. In the present paper, we ad-

dress these questions with respect to the evolution of the eater gene of Drosophila

melanogaster.

The gene eater encodes a recognition receptor that is critical for defensive

phagocytosis (Kocks et al., 2005), an important first line of protection against

invading microbes. In D. melanogaster, eater is expressed solely in hemo-

cytes and is thought to be a cell-surface bound molecule that binds to micro-

bial compounds and stimulates phagocytosis (Kocks et al., 2005). Ablation

of this single gene with RNAi knockdown can decrease phagocytosis by 55-

70% (Kocks et al., 2005). eater is part of the recently described nimrod su-

perfamily of cellular recognition molecules that also includes multiple nim-

rod homologues and draper (Kocks et al., 2005; Kurucz et al., 2007; Somogyi
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et al., 2008). Proteins in the nimrod superfamily all have similar composi-

tions, each containing a signal peptide, a CCxGY amino acid motif, and at

least one cysteine rich NIM domain (Somogyi et al., 2008). NIM domains are

defined by a consensus sequence motif (CxPxCxxxCxNGxCxxPxxCxCxxGY),

which is closely related to the epidermal growth factor (EGF) consensus mo-

tif (xxxxCx2−7Cx1−4(G/A)xCx1−13ttaxCx-CxxGax1−6GxxCx) (Kurucz et al., 2007).

Genes in the nimrod superfamily are found in syntenic clusters in D. melanogaster

as well as in other Drosophila species, the honey bee (Apis mellifera), a mosquito

(Anopheles gambiae), and the red flour beetle (Tribolium castaneum) (Kurucz et al.,

2007; Somogyi et al., 2008).

NIM units occur as tandem repeats in some members of the nimrod super-

family, including eater. Repeated motifs of highly similar sequence often exhibit

concerted evolution due to mispairing and unequal crossing over between ho-

mologous chromosomes and to gene conversion between non-homologous re-

peats. This type of evolution results in repeat arrays where paralogous repeat

units are more similar to each other within species than they are to homologous

units among species (Charlesworth et al., 1994). Of genes in the nimrod super-

family, eater is the only member whose NIM repeats show evidence of concerted

evolution (Somogyi et al., 2008). NIM repeats in the interior of the gene appear

to be evolving concertedly (Somogyi et al., 2008) and are thought to provide

a structural ”stalk” between the microbe binding units and the hemocyte cell

membrane (Kocks et al., 2005). The first four NIM repeat units in eater, which

have been shown to be necessary for microbial binding (Kocks et al., 2005),

show no signs of concerted evolution (Somogyi et al., 2008).

In a molecular evolutionary comparison among Drosophila species, eater and
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three nimrod family genes were found to be evolving under positive selec-

tion (Sackton et al., 2007). In one nimrod gene, nimC1, the positively selected

sites are clustered within putative microbial binding domains, which suggests

that pathogen interactions drive this rapid evolution. In contrast, adaptive mu-

tations in eater are scattered throughout the gene, including outside domains

known to interact directly with pathogens (Sackton et al., 2007). Selective pres-

sures on the immune system are geographically variable, corresponding to het-

erogeneity in pathogen identity or abundance and other environmental factors.

Immune system genes therefore may show evidence of local adaptation that

can be detected with population genetic statistics. For instance, immune sys-

tem genes display elevated differences in allele frequencies among populations

relative to the genome average (Ryan et al., 2006; McEvoy et al., 2009). Recent

selection can also be detected by examining patterns of genetic variation within

populations. Strong positive selection leads to a rapid rise in the frequency of

an adaptive mutation, incidentally dragging neutral variants linked to the tar-

get of selection upward in frequency. This leads to excess linkage disequilib-

rium (Kelly, 1997; Sabeti et al., 2002), decreased nucleotide diversity (Smith and

Haigh, 1974), and too many high and low frequency polymorphisms (Tajima,

1989; Fu, 1997; Fay and Wu, 2000) relative to expectations under selective neu-

trality. Analyses of these properties can easily be applied to coding and non-

coding regions, allowing us to detect selection on regulatory gene regions. We

can potentially also identify the specific trait on which selection acts by linking

genetic diversity patterns and phenotypes.

In the current work, we have sequenced the complete upstream and non-

repetitive coding region of eater in a North American and an African population

of D. melanogaster. We find that both populations harbor substantial polymor-
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phism in the number of NIM repeats and therefore for the overall size of the

protein. We confirm the patterns of concerted evolution in NIM repeats that

have been previously reported but also find evidence for varying degrees of

concerted evolution between units. There is extensive linkage disequilibrium

in the second intron of eater that extends through the upstream and 5’, non-

repetitive gene region in the North American population, with the major hap-

lotypes at the second intron significantly associated with gene expression level.

Additional analysis suggests that one of these haplotypes has recently risen to

high frequency in North America, which we interpret to reflect adaptation of

the immune response to the novel pathogen environment that was encountered

after emigration from Africa.

4.3 Materials and Methods

4.3.1 Fly Strains

D. melanogaster strains used for DNA sequence analysis in this study came

from Zimbabwe or the United States. Strains ZW09, ZW139, ZW140, ZW142,

ZW144, ZW149, ZW155, ZW184, ZW185, and ZW190 were originally collected

in 2002 by J.W.O. Ballard from Victoria Falls, Zimbabwe. Strains I01, I03, I04,

I06, I07, I13, I16, I17, I22, I23, I24, I26, I29, I31, I33, I34, I35 and I38 were origi-

nally collected in 2004 by E. M. Hill-Burns and B. P. Lazzaro from Ithaca, New

York, United States. Additional collections from China (Beijing, courtesy of X.

Huang and R. Roush via A. G. Clark; (Begun and Aquadro, 1995)), the Nether-

lands (Houten, courtesy of Z. Bochdanovits via A. G. Clark; (Bochdanovits and
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de Jong, 2003)), Australia (Tasmania, courtesy of A. A. Hoffman, via A. G.

Clark), and the United States (Athens and Blairsville, Georgia, courtesy of V.

Corby-Harris and D. Promislow; (Lazzaro et al., 2008)) were used for PCR to

measure the size of eater. Each line was initiated by intercrossing the progeny of

a single, field-inseminated female and has been maintained by mass sib-mating

in the lab since collection. The African lines in particular still segregate for resid-

ual heterozygosity.

eater is located on the right arm of chromosome 3 at cytological band 97E2.

To isolate single eater alleles for sequencing, an individual male from each stock

was crossed to virgin females from the deficiency line Df(3R)Tl-P, e1 ca1/TM3,

Ser1 (Bloomington Drosophila Stock Center stock number 1910). Single male

progeny from this cross with the genotype Df(3R)Tl-P, e1 ca1/+ were crossed to

virgin females from the original deficiency line. Males and virgin females from

the second cross that had the genotype Df(3R)Tl-P, e1 ca1/+ were crossed to each

other to isolate a single wild type allele from the original isofemale line along

with the deficiency chromosome. Only flies that were either homozygous for a

single wild type allele or hemizygous over the deficiency were sequenced.

4.3.2 PCR and DNA Sequencing

PCR amplifications of genomic DNA were performed using iProof high-fidelity

polymerase (BioRad) or Taq polymerase (New England Biolabs). iProof-derived

products were prepared for sequencing using PCR purification columns (Invit-

rogen). Taq-derived products were prepared for sequencing using Exonuclease

I (USB Corp.) and shrimp alkaline phosphatase (USB Corp.). PCR products
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were then directly sequenced. DNA sequences for the United States and Zim-

babwe populations were collected for all non-repetitive eater coding regions,

all introns, 5’ and 3’ untranslated regions, and an approximately 2kb region up-

stream of the transcriptional start site. Complete sequence could not be obtained

for some alleles with large numbers of repetitive internal repeats. In these cases,

the length of the repetitive regions was determined by amplifying the repeat re-

gion using primers that anneal to the flanking non-repetitive regions and sizing

the products on 1% (1-2.4 kb) or 0.6% (>2.4kb) agarose gels. This genotyping of

repeat region length was done for all populations. All primers are available by

request. Nucleotide sequences have been deposited in GenBank (HM165155-

HM165182). Outgroup sequence were obtained from the reference genomes of

D. simulans (Release 1.0) and D. yakuba (Release 2.0) (Begun et al., 2007).

4.3.3 DNA Sequence Analysis

DNA sequences were assembled in CodonCode Aligner (CodonCode Corp.).

NIM repeat units were identified by the 26 amino acid consensus sequence Cx-

PxCxxxCxNGxCxxPxxCxCxxGY (Somogyi et al., 2008). An alignment was built

of NIM repeats using this conserved motif as in (Kurucz et al., 2007) and (Som-

ogyi et al., 2008) since the nucleotides within this sequence could be aligned for

all NIM repeat units from all sampled alleles and both outgroups. Alignments

based on the NIM consensus sequence were used to build neighbor-joining un-

rooted trees. Trees were constructed in MEGA 4.0 (Tamura et al., 2007) using

an amino acid model with a Poisson correction and uniform substitution rates

among all sites. Five hundred bootstrap replicates were performed to indicate

support of each node. In agreement with (Somogyi et al., 2008), we will refer
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to a repeat as ”independently evolving” if its sequence is found just once per

individual allele and it is more closely related to homologous units in D. yakuba

and D. simulans than to repeat units at non-homologous positions within the D.

melanogaster eater gene. Independently evolving units were numbered 1 to 11

(Figure 4.1).

We compared the evolutionary patterns of the four NIM repeats that have

previously been shown to be important for microbial binding (Kocks et al., 2005)

to those where no such functional assignment has been made. We calculated

KA, the rate of amino acid substitution, and KS , the rate of silent substitution

for each NIM unit 1 to 11 independently (Nei and Gojobori, 1986). Fixations

were polarized using D. yakuba and D. simulans as outgroups and only fixations

that occurred along the D. melanogaster lineage were considered. Wilcoxon

rank sum tests were used to test for differences in substitution rates between

microbial binding versus all other NIM repeats.

We calculated population genetic statistics on all gene regions that were not

evolving concertedly. Nucleotide diversity, Tajima’s D, and linkage disequilib-

rium were calculated using DnaSP v. 5.0 (Librado and Rozas, 2009) and scripts

written in the programming language R R Development Core Team (2006). Nu-

cleotide diversity (π) was measured both as the average pairwise differences

between sequences per locus and per site with a Jukes-Cantor correction ap-

plied. Tajima’s D (Tajima, 1989) was calculated using all mutations. Tajima’s

D measures the difference between two different estimates of the population

genetics parameter (4Neµ), one of which measures nucleotide diversity (θπ) and

the other which relies on the number of segregating sites (θw). The f statistic,

which is the nucleotide diversity in a putatively selected allele divided by the
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total nucleotide diversity (Macpherson et al., 2008), was calculated in R. Link-

age disequilibrium was measured using the ZnS statistic (Kelly, 1997), which is

a standardized average of all calculations of the D statistic between all pairs of

segregating sites. The standardized measure of linkage disequilibrium between

pairs of sites, r2, was plotted using the LDheatmap package in R (Shin et al.,

2006). Extended haplotype homozygosity (EHH), another measure of linkage

disequilibrium, is the probability at a given position that two sampled alleles

with the same pre-defined core genotype are identical by descent (Sabeti et al.,

2002). EHH was calculated using a script written in R with the core genotype

defined at the center of the second intron since linkage disequilibrium was most

extreme in this region (see Results). We calculated ZnS , EHH, nucleotide diver-

sity (π), Tajima’s D, and f on the entire eater gene region (3,895 bp) with the

variable number repeat units excluded to look for selection over the entire lo-

cus. We also calculated these statistics on the second intron (398 bp) since the

most extreme values of the population genetic statistics should be near the site

of selection. Lastly, we calculated the above set of statistics on the 5’ gene re-

gion (3,213 bp), which included the entire upstream region, 5’ UTR, NIM 1-8,

and two introns, since this is the region used for simulations (see Coalescent

Simulations).

4.3.4 Coalescent Simulations

We used coalescent simulations run in the ms program (Hudson, 2002) to build

null distributions of our test statistics under various neutral demographic sce-

narios. Our empirically determined test statistics were then compared to the

null distributions to test for deviations from neutrality that could be attributed
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to selection and to assess statistical significance of empirically observed pat-

terns. Polymorphism data were simulated for a recombining, neutrally evolving

locus of length 3,106 base pairs intended to represent the majority of the non-

repetitive coding and non-coding 5’ end of the gene with insertion or deletion

events considered as single base pair mutations. The 682 base pairs at the 3’ end

of the gene were not included in the simulations since recombination distance

across the intervening repetitive region could not be accurately incorporated

into the simulations. For these simulations, a fixed number of 86 segregating

sites (our empirical observation at eater) was assumed. We also simulated pat-

terns of polymorphism at the second intron, which was modeled as a recombin-

ing locus that was 398 base pairs long with 15 segregating sites. The local re-

combination rate was estimated using the D. melanogaster Recombination Rate

Calculator (Singh et al., 2005) and was estimated to be 1.77 cM/Mbp for this

locus. The effective population size was assumed to be 106, and the mutation

rate was assumed to be 1.5x10−9 bp−1 gen−1 (Li, 1997).

Our simplest demographic scenario assumes a panmictic population of

constant size. Our two other scenarios account for the bottleneck that the

North American population underwent when it was founded from an ancestral

African population (David and Capy, 1988). The details of this bottleneck have

recently been inferred in detail by two separate analyses of datasets from the

Netherlands and East Africa (Thornton and Andolfatto, 2006; Li and Stephan,

2006). Previous work has shown that all non-African populations were derived

from a single colonization event (Baudry et al., 2004; Schlötterer et al., 2006)

so it is appropriate to apply the parameters inferred from these data to North

American populations (Macpherson et al., 2008). The exact parameters of the

bottleneck that were inferred differ between studies (Macpherson et al., 2008).
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Thornton and Andolfatto (2006) estimated three parameters of the bottleneck

(referred to as the TA scenario from this point forward): the timing of the pop-

ulation size reduction (Tb), the timing of recovery (Tr), and the ratio of the pop-

ulation size during the bottleneck to the size before and after (Rb). The best

estimate from their approximate Bayesian methods suggests that Tb was 16,000

years ago, Tr was 3,000 years ago, and that Rb was 0.029. Assuming 10 genera-

tions a year (Thornton and Andolfatto, 2006), this corresponds to a Tb of 0.022 *

4Neµ generations ago and a Tr of 0.0042 * 4Neµ generations ago. Li and Stephan

(2006) used a maximum likelihood procedure and estimated that Tb was 15,800

years (0.0367 * 4Neµ generations ago) and lasted only a few hundred years (Tr

equal to 0.0360 * 4Neµ generations ago), and that Rb was 0.002. In addition, they

estimate that previous to the bottleneck out of Africa, the African population

underwent an expansion in population size. They estimated the expansion (Te)

occurred 60,000 years ago (0.1395 * 4Neµ generations ago) and that the ratio of

the expansion size to the current population size (Re) was 8.0. We will refer

to these parameters as the LS scenario. Simulations under the LS scenario that

incorporate this expansion of the ancestral population are a significantly better

fit to overall genomic patterns of polymorphism than simulations under the TA

scenario (Li and Stephan, 2006), and an ancient expansion explains the excess

of rare derived mutations that are observed within African populations.

Our eater sequences were divided into two distinct clades that we hypoth-

esize may have adaptive significance, so we only retained simulations that

matched the empirically observed topology (see Results). Specifically, we re-

quired that the final coalescence event occur at the span representing the second

intron and divide the data into two clades of sizes 8 and 10, where the clade of

size 8 represents an allele experiencing a partial selective sweep. In this way, we
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simulated coalescent trees with the same topology as seen in our dataset and

generated a distribution of each test statistic that would be expected for this

given topology in the absence of selection. Population genetic statistics were

calculated for each simulated dataset with the entire population included, as

well as separately with only individuals containing the putatively adaptive al-

lele included. The distribution of each simulated test statistic was determined,

and statistical significance was defined as the number of simulated datasets that

had a value of the test statistic equal to or more extreme than that observed for

eater. We conducted 2-tailed tests on empirical estimates of eater from the entire

population to test for deviations from neutrality. Empirical estimates at eater

were considered significant if they fell into the 2.5% tails of the simulated dis-

tributions. We conducted 1-tailed tests on the putatively adaptive haplotype

group to test for a selective sweep in this class. Haplotype number, nucleotide

diversity, Tajima’s D and f were considered extreme if the observed value was

in the lower tail of the simulated values. ZnS was considered extreme if the ob-

served value was in the upper tail of the simulated values.

4.3.5 Gene Expression

We sequenced a set of 3rd chromosome substitution lines from a Pennsylvania,

United States, collection of D. melanogaster (Fiumera et al., 2007) at the second

intron of the eater locus and measured eater gene expression in the 19 lines that

were a perfect match to either the ”A” or ”B” haplotype between base pair 390

and 488 (see Results). These substitution lines had been previously backcrossed

for eight generations to remove variation on the 2nd, 4th, and sex chromosomes,

and thus only vary at the 3rd chromosome (Fiumera et al., 2007). This should re-
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duce the amount of trans-regulatory variation in eater expression. We designed

primers specific to eater and to a house-keeping gene, rp49, which was used

to control for variation in the efficiency of RNA extraction and cDNA synthe-

sis. Transcript abundance was measured using Power SYBR Green (Applied

BioSystems). Replicate samples of 10 males aged 3 to 5 days post-eclosion were

taken from each of two individual fly vials per line, RNA was extracted us-

ing a modified Trizol protocol (Invitrogen), and all quantitative PCR reactions

were run in duplicate. This procedure was done twice, on separate days and

for different fly generations. Significance of the ”A” or ”B” haplotype to predict

eater transcript abundance was assessed using Proc Mixed in SAS (SAS Institute,

Cary, NC) after accounting for the random effect of experiment day, line nested

within genotype, vial nested within line and genotype, and random variance

among replicate samples drawn from the same vial, as well as the fixed effect of

the estimated abundance of rp49 transcripts.

4.3.6 Analysis of Variable Number Repeat Units

Repeat units between NIM 8 and NIM 9 have high sequence similarity at the

nucleotide and amino acid level and have previously been shown to be evolv-

ing concertedly (Somogyi et al., 2008). We found individual D. melanogaster to

be polymorphic for the number of repeats of this type (see Results). These vari-

able number repeat units, which are 99 base pairs in length, cluster together

into two types (”NIM 8-like” core consensus motif (78 base pairs / 26 amino

acids): CKPICSxxCENGxCxAPEKCSCNGY; ”alternate” core consensus motif:

CxxVCxxGCKNGFCxAPxKCSCxxxx) which are always found in tandem (Fig-

ure 4.1; (Somogyi et al., 2008)). We labeled these units starting with the ones
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closest to NIM 8 or NIM 9 and counting inwards towards the center of the ar-

ray. Units immediately 3’ of NIM 8 were numbered starting with 1v and units

immediate 5’ of NIM 9 were numbered starting with -1v (Figure 4.1).

We obtained an average of 1393 bp (∼14 units) of sequence across the vari-

able number repeat units per individual and measured the physical size of PCR

products in this region for all individuals. The software package RS T calc (Good-

man, 1997) was used to calculate genetic differentiation between populations.

Because RS T calc requires diploid samples and our fly lines were artificially

made haploid, we randomly assigned alleles into diploid combinations to create

artificial ”genotypes.” Statistical significance of pairwise comparisons between

populations was determined by permuting the sequenced alleles among sub-

populations and recalculating RS T 10,000 times to determine an empirical null

distribution. To determine the statistical significance of the worldwide value of

RS T , we ran 10,000 bootstrap simulations to determine a confidence interval of

our observed RS T value. We measured genetic distance between all pairs of vari-

able number repeat units using Kimura’s 2-parameter model in the ape package

in R (Paradis, 2004).

4.4 Results

4.4.1 Summary Population Genetic Statistics

We sought to determine whether the eater gene, which is required for immuno-

logical phagocytosis, shows signs of recent adaptation at the molecular popula-

tion genetic level. We sequenced multiple eater alleles from a Zimbabwe and a
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United States population of D. melanogaster (Figure 4.2) and estimated sequence

diversity and linkage disequilibrium for each population (Table 4.1; Figure 4.3).

Linkage disequilibrium (Figure 4.3; second intron is outlined with a black trian-

gle) and diversity (Figure 4.4) are highest in and around the second intron in the

United States population but not the Zimbabwe population. We simulated 1000

coalescent genealogies of a neutrally evolving equilibrium population under the

estimated recombination rate, none of which showed linkage disequilibrium at

the second intron that was as high as we observed in the United States popu-

lation (p < 10−3; Table 4.2). These patterns reflect the presence of two high fre-

quency haplotype groups that are substantially diverged from each other. The

presence of two high frequency haplotypes could in principle be explained by

a partial selective sweep, balancing selection, or some non-equilibrium demo-

graphic scenarios. However, the lack of variation within each haplotype class is

contrary to the expectation for an ancient balanced polymorphism (e.g., (Hud-

son and Kaplan, 1988)), rendering a partial sweep or non-equilibrium demog-

raphy as more plausible explanations.

To see if non-equilibrium patterns extended beyond the second intron, we

compared patterns of nucleotide diversity and the site frequency spectrum at

the second intron with those across the rest of the gene region. When interpret-

ing our results, we considered only the 5’ end of the gene (3,213 bp) since simu-

lations could not be performed across the entire gene region (3,895 bp) due to the

variable number repeat units (see Materials and Methods). Tajima’s D (Tajima,

1989), nucleotide diversity, and linkage disequilibrium (ZnS ; (Kelly, 1997)) are

all elevated in the second intron relative to the rest of the 5’ gene region in

the North American population (second intron: Tajima’s D=+2.6697, π=0.01867,

ZnS =0.7474; 5’ gene region: Tajima’s D=+0.2906, π=0.00861, ZnS =0.1560; Ta-
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Figure 4.2: Polymorphic sites for the eater locus. The United States pop-
ulation (Ithaca, New York) is divided into ”A” and ”B” type
haplotypes based on sequence between base pairs 390 and 488
(highlighted in gray). ”A” haplotypes are above the dotted line
and ”B” haplotypes are below. Non-synonymous (N) and syn-
onymous polymorphisms (S) in coding regions are indicated.
Stop codons were found segregating in two individuals from
Zimbabwe (boxed). CF2-II motif polymorphisms are shown
(»; see Figure 4.6). Variable number repeat units between NIM
8 and NIM 9 could not be aligned with confidence and are not
shown, but the approximate length of that region is shown in
base pairs (VN). Sites with alignment gaps were considered if
there was a polymorphism. Base pair position within the gene
corresponds with Figure 4.1 with the first position being the
transcriptional start site and the 5’ upstream region indicated
as -1765 to -1.
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Figure 4.3: Linkage disequilibrium (r2) plotted across the concatenated
gene region. Each pixel represents r2 plotted between a pair
of segregating sites. Exons are shown with black boxes, with
the transcriptional start site indicated with an arrow. Introns
are shown as lines between the exons. The black triangle in-
dicates the block of high linkage disequilibrium in the second
intron of the United States (Ithaca, New York) population, and
is indicated in the Zimbabwe population for comparison.

ble 4.1). These patterns of diversity are extremely unlikely under the standard

neutral null model (Table 4.1). Tajima’s D is significantly positive at the sec-

ond intron (p<0.01), and linkage disequilibrium is significantly high at both the

second intron (p<0.001) and in the 5’ gene region (p<0.001).

To test whether this reflects the pooling of two intermediate frequency, dis-

parate allelic classes, we calculated the statistics separately for each haplotype

group in the North American population (Table 4.1). Only two sequence hap-

lotypes were observed between base pairs 390 and 488 (99 base pairs) within
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Figure 4.4: Plot of nucleotide diversity in the North American population
by haplotype group. Nucleotide diversity is plotted for sliding
windows with a window length of 200 sites and a step size of
75 sites. A schematic of the gene is shown below the graph with
exons indicated as black boxes and the transcription start site
indicated with an arrow. A spike in apparent diversity is seen
over intron 2, where two divergent haplotypes (groups ”A”
and ”B”) are segregating. There is no excess diversity within
either haplotype.

the second intron (398 base pairs), so the alleles were divided into group ”A”

or group ”B” based on this sequence (Figure 4.2; region in gray). The ”A”

group is named because it is a perfect match to the reference genome of D.

melanogaster (Adams et al., 2000). Across the remainder of the second in-

tron, these haplotypes each have very little variation within haplotype group

(πA=0.00188; πB=0.00201) but 11 of 15 segregating sites in this 398 bp window

are fixed differences between the two groups (πcombined=0.01867; Table 4.1; Fig-

ure 4.2). The reduction in nucleotide diversity extends approximately 800 base
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pairs in the ”A” haplotype (Figure 4.4). Across the 5’ gene region, the lev-

els of nucleotide diversity are similar in each haplotype group (πA: 0.00635,

πB: 0.00499). The ”A” haplotype has a higher level of linkage disequilibrium

and a more negative value of Tajima’s D than the ”B” haplotype does (ZnS A:

0.312, B: 0.1869; Tajima’s D A: -0.7129, B: -0.4352). Compared to the standard

null neutral model, the ”A” haplotype group has a significantly low value of

Tajima’s D (p<0.001), too few haplotypes (p=0.005), excess linkage disequilib-

rium (p<0.001), and a low value of f (p=0.018) indicating a deficit in nucleotide

diversity in haplotype ”A” relative to the entire population (Tables 4.1, 4.2). The

observed reduction in nucleotide diversity and excess linkage disequilibrium in

the ”A” haplotype is consistent with a recent rise to high frequency due to a

partial selective sweep.

The Zimbabwe population, in contrast, did not show evidence for haplotype

structuring or a recent selective sweep around the second intron. The patterns of

diversity are compatible with our expectations for a neutrally evolving African

population. The Zimbabwe population harbors substantially more diversity

than the United States population (πZimbabwe: 0.01188, πUS : 0.00768; Table 4.1),

reflecting the larger effective size of this population, which is presumed to be

ancestral to the United States population (David and Capy, 1988). Two individ-

uals in the Zimbabwe population have a stop codon in the third NIM repeat that

presumably results in a truncated version of Eater (Figure 4.2). Such potentially

deleterious mutations are expected to occur at low frequencies in populations

that are in mutation-selection balance. For both populations, the diversity at

synonymous sites exceeded that at non-synonymous sites in eater (Table 4.1), as

would be expected if purifying selection acts to remove deleterious amino acid

variation.
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4.4.2 Standard Neutral and Bottleneck Simulations

The observed population genetic statistics are highly suggestive of the haplo-

type ”A” having recently risen to high frequency in the United States popula-

tion due to positive selection. These patterns are not compatible with a standard

neutral null model of evolution. However, selectively neutral demographic pro-

cesses such as population expansions or bottlenecks can often lead to patterns

that mimic those expected under natural selection. It is believed that all non-

African populations have only recently been founded from Africa (David and

Capy, 1988; Baudry et al., 2004). Models that incorporate bottlenecks similar to

what these populations underwent as they expanded their population range are

a better fit to genomewide patterns of diversity (Li and Stephan, 2006) than the

standard neutral null model. Two recent analyses have described bottleneck

models that can be applied to the North American population (Thornton and

Andolfatto, 2006; Li and Stephan, 2006), one with a prolonged bottleneck that

ended recently and the other with a short, ancient bottleneck that was preceded

by a population expansion. Simulations under these models can give us a mean

and range of values for the number of haplotypes, nucleotide diversity, linkage

disequilibrium, and Tajima’s D that we can expect to observe at the eater locus in

the absence of selection. If our empirically observed statistics fall into the tails

of the null distributions (see Methods) then we infer that selection may have

occurred.

The TA model (Thornton and Andolfatto, 2006) describes a hypothesized

prolonged bottleneck that ended recently. The population genetic statistics that

we observed at the eater locus are all consistent with the TA demographic sce-

nario (Table 4.2; Figure 4.5a,b). The LS model (Li and Stephan, 2006) presumes a
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Figure 4.5: Extended haplotype homozygosity. EHH at the eater locus is
compared with values obtained from simulations under vari-
ous demographic scenarios. The mean and the 2.5% and 97.5%
tails of the simulated distributions are shown. a, b) EHH at
eater and simulated EHH values obtained from the TA demo-
graphic scenario for the ”A” and ”B” haplotypes respectively
based upon Thornton and Andolfatto (2006) c, d) EHH at eater
and simulated EHH values obtained from the LS demographic
scenario for the ”A” and ”B” haplotypes respectively based
upon Li and Stephan (2006). EHH at the eater locus is not con-
sistent with distributions of EHH obtained from simulations of
the locus under the LS demographic scenario
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bottleneck that was ancient, brief, and was preceded by a population expansion

in the ancestral African population. Using this model, there are expected to be

significantly more haplotypes (p=0.04), a higher value of Tajima’s D (p=0.02),

less linkage disequilibrium (p<0.001), and a shorter extent of EHH in the “A”

group than is actually observed at the eater locus (Table 4.2; Figure 4.5c,d). This

indicates that the values observed at the eater locus cannot be explained by an

ancient and brief bottleneck such as the one proposed by (Li and Stephan, 2006).

The ranges of the distributions of most test statistics are much wider when mod-

eling the TA scenario than under the LS scenario (Table 4.2) and would attribute

demographic explanations to all but the most extreme instances of positive se-

lection. The TA scenario is likely to be too conservative for the detection of less

radical selective pressures. Of the three neutral models presented, the LS sce-

nario best explains genomic patterns of polymorphism in derived populations

of D. melanogaster (Li and Stephan, 2006), and thus we favor interpretation of

our results in light of this scenario.

4.4.3 Gene Expression Differences between Haplotypes and

Potential Targets of Selection

If natural selection has indeed shaped patterns of variation at eater, then we

might expect to see a phenotypic difference associated with the high frequency

haplotypes which could be the target of selection. We therefore examined

the sequences of the ”A” and ”B” groups to find candidate sequence dif-

ferences that could give us insight into the nature of a potential phenotypic

difference. The excess linkage disequilibrium in the ”A” haplotype extends
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through NIM 1 and NIM 2, two repeat units that are implicated in microbial

binding (Kocks et al., 2005). However, no fixed non-synonymous differences

were found between the haplotype groups in these NIM repeats (Figure 4.2).

Since the population genetic statistics were most extreme at the second in-

tron of eater, we evaluated group ”A” and ”B” sequences at this intron with

a sequence-motif finder against insect motifs within the library TRANSFAC

at GenomeNet (http://motif.genome.jp/). Four putative chorion transcription

factor 2 (CF2-II) binding regions were found in the ”A” haplotype (Figure 4.6)

using the search motif sequence GTATATATA. All four regions had polymor-

phisms in the ”B” haplotype that made them poorer matches to the consensus

motif. This sequence motif can be either an enhancer or a suppressor during

D. melanogaster oogenesis and embryonic muscle development (Hsu et al., 1996;

Garcı́a-Zaragoza et al., 2008) and is a suppressor of expression of the antimicro-

bial peptide gloverin in the silkworm Bombyx mori (Mrinal and Nagaraju, 2008).

We therefore hypothesized that the second intron might contain one or more

regulatory sequences and that transcriptional differences between the alleles is

the target of selection.

To test the hypothesis that sequence variation between the ”A” and ”B” hap-

lotype groups results in differing expression levels of the eater gene, we mea-

sured constitutive expression of eater in adult males in 19 D. melanogaster iso-

genic lines that were homozygous for either the ”A” or ”B” haplotype. We

found that lines bearing the ”A” haplotype express significantly more eater than

”B” haplotype lines (p=0.0417), exhibiting an average of 69% higher expression

(Table 4.3). Although this observation does not directly test the function of the

putative CF2-II binding sequences that are present in the ”A” haplotype but ab-

sent in the ”B” haplotype, it is consistent with the hypothesis that these or other
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Figure 4.6: Polymorphisms in putative CF2-II transcription factor recog-
nition motifs in positions within the second intron of North
American haplotypes ”A” and ”B.” Motif GTATATATA is con-
sidered a perfect match. The score indicates how well the input
sequence matches the motif. The position within the gene re-
gion is indicated above each nucleotide. Haplotype group ”A”
has four high score matches to the CF2-II motif.

unidentified regulatory sequences cause functional differentiation between the

two haplotypes and may be targets of selection.
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Table 4.3: Factors and p-values of a linear model used to show that US
haplotype group ”A” expresses eater at a higher level than group
”B.”

Factor Name Effect Type df Z-value or F-value p-value

Line(Haplotype)a Random 2.34 0.0097

Vial(Line*Haplotype)b Random 0.35 0.3634

Sample(Line*Haplotype*Vial)c Random 2.12 0.0170

Dayd Random 0.69 0.2448

Extraction(Day)e Random 0.95 0.1711

Residual Random 9.96 <.0001

Rp49 f 1 1508.9 <.0001

Haplotypeg Fixed 1 4.83 0.0417
df, degrees of freedom
aBackground variation due to genetic line
bVariation due to rearing vial
cRandom variation among replicate samples of flies within the vial
dVariation due to day of experiment
eVariation due to RNA extraction
f Variation due to amount of RNA, measured as expression of housekeeping gene
g Variation due to haplotype

4.4.4 Evolutionary Patterns of NIM Repeats

The first four NIM repeat units (NIM 1-4) have previously been implicated in

microbial binding (Kocks et al., 2005). We considered that these repeats specif-

ically might participate in host-pathogen co-evolutionary interactions that the

other NIM repeats would not. To test this hypothesis, we compared the rate

of non-synonymous substitution (KA) and of synonymous substitution (KS ) be-

tween NIM 1-4 and the remaining independently evolving NIM repeats (NIM

5-11) (Table 4.4). We found no evidence for any difference in the evolutionary

patterns between the two sets of repeats, with KA and KS not significantly dif-

fering between the two groups (Wilcoxon signed rank test, KA p-value=0.6202,

KS p-value=0.2183; Table 4.4). We also examined the phylogenetic relationship
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of each NIM repeat among D. melanogaster, D. simulans, and D. yakuba. The ac-

cepted relationship among these species places D. melanogaster and D. simulans

as sister species and D. yakuba as the outgroup (Begun et al., 2007). Six NIM

repeats had phylogenetic relationships that deviated from this pattern, which

could indicate elevated selective pressures along particular branches. How-

ever, these repeats were evenly distributed between NIM 1-4 (microbial bind-

ing) and NIM 5-11 (unknown function) (Table 4.4). Nucleotide diversity lev-

els were not different between the two sets of functionally distinct repeats in

either Zimbabwe or United States populations (πZimbabwep-value=0.7879, πUS p-

value=0.7748). NIM 2, a unit with a putative role in microbial binding, had

no polymorphism in either the Zimbabwe and United States populations (Ta-

ble 4.4), nor in additional populations sampled from Australia, the Netherlands,

or China (not shown). The second intron lies within this NIM repeat, so the

deficit in diversity of NIM 2 may be linked with the unusual evolutionary pat-

terns of the intron.

4.4.5 Properties of the Variable Number Repeat Units

The number of repeats in the region between NIM 8 and NIM 9 is polymorphic

and ranges between 11 and 29 (Figure 4.7a). The Zimbabwe and China pop-

ulations have the highest variation in the number of repeat units. Worldwide

RS T , a measure of genetic differentiation that ranges from 0 for completely un-

differentiated to 1 for complete isolation, was 0.00388 (95% confidence interval:

-0.0488, 0.4082) which indicates a lack of differentiation between populations.

Pairwise comparisons between individual populations ranged from -0.0971 to

0.3939 (Figure 4.7b), and all were non-significant (p>0.05) after a Bonferroni cor-

104



Table 4.4: Evolutionary patterns of independently evolving eater NIM re-
peat units.

NIM # Microbial
binding?a

KA
b KS

b KA/KS πzimbabwe
c πUS

c Tree structured

1 yes 0.0602 0.2326 0.259 0.00947 0.00769 yak83(mel64sim)

2 yes 0 0.1073 0 0 0 yak91(mel92sim)

3 yes 0 0.0632 0 0.00697 0.00310 sim40(mel27yak)e

4 yes 0.0475 0.1145 0.415 0.01111 0.00739 mel93(yak53sim)

5 unknown 0 0 NA 0.00539 0.00354 mel/sim/yak

6 unknown 0.0347 0 NA 0.01594 0.00673 sim87(mel48yak)

7 unknown 0.0347 0.0556 0.306 0.00208 0.00110 yak77(mel63sim)

8 unknown 0 0.0589 0 0.00920 0.00780 yak42(mel/sim)

9 unknown 0.0167 0.1253 0.133 0.01047 0.00449 yak50(mel81sim)

10 unknown 0.0360 0.0690 0.522 0.01047 0.00449 yak98(mel63sim)e

11 unknown 0 0.1337 0 0.00359 0 yak99(mel/sim)

a Kocks et al. 2005
b KA and KS are the rates of amino acid or silent substitution respectively polarized along the D.
melanogaster branch using D. yakuba and D. simulans as outgroups.
c π indicates nucleotide diversity calculated as the average pairwise differences between se-
quences per base pair.
d Neighbor joining trees were constructed for all NIM repeat units. Subscript numbers indicate
bootstrap support for each node based on 500 replicates.
e One D. melanogaster allele was an outlier from the pattern indicated here.

rection for multiple tests. We therefore find no evidence that the overall length

of the variable number repeat region is geographically differentiated or locally

adapted.

At the nucleotide sequence level, the variable number repeat units do not

tightly cluster phylogenetically based on physical location in the array, in con-

trast with the conserved-number NIM 1-11, whose nearest phylogenetic neigh-

bors are always physically homologous repeats in alleles isolated from different

individuals and from the outgroup species (Somogyi et al., 2008). This suggests
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Figure 4.7: Absence of genetic differentiation (RS T ) between populations
in variable number repeat sizes. a) Boxplots of the distribu-
tion of sizes of variable number repeat region by population.
b) Pairwise RS T values between populations. *: p=0.0287 (not
significant after a Bonferroni correction); p>0.05 for all other
pairwise comparisons
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that the variable number repeat units are evolving concertedly by birth-and-

death of repeat units and gene conversion across paralogous units within the

variable number repeat array. This is in contrast with the conserved-number

repeat units, which are evolving independently. We find evidence that there is

also variation in the evolutionary patterns within the variable number repeat

region. For units on the periphery of the variable number repeat region, the

lowest genetic distances between units was generally found when comparing

between units at the same homologous position (Figure 4.8). No such pattern

existed for units in the interior of the array. This indicates a higher degree of

independent evolution in units in the periphery than in interior units and sug-

gests that the birth-and-death process that gives rise to new alleles is most likely

to occur in the interior of the gene.

4.5 Discussion

The patterns of genetic diversity and the divergence in gene expression between

two high frequency haplotypes give strong support for a partial selective sweep

at the eater locus in a North American population. One haplotype group, labeled

the ”A” group, has a high level of linkage disequilibrium, extended haplotype

homozygosity (EHH) that reaches over a long genomic distance, and a negative

value of Tajima’s D. These extreme values reach statistical significance under

two of three previously-described demographic null models (neutral and LS

models) of selective neutrality. The model to which the eater data can be fit

(the TA model) is so general that it provides little resolution between selective

and neutral scenarios. Overall, our data are consistent with the ”A” haplotype

having recently risen to high frequency in North America due to an incomplete
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Figure 4.8: Nearest genetic neighbors between NIM repeat units. Genetic
distances were calculated between all pairwise combinations
of NIM repeats from different individuals. The thickness of
the connecting lines and the number on the line indicate the
proportion of times that the nearest neighbor of a particular re-
peat unit was the indicated NIM repeat. Genetic distances were
calculated with the Kimura 2-parameter model using an align-
ment of the 78 base pair NIM consensus motif that is conserved
between all repeat units. NIM 1 through NIM 8 all showed the
same pattern, so the intervening repeats are not shown (region
indicated with dots). Variable number repeat units are shaded
(”NIM 8-like” = gray, ”alternate” = gray and white stripes).
Some variable number repeats units were not sequenced (re-
gion indicated with a jagged line).
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selective sweep. Notably, the expression of eater in isogenic lines with the ”A”

allele is on average 69% higher than in lines with the ”B” allele. This expression

difference offers a phenotypic basis upon which selection could act.

The ”A” group does not display the strong deficit in nucleotide diversity that

could be expected if it had recently and rapidly reached high frequency. This

may, however, be a consequence of our assignment of individual alleles to hap-

lotype groups. Of the eight alleles in the ”A” group, seven are identical across

the entire second intron and five have an average of 2.4 pairwise differences

among them for the entire length of the gene, compared with the average of

21.4 pairwise differences among alleles in the ”A” group as a whole. The eighth

”A” allele brings in the majority of sites segregating in that haplotype group and

appears to be a recombinant between the ”A” and ”B” haplotype groups. A less

conservative assignment that excluded this eighth allele from haplotype group

”A” would have led to a much more extreme deficit of nucleotide diversity in

the ”A” group. The 99 base pairs that we used to define the ”A” haplotype are

perfectly conserved in two lines from Zimbabwe, suggesting that this allele was

present in the ancestral population prior to founding of the North American

population (c.f., (Pool et al., 2006)), although we cannot exclude the possibility

that the haplotype was reintroduced back into the African population by back-

migration. Selective events that act on standing genetic variation leave much

less dramatic signatures than those seen when selection strongly favors novel

mutations (Przeworski et al., 2005). The fact that we are able to see any distor-

tions to the site frequency spectrum at all suggests strong positive selection at

this locus.

It is striking that the two ”A” haplotypes found in the Zimbabwe popu-
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lation are identical across the entire 4kb region in those two individuals (Fig-

ure 4.2). This sample size is too small to do simulations similar to those we

did with the United States population, but this observation begs the question

of whether or not selective sweeps involving these two haplotypes are happen-

ing in other populations or if this selective sweep is unique to the United States

population. Geographically restricted selective sweeps could potentially stem

from adaptation of populations to their local environments (Aminetzach et al.,

2005; Macpherson et al., 2008). We surveyed 8 alleles from each of two addi-

tional populations from the Netherlands and China at the second intron (data

not shown), but found no evidence of the ”A” haplotype being present in ei-

ther of these populations. This suggests that, of the derived populations, the

selective sweep involving the ”A” haplotype is a local phenomenon restricted

to the North American population. In contrast, we find no evidence of genetic

differentiation (RS T =0.00388) in the total number of NIM repeat units among

populations around the world. The lack of differentiation indicated by this RS T

value suggests that the number of repeats is not free to drift to different frequen-

cies in individual populations, and certainly is not adaptively diverging among

subpopulations, but instead that the number of repeats is subject to purifying

selection.

We have hypothesized that enhancer motifs present in the second intron of

”A” group haplotypes but absent in ”B” group alleles result in higher expres-

sion of eater ”A” haplotypes, and have noted polymorphism in putative CF2-II

binding sites as candidates for responsibility. The CF2-II zinc finger transcrip-

tion factor is an alternatively spliced variant of the CF2 transcription factor that

was first identified in D. melanogaster and has been shown to be important dur-

ing oogenesis and in embryonic muscle tissue development (Hsu et al., 1996;
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Garcı́a-Zaragoza et al., 2008), where it can act as either an enhancer (Garcı́a-

Zaragoza et al., 2008) or repressor (Hsu et al., 1996). In the silkworm B. mori,

CF2 was found to act as a repressor of expression of the antimicrobial peptide

gloverin (Mrinal and Nagaraju, 2008). The ancestral member of the gloverin fam-

ily has a CF2 motif in an intron in the 3’ UTR, and a deletion of this intron in

other members of the gene family has been associated with the gain of expres-

sion of gloverin in embryos. Although the haplotype structuring and expression

association we identified was centered around CF2-II motifs in the second in-

tron of eater, this does not prove that the CF2-II sites are responsible for the

expression difference, and does not preclude the role of a different sequence

motif either inside or outside this intron. Sequence important for eater expres-

sion has been identified in the 5’ upstream region of the gene (Tokusumi et al.,

2009), and it is possible that a still unidentified region of the gene is responsible

for the expression differences between haplotypes.

Increased expression of eater and other genes involved in cellular and hu-

moral immunity has previously been reported in D. melanogaster selected for

increased resistance to the bacterial pathogen Pseudomonas aeruginosa (Ye et al.,

2009). This supports the hypothesis that higher expression of eater is beneficial

in the face of pathogen pressure. Artificially selected lines rapidly lost resis-

tance when the selective pressure was removed, suggesting that resistance is

costly to maintain. We report evidence of a partial selective sweep at the eater

locus in a North American population but not in an African population. D.

melanogaster was likely to have encountered novel pathogens as the population

range expanded out of Africa. Geographically restricted selective sweeps can

occur if selective pressures such as bacterial species and frequencies vary across

different areas. The selective sweep may be ongoing which is why the allele as-
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sociated with higher eater expression is not fixed in the population, or the costs

related to increased expression may inhibit the fixation of this allele.

eater is a cellular recognition gene, a class which shows evidence of rapid

evolution between species (Sackton et al., 2007). Like eater, other genes in

this class have previously shown evidence of selection at the population level.

Thioester-containing proteins (TEPs), which are thought to function as opsonins

and label microbes for phagocytosis, show evidence of adaptive evolution in

Drosophila, Anopheles mosquitoes, and the crustacean Daphnia (Little et al., 2004;

Little and Cobbe, 2005; Jiggins and Kim, 2006). In Tep genes, positively selected

sites are often clustered around putative sites of interaction between host and

pathogen, suggesting that co-evolutionary arms races drive their rapid evolu-

tion. Single Tep genes show evidence of recent selection within an African pop-

ulation of D. melanogaster (Jiggins and Kim, 2006) and divergence in gene ex-

pression levels between populations (Hutter et al., 2008). Class C scavenger

receptor (SR-Cs) proteins are implicated in the internalization of microbial com-

pounds (Ramet et al., 2001), and some members of this family display evi-

dence of adaptive amino acid replacement between species of Drosophila (Laz-

zaro, 2005). SR-Cs show unusual patterns of nucleotide diversity and haplo-

type structuring within one North American population of D. simulans which

suggests a recent and rapid rise to high frequency of putatively selected hap-

lotypes (Lazzaro, 2005; Schlenke and Begun, 2005). These previous studies

suggest that, although cellular recognition molecules evolve rapidly as a class,

unique evolutionary patterns and pressures drive the evolution of individual

genes.

Partial selective sweeps have been invoked to explain the presence of high
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frequency haplotypes with low genetic diversity, and previous studies have

identified D. melanogaster loci with similar patterns of genetic variation as

we see at eater (Hudson et al., 1997; Aminetzach et al., 2005). The Doc1420

long interspersed element (LINE)-like transposon is a polymorphic insertion

in D. melanogaster which results in a truncated version of a protein and con-

fers organophosphate pesticide resistance (Aminetzach et al., 2005). There are

fewer haplotypes, reduced variation, and excess linkage disequilibrium in the

group of alleles containing the element, and the transposon insertion is found

in high frequency in derived populations but only low frequency in ancestral

African populations (Aminetzach et al., 2005). At the Sod locus, two haplotype

groups, one within a fast electromorph group and one containing all slow elec-

tromorphs, each have very little or no nucleotide diversity (Lee et al., 1981). A

complex pattern of selection where the fast haplotype group underwent a par-

tial selective sweep and then a subsequent mutation led to the slow haplotype,

which is different by only one amino acid, is the most likely explanation for

patterns of variation at this locus (Hudson et al., 1997). It should be noted that

in both these examples, the excess linkage disequilibrium and reduced genetic

diversity extended as far away as 10kb and therefore these loci may have been

subject to stronger or more recent selection.

The coding regions of eater are largely composed of NIM repeat units. These

repeats in eater have been previously identified as evolving either indepen-

dently or concertedly (Somogyi et al., 2008). Four of the eleven independently

evolving repeats have been implicated in microbial binding, and it has been

hypothesized that repeats evolving concertedly compose a structural ”stalk”

between the ligand binding NIM repeats and the phagocyte membrane (Kocks

et al., 2005). Co-evolutionary arms races between pathogens and the host im-
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mune response can drive unusual patterns such as accelerated rates of amino

acid substitution, selective sweeps, or balancing selection. To look for evidence

of pathogen-imposed selection on NIM repeats with functional evidence of mi-

crobe binding, we compared evolutionary patterns of these four repeats with

the seven other independently evolving repeats. We found no evidence of a dif-

ference in the rate of amino acid substitution, patterns of genetic diversity, or

phylogenetic relationships with outgroup species. This is consistent with previ-

ous evidence that, although eater potentially shows evidence of positive selec-

tion between Drosophila species, selection is not concentrated around pathogen

interaction domains (Sackton et al., 2007).

Sequence similarity between NIM repeats is especially high in the interior of

the gene and has led to concerted evolution. Concerted evolution can arise be-

cause of unequal crossing over due to non-homologous pairing during recom-

bination or because of gene conversion (Charlesworth et al., 1994). We present

evidence that the repeat units in the periphery of the variable number repeat

region show signs of independent evolution and that the internal repeats are

truly evolving concertedly. This is indicated by the observation that units on

the periphery are more likely to be most closely related to units in the same

physical location in different individuals, whereas units in the interior show

no such concordance between physical location and genetic distance. This is

also strong evidence that the duplication and deletion of repeat units is more

likely to occur in the internal repeats than in the external repeats, in part be-

cause non-homologous pairing becomes less likely as the genetic distance be-

tween sequences increases (Stephan, 1989). Polymorphism in repeat number

like we observe at eater can only be caused by unequal crossing over (Smith,

1976). Gene conversion is likely also driving concerted evolution in this region.
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In one instance, we observed patterns of concerted and independent evolution

within a single NIM repeat unit. The 78 base pairs that define the core consensus

“NIM” motif are evolving concertedly in NIM -1v (Figure 4.8). In contrast, the

last 15 base pairs of this repeat are evolving independently (data not shown).

This pattern can only be driven by gene conversion and indicates that multiple

factors contribute to concerted evolution within eater.

The data we have collected at the eater locus support a model wherein this

recognition molecule, which is critical in the cellular immune response of D.

melanogaster, is subject to distinctive evolutionary pressures. However, unlike

observations for other genes and contrary to our expectations, this selection is

not centered around pathogen interaction domains. Instead, selection appears

to be acting on gene expression level in a geographically restricted subpopu-

lation. Further experimentation will be required to determine the organismal

fitness consequences of variation in eater expression. Novel mutations that are

selectively advantageous in local environments have a chance to rapidly rise to

high frequency and may eventually serve as the basis for between species di-

vergences. Unlike comparisons between species that have found evidence of

amino acid adaptation in cellular immune response genes, our data implicates

non-coding regulatory changes as playing an important role in the evolution of

eater.
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CHAPTER 5

SHORT AND LONG TERM PATTERNS OF EVOLUTION WITHIN

IMMUNE RESPONSE GENES OF DROSOPHILA MELANOGASTER

5.1 Abstract

Immune response genes frequently show evidence of elevated rates of adap-

tive evolution between species. The precise pattern of evolution depends on the

function of the gene within the immune system. Studies of natural populations

reveal that tremendous genetic and phenotypic variation in immune function

exists within species. We sequenced a large pool of alleles from a Drosophila

melanogaster population with the goal of understanding how genetic variation

within a population is related to long term evolutionary patterns. We find that

genes with the highest rates of adaptive evolution between species have low

levels of variation within a population. This pattern suggests that the rapid

long term evolution of this group of genes is driven by strong directional selec-

tion, which results in a short term reduction in nucleotide diversity. Functional

classes of immune genes also differed in their levels of within population varia-

tion in a manner consistent with their between species evolutionary patterns.

5.2 Introduction

Tremendous genetic and phenotypic variation exists within natural pop-

ulations, some of which is likely to contribute to differences between

species (Lewontin and Hubby, 1966). Some mutations are deleterious and ex-
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pected to be found at low frequencies. Some variants with small or neutral

effects occur as a result of genetic drift and mutation. An unknown proportion

of variation is maintained by positive selection. These processes are expected to

leave different signatures across the genome, which can be distinguished using

population genetics.

Variation in immune response has important fitness consequences, and

genes in the immune system show both evidence of positive selection at the

species level (Nielsen et al., 2005; Sackton et al., 2007) and abundant genetic and

phenotypic polymorphism within species (Lazzaro et al., 2004). From studies of

various insects, it is known that different functional classes within the immune

response vary in their long term evolutionary dynamics (Christophides et al.,

2002; Sackton et al., 2007). Within populations, there is evidence for phenotypic

tradeoffs within the immune system and amongst immunity, reproduction and

other fitness traits (Boots and Begon, 1993; Gwynn et al., 2005; Wilfert et al.,

2007b; McKean and Nunney, 2008), which leads to maintenance of variation in

immune function rather than the fixation of immune resistance. Less is known

of how genetic variation in the immune system within a species relates to long

evolutionary patterns.

Much of our understanding of the distribution of genetic variation within

populations comes from studies of small numbers of genes. Hard selective

sweeps reduce genetic diversity within species as the selected variant rises in

frequency and fixes in the population, dragging with it linked variants that also

rise in frequency due to genetic hitch-hiking (Smith and Haigh, 1974). It has re-

cently been argued that hard selective sweeps are rare and that partial selective

sweeps, where the selected mutation does not completely replace variation in
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the population, or soft selective sweeps, which occur on standing variation in

the population, are responsible for most of adaption within populations (Burke

et al., 2010; Pritchard et al., 2010). Partial and soft selective sweeps lead to

less dramatic decreases in nucleotide variation than hard selective sweeps. Ex-

amples of hard selective sweeps (Obbard et al., 2006, 2010) and partial or soft

sweeps (Bangham et al., 2007; Juneja and Lazzaro, 2010) are found in genes in-

volved in the immune response. Genetic diversity can increase in a population

by balancing selection, where multiple beneficial alleles are maintained. Bal-

ancing selection on immune response genes has not been described in insects

but is known in plants (Tian et al., 2002), frogs (Tennessen and Blouin, 2008),

and humans (Piertney and Oliver, 2006). Purifying selection, which acts to re-

move deleterious new mutations from the population, somewhat reduces ge-

netic diversity within a species and also constrains divergence between species.

Many immune response genes evolve by purifying selection (Sackton et al.,

2007; Mukherjee et al., 2009; Lehmann et al., 2009; Mendes et al., 2010).

Here we undertake a systematic approach to understanding how genes and

gene classes within the immune response evolve in D. melanogaster with the

goal of contrasting short and long term evolutionary patterns. Much progress

has been made recently at studying the distribution of genetic variation in pop-

ulations at a genomewide scale using high-throughput sequencing technolo-

gies (Kolaczkowski et al., 2010; Durbin et al., 2010). We took advantage of a

target enrichment and high-throughput sequencing approach using a custom-

designed Nimblegen SeqCap array and Illumina sequencing to collect popula-

tion genomic data from immune response genes. With this technique, we were

able to sequence a large pool of individuals from a North American population

and to measure population genetic parameters. We found that some patterns
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of adaptive evolution between species were linked with levels of genetic varia-

tion within species, with the most rapidly evolving genes having low levels of

nucleotide variation within species suggesting they are subject to hard selective

sweeps.

5.3 Methods

5.3.1 Sequence Collection

We employed a target gene enrichment strategy using a Nimblegen sequence

capture array (Hodges et al., 2007) that allowed high-throughput sequencing

of selected immune response and metabolism genes. Each array contains over

385,000 probes with lengths over 60 base pairs that match target regions in the

reference D. melanogaster genome (Adams et al., 2000). DNA regions that match

our desired targets bind to the array, non-targets are rinsed and then target DNA

eluted, yielding a concentrated sample that is enriched for areas of interest. I se-

lected 257 immune response genes whose products recognize, transduce signal,

and clear microbial and viral compounds in the cellular and humoral immune

systems of D. melanogaster. Another 250 genes with metabolic or other non-

immune functions were selected which here serve as a set of control genes. A

total of 12 additional genes fell into both categories. These genes were included

in analyses of immune response genes and as a separate category when compar-

ing between immune response and metabolism genes. We designed a custom

sequence capture array which tiles 2,616,934 bp of exonic, intronic, and non-

coding sequence in D. melanogaster. For each gene region, we sequenced all
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exons, 500 bp of upstream sequence, and some or all of the introns.

To simultaneously collect population genetic data for a large number of alle-

les, DNA extracted from a pool of flies was hybridized to sequence capture ar-

rays. D. melanogaster male flies were collected in September and October of 2006

over piles of apples at Little Tree Orchards, Newfield, Tompkins County, New

York, USA. Females were excluded because they cannot definitively be identi-

fied to the species level using morphological characters. Whole flies were stored

at -80◦C until DNA was extracted. DNA was extracted en masse from a pool of

299 flies using a PureGene DNA Purification Kit (Gentra Systems) according to

manufacturer’s instructions. DNA was nebulized to ˜250 bp pieces and Illumina

amplification and sequencing primers were ligated onto the sheared DNA. The

ligation products were hybridized to Nimblegen arrays following standard pro-

tocols by the Microarray Core Facility at Cornell University. Eluted product was

sequenced on the Illumina Solexa GAII platform with 60 bp paired end reads at

the Life Sciences Core Laboratories Center at Cornell University.

5.3.2 Sequence Alignment and Analysis Pipeline

A total of 2 x 16,533,784 reads were obtained for a total of 1.98 billion base

pairs of sequence. No trimming was applied prior to read mapping. Fastaq

sequences were converted from fastaq-Illumina format to fastaq-Sanger format

using the SeqIO module in Biopython. Sequence reads were aligned to reference

D. melanogaster sequence using paired end mapping in BWA version 0.8.5 (Li

et al., 2009) with default settings except that during the ‘aln’ command a max-

imum of 6 mismatches was specified using the ‘-n 6’ command. The reference
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sequences were target capture regions from the D. melanogaster genome (Adams

et al., 2000) with 500 bp of flanking sequence added to each end.

Alignments generated by BWA were subject to quality filtering using scripts

written in R (R Development Core Team, 2006). Reads with a mapping qual-

ity score below 40 or an insert size greater than 500 base pairs were discarded

to reduce potential mapping errors. Reads with insert sizes less than 120 bp

resulted in overlapping sequencing sequence being obtained from mate pairs.

In these cases, reads were trimmed to eliminate overlap and CIAGR mapping

codes recalculated. In some cases, the same amplicon was sequenced more than

once resulting in an overrepresentation of that sequence in allele frequency esti-

mates. These events are identifiable because of shared mapping start positions

at both ends of the paired-end sequence. One of these redundant sequences

was randomly selected and retained for downstream analysis, and all others

were discarded.

Pileup files, which are compilations of base calls and sequence and mapping

qualities for all reads that mapped to our target regions, were generated using

SAMtools version 0.1.7a (Li et al., 2009). The number of sequences that cov-

ered each base pair varied because Illumina sequences DNA at random in each

sample. The population genetic analyses performed here require equal cover-

age, so pileup files were randomly thinned to a fixed coverage of 60X with a

minimum quality score of 20. Coverage of 60X was chosen because we wanted

as high coverage as possible to allow for robust estimation of allele frequencies

while still covering a large percentage of the target region. Given this depth of

coverage and random sampling, we expect that on average 54 of 60 reads will

represent unique alleles within the pool of 598. Sites with coverage below the
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cutoff were not analyzed. Twenty-four base pair windows around indels identi-

fied by SAMtools were also excluded from analysis. These represent areas that

introduce sequence hybridization bias and mapping error, which was corrobo-

rated by drops in sequence coverage around putative indels. The bacteriophage

phiX174 was sequenced at the same time as our sample as a control, and this

analysis pipeline was repeated on those sequences. Because the genome se-

quence is known for phiX174, we were able to use this control to estimate the

overall rate of error after quality filtering was applied.

A pipeline was also created for annotating each base pair on the capture

array. Each position was labeled as appropriate as coding, upstream, exonic, in-

tronic, 5’UTR, 3’UTR, and plus/minus strand using the D. melanogaster genome

release 5.29. Polymorphisms were labeled as synonymous or non-synonymous.

This information was used to label polymorphisms as synonymous or non-

synonymous. Coding sequence alignments of D. simulans, D. sechellia, D. yakuba,

and D. erecta used by Clark et al. (2007) were obtained from FlyBase. These

alignments were used to identify synonymous and non-synonymous fixations

between species. They were also used to identify the derived allele in D.

melanogaster for generating the site frequency spectra using either D. simulans

or D. sechellia as the outgroup. Because the alignments with D. sechellia covered

a larger portion of the genome, this species was used as the outgroup for the

remainder of the analysis. Sites segregating with greater than two states were

regarded by the frequency of the reference allele. Local meiotic recombination

rates were estimated using the Drosophila melanogaster Recombination Rate Cal-

culator: Version 2.1 (Fiston-Lavier et al., 2010).
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5.3.3 Population Genetics

Nucleotide variation metrics θS and θπ were calculated per nucleotide (Hartl

and Clark, 2007). θs is equal to S/Lan, where S is the total number of segregating

sites, L is the length of the sequence in base pairs, n is the number of sequences,

and an =
∑n

i=1 1/i. θπ is equal to π/L, where π is the average of the number

of pairwise differences between samples. Illumina sequencing has a relatively

high rate of error which resulted in an abundance of singletons, or variants that

were present at a frequency of 1/60 or 59/60. For this reason, revised estimates

of θS and θπ were also calculated. θS −η1
, where S −η1

is the number of segregating

sites without singletons, was calculated

θ̂S −η1
=

S −η1

an − n/(n − 1)

as derived by Achaz (2008). θπJS was calculated by revising π based on the ob-

served error rate and was calculated as

θπJS =

2
n(n−1)

∑n
i< j πi jo − E[p2]

1 − E
[
p1

]
− E[p2]

where E[p1] = (2/3)ε(1 - ε) + (2/9)ε2 and E[p2] = 2ε(1 - ε) + (2/3)ε2 and ε is

the average error probability as derived by Johnson and Slatkin (2008). X chro-

mosome values were multiplied by 4/3 to correct for smaller effective popula-

tion size relative to autosomes (assuming equal numbers of males and females).

Simulations were performed using the program ms (Hudson, 2002) to assess the

performance of these statistics assuming a neutral bottleneck model similar to

the one undergone by North American populations of D. melanogaster (Li and

Stephan, 2006).
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5.4 Results

5.4.1 Recovery of Target Genes

A total of 1,137,496 base pairs (43.5%) of the target region had at least 60X cov-

erage after quality filtering was applied, meaning that 68 million base pairs of

sequence were analyzed for this study. Of the 512 genes on the sequence cap-

ture array, 492 were represented post-quality filtering with over 100 base pairs

of sequence and 256 were represented with over 1,357 base pairs of sequence

(Table 5.1). This high depth of coverage of hundreds of genes spanning over a

megabase of the genome supports the idea that population genomic data can ef-

ficiently be collected using Nimblegen sequence capture and Illumina sequenc-

ing.

5.4.2 Quality Checking

The average error rate for the phiX control lane was 0.67% before post-alignment

quality filters described in the methods were applied. After quality filtering,

the error rate drops to 0.10%, or ∼10 errors per 1,000 base pairs. One concern

is that the sequence hybridization procedure may bias towards recovery of al-

leles that most closely match the reference genome used to design the array.

To establish the accuracy of our methods, sequence capture data were com-

pared with data from previous studies for a subset of the genes on the array.

In the previous studies, 12 isogenic lines derived from a Pennsylvania popula-

tion were Sanger sequenced at the SR-CIII/I, SR-CII, SR-CIV, Defensin, Attacin

C, and Metchnikowin loci (Lazzaro and Clark, 2001; Lazzaro, 2005). There is a
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Table 5.1: Coverage of the sequence capture target region by gene cate-
gory. Many of the genes analyzed here have previously been
analyzed among Drosophila species (Sackton et al., 2007; Lar-
racuente et al., 2008) and within D. melanogaster (Obbard et al.,
2009).

# of genes
On
Sequence
Capture
Array

On Array &
Sequenced
to 60X at
>100 bp
[post-quality
filtering]

On Array &
Sequenced
to 60X at
>1,357 bp
[post-quality
filtering]

Immunity genes
Sackton et al., 2007
Larracuente et al., 2008
Obbard et al., 2009

257
233
139
116

235
224
139
109

110
104
71
39

Metabolism genes
Sackton et al., 2007
Larracuente et al., 2008
Obbard et al., 2009

250
0
152
6

245
0
150
6

138
0
82
4

Immunity/metabolism genes
Sackton et al., 2007
Larracuente et al., 2008
Obbard et al., 2009

12
12
10
4

12
12
10
4

8
8
7
4

significant correlation (p<0.01) between the allele frequency estimates in pre-

vious studies and those obtained here (Figure 5.1), and no substantial bias to-

wards recovery of the reference allele is seen. The estimates of allele frequencies

are not identical between the two studies, which may be attributed to using dif-

ferent populations, to misestimating allele frequencies using Sanger sequencing

with a small number of lines, or to variation introduced by sequence capture or

Illumina sequencing.

A total of 553 sites out of 5,381 aligned nucleotides were polymorphic in ei-

ther dataset. The ability to detect low frequency polymorphisms depends on

the depth of coverage, which was 12 for the Sanger data and 60 for the Illumina
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Figure 5.1: Frequency of the reference allele as estimated by Sanger se-
quencing of a Pennslyvania population (Lazzaro and Clark,
2001; Lazzaro, 2005) or by sequence capture and Illumina se-
quencing of a New York population. A) All polymorphic sites,
B) Excluding singleton or fixed sites that were at a frequency
of 11/12 or 12/12 in the Sanger data or 59/60 or 60/60 in the
Illumina data.

data. For the Sanger data, in which all singletons were verified for accuracy,

162 polymorphic sites were detected. Of these, 151 were also detected by Illu-

mina. Notably, the SNPs undetected by Illumina were all at a low frequency

of either 1/12 or 2/12 in the Sanger data. For the Illumina data, a total of 540

polymorphic sites were detected. The nucleotide diversity (θS ) estimated from

the Sanger data was 0.0100 and from the Illumina data was 0.0215. Calculating

nucleotide diversity without the low-confidence singletons (θS −η1
) gives an esti-

mate of 0.0100 for the Illumina data. The similarity between this estimate and

the one obtained from the Sanger data supports the idea that θS −η1
is more accu-

rate than θS for Illumina data. These data demonstrate that Illumina data can be

used to discover SNPs and estimate their frequency, especially when SNPs have
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intermediate population frequencies.

Nucleotide variation (θS −η1
and θπJS ) was calculated for each individual gene

region, which includes the coding and non-coding sequence between the 5’UTR

or first exon and 3’UTR or last exon. The variance in θS −η1
and θπJS was higher

for shorter gene regions (Figure A.1), which is expected due to the sampling

variance being higher when fewer sites are involved (Figure A.2). Based on

these data and simulations, only genes whose lengths were above the median

length of 1,357 base pairs for gene regions, 862 base pairs for coding regions,

and 264 base pairs for introns were analyzed to minimize this noise. Although

short and long genes are known to differ somewhat in their evolutionary prop-

erties (Begun et al., 2007), we are not biasing our results since we never make

comparisons between short and long genes.

We assessed the performance of our measures of nucleotide variation in sev-

eral ways. Simulations suggest a high correlation between traditional statistics

θS and θπ measured in simulated samples and corrected statistics θS −η1
and θπJS

measured after sequencing error was introduced (Figure A.3). The correlation

is slightly higher between θπ and θπJS . However, this approach has the down-

side of requiring an external estimate of the rate of sequencing error, which we

obtained by estimating error in the phiX control and is not necessarily an accu-

rate reflection of error in our data. This correction changes the absolute value

of diversity but not the rank order and therefore is especially useful for com-

parisons between genes and gene classes. Simulations demonstrate that both

metrics give robust estimates of nucleotide variation and thus results from both

are presented for comparison.

Nucleotide variation measured by θS −η1
and θπJS are highly correlated
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(r2=0.895, p<0.001) (Figure A.4). θS −η1
tends to be slightly higher than θπJS , as

expected since θS −η1
is more influenced by the increase in low frequency sites

that occurs in an expanding recently founded population such as this one. Nu-

cleotide variation tends to be higher in introns than in coding regions (intron

mean θπJS =0.0050, mean θS −η1
=0.0060; coding region mean θπJS =0.0042, mean

θS −η1
=0.0050) (Figure A.5), which indicates greater constraint on coding regions

and is supported by the literature (Andolfatto, 2005; Durbin et al., 2010). Andol-

fatto (2005) found that the mean θπ was 0.0125 in introns and 0.0108 in coding

regions on the X chromosome in a more genetically diverse African population

of D. melanogaster, which is approximately the same ratio of variation that we

observe between coding and introns. Glinka et al. (2003) found that the mean

θπ was 0.0046 and the mean θS was 0.0044 in introns on the X chromosome in a

cosmopolitan population similar to ours, which is comparable to the levels of

variation that we observe in introns in our population. The results from simula-

tions and the agreement of these data with previous observations suggest that

θS −η1
and θπJS provide accurate estimates of nucleotide variation.

5.4.3 Short versus Long Term Patterns of Evolution

To gain insight into the relationship between short and long term evolution, we

compared our within population estimates of variation with estimates of the

rate of adaptive evolution (ω) along the D. melanogaster species lineage (Lar-

racuente et al., 2008) (Table 5.1, Figure 5.2). ω is the ratio of the rate of non-

synonymous substitutions (dN) to synonymous substitutions (dS ), with high ω

values, especially those over one, taken to indicate adaptive evolution and low

ω values, especially those less than 0.1, taken to indicate purifying selection.
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It is a conservative measure of adaptive evolution because a high ω requires

many nonsynonymous substitutions and would not be influenced by a small

number of substitutions with large effects. We expected that genes with high

ω values would have low levels of variation (θS −η1
and θπJS ) if adaptive evolu-

tion is driven by recurrent hard selective sweeps, intermediate levels if driven

by partial or soft selective sweeps, and high levels if driven by balancing se-

lection. We divided the data into high and low amounts of variation based on

the median (θS −η1
=0.00473 or θπJS =0.00392) and high and low rates of adaptive

evolution based on an ω of 0.15 and tested to see if data points were homoge-

nously distributed amongst all quadrants (Figure 5.2). We observed significant

heterogeneity in the distribution (Fisher’s exact test, p<0.005 for θS −η1
and θπJS )

that is consistent with an excess of genes with high rates of evolution and low

amounts of variation. Similar heterogeneities were found usingω=0.2, 0.3 or 0.4,

but not with ω=0.1, suggesting that only rapidly evolving genes have deficits in

nucleotide variation. This pattern indicates that the adaptively evolving genes

are subject to hard selective sweeps within species.

Local recombination rate has previously been shown to be correlated with

levels of polymorphism (Begun and Aquadro, 1992). We see a similar pattern

in our data, with significantly higher levels of nucleotide variation (θS −η1
and

θπJS ) seen in genes that are found in regions of high meiotic recombination (θS −η1

Spearman ρ=0.417, p<0.001; θπJS Spearman ρ= 0.427, p<0.001) (Figure 5.3). No

evidence was found for a correlation between recombination rate and the rate of

adaptive evolution (ω) (Figure 5.4), and no heterogeneity was found in the rates

of adaptive evolution (ω) of genes with high and low rates of recombination

(Fisher’s exact test, NS). This suggests that while recombination rate is corre-

lated with the level of nucleotide variation, it is not responsible for driving the
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relationship between nucleotide variation and the rate of adaptive evolution.

Figure 5.2: Genes with high rates of adaptive evolution (ω) along the D.
melanogaster species lineage have low levels nucleotide varia-
tion within species suggestive of hard selective sweeps. The
rate of adaptive evolution (ω) versus A) θS −η1

and B) θπJS . Dotted
lines separate nucleotide variation at the median (θS −η1

=0.00473
and θπJS =0.00392) and ω at 0.15. Fisher’s exact tests indicate
that genes are not homogenously distributed amongst quad-
rants (θS −η1

p<0.005 and θπJS p<0.005) with an apparent deficit
of genes that have high ω values and high levels of nucleotide
variation.

5.4.4 Evolutionary Patterns of Functional Gene Categories

Functional gene categories were compared to see if evolutionary patterns vary

among genes with different roles. Levels of nucleotide variation (θS −η1
and θπJS )

did not vary between metabolism and immune response genes (Figure A.6).

Within the immune system, genes with roles in the recognition or signal trans-

duction of infection have significantly lower nucleotide variation (θS −η1
and θπJS )
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Figure 5.3: Recombination rate is positively correlated with estimates of
nucleotide variation A) θS −η1

(Spearman ρ=0.417, p<0.001) and
B) θπJS (Spearman ρ= 0.427, p<0.001).

Figure 5.4: Recombination rate is not related to the rate of adaptive evo-
lution (ω) (Spearman ρ= -0.075, p= 0.349). Dotted lines sepa-
rate recombination rate at the median of 2.93 and ω at 0.15. A
Fisher’s exact test indicates that genes are homogenously dis-
tributed amongst quadrants.
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Figure 5.5: Nucleotide variation (θS −η1
and θπJS ) varies among functional

categories of immunity genes. A total of 19 recognition genes,
82 signaling genes, and 18 effector genes were included in this
analysis. Signaling and recognition genes both have signifi-
cantly lower A) θS −η1

(Wilcoxon rank sum test signaling-effector
p<0.005, recognition-effector p<0.005) and B) θπJS (Wilcoxon
rank sum test signaling-effector p<0.01, recognition-effector
p<0.005) than effector genes but are not significantly different
from each other.

than effectors, or genes involved the clearance of infection (Figure 5.5). It

has previously been demonstrated that a higher proportion of recognition and

signaling genes are positively selected compared to the genomewide expecta-

tion (Waterhouse et al., 2007; Sackton et al., 2007). The low levels of nucleotide

variation in these adaptively evolving gene categories suggest that these genes

are subject to hard selective sweeps. We find no evidence that genes involved

in the cellular versus humoral branches of the immune response differ in their

levels of nucleotide variation (Figure A.7), although it has previously been ob-

served that cellular recognition genes evolve faster than humoral recognition

genes over the long-term (Sackton et al., 2007). We can identify potential can-
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didate regions of selective sweeps or balancing selection by examining the ex-

treme tails of the distributions of nucleotide variation (Tables 5.2, 5.3, 5.4, 5.5).

Of the 25 genes with the lowest levels of nucleotide variation, all are either

recognition or signaling genes and 10 have previously shown evidence for adap-

tive evolution in Drosophila species (Tables 5.2, 5.3). Two genes, Dcr-2 and AGO2,

have amongst the highest rates of adaptive evolution in the D. melanogaster

genome and have previously been shown to have low levels of variation (Ob-

bard et al., 2006, 2010). Effector genes are found amongst the 25 genes with the

highest levels of nucleotide variation, of which only 5 have previously shown

evidence of adaptive evolution (Tables 5.4, 5.5).

One concern is that methological biases could influence the patterns of vari-

ation we observed between gene classes. Effector genes and to some degree the

recognition genes are often members of gene families and signaling genes are

more likely to be conserved as one-to-one orthologues between species (Water-

house et al., 2007; Sackton et al., 2007). Regions with high sequence similarity

were excluded from the SeqCap array design. However, relatedness amongst

members of gene families could lead to sequence reads being discarded dur-

ing the assembly process if they match multiple regions of the genome and

would lead to a drop in coverage from these regions. We found no signifi-

cant differences in median sequence coverage pre-filtering for immunity versus

metabolism genes, comparisons of immune functional classes, or single copy

genes versus members of gene families. Alternatively, if sequence reads are be-

ing misassembled to paralogs instead of being discarded, this would artificially

inflate nucleotide diversity estimates. We found no significant difference in nu-

cleotide variation (θS −η1
and θπJS ) between genes that are only found once within

D. melanogaster and genes that are members of gene families (Figure A.8). These
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data suggest that artifacts of experimental design do not contribute to the dif-

ferences we observe between functional classes of genes.

5.5 Discussion

Some of the long term evolutionary patterns that are observed in genes of the

D. melanogaster immune system and genomewide can be explained by patterns

of variation within species. Genes with the highest rates of adaptive evolution

between species have low rates of nucleotide diversity and polymorphism sug-

gesting a role for recurrent selective sweeps in driving rapid evolution of these

genes. In contrast, genes with high levels of variation have average rates of

adaptive evolution between species suggesting that factors that maintain varia-

tion within species do not lead to rapid evolution in the long term.

Here we show that, like long term evolutionary patterns, within species vari-

ation depends on which functional class of the immune system is examined.

Within species, immune genes involved in recognition and signaling have sig-

nificantly lower levels of nucleotide variation than effector genes whose prod-

ucts clear infections. Recognition and signaling genes have previously shown

evidence for being positively selected along the D. melanogaster species lin-

eage (Sackton et al., 2007). Effector genes have higher levels of variation than

signaling and recognition genes, and average rates of adaptive evolution be-

tween species. These results suggest that the short and long term evolutionary

patterns of these gene classes are linked, with the rapidly evolving gene classes

having lower levels of within-species variation.

Rapid evolution between species must arise as variation within species. In
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principle, many different types of selection within populations, including hard

and soft selective sweeps, partial selective sweeps, and balancing selection, can

all lead to adaptive evolution between species. Hard selective sweeps are ex-

pected to cause the most dramatic decreases in nucleotide variation, and we

find that adaptively evolving genes in our study have significantly lower levels

of variation than other genes. This suggests that adaptive evolution is driven

by novel variants arising and rapidly fixing in the population. Thus it appears

that the most rapidly evolving genes have the least variation within a popula-

tion and that the most genetically and potentially phenotypically diverse genes

have little evidence for adaptive evolution at the species level.

Several genes with the lowest levels of variation (Table 5.2, 5.3) have previ-

ously been hypothesized to be evolving adaptively due to pathogen pressures.

Pathogens such as Salmonella typhimurium and Pseudomonas aeriginosa actively

suppress the imd pathway in an attempt to dampen the transcription of effector

molecules (Lindmark et al., 2001; Apidianakis et al., 2005). The Relish complex is

a group of interacting molecules immediately upstream of transcription in the

imd pathway, and several genes in this complex, including Relish and Dredd,

show evidence of rapid evolution in insects (Begun and Whitley, 2000; Bulmer

and Crozier, 2006; Sackton et al., 2007; Obbard et al., 2009). Dcr-2 is a known

target of Drosophila picornavirus C when attempting to subvert the antiviral re-

sponse (van Rij et al., 2006) and is amongst the most rapidly evolving genes in

the D. melanogaster genome (Obbard et al., 2006). ref(2)p also shows evidence of

adaptive evolution (Wayne et al., 1996) and is the only gene in D. melanogaster

with alleles known to confer complete resistance or susceptibility to a virus in-

fection (Contamine et al., 1989; Bangham et al., 2007, 2008). This suggests that

adaptive evolution in some immune genes occurs when these genes are targeted
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by pathogens attempting to escape the immune response.

Some genes which have not previously shown evidence of adaptive evolu-

tion in D. melanogaster also have low levels of nucleotide variation. This does

not necessarily mean that these genes are not subject to directional selection

within species. All the measures of adaptive evolution used here rely on fre-

quent strong selection on coding regions. A single mutation with a strong phe-

notypic effect or changes to the regulation of a gene would not be detected us-

ing those methods. In principle, low nucleotide variation can also be caused

by purifying selection or by neutral processes such as low recombination or

mutation rates, and further research is required to distinguish amongst these

processes. Regardless, the list of low diversity genes presents a candidate list

of genes under selection within D. melanogaster. Several genes are directly up-

stream of transcription of major immune pathways, including Stat92E in the

JAK-STAT pathway, cactin and cactus in the Toll pathway, akirin in the imd path-

way, and Atf-2 in the DUOX pathway. If genes that are immediately upstream

of transcription are commonly targeted for immune suppression by pathogens

as seen in the Relish complex, then these genes could similarly be targeted. Five

recognition genes, CG31217, emp, crq, TepI, and TepIV, are involved in phagocy-

tosis and are all evolving under positive selection in Drosophila. The clustering

of certain types of genes within the low variation category strongly suggests a

role for selection.

Nimblegen sequence capture combined with Illumina high-throughput se-

quencing provides a novel, rapid and efficient method of generating popula-

tion genetic data. Our pooling approach allows a large population of alleles to

be sequenced with a single capture array and one paired-end lane of sequenc-

142



ing. We are able to robustly generate the site frequency spectrum distribution

of the number of mutations and calculate nucleotide polymorphism and diver-

sity. Our allele frequency estimates were especially accurate when alleles were

at intermediate frequency, suggesting that studies that rely on frequency esti-

mates would benefit from this technique. The performance of the metrics of

variation we used was highest when we were able to sequence over a kilobase

in each gene region, demonstrating that optimal design of this strategy is to en-

sure a high depth of coverage. Our study suggests that genes under recurrent

directional selection can be detected using species level comparisons when this

leads to elevated adaptive evolution between species. Population level analy-

sis can potentially also detect selection that does not elevate the rates of amino

acid substitution. Thus, a combined approach that examines both the popula-

tion and interspecific levels of selection is required to fully understand how the

immune system evolves in response to pathogen pressures.
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CHAPTER 6

RESEARCH SUMMARY

In my thesis, I have explored the short term evolution of the immune re-

sponse of Drosophila melanogaster using several different approaches. Chapters

2 and 3 describe the natural bacteria that infect D. melanogaster in the wild with

the goal of better understanding the selective pressures on the host immune

system. Chapter 4 presents an in-depth study of the population genetics of the

gene eater, which is part of an adaptively evolving class of immune response

genes. In Chapter 5, over a hundred genes are surveyed at the population level

and a connection is drawn between short and long term patterns of evolution.

By studying the pathogens that infect D. melanogaster, selection on a single im-

mune response gene, and adaptation across the entire immune system, I have

been able to gain novel insight into how a host population adapts at the genetic

level.

Genes involved in the immune response are rapidly evolving in many or-

ganisms (Murphy, 1993; Nielsen et al., 2005; Waterhouse et al., 2007), including

D. melanogaster (Schlenke and Begun, 2003; Sackton et al., 2007). One hypoth-

esis for this is that co-evolutionary arms races between hosts and pathogens

cause reciprocal adaptation in host immune response genes and pathogen vir-

ulence genes, leading to an acceleration in the rates of adaptive evolution. I

surveyed the hemolymph of wild caught D. melanogaster in an attempt to iden-

tify co-evolving bacterial pathogens but found no evidence for any. Instead,

natural bacterial infections appear to largely be caused by a broad diversity of

opportunistic pathogens, which are only pathogenic when they breach the bar-

riers into the hemolymph and are not overcome by the host defenses. This per-
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haps suggests that rapid evolution in the immune response in D. melanogaster

is driven by non-bacterial pathogens such as viruses and parasitoids and that

bacterial infections should select for a broad immune response.

Pathogen recognition molecules within the immune response are subject to

particularly elevated rates of adaptive evolution in Drosophila. These molecules

represent a specific point of interaction between the host immune response and

the pathogen, and some genes are especially rapidly evolving at pathogen inter-

action domains. I examined the molecular population genetics of one particular

recognition gene, eater, which has previously been shown to promote phagocy-

tosis of both fungi and bacteria. I found evidence for a partial selective sweep at

this locus in a North American population, with the putatively selected haplo-

type being associated with a significantly higher level of gene expression. Thus,

at this locus, adaptation appears to be happening at the gene regulatory level

rather than via adaptive substitutions at regions that interact with pathogens.

Importantly, this type of regulatory change generally isn’t detected using inter-

species comparisons and requires population level analysis for detection.

A goal in evolutionary biology is understanding the genetic basis of adaptive

evolution. For example, it is still not well understood what number and types

of mutations are subject to selection and how these mutations spread within

and between populations of a species. A partial selective sweep at a pigmen-

tation locus in D. melanogaster has recently been associated with multiple cis

regulatory changes (Pool and Aquadro, 2007; Rebeiz et al., 2009), suggesting

that partial sweeps on regulatory variation may be more common than gener-

ally thought. One difficulty in this type of analysis is that regulatory variants

are not as straightforward to identify as coding variants. At the eater locus, I
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hypothesized that a particular region of the second intron was associated with

a phenotypic difference in expression levels because of the unusual patterns of

variation in this region, and I found support for this hypothesis. In this case,

population genetics rather than reverse genetics was used to identify a putative

enhancer region. An upstream enhancer region for eater has already been iden-

tified (Paul Kroeger, personal communication), and it is my hope that the sec-

ond intron will also be demonstrated to have an enhancer region. Examination

of variation in these enhancer regions in natural populations will lead insight

into the nature of selection on regulatory regions. Ye et al. (2009) has recently

found that expression of eater was elevated in Australia-derived D. melanogaster

lines artificially selected for increased resistance to bacterial infection, and this

elevation appears to be unrelated to the haplotype that I observed in a North

American population (Yixin Henry Ye, personal communication). This suggests

that multiple mutations of independent origin lead can lead to convergent phe-

notypes and presents a previously underappreciated mechanism of adaptation

in the immune response.

Long term divergence between species arises as variation within popula-

tions that ultimately become fixed differences between species. How these

variants arise, rise in frequency, and spread within and between populations

is largely unknown. At the eater locus, the variant that rose in frequency in

North America was also found in the founding African population and thus

was not a new mutation. When selection acts on an existing mutation that is

present at intermediate frequency in a population, this leads to a soft selection

sweep because the selected variant has had time to recombine onto multiple ge-

netic backgrounds and the signatures of selection are reduced. A hard selective

sweep occurs when selection acts on a novel mutation and leaves more pro-
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nounced signatures in the genome, including greatly reduced genetic variation

and elevated linkage disequilibrium. A complete sweep leads to the fixation

of the novel variant in the population, whereas in a partial sweep, like the one

seen at eater, the variant only rises in frequency but never replaces all other vari-

ants. Recently, there has been debate in the literature about the relative roles

of hard versus soft and complete versus partial selective sweeps in evolution

within populations (Pritchard et al., 2010; Burke et al., 2010), with hard selective

sweeps increasingly being thought of as uncommon. By studying individual

examples in conjuction with genomic scale datasets, we can gain insight into

the relative contributions of each type of process.

I examined the population genetics of over 100 genes involved in recogni-

tion, signal transduction and pathogen clearance within the immune system in

order to relate short and long term patterns of evolution on a broader scale. I

find that genes with evidence for adaptive evolution at the species level have

significantly low levels of variation within-species. My data are consistent with

rapidly evolving genes being subject to hard selective sweeps, with new alleles

rapidly rise to high frequency and reducing variation temporarily in the popu-

lation. Recognition and signal transduction genes are known to evolve rapidly,

whereas pathogen clearance effector genes have rates of adaptive evolution on

par with the genomewide average. The patterns of variation within populations

in these gene classes reflect the rate of adaptive evolution, with rapidly evolving

classes having low levels of variation. This further supports existing evidence

that selection acts differently depending on the function of the gene.

High-throughput sequencing is a useful way to quickly and rapidly identify

regions potentially under selection that can be subsequently be subject to more
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detailed analysis. My large-scale analysis of immune response genes identified

a number of genes that had low levels of variation in my analysis but that had

not previously shown evidence for adaptive evolution. Adaptive evolution is

typically measured only in coding regions and requires repeated amino acid

substitutions to be significant, and therefore that analysis wouldn’t detect selec-

tion in regulatory regions or single amino acid substitutions with strong effects.

Thus, it is possible that the regions detected in my study represent genes under

selection that cannot be detected by species level comparisons. Further char-

acterization of these regions by Sanger sequencing would allow construction

of haplotypes and calculation of additional population genetic statistics such

as linkage disequilibrium to provide further evidence for directional selection.

Detailed analysis of these genes could also address questions such as how often

selection acts on coding regions versus regulatory regions and offer insight into

what phenotypes are being selected.

Although much can be gained by studying a single population in detail, a

more thorough understanding of evolution within species requires considera-

tion of several populations. At the eater locus, I found evidence of a sweep

that was localized to a single North American population, suggesting that lo-

cal adaptation to a particular environment played an important role in shaping

variation at this gene. In North America, where D. melanogaster has only been

present for a few centuries, flies are still adapting to a new environment and to

novel pathogen pressures. There has been some skepticism that selection could

even be detected young, founded populations because noise from demographic

processes can mask signals of selection (Thornton and Andolfatto, 2006). How-

ever, I was able to detect a relationship between rapid evolution and reduced

genetic variation, which I believe is because this newly founded population is
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subject to strong selection at a large number of loci. The target enrichment and

high-throughput sequencing method developed here can be used to efficiently

sequence our target genes in a number of different populations. Doing so will

allow us to address questions that cannot be answered in a single population.

For example, studies in multiple populations can distinguish between selection

acting on standing variation that can be found in the ancestral African popula-

tion and selection acting on new variants. It can also tell us how often selection

occurs on the same genes and alleles in different populations. Answering these

questions will further bridge the gap between studies of short and long term

evolution.

My thesis addressed the question of what role selection within D.

melanogaster plays in explaining the long term evolutionary patterns that have

previously been observed. It represents the largest systematic study of the pop-

ulation genetics of immune response genes in D. melanogaster and clarifies the

view that has been gained from studying individual genes in the past. Future

studies of the genes and alleles identified in my work, perhaps using the meth-

ods established here, will further advance our understanding of adaptation of

the immune response within populations.
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APPENDIX A

SUPPLEMENTAL MATERIAL FOR CHAPTER 5: ”SHORT AND LONG

TERM PATTERNS OF EVOLUTION WITHIN IMMUNE RESPONSE

GENES OF DROSOPHILA MELANOGASTER”

Figure A.1: Variance in nucleotide variation decreases as gene region
length increases. The insets display the entire dataset and the
main panels are a magnification. The lines indicate the median
gene region length of 1,357 base pairs. A) θS −η1

and B) θπJS .
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Figure A.2: The correlation (r2) between the true sample variation and the
measured variation (θS and θπ) increases as the sample length
increases. A) θS and B) θπ

Figure A.3: Traditional measures of nucleotide variation (θS and θπ) are
highly correlated with corrected statistics (θS −η1

and θπJS ) mea-
sured after sequencing error is incorporated. A) θS −η1

vs. θS

and B) θπJS vs. θπ.

151



Figure A.4: Nucleotide variation measures θS −η1
and θπJS are highly posi-

tively correlated and θS −η1
tends to be higher on average. Line

indicates where θS −η1
= θπJS .
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Figure A.5: Nucleotide variation (θS −η1
and θπJS ) is higher in introns versus

in coding regions (CDS). A) θS −η1
is significant at p<0.001 and

B) θπJS is significant at p<0.001 by Wilcoxon rank sum tests.

Figure A.6: Nucleotide variation (θS −η1
and θπJS ) does not vary between im-

munity and metabolism genes. A) θS −η1
and B) θπJS .
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Figure A.7: Nucleotide variation (θS −η1
and θπJS ) does not vary between

genes involved in the humoral and cellular branches of the
immune response. The number of genes included in each box-
plot is shown on the x-axis. Pairwise Wilcoxon rank sum tests
were not significant for comparisons of humoral and cellular
genes within the recognition, signaling and effector categories.
A) θS −η1

and B) θπJS .
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Figure A.8: Gene count does not affect nucleotide variation (θS −η1
and θπJS ).

A total of 107 single copy genes and 36 genes belonging to
gene families were included in this analysis. A Wilcoxon rank
sum test did not indicate a significant difference in A) θS −η1

and
B) θπJS for single copy genes versus those that are part of gene
families.
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