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In this dissertation, we present a theoretical study of compounds rich in hydro-

gen, focusing on their crystal structure and potential metallization as pressure

is applied.

Chapter 1 is an introduction to metallic hydrogen; it reviews previous stud-

ies and suggests a new way of analyzing the geometric changes that ensue as

pressure is applied. Chapter 2 describes the search for structures for SnH4, us-

ing chemical intuition and random search algorithms. Chapter 3 deals with

the general problem of segregation which arises as SnH4, a thermodynamically

metastable (positive heat of formation from Sn and 2H2) but kinetically persis-

tent compound, is compressed. Chapter 3 is a complement to Chapter 2, as

layered structures arise naturally in the low pressure regime, prompting us to

explore the subject.

Chapter 4 begins an ambitious project which strives to understand the elec-

tronic structure and properties of metallic hydrides of the form MHx, where M=

Si, Sn and W, and x = 4, 6, 8, 10, 12. For n > 4, there exist van der Waals com-

plexes at lower pressures, but show great variation in structure as they metallize

at higher pressures.



Chapter 5 explores the effect of impurities in the DOS, as swapping of atoms

in structures of stoichiometry Liy−1BeyH. The parent LiBe phase is stable at high

pressures; here we attempt to lower the pressure for its metallization by H sub-

stitution
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CHAPTER 1

Metallic Hydrogen, Ever Elusive

1.1 Introduction - Why Metallic Hydrogen?

Metallic hydrogen, a Holy Grail of experimentalists and theoreticians alike, re-

mains elusive [1]. The most abundant element in the Universe is expected to

be metallic at planetary core conditions [2], if not superconducting at ambient

temperatures [3]. The study of hydrogen at hight pressure is a key problem in

modern physics and astrophysics. [4].

H2 was originally predicted in 1935 to become metallic at 25 Kbar [5]. To help

put things in perspective, 100 Gigapascal is equal to one million atmospheres,

while the pressure at the core of Earth is ∼ 350 GPa. However, it soon became

clear that this pressure was not enough for hydrogen to dissociate and display

metallic properties. Metallization in a static environment is still out of reach ex-

perimentally, even at pressures as high as ∼360 GPa [6–9]. But there is evidence

for metallization of hydrogen under shock wave conditions [10].

What prevents hydrogen from becoming metallic? As it turns out, there are

quite a few barriers to overcome. It is estimated that a drastic reduction in vol-

ume, as much as 10-fold, is needed for metallic hydrogen to become a reality.

This is very difficult to achieve, given our current experimental limitations [6].

However, the strongest impediment to metallization is perhaps the persistent

pairing of the element, into diatomic molecules.
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1.2 Solid Hydrogen Under Pressure

Hydrogen at low pressures and at ambient temperature is a molecular diatomic

solid. It is made up of freely rotating molecules on a hexagonal close-packed

lattice [11]. In solid hydrogen the H2 molecules have a strong covalent molec-

ular bond (with a bond length unchanged from the free gas phase molecule,

R = 0.74Å). There are, of course, weak intermolecular interactions in the crys-

tal; the shortest intermolecular distances are 3.8Å, experimentally [12], while

in calculations this distance shrinks to 3.1 Å. With a large band-gap of ∼ 16 eV,

as measured in a lab, solid hydrogen at ambient temperature is an insulator [13].

The behavior of solid hydrogen at ambient temperature and low pressure is

more or less that of a noble gas solid [14]. For comparison the melting point

of H2 is 14 K , while that of He, Ne, Ar, Kr, Xe and Rn are 1, 24, 84, 116, 161,

and 202 K respectively. As pressure is applied, hydrogen molecules will come

closer together, the interatomic interactions will increase, and, as the molecules

dissociate, its behavior should resemble that of an alkali metal, just as predicted

back in 1935 [5, 15].

How does solid hydrogen behave under pressure? In the low pressure

regime, from 0-100 GPa, solid hydrogen, as described above, consists of freely

rotating molecules with their centers arranged in an hcp lattice [11]. This state

is know as Phase I. As pressure is applied, the molecular axes start to orient,
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and the broken-symmetry Phase II occurs at ∼110 GPa [14]. At 150 GPa hydro-

gen undergoes yet another transition; Phase III Raman and IR spectra show a

marked change in solid hydrogen at this pressure and low temperatures [16, 17].

The structures of the different phases of hydrogen are not easy to determine.

Experiments and theoretical studies on hydrogen come with many challenges.

X-ray and neutron scattering data have yet to shed light on possible structures,

and predicting new structures involves a laborious search of many different pos-

sibilities.

In preparing for a strategy of lowering the metallization pressure of H2, we

first looked into what is known experimentally and theoretically about the ele-

ment. Here we followed the study done by Pickard and Needs [18] on hydro-

gen. We chose their most stable structures as initial geometries for theoretical

optimization and followed their structural changes as pressure is applied. We

analyzed hydrogen at pressures ranging from 0 - 500 GPa, paying attention to

H2 bond lengths and closest interatomic separations.

Throughout this thesis when we say“hydrogen” we mean the element in the

form in which occurs at the specified pressure. The expression (hydrogen) does

not imply that H2 molecules persist or distance between them - it just specifies

the composition.
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1.3 Theoretical methodology

Our ground state calculations were performed with Density Functional Theory

(DFT), within the generalized-gradient approximation, [19] with the Perdew-

Wang exchange-correlation functional [20].The atomic potentials used in this

study were based on Blöch′s projector-augmented wave method and a plane

wave basis set, as implemented in the Vienna Ab Initio Simulation Package

(VASP) codes. For the optimization of the structures, the cell parameters, the

atomic positions, and the cell volume were allowed to relax. The stress tensor

was also calculated.

A defined stress was added to the stress tensor, setting the calculation into

a particular pressure. Once an optimized structure was reached, the electronic

density of states (DOS) was calculated. The k-point grids were generated via

the Monkhorst-Pack scheme [21]. The calculations are at K = 0, neglecting the

zero-point vibrational energy. We are well aware that quantum effects, one con-

sequence of the large zero-point energy of H2, may play a role in determining

the actual state of H2 [22]. The cutoff of the kinetic energy was set at 650 eV,

and for the planewaves we set a self consistent field (SCF) tolerance of 1 x 10−5

eV/unit cell.
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1.4 Results

Table 1.1 lists the symmetry groups of the most stable structures at different

pressures which ranged from 0-500GPa. The results in Table 1.1. are in good

agreement with the values found by Pickard and Needs [18].

Table 1.1: Space groups of the most stable hydrogen structures at pressures
ranging from 0-500 GPa

Pressure Space Group

0 P63/m

50 P63/m

100 C2/c

150 C2/c

200 C2/c

250 Cmca − 12

300 Cmca − 12

350 Cmca − 12

400 Cmca

450 Cmca

500 I41/amd

1.4.1 P63/m, the most stable phase of H2 from 0-100 GPa

As discussed above, hydrogen in Phase I is a molecular solid, in an hcp lattice

with freely rotating molecules. The most stable structure at pressures ranging
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from 0-100 GPa has one such arrangement, with space group P63/m. It has 8 for-

mula units per cell, with ABAB stacking. Consistent with the rotational solid be-

havior, rotations of individual molecules within this symmetrical arrangement

cost very little. Computations of the rotational reorientation of one molecule in

the crystal show a tiny barrier of 0.0012 eV per H2.

a) b)

Figure 1.1: Top and side view of the most stable structure, P63/m, of hy-
drogen at pressures 0-100GPa

1.4.2 C2/c, the most stable phase of H2 from 100-250 GPa

At around 100 GPa and at low temperatures, hydrogen undergoes a phase tran-

sition, to the broken-symmetry Phase II. As pressure is applied, the most stable

structure becomes a layered arrangement of hydrogen molecules with space

group C2/c. With 12 formula units per cell, the molecular axes lie mostly on a

plane, in contrast with the lower-pressure structure. It is still likely that the bar-

rier to H2 libration or rotation is small.
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a) b)

c) d)

Figure 1.2: Structure C2/c of H2 a)-c) show different view of the unit cell
embedded within the structure. d) depicts one of the layers
within the structure

1.4.3 Cmca-12, the most stable phase of H2 from 250-350 GPa

This layered structure is arranged in a ABA stacking, with 6 hydrogen molecules

per unit cell. This arrangement resembles somewhat the previous system, C2/c.

The molecule axes lie if anything ”flatter” on the plane. At 300 GPa the H-H

bond elongates to 0.77 Å, and the nearest intermolecular distance decreases to

1.09 Å.
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a) b)

c) d)

Figure 1.3: Structure Cmca-12 of hydrogen. a)-c) show different view of the
unit cell embedded within the structure. d) depicts one of the
layers shown in 1.3b

1.4.4 Cmca, the most stable phase of H2 from 350-500 GPa

Not only do the molecular hydrogen units lie flat on a plane, but the molecules

axes orient themselves regularly within the plane in the most stable structure

for pressures within the range of 350 - 500 GPa. As we’ll see, in this pressure

regime it becomes arbitrary to single out H2 units; the “intermolecular” bonds

are as short as 1.1Å in this structure at 350 GPa.
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a) b)

c)

Figure 1.4: Top and lateral view of the most stable structure Cmca of hy-
drogen at pressures 350-500GPa

1.4.5 I41/amd, the most stable phase of H2 from 500 GPa-?

At 500 GPa, the most stable structure has 2 formula units per cell. The bond

length of the hydrogen molecule is 0.77Å with closest nearest neighbor distance

to another ”molecule” of 1.05 Å.
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a) b)

c)

Figure 1.5: Top and lateral view of the most stable I41/amd structure of hy-
drogen at 500 GPa

1.4.6 An Equalization Function

We now wish to compare the distance relationships in the various structures as

the pressure increases. Figure 1.6 plots the shortest H-H separation in the low-

est enthalpy hydrogen structure at a given pressure.

The separation, call it H2 bond length, varies in the range of 0.715Å to 0.775

Å in the pressure range studied. The changes are not smooth as a function of

pressure, a natural consequence of the phase transitions. But the trend is the ex-

pected one, if each H is to increase coordination at higher pressure the H2 bond

must weaken. The 0.015 Å diminution in HH bond length in the low pressure

regime (P63/m) is intriguing.
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Figure 1.6: Bond length for H2 in preferred H2 structures from 0 to 500 GPa

Figure 1.7: Intermolecular distances for H2 from 0 to 500 GPa

Inter- “molecular” distances as a function of pressure were studied as well.

At lower pressures the cell volume is reduced greatly and H2 - H2 separations
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shorten. As we can see in Figure 1.7 the interatomic distances become consis-

tently lower with pressure. The change is drastic in the lower pressure regime

- this is an example of “Van der Waals space squeezed out” an expected phe-

nomenon as pressure is applied to any molecular solid. The effect of phase

transitions is smaller on intermolecular H· · ·H separations.

Can we characterize more economically the changes that take place on H2

dissociation and extended network formation? We need a parameter that in-

dicates how distances from a given H atom equalizes - that is how hydrogen

makes the transition from molecular hydrogen to a metallic crystal. The follow-

ing equalization function is proposed for that purpose.

ξ(P) = 1 −
rP

H2−H2
− rP

H2

r1atm
H2−H2

− r1atm
H2

. (1.1)

Here rP
H2

corresponds to the average bond length of a H2 molecule at pres-

sure P, rP
H2−H2

is the shortest distance between 2 H2 (H-H · · · H-H) molecules at

pressure P; r1atm
H2

is the average calculated bond length in an H2 molecule at ambi-

ent pressure, 0.75 Å (0.01 Å longer than the experimental value); the term r1atm
H2−H2

is also a constant and is the shortest distance between 2 H2 molecules (that is

second nearest neighbors, H - H · · · H - H) at ambient pressure, 3.1 Å. There-

fore, equation (1.1) is set up so that at ambient pressure, the ξ value is 0, and

at pressures high enough, when H · · · H bond equalization occurs, the ξ value

converges to 1.
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Figure 1.8 plots ξ over the range of pressures considered in our calculations:

Figure 1.8: Equalization function ξ from 0 to 500 GPa

We see a rapid raise in ξ(P) at low pressures, to plateau at about 400 GPa in

which ξ does not change much from what appears to be an asymptotic value

of 0.9. The hydrogen structures calculated by us are metallic, i.e. have a sig-

nificant density of states (DOS) at the Fermi level, from 250 GPa on. Note here

that experimentally hydrogen is not yet metallic at 350 GPa; DFT methods char-

acteristically underestimate band gaps. It appears that one can have metallic

hydrogen without it being an “atomic crystal” with ξ(P) =1 or, to put it in other

words, it may be that some of these hydrogen structures are metallic, but are

not atomic.
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1.5 Conclusions

As part of our research for metallic hydrogen, we analyzed bond length and in-

tramolecular distances for the most stable structures at pressures ranging from

0-500 GPa. We propose an equalization function, ξ, to gauge how hydrogen

moves from a molecular solid to metallic hydrogen. ξ takes on the values be-

tween 0 (near-neighbor distances much larger than inter- molecular distances)

and 1 (near-neighbor distances equal inter-molecular ones). The calculated ξ(P)

values for optimized hydrogen phases evolve smoothly from 0 to 0.9. Metallic-

ity (theoretical) sets in at 250 GPa. Though the theoretical values are not reliable,

it appears that you can have metallicity in hydrogen without having an “atomic

crystal” with ξ =1.
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CHAPTER 2

Stannane, SnH4, Under High Pressure

2.1 Introduction - Hydrides as a Way of Obtaining Metallic Hy-

drogen

Recently, it has been suggested that metallic, hydrogen-dense compounds, such

as hydrides, where non-bonded hydrogen atoms are closer together than in

elemental hydrogen by itself, might be considered as “chemically precom-

pressed” [1]. And, therefore, such hydrides may be candidates for metalliza-

tion at relatively low pressures compared to H2 itself . They might even be

high-temperature superconductors. This is the motivation behind the enor-

mous amount of experimental and theoretical research devoted to the (gener-

ally unknown) structures under pressure of group 14 tetrahydrides: SiH4 [2–6],

GeH4 [7], SnH4 [8, 9]. The present thesis also addresses the problem of the elec-

tronic structure of these compounds under pressure.

In this chapter, we look closely to the behavior of one of these hydrides, stan-

nane, SnH4. Little is known about the structure of solid stannane at any given

pressure. Tin tetrahydride is a colorless (and highly toxic) gas at ambient pres-

sure [10]. Its structure in the gas phase is expectedly tetrahedral, with a Sn-H

bond length of 1.7Å [11].
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2.2 Proposed Structures

Given that the structural data on SnH4 is scarce, we looked theoretically for

alternative geometries in several studies of a similar compound, silane. We be-

gan with the structures studied for SiH4 in the work of Feng et. al. [2], and

by Pickard and Needs [3], and one structure of SnH4, which was suggested

in a previous theoretical study by Tse et. al. [8] The possibilities certainly in-

clude structures that are locally tetrahedral at Sn (at ambient pressure), which

is the expected geometry for a group 14 compound. We also took into consider-

ation octahedral coordination for the tin, based on the tendency of the element

to six-coordination in its chemistry, and on the occurrence of that geometry in

structures of SnF4 and PbF4 [12, 13]. And in our search for structures with the

same stoichiometry we looked into more highly symmetric structures with still

higher coordination (not likely candidates at ambient pressure), such as the cu-

bic PtHg4 structure [14].

We have learned from the previous pioneering study of silane in the group

[2] that a given coordination type at P= 1 atm may evolve at high pressure into

a very different structure. A general expectation is that as pressure increases so

does the coordination number of the constituent atoms [15]. Fig 2.1 shows the

ten structures we first investigated, in their P=1 atm geometry.

The first three tetrahedrally coordinated models we consider come from

placing SnH4 molecules in different crystal packings: T1 has a body-center cu-

bic Bravais lattice with Z = 2, T2 a simple cubic one, Z=1, and T3 a body-center
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Figure 2.1: Potential structures examined for SnH4. The structural nota-
tion corresponds roughly to the type of coordination around
the tin atoms (at ambient pressure); T for tetrahedral coordi-
nation, M for higher symmetry metallic arrangements, TB for
a trigonal bipyramid coordination, and O for octahedral coor-
dination. In our representation, consistently the black spheres
are tin atoms and the pink spheres are hydrogen atoms.
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tetragonal one with Z = 2. T4 (Z= 4) shows a Cs-VI-like stacking. M1 (M for

metallic) has its hydrogen atoms arranged in cubic coordination at Sn, the tin

atoms themselves in a body-center cubic arrangement. M2 ( Z = 1) has tin

atoms at the corners of a tetragonal unit cell while the hydrogen atoms form

pairs within the cell . This is a structure suggested previously in the litera-

ture [8]. TB1 is a complex packing, with a very distorted trigonal bipyramid

coordination at Sn, forming ribbons by sharing the trigonal bipyramid vertices.

This geometry derives from the theoretical work of Pickard and Needs, where it

was found one of the most stable structures for silane at high pressures. It is not

a likely geometry for the low pressure regime, but, as we will see, this structure

held a surprise for us. For the octahedrally coordinated structures, O1 can be

described as containing 1-D chains of octahedra sharing edges, while O2 and

O3 have 2-D arrangements of octahedra sharing corners [2, 3]. The O2 structure

is actually the experimental structure of SnF4 at P=1 atm [12].

These were the initial structures in our search. The geometries were op-

timized for unit cell volumes corresponding to pressures which ranged from

0-290GPa. Once optimized, the density of states (DOS) curve was obtained

for each structure, so as to gauge its approach to metallicity. In looking at the

changes in the structures as pressure is applied, we pay special attention to the

distances among hydrogen atoms, as short H-H contacts are likely to accom-

pany metallization.
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2.3 Methodology

Density functional theory (DFT) calculations with the Perdew-Wang exchange-

correlation functional [16] were performed with Blöchl′s projector-augmented

wave method and a plane wave basis set, as implemented in the Vienna Ab

Initio Simulation Package (VASP) codes. For the optimization of the structures,

the cell parameters, the atomic positions, and the cell volume were allowed to

relax. The stress tensor was also calculated. A defined stress was added to the

stress tensor, converging into a particular pressure. Once an optimized struc-

ture was reached, the electronic density of states (DOS) was calculated. The

k-point grids were generated via the Monkhorst-Pack scheme [17]. The calcu-

lations are for the ground state at zero-temperature, neglecting the zero-point

vibrational energy. The cutoff of the kinetic energy was set at 650 eV, and for the

planewaves we set a self consistent field (SCF) tolerance of 1 x 10−5 eV/unit cell.

2.4 Results

2.4.1 Structures at High Pressure (290 GPa)

Our calculations covered a range of pressure up to 290 GPa. Some geometries

changed little (except for compression), some evolved in complicated ways. As

expected [15], high pressure induces higher coordination (with accompanying

multi-center bonding) in some of our structures. In order to provide a broad

overview of the major structural modifications that arise under high pressure,
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it is actually helpful to look at the high pressure structures first, and then fill in

the enthalpy landscape in between. The calculated optimum structures at 290

GPa are shown in Figure 2.2.

Structure T1 approaches with pressure the M1 structure. This convergence

is not surprising, since in the initial T1 structure hydrogen atoms are coming

into the faces of the central tetrahedron, completing the cube as the pressure

increases. As we will see, neither structure is energetically competitive as the

pressure increases.

For the structures with Z=1 (T2, O1, M2) the only allowed change upon

pressurization is the reduction in the size of the unit cell. With it, the hydrogen

atoms get closer together; in the case of T2 the hydrogen atoms form a cubic

cluster with a closest H−H distance (at P = 290 GPa) of 1.13 Å, as shown in

Fig 2.3. O1 has its hydrogen atoms forming chains of octahedra (Shown in Fig.

2.4), which share edges; the closest distance between two hydrogen atoms at

290 GPa, is 0.88 Å. The M2 structure features infinite chains of H atoms; the

distances along a chain alternate, at 290 GPa H-H= 0.82, 1.72 Å. The short con-

tacts are intra-unit-cell at high pressures. (Fig 2.5) This structure also remains of

relatively high enthalpy throughout the pressure range considered.

Structure T3 does not follow the same trend as T1. While T1 remains cubic

(a = b = c), T3 does not. Within the tetragonal cell (a = b , c), all three axes con-

tract, but the a/c ratio becomes smaller with pressure. As pressure increases, the

Sn-H coordination evolves in T3: at P=0 GPa, each Sn has a coordination close to
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Figure 2.2: Optimized structures at 290 GPa. The structural changes are
described in the text; TB1 and O3 suffer by far the most pro-
nounced changes in their coordination at Sn as the pressure is
increased. TB1 undergoes a separation of elements, with lay-
ers of Sn and H atoms (discussed in text), and O3 increases its
coordination number at Sn in a very complex symmetry.
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Figure 2.3: Structure T2, with several unit cells illustrated so as to show
the cubic hydrogen clusters.

Figure 2.4: Structure O1 at 290 GPa.

regular tetrahedral, with angles 107◦ and 114◦, whereas at 290 GPa, the tin atoms

acquire more hydrogen neighbors. The tin atom moves to a 4 + 4 coordination.

The four nearest hydrogen atoms, 1.59Å, form a much flattened tetrahedron,

with angles 130◦ and 100◦. The four second-nearest hydrogen atoms, not much

further removed (Sn−H distance of 1.78 Å) form pairs of hydrogens with H−H

of 0.99Å; these pairs that approach the tin atom on the c axis, on top and bottom
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Figure 2.5: Structure M2 at 290 GPa.

of the flattened tetrahedron. The coordination polyhedra for the tin atoms at

290 GPa are distorted dodecahedra, as may be seen in Fig 2.6. A similar motion

to 8-coordination was observed for this structure in the work of Feng et. al [2]

on silane. However, at the pressures considered they did not find the pairs of

hydrogens we see.

a) b)

Figure 2.6: Structure T3 a) The structure at 290 GPa; the tin atom increases
its coordination to 4 + 4, b) shows the distorted dodecahedron
formed by the 8 nearest neighbor hydrogen atoms.

25



Two of the nine structures described in Figures 2.1 and 2.2 depart still more

significantly from their initial P = 1atm geometry: O3 and TB1. The changes

predicted (to be described in detail below) are all the more interesting, since

these two structures are also calculated as the most stable ones at elevated pres-

sures. Let us in fact turn to the energetics of the various structures.

2.4.2 Energetics as a Function of Pressure

We computed enthalpies of the various structures mentioned as a function of

pressure in the range 0 6 P 6 290 GPa. The structures were studied at small

pressure intervals in the regime of low pressures, since the volume decreases

considerably in these region (the systems were analyzed at 0, 1, 5, 30, 50, 65,

80 GPa) with V/V◦ ∼ 0.25 at 80 GPa. From a pressure of 80 to 290 GPa we use

intervals of 30 GPa. The resulting enthalpies in eV per SnH4 unit, relative to a

reference structure, T3, are shown in Fig 2.7. This reference structure was cho-

sen because its evolution in enthalpy as f (P) is smooth, as would be expected of

a Z=1 geometry.

The first thing we notice in Fig. 2.7 is that some of the structures most cer-

tainly do not have smooth enthalpy as F(P) curves. Bumps of the kind observed

may indicate computational problems, or they may arise from phase transitions

in the structure under consideration, or in the reference structure. As mentioned

above, no phase transitions are visible in the T3 reference. The energy varies

smoothly in several of the structures, so that computational anomalies appear
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Figure 2.7: Stabilities. Structure T3 is used as reference. At pressures from
0- 65 GPa the most stable structure is TB1, and at higher pres-
sures, O3 becomes the most stable. Their geometries are dis-
cussed in detail in the text.

to be absent. In the case of O3 and TB1 curves, the bumps do represent phase

transitions, to be described below.

In Fig. 2.7 we also include the sum of the enthalpies of elemental tin and

hydrogen. Tin under high pressure undergoes several phase transitions, espe-

cially at slightly elevated pressures (α → β → bct→bcc) [18]; while H2 evolves

from P63/m, to C2/c, to Cmca-12 [19] (See Chapter 1). These transitions were

taken into account, so that the enthalpies are reported relative to the most stable

Sn and H2 structures at a given pressure. The experimental heat of formation
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of SnH4 (g) at P=1 atm is +1.68 eV/ SnH4 molecule, so the computational result

(1.36 eV) is credible. A consequence of this positive heat of formation (in group

14 only CH4 has a negative MH f ) is that stannane is thermodynamically unsta-

ble, yet kinetically persistent, to decomposition to H2 and Sn. This is important

to know; it will also help us understand the behavior of some of the unusual

high-pressure phases. As Fig. 2.7 shows, it is only at high pressures that one of

our proposed structures becomes more stable than the elements.

As shown in Fig 2.7, of the computed alternatives two structures are the most

stable over a wide pressure range. In the low pressure region (∼2-65 GPa) TB1 is

the most competitive system, while at higher pressures O3 is of lower enthalpy.

Let us look at the evolution of the geometries of these important structures as

pressure is applied.

At low pressures TB1 is calculated to be more stable than any of the T struc-

tures. Yet SnH4 is at ambient pressures known to be a tetrahedral gas phase

molecule. What is going on? An answer is provided by examining the opti-

mized TB1 structures.

TB1 is a structure derived from a high pressure SiH4 candidate. Extrap-

olated unrelaxed to P= 1 atm (Fig 2.8a), it contains highly distorted SnH5

bipyramids, with Sn-H distances of 0.9 Å and 1.45 Å. Both distances are

unrealistically short (recall the P = 1 atm Sn-H distance of 1.7 Å). A sin-

gle point calculation shows that this structure at P= 1 atm is very, very high

in energy; no wonder that it rearranges. The structure seems not to find

28



its way to T1, T2, or T3. But it has something better available - segre-

gated Sn and H2, at lower enthalpy than T1. The optimized structure at P=

5 GPa illustrated in Fig. 2.8b is an approach to this. The structure con-

tains layers of Sn atoms and pairs of hydrogen molecules, with H-H dis-

tances of 0.79 Å. This a harbinger of things to come - Chapter 3 will show that

in the low pressure regime the favored structures are segregated element slabs.

0 GPa 5 GPa
a) b)

65 GPa 290 GPa
c) d)

Figure 2.8: Evolution of structure TB1 as pressure is applied. (a) The initial
structure, (b) the structure optimized at 5 GPa, (c) at 65 GPa as
the cell becomes smaller, the layer of hydrogen atoms contracts
(d) at 290 GPa the layers are still part of the structure.

Interesting things happen to this TB1 structure with increasing pressure -

the two layers are still present but the number of hydrogen atoms pairing up
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decreases. At 65 GPa, only two out of three hydrogen atoms form pairs (the

H-H bond length is 0.76 Å). Around this pressure another phase transition take

place; this time the layer of hydrogen atoms contracts along the c axis (Fig. 2.8c).

The layers in TB1 persists with increasing pressure, but it is another highly coor-

dinated structure O3, that proves to be more stable in the high-pressure regime.

O3 is by far the most interesting structure of all. It undergoes many changes.

The first startling result is that at P= 1 atm the optimized structure goes sponta-

neously from octahedral coordination of Sn to tetrahedral. This new tetrahedral

structures (Fig 2.9b) is not one of the T structures calculated by us earlier. The

molecular crystal (Z = 2) has a tetragonal lattice, and the Sn-H distances of 1.74

Å in this structure are quite normal. Nothing like this was seen in earlier stud-

ies of SiH4 or GeH4. Continuing to increase the pressure, at 65 GPa a new phase

emerges, the coordination of the Sn atom increases to 6. The Sn environment in

this phase is a distorted octahedron.

A second phase transition comes around 140-170 GPa (Fig 2.9d). In this new

phase SnH4 is no longer a molecular crystal. It is now that one sees for the first

time pairs of hydrogen (H-H distance 0.89 Å at 140 GPa). The H2 units axes

orient themselves regularly, furthermore the second nearest neighbor lies 1.05

Å away (H-H · · · H-H). Using the equalization function introduced in chapter

1, ξ = 0.93 at the relatively low pressure of 140 GPa (Pure hydrogen at 140 GPa

has a ξ = 0.76). In this pressure range O3 becomes stable into decomposition of

the elements. The distance between the Sn and H also atoms increases with the

smallest such separations being 1.82 Å. The coordination number in this struc-
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Initial P= 1 atm
a) b)

65 GPa 140 GPa
c) d)

Figure 2.9: Evolution of structure O3 as pressure is applied (a) The initial
structure, (b) the structure optimized at 0 GPa. Notice how it
goes from a octahedral coordination to a new tetrahedral, (c) at
65 GPa as the cell becomes smaller, the coordination increases
to a distorted octahedral and finally (d) at 140 GPa where we
can appreciate the H-H shown in blue in the figure.

ture increases to ten if we use a distance cut off of 2.05Å. The resulting geometry

is very complex, as shown in Figure 2.9 and in the histograms in Figure 2.10.
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a) b)

Figure 2.10: Histograms for O3 at a) 65 GPa and b)140, the coordination
number increases with pressure and so does the bond length;
in blue, tin and in red, hydrogen.

2.5 Other Structures

After we carried out our calculations, a paper appeared detailing an evolution-

ary algorithm exploration of the SnH4 structures. In this work several new struc-

tures were suggested [20]. The most stable figures, as are shown in Figure 2.11.

Using the equalization function, ξ(P) from chapter 1, ξ=0.66 for Ama2 at 120 GPa

and ξ=0.64 for P63/mmc at 200 GPa. At high pressures both of these structures

indeed had enthalpies lower than any we had computed, Fig. 2.12 shows the

enthalpies of the new structures (checked by us), as well as those of the ele-

ments and our two best structures TB1 and O3. In Fig 2.12 the enthalpy of the

elements at the given pressures pressure is the reference straight line, not the T3

structure as in Fig. 2.7.
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Ama2 P63/mmc
120 GPa 200 GPa

Figure 2.11: SnH4 structures suggested by Gao et. al. [20]. The hydrogen
bonds are drawn and the dashed lines indicate the closes Sn-
H distances.

Figure 2.12: Stabilities. The elements in their most stable forms at the pres-
sures considered are used as reference. Our structure as inter-
esting as they are, are not as stable as the ones studied by Gao
et. al.
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2.6 Density of States, DOS

We were also interested in studying the pressure at which SnH4 becomes metal-

lic. For that purpose DOS were calculated. The results are summarized in the

following table, Table 2.1. Most of our structures become metallic at low pres-

sure. T1 is an exception, becoming metallic at 230 GPa. It should be noted,

however, that these structures are not the lowest enthalpy ones at the indicated

pressures - either completely segregated structures or the ones suggested by

Gao et. al. will be more stable.

Table 2.1: Pressure in GPa at which the system become metallic.

Structure Pressure

T3 50

TB1 5

O3 1

T1 230

2.7 Conclusion

We examined some possible structures for stannane and how these structure

change under high pressure. Our structures, as interesting as they are, are not

as stable as the ones recently proposed by Gao et. al. [20]. Our finding of the

stability of layered strucctures in the low pressure regime of SnH4, leads us to

tackle that topic in the next chapter.
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CHAPTER 3

Segregation into, Layers: A General Problem for
Structures under Pressure, Exemplified by SnH4

1

3.1 Introduction - Segregation, The Question Emerges for SnH4

We (and others) have been looking theoretically at the structures under pres-

sure of group 14 tetrahydrides [1–12]. The motivation for examining just this

group of compounds is the attractive idea of Ashcroft of chemical precompres-

sion [13]. Given the difficulty of metallizing molecular H2 [14, 15] (a potential

superconductor and superfluid) [13, 16, 17], the core concept is that the effec-

tive repulsion between hydrogen molecules might be reduced by the hydrogen

atoms bonding to other atoms [15–17].

The general problem of segregation that we expose in this chapter arose from

some very specific considerations of the geometrical and electronic structure of

SnH4 under pressure. We began our studies with some trial structures based on

previous experimental and theoretical work on SiH4, GeH4, and SnH4. The way

the enthalpy of the structures we calculated with pressure is shown by the col-

ored line of Fig 3.1 (Colored line). The reference [0] enthalpy line in this graph

is the enthalpy of Sn + 2H2, computed for the most stable structures of the el-

ements at a given pressure, this transitions were already explored in chapter

2.(Sn evolves from diamond α-Sn,→ β-Sn,→ bct,→ bcc; while H2 evolves from

P63/m,→ C2/c,→ Cmca-12) [18, 19]. The trial structures we explored (and the

bumps in the enthalpy vs. pressure curves that hint at phase transitions) are

1Reproduced with permission from ChemPhysChem, accepted for publication 2010
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of substantial interest, and they were also discussed in chapter 2. Our focus in

chapter 3, however, is on the fact that over a wide pressure range ( < 180 GPa)

the separated elements (blue reference line) may be more stable.

Figure 3.1: Computed relative enthalpies of hypothetical SnH4 structures
as a function of pressure. The zero of enthalpy corresponds to
the stable form of the elements, Sn +2H2, at the given pressure.

Why do we say may and not are? Because there is an enthalpic penalty (for

Sn, not so much for H2) for cutting such layers out of the solid. In forming layers

of Sn (at 1 atm of higher pressures) one has created a chemically reactive slab it

has low-lying unfilled and high-lying filled orbitals. Such a slab will effectively

bond to the H2 layer, a stabilizing interaction. The new interlayer bonding po-

tentially compensates for this intralayer penalty. But we dont imagine that it
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will fully do so.

This simple realization puts a new perspective on the search for optimal

structures in this low and medium pressure regime. As we will see, a system-

atic search in fact finds some layered structures falling in enthalpy between the

continuous curve in Figure 1 and those of the separated elements. In quite inde-

pendent work, a similar trend toward layered structures has been seen theoret-

ically, in silane, [4] and germane, [7] and just recently, stannane, And Gao and

coworkers concluded that segregation is also likely in pressurized stannane at

P < 96GPa. [20]

3.1.1 The General Problem of Segregation

The favoring of slabs is not surprising when we take a look at the formation

energy (4H◦f ) of group 14 hydrides. Of these hydrides, only CH4 has a nega-

tive heat of formation, 4H◦f . A molecule of stannane (and so, approximately,

the P=1atm solid), with an experimental heat of formation of +1.68 eV/SnH4

molecule [21] , is thermodynamically unstable, yet kinetically reasonably per-

sistent (at 298K). Gaseous stannane in fact slowly decomposes to the elements

at P=1atm [22].

The problem presented by a system under pressure segregating into ele-

ments if there is a thermodynamic driving force for the reaction is a very

general one. It faces experimentalists in the area continually, but (for reasons

of avoiding complexity, we think) has not received sufficient attention from the
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theoretical community. This motivates, in part, these chapter.

Many interesting questions arise as one begins to think of segregation.

Among them: If segregation to atom slabs is favored, how many layers will

there be in each slab? Is a specific ordering of (in our case) tin atoms preferred

within a slab? Can this ordering be predicted from our knowledge of exist-

ing tin allotropes at high pressure? Will the hydrogen atoms, within a layered

structure, always prefer to form molecular pairs? What of their orientations?

At what pressure does the formation of a novel three-dimensional tin-hydrogen

bonding framework become favored over segregation of the elements?

We address these questions specifically for SnH4 in this paper. We use rea-

sonably standard DFT computational methodology in these explorations within

static lattice approximations initially; the details are provided in the next sec-

tion.

We restricted ourselves to computations with Z=4, four formula units in a

unit cell. If a substance wants to segregate, this limitation favors not especially

thick layers, and so potentially an incomplete expression of the tendency to seg-

regate. Nevertheless, we are sure the driving force for segregation manifests

itself even within a relatively small unit cell.
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3.1.2 Preparing Segregated or Layered Structures for Calcula-

tion

We started by first setting up layered structures preserving the bulk SnH4 sto-

ichiometry, to see if they would optimize to structures closer to the separated

elements than the parent compound. In this preparation process we focused

mainly on the slabs of tin atoms, our rationale being that Sn-Sn interactions

carry greater consequences for the enthalpy than the weaker H2-H2 interactions,

at least at relatively low pressures where distinct H2 molecules are likely to be

seen.

Within a slab of tin atoms, our starting structures contained 1-4 layers. The

number of layers is in some way arbitrary, as two layers can merge into one eas-

ily. So Z, the total number of formula units (SnH4) within a unit cell, will also be

specified. Tin changes phases as pressure is applied [19]: α-tin is stable at very

low pressures, readily transforming to β-tin, which is energetically more favor-

able from just above atmospheric pressure to 10 GPa. At higher pressure pure

tin undergoes a phase change to bct and at 44 GPa takes on the bcc structure [19].

We focused our attention on the structures that are most stable over a wide

range of pressures, namely β-tin in the low pressure regime and bcc at high pres-

sures. For the sake of simplicity, we select one crystal plane per Sn allotrope and

form slabs of varying thickness around that plane. Examples are shown in Fig-

ure 3.2.
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a) b)

Figure 3.2: The Sn elemental structure planes around which further layers
were taken to form Sn slabs in trial structures. The reference
planes are depicted in purple. a) β-Sn structure, b) bcc Sn, the
most stable structure for bulk tin at high pressures

What about possible hydrogen slabs? We knew from preliminary work on

high pressure phases of SnH4 that in some of them H2 molecules persist, while

in others the H-H bond is broken. We wished to give the system a good chance

to locate both kinds of structures, and to introduce Sn-H interactions as needed.

This led us to start out with two kinds of structures for each hydrogen slab; in

one of them we placed dihydrogen molecules at different position in-between

two slabs of tin. In the other initial geometry choice, atoms (not molecules) of

hydrogen are placed in layers, loosely following a simple tetragonal Bravais lat-

tice. Figure 3.3 shows an illustrative example of these two starting points.

Putting the slabs together, we come to the starting structures for our en-

thalpy optimization. Figure 4 shows several such arrangements, for the

“undimerized” hydrogen atom starting point). In these initial geometries we

kept H-H> 1.2 Å. There may be incipient H-H bonding even at 1.2 Å; there are

(a few) molecular H2 complexes known with that distance, and they show in-

deed some sign of bonding [23–26]. We also left some additional space among
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a) b)

Figure 3.3: Two different starting points for slab optimizations. (Sn=black,
H=orange). a) Hydrogen atoms are placed in this structure, but
not paired; b) All hydrogen atoms are paired

hydrogen and tin atoms (∼2 Å) in our starting structures for both cases; the Sn-

H bond distance in a tin tetrahydride molecule at ambient conditions is 1.7 Å.

The general idea was to start optimizations with structures that allow hydro-

gens to bond or not bond with each other, and with the tin layer as determined

by enthalpy minimization.

3.2 Methodology

Density-functional theory (DFT) calculations with the Perdew-Wang exchange-

correlation functional [27] were performed with Blöchl’s projector-augmented

wave method (PAW) and a plane wave basis set, as implemented in the VASP

codes. For tin, the 5s and 5p were treated as valence state.

For the optimization of the structures, the cell parameters, the atomic po-
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sitions, and the cell volume were all allowed to relax. The stress tensor was

also calculated. A defined stress was added to the stress tensor, converging

into a particular pressure. Once an optimized structure was reached, the elec-

tronic density of states per electron (DOS) was calculated. The k-point grids

were generated via the Monkhorst-Pack scheme [28]. The calculations are for

the ground state at 0K, and neglecting the zero-point vibrational energy. The

cutoff of the kinetic energy was set at 650 eV, and for the planewaves we set a

self-consistent field (SCF) tolerance of 1 x 10−5 eV/unit cell. The Wigner-Seitz

radii was oriented along the atomic radii given in the PAW potentials: r(Sn)=

1.566Å, r(H)=0.37 Å.

3.3 Results

3.3.1 Layers at one Atmosphere

SnH4 Layers at One Atmosphere Pressure: Geometry

In our calculations the most stable layered system at 1 atm emerges from opti-

mizing a starting structure of tin atoms in a slab of 2 bcc layers alternating with

an array of initially unpaired hydrogen atoms, and with Z= 4. As seen in Fig

1.4a, the hydrogen atoms do pair in the course of optimization. A layered struc-

ture derived from a starting point with paired hydrogen atoms has a slightly

higher enthalpy (by 0.21 eV/SnH4). The final structure in that case has a similar

ordering in the tin layer but the axes of the hydrogen molecules assume an aver-
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Figure 3.4: The most stable layered structure for tin tetrahydride, at 0 GPa,
and the coordination environment of the Sn atoms in it. a)
A unit cell embedded in a larger view of the layered system.
There are 4 different types of tin atoms (numbered); each has
a distinct coordination environment. b) The coordination of
each tin atom is shown in portions of distance histograms (in
red, distances from the reference Sn atom to hydrogen; in blue,
to tin).

age orientation that follows the corrugations of the tin layer. It is not surprising

that several structural options are found for the hydrogen layer, differing in H2

orientation; at low pressure, small dispersion forces (van der Waals bonding)

determine the ordering of H2 molecules in their own layer. Also local approxi-
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mations to DFT functionals generally do not give dispersion forces reliably.

There are 4 different types of tin locations in the optimized Z=4 structure. A

useful way to gain insight into the geometrics of bonding in an extended struc-

ture is to construct histograms of the calculated atom separations, which we do

in Figure3.4b. As these diagrams show, each Sn (numbered in Figure3.4a) has

a distinct coordination environment. Note the Sn-Sn separations lying between

3.0 and 3.6 Å, similar to those in α-tin (3.02 Å) and β-tin (2.8 and 3.1 Å). The Sn-H

distances are long (the shortest is ∼ 3.7 Å, longer by far than the normal Sn-H

bond length in stannane (1.7 Å). It is clear that in this layered structure there is

little manifestation of the Sn-H interaction and just some small reconstruction in

the Sn layers. This structure is very different from the molecular crystal system

which first comes to mind when we think about SnH4.

Energetics of Layering at P=1 atm

What is the energetic price that the layered structure has to pay for the arrange-

ment we have found? Using the enthalpies of the most stable allotrope of tin

and of molecular hydrogen at 1 atm pressure as a reference, our optimized lay-

ered structure is unstable by +0.37 eV per SnH4.

Lets see if we can take apart the contributions to the enthalpy of the op-

timum layered structure. We calculate that to excerpt a β-tin layer from the

element structure costs +0.31 eV/atom. To cut out 2H2 from its element struc-

ture costs much less (since only dispersion forces are involved in the process),
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Figure 3.5: Energetics for the tin tetrahydride layered structure. The zero
of energy for the right side of the figure is the energy of the
separated β-tin and 2H2 structures; on the left the zero of en-
ergy is of individual Sn or 2H2, as appropriate. “Rearranged”
means Sn and 2H2 layers taking on the geometry they have in
the optimized layered structure.

namely +0.03eV. Figure 3.5 at the left shows these energies.To rearrange an iso-

lated β-tin layer to the geometry it has in the optimized layer structure costs 0.10

eV more (a total of +0.43eV); to rearrange the H2 layer the cost is +0.11eV. Bring-

ing the preformed Sn and H2 layers together is therefore a stabilizing process,

by -0.17eV. These components of the energy are shown graphically in Figure3.5.

The general picture holds it costs energy to cut out slabs of Sn and H2 from their

solids, that penalty is compensated in part by Sn-H2 interactions.
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We expect that if we took thicker slabs for Sn and H2 (higher Z) the enthalpy

of the slabs would approach that of the elements, the blue reference line in Fig-

ure 3.1.

Electronic Structure of the Layered Material at P = 1atm

The computed structure can be described as Sn (layer)· 2H2. What one might

expect in its electronic structure are prominent molecular σg and σ∗u derived

bands for the H2 layer, but slightly broadened. The Sn layers are rather thin,

and we anticipate them to be metallic, a substantial density of states (DOS) at

the Fermi level arising from the “dangling bonds” of the Sn slab carved out of

its bulk structure (the next section describes experimental and theoretical work

on related Sn surfaces).

Figure 3.6 shows the density of states per electron (DOS) of the P = 1atm

Sn(layer)·2H2 arrangement, and the contribution of the Sn and H atoms to that

DOS. For this average density the rs value is 2.67. ((4π/3)r3
sa

3
o = V/Ne)

From this plot we notice that indeed the tin atom contributions dominate the

DOS at the Fermi level. The structure is indeed distinctly metallic. As expected,

the contributions to the DOS of the hydrogen atoms have a clear peak for H2 σg

at -5.89 eV, overlapping a region of mainly Sn s states. The σ∗u peak is more dis-

persed. We are not sure this is real, for VASP DOS projections are problematic

and more so in the high energy regime. The problem may be seen most clearly
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Figure 3.6: Density of States plot for SnH4 at 0 GPa, Z=4, nominal rs=2.67.
In blue, the total DOS (TDOS); in red, contributions to the
TDOS from the 4 tin atoms and in green from the 16 hydrogen
atoms.

in the high energy region, where the H and Sn contributions to the DOS do not

add up to the total DOS.

Information from Low Pressure Studies of Sn Surfaces

Contemporary surface science has provided us with much information on metal

and semiconductor surfaces, and their interaction with molecules [29]. Most of

such experimental studies are made under high vacuum conditions.

Given how much work has been done on Si and Ge surfaces, surprisingly

little is known about Sn surfaces. Tin is widely used, in solders, tin-coated steel,

and overlayers on other metals. In fact, while there are many studies of Sn over-

layers, we have found little on Sn itself. Apparently such crystals are difficult to
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grow.

However, it is possible to grow well-defined overlayers of alpha-Sn on CdTe

and InSb. Following initial medium and high electron diffraction studies of

reasonably thick α-Sn overlayers on these semiconductors [30, 31] , Woodruff

and Horne investigated the α-Sn(100) surface, and found a (2 x 1) reconstruc-

tion [32, 33]. They also studied the interaction of H2 and H with such over-

layers, and argued for the formation of a monohydride phase (contrasted with

dihydride on the much better studied Si(100) surface. In another study the same

authors reported a progressive reconstruction from (2 x 1) to p (2 x 2) to c (4 x

4).

A thorough theoretical study of the α-Sn(100) surface and its reconstructions

by Lu et al [34] found a large buckling of the dimers, a deformation well-known

for the Si(100) reconstruction, except for a zero gap region around the zone cen-

ter [34], and they found the surface to be semiconducting. The Sn layers or slabs

that we have studied are derived from β-Sn layers, and are much thinner than

the surface models (12 layers) studied by Lu et al. For this reason they are more

likely to be metallic.

We have found no experimental studies of β-Sn surfaces in the literature, to

date.
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3.3.2 Layers at 50 GPa

50 GPa Structures

Moving from 0 GPa to 50 GPa, the volume of the unit cell decreases, prompting

shorter distances between elemental layers. The starting point for the lowest

enthalpy structure computed at 50 GPa, and Z=4, has the tin atoms cut out of

slabs of β-Sn. The final ordering of the tin atoms within the slab is, however,

different from β-tin. The hydrogen molecules in this structure have a calculated

H-H separation of 0.79 Å, slightly longer than gas phase H2 separation at 0.74

Å. The H2 axes are noticeably aligned, as Figure 7a shows; the average orien-

tation of the slab of H2 diatomics seems to “follow” the way the tin layer folds.

We have not studied the energetics of further displacement of the H2 molecules

in their sublattice, or their libration. It is likely that even at 50 GPa the barri-

ers to displacement in the H2 sublattice are small, and given the inadequacy

of our functional for dispersion interactions, we did not explore such motions.

Gao et al obtained similar-looking structures at 50GPa, using an evolutionary

algorithm structure search. [20]

As in the 0 GPa case, there are four different types of tin locations. Their

coordination environments are analyzed by a histogram of Sn-H, Sn distances

in Figure 7b. The windows of the histograms at this pressure are from 1.4 to 2.8

Å, smaller than those at 1 atm, shown above in Figure3.4b.

Note that the nearest neighbors for a tin atom are now hydrogen atoms (of

hydrogen molecules) at ∼1.9 Å, and the nearest tin atom is at ∼ 3 Å. The overall

compression is apparent, and is by far greater in the H2 layer, as expected. There
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Figure 3.7: The lowest enthalpy structure for SnH4 computed at 50 GPa
and its tin coordination environment. a) The unit cell of the
optimized system, extended in this view beyond the unit cell
(dashed lines). There are 4 different types of tin atoms, each
with a distinct coordination environment (numbered); b) Por-
tions of distance histograms for the different tin atoms in the
unit cell, labeled by the number of the tin (In red Sn-H and in
blue, Sn-Sn distances).

must be some interaction between Sn layers and H2 molecules or between H2’s,

for the H-H bond stretches a little (0.79 Å) The shortest nonbonded H-H· · ·H-

H approaches are 1.72 Å. For calibration, in the 50 GPa structure of elemental

H2 (P63/m space group [18]), these distances are 1.7-2.0 Å. It is clear that in
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this structure the van der Waals space between H2 molecules is now “squeezed

out” [35] while the Sn layers are less affected.

The best 50 GPa structure we calculate is unstable when compared to separa-

tion into its elements at the same pressure, by +0.61 eV per SnH4; it is, however,

more stable than the best structures derived by optimizing structures based on

other studies of EH4 molecules where E= Si, Ge and Sn (the red curve in Fig-

ure1; details of the structures were given in chapter 2), by 0.66 eV per SnH4.

Once again the enthalpy of the layered structure lies in-between the elements

and structures that are not layered. If the slabs were thicker, a still more segre-

gated structure is likely to be stabilized.

We thought it possible to go further, and analyze the energetics of the layered

structures by decomposing them into their elemental layers, as we did for the

P=1 atm structure. This approach proves problematic; it runs into fundamental

difficulties of defining appropriate thermodynamic functions and conditions for

separate layers as pressure is applied.

Electronic Structure of the Layered 50 GPa System

At 0 GPa the metallic character of layered structure derived from the tin slabs

alone. Given what we found in the 50 GPa structure (the relatively short Sn-H

distances), we expect this phase to be metallic, but with both elements con-

tributing to the DOS at the Fermi level. Figure 3.8 shows the DOS at P=50 GPa,
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with the contributions of tin and hydrogen atoms. Note the hydrogen density

dispersed throughout the energy window and the expected increase in overall

band dispersion at 50GPa relatively to P=0 GPa,

Figure 3.8: . Density of States plot for SnH4 at 50 GPa, and rs=1.829. In
blue, the total DOS (TDOS); in red, contributions to the TDOS
from tin and in green from hydrogen

3.3.3 Layers at 140 GPa

Structures at 140 GPa (V/V0 = 0.21)

The most stable system calculated by us at 140 GPa (Figure 3.9a) no longer

shows elemental slabs (but see below), even though the starting point for ge-

ometry optimization was layered. As we will see, hydrogens surround the tin

atoms, and the closest distances between hydrogens actually increase (relative

to their lower pressure separations). Lets look at the coordination of the Hs first.
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A free electron parabola fits the DOS quite well.
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Figure 3.9: The most stable structure for tin tetrahydride (from our sam-
pling of layered structures at 140 GPa) and its H-H separations.
a). Hydrogen atoms are no longer simply paired; some hydro-
gen atoms form a network a helix, here we show them in pink.
Distinct hydrogens are numbered. b) Histograms of HH sepa-
rations by atom type).

Figure 3.9b shows the histogram of HH separations in the 140GPa structure.

Note that there are no HH contacts close to the molecular distance of 0.74 Å(or
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that in elemental H2 at this pressure, which has H-H bonds of 0.74 Å, and next-

nearest Hs at 1.3 Å). There are four symmetry-distinct hydrogens in the optimal

structure. From the histogram we see that one hydrogen atom (H4) is pretty

much isolated. That hydride is surrounded by 4 Sn in a tetrahedron, as shown

in Figure 3.10a, but its closest neighbor is actually another hydrogen atom at

1.78 Å.

a) b)

Figure 3.10: Hydrogen coordination environment within the most stable
structure for tin tetrahydride at 140 GPa. a) Coordination en-
vironment for H4; b) Distances within the helix and side view.
(Sn=black, H=orange)

Hydrogens 1, 2 and 3 form helices, with separations (all indicative of partial

bonding) indicated in Figure 3.10b The nearest interhelix separation is at 2.1 Å.

The singling out of a helix is thus somewhat arbitrary (including H - H 1.58,

excluding 2.1 Å, as examination of the histogram shows); we really have the

beginning of a 3-dimensional hydrogen network. Alternatively one could focus

on just the shorter H-H contacts (0.98, 1.12 Å) in which case we would say the

structure contains H3 units.
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Figure 3.11: The most stable structure for SnH4, from our sampling of lay-
ered structures at 140 GPa, and its tin coordination. Slabs are
no longer a feature in this structure. a) The unit cell of the
optimized system, extended in this view beyond the unit cell
(dashed lines). There are two different types of tin atoms per
unit cell (numbered); b) Portions of distance histograms for
the different tin atoms in the unit cell. (in red Sn-H and in
blue, Sn-Sn distances); c) Coordination polyhedra for the two
tin atoms; notice that the two tin atoms coordination environ-
ments are almost mirror images.
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We now turn to the Sn-H separations, Figure 3.11. There are two distinct

Sn atoms in the structure; a histogram of the Sn-H distances is given in Fig-

ure 3.11b. It is not easy to define a Sn coordination environment. The closest

Sn-H contact is 1.8 Å, but there are many hydrogens not much further away.

If one used the large gap at 2.3 - 2.6 Å for both tins as a cut-off for defining

coordination, one would have to call the Sn’s 15-coordinate. Even though this

coordination number seems too high, the general phenomenon of increasing co-

ordination with pressure [35] makes sense. In Figure 3.11a and 3.11c we use an

arbitrary Sn-H cut-off of 2.0 Å, which results in much distorted nonahedra for

the two symmetry-distinct (yet almost mirror-image) Sn atoms.

Energetics and Electronic Structure at P = 140 GPa

The 140 GPa structure is still unstable with respect to the elements. The dif-

ference in enthalpy is now reduced, to +0.17 eV per SnH4. Could there exist a

layered structure (with Z greater than the largest one investigated, Z=4), at still

lower energy than the one we found? We dont know, and are prevented from

exploring the question by the economics of computation for large Z unit cells.

Subsequent to our calculations, Gao et. al. [20] reported two lower enthalpy

candidates for SnH4 structures at high pressures, of Ama2 and P63/mmc symme-

try. We calculated these structures over the range of pressures 80-230GPa. The

results are shown in the Figure 3.12.
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Figure 3.12: Computed relative stabilities of the structures calculated in
this paper, and Ama2 and P63/mmc structures, reported by Gao
et. al. [20]

Our structural search at P = 140 GPa was clearly inferior to that of Gao et.

al. [20] who found Ama2 and P63/mmc structures that are more stable than the

elements at this pressure. Nevertheless, we feel the “helical” geometry is suffi-

ciently interesting to report here, even if it is not the most stable structure at 140

GPa.

At 140 GPa the electronic structure of the structure we calculated is not only

metallic, but the TDOS shows a characteristic free-electron like shape (Figure

3.13). Both Sn and H states contribute to the DOS throughout both filled and

unfilled states.
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Figure 3.13: Density of States (TDOS) plot for SnH4 at 140 GPa, and
rs=1.635.

When is a structure layered?

We return to the question of whether this structure is layered or not. In another

view of the 140 GPa SnH4 structure, in Figure 3.11, layers of Sn and H atoms can

be seen. The perception of lowered dimensionality in a 3-dimensional structure

is much in the eye of the beholder. So layers easily float into view in classical

structures such as diamond, β-Sn and bcc, yet these are hardly two-dimensional

arrays. The perceived layers are just a symptom of the human addiction to pat-

tern recognition. One has to look at the distribution of distances only when the

separations along one axis (perpendicular to the putative layer) are significantly

longer than those within a layer could one realistically call the material layered.
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Figure 3.14: The geometry of the SnH4 structure calculated by us at 140
GPa, rs=1.635 (Identical to that shown in Figure 3.11.) In a
view that emphasizes the structures layered nature.

3.4 Conclusions

When a tetrahydride is thermodynamically unstable with respect to the ele-

ments, as is the case for SnH4, the necessary preconditions are present for seg-

regation in fact, as we propose, to a layering of element slabs. We investigated

such layering in SnH4, making sure that the choice of structures allowed H-H

bond formation to occur if energetically allowed.

Our optimum structures at 0 and 50 GPa (rs= 2.67 and 1.829) show slabs of Sn

and molecular H2. With increasing pressure, van der Waals space is squeezed

out, and Sn - H and H2 - H2 separations decrease. At 140 GPa, with rs=1.635
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(and we expect the same for greater pressures). Our optimum structures no

longer show slabs nor the presence of molecular hydrogen. Interestingly, at 140

GPa, the hydrogen atoms are arranged in H3 units that form helices. Hydridic

isolated atoms also occur. As expected, the coordination of tin and hydrogen

increases with pressure. However, still more stable structures than those found

here (also with H2 molecular units) have been reported [20].

One can take apart the contributions to the enthalpy of slab formation: It

takes a good bit of energy to cut the metal layer out of its 3-D lattice, less so for

the dispersion-force-bound H2 layer. Bringing the preformed layers together is

a stabilizing process, due to what effectively is chemisorption at an interface.

The SnH4 case maybe extreme in that the heat of formation of the molecules

is so positive, creating a large thermodynamic driving force for segregation and

layering. But the lesson of our modeling exercise is clear and likely to be valid

generally: Over a wide range of pressures any compound that has a substantial positive

enthalpy of formation is likely to segregate to the elements.

Obviously this does not preclude the possibility (in fact, likelihood) of even-

tual re-mixing, as the pressure increases, the situation changes, even when there

is a driving force for layering. Unsegregated structures with new bonding pat-

terns may be stabilized; this is where the effect of high pressure becomes truly

interesting.

62



BIBLIOGRAPHY

[1] J. S. Tse, Y. Yao, and K. Tanaka. Novel Superconductivity in Metallic SnH4

under High Pressure. Phys. Rev. Lett., 98:117004, 2007.

[2] J. Feng, W. Grochala, T. Jaron, R. Hoffmann, A. Bergara, and N.W. Ashcroft.
Structures and Potential Superconductivity in SiH4 at High Pressure: En
Route to “Metallic Hydrogen” . Phys. REv. Lett., 2006:017006, 96.

[3] C. J. Pickard and R.J. Needs. High-Pressure Phases of Silane . Phys. Rev.
Lett., 97:045504, 2006.

[4] M. Martinez-Canales, A. R.Oganov, Y. Ma, Y. Yan, A.O. Lyakhov, and
A. Bergara. Novel Structures and Superconductivity of Silane under Pres-
sure. Phys. Rev. Lett., 102:087005, 2009.

[5] D.Y. Kim, R.H. Schericher, S. Lebégue, J. Prasongkit, B. Arnaud,
M. Alouani, and R. Ahuja. Crystal Structure of the Pressure-induced
Metallic Phase of SiH4 . Proc. Natl. Acad. Sci. USA, 105:16454–16459, 2008.

[6] X-J. Chen, V.V. Struzhkin, Y. Song, A.F. Goncharov, S. Liu M. Ahart,
H k. Mao, and R.J. Hemley. Pressure-Induced Metallization of Silane . Proc.
Natl. Acad. Sci. USA, 105:20–23, 2008.

[7] G. Gao, A. R. Oganov, A. Bergara, M. Martinez-Canales, T. Cui, T. Iitaka,
Y. Ma, and G. Zuo. Superconducting High Pressure Phase of Germane .
Phys. Rev. Lett., 101:107002, 2008.

[8] M. I. Eremest, I.A. Trojan, S.A. Medvedev, J.S. Tse, and Y. Yao. Supercon-
ductivity in Hydrogen Dominant Materials . Science, 319:1506–1509, 2008.

[9] O. Degtyareva, M. Martinez-Canales, X-J Chen A. Bergara, Y. Song, V. V.
Struzhkin, H k. Mao, and R.J. Hemley. Crystal Structure of SiH4 at High
Pressure. Phys. Rev. B, 76:064123, 2007.

[10] Z. Li, W. Yu, and C. Jin. First-principles calculation on Phase Stability and
Metallization in GeH4 under Pressure. Solid Sate Commun., 143:353–357,
2007.

[11] Y.S. Yao, J.S. Tse, Y.Ma, and K. Tanaka. Superconductivity in high-pressure
SiH4. Europhys. Lett., 78:37003, 2007.

63



[12] M. Marinez-Canales, A. Bergara, J. Feng, and W. Grochala. Pressure In-
duced Metallization of Germane. J. Phys. Chem. Solids, 67:2095–2099, 2006.

[13] N. W. Ashcroft. Hydogen Dominan Metallic Alloys: High Temperature
Superconductors? Phys. Rev. Lett., 92:187002, 2004.

[14] C. Narayana, H. Luo, J. Orloff, and A.L. Ruoff. Solid Hydrogen at 342 GPa,
No Evidence for an Alkali Metal. Nature, 393:46–49, 1998.

[15] P. P. Edwards and F. Hensel. Will solid hydrogen Ever be a Metal? . Nature,
388:621, 1997.

[16] N. W. Ashcroft. Metallic Hydrogen: A High-Temperature Superconductor?
Phys. Rev. Lett., 21:1748–1749, 1968.

[17] A. Bergara and N.W. Ashcroft. Proceedings of the 20th General Conference
of the Condensed Matter Division of the European Physical Society.

[18] C. J. Pickard and R.J. Needs. Structure of Phase III of Solid Hydrogen. Nat.
Phys., 3:473–476, 2007.

[19] H. Giefers, E.A. Tanis, S.P. Rudin, S. Greeff, X. Ke, C. Chen, M.F. Nicol,
M. Pravica, W. Pravica, J. Zhao, M. Lerche, W. Sturhahn, and E. Alp.
Phonon Density of States of Metallic Sn at High Pressure. Phys Rev. Lett,
98:245502, 2007.

[20] G. Gao, A.R. Oganov, P. Li, Z. Li, H. Wang, T. Cui, Y. Ma, A. Bergara, A.O.
Lyakhov, T.Iitaka, and G.Zou. High-pressure crystal structures and super-
conductivity of Stannane (SnH4) . Proc. Natl. Acad. Sci. USA, 107:1317–1320,
2010.

[21] D.R.Lide. CRC Handbook of Chemistry and Physics 85th Edition. CRC Press,
N.J., 2004-2005.

[22] N.N. Greenwood and A. Earnshaw. Chemistry of the Elements.
Oxford:Butterworth-Heinemann, 1997.

[23] X-L. Luo, H. Liu, and R.H. Crabtree. Separating the Rhenium-Hydride and
Proton-proton Dipole-dipole Contributions to the 1H NMR Spin-lattice
Relaxation Rate of the Hydride Ligand in mer,trans-ReH(CO)3(PPh3)2 by
Deuteration . Inorg. Chem., 30:4740–4742, 1991.

64



[24] F. Maseras, A. Lledos, E. Clot, and O. Eisenstein. Transition Metal Polyhy-
drides: From Qualitative Ideas to Reliable Computational Studies. Chem.
Rev, 100:601–636, 2000.

[25] D.M. Heinekey and W.J. Oldham. Coordination Chemistry of Dihydrogen.
Chem. Rev., 93:913–926, 1993.

[26] R.H. Crabtree. Transition Metal Complexation of σ Bonds. Angew. Chem.
Int. Ed., 32:789–805, 1993.

[27] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J.
Singh, and C. Fiolhais. Atoms, Molecules, Solids and Surfaces: Applica-
tions of the Generalized Gradient Approximation for Exchange and Corre-
lation . Phys. Rev. B, 46:6671–6687, 1992.

[28] H.J. Monkhorst and J.D. Pack. Special Points for Brillouin-zone Integra-
tions . Phys. Rev. B, 13:5188–5192, 1976.

[29] G. A. Somorjai. Principles of Surface Chemistry. Prentice-Hall, Englewood
Cliffs, N.J., 1972.

[30] R.F.C. Farrow, D.S. Robertson, G.M. Williams, A.S. Curtis, G.R. Jones, I.M.
Young, and P.N.J. Dennis. The Growth of Metastable, Heteroepitaxial Films
of α-Sn by Metal Beam Epitaxy . J. Cryst Growth, 54:507–518, 1981.
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CHAPTER 4

SiHx x = 4, 6, 8 from 0 - 200 GPa

4.1 Introduction: Experimental work on SiH8

As we discussed in chapter 1, hydrogen by itself refuses to become metallic

by just applying static pressure [1, 2] . The idea of using compounds already

“chemically precompressed” [3], while attractive, might lead to segregation - as

seen in chapter 3 - when the thermochemistry of the materials is not taken into

account. But there is another way to approach our goal. Recently there has been

appeared an experimental paper by Strobel et. al. [4] which studied a mixture

of silane and H2 at relatively low pressures. This chapter focuses on such mix-

tures, revealing particular interactions between SiH4 and H2.

This work is part of an ambitious overall project that our group has under-

taken, to study systems of the form MHx, where M= Si, Sn and W and x= 4, 6,

8, 10, 12, at pressures ranging from 0 - 250 GPa. In time, we will get to analyze

them all. In the present chapter we study SiHx where x= 4, 6, 8 from 0 - 200 GPa.

4.2 Methodology

For structure prediction, we use the genetic optimization algorithm developed

by Oganov and Glass (USPEX) [5, 6]and implemented in the Vienna Ab Ini-

tio Simulation Package, VASP. Simulations were performed at 0, 50, 100, 150

and 200 GPa for systems with 2 formula units per unit cell. We selected the
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lowest-enthalpy structures and further optimized their structures as a function

of pressure using VASP and dense k-point meshes.

Density-functional theory (DFT) calculations with the Perdew-Wang

exchange-correlation functional [7] were performed with Blöchl’s projector-

augmented wave method (PAW) and a plane wave basis set, as implemented

in VASP.

For the optimization of the structures, the cell parameters, the atomic posi-

tions, and the cell volume were all allowed to relax. The stress tensor was also

calculated. A defined stress was added to the stress tensor, converging towards

a particular pressure. Once an optimized structure was reached, the electronic

density of states per electron (DOS) was calculated. The k-point grids were gen-

erated via the Monkhorst-Pack scheme [8]. The calculations are for the ground

state at 0K, and neglecting the zero-point vibrational energy. The cutoff of the

kinetic energy was set at 650 eV, and for the planewaves we set a self-consistent

field (SCF) tolerance of 1 x 10−5 eV/unit cell. The Wigner-Seitz radii was ori-

ented along the atomic radii given in the PAW potentials.

4.3 Results

We start by analyzing the structures, showing for each histograms of the coordi-

nation environment for Si. The enthalpies of the various structures as a function

of pressure will be discussed afterward. The associated DOS and partial DOS
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were also calculated, and the normalized plots per valence electron are shown

in their respective Appendix. All the structures shown in this chapter are visu-

alized with program CrystalMaker, drawing bonds for Si-H distances ≤ than 1.7

Å and for bond distances H-H up to 1 Å.

4.3.1 SiH4

Ambient pressure

USPEX was not successful in finding a reasonable structure at ambient pres-

sure. For consistency’s sake we decided, to use the lowest-enthalpy structure

at 50 GPa for SiH4 and to optimize it at P=0. We could be using our chemi-

cal intuition but we want to exclusively use the algorithm for this study. We

are currently working on the optimization of this system. Figure 5.1 shows the

initial structure for SiH4. This structure is unrealistic since at ambient pressure

we expect Si to have a tetrahedral coordination and for silane to be a molecular

crystal [9].
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Figure 4.1: Lowest-enthalpy structure for SiH4 at 50 GPa. This structure
is unrealistic at ambient pressure; silane is expected to be a
molecular crystal of SiH4 tetrahedral molecules [9].

69



50 GPa

At this pressure, the Si coordination is that of a distorted octahedron, the 6 hy-

drogen atoms are not at equidistant as can be appreciated in the portion of the

histogram. The octahedra form a network by sharing vertices, as shown in Fig-

ure 5.2. Because of the stoichiometry and coordination of the Si atom, there are

no molecular hydrogen, with the closest H – H at 1.75 Å.

Layers are not a feature of this structure. It is likely that at the moderate

pressure of 50 GPa, segregation has been overcome for this system or that it

was not large enough to lead to the formation of layers. Also missing from it is

the classical view of SiH4 as a tetrahedral molecule, in agreement with previous

work done by Feng, et. al. [9] in which they found that at this pressure regime,

structures with six-fold coordination for Si atoms are favored.
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Figure 4.2: Lowest-enthalpy structure for SiH4 at 50 GPa a) The unit cell of
the optimized system, extended in this view beyond the unit
cell (dashed lines); b) Portions of distance histograms for sil-
icon atoms in the unit cell (in pink Si-H and in red, Si-Si dis-
tances).
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100 GPa

As 100 GPa pressure is applied to the system, the lowest-enthalpy structure is

that shown in Figure 5.3. The coordination environment for the Si atom now

is more crowded; it goes from a distorted octahedron to a distorted dodecahe-

dron (in this chapter we will refer to dodecahedron as the polyhedron with 8

vertices). It is easy to define a Si coordination, just by looking at the histogram,

Figure 5.3b, where we appreciate a large gap at 1.6 - 2.2 Å. These dodecahedrons

are connected with each other not by sharing vertices but by sharing edges.

Again, this results are in agreement with previous work [9, 10]; Si atoms are 8

coordinated and polymeric chains Si-H-Si are formed.

The nearest H-H distance is 1.50 Å, these hydrogens are not coordinated to

the same Si atom.
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Figure 4.3: Lowest-enthalpy structure for SiH4 at 100 GPa a) The unit cell
of the optimized system, extended in this view beyond the unit
cell (dashed lines); b) Portions of distance histograms for sili-
con atoms in the unit cell (in pink Si-H and in red, Si-Si dis-
tances).
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150 GPa

At 150 GPa, the lowest-enthalpy structure, Figure 5.4a is very much similar to

the one described at 100 GPa. Si is clearly 8-coordinated to hydrogen, form-

ing distorted dodecahedrons which share edges with their neighbors. The gap

observed in the partial distance histogram, Figure 5.4b, is now from 1.5 to 2.1

Å. The closest H-H distance in this geometry is 1.47 Å, the hydrogen atoms are

bonding to different Si.
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Figure 4.4: Lowest-enthalpy structure for SiH4 at 150 GPa a) The unit cell
of the optimized system, extended in this view beyond the unit
cell (dashed lines); b) Portions of distance histograms for sili-
con atoms in the unit cell (in pink Si-H and in red, Si-Si dis-
tances).

Throughout the remainder of our study we compare the stability of our sys-

tems not with respect to the elements but with respect to the silane structures

as shown in this subsection and to molecular hydrogen in its most stable form

at the given pressure, as described in chapter 1. Taking a look into our DOS,

shown in the Appendix A, Silane at 150 GPa it is still not a metal. Work is being

done at the moment for SiH4 at 200 GPa.
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4.3.2 SiH6

Ambient pressure

At ambient pressure, the most stable structure for SiH6, Figure 5.5, is clearly a

molecular crystal composed of silane weakly bound with molecular hydrogen.

Si is tetra-coordinated, with a Si-H bond length of 1.5 Å, and the closest H-H

is 0.75 Å. Using the equalization function introduced in chapter 1, ξ = 0.108.

Metallicity is not expected for this system; this is confirmed by the gap at the

DOS at the Fermi level shown in Appendix B.
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Figure 4.5: Lowest-enthalpy structure for SiH6 at 0 GPa a) The unit cell of
the optimized system, extended in this view beyond the unit
cell (dashed lines); b) Portions of distance histograms for sil-
icon atoms in the unit cell (in pink Si-H and in red, Si-Si dis-
tances).

73



50 GPa

At 50 GPa, the most stable structure for SiH6 has molecular hydrogen units, as

shown in Figure 5.6. As pressure increases, so does the Si coordination. It goes

from tetrahedral to distorted octahedron. The structure can be described as lay-

ers of vertex-sharing-octahedra SiH6 and layers of molecular hydrogen. The

axes of H2 do not lie flat on the layer, however they are oriented within it.

The H-H bond length is 0.75 Å. For this system the equalization factor ξ=

0.71; pure H at this pressure has a ξ= 0.61.
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Figure 4.6: Lowest-enthalpy structure for SiH6 at 50 GPa a) The unit cell of
the optimized system, extended in this view beyond the unit
cell (dashed lines); b) Portions of distance histograms for sil-
icon atoms in the unit cell (in pink Si-H and in red, Si-Si dis-
tances).
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100 GPa

The lowest-enthalpy structure at 100 GPa is shown in Figure 5.7. Every Si has

6 neighboring hydrogen atoms, with a coordination polyhedron that is a dis-

torted octahedron. But it is difficult to see a clear cut-off for Si-H distances, if

one wants to define a coordination number. Within this geometry there are H2

molecules with bond length 0.75 Å.This structure can be seen as layered; octa-

hedra share edges forming 2-D sheets with layers of H2 molecules.

The calculated equalization factor for this structure is ξ = 0.73 roughly the

same as pure H2 at 100 GPa which is ξ = 0.72.

!"

#"

$"

%"

&"

'"

#(#" #($" #(%" #(&" #('" #()" #(*" #(+" #(," $" $(#" $($"

!"
#$
"%
&#
'
("

)*(&+,-."/Å0"

-"

a) b)

Figure 4.7: Lowest-enthalpy structure for SiH6 at 100 GPa a) The unit cell
of the optimized system, extended in this view beyond the unit
cell (dashed lines); b) Portions of distance histograms for sili-
con atoms in the unit cell (in pink Si-H and in red, Si-Si dis-
tances).
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150 GPa

Si at 150 GPa has a coordination number of 8, Figure 5.8, There are H2 units

within the system. These hydrogen molecules have a bond length of 0.75 Å and

their axes lie mostly flat on the layer.

For this system the equalization factor is ξ= 0.76.
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Figure 4.8: Lowest-enthalpy structure for SiH6 at 150 GPa a) The unit cell
of the optimized system, extended in this view beyond the unit
cell (dashed lines); b) Portions of distance histograms for sili-
con atoms in the unit cell (in pink Si-H and in red, Si-Si dis-
tances).
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200 GPa

The lowest-enthalpy structure at 200 GPa is shown in Figure 5.9. Every Si has 8

neighbors hydrogen atoms, with a coordination polyhedron of a distorted do-

decahedron. Within this geometry there are H2 molecules with bond length 0.75

Å.This structure can be seen as layered; octahedra share edges forming sheets

of polyhedra in-between layers of H2. The calculated equalization factor for this

structure is ξ = 0.74.
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Figure 4.9: Lowest-enthalpy structure for SiH6 at 200 GPa a) The unit cell
of the optimized system, extended in this view beyond the unit
cell (dashed lines); b) Portions of distance histograms for sili-
con atoms in the unit cell (in pink Si-H and in red, Si-Si dis-
tances).

Throughout the range of pressures considered for the SiH6 system, layers

of H2 units are a feature in the geometry of the structure. The coordination of

Si atoms in the lattice increases with pressure, but the coordination polyhedra

arrange themselves in 2-D structures.The equalization factor ξ seem to converge

to a value of 0.7 which is reached at 50 GPa.
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4.3.3 SiH8

Ambient pressure

At P= 1 atm, the most stable structure for SiH8, Figure 5.10, just as it was for

SiH6, can be considered as a molecular crystal composed of silane and molecu-

lar hydrogen. Si has 4 neighbors H, in a tetrahedral arrangement, with a Si-H

bond length of 1.5 Å, and the closest H-H is 0.75 Å. Using the equalization

function introduced in chapter 1, ξ = 0.17. This weakly-bonded van der Waals

complex is not a metal; its large gap in the DOS at the Fermi level is shown in

Appendix C.
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Figure 4.10: Lowest-enthalpy structure for SiH8 at 0 GPa a) The unit cell
of the optimized system, extended in this view beyond the
unit cell (dashed lines); b) Portions of distance histograms for
silicon atoms in the unit cell (in pink Si-H and in red, Si-Si
distances).
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50 GPa

At 50 GPa, the lowest-enthalpy structure for SiH8 has molecular hydrogen units,

as shown in Figure 5.11. Si has a distorted octahedra coordination. The struc-

ture can be described as layers of vertex-sharing-octahedra SiH6 and layers of

molecular hydrogen. The coordination of Si is similar to that of Silane, and SiH6

at this pressure.

The H-H bond length is 0.75 Å. For this system the equalization factor ξ=

0.68, pure H at this pressure has a ξ= 0.6.
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Figure 4.11: Lowest-enthalpy structure for SiH8 at 50 GPa a) The unit cell
of the optimized system, extended in this view beyond the
unit cell (dashed lines); b) Portions of distance histograms for
silicon atoms in the unit cell (in pink Si-H and in red, Si-Si
distances).
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100 GPa

The lowest-enthalpy structure at 100 GPa is shown in Figure 5.12. Every Si has

8 neighboring hydrogen atoms, with a coordination polyhedron of a distorted

dodecahedron. There is clear cut-off in the histogram, Figure 5.11b, at 1.6 Å

Within this symmetry there are 2 H2 in the unit cell with bond length 0.75 Å.

Two more H2 units have a longer separation of 0.81 Å, with one of the H atoms

bonding to a Si atom (Si-H separation of 1.66 Å) This structure can be seen as

layered; dodecahedra share edges forming sheets between layers of H2 units.

The calculated equalization factor for this structure is ξ = 0.77, pure H2 at 100

GPa which is ξ = 0.72.
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Figure 4.12: Lowest-enthalpy structure for SiH8 at 100 GPa a) The unit cell
of the optimized system, extended in this view beyond the
unit cell (dashed lines); b) Portions of distance histograms for
silicon atoms in the unit cell (in pink Si-H and in red, Si-Si
distances).
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150 GPa

Si at 150 GPa has a coordination number of 10, as Figure 5.13 shows. Still, there

are H2 units within the system. The structure can be considered as being made

out of layers, the polyhedra form sheet by sharing edges, between layers of H2.

These hydrogen molecules have a bond length of 0.75 Å and their axes are ori-

ented within the layer.

For this system the equalization factor is ξ= 0.77.
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Figure 4.13: Lowest-enthalpy structure for SiH8 at 150 GPa a) The unit cell
of the optimized system, extended in this view beyond the
unit cell (dashed lines); b) Portions of distance histograms for
silicon atoms in the unit cell (in pink Si-H and in red, Si-Si
distances).
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200 GPa

The lowest-enthalpy structure at 200 GPa is shown in Figure 5.14. Every Si has

coordination number of 8, with a coordination polyhedron of a distorted dodec-

ahedron. This structure can be seen as layered; octahedra share edges forming

2-D networks of polyhedra in between layers of H2, with bond length 0.75 Å.

The calculated equalization factor for this structure is ξ = 0.88.
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Figure 4.14: Lowest-enthalpy structure for SiH8 at 200 GPa a) The unit cell
of the optimized system, extended in this view beyond the
unit cell (dashed lines); b) Portions of distance histograms for
silicon atoms in the unit cell (in pink Si-H and in red, Si-Si
distances). .

At all the pressures considered, there are layers of H2 in the optimized struc-

tures. The Si coordination numbers go up but, polyhedra connect to form 2-D

networks. The band-gap starts to close at 150 GPa, but the DOS at the Fermi

level is not significant.
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4.3.4 Energetics

Figure 5.15 shows the enthalpies of formation for the systems discussed above.

It is clear that SiH4 is more stable than the other systems at the pressure range

considered. However the scale for the enthalpy is of formation is arguably

small. the largest difference between the systems is of the order of 0.4 eV/SiHx.
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Figure 4.15: Stabilities for the SiHx, where x= 4, 6, 8 from 50-150 GPa, SiH4

and H2 are used as a reference.

4.4 Conclusions

For our systems studied, we found structures in which there is a new segrega-

tion, the material is segregating into compounds; silane and molecular hydro-

gen. At the range pressure considered in this chapter we are not yet finding

metallicity. It is clear that higher pressures need to be considered to complete

our study.
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CHAPTER 5

Lithium, Beryllium and Hydrogen: Metallization By
Impurities

5.1 Introduction: LiBe at 80 GPa

Be is the 4th element in the Periodic Table and the head of the alkaline earth

metal group. Under ambient conditions Be is unreactive to water and air [1]. It

has the highest Debye temperature(ΘD), and one of the highest melting points

among metals, as well as a low superconducting transition temperature, TC= 26

mK.

If one is interested in increasing the TC of a system, one strategy is to form

alloys in such a way as to increase the density of electronic states at the Fermi

level. The guiding idea here is BCS theory, which yields in its most simplified

form an expression for TC= 1.13ΘD exp[−1/NFV] where NF is the density of states

at the Fermi levels.

Beryllium and lithium do not form either a stoichiometric compound or a

random ordered alloy at ambient conditions [2, 3]. High pressures have a con-

siderable effect on electronic structure, reactivity, and compound formation.

Compounds that at ambient conditions are not likely to form, may do so un-

der pressure [4–6]. It was in this spirit that alloys of two unlikely elements were

studied under pressure by Feng et.al [7]; lithium and beryllium. They found

that Li and Be indeed form a number of stable alloys. It is one of those alloys,
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LiBe, that is of great interest to us in this chapter.

The computed optimum structure of LiBe at 80 GPa has a space group P21/m.

It can be described as a “layered” structure, as indicated in Figure 5.1. However,

the distances within and between the layers (∼ 2 Å at this pressure) are compa-

rable, so that structurally LiBe is three dimensional. Remarkably the Density of

States (DOS) of the system, Figure 5.2, shows a step-like shape, which is charac-

teristic of 2D-systems. The origins of this two-dimensional electronic structure

in a three-dimensional compound are explored in the paper of Feng et. al. [7]

Figure 5.1: Extended structure of LiBe at 86.7 GPa. In this pictures, and
from now on, Li atoms are depicted in blue and Be are shown
in green.

How can we further increase the DOS at the Fermi level? In other words,
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Figure 5.2: DOS for LiBe at 86.7 GPa. DOS plot is normalized to the num-
ber of valence electrons of the system and Fermi level is set to
zero. Note the step-like shape at around -9 eV, which is charac-
teristic of 2-D systems.

can we enhance metallic behavior in this alloy? As the DOS of Figure 5.2 shows,

one way to effectively achieve this is by reducing the number of valence elec-

trons while keeping the overall structure. Lithium has only one valence electron

while Beryllium has two. If we wish to reduce the number of valence electrons,

it makes sense to replace some atoms of Be by atoms with one valence elec-

tron. Hydrogen could be a reasonable substitute for Be. We are not interested

in reducing the number of valence electrons in a dramatic way, only to reach a

higher DOS region in Figure 5.2. In this way we were led to consider Li8Be7H

and Li16Be15H.
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5.2 Methodology

Density-functional theory (DFT) calculations with the Perdew-Wang exchange-

correlation functional [8] were performed with Blöchl’s projector-augmented

wave method (PAW) and a plane wave basis set, as implemented in the Vienna

Ab Initio Simulation Package (VASP). Given the size of the atoms involved in

the calculations, we included all the electrons.

For the optimization of the structures, the cell parameters, the atomic posi-

tions, and the cell volume were all allowed to relax. The stress tensor was also

calculated. A defined stress was added to the stress tensor, converging towards

a particular pressure. Once an optimized structure was reached, the electronic

density of states per electron (DOS) was calculated. The k-point grids were gen-

erated via the Monkhorst-Pack scheme [9]. The calculations are for the ground

state at 0K, and neglecting the zero-point vibrational energy. The cutoff of the

kinetic energy was set at 650 eV, and for the planewaves we set a self-consistent

field (SCF) tolerance of 1 x 10−5 eV/unit cell. The Wigner-Seitz radii was ori-

ented along the atomic radii given in the PAW potentials.

For structure prediction, we use the genetic optimization algorithm devel-

oped by Oganov and Glass (USPEX) and implemented with VASP [10, 11]. Sim-

ulations were performed at 40, 60, 80 and 100 GPa for systems with 16 atoms per

unit cell. (LiBe: Z=4; Li4Be3H:Z=2; Li8Be7H:Z=1; Z= number of formula units

by unit cell). We selected the lowest-enthalpy structures and further optimized

their structures as a function of pressure using VASP and dense k-point meshes.
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5.3 Results

What structure might these Be-Li-H alloys have? In this study we considered

two approaches: (1) Starting with the LiBe structure studied by Feng et.al. at

86.7 GPa, we constructed super-cells with the desired stoichiometry, substitut-

ing a Be atom by a H. (2) Alternatively, we made use of structure prediction

algorithms, such as USPEX, for the endeavor. We set up these numerical exper-

iments for stoichiometries Li4Be3H and, Li8Be7H at 40, 60, 80 and 100 GPa.

While searching for new structures we were particularly interested in ana-

lyzing if indeed metallicity was enhanced by swapping H for Be. The following

questions arise; Where is hydrogen going to be within the structures? Are layers

going to remain structurally and electronically an important feature in our most

stable structures?

5.3.1 LiBe block units as starting points

Supercells without Optimization

Using an optimized unit cell of LiBe at P= 86.7 GPa with Z = 2 as a unit block

four supercells were created: three supercells with Z= 8 (the supercells were

built by taking 1× 2× 2, 2× 1× 2 and, 2× 2× 1 times the unit block), and a larger
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block unit 1×2×2

2×2×1 2×1×2

Figure 5.3: Structures of the unit cell used as a block unit and the different
systems with stoichiometry Li8Be7H . On top, from left to right,
the unit cell with Z=2 of LiBe, next the system built from 1×2×2
times the unit cell. On the bottom, the supercells created from
2 × 2 × 1 and 2 × 1 × 2 times the block unit. Note that one Be
atom (in green) was replaced by an atom of H (in pink).

supercell with Z =16 (2 × 2 × 2 times the unit block).

One atom of Be was then replaced by one atom of H in the four supercells.

The LiBe block unit cell and the supercells of stoichiometry Li8Be7H are shown

in Figure 5.3.

90



−10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

Li8Be7H  1x2x2 ~ 80 GPa

Energy(eV)

DO
S 

(S
ta

te
s 

pe
r e

V 
pe

r v
al

en
ce

 e
le

ct
ro

n)

 

 
Fermi level
DOS

Student Version of MATLAB

1× 2 × 2

−10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25
Li8Be7H  2x1x2 ~ 80 GPa

Energy(eV)

DO
S 

(S
ta

te
s 

pe
r e

V 
pe

r v
al

en
ce

 e
le

ct
ro

n)

 

 
Fermi level
DOS

Student Version of MATLAB

2 × 1 ×2

−10 −5 0 5
0

0.05

0.1

0.15

0.2

0.25

Li8Be7H  2x2x1 ~ 80 GPa

Energy(eV)

DO
S 

(S
ta

te
s 

pe
r e

V 
pe

r v
al

en
ce

 e
le

ct
ro

n)

 

 
Fermi level
DOS

Student Version of MATLAB

2 × 2 ×1

Figure 5.4: Normalized DOS for Li8Be7H for non-optimized super-cells as
shown in Figure 5.3.

The DOS curves of the above systems (without further relaxation of ions)

were also calculated, shown in Figure 5.4. The system Li8Be7H, built from the

1 × 2 × 2 supercell of LiBe, shows an increase of the DOS at the Fermi level. The

shape of the DOS no longer shows the characteristic features of a 2-D system
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(the rectangular onset) but that of a 1-D system, with Van Hove singularities.

The DOS for the Li8Be7H structures built from the 2 × 1 × 2 and 2 × 2 × 1 unit

block without relaxation of ions still show a step-like shape, more pronounced

in the latter case. The three systems with formula Li8Be7H are characterized by

the same external pressure (as could be expected; having the same stoichiome-

try and cell volume), but their DOS curves differ substantially.
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Figure 5.5: Structure and normalized DOS of supercell Li16Be15H.

For the larger supercell that leads to Li16Be15H, Figure 5.5, we can still notice

a step-like shape of the DOS. For this system the pressure is larger than those of
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the Li8Be7H structures, since the hydrogen atom has a lesser effect on the overall

system. DOS calculations were performed without allowing relaxation of ions.

The DOS at the Fermi energy is also higher than in the original LiBe case (Figure

5.5).

Some results are summarized on Table 5.1. The DOS at the Fermi energy is

normalized per valence electron and, the total energy of the system is normal-

ized by the total volume of each system, so as to allow a rough comparison of

structures of different stoichiometry.

We notice from the table that the pressures are different in each systems. The

pressures of the supercells calculated are lower than that of the original LiBe

cell because initially we allowed neither a relaxation of ions nor a change in the

total volume of the system upon substituting a H for a Be.

Table 5.1: Energetics for non-optimized supercells.

System DOS at the Fermi level Pressure Volume Energy

per valence electron

(eV−1) (GPa) Å3 (eV / Å3 )

LiBe 0.1042 86.7 24.29 -0.2615

Li8Be7H-1 × 2 × 2 0.1536 75.1 97.16 -0.2881

Li8Be7H-2 × 1 × 2 0.1195 75.2 97.17 -0.2928

Li8Be7H-2 × 2 × 1 0.1248 75.1 97.16 -0.2878

Li16Be15H-2 × 2 × 2 0.1265 78.6 194.34 -0.295
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Optimization of super-cells

After geometrical optimization the structures are very different from their sim-

ple substitution starting point. The H atom in general moves away from Be

layers in the cell towards the closest layer of Li atoms. This movement distorts

distances and positions among the Li layer as the H approaches it. In contrast

to this movement Be layers remains relatively unaltered, Figure 5.6.

We were also interested in looking at the distances between H atoms (see

chapter 1). However the closest H· · ·H was of 1.99 Å (on the system which came

from 2 × 1 × 2 cell); one assumes that the small hydrogen concentration is re-

sponsible for the absence of direct HH bonding.
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Figure 5.6: Structures and histograms of Li8Be7H after optimization of su-
percell structures at 86.7 GPa. The coordination of the hydro-
gen is shown in portions of distance histograms (in blue, dis-
tances from the reference H to lithium; in green to beryllium;
and in pink to another hydrogen).
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Figure 5.7: Normalized DOS for the Li8Be7H supercell structures opti-
mized at 86.7 GPa.

The DOS were calculated, Figure 5.7, and the results are summarized in Ta-

ble 5.2. The DOS at the Fermi level are normalized by the number of valence

96



Table 5.2: Energetics for optimized supercells.

System DOS at Fermi level Pressure Volume Energy

per valence electron

(eV−1) (GPa) Å3 (eV /Å3 )

LiBe 0.1042 86.7 24.29 -0.2615

Li8Be7H-1 × 2 × 2 0.1482 87.6 92.86 -0.306

Li8Be7H-2 × 1 × 2 0.09 87.8 92.75 -0.304

Li8Be7H-2 × 2 × 1 0.085 87.7 92.88 -0.2952

electrons and, the total energy of the system by the total volume of each system.

After the relaxation of atoms, we obtained a smaller value for the DOS at the

Fermi level. The 1 × 2 × 2 cell has the largest DOS at the Fermi level among the

three structures

5.3.2 Random Algorithm Search

We recalculated the LiBe structure with the genetic structure-searching program

USPEX [10, 11] as a way to gauge the effectiveness of the algorithm. We were

interested in the system at P = 80 GPa, but considered that a larger pressure

range was needed to analyze in depth the role of H as in impurity and as a

potential enhancer of metallicity for the alloy. The pressures studied were 40, 60,

80 and 100 GPa. We proceeded in the same way as described above for Li8Be7H,

but we also considered a system with a different stoichiometry: Li4Be3H, in
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which hydrogen has a stronger presence as an impurity.

LiBe

This stoiciometry was a tet of the methodology, for while LiBe had been consid-

ered previously, Ji Feng had not used an evolutionary algorithm in his structure

search. We set up our random search, considering 16 atoms total per unit cell,

8 of them Be and 8 Li. The optimized structures are shown in Figure 5.8. In all

cases the structure show a “layered” nature, but this may be a prejudice of our

visualization program. At 80 GPa we got the same structure found previously

by Feng [7]. The distances within and between the layers (∼ 2 Å at this pressure)

are comparable, therefore LiBe is structurally three dimensional.

Table 5.3: Energetics for LiBe cells found with USPEX

Pressure DOS at Fermi level Volume Energy

per valence electron

(GPa) (eV−1) Å3 (eV /Å3 )

40 0.107 117.0 -0.196

60 0.100 106.2 -0.298

80 0.101 98.0 -0.305

100 0.106 91.6 -0.2877
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40 GPa 60 GPa
a) b)

80 GPa 100 GPa
c) d)

Figure 5.8: The lowest -enthalpy structures for LiBe found with USPEX.

The calculated DOS also shown resembles the ones found by Feng et. al.

[7]. The step like functions in the DOS are present at the different pressures

considered, as shown in Figure 5.9.
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Figure 5.9: Normalized DOS for the LiBe structures found with USPEX.

DOS values at the Fermi level along with volume and energy data are listed

in Table 5.3

Li8Be7H

The optimized structures of the alloy with composition Li8Be7H are shown in

Figure 5.10. The distance histograms for the coordination environment sur-

rounding the hydrogen atom are in Figure 5.11. Histograms show that as pres-

sure increases the coordination also increases, as expected [12].
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The DOS were calculated, Figure 5.12, and the results are summarized in

Table 5.4.

40 GPa 60 GPa
a) b)

80 GPa 100 GPa
c) d)

Figure 5.10: The lowest-enthalpy structures for Li8Be7H found by USPEX.
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Figure 5.11: Histograms for the lowest-enthalpy structures for Li8Be7H
found by USPEX. The coordination of the hydrogen is shown
in portions of distance histograms (in blue, distances from the
reference H to lithium; in green to beryllium; and in pink to
another hydrogen).
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Figure 5.12: Normalized DOS for the Li8Be7H structures found with US-
PEX.

The lowest-enthalpy structure for the alloy Li8Be7H do show “layers” (Fig-

ure 5.10), but, as in the case of LiBe, these layers can be misleading; the dis-

tances within and between the layers are comparable, in the range of 1.9 - 2.2

Å at the pressures considered. These structures should be considered as three-

dimensional. However, the DOS shows a step-like shape, as may be seen above

in Figure 5.12. The values of the DOS at the Fermi level for these structures are

not as high as they were for the unoptimized supercells.
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Table 5.4: Energetics for Li8Be7H cells found with USPEX.

Pressure DOS at Fermi level Volume Energy

per valence electron

(GPa) (eV−1) Å3 (eV /Å3 )

40 0.104 115.0 -0.295

60 0.115 101.9 -0.323

80 0.088 93.4 -0.324

100 0.091 87.6 -0.308
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Li4Be3H

In this stoichiometry and at high pressures our lowest-enthalpy structures have

beautiful and whimsical symmetries, as shown in Figure 5.13. Histograms of

distances from the hydrogen atoms are shown in Figure 5.14. Once again, the

trend observed earlier is repeated; hydrogens seems to move towards lithiums

and even more, the hydrogen atoms seem to be nested within lithium cavities

or channels . We summarize our results in Table 5.5.

Table 5.5: Energetics for Li4Be3H cells found with USPEX.

Pressure DOS at Fermi level Volume Energy

per valence electron

(GPa) (eV−1) Å3 (eV /Å3 )

40 0.099 109.5 -0.352

60 0.073 96.8 -0.357

80 0.079 89.3 -0.353

100 0.066 83.3 -0.336
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40 GPa 60 GPa
a) b)

80 GPa 100 GPa
c) d)

Figure 5.13: The lowest -enthalpy structures for Li4Be3H found with US-
PEX.
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Figure 5.14: Histograms for the lowest-enthalpy structures for Li4Be3H
found with USPEX. The coordination of the hydrogen is
shown in portions of distance histograms (in blue, distances
from the reference H to lithium; in green to beryllium; and in
pink to another hydrogen).
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Figure 5.15: Normalized DOS for the Li4Be3H structures found with US-
PEX.

The structures found with the help of USPEX for the LiBe alloy are very sim-

ilar to the ones previously found by Feng et.al. [7]. But the structures, although

lower in enthalpy, for the LixBex−1H with x= 4, 8 are very different from the ones

we initially considered. A trend worth noting in our structures is that, as shown

in our histograms, the closest nearest neighbor for H are Li atoms. Some hydro-

gens are ensconced within beautiful cages of Li.

The structures also seem to remember their “layered” nature in the LiBe alloy

and all of our most stable symmetries have layers of Be. Interestingly enough,
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the DOS for the system Li8Be7H at pressures 40, 60, 80 GPa and Li4Be3H at 40

GPa also shown a marked step-like shape.

In Table 5.6 we list the differences of the DOS at the Fermi level for our most

stable systems at their corresponding pressures. Here a positive number means

that the hydrogenated system has a lower density of states at the Fermi level,

while a negative value implies a higher DOS. From Table 5.6 only one system

has a higher density at the Fermi level than of LiBe, Li8Be7H at 60 GPa.

Table 5.6: Differences of DOS at the Fermi level for the systems found with
USPEX.

Pressure LiBe - Li8Be7H LiBe - Li4Be3H

(GPa) (eV−1) (eV−1)

40 0.002 0.007

60 -0.014 0.027

80 0.013 0.022

100 0.015 0.040

5.4 Conclusions

Our aim was to find some compounds related to the Li/Be alloy previously

studied in which we could raise the DOS at the Fermi level. We achieved this,

although not with any spectacular improvements, by building super-cells and

replacing a Be atom by a H atom.

By using a genetic algorithm structural search program, USPEX, we found a
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number of interesting, lower-enthalpy structures for these Li/Be/H alloys. Fur-

ther studies are needed to find new ways of enhancing the density of states at

the Fermi level in these compounds.
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APPENDIX A

SiH4
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Figure A.1: Normalized DOS for the SiH4 structures found with USPEX.
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Figure A.2: Normalized PDOS for the SiH4 structures found with USPEX,
RWIGS values used as set on VASP. In red, the contribution of
Si; in blue for H.
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Figure B.1: Normalized DOS for the SiH6 structures found with USPEX.
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Figure B.2: Normalized PDOS for the SiH6 structures found with USPEX,
RWIGS values used as set on VASP. In red, the contribution of
Si; in blue for H.
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Figure C.1: Normalized DOS for the SiH8 structures found with USPEX.
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Figure C.2: Normalized PDOS for the SiH8 structures found with USPEX,
RWIGS values used as set on VASP. In red, the contribution of
Si; in blue for H.
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Figure D.1: Normalized PDOS for the LiBe structures found by USPEX,
RWIGS values used as set on VASP. In red, the contribution of
Li; in green, for Be.
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Figure E.1: Normalized PDOS for the Li8Be7H structures found by US-
PEX, RWIGS values used as set on VASP. In red, the contribu-
tion of Li; in green, for Be; in blue for H.
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Figure F.1: Normalized PDOS for the Li4Be3H structures found by USPEX,
RWIGS values used as set on VASP. In red, the contribution of
Li; in green, for Be; in blue for H.
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