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The focus of the current work is on investigating the orientation depen-

dent micromechanical response of face-centered cubic (fcc) polycrystals using

crystal-based elastoplastic finite element simulations. This dissertation contains

three related studies examining the evolution of the lattice strains and the crys-

tal stresses in fcc polycrystalline aggregates subjected to monotonic and cyclic

loading. These three studies, which can be read independently, are presented in

Chapters 1, 2 and 3.

Chapter 1 contains an investigation into the evolution of the orientation

dependent lattice strain response in fcc polycrystals under monotonic tensile

loading, particularly in the elastic-plastic transition regime leading up to fully-

developed plasticity. The lattice strains, when plotted as a function of the macro-

scopic stress, begin to deviate from linear behavior in the elastic-plastic tran-

sition regime when certain sets of crystals begin yielding before others. It is

demonstrated that the progression of yielding in different sets of crystals is in-

fluenced by a combination of the single crystal elastic and plastic anisotropies,

which can be quantified by the directional strength-to-stiffness ratio [1].

Chapter 2 examines the evolution of the lattice strains and the crystal scale

stress distributions in fcc polycrystals under fully-reversed, strain-controlled

cyclic loading with respect to the concepts of the directional strength-to-stiffness



ratio [1] and the vertices of the single crystal yield surface [2], which have pre-

viously only been applied to monotonic tensile loading. These two concepts are

derived from the single crystal elastic and plastic anisotropic properties and are

used to explain observed behaviors in the lattice strain response such as the size

and shape of the lattice strain hysteresis loops.

Chapter 3 presents a coordinated approach to quantifying the evolution

of lattice strains in an AA7075-T6 aluminum alloy under in situ zero-tension

cyclic loading using high-energy synchotron x-ray diffraction experiments and

crystal-based finite element simulations. This dissertation involves only the

computational aspect of this coordinated approach. Lattice Strain Pole Figures

(SPFs) are constructed from both measured and computed lattice strains and

comparisons are made at the same macroscopic stress on several cycles in the

loading history. Trends in the evolution of crystal quantities such as the crystal

stresses, slip system activity and the slip system strengths, which are available

from the simulation data, are examined and explained in a consistent manner

with respect to the single crystal yield surface topology.

The final chapter, Chapter 4, is a brief summary of the preceding chapters

highlighting the main contributions of this dissertation.
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CHAPTER 1

INFLUENCE OF DIRECTIONAL STRENGTH-TO-STIFFNESS ON THE

ELASTIC-PLASTIC TRANSITION OF FCC POLYCRYSTALS UNDER

UNIAXIAL TENSILE LOADING

1.1 Abstract

Crystal-based finite element simulations have been conducted on virtual face-

centered cubic (fcc) polycrystals under uniaxial tensile loading to study the in-

fluence of single crystal elastic anisotropy on the elastic-plastic transition be-

havior exhibited by the lattice strains. The lattice strain response is examined

for different sets of crystals corresponding to different crystallographic fibers.

The lattice strain response observed in the elastic-plastic transition is related

to crystals associated with different crystallographic fibers yielding on average

at different levels of the macroscopic stress. The lattice strain behavior is de-

termined by a combination of the elastic and plastic anisotropies of the single

crystals, which is quantified using the directional strength-to-stiffness ratio. The

directional strength-to-stiffness ratio for a single crystal and a crystallographic

fiber are introduced and they are used to explain the deviation of the lattice

strains from linear behavior in the elastic-plastic transition leading up to fully-

developed plasticity.

1.2 Introduction

Most engineering alloys are polycrystalline, composed of large numbers of in-

dividual crystals with different lattice orientations with respect to some refer-

ence coordinate frame. Single crystals exhibit anisotropy due to the orientation

1



dependence of the elastic stiffness and plastic strength of these crystals. The

elastic stiffness depends on the single crystal elastic anisotropy while the plas-

tic strength depends on the slip system geometry of the crystal structure. The

orientation of a crystal with respect to the macroscopic loading causes some

crystals to appear stiffer than others and some crystals to be more favorably ori-

ented to yield than others. This leads to variations in the stress distribution at

the crystal level, even for a simple macroscopic loading condition such as uniax-

ial tension. Such variations are important, as the more highly stressed crystals

within a polycrystal can serve, for example, as initiation sites for performance-

limiting defects.

The mechanical response of a crystal within a polycrystalline aggregate is

dependent on its single crystal properties, its lattice orientation, and the orien-

tations of neighboring crystals. The influence of elastic anisotropy on the re-

sponse of individual crystals within a polycrystal, however, is masked by the

interactions of large numbers of randomly oriented crystals. A polycrystal may

exhibit a nearly isotropic elastic response on the macroscopic scale regardless

of the level of the single crystal elastic anisotropy if the crystals have uniformly

distributed lattice orientations. Although the macroscopic elastic responses of

polycrystals with uniformly distributed lattice orientations are the same with

high or low single crystal elastic anisotropy, the micromechanical responses are

quite different. It is important to note that the degree of single crystal elas-

tic anisotropy can vary within a single alloy system, such as with the addition

of increasing amounts of an alloying element (aluminum with high percentage

of magnesium vs. pure aluminum), and not just between completely differ-

ent materials (copper vs. aluminum). Accurate determination of single crystal

properties is important in developing a quantitative understanding of the mi-
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cromechanical behavior of polycrystalline aggregates.

In the current work, the effect of varying the single crystal elastic anisotropy

is examined for face-centered cubic (fcc) polycrystals under uniaxial tensile

loading through the elastic-plastic transition into fully-developed plasticity. The

level of single crystal elastic anisotropy is varied while holding the macroscopic

elastic response (average Young’s modulus and Poisson’s ratio) and the plas-

ticity parameters constant. The responses to varying the single crystal elastic

anisotropy are determined using crystal-based finite element simulations of vir-

tual fcc polycrystals where individual crystals within the polycrystal consist of

multiple finite elements. The method of varying the single crystal elastic moduli

in the current work is similar to the approach used in Ref. [3], where the single

crystal elastic moduli of an AA-5182 aluminum alloy were varied systemati-

cally to improve the match between the computed lattice strains and the lattice

strains measured using neutron diffraction. For a polycrystal under uniaxial

tensile loading, we demonstrate that the level of single crystal elastic anisotropy

influences the evolution of the orientation dependent lattice strains, beginning

with the elastic-plastic transition and proceeding until fully-developed plastic-

ity is achieved. We examine lattice strains in sets of crystals that share a common

orientation of designated crystallographic planes (indicated by their Miller in-

dices, {hkl}), similar to measurements made in neutron diffraction experiments.

Further, from the simulation results, we also show that different sets of crys-

tals corresponding to different {hkl} lattice planes begin yielding, on average,

at different levels of the macroscopic stress. We demonstrate that the yielding

behavior of crystals corresponding to different {hkl}s is influenced by the com-

bined elastic and plastic anisotropies of the crystals, which is quantified using

the directional strength-to-stiffness ratio.
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This chapter is organized as follows. In Section 1.3, we review previous

experimental and computational efforts to quantify the evolution of the lattice

strains through the elastic-plastic transition. Section 1.4 describes the analytical

tools required to conduct the single crystal elastic parametric study, the method-

ology for constructing virtual polycrystals, and the methodology for conducting

numerical simulations on the virtual polycrystals. Section 1.5 shows the results

of the single crystal elastic anisotropy parametric study. In Section 1.6 the def-

inition of the directional strength-to-stiffness ratio is introduced and its role in

determining the evolution of the lattice strains is examined.

1.3 Background

Diffraction methods enable the interrogation of subsets of crystals within a poly-

crystal and lead to the ability to quantify stresses at the crystal level. X-ray and

neutron diffraction have been used to measure residual stresses in polycrys-

talline metals [4, 5]. Diffraction techniques have also been used to measure lat-

tice strains in specimens under in situ loading [6–8]. In a diffraction experiment,

a shift in a diffraction peak under load corresponds to a lattice strain measure-

ment of a subset of crystals within the polycrystal with a particular {hkl} crystal-

lographic plane normal aligned with a particular specimen direction. Combin-

ing the lattice strain data from a broad suite of {hkl} reflections gives sufficient

information to determine the lattice strain tensor as a function of lattice orienta-

tion [9, 10]. Often only a few {hkl} reflections are examined, and while these are

insufficient to reconstruct the full, orientation dependent strain tensor, the data

nevertheless are useful in understanding the behaviors at the crystal scale.

To motivate the numerical study presented in the current work, we focus on
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studies that report diffraction measurements of the evolution of lattice strains

under in situ loading, particularly through the elastic-plastic transition regime.

Numerous researchers have measured lattice strains under in situ loading using

neutron diffraction for fcc [11–18], bcc [19–22] and hcp [23–28] polycrystalline

metals. These neutron diffraction measurements have typically been limited

to a few {hkl} lattice planes parallel and perpendicular to the specimen loading

direction. The neutron diffraction measurements were used to validate various

polycrystal deformation models such as the Taylor [11–13], self-consistent [14–

21, 23–29] and finite element models [21, 22].

The polycrystalline metals tested in the studies referenced above have con-

sistently shown that the lattice strains deviate from linear behavior in the elastic-

plastic transition through fully-developed plasticity. The deviations of the lat-

tice strains from linear behavior arise due to load redistribution between differ-

ent crystals of different orientations when some crystals begin to yield. Even

under a macroscopic uniaxial stress state, different crystal {hkl} families yield

at different levels of the macroscopic stress and the crystals which continue to

deform elastically carry an increased proportion of the applied load. The lattice

strains that arise due to incompatibilities in deformation between crystals in the

elastic-plastic transition are typically referred to as intergranular strains.

The polycrystalline fcc metals previously studied [11–18] span a wide range

in the single crystal elastic anisotropy as well as exhibit different lattice strain

responses in the elastic-plastic transition. The suite of simulations conducted by

Clausen, Lorentzen and Leffers [29] showed that aluminum, copper and stain-

less steel exhibited different lattice strain responses for different {hkl}s under

uniaxial tensile loading. The load redistribution between the crystals in the

elastic-plastic transition was attributed generally to a combination of the elas-
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tic and plastic behavior of the material. Oliver, Daymond and Withers [21] have

also compared the residual elastic strains of low carbon (LC) steel with the resid-

ual strains of a bcc polycrystal with the same plastic properties as the LC steel

but with isotropic elastic properties. They found that in the absence of elas-

tic anisotropy, the lattice strains exhibit different behaviors once yielding begins

which led them to conclude that both the elastic and plastic properties influence

the development of intergranular strains in a polycrystal. Although the materi-

als previously studied have different levels of single crystal elastic anisotropy, a

systematic study has not been conducted to quantify the effect of the combina-

tion of elastic and plastic properties on the orientation dependent lattice strains

in the elastic-plastic transition regime.

Our current work is discussed, in particular, in the context of two publica-

tions by Clausen and various collaborators [14, 29]. Clausen et. al. [14] have

measured and simulated the evolution of the lattice strains during uniaxial ten-

sile loading of stainless steel and the relevant results are shown in Figure 1.1.

The single crystal elastic moduli of stainless steel result in a relatively high sin-

gle crystal elastic anisotropy value of rE = 3.20, where rE is the ratio of the elastic

stiffness in the 〈111〉 crystal direction to the elastic stiffness in the 〈100〉 crystal

direction. Figure 1.1 shows that the {200} crystals deviate significantly from

linear behavior in the elastic-plastic transition and exhibit larger elastic strains

relative to the crystals associated with other {hkl}s.

Clausen et al. [29] conducted a suite of simulations to model the lattice

strains of aluminum, copper and austenitic stainless steel under uniaxial tensile

loading using an elastic-plastic self-consistent model. The single crystal elastic

anisotropy for aluminum, copper and stainless steel are rE = 1.18, rE = 2.87 and

rE = 3.20 respectively. Aluminum has low single crystal elastic anisotropy while
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B. Clausen et al. / Materials Science and Engineering A259 (1999) 17–24 21

Fig. 5. The applied stress versus the elastic lattice strain. Symbols are measuredand lines are calculated. For clarity the data is presented in two
graphs for parallel (a,b) and two graphs for perpendicular (c,d). The horizontal dotted line represent the macroscopic 0.2% yield limit.

To examine at which orientations slip is initiated
first we present, in Fig. 6, the number of active slip
systems in the grains as a function of the grain orien-
tation for two plastic strain levels (0.001 and 0.01%).

Fig. 6(a) is the first step (between 153.5 and 154.9
MPa) in the calculation for which some slip systems
were activated. Only grains close to the 531 and 331
orientations (indicated by symbols in the figure) have
become plastic. When the first grain orientations
yield, the remaining orientations, that are still elastic,

bear a larger elastic strain to carry the higher load.
The 200 reflection stays elastic the longest due to the
high elastic anisotropy in stainless steel, as shown in
Fig. 6(b). As it is also the softest of the reflections, it
shows the largest deviation from linearity (Fig. 5(a)).
When all the grains have become plastic, the lattice
strain response for the reflections becomes almost lin-
ear again, with gradients determined by a combina-
tion of the elastic and plastic anisotropy of the
material.

Figure 1.1: Applied stress versus elastic lattice strains for crystals with
{hkl} plane normals parallel to the tensile axis from Clausen et.
al. [14]. Symbols are measured lattice strains and lines are com-
puted lattice strains.

copper and stainless steel have relatively high single crystal elastic anisotropy.

The lattice strains as a function of the applied stress for the three materials are

shown in Figure 1.2. It is observed that for aluminum, which has much lower

elastic anisotropy than either copper or stainless steel, the lattice strains in the

elastic-plastic transition show different relative behaviors in comparison to the

lattice trains in copper and stainless steel. Specifically, the {111} crystals in alu-

minum exhibit larger lattice strains in the elastic-plastic transition through fully-

developed plasticity in comparison to the lattice strains associated with other

{hkl}s. In contrast, for copper and stainless steel, the {200} crystals exhibit larger

lattice strains relative to the other {hkl}s. The copper and stainless steel lattice

strains in the elastic-plastic transition behave similarly, with the {200} crystals

exhibiting the greatest elastic strains. The {311} crystals in copper and stainless

steel maintain a response that is close to linear while the other {hkl}s (except the

{200} crystals) exhibit a compressive shift relative to their linear elastic response.
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These results indicate that the single crystal elastic anisotropy has a strong effect

on the evolution of the lattice strains through the elastic-plastic transition.

As seen in Fig. 7, the degree of redistribution of
the load between the re¯ections (between the di�er-

ently oriented grains) at the onset of plastic defor-
mation increases as the elastic anisotropy increases,
aluminum having the weakest elastic anisotropy

and stainless steel the strongest. One should note
the scale di�erence in the ®gures. This redistribution
of the load is obviously determined by a combi-

nation of the elastic and the plastic anisotropy of
the material.
The strain redistribution is quite similar in stain-

less steel and copper. Parallel to the tensile axis,
Fig. 7, the two elastically softest re¯ections, 200

and 311, remain the softest in the plastic region,
and the 331 and 220 re¯ections become the sti�est.
Perpendicular to the tensile axis, Fig. 8, the 200

re¯ection experiences the largest redistribution in
lattice strain and becomes the sti�est direction.
In aluminum, the strain redistribution is di�erent

from that in the other two materials. Parallel to the
tensile axis the elastically sti�est re¯ection, 111, ex-
periences the highest strain in the plastic region for

a given applied load as it becomes the softest re¯ec-
tion in the plastic region, and the elastically softest

re¯ection, 200, becomes one of the sti�est in the

plastic region. Perpendicular to the tensile axis, the
redistribution is almost the same as the 111 re¯ec-

tion becomes the softest re¯ection in the plastic
region and the 200 re¯ection becomes the sti�est.
The di�erences in lattice strain in aluminum are

rather small compared with the strain resolution in
a neutron di�raction measurement (250� 10ÿ6),
which would make them di�cult to observe exper-

imentally.
The redistribution of the lattice strains perpen-

dicular to the tensile axis at the onset of plastic de-

formation is particularly dramatic for the 200
re¯ection. The lattice strain may even decrease with

increasing applied stress. In order to understand
this one must realize that the sub-set of grains with
h200i perpendicular to the tensile axis (or for that

matter any sub-set of grains with hhkli perpendicu-
lar to the tensile axis) is composed of sub-sub-sets
of grains with di�erent orientations relative to the

tensile axis. The sub-sub-sets actually have the ten-
sile axis distributed along the h100i±h110i side of
the unit triangle. A close investigation of the grains

in these sub-sub-sets (with the exception of those
close to h100i) in terms of the numbers of active
slip systems and the m-factors as quoted in Section

Fig. 7. Stress±strain response parallel to the tensile axis, here given for six re¯ections.

Fig. 8. Stress±strain response perpendicular to the tensile axis, here given for six re¯ections.

CLAUSEN et al.: F.C.C. POLYCRYSTALS 3093

Figure 1.2: Computed lattice strains for crystals with {hkl} plane normals
parallel to the tensile axis from Clausen, Lorentzen and Leffers
[29].

Based on the results shown in Figures 1.1 and 1.2, the contribution of this pa-

per is to quantify the combined role of the single crystal elastic anisotropy and

plastic anisotropy, using the directional strength-to-stiffness ratio. We demon-

strate that the directional strength-to-stiffness ratio of the crystals can be used

to explain the behavior of the orientation dependent lattice strains in the elastic-

plastic transition.

1.4 Methodology

In this section we describe the methodology used to numerically simulate the

response of a polycrystal to obtain lattice strain data similar to measured lattice

strain data from diffraction experiments. Section 1.4.1 describes the metric that

is used to specify the crystal orientations within a polycrystalline aggregate. To
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compare our simulation results to published results, we need to determine the

subsets of crystals within the virtual polycrystal that satisfy a particular diffrac-

tion condition. Section 1.4.2 describes the relation used to identify particular

subsets of crystals of the virtual polycrystal. Section 1.4.3 describes the method

of varying the level of single crystal elastic anisotropy while keeping the av-

erage macroscopic elastic response constant. A brief outline of the elastic and

plastic constitutive relations of single crystals is presented in Section 1.4.4. The

description of the construction of the virtual polycrystal, the boundary condi-

tions, and the method of post-processing the simulation data are presented in

Section 1.4.5.

1.4.1 Crystal orientations

The description of a crystal orientation within a polycrystalline aggregate is im-

portant because of the orientation dependence of the elastic and plastic response

of a single crystal. Two Cartesian coordinate systems are used to specify the ori-

entation of a crystal: the crystal coordinate system defined by the orthonormal

basis vectors, ec
i , and the specimen coordinate system defined by the orthonor-

mal basis vectors, es
i . For a crystal structure with orthogonal symmetry, the

crystal basis vectors, ec
i , are typically aligned with the three orthogonal direc-

tions of the crystal unit cell. The specimen basis vectors, es
i , are typically aligned

with the normals of three perpendicular surfaces of the polycrystalline speci-

men. The orientation of a crystal within an aggregate is defined as the rotation

needed to align the crystal coordinate frame with the reference or specimen co-

ordinate frame.

Specifically, a rotation or orientation matrix, R, transforms a vector in the
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crystal coordinate system, vc, to a vector in the sample coordinate system, vs:

Rvc = vs (1.1)

The rotation matrix can also be described in terms of a rotation axis, n, and the

angle of rotation, φ, about the axis using Rodrigues parameterization of orien-

tations [30]:

r = n tan
φ

2
(1.2)

The Rodrigues vector, r, is related to the rotation matrix through [31, 32]:

R =
1

1 + r · r
((1 − r · r)I + 2(r ⊗ r + I × r)) (1.3)

A point in Rodrigues space corresponds to the angle-axis combination that de-

scribes the orientation of the crystal with respect to the specimen coordinate sys-

tem. The Rodrigues parameterization of orientations is advantageous because

the Rodrigues parameter space can be reduced using crystal symmetries to a

fundamental region bounded by planes. The fundamental region for crystals

which possess cubic symmetry has the shape of a truncated cube as shown in

Figure 1.3. In this chapter, quantities that depend on orientation will be plotted

over the fundamental region.

1.4.2 Crystallographic fibers

A crystallographic fiber, represented as c || s, connects all orientations that align

a particular crystal axis, c, with a particular specimen direction, s:

Rc = ±s (1.4)

The equation for a crystallographic fiber in Rodrigues space for a fixed specimen

frame is represented as [32]:

r̃ =
1

1 + c · s

(
c × s + (c + s) tan

φc

2

)
(1.5)
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where φc is an arbitrary rotation about the crystal axis, c.

All orientations belonging to a crystallographic fiber differ only by a rota-

tion about a common axis. The Rodrigues method of representing orientations

is particularly attractive because crystallographic fibers appear are straight lines

in Rodrigues space. Crystallographic fibers provide a basis for comparison be-

tween simulations and diffraction measurements on polycrystals because a par-

ticular crystallographic fiber associates directly with a particular Bragg diffrac-

tion condition. Diffraction experiments measure the normal component of the

lattice strain of all crystals with the {hkl} plane normal aligned with a particular

scattering vector (specimen direction). In the simulations, the normal compo-

nent of the lattice strain is averaged among all crystals with their {hkl} plane

normal, given by a crystal direction, c, aligned with a particular specimen di-

rection, s.

Several prominent crystallographic fibers considered in the analysis are

shown in Figure 1.3, with s = [001]. The specimen [001] direction is of particu-

lar interest because it is the loading direction in the simulations. Since only the

specimen loading direction is considered in this analysis, the {hkl} || [001] fiber

will also be referred to as the {hkl} fiber. The {hkl} fiber is the collection of all

crystals where the {hkl} plane normal of the crystal is aligned with the specimen

[001] direction. The {hkl} plane normal is also denoted as the 〈hkl〉 direction.

1.4.3 Single crystal elastic anisotropy

We are interested in the influence of the level of single crystal elastic anisotropy

on the evolution of the lattice strains as the deformation proceeds under uniaxial

tension. A definition for the single crystal elastic anisotropy and the method of

systematically varying the single crystal elastic moduli are briefly described in
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(a) {100} || [001] fiber
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[100]

(b) {111} || [001] fiber
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[100]

(c) {110} || [001] fiber

[010]
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[100]

(d) {311} || [001] fiber

Figure 1.3: Several prominent crystallographic fibers in the cubic funda-
mental region of Rodrigues space. The [001] direction is the
specimen loading direction.

this section.

The Kirchhoff stress tensor of a crystal, τ, is related to the elastic strain tensor,

ε, by a fourth-order elastic stiffness tensor, C, which is defined in the crystal

coordinate system:

τ = C : ε (1.6)

The Kirchhoff stress, τ, is related to the Cauchy stress, σ, by τ = det(I + ε). Using

the Voigt matrix notation, the Kirchhoff stress tensor, τ, and the elastic strain

tensor, ε, in Equation (1.6) can be expressed as 6×1 vectors as shown in Equa-

tion (1.7). The elastic stiffness tensor, C, for cubic crystals can also be reduced to
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a 6×6 matrix with three independent elastic constants, C11, C12 and C44 [33]:

τ11

τ22

τ33

τ23

τ13

τ12



=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





ε11

ε22

ε33

ε23

ε13

ε12



(1.7)

Elastic anisotropy in a single crystal is the dependence of the elastic response

on the orientation of the stress with respect to the crystallographic axes of the

crystal lattice. The level of elastic anisotropy of a single crystal with cubic sym-

metry is quantified by the ratio of the Young’s modulus in the 〈111〉 direction

to the Young’s modulus in the 〈100〉 direction, defined as the elastic anisotropy

ratio, rE:

rE =
E〈111〉

E〈100〉
(1.8)

In cubic crystals, the 〈111〉 direction is typically the stiffest direction and the

〈100〉 direction is the most compliant direction.

For cubic crystals, three independent elastic constants are required to deter-

mine the anisotropic single crystal elastic response. In this study, we are inter-

ested in the crystal level response when the elastic anisotropy ratio, rE, is var-

ied, while keeping the average macroscopic elastic response of the aggregate

constant. We use the method of varying rE described by Dawson et. al. [3] by

constructing two average parameters, an average Young’s modulus, Eavg, and

an average Poisson’s ratio, νavg, for a polycrystalline aggregate with a uniform

orientation distribution. Therefore in our approach to varying rE, we chose the

three independent parameters: rE, Eavg and νavg. Using a simple relationship be-

tween the anisotropic single crystal moduli and the average properties, we vary
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rE C11 (GPa) C12 (GPa) C44 (GPa)
1.0 110.700 59.200 51.500
1.2 107.300 60.900 56.600
1.4 104.356 62.372 61.015
1.5 103.099 63.000 62.901
1.6 101.944 63.578 64.634
2.0 98.141 65.479 70.338
2.5 94.691 67.204 75.513
3.0 92.166 68.467 79.301

Table 1.1: Single crystal elastic moduli corresponding to different levels of
single crystal elastic anisotropy, rE, for constant Eavg and νavg.

rE while keeping Eavg and νavg constant. Additional details of the approach for

varying the single crystal elastic moduli can also be found in appendix A.

Starting from the single crystal elastic moduli of pure aluminum reported

by Hosford [34], where C11 = 107.3 GPa, C12 = 60.9 GPa and C44 = 56.6 GPa, we

compute rE = 1.20, Eavg = 69.45 GPa and νavg = 0.35. By keeping the values of

Eavg and νavg fixed and specifying a new value for rE, we can solve the system

of equations corresponding to Equations (A.6)−(A.8) in appendix A for the new

values of C11, C12 and C44.

A range of rEs were chosen to represent single crystal elastic behavior rang-

ing from isotropic (rE = 1.0) to highly anisotropic (rE = 3.0) behavior. Table 1.1

shows the single crystal elastic moduli generated from different values of rE for

constant Eavg and νavg.

1.4.4 Elastic and plastic behavior of crystals

The numerical formulation used in the simulations involves an elastoplastic

constitutive model which determines the behavior of a single crystal, imple-

mented within a finite element formulation which determines the behavior
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of an aggregate of crystals. The single crystal constitutive model is based on

anisotropic elasticity coupled with plastic deformation by crystallographic slip

on a restricted number of slip systems. The equations of the single crystal con-

stitutive model are then implemented within a finite element framework based

on the weak form of the equilibrium equations. A complete description of the

constitutive model and the finite element implementation can be found in Refs.

[35–37].

We consider crystallographic slip through the crystal lattice to be the dom-

inant mode of plastic deformation. The crystal lattice also undergoes rotations

and elastic stretching. The crystal kinematics are represented by a multiplicative

decomposition of the deformation gradient tensor, F [35]:

F = V∗R∗Fp (1.9)

where Fp is the purely plastic part of F, R∗ is the lattice rotation and V∗ is the

elastic stretch. Equation (1.9) defines a reference configuration, B0, and the cur-

rent configuration, B, as well as two intermediate configurations, B̄ and B̂. A

schematic illustrating these configurations can be found in Ref. [35].

In metals and metallic alloys, the elastic strains are typically many orders in

magnitude smaller than the plastic strains in fully-developed plasticity (macro-

scopic strains exceeding 2%). By using the small strain assumption, the elastic

stretch tensor, V∗, is related to the infinitesimal strain tensor, ε:

V∗ = I + ε (1.10)

where I is the identity tensor.

The crystal constitutive equations are expressed in the B̂ configuration, de-

fined by F̂p = R∗Fp, which is achieved by elastically unloading without rotation

from the current configuration, B. The constitutive relations for the elastic and
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plastic response of a crystal can be written separately. The elastic response is

a linear relation between the the Kirchhoff stress, τ, and the elastic strain, ε, as

shown in Equation (1.6).

The plastic velocity gradient, L̂p, can be decomposed into its symmetric and

skew-symmetric parts:

L̂p = ˙̂FpF̂p−1 = D̂p + Ŵp (1.11)

Plastic deformation occurs by crystallographic slip on a restricted number of

slip systems. For each slip system α, a slip direction, ŝα, and a slip plane normal,

m̂α, are defined in the B̂ coonfiguration. Introducing the contributions of each

α-slip system in Equation (1.11), the viscoplastic flow rule for crystallographic

slip is expressed as:

D̂p =
∑
α

γ̇αP̂α and Ŵp = Ṙ∗R∗T +
∑
α

γ̇αQ̂α (1.12)

where P̂α = sym(ŝα ⊗ m̂α), Q̂α = skw(ŝα ⊗ m̂α) and γ̇α is the plastic shearing rate

of the α-slip system. The plastic shearing rate on the α-slip system, γ̇α, is related

to the crystal stress through a power law form:

γ̇α = γ̇α0

(
|τα|

gα

) 1
m

sgn(τα) (1.13)

where gα is the slip system strength, γ̇α0 is a reference shear rate and m is the rate

sensitivity of slip. The resolved shear stress, τα, is the projection of the deviatoric

part of the Kirchhoff stress, τ′, on the α-slip system:

τα = τ′ : P̂α (1.14)
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1.4.5 Virtual polycrystals and simulation of uniaxial tensile

tests

A virtual polycrystal in the shape of a cube is instantiated with 2916 rhombic do-

decahedra crystals. The complete rhombic dodecahedra crystals in the interior

of the virtual polycrystal are shown in Figure 1.4 but there are additional partial

crystals that make up the surfaces of the cube which are not shown. The virtual

polycrystal is made up of a total of 192000 finite elements. A rhombic dodeca-

hedra crystal has 12 faces and consists of 48 10-node tetrahedra finite elements

which are assigned the same initial lattice orientation. The initial orientations of

all the crystals are randomly assigned from a uniform orientation distribution

function (ODF). The orientations of the finite elements that constitute a crystal

are allowed to evolve independently as the deformation proceeds. The crystals

have the fcc crystal structure which deform by crystallographic slip on {111} slip

planes in 〈110〉 slip directions. This finite element mesh is used in all the simula-

tions in this study. Uniaxial tension loading boundary conditions are applied to

the finite element mesh. A constant axial velocity is applied on the top Z surface

of the mesh, while the bottom Z surface is constrained in the Z-direction. The

two positive X and Y surfaces of the mesh are traction-free, while the X=0 and

Y=0 surfaces have a symmetry boundary condition imposed.

The suite of simulations conducted involves varying the single crystal elas-

tic anisotropy, rE, while keeping all other input parameters fixed. The initial

slip system strength of all the crystals are assigned the same value, while the

slip hardening parameters are kept constant and rE is varied. The different lev-

els of rE examined in this suite of simulations are shown in Table 1.1 and the

slip system hardening model parameters used are shown in Table 1.2. The vir-
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Figure 1.4: Interior of the virtual polycrystal showing the complete rhom-
bic dodecahedra crystals. The XYZ coordinate system is the
specimen coordinate system.

tual polycrystal is loaded monotonically until the macroscopic nominal stress

reaches 580 MPa. The macroscopic nominal stress of 580 MPa corresponds to

approximately a macroscopic true stress of 640 MPa.

h0 (MPa) g0 (MPa) gs0 (MPa) m m′ γ̇0 (s−1) γ̇s0 (s−1)
200 235 350 0.02 0.0 1.0 5 × 1010

Table 1.2: Slip system hardening model parameters used in all the simula-
tions.

The parametric study has also been conducted on a smaller finite element

mesh with 1098 complete dodecahedra crystals and 81000 finite elements. The

results for the smaller virtual polycrystal mesh are consistent with the results

corresponding to the larger mesh. This indicates that the number of crystals in

both meshes are sufficient to obtain statistically relevant information. In addi-

tion, simulations were conducted without slip system strengthening and reori-

entation of the crystals. The simulation results without slip system strengthen-

ing and reorientation are consistent with the simulation results with slip system

strengthening and reorientation up to the end of the elastic-plastic transition

regime.

The first step in post-processing the simulation data is to determine the ele-
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ments in the finite element mesh with orientations which correspond to one of

the four crystallographic fibers shown in Figure 1.3. There are 24 symmetry op-

erations for the cubic crystal type, Rsym, and when applied to the crystal plane

normal {hkl} = c, result in crystal directions that are indistinguishable from the

original crystal direction:

csym = Rsymc (1.15)

The angle between the crystal directions, csym, and the specimen loading direc-

tion, s, is computed as:

θ = cos−1(csym · s) (1.16)

The minimum value of θ for all csym, θc, is taken to be the misorientation an-

gle between the crystal {hkl} plane normal and the specimen direction s. To

determine whether a crystal belongs to a crystallographic fiber, the angle θc as-

sociated with a crystal must be less than a critical angle, θcrit:

θc < θcrit (1.17)

The angle θcrit must be large enough to encompass a statistically significant num-

ber of crystals contributing to each crystallographic fiber, but small enough to

exclude crystals that do not satisfy the diffraction condition. Values for θcrit of 2◦,

3◦ and 5◦ were used to determine whether a crystal belongs to a particular crys-

tallographic fiber. The results presented in Section 1.5 correspond to θcrit = 3◦

for the finite element mesh with 2916 crystals and 192000 elements.

The results corresponding to the three different values of θcrit show similar

trends, although the results corresponding to θcrit = 2◦ show some discontinu-

ities in the evolution of certain crystal quantities which are averaged along a

crystallographic fiber. The discontinuities indicate that there may be insuffi-
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cient crystals contributing to a crystallographic fiber to provide statistically sig-

nificant information comparable to diffraction measurements on polycrystals.

1.5 Results

Simulations have been conducted on the virtual polycrystal under uniaxial ten-

sile loading for different levels of the single crystal elastic anisotropy, rE, re-

ported in Table 1.1. The initial slip system strengths and the slip hardening

parameters have the same values across all simulations. The goal of this suite

of simulations is not to attempt to compare the lattice strain simulation results

with experimental measurements for different materials, but to use the suite of

simulations to examine solely the influence of single crystal elastic anisotropy

on the evolution of the lattice strains.

Section 1.5.1 shows the nominal and true macroscopic stress-strain curves

for two values of rE: rE = 1.0, which corresponds to elastically isotropic sin-

gle crystals, and rE = 3.0, which corresponds to highly elastically anisotropic

single crystals. The evolution of the lattice strains and the plastic deforma-

tion rate magnitudes for crystals belonging to different crystallographic fibers

are presented in Section 1.5.2. The stress distributions of the polycrystal over

Rodrigues space at various stages of the deformation are discussed in Sec-

tion 1.5.3.

1.5.1 Macroscopic stress-strain curve

The nominal and true macroscopic stress-strain curves are shown in Figure 1.5

for two values of rE: rE = 1.0 and rE = 3.0. The single crystal elastic anisotropy,

rE, is varied such that the macroscopic Young’s modulus (slope of the elas-

20



tic portion of the macroscopic stress-strain curve) is constant for all values of

rE under consideration. As seen in Figure 1.5, rE influences the macroscopic

stress-strain behavior, particularly in the elastic-plastic transition regime. In

fully-developed plasticity (macroscopic strains exceeding 2%), the macroscopic

strains are slightly larger for lower values of rE at the same macroscopic stress.
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Figure 1.5: Nominal and true macroscopic stress-strain curves for rE = 1.0
and rE = 3.0.

1.5.2 Evolution of the lattice strains

The lattice strain, ε{hkl}, and the plastic deformation rate magnitude, Dp
{hkl}, are

presented for the {hkl} || [001] crystallographic fibers shown in Figure 1.3. The

lattice strain, ε{hkl}, is the normal component of the elastic strain tensor parallel to

the specimen loading direction [001]. The subscript {hkl} denotes that the quan-

tity is averaged among all crystals belonging to the {hkl} || [001] crystallographic

fiber. As the [001] specimen direction is the only specimen direction considered

in the analysis, the notations {hkl} || [001] and {hkl} are used interchangeably. The

plastic deformation rate, D̂p, is a second-order tensor which is computed using

Equation (1.12). Since plastic flow in the material an isochoric process, D̂p can
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be expressed as a deviatoric 5-vector, D̂′p. For notational simplicity, the plastic

deformation rate magnitude will be denoted as Dp = ||D̂′p||.

The lattice strains, ε{hkl}, and the plastic deformation rate magnitude, Dp
{hkl},

are plotted as a function of the macroscopic true stress for increasing levels of

the single crystal elastic anisotropy, rE, in Figures 1.6–1.9. A rapid increase in

Dp
{hkl} indicates that on average, the crystals belonging to the {hkl} || [001] crys-

tallographic fiber have yielded and plastic flow has commenced among these

crystals. Although simulations were conducted for all the different values of rE

specified in Table 1.1, only results for select cases of rE are shown in this section.

The results presented here correspond to a value of θcrit = 3◦. The evolution

of the plastic deformation rate magnitude exhibits some discontinuities when

θcrit = 2◦, although the macroscopic stress at which crystals associated with a

crystallographic fiber begin to yield on average is not affected within the range

of θcrit values examined. The peak value of the plastic deformation rate magni-

tude is also influenced slightly by the value of θcrit, but the macroscopic stress at

which a rapid increase in the plastic deformation rate magnitude occurs is not

affected by the value of θcrit within the range of values examined.

Elastic response

The lattice strains in the elastic regime are first considered for the results shown

in Figures 1.6–1.9. The lattice strains for the case where the crystals are elasti-

cally isotropic (rE = 1.0) are shown in Figure 1.6(a). The lattice strains for all

{hkl}s have the same magnitude in the elastic regime when rE = 1.0, which is

expected for an elastically isotropic material.

As the value of rE is increased above rE = 1.0, the spread increases between

the lattice strains for different {hkl}s in the elastic regime, as evident in Fig-
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ures 1.6(a), 1.7(a), 1.8(a) and 1.9(a). The relative magnitudes of the lattice strains

in the elastic regime follow the same order as the relative magnitudes of the di-

rectional elastic stiffness of a single crystal. The computation of the directional

elastic stiffness is described in more detail in Section 1.6.2. The 〈111〉 crystal

direction is the stiffest direction and the 〈100〉 crystal direction is the most com-

pliant direction, which is reflected in the relative magnitudes of the {111} and

{100} lattice strains.

The plastic deformation rate magnitudes in the elastic regime are zero for

all the {hkl}s because no plastic flow occurs in the elastic regime (by definition).

However, a rapid increase in the plastic deformation rate magnitude occurs at

different levels of the macroscopic stress for crystals belonging to different {hkl}

fibers, which indicates that the crystals belonging to different {hkl} fibers yield

on average at different levels of the macroscopic stress.
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(a) Lattice strains for rE = 1.0
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Figure 1.6: Lattice strain, ε{hkl}, and plastic deformation rate magnitude,
Dp
{hkl}, as a function of the macroscopic true stress for rE = 1.0.

LD is the loading direction which is also the [001] specimen
direction.
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(a) Lattice strains for rE = 1.4
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(b) Plastic deformation rate magnitudes for
rE = 1.4

Figure 1.7: Lattice strain, ε{hkl}, and plastic deformation rate magnitude,
Dp
{hkl}, as a function of the macroscopic true stress for rE = 1.4.

LD is the loading direction which is also the [001] specimen
direction.
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(a) Lattice strains for rE = 2.0
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(b) Plastic deformation rate magnitudes for
rE = 2.0

Figure 1.8: Lattice strain, ε{hkl}, and plastic deformation rate magnitude,
Dp
{hkl}, as a function of the macroscopic true stress for rE = 2.0.

LD is the loading direction which is also the [001] specimen
direction.

Elastic-plastic transition

For rE = 1.0, the lattice strains for all {hkl}s have the same magnitude in the elas-

tic regime but once yielding begins and plastic deformation occurs, the lattice
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(a) Lattice strains for rE = 3.0
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Figure 1.9: Lattice strain, ε{hkl}, and plastic deformation rate magnitude,
Dp
{hkl}, as a function of the macroscopic true stress for rE = 3.0.

LD is the loading direction which is also the [001] specimen
direction.

strains for different {hkl}s begin diverging in the elastic-plastic transition regime

(Figure 1.6(a)). The separation between lattice strains continues into the fully-

developed plasticity regime. The fully-developed plastic regime is the stage of

the deformation where the crystals have activated sufficient slip systems such

that the plastic part of the deformation rate, Dp, is equal to the total deformation

rate, D, (Dp = D). Although the crystals are elastically isotropic for rE = 1.0,

Figure 1.6(b) demonstrates that there is also plastic or yield strength anisotropy

because on average, crystals belonging to different crystallographic fibers yield

at different levels of the macroscopic stress. The {111} lattice strains rise above

the other {hkl} lattice strains in the plastic regime and this is accompanied by

crystals belonging to the {111} fiber yielding on average at a relatively higher

macroscopic stress compared to crystals belonging to other fibers (Figure 1.6(b)).

The crystals belonging to other fibers yield at approximately the same macro-

scopic stress level and yielding is accompanied by a downward inflection of the

lattice strains in the elastic-plastic transition regime, as apparent in Figure 1.6(a).
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The lattice strains and plastic deformation rate magnitudes for rE = 1.4, 2.0

and 3.0 are shown in Figures 1.7–1.9. As the value of rE is increased above

rE = 1.0, the lattice strains are influenced by a combination of the elastic and

plastic anisotropies which results in different behaviors in the elastic-plastic

transition regime. Examining first the lattice strains for rE = 1.4 (Figure 1.7(a)),

the {110} and {311} lattice strains exhibit a downward inflection in the elastic-

plastic transition regime which is accompanied by crystals belonging to the

{110} and {311} fibers yielding on average at a lower macroscopic stress (Fig-

ure 1.7(b)). The crystals belonging to the {100} fiber yield on average at a higher

macroscopic stress than the crystals belonging to either the {110} or {311} fibers.

Initially the {100} lattice strains exhibit an upward inflection in the elastic-plastic

transition when the {110} and {311} lattice strains exhibit a downward inflection.

However, when the crystals belonging to the {100} fiber yield, the {100} lattice

strains exhibit a downward inflection. The crystals belonging to the {111} fiber

for rE = 1.4 yield on average at the highest macroscopic stress and therefore

only the {111} lattice strains exhibit an upward inflection in the elastic-plastic

transition regime.

A qualitative difference in the relative behaviors of the crystals of the {100}

fiber and the crystals of the {111} fiber occurs at rE = 2.0 (Figure 1.8). At this

value of rE, the crystals belonging to the {100} and {111} fibers yield on av-

erage at approximately the same macroscopic stress and the {100} and {111}

lattice strains both exhibit an upward inflection in the elastic-plastic transition

regime (Figure 1.8(a)). Below rE = 2.0, crystals of the {100} fiber on average

will yield before those of the {111} fiber; above rE = 2.0, the opposite is true.

The crystals of the {110} and {311} fibers yield on average at a relatively lower

macroscopic stress and the {110} lattice strains experience a downward inflec-
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tion in the elastic-plastic transition regime, but the downward inflection is less

obvious for the {311} lattice strains. In general, the {311} lattice strains are ap-

proximately linear with increasing macroscopic stress even after yielding for

the range of rE of rE = 1.0 to rE = 3.0 possibly due to the high multiplicity of the

{311} crystal plane normal.

For rE = 3.0, the {100} lattice strains rise significantly above the lattice strains

exhibited by the other {hkl}s in the elastic-plastic transition leading up to fully-

developed plasticity (Figure 1.9(a)). This is also accompanied by the crystals be-

longing to the {100} fiber yielding on average at the highest macroscopic stress

compared to crystals belonging to other fibers. The crystals belonging to the

{110} fiber yield on average at the lowest macroscopic stress compared to crys-

tals belonging to other fibers. Yielding of the crystals belonging to the {110}

fiber is accompanied by a downward inflection of the {110} lattice strains in the

elastic-plastic transition. The {111} and {311} lattice strains exhibit an approxi-

mately linear response with increasing macroscopic stress even after yielding.

The upward inflection of the {100} lattice strains is enhanced as rE is in-

creased and this phenomenon is accompanied by an increase in the macroscopic

stress at which the crystals belonging to the {100} fiber begin to yield on average

(Figures 1.6(b), 1.7(b), 1.8(b) and 1.9(b)). Conversely, the downward inflection in

the {111} lattice strains is suppressed as rE is increased and it is accompanied by

the decrease in the macroscopic stress at which crystals belonging to the {111}

fiber begin to yield on average.

Fully-developed plasticity

For rE = 1.0, it is observed that {111} lattice strains rise above the other {hkl}

lattice strains while the {100} lattice strains have the smallest magnitude com-
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pared to lattice strains exhibited by the other {hkl}s in the elastic-plastic tran-

sition through fully-developed plasticity (Figure 1.6(a)). In general, as rE in-

creases, the magnitude of the {111} lattice strains in the fully-developed plastic-

ity regime decreases while the magnitude of the {100} lattice strains increases

in the fully-developed plasticity regime. For rE = 1.0, the {111} lattice strains

are above the lattice strains of the other {hkl}s in the plastic regime whereas for

rE = 3.0, the {100} lattice strains are above the lattice strains of the other {hkl}s.

For a given fiber, the plastic deformation rate magnitude at the maximum level

of the macroscopic stress in fully-developed plasticity appears to be indepen-

dent of rE, as seen in Figures 1.6(b), 1.7(b), 1.8(b) and 1.9(b).

In Section 1.6, we demonstrate how the combination of the elastic and plastic

properties, which is quantified by the directional strength-to-stiffness ratio, can

be used to explain the lattice strain behavior and the average macroscopic stress

at which crystals belonging to a crystallographic fiber begins to yield.

1.5.3 Evolution of the stress distribution

It is known that in the limit of fully-developed plasticity, the crystal stress ten-

sors of the polycrystal under uniaxial tensile loading rotate towards the vertices

of the single crystal yield surface [2, 38]. The single crystal yield surface is the

yield condition expressed in stress space [39]. A facet of the yield surface is

the yield condition for a single slip system, while a vertex is the intersection of

at least five slip systems. Face-centered cubic crystals typically have 6–8 slip

systems intersecting at a vertex. The crystal stress state moves toward a ver-

tex of the yield surface because the yield surface vertices can accommodate an

arbitrary strain state due to the activation of multiple slip systems at a vertex.

While differences in the single crystal elastic anisotropy leads to differences
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in the crystal stress distribution of a polycrystal in the elastic regime, the stress

distribution in fully-developed plasticity is not influenced by the single crystal

elastic anisotropy. In the limit of fully-developed plasticity, the crystal stresses

are highly dependent on the orientation of the crystals because the crystal ori-

entations determine the preferred vertex stresses of the crystals [2].

The stress distribution is examined at three stages of the deformation un-

der uniaxial tension: the elastic regime, the elastic-plastic transition, and fully-

developed plasticity regime. The three stages of the deformation are shown

as points on the macroscopic true stress-strain curve in Figure 1.10. Although

macroscopic stress-strain responses for rE = 1.0 and rE = 3.0 are similar, the

macroscopic strain that is achieved at the target macroscopic stress of 640 MPa

is slightly smaller for rE = 3.0.
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Figure 1.10: Macroscopic true stress-strain curves for rE = 1.0 and rE = 3.0.
The points on the curve are at 300 MPa, 500 MPa and 640
MPa which correspond to the linear elastic regime, the elastic-
plastic transition regime and the fully-developed plasticity
regime respectively.

The axial component of the Cauchy stress, σzz, in the specimen coordinate

frame is plotted as a function of the Rodrigues vector, r, over the fundamental

region of Rodrigues space in Figure 1.11. The σzz(r) stress distribution for two

29



different values of rE are shown at the different stages of the deformation, which

are denoted in Figure 1.10. The distributions of the other components of the

stress tensor have been examined and found to have similar trends as the σzz(r)

stress distributions at the different stages of the deformation.

The axial stress distribution in the elastic regime reflects the difference in rE,

as seen for rE = 1.0 in Figure 1.11(a) and rE = 3.0 in Figure 1.11(b) at 300 MPa.

For rE = 1.0, the crystals are elastically isotropic and therefore all crystal orien-

tations have the same stress in the elastic regime. For rE = 3.0, the 〈100〉 crys-

tal direction is the most compliant and the 〈111〉 crystal direction is the stiffest

crystal direction. The location of the {100} and {111} crystallographic fibers are

shown in Figure 1.3 and the {100} fiber has relatively low axial stress while the

{111} fiber has relatively high axial stress. The variability in the stress along a

fiber is due to the effect of neighboring crystals.

As the crystals begin yielding in the elastic-plastic transition regime and load

redistribution occurs between the crystals, anisotropy in the stress distribution

for rE = 1.0 at 500 MPa appears but there are still differences between the stress

distributions for rE = 1.0 and rE = 3.0 at this stage of the deformation as shown

in Figures 1.11(c) and 1.11(d). The stress distributions in fully-developed plas-

ticity are shown in Figures 1.11(e) and 1.11(f). The stress distributions are very

similar for these two values of rE because the stress distributions are determined

by the vertex stresses of the single crystal yield surface. Crystals belonging to

certain crystallographic fibers have preferred families of vertex stresses [2].
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Figure 1.11: Axial stress distribution, σzz, over the fundamental region.
The stress distributions correspond to the macroscopic axial
stress levels shown in Figure 1.10.

1.6 Role of strength-to-stiffness

In this section, we demonstrate the role of the strength-to-stiffness ratio in de-

termining the evolution of the orientation-dependent lattice strains through the

elastic-plastic transition regime and the macroscopic stress level at which yield-

ing begins on average for the crystals belonging to a particular crystallographic

fiber.
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The hypothesis is that the average directional strength-to-stiffness ratio of

the crystals associated with a crystallographic fiber is a good indicator of the

relative order of yielding: crystals associated with a crystallographic fiber with

higher average strength-to-stiffness should yield at a higher macroscopic stress

and conversely, crystals associated with a crystallographic fiber with lower

strength-to-stiffness should yield at a lower macroscopic stress.

In Section 1.6.1, a simple structural analog is first introduced to demon-

strate the concept of the strength-to-stiffness ratio for two materials with dif-

ferent elastic and plastic properties. This structural analog can be used to show

that load accommodation occurs between materials or crystals with different

strength-to-stiffness ratios. The directional strength-to-stiffness ratio, rS , for a

single crystal and a crystallographic fiber, are introduced in Section 1.6.2 and

Section 1.6.3, respectively. The directional strength-to-stiffness ratio is used to

explain the lattice strains and yield behavior of crystals associated with differ-

ent crystallographic fibers under uniaxial tensile loading. The average stress

tensor of the crystals belonging to a crystallographic fiber is also examined in

Section 1.6.4.

1.6.1 Structural analog

An isostrain structural analog is used illustrate the concept of the strength-to-

stiffness ratio. Consider two blocks with identical dimensions but with different

Young’s modulus (E1 and E2) and different yield strengths (Y1 and Y2) loaded

in compression between two rigid plates, as shown in Figure 1.12(a). The two

materials are assumed to have elastic-perfectly plastic behavior. The blocks ex-

perience identical displacement, and therefore identical strains as well.

Because Material 1 has a lower yield strength, we might expect it to yield
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E = 10 GPa
Y/E = 0.004

Load

Material 2

Y = 90 MPa
E = 30 GPa
Y/E = 0.003

(a)

E1

E2

Y2

Y1

Stress 
component

Total strain

(b)

Displacement

Load

Material 1 yields

Material 2 yields

(c)

Material 1

Material 2

Elastic 
strain 

component

Total stress
(            ) Y2
E1+E2

E2
Y1+Y2

(d)

Figure 1.12: (a) Two blocks of identical dimensions but of different mate-
rials are loaded in compression between rigid plates which
result in an isostrain condition for the two materials; (b) In-
dividual stress-strain response of each material. Material 2
achieves its yield strength before Material 1 under the same
strain even though Material 2 has the higher yield strength;
(c) Combined load-displacement response of the whole sys-
tem; (d) Elastic strain for each material as a function of the
total stress of the whole system. Initially before either mate-
rial yields, they both have the same elastic strain.

before Material 2. Figure 1.12(b) is a schematic showing the individual stress-

strain response of each material. Under the same strain, Material 2 yields first

because by having a higher Young’s modulus it reaches its yield strength before

Material 1, as shown in Figure 1.12(b). This behavior indicates that the Young’s

modulus, in addition to the yield strength, determines the relative order the
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two materials will yield. Material 2, in fact, has the lower strength-to-stiffness

(Y/E) ratio and it yields before Material 1. Material 1 has the higher strength-

to-stiffness ratio even though it has lower yield strength. Therefore, high Y/E

ratio leads to the material yielding relatively later in a system having elements

whose values of Y/E differ.

The combined load-displacement response for the whole system is shown in

Figure 1.12(c). Once Material 2 yields, the effective stiffness of the whole system

decreases, which causes the slope of the load-displacement curve to decrease.

Because the materials have elastic-perfectly plastic responses, the displacement

continues to increase with no increase in load after both materials have yielded.

The individual elastic strain response is plotted as a function of the total stress

of the whole system in Figure 1.12(d). Both materials experience the same elas-

tic strain up to the point where Material 2 yields. Once Material 2 yields, any

additional strain it accumulates is due to plastic strain. After Material 2 yields,

Material 1 carries relatively more elastic strain than before Material 2 yielded

which demonstrates that load redistribution occurs between the two materials

after one of the materials yields.

An isostress structural analog is also considered, where the same two blocks

of different materials are arranged in series instead and the whole system is

loaded in compression between two rigid plates. Both blocks experience the

same axial stress in this configuration. The isostress case is less interesting be-

cause the order in which the two different materials yield is determined solely

by the relative magnitudes of the yield strength of the materials.

Individual crystals within a polycrystal, due to the effect of neighboring

crystals, exhibit yielding behavior somewhere between isostress and isostrain

conditions. Comparing Figure 1.12(d) to the lattice strains shown in Fig-

34



ures 1.6(a), 1.7(a), 1.8(a) and 1.9(a), an upward inflection exhibited by the lat-

tice strains of the {hkl} fiber in the elastic-plastic transition is due to the crystals

belonging to the {hkl} fiber yielding later on average. The structural analog in-

dicates that crystals belonging to the fiber that yields relatively later on average

are associated with higher strength-to-stiffness ratio compared to crystals be-

longing to other fibers. For rE = 1.0, where the crystals are elastically isotropic,

Figure 1.6(b) demonstrates that the average strengths of crystals belonging to

different fibers are different. As the single crystal elastic anisotropy is increased,

the average elastic stiffnesses of the crystals belonging to different fibers varies,

which changes the relative values of the strength-to-stiffness ratio between crys-

tals belonging to different fibers. The directional strength-to-stiffness ratio of the

fibers determines the order in which crystals belonging to a fiber yield relative

to crystals belonging to other fibers.

1.6.2 Directional strength-to-stiffness ratio for a single crystal

For single crystals that exhibit anisotropy in the elastic and plastic behavior, we

can quantify the directional strength-to-stiffness ratio under uniaxial tension ap-

plied in different directions relative to the crystal lattice. Consider a single cubic

crystal with a uniaxial stress component in the the d direction of the crystal lat-

tice, where d is a function of the angles θ and φ. The crystal coordinate system

is aligned with the three perpendicular directions of the crystal lattice and is

denoted by the 123 coordinate axes shown in Figure 1.13. The uniaxial stress

component in the d direction, τd, is defined in the d2̂3̂ coordinate system. The

rotation that aligns the 123 coordinate axes to the d2̂3̂ coordinate axes is a rota-

tion of θ about the 3 axis, followed by a rotation of φ about the 2̂ axis. For cubic

symmetry, we need only consider the rotation that aligns the 1 axis with the d
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direction.

3
3̂

1

2

2̂
d

Figure 1.13: Cubic crystal lattice with the uniaxial stress component in the
d direction, τd. The 123 coordinate system is aligned with the
edges of the crystal lattice, while the stress tensor with the
uniaxial stress component in the d direction is defined in the
d2̂3̂ coordinate system.

The slip systems of a crystal are specified by its crystal structure; fcc crystals

have {111}〈110〉 slip systems. The resolved shear stress, τα, on a slip system

is computed as in Equation (1.14). The maximum value of the resolved shear

stress among all the slip systems for a given d, τ∗d, normalized by the uniaxial

stress component in the d direction, τd, results in the Schmid factor [40]:

md =
τ∗d
τd
≡

max |τα(d)|
τd

(1.18)

The Schmid factor is plotted over the fundamental orientation triangle as a

function of the angles θ and φ in Figure 1.14(a). The Schmid factor quantifies the

propensity of a single crystal to yield under an applied uniaxial stress state in a

specified direction d. A high value of the Schmid factor indicates that the crystal

direction is associated with low strength and will yield earlier. Conversely, low

values of the Schmid factor correspond to directions d where the slip systems

are not favorably oriented for slip and are associated with high strength. The

36



Schmid factor is independent of the elastic properties of the crystal. The direc-

tional strength measure, S crys
d , for the direction d of a single crystal is therefore

defined as:

S crys
d =

1
md

(1.19)

The superscript, crys, denotes that the directional strength measure is computed

for a single crystal under uniaxial tension.

We now define the directional elastic stiffness for a single crystal. Increasing

the value of rE increases the difference between the directional elastic stiffnesses

in the 〈100〉 and 〈111〉 crystal directions. The appropriate directional stiffness

measure for a single crystal with the uniaxial stress component in the direction

d is:

Ecrys
d =

τd

εd
(1.20)

where εd is the strain component in the d direction. The derivation of εd from τd

and the single crystal elastic moduli is detailed in appendix B. The single crystal

directional stiffness over the fundamental orientation triangle is shown for the

single crystal elastic moduli of pure aluminum (rE = 1.2) in Figure 1.14(b). The

directional stiffness, Ecrys
d , has units of GPa.

Combining Equations (1.19) and (1.20), the directional strength-to-stiffness

ratio, rcrys
S ,d , for a single crystal under a uniaxial stress state is defined as:

rcrys
S ,d =

S crys
d

Ecrys
d

(1.21)

The directional strength-to-stiffness ratios, rcrys
S ,d , for a single crystal under uniax-

ial stress state for two levels of the single crystal elastic anisotropy, rE = 1.0 and

rE = 3.0 are shown in Figures 1.14(c) and 1.14(d), respectively. Crystal directions

of interest that correspond to the crystallographic fibers shown in Figure 1.3 are

indicated on the fundamental orientation triangle in Figures 1.14(c) and 1.14(d).
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For rE = 1.0, the directional strength-to-stiffness shown in Figure 1.14(c) is the

inverse of the Schmid factor shown in Figure 1.14(a) because the crystal is elas-

tically isotropic. For rE = 1.0, the 〈111〉 direction has the highest strength-to-

stiffness ratio. For rE = 3.0, the directional strength-to-stiffness ratio is shown

in Figure 1.14(d) and the 〈100〉 direction has the highest directional strength-to-

stiffness ratio instead.
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Figure 1.14: (a) Schmid factor, md, for fcc crystals plotted on the funda-
mental orientation triangle. (b) Directional elastic stiffness,
Ecrys

d , for pure aluminum (rE = 1.2) plotted on the fundamental
orientation triangle. (c) Directional strength-to-stiffness ratio,
rcrys

s,d , for rE = 1.0. (d) Directional strength-to-stiffness ratio,
rcrys

s,d , for rE = 3.0.
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Figure 1.15 shows the directional strength-to-stiffness corresponding to sev-

eral 〈hkl〉 directions of interest for increasing values of rE. The directional

strength-to-stiffness values shown in Figure 1.15 are computed using the sin-

gle crystal elastic moduli in Table 1.1. As rE increases, the strength-to-stiffness

of the 〈100〉 direction increases while the strength-to-stiffness of the 〈111〉 direc-

tion decreases. The strength-to-stiffness of the 〈110〉 direction remains approxi-

mately at the same level as rE increases and the strength-to-stiffness of the 〈311〉

direction increases slightly with rE.
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Figure 1.15: Directional strength-to-stiffness ratio, rcrys
S ,〈hkl〉, computed for a

single crystal under uniaxial tension.

The lattice strains and plastic deformation rate magnitudes shown in Fig-

ures 1.7–1.9 are averaged among crystals belonging to the {hkl} fibers and these

crystals do not necessarily have uniaxial stress states due to the interactions be-

tween neighboring crystals. For rE = 1.0, however, the macroscopic stress and

the crystal level stress are the same in the elastic regime because of the isotropic

nature of the elastic response. Therefore, the directional strength-to-stiffness

ratio should predict exactly which sets of crystals belonging to the crystallo-
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graphic fibers will yield first for rE = 1.0. Figure 1.6(b) shows that crystals be-

longing to {311} fiber yield on average at the lowest macroscopic stress while

the crystals belonging to the {111} fiber yield on average at a much higher

macroscopic stress relative to crystals belonging to other fibers. The crystals

belonging to {100} and {110} fibers yield on average at approximately the same

macroscopic stress. Comparing the average macroscopic stress at which crystals

belonging to different fibers yield (Figure 1.6(b)) to the directional strength-to-

stiffness (Figure 1.15) for rE = 1.0, crystals belonging to fibers with relatively

higher strength-to-stiffness yield at higher macroscopic stresses while crystals

belonging to fibers with relatively lower strength-to-stiffness yield at lower

macroscopic stresses.

Although elastically anisotropic crystals in the polycrystal may not exhibit

uniaxial stress states, we will examine the directional strength-to-stiffness ratio

of a single crystal under uniaxial tension in relation to the average macroscopic

stress at which crystals belonging to a fiber begin to yield. The most prominent

trend that is observed is that rcrys
S ,〈100〉 increases with increasing rE, while rcrys

S ,〈111〉

decreases with increasing rE, as shown in Figure 1.15. With increasing rE, the

macroscopic stress at which the crystals belonging to the {100} fiber yield on

average increases relative to crystals belonging to other fibers. In contrast, the

macroscopic stress at which crystals belonging to the {111} fiber yield on av-

erage decreases relative to crystals belonging to other fibers. These trends are

evident in Figures 1.6(b), 1.7(b), 1.8(b) and 1.9(b). There is less change in the

average macroscopic yield stress of the crystals belonging {110} and {311} fibers

with increasing rE, which is reflected in the values of rcrys
S ,〈110〉 and rcrys

S ,〈311〉 with in-

creasing rE.

The single crystal directional strength-to-stiffness is generally able to pre-
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dict that increasing strength-to-stiffness corresponds to increasing macroscopic

stress at which crystals belonging to a fiber yield on average, and that decreas-

ing strength-to-stiffness corresponds to decreasing macroscopic stress at which

crystals belonging to a fiber yield on average. For rE = 1.5, the single crys-

tal directional strength-to-stiffness for the 〈100〉 and 〈111〉 directions have simi-

lar values, as evident in Figure 1.15. However, crystals belonging to {100} and

{111} fibers yield on average at approximately the same macroscopic stress when

rE = 2.0, as evident in Figure 1.8(b). This indicates that in general, the simple an-

alytical model of a single crystal under uniaxial tension is able to predict which

crystals belonging to a fiber will yield first at low and high values of rE, such as

for rE = 1.0 and rE = 3.0, rather than at moderate values of rE, such as rE = 1.5.

1.6.3 Directional strength-to-stiffness ratio for a crystallo-

graphic fiber of the polycrystal

The computation of a directional strength-to-stiffness ratio for a crystallographic

fiber is complicated by the fact that the crystals in the virtual polycrystal that

belong to a crystallographic fiber do not necessarily exhibit uniaxial stress states.

The plastic flow rule is computed in Equation (1.12) for each crystal. The

crystal stress drives the rate of shearing on each slip system. The Taylor fac-

tor quantifies the magnitude of the slip system shearing rates relative to the

effective strain rate experienced by the crystal that takes place for the least ex-

penditure of work. The Taylor factor of the {hkl} || [001] crystallographic fiber is

defined as:

Mfiber
{hkl} =

(∑
α |γ̇

α|

Deff

)
{hkl}

(1.22)

where Deff is the effective deformation rate experienced by a crystal. The sub-
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script {hkl} denotes that the quantity is averaged among all crystals belonging

to the {hkl} || [001] crystallographic fiber.

In fully-developed plasticity, plastic flow occurs at a constant rate and the

crystals stresses are expected to be invariant with increasing plastic strain in

the absence of hardening. Crystals with certain orientations will experience

more shearing on the slip systems relative to the strain rate experienced by

the crystal. The Taylor factors computed from the simulation data for differ-

ent crystallographic fibers are shown in Figure 1.16 for rE = 1.0 and rE = 3.0.

It is observed from Figure 1.16 that in fully-developed plasticity, the Taylor

factors corresponding to different crystallographic fibers approach steady-state

values. The Taylor factors vary between the two levels of elastic anisotropy in

the elastic-plastic transition regime but at relatively large macroscopic strains

in fully-developed plasticity, the Taylor factors are independent of the elastic

anisotropy. Since the simulation is run under load control, the macroscopic

strains achieved at the final target load are different between the two values

of rE, as shown in Figure 1.16.

The directional strength of the {hkl} || [001] crystallographic fiber, S fiber
{hkl} , is de-

fined as the steady-state value of the Taylor factor achieved in fully-developed

plasticity. The average directional strength of the crystals belonging to a crys-

tallographic fiber is taken as the final value of the Taylor factor achieved at the

nominal macroscopic stress of 580 MPa, which is the maximum engineering

macroscopic stress in the simulation.

S fiber
{hkl} = Mfiber

{hkl} in fully-developed plasticity (1.23)

The directional stiffness for a crystallographic fiber is computed using the

same definition as the single crystal definition in Equation (1.20). The compo-

nents of the Kirchhoff stress for the crystals belonging to each crystallographic
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Figure 1.16: The Taylor factor, Mfiber
{hkl} , for different crystallographic fibers

at two levels of the single crystal elastic anisotropy, rE. The
abscissa corresponds to the macroscopic true strain. In fully-
developed plasticity, the Taylor factors approach a steady-
state value and are independent of the single crystal elastic
anisotropy.

fiber are transformed to the specimen coordinate system. Since the uniaxial

tensile loading is applied in the specimen Z direction, the elastic stiffness for

each crystal is computed as the ratio of the Kirchhoff stress component in the Z-

direction to the elastic strain component in the Z-direction, and then averaged

for all crystals belonging to the crystallographic fiber in the elastic regime:

Efiber
{hkl} =

(
τzz

εzz

)
{hkl}

in the elastic regime (1.24)

where {hkl} denotes that the ratio (τzz/εzz) is computed for each crystal belonging

to the {hkl} || [001] crystallographic fiber, and then averaged among all crystals

belonging to the fiber.

The Kirchhoff stress instead of the Cauchy stress is used in the definition

of the directional elastic stiffness, Efiber
{hkl} , because Efiber

{hkl} will then be independent

of the macroscopic stress in the elastic regime. Recall that the Cauchy stress is

related to the Kirchhoff stress by the equation τ = det(1 + ε)σ. If the Cauchy
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stress is used in the definition of Efiber
{hkl} , the directional elastic stiffness will de-

crease with increasing macroscopic stress in the elastic regime. It is important

to compute a definition of Efiber
{hkl} that is independent of the macroscopic stress in

the elastic regime.

The average value of (τzz/εzz){hkl} for a crystallographic fiber is plotted as a

function of the macroscopic stress for rE = 1.0 and rE = 3.0 in Figure 1.17. As

expected, the values of (τzz/εzz){hkl} are constant in the elastic regime. Once yield-

ing begins, load redistribution occurs between crystals belonging to different

crystallographic fibers and the values of (τzz/εzz){hkl} are no longer constant. The

directional elastic stiffness for a fiber, Efiber
{hkl} , is therefore only valid in the elastic

regime before yielding occurs.
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Figure 1.17: (τzz/εzz){hkl} for different crystallographic fibers at two levels
of the single crystal elastic anisotropy, rE. The abscissa corre-
sponds to the macroscopic true stress.

Combining Equations (1.23) and (1.24), the resulting definition of the direc-

tional strength-to-stiffness ratio of a crystallographic fiber is:

rfiber
S ,{hkl} =

S fiber
{hkl}

Efiber
{hkl}

(1.25)

The average directional strength-to-stiffness ratio is computed for the crystals
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belonging to a fiber using Equation (1.25) and the resulting values are shown

in Figure 1.18 as a function of the single crystal elastic anisotropy. The error

bars indicate the standard deviation in the strength-to-stiffness ratio among the

crystals belonging to a crystallographic fiber due to the effect of neighboring

crystals. Comparing the directional strength-to-stiffness trends in Figure 1.18 to

the average macroscopic stress at which crystals associated with a fiber begin

to yield (Figures 1.6(b)–1.9(b)), it is observed that the directional strength-to-

stiffness is better at predicting the onset of yielding at extreme values of rE, such

as at rE = 1.0 and rE = 3.0. At moderate values of rE, the difference between

the strength-to-stiffnesses of crystals belonging to the {100} and {111} fibers is

within the standard deviation of the crystals belonging to the fiber. Crystals

belonging to the {100} and {111} fibers have similar strength-to-stiffness values

in the range of rE = 1.4–1.6, as evident in Figure 1.18. This indicates that at

moderate values of rE, the effect of neighboring grains is as significant as the

directional strength-to-stiffness in determining when the crystals begin to yield.
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Figure 1.18: Directional strength-to-stiffness ratio, rfiber
S ,{hkl}, computed for

several crystallographic fibers.
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It is observed that the directional strength-to-stiffness for a single crystal

(Figure 1.15) and the strength-to-stiffness for the crystallographic fiber (Fig-

ure 1.18) appear to have very similar trends. Both rcrys
S ,〈100〉 and rfiber

S ,{100} increase with

increasing rE, while rcrys
S ,〈111〉 and rfiber

S ,{111} both decrease with increasing rE. Although

the single crystal strength-to-stiffness is computed for a single crystal under a

uniaxial stress state while the strength-to-stiffness for a crystallographic fiber

is computed for many crystals which have multiaxial stress states, the trends

in the strength-to-stiffness appear to be very similar between Figure 1.15 and

Figure 1.18. The average of the stress tensor along a fiber is examined in more

detail in the following section.

A suite of simulations have also been conducted for the range of rE = 1.0–3.0

without slip system strengthening and reorientation. The directional strength-

to-stiffness ratio for a crystallographic fiber is not influenced by the rate of

hardening because the directional strength measure, S fiber
{hkl} , in Equation (1.23) is

computed in fully-developed plasticity, while the directional stiffness measure,

Efiber
{hkl} , in Equation (1.24) is computed in the elastic regime only. The results are

not presented here because the exclusion of slip system hardening and reorien-

tation does not significantly change either the order in which crystals belonging

to different fibers yield or the average directional strength-to-stiffness ratios of

the crystals belonging to a fiber.

1.6.4 Average stress of a crystallographic fiber

For the crystals belonging to the {hkl} || [001] crystallographic fiber, the Kirchhoff

stress tensors, τ, of these crystals are averaged to obtain the average Kirchhoff

stress tensor, τfiber, in the specimen coordinate frame. Each component of the

fiber-averaged Kirchhoff stress tensor is normalized by the axial component,
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τfiber
zz . The results are shown in Figures 1.19 and 1.20 for different crystallo-

graphic fibers in the elastic regime and in the fully-developed plasticity regime,

respectively.
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Figure 1.19: Non-axial components of the average Kirchhoff stress ten-
sor for a crystallographic fiber, normalized by the axial stress
component, τfiber

zz , in the elastic regime.

Figure 1.19 shows that the average stress tensor of a crystallographic fiber

in the elastic regime increasingly deviates from a uniaxial stress state as rE in-

creases. The diagonal components, τfiber
xx and τfiber

yy , increase as a proportion of the

axial component, τfiber
zz , with increasing rE, while the shear components are rel-

atively small compared to the diagonal components. The fiber-averaged stress

tensor of the {100} fiber has the largest deviation from a uniaxial stress state

compared to the fiber-averaged stress tensors of the other fibers and this devia-

tion increases with increasing rE. The average volumetric stress of the {100} fiber

increases with rE but the elastic stiffness definition for a fiber, which is shown

in Equation (1.24), only takes into account the Kirchhoff stress and elastic strain
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Figure 1.20: Non-axial components of the average Kirchhoff stress ten-
sor for a crystallographic fiber, normalized by the axial stress
component, τfiber

zz , in the fully-developed plasticity regime.

components in the loading direction. However, the average stress components

of the {111}, {110} and {311} fibers are only a small fraction of the τfiber
zz compo-

nent, which indicates that the fiber-averaged stress tensors do not deviate signif-

icantly from a uniaxial stress state. The results in Figure 1.19 are consistent with

the axial stress distributions, σzz(r), over the fundamental region in the elastic

regime (Figures 1.11(a) and 1.11(b)), which indicates that the stress distributions

are highly dependent on rE in the elastic regime leading up to yielding.

The average stress tensor of a crystallographic fiber, however, does not show

any dependence on the single crystal elastic anisotropy in fully-developed plas-

ticity, as shown in Figure 1.20. The results in Figure 1.20 are consistent with the

axial stress distributions, σzz(r), over the fundamental region in fully-developed

plasticity, which are shown in Figures 1.11(e) and 1.11(f).
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1.7 Conclusion

A suite of finite element simulations was conducted to examine the effect of

varying the single crystal elastic anisotropy on the lattice strain evolution of

a fcc virtual polycrystal under uniaxial tensile loading. The evolution of the

average response of crystals belonging to different crystallographic fibers was

examined in the elastic-plastic transition regime leading up to fully-developed

plasticity. The evolution of the lattice strains show markedly different behaviors

for different values of the single crystal elastic anisotropy because crystals be-

longing to different crystallographic fibers begin yielding on average at different

levels of the macroscopic stress. The orientation dependence of when different

sets of crystals begin to yield on average is due to differences in the directional

strength-to-stiffness ratio of crystals belonging different crystallographic fibers.

The crystal lattice strains demonstrate that yielding is influenced by the com-

bination of the elastic and plastic anisotropies of the crystal. At extremely low

or high values of the single crystal elastic anisotropy, crystals associated with a

fiber with higher average strength-to-stiffness will yield at a higher macroscopic

stress and conversely, crystals associated with a fiber with lower strength-to-

stiffness will yield at a lower macroscopic stress. At moderate values of single

crystal elastic anisotropy, the influence of the directional strength-to-stiffness

ratio is weaker due to the effect of neighboring crystals. Although the onset of

yielding is influenced by the single crystal properties, the stress distribution in

fully-developed plasticity is independent of the single crystal elastic properties.

The stress distribution in fully-developed plasticity is determined by the single

crystal yield surface.
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CHAPTER 2

EVOLUTION OF THE CRYSTAL STRESS DISTRIBUTIONS IN

FACE-CENTERED CUBIC POLYCRYSTALS SUBJECTED TO CYCLIC

LOADING

2.1 Abstract

Due to the heterogeneous nature of polycrystalline metals, the stress distribu-

tion at the crystal level is influenced by the complex interplay of factors such as

the orientations of the crystal lattices, the elastic and plastic mechanical prop-

erties, the interactions between neighboring crystals, and the type of loading

conditions. In this chapter, we investigate the evolution of the crystal scale

stress and elastic strain distributions under cyclic loading. More specifically,

we examine the orientation dependent lattice strains in face-centered cubic (fcc)

polycrystals under fully-reversed, strain-controlled cyclic loading using a cyclic

hardening model implemented within a crystal-based finite element formula-

tion. The directional strength-to-stiffness ratio and the single crystal yield sur-

face (SCYS) topology are used to provide a quantitative explanation of the ob-

served hysteresis behavior when the lattice strains are plotted as a function of

the macroscopic stress. The directional strength-to-stiffness ratio influences the

progression of yielding in the elastic-plastic transition regime, leading to a non-

linear response in the elastic-plastic transition regime and causing hysteresis be-

havior in the macroscopic stress versus lattice strain curves. The lattice strains

after the elastic-plastic transition regime are influenced by the single crystal elas-

tic moduli and the facet/vertex attributes of the SCYS. We found that the same

trends hold in the absence of slip system hardening and in the presence of a

strong rolling texture.
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2.2 Introduction

Recent advances in both diffraction methods and polycrystal deformation mod-

eling have enabled researchers to better quantify stresses and strains at the crys-

tal level. Using diffraction methods it is possible to measure elastic lattice strains

within crystals under in situ loading. With parallel computing and data parallel

implementations of structural codes, it is possible to construct and load poly-

crystalline aggregates with thousands of crystals, each crystal highly resolved

by many finite elements. These advances offer the promise to develop a quanti-

tative link between macroscopic loading and spatial distribution of stress at the

microstructural (crystal) scale under cyclic loading. Crystals within a polycrys-

talline aggregate tend not to share an applied load equally, but rather exhibit

individual and heterogeneous responses that are dependent on the crystallo-

graphic orientation, the single crystal elastic and plastic anisotropy, and the

interactions with neighboring crystals. It is generally accepted that these fac-

tors all play roles in determining crystal-scale stress distributions under cyclic

loading, especially for the regime associated with low-cycle fatigue. However,

a clear explanation is elusive due to the complexities of the modes and mecha-

nisms of cyclic deformations.

To this end, it is instructive to examine the heterogeneous nature of the crys-

tal stresses with respect to the anisotropy inherent in the single crystal prop-

erties. A specific goal is to identify correlations between the single crystal

properties and the orientation dependence of the crystal stresses in the pres-

ence of equilibrium and compatibility constraints associated with grain interac-

tions. In particular we examine two specific attributes of crystals: the directional

strength-to-stiffness ratio and the single crystal yield surface (SCYS) topology.

The directional strength-to-stiffness is an important metric for the relative load
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sharing among crystals of a polycrystal, especially in the elastic-plastic tran-

sition. The yield surface constrains the stress tensor, both in magnitude and

direction, and as with the directional strength-to-stiffness its topology affects

the nature of the distributions of stress among crystals. As will be presented

here, both of these attributes have important roles with respect to cyclic loading

behavior.

The directional strength-to-stiffness provides a quantitative basis to explain

the observed average lattice strains of crystals when loading proceeds into the

elastic-plastic transition regime [1]. The orientation dependent lattice strain re-

sponse observed in the elastic-plastic transition regime, typically referred to as

intergranular strains, arise due to different sets of crystals yielding at different

levels of the macroscopic stress. Load redistribution occurs between crystals of

different orientations when some crystals begin to yield, forcing crystals that re-

main elastic to carry an increased proportion of the applied stress. The joint role

of the elastic stiffness (elastic anisotropy) and yield strength (plastic anisotropy)

on the development of these intergranular strains can be quantified using the di-

rectional strength-to-stiffness ratio. In general, crystals within a polycrystalline

aggregate with lower directional strength-to-stiffness tend to yield before crys-

tals with higher directional strength-to-stiffness. Here we demonstrate that the

directional strength-to-stiffness ratio is a parameter that can be used to link the

single crystal anisotropic properties and load sharing among differently orien-

tated crystals acting collectively during cyclic loading.

Over a wide range of temperatures and strain rates, crystals deform plasti-

cally by restricted slip on prescribed slip systems in prescribed directions [41].

The yield condition for a slip system can be described as a plane in five di-

mensional (deviatoric) stress space and the rate-independent SCYS is the inner
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envelope of the set of planes defined by all the slip systems of the single crystal

[38]. A vertex of the SCYS is defined as the intersection of at least five of the

slip system planes. For rate-dependent behavior, the SCYS depends on strain

rate and temperature. The rate dependent surfaces lie within the rate indepen-

dent surface, but for materials with low rate dependence, the two surfaces are

close. During deformation that includes slip, the SCYS is actively influencing

the stress. As the stress level within a crystal rises, the number of slip systems

activated increases, beginning with only one or two and eventually activating

the number associated with a vertex of the SCYS, a condition referred to as

polyslip [42]. The crystal stress direction changes as the number of constraints

from activated slip systems increases. Once the stress aligns with a vertex of

the SCYS and all potentially active the slip systems have been activated, plastic

flow is fully developed. The influence of the vertices of the SCYS on the crystal

stress distributions in fully-developed plasticity has previously been discussed

by Ritz et al. [2] for monotonic loading. Under cyclic loading, fully developed

plasticity may not be reached before the loading reverses. Nevertheless, the

topology of the SCYS influences the stress as soon as the stress exceeds the elas-

tic limit and thus plays an important role in cyclic as well as monotonic loading

behaviors.

The directional strength-to-stiffness and the SCYS topology will be used to

better understand stress distributions in polycrystals subjected to cyclic load-

ing. Both are useful in quantifying the influence of crystal anisotropy on the

orientation dependence of the stress distribution in the presence of grain inter-

actions. The grain interactions arise due to requirements of equilibrium of forces

and compatibility of motion, which are enforced in the modeling by means of

a well-established finite element formulation. To demonstrate the concepts, we
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focus on providing a well-grounded explanation of the orientation dependence

of lattice strains observed in cyclic loading, especially their evolution over load-

ing cycles.

2.3 Experimental observations

Diffraction methods have the ability to interrogate the elastic lattice strains

within crystals with orientations associated with a particular crystallographic

fiber. Since the elastic strains in crystals are directly related to the stresses

through Hooke’s law, diffraction experiments offer direct insight into the hetero-

geneous nature of the crystal stress distribution within a polycrystalline aggre-

gate. Although many experimental studies measuring the evolution of lattice

strains under monotonic tensile loading have been conducted on different types

of polycrystalline materials [11, 14–16, 18, 24], the number of studies involving

lattice strain diffraction measurements of polycrystalline materials under fully-

reversed cyclic loading is very limited. Neutron diffraction has been used to

measure the residual lattice strains in stainless steel under fully-reversed, high

cyclic fatigue loading in load control [43, 44]. High energy synchrotron x-rays

have been used to track the evolution the lattice strains associated with a few

crystallographic fibers under fully-reversed cyclic loading in load control [45].

There have also been several studies based on using neutron diffraction tech-

niques to measure the lattice strains for a limited number of crystallographic

fibers under in-situ, fully-reversed, low cycle fatigue loading in strain control

[46–49].

Examples of lattice strain data from fully-reversed cyclic loading experi-

ments that are relevant to our current numerical study are presented in Fig-
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ure 2.1. The lattice strain measurements shown in Figure 2.1 were obtained from

neutron diffraction experiments conducted by Lorentzen et al. [46] and Korsun-

sky et al. [47] on stainless steel under fully-reversed cyclic loading. Lorentzen

et al. [46] measured the lattice strains for several crystallographic fibers aligned

with the axial and transverse specimen directions in stainless steel under fully-

reversed cyclic loading. The experiment was conducted in incremental load

control and the specimen was cycled at a fixed strain amplitude of ±0.4% for

eight complete cycles. Diffraction measurements were conducted at 24 load in-

crements throughout the cycle. Korsunsky et al. [47] used time-of-flight neutron

diffraction to measure the lattice strains corresponding to two crystallographic

fibers with the crystal directions aligned with the specimen axial loading di-

rection for AISI 316L stainless steel. Two specimens were cycled at strain am-

plitudes of 0.25% and 0.44% in fully-reversed strain controlled cycling. Lattice

strain measurements were conducted at eight macroscopic strain levels on each

cycle.

The measured lattice strains shown in Figure 2.1, where the crystal direc-

tions are aligned with the specimen loading direction, exhibit an orientation

dependent response over the course of a cycle. The lattice strains in crystals

having {111} plane normals aligned with the specimen loading direction ex-

hibit a close to linear response with increasing macroscopic stress. The lattice

strains for crystals having {200} plane normals aligned with the specimen load-

ing direction, on the other hand, exhibit significant hysteresis. The experimental

data shown in in Figure 2.1 are an important example of how the lattice strains

varying at the crystal level need to be explained in a consistent manner with re-

spect to the single crystal anisotropic properties as part of any micromechanical

description of fatigue processes.
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These experimental results motivate our investigation into the orientation

dependent nature of load sharing during cyclic loading from the perspective of

how the directional strength-to-stiffness and the SCYS topology influence the

grain interactions and give rise to the behavior characterized by Figure 2.1. We

also examine the effect of texture and strain hardening on the progression of

yielding through the elastic-plastic transition and on the evolution of the lattice

strains during cyclic loading.

(a) Lorentzen, Daymond, Clausen & Tome (2002) [46]

(b) Korsunsky, James & Daymond (2004) [47]

Figure 2.1: Lattice strains of crystals with the {111} and {200} lattice plane
normals aligned with the axial loading direction for stainless
steel specimens under fully reversed cyclic loading between
fixed strain limits.
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2.4 Methodology

A crystal-based elastoplastic constitutive model implemented within a finite el-

ement framework is used to simulate the response of polycrystals under fully-

reversed strain-controlled cyclic loading. A complete description of the consti-

tutive model and its implementation within a finite element framework can be

found in Refs. [35, 36, 50]. The capabilities of the crystal elastoplastic constitu-

tive model are only briefly summarized here:

• multiplicative decomposition of the crystal deformation gradient into elas-

tic, plastic and rotational portions

• anisotropic elasticity appropriate to the fcc crystal structure

• plastic deformation by rate-dependent restricted slip on the 12 {111}〈110〉

slip systems associated with the fcc crystal structure

• strain hardening with pseudosaturation under cyclic loading

• texture evolution through crystallographic lattice reorientation

This crystal constitutive model is incorporated into a finite element formulation

which has the following capabilities:

• three-dimensional grain geometries, where each grain is resolved with

multiple finite elements

• weak form of the equations of equilibrium

• implicit time-integration of the constitutive equations for numerical sta-

bility

• scalable parallel implementation using Fortran 90 and interprocessor com-

munication based on the Message Passing Interface (MPI) standard

Although the plastic deformation mechanisms that take place during cyclic

loading are similar to those that take place during monotonic loading, the ef-
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fect of cyclic hardening must be taken into account when simulating the re-

sponse of polycrystals under fully-reversed cyclic loading due to the rever-

sals in straining direction during a cycle. Under fully-reversed cyclic load-

ing, the hysteresis loops will typically saturate at a macroscopic stress level

that is much lower than the steady-state macroscopic stress under monotonic

loading (pseudosaturation), assuming the macroscopic strain achieved under

monotonic loading is equal to the cumulative macroscopic strain under cyclic

loading. The conventional Voce hardening model [51] is unable to capture the

macroscopic stress-strain response associated with reversals in straining direc-

tion under fully-reversed cyclic loading conditions. With a small modification

to the conventional Voce hardening model, Turkmen et al. [52] were able to cap-

ture the pseudosaturation behavior observed in fully-reversed cyclic loading

experiments conducted on SS304L stainless steel.

The shearing rate on the α-slip system, γ̇α, for a rate-dependent slip formu-

lation is typically prescribed by a power-law form:

γ̇α = γ̇0

(
|τα|

gα

)1/m

sgn(τα) (2.1)

where τα is the resolved shear stress on the α-slip system, gα is the slip system

strength, γ̇0 is a reference shearing rate and m is the rate sensitivity of slip. The

resolved shear stress, τα, is the projection of the stress tensor, τ, on the α-slip

system [35, 36].

The cyclic slip system hardening model tracks the accumulated slip system

shear strains on individual slip systems and the net crystal shearing rates within

each crystal during a cycle [52]. Although the evolution of the dislocation struc-

ture in the material is not explicitly modeled in the cyclic hardening model, the

net effect of the accumulation of dislocations on strain hardening is modeled im-

plicitly through the evolution equations for the slip system strengths. The slip
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system strengths for each crystal, g, evolve according to an isotropic hardening

law:

ġ = h0

(
gs(γ̇) − g
gs(γ̇) − g0

)
f , gs(γ̇) = gs0

(
γ̇

γ̇s0

)m′

(2.2)

where γ̇ =
∑
α |γ̇

α| is the sum of the slip system shearing rates and h0, g0, gs0,

m′ are slip system hardening parameters. The quantity f in Equation (2.2) is

dependent on the number of active slip systems, na, contributing to hardening

within a crystal:

f =

na∑
β=0

|γ̇β| (2.3)

The α-slip system is considered to be contributing to hardening if the accumu-

lated shear strain on the slip system since the last change in shearing direction,

∆γα, exceeds a critical value, ∆γcrit:

∆γα =

∫ t

t+/−
|γ̇α| dt, ∆γcrit = a

(
g
gs

)b

(2.4)

where a, b are cyclic hardening model parameters and t+/− is the time since the

last change in straining direction. The critical accumulated shear strain on a slip

system, ∆γcrit, is implemented in the cyclic hardening model to introduce a hia-

tus in hardening, which accounts for the rearrangement of dislocations after a

reversal in straining direction. Only after the process of dislocation pile-up is

complete can additional hardening take place. Using this modification it is pos-

sible to capture the pseudosaturation behavior exhibited by the macroscopic

stress-strain response with only a minimal modification to the evolution equa-

tions of the slip system strengths used for monotonic loading. The slip system

and cyclic hardening parameters used in our simulations are similar to those

used in Ref. [52], which were obtained from a fit to the macroscopic stress-

strain response of SS304L stainless steel. The slip system and cyclic hardening

parameters used for this set of simulations are shown in Table 2.1.
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h0 (MPa) g0 (MPa) gs0 (MPa) m m′ γ̇0 (s−1) γ̇s0 (s−1) a b
257 100 275 0.02 0.0 1.0 5 × 1010 0.5 4.0

Table 2.1: Slip system and cyclic hardening model parameters for SS304L
stainless steel [52].

Simulations were conducted by deforming virtual polycrystals under fully-

reversed cyclic loading. Virtual polycrystals were instantiated with 1098 rhom-

bic dodecahedra crystals (or grains), where each complete crystal was com-

prised of 48 10-node tetrahedra elements. There were also additional partial

crystals which make up the surfaces of the finite element mesh, contributing to

a total of 81000 finite elements in the mesh. Mesh convergence studies were

previously conducted by Miller et al. [53] using virtual specimens with 1098,

2916 and 10976 complete dodecahedra crystals, which corresponds to 81000,

192000 and 648000 elements, respectively. Only small differences in the crystal

stress distributions were observed between the finite element meshes of vary-

ing sizes. We have also conducted a comparison of different mesh sizes in Ref.

[1], using virtual specimens with 1098 and 2916 crystals. Quantities averaged

along a crystallographic fiber were found to exhibit similar trends across differ-

ent mesh sizes. On this basis, the mesh with 1098 complete crystals was used in

the current study to permit a larger number of simulations to be performed.

The simulation results can be compared to diffraction measurements of lat-

tice strains by using crystallographic fibers as the basis of comparison. A crys-

tallographic fiber, represented as c || s, is the collection of all orientations with

a particular crystal direction, c, aligned with a particular specimen direction, s.

A crystallographic fiber consists of crystals with orientation, R, that satisfy the

following equation:

Rc = ±s (2.5)
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All orientations associated with a crystallographic fiber differ only by a rotation

about a common axis. A crystallographic fiber corresponds directly to a partic-

ular Bragg diffraction condition, where c is the crystal {hkl} plane normal and s

is a particular specimen direction. A cutoff angle of 5◦ between c and s is used

in the current study to determine whether a crystal orientation belongs to a par-

ticular crystallographic fiber. The simulation data does not distinguish between

lower order and higher order {hkl} reflections ({hkl} = n{hkl}). Therefore, only the

lowest order {hkl} lattice planes are considered. Details of the post-processing

methodology has previously been reported in Ref. [1].

Two crystallographic fibers are examined in particular: the {100} || LD fiber

and the {111} || LD fiber. The {100} || LD crystallographic fiber connects all

crystals with orientations where the {100} crystal plane normal is aligned with

the specimen loading direction (LD). The {100} || LD and {111} || LD fibers are

chosen because they correspond to crystal orientations with extreme values of

the directional strength-to-stiffness and these values vary significantly with rE.

2.5 Simulation results

Three sets of simulations, designated as Sets 1, 2 and 3, were conducted us-

ing identical virtual polycrystals, except as noted below. For Set 1, the initial

orientations of the crystals were randomly assigned from a uniform orientation

distribution function (ODF). The cyclic slip system hardening model was active.

For Set 2, the initial orientations of the crystals were randomly assigned from an

ODF generated under plane strain compression to 70% strain. The ODF used in

Set 2 is similar to the ODF shown in Ref. [54] and therefore will not be shown

here. As with Set 1, the cyclic slip system hardening model was active for Set
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2. For Set 3, the initial orientations of the crystals were the same as in Set 1.

For this set, the cyclic slip system hardening model was inactive (no harden-

ing). The different combinations of hardening and initial texture instantiated

for each simulation set are shown in Table 2.2.

Set Hardening Initial ODF
1 Yes Uniform
2 Yes Plane strain compression
3 No Uniform

Table 2.2: The different combinations of hardening and initial ODF for
each set of simulations

Within each set of simulations, the only quantity that was varied was the

single crystal elastic anisotropy ratio, rE, which is defined as:

rE =
E〈111〉

E〈100〉
(2.6)

where E〈111〉 and E〈100〉 are the single crystal directional Young’s modulus in the

〈111〉 and 〈100〉 crystal directions, respectively. Two cases were considered:

rE = 1.0 and rE = 3.2. For rE = 3.2, representative values of the single crystal

elastic moduli (C11, C12 and C44) for stainless steel were used [55]. For rE = 1.0,

the moduli were adjusted to give isotropic single crystal behavior while leaving

the macroscopic Young’s modulus the same as that of stainless steel. The single

crystal elastic moduli corresponding to these two values of rE are shown in Ta-

ble 2.3. The method of varying the single crystal elastic constants is described

in detail in Refs. [1, 3].

Fully-reversed uniaxial tension-compression loading conditions were ap-

plied to the virtual polycrystals. A constant velocity was applied on the positive

Z surface of the finite element mesh, while the Z = 0 face of the mesh was con-

strained in the Z-direction. The two positive X and Y surfaces of the mesh were
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rE C11 (GPa) C12 (GPa) C44 (GPa)
1.0 266.433 106.784 79.826
3.2 204.600 137.700 126.200

Table 2.3: Single crystal elastic moduli corresponding to rE = 1.0 and rE =

3.2. Representative values of the single crystal elastic moduli for
stainless steel (rE = 3.2) were obtained from Ref. [55].

traction-free, while the X = 0 and Y = 0 surfaces had symmetry boundary con-

ditions imposed. The simulations were conducted under fully reversed cyclic

loading (R = −1) in strain control at a constant strain rate of 0.001 s−1 for 20 com-

plete cycles. The virtual specimen was cycled between fixed macroscopic strain

limits of ±1% strain.

2.5.1 Macroscopic stress-strain response

The macroscopic value of the axial stress was computed for the 20 loading cy-

cles from the average normal traction over the loaded surface of the polycrystal.

For Set 1, the resulting macroscopic stress for rE = 3.2 is plotted in Figure 2.2(a)

as a function of the macroscopic strain, which is computed on the basis of the

overall axial dimension changes of the polycrystal. Cycles 0 and 1 are high-

lighted in Figure 2.2(a). Cycle 0 corresponds to monotonic loading in tension

up to 1% macroscopic strain. The outermost loop corresponds to Cycle 20 in

the deformation history. The loops grow in size with increasing cycles due to

continued strain hardening. Since the polycrystals were cycled between fixed

strain limits, a higher macroscopic stress level was required to achieve the same

macroscopic strain limits on each cycle due to cyclic hardening. However, the

cycle-by-cycle change in macroscopic stress at 1% macroscopic strain decreases

with increasing cycles due to pseudosaturation of the slip system strength that
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is built into the model for the cyclic hardening behavior. With the exception

of the elastic-plastic transition regime (the knee of the macroscopic stress-strain

curve), the macroscopic stress-strain curves for the two values of rE in Set 1 are

very similar. The macroscopic stresses for Set 2 are slightly higher overall than

those of Set 1. This is because the plane strain compression texture used in the

Set 2 simulations results in a higher average Taylor factor than the uniform ODF

used for Set 1. Aside from the slight difference in the macroscopic stress level,

the stress-strain hysteresis loops between Sets 1 and 2 are very similar and, con-

sequently are not shown.

Figure 2.2(b) shows the macroscopic stress-strain curves for the two simu-

lations of Set 3. In the absence of cyclic hardening, the slip system strength re-

mains constant over the simulation and the macroscopic stress does not increase

with cycles. Small differences between the macroscopic stress-strain curves are

observed in the elastic-plastic transition as rE is varied. The slopes of the macro-

scopic stress-strain curves in the elastic loading and unloading portions of each

cycle demonstrate that the single crystal elastic moduli were changed such that

the macroscopic Young’s modulus is unchanged.

2.5.2 Lattice strain response

The lattice strain, ε{hkl}, for the {hkl} || LD crystallographic fiber is computed as

follows: for each element in the mesh whose orientation belongs to the {hkl} ||

LD fiber to within a given tolerance, its full elastic strain tensor, ε, is projected in

the LD direction. The lattice strain value, ε{hkl}, is then obtained by averaging the

projected elastic strain tensor value among all n crystals belonging to the {hkl} ||
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Figure 2.2: Macroscopic true stress-strain curves for 20 complete cycles for
simulation Sets 1 and 3.

LD fiber:

ε{hkl} =

 n∑
i=1

si · εi · sT
i

 /n (2.7)

The average lattice strains associated with the {100} || LD and {111} || LD crys-

tallographic fibers for Sets 1 and 3 are plotted in Figures 2.3 and 2.4 with lattice

strain on the abscissa and the macroscopic stress on the ordinate to facilitate

comparison with the experimental data shown in Figure 2.1. As with the macro-

scopic stress-strain hysteresis loops, there is little difference between the results
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for Sets 1 and 2 (uniform versus plane strain compression textures), so only Set

1 is shown.
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Figure 2.3: Lattice strain, ε{hkl}, versus macroscopic true stress for the simu-
lations of Set 1. The lattice strains are averaged among crystals
belonging to the {100} || LD and {111} || LD crystallographic
fibers, where LD corresponds to the [001] specimen loading di-
rection.

Examining first the lattice strains for Set 1, it is evident that the lattice strains

for rE = 1.0, where the crystals are elastically isotropic, exhibit very different

behaviors compared to the lattice strains for rE = 3.2, where the crystals have

high elastic anisotropy. For rE = 1.0, shown in Figure 2.3(a), both the {100} || LD

and {111} || LD lattice strains exhibit hysteresis over the course of a cycle. For

rE = 3.2, shown in Figure 2.3(b), the {100} || LD lattice strains exhibit significant

hysteresis, but the {111} || LD crystals exhibit a linear relation between the lat-

tice strains and macroscopic stress over the course of a cycle. The lattice strain

response without strain hardening (Set 3) is shown in Figure 2.4. The lattice

strain hysteresis loops do not increase in size with increasing cycles due to the

absence of strain hardening. Nevertheless, the lattice strain hysteresis loops for

Set 3 exhibit similar trends as the simulations in Sets 1 and 2.

The difference in the single crystal elastic anisotropy can be observed from
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Figure 2.4: Lattice strain, ε{hkl}, versus macroscopic true stress for the simu-
lations of Set 3. The lattice strains are averaged among crystals
belonging to the {100} || LD and {111} || LD crystallographic
fibers, where LD corresponds to the [001] specimen loading di-
rection.

the slopes of the elastic loading and unloading portions of macroscopic stress

versus lattice strain curves. Note that for rE = 1.0, shown in Figures 2.3(a) and

2.4(a), the {100} || LD and {111} || LD lattice strains have the same slope in the

elastic loading and unloading portions of the cycle, which is consistent with the

isotropic nature of the crystals. For rE = 3.2 however, where the lattice strains

are shown in Figure 2.3(b) and 2.4(b), the lattice strains in the elastic loading and

unloading portion of the cycle exhibit different slopes, illustrating the influence

of elastic anisotropy on the {100} || LD and {111} || LD crystals.

We can compare the results for rE = 3.2 with the experimental data. The

computed lattice strains shown in Figure 2.3(b) are qualitatively consistent with

the measured lattice strains shown in Figure 2.1. The near-linear response of the

{111} || LD lattice strains with macroscopic stress, with no evidence of hysteresis

loops, observed in the measurements is predicted in the simulations. Further,

the computed {200} || LD lattice strains exhibit significant hysteresis, which also

agrees qualitatively with the measured {200} || LD lattice strains. However, the
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computed {200} || LD lattice strains exhibit a gradual downward inflection in

the elastic-plastic transition regime which is not evident in the measured {200} ||

LD lattice strains. This discrepancy between the computed and measured {200}

|| LD lattice strains has also been observed by Lorentzen et al. [46] when using

a self-consistent elastoplastic model. Lorentzen et al. [46] attributed this to the

lack of experimental data in the region just past zero macroscopic stress, since

diffraction measurements were conducted at only 24 points during a cycle. The

lattice strains measurements by Korsunsky et al. [47] shown in Figure 2.1(b)

were conducted at eight points during a cycle. Given the rapid changes occur-

ring during the elastic-plastic transition regime, the frequency of measurements

is not sufficient to capture details of the elastic-plastic transition and we do not

expect a close match between the measured and computed lattice strains in this

regime.

2.5.3 Slip system activity

Although the {111} || LD lattice strains for rE = 3.2 exhibit linear behavior be-

tween the elastic lattice strain and the macroscopic stress over the course of a cy-

cle, this is not indicative of these crystals deforming within their elastic regime.

To demonstrate this, we examine the plastic deformation rate magnitude, Dp
{hkl},

cycle by cycle for the crystals belonging to both the {100} || LD and {111} || LD

fibers. The plastic deformation rate vector, D̂′p, is a five-dimensional deviatoric

vector computed at the centroid of each element in the mesh. The second order

tensor form of D̂′p for a single element in the mesh is computed as:

D̂p =
∑
α

γ̇α sym(ŝα ⊗ m̂α) (2.8)
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where γ̇α is the slip system shearing rate, ŝα is the slip direction, and m̂α is the

slip plane normal for each α-slip system. The vector norm for the deviatoric

vector D̂′p is computed and averaged among all crystals belonging to the {hkl} ||

LD fiber to obtain the plastic deformation rate magnitude, Dp
{hkl}. For each cycle,

we track Dp
{hkl} starting at a macroscopic stress of -100 MPa and continuing until

a macroscopic strain of 1% is achieved, as indicated in Figure 2.5. The results

for Sets 1 and 3 are presented in Figures 2.6 and 2.7, respectively. Again, Set

2 is similar to Set 1 and is not shown. A steep increase in Dp
{hkl} at a particular

macroscopic stress indicates that on average, the crystals associated with the

{hkl} || LD fiber have yielded and plastic flow is occurring among those crys-

tals. The results indicate that the crystals belonging to both the {100} || LD and

{111} || LD fibers experience plastic deformation over each cycle, even though

there is no hysteresis associated with the {111} || LD lattice strains, as shown

in Figures 2.3(b) and 2.4(b). Only a constant Dp
{hkl} value of zero over the course

of a cycle for all macroscopic stress values would indicate that the crystals are

remaining fully elastic.
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{hkl} is plotted on
Cycles 0, 1 and 20 for Set 1.
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Figure 2.6: Plastic deformation rate magnitude, Dp
{hkl}, versus macroscopic

true stress for crystals belonging to the {100} || LD and {111}
|| LD crystallographic fibers for the simulations of Set 1. The
LD direction corresponds to the [001] specimen loading direc-
tion. The plastic deformation rate magnitude, Dp

{hkl}, is plotted
starting at a macroscopic stress of -100 MPa until a macroscopic
strain of 1% is achieved, which is shown for Cycles 0, 1 and 20
in Figure 2.5.
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Figure 2.7: Plastic deformation rate magnitude, Dp
{hkl}, versus macroscopic

true stress for crystals belonging to the {100} || LD and {111} ||
LD crystallographic fibers for the simulations of Set 3. The LD
direction corresponds to the [001] specimen loading direction.
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Figures 2.6(a) and 2.7(a) demonstrate that for rE = 1.0, even though the crys-

tals are elastically isotropic, the {100} || LD and {111} || LD crystals yield on

average at different macroscopic stress levels. The difference in the macroscopic

stress at which yielding occurs on average in these crystals, therefore, can be at-

tributed to the plastic anisotropy (orientation dependent yield strength). Since

the {100} || LD crystals yield on average at a lower macroscopic stress compared

to the {111} || LD crystals, it implies that for rE = 1.0, the {100} || LD crystals on

average are more favorably oriented for yielding than the {111} || LD crystals.

When rE is increased to rE = 3.2, the {100} || LD crystals now yield at a higher

macroscopic stress on average compared to the {111} || LD crystals. Therefore,

the value of rE influences the macroscopic stress at which yielding begins for

crystals associated with different fibers. This implies that the progression of

yielding among these crystals is influenced by both the elastic and plastic prop-

erties, which will be examined in more detail in Section 2.6.1.

It is also observed from Figures 2.6 and 2.7 that the macroscopic stress at

which yielding begins is lower on Cycle 1 compared to Cycle 0. This phenom-

ena arises due to yield asymmetry, which is a Bauschinger-type phenomena first

observed by Czyzak et al. [56] and Hutchinson et al. [57]. Barton et al. [58], us-

ing an elastoplastic crystal-based finite element model similar to the one used

in our current study, demonstrated that a polycrystal yields at a lower macro-

scopic stress in compression after it has been yielded in tension due to residual

crystal stresses that are present even in the macroscopically unloaded state. Af-

ter Cycle 1 however, the macroscopic stress at which yielding begins increases

with increasing cycles due to cyclic hardening. Yield asymmetry can still be ob-

served even when the cyclic slip hardening model is inactive for Set 3, as seen

in Figure 2.7, although the macroscopic stress at which yielding begins does not
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increase with cycles after Cycle 1.

2.6 Influences of directional strength-to-stiffness and SCYS

topology on the cyclic response

2.6.1 Directional strength-to-stiffness

To explain why the lattice strain hysteresis loops differ qualitatively with rE,

we consider the orientation dependence of both the elastic and plastic prop-

erties of the crystals. Although there exist minor differences stemming from

the initial texture and from the absence or presence of hardening, a consistent

trend emerged from the three sets of simulations. The {100} || LD crystals yield

on average at a lower macroscopic stress compared to the {111} || LD crystals

when rE = 1.0, as shown in Figures 2.6(a) and 2.7(a). However, for rE = 3.2,

the reverse situation occurs, where the {111} || LD crystals yield on average at a

lower macroscopic stress compared to the {100} || LD crystals, which is evident

from Figures 2.6(b) and 2.7(b). Thus, the macroscopic stress at which yielding

begins for anisotropic crystals is influenced by the combination of the elastic

and plastic anisotropy of the crystals, which can be quantified using the direc-

tional strength-to-stiffness ratio [1]. The directional strength-to-stiffness ratio

for a single crystal under uniaxial tension applied in the direction, d, relative to

the crystal lattice, rcrys
S , is defined as:

rcrys
S =

1
md · Ed

(2.9)

where md is the Schmid factor [40] and Ed is the single crystal directional Young’s

modulus [34] for the crystal direction d. The Schmid factor, md, quantifies the
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relative ease for single slip to occur in a single crystal with a uniaxial stress ap-

plied in the crystal direction d. Since a high value of md indicates that a particu-

lar crystal direction is more favorably oriented for slip, the directional strength

is defined as the inverse of md in Equation (2.9). The directional stiffness is de-

fined as Ed in the direction d. The orientation dependence of the single crystal

directional strength-to-stiffness, rcrys
S , is shown within the basic cubic orientation

triangle in Figure 2.8.
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Figure 2.8: Single crystal directional strength-to-stiffness ratio shown
within the basic orientation triangle for rE = 1.0 and rE = 3.2.
The figures have the same grayscale bar for comparison pur-
poses.

We have previously demonstrated that for a polycrystalline aggregate under

uniaxial tension, crystals with high directional strength-to-stiffness ratio will

yield on average at a relatively higher macroscopic stress compared to crystals

with low directional strength-to-stiffness ratio [1]. Figure 2.8(a) shows that for

rE = 1.0, the 〈111〉 direction has the higher strength-to-stiffness ratio relative

to the 〈100〉 direction. Conversely, Figure 2.8(b) shows that for rE = 3.2, the

〈100〉 direction instead has the higher strength-to-stiffness relative to the 〈111〉

direction. As rE is increased, the 〈100〉 strength-to-stiffness increases while the
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〈111〉 strength-to-stiffness decreases. The same trend exists for average strength-

to-stiffness ratios taken over all the orientations lying along a crystallographic

fiber, as reported in [1]. Table 2.4 gives the strength-to-stiffness values for the

{100} || LD and {111} || LD fibers along with the corresponding single crystal

values.

rE 〈100〉 〈111〉 {100} || LD {111} || LD
1.0 0.0119 0.0179 0.0113 0.0236
3.2 0.0261 0.0123 0.0213 0.0177

Table 2.4: Directional strength-to-stiffness values for selected single crystal
directions and averages over crystallographic fibers.

Comparing Figure 2.6 to Figure 2.8, the macroscopic stress at which the

{100} || LD crystals begin yielding increases as the 〈100〉 strength-to-stiffness

increases. Conversely, the macroscopic stress at which the {111} || LD crystals

begin yielding decreases as the 〈111〉 strength-to-stiffness decreases. Therefore,

the macroscopic stress at which yielding begins on average for crystals associ-

ated with a crystallographic fiber correlates well with the directional strength-

to-stiffness ratio at low and high values of rE. For crystals with intermediate

values of rE, particularly in the range of rE = 1.5 − 2.0, the 〈100〉 and 〈111〉 crys-

tals have similar directional strength-to-stiffness values [1]. At intermediate val-

ues of rE, the interaction with neighboring crystals together with the directional

strength-to-stiffness ratio are important influences on the stress distribution of

the crystals associated with a fiber.

We now focus on the results from the simulations of Set 1 to examine the

role of the directional strength-to-stiffness in determining the lattice strain and

plastic deformation rate response for crystals associated with the {100} || LD

and {111} || LD fibers. For both values of rE, the crystals that yield on average

at a relatively higher macroscopic stress (Figure 2.6) also exhibit a downward
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inflection in lattice strain (Figure 2.3). For rE = 1.0, the {111} || LD crystals yield

at a higher macroscopic stress which is accompanied by a downward inflection

in the lattice strain. For rE = 3.2, the {100} || LD crystals instead yield at a higher

macroscopic stress which is also accompanied by a downward inflection in the

lattice strain. The downward inflection of the lattice strains in the elastic-plastic

transition regime is due to redistribution of additional load between crystals

that have yielded and crystals that have not yielded [1, 29], where proportion-

ally more elastic straining can occur in crystals that have not yielded. As rE is in-

creased from the isotropic case (rE = 1.0) to the highly anisotropic case (rE = 3.2),

the behavior of the {111} || LD lattice strains changes from a downward inflec-

tion to near-linear behavior with increasing macroscopic stress. Conversely, the

{100} || LD lattice strains exhibit an upward inflection for rE = 1.0 which be-

comes a downward inflection for rE = 3.2. This is a consequence of the change

in the 〈100〉 directional strength-to-stiffness from low to high relative to that of

other orientations which changes the macroscopic stress at which yielding be-

gins for the {100} || LD crystals.

2.6.2 Vertices of the single crystal yield surface

Plastic deformation via slip initiates when the crystal stress reaches the SCYS.

With increasing plastic strain, the crystal stress traverses the SCYS until it

reaches a vertex [38, 58]. The crystal stress moves toward a vertex to accom-

modate a deviatoric strain state that is compatible with the motion of the poly-

crystal. The SCYS defined by the 12 {111}〈110〉 slip systems in fcc crystals has

56 vertices (28 positive vertices). The vertices can be grouped into five unique

vertex families due to crystal symmetries, where the vertex stresses within a ver-

tex family are indistinguishable from each other [39]. The relative magnitudes
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of the vertex stresses for the five families are listed in Table 2.5. An important

aspect of the behavior of fcc polycrystals is that under monotonic tensile load-

ing, the crystal stresses associated with a particular crystallographic fiber tend

to align more closely with certain vertex families than others in fully-developed

plasticity [2]. Here, we examine the lattice strains with respect to the five unique

vertex families of the SCYS for fully-reversed cyclic loading.

Vertex family number Relative magnitude of σ′v
V1 1.00
V2 1.50
V3 1.73
V4 1.33
V5 1.23

Table 2.5: Relative magnitude of the deviatoric vertex stress, σ′v, for the
five vertex families associated with the fcc SCYS [2].

For Set 1, the {100} || LD and {111} || LD lattice strains are plotted as a func-

tion of the macroscopic strain for rE = 1.0 and rE = 3.2 in Figure 2.9. First, note

that the initial slopes of the curves during the elastic loading and unloading por-

tions of the straining cycle reflect the elastic anisotropy. For rE = 1.0, the {100}

|| LD and {111} || LD lattice strains have the same slopes as each other during

both the elastic loading and unloading portions of the cycle. For rE = 3.2, how-

ever, the lattice strains for these two fibers exhibit different slopes at the start

of the elastic loading and unloading portions of each cycle, as expected from

the single crystal elastic moduli. After the elastic-plastic transition regime, but

before unloading, the straining of the sample is accommodated predominantly

by plastic straining and the lattice strains approach approximately steady values

consistent with fully-developed plasticity. (The lattice strains do change slightly

between the elastic-plastic transition and unloading, but the changes are small

in comparison to the changes in the elastic regime.) For rE = 1.0, shown in Fig-
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ure 2.9(a), the steady value of the {111} || LD lattice strains is larger than the

steady value of the {100} || LD lattice strains. In contrast, for rE = 3.2 the reverse

is true, as is evident from Figure 2.9(b).
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Figure 2.9: Lattice strain, ε{hkl}, versus macroscopic true strain associated
with the the {100} || LD and {111} || LD fibers for the simula-
tions of Set 1, where LD is the specimen loading direction.

For the elastically isotropic case of rE = 1.0, the relative differences in the

lattice strains in fully-developed plasticity are a consequence of the SCYS. The

crystal stresses are on average different for the two fibers. For the elastically

anisotropic case of rE = 3.2, the relative differences in lattice strains are a con-

sequence of both the SCYS and the elastic anisotropy. The average moduli, as

well as the crystal stresses, are on average different for the two fibers.

Using an analysis similar to that conducted by Ritz et al. [2], we can show

that the average stresses for the two fibers reflect the constraint imposed by

the SCYS. The angle of coaxiality, φv
c, between the deviatoric form of the crystal

stress, σ′c, and the deviatoric form of the nearest vertex stress, σ′v, is computed

for each element associated with a crystallographic fiber as follows:

φv
c = cos−1

(
σ′c · σ

′
v

||σ′c|| ||σ
′
v||

)
(2.10)
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A coaxiality angle of zero indicates that the crystal stress is completely aligned

with its preferred vertex stress. The φv
c distributions corresponding to sev-

eral crystallographic fibers are shown at 1% macroscopic strain on Cycle 1 for

rE = 1.0 and rE = 3.2 in Figures 2.10(a) and 2.10(b), respectively. The distri-

butions are very insensitive to the elastic anisotropy. The φv
c distributions on

Cycle 20 are very similar to the φv
c distributions on Cycle 1, even with the stress

increasing on successive cycles due to strain hardening. At both Cycle 1 and

20, the crystal stresses for the various fibers associate strongly with particular

vertex families. The slip system strengths within a crystal evolve according to

Equation (2.2), resulting in an increase in the size of the SCYS without a change

in its shape. The preferred vertices for each fiber thus remain unchanged with

increasing numbers of cycles. This observation for fully-reversed cyclic loading

is consistent with previous results discussed by Ritz et al. for fcc polycrystals

under monotonic tensile loading [2].
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Figure 2.10: Coaxiality angle, φv
c, between the crystal stress and the nearest

vertex stress for several crystallographic fibers at 1% macro-
scopic strain on Cycle 1. V1-V5 correspond to the five unique
vertex families.

We now return to the lattice strains presented in Figure 2.9. At 1% macro-
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scopic strain on a particular cycle, the crystal stress distributions over the poly-

crystal are approximately the same for rE = 1.0 and rE = 3.2, but the magnitudes

of lattice strains differ. This is expected from the differences in the elastic mod-

uli for the two levels of elastic anisotropy. For rE = 1.0, the difference between

the {100} || LD and {111} || LD lattice strains in Figure 2.9(a) is due solely to the

difference between the magnitudes of the V1 and V2 vertex stresses. From Fig-

ure 2.10, the preferred vertex family of the {100} || LD crystals is the V1 vertex

family and the preferred vertex family of the {111} || LD crystals is the V2 vertex

family. Consequently, for rE = 1.0, the {111} || LD steady lattice strains are larger

than the {100} || LD steady lattice strains since the magnitude of the V2 vertex

stress is larger than the V1 vertex stress, which is demonstrated in Table 2.5.

The difference in the lattice strains for rE = 3.2, however, which are shown in

Figure 2.9(b), is due to a combination of the single crystal elastic moduli and the

difference between the V1 and V2 vertex stresses.

The coaxiality angle distributions indicate that the crystal stresses near the

end of each loading cycle tend to align with the same sets of SCYS vertices ir-

respective of the elastic anisotropy and the cycle number. This trend holds true

for simulation Sets 1, 2 and 3. However, variability does exist in the stress mag-

nitude among the crystals associated with a particular fiber. This variability

is a function both of the elastic anisotropy and the cycle number. To examine

the stress variability, crystal stress frequency distributions are constructed for

the crystals associated with a particular fiber. Specifically, for all the finite ele-

ments with lattice orientation lying along a designated fiber, we construct the

frequency distribution of the magnitude of the crystal deviatoric stress vector

normalized with respect magnitude of the macroscopic deviatoric stress. The

evolution of these frequency distributions over the course of the loading cycle,
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as indicated on Figure 2.11, is examined for Cycles 0, 1 and 20, for both values

of rE and for several crystallographic fibers.
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Figure 2.11: Points along the macroscopic stress-strain curve on Cycles 0,
1 and 20 for which the distributions of the normalized devia-
toric stress magnitudes are plotted in Figures 2.12–2.14.

The normalized stress distributions on Cycle 0 for rE = 1.0 and rE = 3.2

are shown in Figures 2.12(a) and 2.12(b), respectively, at the three points along

the macroscopic stress-strain curve. These correspond to 0.065%, 0.4% and 1%

macroscopic strain. In the elastic regime at 0.065% macroscopic strain, the nor-

malized stress distributions differ significantly between rE = 1.0 and rE = 3.2,

reflecting the difference in elastic anisotropy of the crystals. As the deformation

proceeds, the crystal stresses evolve through the elastic-plastic transition toward

similar distributions at 1% macroscopic strain. It is observed from the macro-

scopic stress-strain curve in Figure 2.11 that at 1% macroscopic strain on Cycle 0,

the material is continuing to strain harden, which may cause differences in the

stress distributions between rE = 1.0 and rE = 3.2 because the crystals may not

be experiencing fully-developed plastic flow at this stage of the deformation.

The normalized stress distributions on Cycle 1 are plotted in Figure 2.13 at

-0.8%, -0.3% and 1% macroscopic strain, as indicated in Figure 2.11. On this cy-
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(b) rE = 3.2

Figure 2.12: Normalized deviatoric stress magnitudes for rE = 1.0 and rE =

3.2 on Cycle 0 at 0.065%, 0.4% and 1% macroscopic strain.

cle, as well as all succeeding cycles, the normalized stress distributions at −0.8%

macroscopic strain (prior to the onset of the elastic-plastic transition) are not

homogenous, even for isotropic elasticity (rE = 1.0). This is due to the presence

of residual stresses induced by plastic straining on Cycle 0. The distributions

at this stage of the deformation differ between rE = 1.0 and rE = 3.2 due to the

influence of the directional strength-to-stiffness on load sharing among crystals,

as discussed previously in Section 2.6.1. The presence of residual stresses as well

as the directional strength-to-stiffness ratio influences the crystal stresses in the

elastic-plastic transition as the deformation proceeds. With increasing macro-

scopic strain, the normalized stress distributions for both rE = 1.0 and rE = 3.2

evolve toward a similar pattern in fully-developed plasticity, as demonstrated
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(b) rE = 3.2

Figure 2.13: Normalized deviatoric stress magnitudes for rE = 1.0 and rE =

3.2 on Cycle 1 at -0.8%, -0.3% and 1% macroscopic strain.

by comparing Figures 2.13(a) and 2.13(b) at 1% macroscopic strain. At this point

the stress distributions are dominated by the SCYS, which are the same for the

two simulations.

The normalized stress distributions on Cycle 20, shown in Figure 2.14, ex-

hibit some similiarities and differences to the normalized stress distributions

on Cycle 1. First, note that the normalized stress distributions on Cycles 1 and

20 at the point just prior to the knee of the macroscopic stress-strain curve (-

0.8% macroscopic strain) are not directly comparable. Even though these two

points on different cycles are at the same macroscopic strain level, they may

correspond to different stages in the deformation. The macroscopic stresses dif-

fer between these two points in part due to continued cyclic hardening. The
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Figure 2.14: Normalized deviatoric stress magnitudes for rE = 1.0 and rE =

3.2 on Cycle 20 at -0.8%, -0.3% and 1% macroscopic strain.

normalized stress distributions for Cycles 1 and 20 show similar trends in that

the level of the elastic anisotropy influences the frequency distributions at -0.8%

and -0.3% macroscopic strain, but not at 1.0% macroscopic strain.

The normalized stress distributions at 1.0% macroscopic strain on Cycles 1

and 20 differ from each other in terms of the spread of the stresses. With in-

creased cycles, the standard deviations of the stress distributions increases for

all fibers, which arises due to the evolution of the slip system strengths on each

cycle. Because there exists variation in the crystal stresses, there also exists vari-

ation in the slip system shearing rates. Thus, the standard deviations of the slip

system strengths also increase, as shown in Figure 2.15. Over the course of the

cyclic loading, this leads to greater variation in the normalized stresses at 1%
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macroscopic strain, which is shown in Figures 2.12-2.14.
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Figure 2.15: Slip system strength distribution by crystallographic fiber at
1% macroscopic strain for rE = 1.0 and rE = 3.2.

2.7 Conclusions

Several conclusions can be obtained from the simulations conducted in the cur-

rent study. They are summarized in the following list:

• Lattice strain hysteresis behavior during cyclic loading exhibit an orienta-

tion dependent as well as elastic anisotropy dependent response. Hystere-

sis loops are evident in lattice strains versus macroscopic stress records.
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The loops differ in slope and the degree to which they are open or closed.

Both depend on the crystallographic fiber.

• The lattice strains for a particular fiber may exhibit a linear relation with

macroscopic stress, which is characterized by a closed hysteresis loop.

This behavior does not necessarily indicate that the crystals remain elastic

over the whole cycle, as is demonstrated by examining the corresponding

plastic deformation rates averaged along a fiber.

• The directional strength-to-stiffness ratio can be used to explain the lattice

strain hysteresis behavior as well as the progression of yielding through

the elastic-plastic transition for different fibers. In general, high direc-

tional strength-to-stiffness corresponds to the crystals yielding at a higher

macroscopic stress, causing the crystals which have not yielded to exhibit

an upward inflection in the lattice strains in the elastic-plastic transition

regime since they are able to carry a higher proportion of the applied load.

• Open hysteresis loops indicate a difference in relative strength-to-stiffness

from the average. Closed hysteresis loops indicate a relative strength-to-

stiffness that is close to the average.

• After the elastic-plastic transition regime, crystals belonging to certain

fibers tend to align more closely with certain vertex families of the SCYS.

These crystal stresses in fully-developed plasticity are not dependent on

the elastic anisotropy. The lattice strains in this regime, however, are influ-

enced by the elastic anisotropy and the relative magnitudes of the SCYS

vertex stresses.

• The distribution of crystal stress magnitudes in the elastic and elastic-

plastic transition regime are influenced by the elastic anisotropy and the

residual stresses. Even with continued strain hardening with cycles, these
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crystal stresses on each cycle evolve toward the same SCYS vertex families

in fully-developed plasticity irrespective of the elastic anisotropy.

• The standard deviation of the crystal stress magnitudes for a fiber in-

creases with increasing cycles due to the different boundary conditions

experienced by the crystals on each cycle with continued cyclic loading,

leading to increased variation with cycles in the slip system strengths for

the crystals belonging to a fiber.

• These results were found not to be significantly influenced by the absence

of slip system hardening and in the presence of a strong rolling texture.

However, these results hold only for an isotropic slip system hardening

model because an anisotropic slip system hardening hardening model

may influence the evolution of the slip system strengths with cycles.
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CHAPTER 3

QUANTIFYING THE EVOLUTION OF CRYSTAL STRESSES DURING

CYCLIC LOADING USING FINITE ELEMENT SIMULATIONS AND

HIGH-ENERGY X-RAY DIFFRACTION

3.1 Abstract

A coordinated program of crystal-based finite element simulations and high-

energy synchotron x-ray diffraction experiments was conducted to establish a

framework for quantifying the evolution of lattice strains in AA7075-T6 alu-

minum under in situ cyclic loading. The experiments and simulations were not

intended to be used to validate each other, but rather they are used in a comple-

mentary manner to build a more complete picture of the evolving micromechan-

ical state in polycrystals during cyclic loading. The simulations require informa-

tion from the experiments to instantiate a virtual polycrystal and to define the

single crystal elastic and plastic properties. Conversely, the experiments require

information from the simulations to establish whether the measured cycle-by-

cycle changes can be attributed to micromechanical evolution or experimental

fluctuations. Lattice Strain Pole Figures (SPFs) for several {hkl} families were

constructed from both the experiment and simulation data and compared at the

same macroscopic stress level on each cycle. The SPFs demonstrate that the lat-

tice strains exhibit a clear dependence on crystallographic orientation and that

both the experiment and simulation lattice strains evolve with cycles. Using

the simulations, orientation dependent trends are identified from the evolution

of the crystal stress magnitudes and directions, the slip system activity and the

slip system strengths. These trends can be explained in a consistent manner

with respect to the single crystal yield surface.
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3.2 Introduction

Traditional approaches to cyclic loading typically associated with fatigue in-

volve constructing empirical correlations between the macroscopic cyclic load-

ing conditions and fatigue life [59, 60], which typically do not include the evo-

lution of stress-driven micromechanical phenomena during the life of a mate-

rial. Although a mechanical component under cyclic loading may be subjected

to a simple macroscopic stress state such as uniaxial tension, significant varia-

tions in the stress histories may be experienced at the crystal level due to the

polycrystalline nature of most metals and metallic alloys. To better understand

the processes by which fatigue damage initiates, it is necessary to measure and

compute stresses at the level where the damage initiates, which is at the crystal

level. The stress state of a crystal depends on the orientation of the crystal itself,

anisotropy of the single crystal elastic and plastic properties as well as the ori-

entations of neighboring crystals. More intensely stressed crystals can serve as

defect or crack initiation sites.

Recent advances in both diffraction methods and polycrystal deformation

modeling have enabled researchers to quantify the evolution of stresses and

strains at the crystal level [3, 24, 46, 61]. In situ diffraction methods have en-

abled the measurement of elastic lattice strains in many different directions

within crystals under monotonic or cyclic loading [7, 62]. Parallel computing

and data parallel implementations of programs have allowed us to construct

and cyclically load polycrystalline aggregates comprised of thousands of crys-

tals, each crystal highly resolved by many finite elements. These experimental

and computational capabilities can be tightly coupled to provide a more com-

plete picture of the evolving micromechanical state of the material under cyclic

loading.
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In the current study, a coordinated program of crystal-based finite element

simulations and high energy synchotron x-ray diffraction experiments were

conducted on the AA7075-T6 aluminum alloy under in situ cyclic loading to

examine cycle-by-cycle changes in the lattice (elastic) strains. Since the elastic

strains in crystals are directly related to the stresses through Hookes law, the

ability to measure and compute the lattice strain distributions offer direct in-

sight into the evolving crystal stress distribution within a polycrystalline aggre-

gate. Neither the simulations nor the experiments are regarded as the standard

here, but rather we seek to use our experimental and computation capabilities

in a tightly coupled and complementary manner to quantify the evolution of

lattice strains within a polycrystalline aggregate under in situ cyclic loading.

The current study involves a direct comparison between lattice Strain Pole

Figure (SPF) results from high energy synchotron x-ray experiments and similar

SPF results constructed from crystal-based, elastoplastic finite element simula-

tions. The experiments interrogate the lattice strains for the {111}, {200} and

{220} families of crystal lattice planes oriented in many different sample direc-

tions, enabling SPFs to be constructed from the large number of lattice strain

measurements collected. The elastic strains computed from the simulations are

cast in an analogous form as the measured SPFs. The measured and simulated

SPFs are compared at the same macroscopic stress level on several cycles along

the loading history up to 100 cycles. The crystal stresses, slip system activity

and slip system strengths from the simulations are also examined to identify

trends in the evolution of these quantities and these trends are explained with

respect to the single crystal yield surface.
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3.3 Background

Over the past 40 years, electron microscopy has been widely employed to make

surface observations of microstructural features such as dislocations and dis-

locations structures in cyclically loaded specimens [63]. Electron microscopy

has made it possible to produce images of surface microstructural features re-

sulting from cyclic plasticity such persistent slip bands (PSBs), cell wall struc-

tures, intrusions and extrusions [64–68]. Electron microscopy techniques such

as transmission electron microscopy (TEM) and scanning electron microscopy

(SEM) had important implications for the field of fatigue because they led to

the discovery of the link between PSBs and the initiation of microcracks [69–71].

Various factors have been found to influence fatigue crack initiation, such as

the grain size distribution, a corrosive environment, inclusions and precipitates

within the material, the presence of residual stresses prior to fatigue loading and

the presence of mean stresses during cyclic loading in AA7075-T6 aluminum,

the material that we have chosen to investigate in the current study [72–75].

The limitation of electron microscopy techniques is that quantitative data

pertaining to the stress state that drives these microstructural features cannot

be obtained, which makes it difficult to establish a link between fatigue crack

initiation and the micromechanical conditions which cause it. Often the stresses

within crystals in a polycrystalline aggregate are assumed to be the same as

the applied macroscopic stress and traditional approaches to fatigue have of-

ten focused on building empirical correlations between the macroscopic load-

ing conditions and fatigue life [59, 76]. However, it has been shown that there

can exist significant heterogeneity at the crystal level and that the stress state

within a crystal in a polycrystalline aggregate may not be equal to the applied

macroscopic stress [53, 77]. Since fatigue cracks initiate at the crystal level, an
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effort must be made to quantify the micromechanical conditions leading up to

the initiation of a crack.

Polychromatic and monochromatic neutron and synchrotron x-ray diffrac-

tion enable the measurement of lattice (elastic) strains within a crystalline sam-

ple from shifts in diffraction peaks. Although neutron diffraction has been ex-

tensively used to measure the evolution of lattice strains under in situ loading,

slow collection times limit the amount of lattice strain information that can be

obtained [3, 14, 46–48], making it harder to establish a complete picture of the

evolving stress state of the crystals under in situ cyclic loading. High intensity

synchrotron x-rays experiments conducted in transmission with high speed area

detectors require much shorter collection times compared to neutron diffrac-

tion methods, enabling lattice strain data for many {hkl} families of crystal lat-

tice planes in thousands of different directions to be collected simultaneously

[7, 78, 79].

Numerical simulation of deforming polycrystals also provides a valuable

tool for quantifying the evolution of stress and strain distributions at the crystal

level. A variety of polycrystal deformation models are available to simulate

the response of a polycrystalline aggregate, where different assumptions can

be made regarding stress equilibrium and strain compatibility between crystals

within the aggregate. Iso-stress and iso-strain modeling assumptions can be

used [80, 81], while more complex formulations such the Taylor-Lin model, self-

consistent polycrystal deformation models and finite element models have been

used to model the elastic-plastic behavior of polycrystals [21, 29, 46, 61, 82–84].

There have been some previous efforts in investigating the behavior of a

polycrystalline aggregate under in situ cyclic loading in terms of quantifying

the evolution of the micromechanical response at the crystal level. Park et al.
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[45] utilized synchrotron x-ray diffraction and a high speed rotating shutter

to measure the real-time evolution of lattice strains in the loading and trans-

verse directions of a copper specimen cycled at 20 Hz. The results of this study

demonstrated that the lattice strains in the specimen loading and transverse

directions were evolving with cycles, which led to the current efforts here to

measure lattice strains in a larger number of sample directions. Huang et al.

utilized neutron diffraction to measure the lattice strains in a nickel-based alloy

under fully-reversed cyclic loading at a fixed macroscopic strain amplitude of

1% [48, 49]. The lattice strains in the specimen loading direction were measured

at the maximum and minimum macroscopic strains as well as at zero macro-

scopic stress and strain. A couple of studies have been conducted on stainless

steel using neutron diffraction techniques to measure the lattice strains in the

specimen loading and transverse directions under in situ low cycle fatigue load-

ing in strain control [46, 47].

3.3.1 Crystal orientations and crystallographic fibers

The description of the lattice orientation of a crystal within a polycrystalline

aggregate requires two coordinate systems to be specified: a crystal coordinate

system and a sample coordinate system. A rotation or orientation matrix, R,

transforms a vector in the crystal coordinate system, vc, to a vector in the sample

coordinate system, vs, as follows:

Rvc = vs (3.1)

A crystallographic fiber is represented as c || s and it connects all orientations

that align a particular crystal direction, c, with a particular sample direction, s:

Rc = ±s (3.2)
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All orientations associated with a crystallographic fiber differ only by a rotation

about a common direction. In Rodrigues orientation space, a crystallographic

fiber appears as a straight line [32]. Crystallographic fibers provide a basis for

comparison between simulations and diffraction measurements because a par-

ticular crystallographic fiber corresponds directly to a particular Bragg diffrac-

tion condition.

3.4 Experiments

3.4.1 Diffraction and lattice strains

A lattice Strain Pole Figure (SPF) experiment combines high-energy x-ray

diffraction with in situ mechanical loading to measure lattice strains in poly-

crystalline samples in many different directions [7]. Each lattice strain measure-

ment interrogates a subset of crystals within a polycrystalline sample. This type

of experiment is referred to as an aggregate or powder diffraction experiment.

An important characteristic of this type of experiment is that many crystals con-

tribute to each lattice strain measurement. The experimental results presented

in this chapter were taken from SPF experiments conducted by Jay Schuren of

Cornell University at the A2 experimental station of the Cornell High Energy

Synchrotron Source (CHESS).

Diffraction is fundamentally described by Bragg’s law as follows [85]:

nλ = 2dc||s sin θc||s (3.3)

where n is an integer, λ is the wavelength, dc||s is the lattice plane spacing for the

subset of crystals with the plane normal c aligned with the sample direction s,

and θc||s is the Bragg angle.
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A schematic of a typical diffraction experiment conducted in transmission is

shown in Figure 3.1. The scattering vector, qc||s, is the bisector of the incoming

and the diffracted x-ray beam. In a diffraction experiment, a shift in a diffraction

peak corresponds to a change in the average lattice spacing among crystals with

a particular {hkl} lattice plane normal aligned with the scattering vector.

X Y

{200} || X

Diffraction from polycrystals

9B-Exam Su Leen Wong

Bragg’s law: nλ = 2dc||s sin θc||s

Neutron diffraction experimental setup

εc||s =
dc||s − d0

c||s
d0

c||s
Lattice strain:

X-ray powder diffraction experimental setup

A lattice strain measurement 
corresponds to the average 
lattice strain along a 
crystallographic fiber

Z

limits wich establish the lower limit on Ui. First, there exists a minimum peak shift on the detector that

can be resolved during the data reduction process, ∆ρmin. And second, the as the peak intensity decreases,

the signal-to-noise ratio approaches one and the diffracted peak cannot be identified.

By manipulating Equation 4 and using the experiment geometry shown in Figure 3 we find the lattice

strain for, a given ∆ρmin, to be a function of 2θ,

εmin =
sin(arctan( ρ

D
)

2 )

sin(arctan(
ρ−∆ρmin

D
)

2 )
− 1 (7)

where 2θ = arctan( ρ
D ) and D is the sample to detector distance. To illustrate the minimum resolvable

lattice strain based on the concept of a minimum peak shift we consider a range of 2θ values and the

MAR345 area detector with dimensions of 345×345mm2 at a sample to detector distance of 650 mm. The

lattice strain values that correspond to three different minimum peak shifts are shown in Figure 5.
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Figure 5: The minimum measurable lattice strain for three ∆ρmin peak shifts show a characteristic decline
in the minimum lattice strain value with increasing 2θ values.

The second limiting feature is the diffracted intensity relative to the background. The uncertainty in

the position of the diffracted peak will increase as the peak intensity approaches the background; indicating

that there is no longer sufficient diffracted signal to make the measurement. Quantifying the influence of

these two features will be discussed in § 5. To reach these resolution limits the other sources of error that

influence Ui must be minimized.
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Figure 3.1: Schematic of a lattice Strain Pole Figure (SPF) experiment con-
ducted in transmission. Here D and ρ are the sample to detector
distance and the radial distance on the detector, respectively.

Using the experimental geometry and the radial position of each diffraction

peak on the detector, the Bragg angle, θc||s, in Equation (3.3) can be measured.

From Equation (3.3), the mean lattice plane spacing, dc||s, in the crystals satis-

fying a particular Bragg condition can be determined at any point in the de-

formation history. Given a reference (or unstrained) lattice plane spacing, d0
c||s,

the average lattice strain for the crystals with {hkl} plane normals aligned with

scattering vector qc||s is defined as:

εc||s =
dc||s − d0

c||s

d0
c||s

(3.4)

For cubic crystals, the initial or unstrained lattice plane spacing, d0
c||s, is defined

by a single lattice parameter.
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3.4.2 Material and mechanical testing method

The AA7075-T6 aluminum alloy has a face-centered cubic (fcc) crystal structure

and is commonly used in the construction of the wings and fuselage of both

commercial and military aircraft. The Electron Backscatter Diffraction (EBSD)

maps for the rolling and transverse planes of an AA7075-T6 aluminum sheet,

which was manufactured by Alcoa, are shown in Figure 3.2. The average grain

size of the material was determined to be approximately 19.5 µm using EBSD

and optical micrographs [79].

these properties for materials like the AA7075 is necessary for the simulation to represent the deforming

polycrystal. Integration of the finite element simulation with the diffraction data allows for these properties

to be perturbed until the lattice strain response is captured. The blending of the diffraction results and the

simulation pushes us closer to the underlying goal of understanding the probable stress state for each grain

in the sample. Similarly, interpretation of the lattice strain results is built on using the simulation results to

approximate the lattice strain variation between the grains contributing to each diffraction measurement.

3.1 Investigation Details

The AA7075-T6 is an aerospace alloy that is regularly used in the skin and fuselage of aircraft. The sample

was cut from a 1.63 mm sheet such that the LD was aligned with the sheet transverse direction. The gage

length of the specimen was 36.83 mm long with a 1× 1.2mm2 (ND×TD) cross-section. The average grain

size was determined from EBSD and optical micrographs to be ∼ 19.5µm. Two EBSD scans are shown

for the rolling plane and the sheet transverse/normal plane in Figure 3 with each grain overlaid with a

random color. The ODF, shown in Multiples of a Uniform Distribution (MUD), was found using a Rietveld

analysis of the diffraction data [34–36].

300µm

(a) (b)

Figure 3: EBSD data for AA7075-T6 are shown for both the (a) rolling plane and the (b) sheet trans-
verse/normal plan. A random color is overlaid to distinguish the different grains.

The experiment was conducted in the A2 experimental station at the Cornell High Energy Synchrotron

Source (CHESS). An x-ray energy of 49.989 KeV (λ = 0.2480
◦
A) with a bandwidth of 50 eV was selected

using a silicon {111} double-crystal monochromater. The beam size of 0.5 × 0.5mm2 was defined by two
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A) with a bandwidth of 50 eV was selected
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(b) Transverse plane EBSD map

Figure 3.2: EBSD maps for the rolling and transverse planes of the
AA7075-T6 aluminum alloy sheet.

The Orientation Distribution Function (ODF) of the material, shown in Fig-

ure 3.3, was determined from the experimental diffraction data using Rietveld

analysis [86–88]. The ODF is required to assign the initial orientations of the

grains in the simulations.

The AA7075-T6 specimens were loaded using an electromagnetic loadframe.

The loadframe is mounted within a two axis diffractometer which allows for re-

orientation of the loaded samples to increase the number of independent diffrac-

tion measurements [78]. The specimens were cycled in zero-tension cyclic load-
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r3
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Orientation Distribution Function 
(ODF) for AA7075-T6

Diffraction volume Virtual polycrystal specimenAA7075-T6 specimen

Methodology

1. Building the virtual specimen:
• 2916 complete dodecahedra grains, 192000 finite elements

- 48 tetrahedral elements per grain
• Initialize texture using ODF determined from experiments

- Generate a list of orientations by randomly sampling the ODF
- Each grain assigned the same initial lattice orientation
- Orientation of each element allowed to evolve independently

• Zero-tension cyclic loading between 572 MPa and 0 MPa

32B-Exam Su Leen Wong

Modeling the 
polycrystalline specimen:

Rolling plane EBSD map Transverse plane EBSD map Figure 3.3: The ODF determined from the experiments, plotted over the
cubic fundamental region of Rodrigues orientation space. The
ODF is represented in terms of Multiples of Uniform Distribu-
tion (MUD).

ing between 0 MPa and 572 MPa. The specimens were loaded to the maximum

macroscopic load of 572 MPa on each cycle, then the macroscopic load was re-

duced to 90% of the target value (515 MPa) to conduct the diffraction measure-

ments. The macroscopic load was held at the reduced load level to reduce creep

effects while sample rotations and diffraction measurements were being con-

ducted [3]. The lattice strain diffraction measurements were conducted at 515

MPa on cycles 0, 1, 5, 10, 20, 50, 100, 500 and 1000. More details on the exper-

imental procedure and illustrations of the experimental setup can be found in

[79].

Diffraction of a polycrystalline sample in a SPF powder experiment pro-

duces a series of concentric rings, known as Debye rings. The diffraction pat-

tern is captured using a MAR345 area detector. Each concentric Debye ring

corresponds to diffraction from a particular {hkl} family of crystal lattice planes.

Each point on a Debye ring corresponds to a crystallographic fiber in Rodrigues

space. To sample an equiaxed region of Rodrigues space and to increase the

number of crystals contributing to a lattice strain measurement, the sample was

reoriented, or rocked, by ±2.5◦ about two axes: a vertical axis normal to the x-
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ray beam and the specimen loading direction (LD). A more detailed description

of this rocking technique is available in [79].

3.4.3 Lattice Strain Pole Figures (SPFs)

By measuring lattice strains in many sample directions, we are able to construct

SPFs, which are three dimensional representations of the micromechanical state

as a function of crystallographic orientation. A SPF is constructed for a specific

{hkl} family of lattice planes in many different measurement directions, s, where

each lattice strain measurement is plotted at the intersection of its scattering

vector, qc||s, and the surface of a unit sphere. Increased SPF coverage is achieved

by rotating the sample relative to the x-ray beam.

A point on a pole figure corresponds to a crystallographic fiber. A point on

the {200} pole figure with a scattering vector in the sample LD direction cor-

responds to the {200} || LD crystallographic fiber shown in Figure 3.4(a). The

scattering vectors on the pole figure encompassed by a ±2.5◦ rock about two

axes are shown in Figure 3.4(b). Each lattice strain measurement plotted on a

SPF corresponds to the average normal strain among all crystals belonging to

a particular crystallographic fiber. The SPF powder experiment does not have

the ability to resolve different crystal orientations lying along a crystallographic

fiber. However, the exact orientation of each crystal is known in the finite ele-

ment simulations and the orientation of each crystal can be plotted as a point in

Rodrigues space.
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{200} SPF on Cycle 0

ND

LD TD

Methodology
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4. Generation of Lattice Strain Pole Figures (SPFs) from simulation data
• Used as the basis of comparison between experiments and simulations

• Each lattice strain measurement is plotted at the intersection of a unit sphere and its scattering vector

• Increased SPF coverage is achieved by rotating the sample relative to the x-ray beam

{200} || LD
with 5° angle of resolution

{200} || LD(a) Single scattering vector
in LD direction aligned with
{200} lattice plane normal
which corresponds to a line
of orientations in Rodrigues
space

{200} SPF on Cycle 0

ND

LD TD

Methodology

34B-Exam Su Leen Wong

4. Generation of Lattice Strain Pole Figures (SPFs) from simulation data
• Used as the basis of comparison between experiments and simulations

• Each lattice strain measurement is plotted at the intersection of a unit sphere and its scattering vector

• Increased SPF coverage is achieved by rotating the sample relative to the x-ray beam

{200} || LD
with 5° angle of resolution

{200} || LD (b) Scattering vectors encom-
passed ±2.5◦ rock and their
corresponding region in Ro-
drigues space

Figure 3.4: Relationship between a point on a pole figure and a crystallo-
graphic fiber in Rodrigues space

3.4.4 Determination of lattice strain uncertainty

The use of the SPF powder experiment technique to investigate cycle-by-cycle

changes in lattice strains for many different sample directions requires careful

consideration of the uncertainty associated with each lattice strain measure-

ment. Without an estimate for the uncertainty, it is not possible to separate

real micromechanical evolution from random experimental fluctuations. The

method of quantifying the uncertainty associated with a lattice strain measure-

ment was developed by Schuren et. al. [79] for a monotonic tensile loading SPF

experiment on AA7075-T6 aluminum, the same material used in the current

study.

The uncertainty of a lattice strain measurement in the experiment, Uc||s, has
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a contribution from the instrument, U i
c||s, and a contribution from the material,

Um
c||s [79]. The total uncertainty, Uc||s, associated with a particular lattice strain

measurement is thus computed as:

Uc||s =

√
U i

c||s
2

+ Um
c||s

2 (3.5)

The material portion of the uncertainty, Um
c||s, is influenced by the number of

crystals contributing to a lattice strain measurement, grain morphology and the

standard deviation of the lattice strains among the crystals contributing to each

measurement. The lattice strains from the simulations are required to compute

the material portion of the uncertainty, Um
c||s, demonstrating the complementary

nature of the experiments and simulations in this study. More details on how

U i
c||s and Um

c||s are computed can be found in [79].

3.5 Simulations

3.5.1 Numerical formulation

A crystal-based elastoplastic finite element model is used to simulate the re-

sponse of a virtual polycrystalline specimen under similar loading conditions as

in the SPF experiments. An elastoplastic constitutive model, which dictates the

behavior of a single crystal, is implemented within a finite element formulation

which dictates the behavior of an aggregate of crystals. A complete description

of the finite element model and its implementation can be found in [35–37]. The

capabilities of the single crystal constitutive model and its finite element imple-

mentation are briefly summarized here. The crystal elastoplastic constitutive

model has the following features:
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• multiplicative decomposition of the crystal deformation gradient into elas-

tic, plastic and rotational portions

• anisotropic elasticity appropriate to the fcc crystal structure

• plastic deformation by rate-dependent restricted slip on the 12 {111}〈110〉

slip systems associated with the fcc crystal structure

• strain hardening via integration of a modified Voce law for evolution of

the slip system strengths

• texture evolution through crystallographic lattice reorientation

This crystal constitutive model is implemented in a finite element formulation

which has the following capabilities:

• three-dimensional grain geometries, where each grain is resolved with

multiple finite elements

• weak form of the equations of equilibrium

• implicit time-integration of the constitutive equations for numerical sta-

bility

• scalable parallel implementation using Fortran 90 and interprocessor com-

munication based on the Message Passing Interface (MPI) standard

Crystallographic slip through the crystal lattice is assumed to be the domi-

nant mode of plastic deformation. The deformation gradient, F, experienced by

a crystal in the current configuration is decomposed into an elastic, plastic and

rotational portion as follows [35]:

F = V∗R∗Fp (3.6)

where Fp is the purely plastic part of F, R∗ is the lattice rotation and V∗ is the

elastic stretch.
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Plastic deformation occurs by crystallographic slip on a restricted number of

slip systems. For each α-slip system, a slip direction, ŝα, and a slip plane normal,

m̂α, are defined. The plastic shearing rate on the α-slip system, γ̇α, is related to

the crystal stress through a power law form:

γ̇α = γ̇α0

(
|τα|

gα

) 1
m

sgn(τα) (3.7)

where gα is the slip system strength, γ̇α0 is a reference shear rate and m is the rate

sensitivity of slip. The resolved shear stress, τα, is the projection of the deviatoric

part of the Kirchhoff stress, τ′, on the α-slip system:

τα = τ′ : sym(ŝα ⊗ m̂α) (3.8)

The Kirchhoff stress, τ, is related to the crystal elastic strains, ε through

Hooke’s law: 

τ11

τ22

τ33

τ23

τ13

τ12



=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





ε11

ε22

ε33

ε23

ε13

ε12



(3.9)

where C11,C12 and C44 are the single crystal elastic moduli for the cubic crystal

structure.

The slip system strengths for each crystal, g, evolve according to an isotropic

hardening law (gα = g):

ġ = h0

(
gs(γ̇) − g
gs(γ̇) − g0

)
γ̇, gs(γ̇) = gs0

(
γ̇

γ̇s0

)m′

(3.10)

where γ̇ =
∑
α |γ̇

α| is the sum of the slip system shearing rates and h0, g0, gs0, m′

are slip system hardening parameters.
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3.5.2 Virtual specimen and simulation of cyclic loading tests

In the diffraction experiment, only a small volume of the specimen is irradiated

by the x-ray beam. This volume is referred to as the diffraction volume and it is

modeled in the simulations as a virtual polycrystal specimen. A finite element

mesh in the shape of a cube is instantiated with 2916 complete rhombic dodec-

ahedra grains to represent the virtual polycrystalline specimen. Each complete

rhombic dodecahedra grain consists of 48 10-node tetrahedra elements but there

are also partial grains which make up the flat surfaces of the finite element mesh.

The mesh is comprised of a total of 192,000 finite elements. The finite elements

contributing to a grain are assigned the same initial lattice orientation but these

orientations are allowed to evolve independently with deformation. The ODF

of the AA7075-T6 aluminum sheet, shown in Figure 3.3, is randomly sampled

to generate a list of orientations which are assigned to the grains of the finite

element mesh.

The virtual specimen is loaded under uniaxial, zero-tension cyclic loading

conditions (R = 0), similar to the loading conditions applied in the experiment.

The sample LD, TD and ND directions correspond to the X, Y and Z directions

of the finite element mesh, respectively. A constant velocity was applied on

the positive X surface of the finite element mesh, while the X = 0 face of the

mesh was constrained in the X-direction. The two positive Y and Z surfaces

of the mesh are traction-free, while the Y = 0 and Z = 0 surfaces had symme-

try boundary conditions imposed. Both the experiments and simulations were

conducted in load control with a target macroscopic engineering stress of 572

MPa on each cycle. Lattice strain data between the experiments and simulations

were compared at 90% of the target macroscopic load on each cycle. Although

the AA7075-T6 specimen in the experiments was cycled up to at least 1000 cy-
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cles, the virtual specimen was only cycled up to 100 cycles due to the excessive

computation time and resources required to achieve 500 and 1000 cycles in the

simulations.

The simulations also do not take into account the residual stress distribution

which is present in the material prior to loading because assigning a residual

stress state to each element in the finite element mesh while satisfying equilib-

rium and compatibility is a non-trivial problem. Therefore, for the purposes of

this study, the crystals are assumed have a zero initial stress state prior to cyclic

loading in the simulations.

3.5.3 Determination of model constants

Data from the monotonic loading experiments (which will be referred to as Cy-

cle 0) is used to determine the single crystal elastic and plastic properties for

the AA7075-T6 aluminum alloy. The single crystal elastic moduli for pure alu-

minum may not be suitable for AA7075-T6 because of the addition of alloying

elements and the presence of precipitates in the material can perturb the single

crystal elastic moduli from those of the pure material. The single crystal elas-

tic anisotropy ratio and the hardening constants are determined by conducting

two different suites of simulations.

The first suite of simulations is used to determine the hardening constants of

AA7075-T6. Before conducting a simulation, the elastic and plastic properties of

the material need to be specified as inputs. In the first suite of simulations, the

single crystal elastic moduli (C11, C12 and C44) for pure aluminum reported by

Hosford [34] was used, keeping in mind that these will not be the final values

of the single crystal elastic moduli used for AA7075-T6. The hardening con-

stants in Equation (3.10) are varied in this first suite of simulations until a good
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match between the experiment and simulation macroscopic engineering stress-

strain curves is obtained. The hardening constants determined from this first

set of simulations are shown in Table 3.1. The comparison of the simulation

and experiment macroscopic stress-strain curves for monotonic loading (Cycle

0) using the hardening constants in Table 3.1 is shown in Figure 3.5.

h0 (MPa) g0 (MPa) gs0 (MPa) m m′ γ̇0 (s−1) γ̇s0 (s−1)
195 218 280 0.007 0.0 1.0 5 × 1010

Table 3.1: Slip system and hardening model parameters determined for
AA7075-T6 in the first suite of simulations.
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Figure 3.5: Macroscopic stress-strain curves from the experiments and
simulations on Cycle 0. Points are indicated on the macro-
scopic stress-strain curve where diffraction measurements
were conducted. Strain Pole Figure (SPF) comparisons were
made between the experiments and simulations at the macro-
scopic stress levels corresponding to these points.

Once the hardening constants were determined, a second suite of simula-

tions was conducted to determine the single crystal elastic anisotropy, rE. The
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single crystal elastic anisotropy ratio, rE, is defined as:

rE =
E〈111〉

E〈100〉
(3.11)

where E〈111〉 is the stiffness in the 〈111〉 crystal direction and E〈100〉 is the stiffness

in the 〈100〉 crystal direction.

For crystals with the cubic crystal structure, three independent elastic con-

stants are required to describe the elastic response of the material. In addition

to the single crystal elastic anisotropic ratio, rE, two average parameters are also

defined: an average Young’s modulus, Eavg and an average Poisson’s ratio, νavg

for a polycrystalline aggregate with a uniform ODF. To simplify the problem,

the effect of texture on Eavg and νavg was not taken into account in the current

study.

The single crystal elastic anisotropy, rE, of the material and correspondingly,

the single crystal elastic moduli are determined through the following proce-

dure using the second suite of simulations:

1. Starting from the single crystal elastic moduli (C11, C12 and C44) for pure

aluminum reported by Hosford [34], where rE = 1.2, rE and νavg are kept

constant and single crystal elastic moduli are changed such that Eavg in the

simulations matches the Young’s modulus of the macroscopic stress-strain

curve in the monotonic tensile loading experiments (Cycle 0).

2. Using the new value of Eavg determined in Step 1, Eavg and νavg are now

kept constant while the single crystal elastic moduli are changed to result

in rE values in the range of 1.2–1.7. Six simulations were conducted for

rE in the range of 1.2–1.7, in increments of 0.1. The method of varying

the single crystal elastic moduli to result in different values of rE has been

described in detail in Refs. [1, 3].
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3. The SPFs generated from the simulations for different values of rE are com-

pared to the measured SPFs at various macroscopic stress levels along the

macroscopic stress-strain curve on Cycle 0, as shown in Figure 3.5. The

value rE of which results in the minimum difference between all SPFs at

all macroscopic stress levels is chosen as the final value of rE and is used

for the cyclic loading simulations.

By taking a least-squares difference between the experiment SPFs and simu-

lation SPFs at the macroscopic stress values indicated in Figure 3.5, it was deter-

mined that the value of rE = 1.3 resulted in the best match between the exper-

iment and simulation SPFs. The single crystal elastic moduli corresponding to

the value of rE = 1.3 are shown in Table 3.2. Using this value of rE, the cyclic sim-

ulations were then conducted and the resulting macroscopic stress-strain curve

for cyclic loading up to 100 cycles is shown in Figure 3.6. It is observed that

the macroscopic stress-strain curve in the simulations accumulates more plastic

strain compared to the macroscopic stress-strain curve from the experiments.

C11 (GPa) C12 (GPa) C44 (GPa)
102.223 59.641 57.001

Table 3.2: Single crystal elastic moduli corresponding to rE = 1.3 deter-
mined for AA7075-T6.

A second simulation conducted using rE = 1.35 demonstrated no significant

changes in the evolution of the lattice strains with cycles, which is expected

when there is only a small difference in rE. Therefore, the results for rE = 1.35

will not be presented here.
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Figure 3.6: Macroscopic stress-strain curves from the experiments and
simulations for cyclic loading.

3.5.4 Generation of SPFs from simulated data

The simulation results can be compared to individual lattice strain diffrac-

tion measurements using crystallographic fibers, which were defined in Sec-

tion 3.3.1, as the basis for comparison. A crystallographic fiber corresponds

directly to a particular Bragg diffraction condition, where c corresponds to the

{hkl} lattice plane normal and s is aligned with a particular scattering vector, qc||s.

To construct a SPF from the simulation data for a particular {hkl} family of

lattice planes, the list of measurement directions in the experiment and an angle

of resolution is required. The lattice orientation of each element in the mesh is

examined to determine whether its {hkl} lattice plane normal and a particular

measurement direction, s, are aligned to within the angle of resolution. The

angle of resolution chosen in the simulation is 5◦ to ensure that a statistically

significant number of elements are contributing to a crystallographic fiber.

For the n number of elements in the mesh whose orientation belongs to a
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particular crystallographic fiber to within a given tolerance, its full elastic strain

tensor, ε, is projected in the measurement direction. The lattice strain value,

εc||s, is then computed by averaging all the projected values of ε among the n

elements belonging to the crystallographic fiber:

εc||s =

 n∑
i=1

si · εi(Ri) · sT
i

 /n (3.12)

As in the experiments, the value of εc||s can then be plotted as a point on a

pole figure at the intersection of a unit sphere and its corresponding scattering

vector, qc||s.

3.6 Results

3.6.1 Residual lattice strain distribution

The lattice strain distribution at a macroscopic stress of 0 MPa is measured prior

to loading in the experiments. The lattice strains present in the macroscopically

unloaded state are often referred to as residual strains. The residual lattice strain

pole figures are shown in Figure 3.7. The {200} SPF has the largest residual

lattice strains compared to the other {hkl} pole figures. The compressive residual

lattice strains are also much larger compared to the tensile residual lattice strains

for the {200} SPF. It is important to note that in the simulations, the crystals are

not initialized with a residual stress state. Therefore, the simulation SPFs prior

to loading are zero everywhere on the pole figure and are not presented here.
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Figure 3.7: Measured residual SPFs at a macroscopic stress of 0 MPa, prior
to loading. Note that the colorbar scale is not symmetric.

3.6.2 Comparison between measured and simulated SPFs

The {111}, {200} and {220} SPFs from the experiments and simulations on Cy-

cle 0 are shown in Figures 3.8(a) and 3.8(b). The comparison between the ex-

periment and simulation SPFs are made at the last point indicated in Figure 3.5,

which is at 90% of the maximum macroscopic engineering stress of 572 MPa and

corresponds to approximately 515 MPa. The differences between the measured

and simulated SPFs on Cycle 0 are shown in Figure 3.8(c). Although the experi-

ment and simulation SPFs appear to exhibit the same trends over the pole figure,

the differences between the experiment and simulation SPFs are non-negligible,

which indicates that the match between the experiment and simulation SPFs

can be improved. It is also observed that the {200} SPF, which has the largest

residual strains as shown in Figure 3.7, also has the largest difference between

the measured and simulated SPFs (Figure 3.8(c)).

The measured and simulated SPFs at 515 MPa on Cycle 100 are shown in Fig-

ure 3.9. The SPFs for other cycles are not shown here because they exhibit trends

similar to those in Figures 3.8 and 3.9. The lattice strains evolve between Cycle

0 and Cycle 100 but these differences are not discernible between Figure 3.8 and

Figure 3.9 because the changes are at least an order of magnitude smaller than
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(a) Experiment SPFs

LSSim Cycle 0

111 200 220

ND
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(b) Simulation SPFs

LSDiff Exp-Sim Cycle 0
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ND

LD TD

(c) Difference between experiment and simulation SPFs

Figure 3.8: Experiment, simulation and difference SPFs for three different
{hkl}s at 515 MPa on Cycle 0. Note that the colorbar scale for
Figure 3.8(c) is different.

the lattice strains. Therefore, changes in the SPFs between two cycles will be

plotted as difference SPFs in Section 3.6.3.

For Cycle 0 and Cycle 100, the lattice strain values in the experiment and

simulation SPFs are on the same order of magnitude and also exhibit similar
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(a) Experiment SPFs
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(b) Simulation SPFs

LSDiff Exp-Sim Cycle 100
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(c) Difference between experiment and simulation SPFs

Figure 3.9: Experiment, simulation and difference SPFs for three different
{hkl}s at 515 MPa on Cycle 100. Note that the colorbar scale for
Figure 3.9(c) is different.

trends which are consistent with the macroscopic loading direction. A tensile

lattice strain develops in the crystals with scattering vectors close to the spec-

imen loading direction (LD) and a compressive lattice strain develops in the

crystals with scattering vectors close to the specimen transverse direction (TD),
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which is consistent with the Poisson effect. The lattice strains vary gradually

from tensile to compressive as a scattering vector moves from the LD to the

TD direction. Figures 3.8(c) and 3.9(c) demonstrate that on Cycle 0 and Cycle

100, the largest difference between the experiment and simulation SPFs occurs

for the {200} SPF, particularly for the scattering vectors along the edges of the

pole figure coverage. The magnitude of the difference between the experiment

and simulation SPFs on Cycle 100 is also comparable to the magnitude of the

difference between the experiment and simulation SPFs on Cycle 0.

3.6.3 Evolution of SPFs with cycles

The differences between the SPFs on Cycles 1, 10 and 100 with respect to Cycle

0 are presented in Figures 3.10−3.12. Examining first the difference between Cy-

cle 1 and Cycle 0 for the measured SPFs (Figure 3.10(a)), it is observed that for

some points on the difference SPFs, the differences are on the order of the exper-

imental uncertainty [79]. Therefore, it is difficult to observe definitive trends in

the evolution of the lattice strains between Cycle 1 and Cycle 0. The difference

between Cycle 1 and Cycle 0 for the simulation SPFs (Figure 3.10(b)) develop

clear patterns on the pole figure, but these differences are an order of magni-

tude smaller compared to the differences observed in the experiments and also

cannot be used to draw conclusions regarding the evolution of the lattice strains

after only one cycle.

The differences between the Cycle 10 and Cycle 0 SPFs for the experiments

and the simulations are shown in Figure 3.11. The experimental SPFs evolve

at a faster rate compared to the simulation SPFs in the first ten cycles. For the

experimental SPFs, the lattice strains close to the LD direction increase while

the lattice strains close to the TD direction decrease after ten cycles across all the
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(a) Experiment

LSSim strain Diff Cycle 1-0
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(b) Simulation

Figure 3.10: Difference SPFs between Cycle 1 and Cycle 0 at 515 MPa for
the experiments and simulations, where the Cycle 0 SPF is
subtracted from the Cycle 1 SPF. Note that the colorbar scales
for the two figures are different.

pole figures. The difference SPFs for the simulations are an order of magnitude

smaller than the difference SPFs for the experiments when comparing Cycles 10

and 0, as seen in Figure 3.11(b).

The differences between the Cycle 100 and Cycle 0 SPFs for the experiments

and the simulations are shown in Figure 3.12. Comparing Figure 3.11(a) and

Figure 3.12(a), it is observed that most changes in the measured lattice strains

occur during the first ten cycles. In the measured SPFs, the lattice strains close

to the LD direction increase with cycles, while the lattice strains close to the TD

direction decrease with cycles for all the pole figures. Only the simulation {111}

and {220} SPFs evolve in similar directions as the measured SPFs. The lattice

strains close to the LD direction increase with cycles and the lattice strains close
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ND
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(a) Experiment

LSSim strain Diff Cycle 10-0

111 200 220

ND

LD TD

(b) Simulation

Figure 3.11: Difference SPFs between Cycle 10 and Cycle 0 at 515 MPa for
the experiments and simulations, where the Cycle 0 SPF is
subtracted from the Cycle 10 SPF.

to the TD direction decrease with cycles for the {111} and {220} simulation

SPFs, but at a slower rate compared to the experiment. For the simulated {200}

SPF, however, the lattice strains close to the LD direction tend to decrease with

cycles while the lattice strains close to the TD direction tend to increase with

cycles. This trend observed in the evolution of the simulated {200} SPF is not

consistent with the evolution of the measured {200} SPF.

The changes in the lattice strains between Cycle 100 and Cycle 0 for the sim-

ulation SPFs are approximately on the same order of magnitude as the experi-

ment SPFs. This indicates that after the first ten cycles, the lattice strains in the

experiment evolve at a slower rate compared to the lattice strains in the simula-

tions.
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(a) Experiment

LSSim strain Diff Cycle 100-0

111 200 220

ND
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(b) Simulation

Figure 3.12: Difference SPFs between Cycle 100 and Cycle 0 at 515 MPa
for the experiments and simulations, where the Cycle 0 SPF is
subtracted from the Cycle 100 SPF.

3.6.4 Evolution of the computed crystal stresses with cycles

The simulations possess information such as the crystal stress states, the slip

system shearing rates and the slip system strengths which currently cannot be

measured in the experiments. The lattice strains and crystal orientation infor-

mation in the simulations are also more highly resolved than in the experiments.

In the simulations, the exact lattice orientation along a crystallographic fiber and

the full elastic strain tensor of each crystal is known. However, in the SPF pow-

der experiments the orientation of a diffracting crystal is known only to within

a rotation about its scattering vector and only the average lattice strain among

all crystals satisfying a particular Bragg condition can be measured.

In addition to generating SPFs from the simulation data to be compared to
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the measured SPFs, the crystal stresses which drive the evolution of the lattice

strains can also be examined from the simulation data. Due to the symmet-

ric nature of the crystal stress tensor, the crystal stresses can be cast into a 6-

dimensional vector form. The magnitudes of the crystal stress vectors, which

are averaged along a crystallographic fiber, are plotted on a pole figure in Fig-

ure 3.13. Since the crystal stress information for all crystals within the virtual

specimen is readily available, the crystal stress magnitudes are plotted over the

entire pole figure and since these simulation results cannot be compared to the

experiments, the crystal quantities plotted in this section are not grouped into

larger regions on the pole figure.

The magnitudes of the crystal stress vectors on Cycle 0 and Cycle 100 are

plotted on the pole figure in Figures 3.13(a) and 3.13(b), respectively. The differ-

ences in the stress magnitudes between Cycle 100 and Cycle 0 are shown in Fig-

ure 3.13(c), where the Cycle 0 stress magnitudes are subtracted from the Cycle

100 stress magnitudes. The stress magnitudes on Cycle 0 and Cycle 100 exhibit

very similar trends, although there is some change in the stress magnitudes on

the order of approximately 10 MPa between Cycle 0 and Cycle 100.

Examining the stress magnitudes on the {111} pole figure shown in Fig-

ures 3.13(a) and 3.13(b), the {111} || LD stress magnitudes are the largest com-

pared to other orientations on the pole figure. For the {200} pole figure, the

{200} || LD stress magnitudes are the smallest compared to other orientations on

the pole figure. For the {220} pole figure, the {220} || LD orientations have only

slightly higher stress magnitudes relative to other orientations on the pole fig-

ure. The {hkl} || LD notation refers to the {hkl} || LD crystallographic fiber, which

corresponds to the set of crystals with their {hkl} lattice plane normals aligned

with the specimen loading direction (LD).
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(a) Magnitudes of the crystal stress vectors on Cycle 0

Norm Stress Cycle 100

ND

LD TD

111 200 220

(b) Magnitudes of the crystal stress vectors on Cycle 100

ND

LD TD

111 200 220

Diff Norm Stress Cycle 100-0

(c) Differences in the magnitudes of the crystal stress vectors between Cycle 100 and Cycle
0, where the values on Cycle 0 is subtracted from the values on Cycle 100.

Figure 3.13: Magnitudes of the crystals stress vectors computed from the
simulations and plotted on pole figures. Note that the color-
bar scale for Figure 3.13(c) is different.
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We can also compare the stress magnitudes with the simulation SPFs on Cy-

cle 0, by comparing Figure 3.8(b) and Figure 3.13(a). For a particular {hkl} family

of lattice planes, the scattering vectors close to the LD direction exhibit the

largest tensile lattice strain. However, the scattering vectors closest to the LD

direction do not necessarily have the largest stress magnitudes. This can be at-

tributed to the fact that since the crystal stresses are related to the crystal elastic

strains through anisotropic Hooke’s law, the lattice strains and the stress mag-

nitudes will not exhibit a one-to-one correspondence in their values.

The specimen in the experiment and the virtual specimen in the simulations

are both cycled out to approximately 3–4 % macroscopic strain as shown in Fig-

ure 3.6, indicating that significant plastic deformation has been achieved. Ritz

et al. [2] have demonstrated that under monotonic tensile loading, the crystal

stresses move towards the vertices of the single crystal yield surface (SCYS) in

fully-developed plasticity. A vertex is the intersection of at least five planes of

the SCYS and the vertex stress is the five dimensional deviatoric stress vector as-

sociated with the vertex. Although the fcc SCYS has 56 vertices (28 positive ver-

tices), Ritz et al. have shown that these vertices can be grouped into five unique

vertex families due to crystal symmetries, where the vertex stresses within a

vertex family are indistinguishable from each other. Although the SCYS analy-

sis conducted by Ritz et al. applied to monotonic tensile loading, the analysis

is still relevant to our current study because the crystal stresses follow the same

loading path to the yield surface upon reloading on each cycle [58].

The preferred vertex family for several crystallographic fibers and the rel-

ative magnitudes of the vertex stresses are shown in Table 3.3. The preferred

vertex family of the {111} || LD crystals is the V2 vertex family and the pre-

ferred vertex family of the {200} || LD crystals is the V1 vertex family. Ritz et al.
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have also shown that the {111} || LD and {200} || LD crystals are well-aligned

with their preferred vertex stresses upon yielding and their preferred vertex

families in fully-developed plasticity are aligned with the macroscopic stress.

Although the {220} || LD crystal stresses do have a preferred vertex family (V3),

the crystal stresses are less well aligned with their preferred vertex stress family

even at 3–4% macroscopic strain [2]. Comparing Figure 3.13 to Table 3.3, the

relative values of the {111} || LD and {200} || LD stress magnitudes are consis-

tent with the relative magnitudes of their preferred vertex stresses. The {111}

|| LD stress magnitudes are larger than the {200} || LD stress magnitudes, con-

sistent with the relative magnitudes of the V2 and V1 vertex stresses which are

1.50 and 1.00, respectively. The {220} || LD stress magnitudes, however, do not

compare well to the relative magnitude of their preferred vertex stress possibly

due to the fact that the {220} || LD crystal stresses are not highly aligned with

their preferred vertex stress at 3-4% macroscopic strain and require more plastic

straining for the crystal stresses to move into a vertex [2].

Crystallographic fiber Vertex family Relative magnitude of σ′v
{111} || LD V2 1.50
{200} || LD V1 1.00
{220} || LD V3 1.73

Table 3.3: Magnitude of the deviatoric form of the vertex stress, σ′v, for
each vertex stress family [2].

Although the stress magnitudes are plotted at a macroscopic stress level that

is not on the yield surface, we found that the trends in the stress magnitudes

at 90% of the target macroscopic stress mirrored the trends in the stress magni-

tudes at the target macroscopic stress on each cycle. Therefore, the SCYS anal-

ysis can still be used to explain the trends in the stress magnitudes shown in

Figure 3.13.
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We can also examine the influence of the crystal stresses on the net slip sys-

tem shearing rates, which are shown in Figure 3.14. The net slip system shearing

rate for each element in the mesh, γ̇, is computed as:

γ̇ =
∑
α

|γ̇α| (3.13)

where γ̇α is the slip system shearing rate for the α-slip system, computed in

Equation (3.7). The values of γ̇ are averaged along a crystallographic fiber and

plotted on the pole figure in Figure 3.14. It is observed that the net slip system

shearing rates on Cycle 100 are an order of magnitude smaller than the net slip

system shearing rates on Cycle 0, therefore the differences of the net slip system

shearing rates between Cycle 100 and Cycle 0 are not presented here. Since the

specimen is cycled between fixed macroscopic stress limits, strain hardening

occurring with increasing cycles causes less slip system activity on each cycle.

In general, orientations on the pole figure with relatively high stress magni-

tudes do not necessarily correspond to higher slip system activity. Comparing

Figures 3.13(a)−3.13(b) to Figure 3.14, the {111} || LD crystals on Cycle 100 have

relatively high stress magnitudes but relatively low slip system activity whereas

the {200} || LD crystals have relatively low stress magnitudes but relatively high

slip system activity on both Cycles 0 and 100. The slip system shearing rates re-

sult from the resolved shear stress on each slip system, which is projection of the

crystal stress onto the slip plane in the slip direction for all of the slip systems.

This implies that certain crystal orientations are more favorably orientated for

slip system shearing than others and therefore it is possible that a lower crystal

stress magnitude, depending on its direction, is able to produce higher resolved

shear stresses and therefore result in more slip system activity.

The implication of the stress magnitudes and the slip system activity on the

evolution of the slip system strengths is examined in Figure 3.15. The slip sys-
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(b) Net slip system shearing rate on Cycle 100

Figure 3.14: Net slip system shearing rate, γ̇, plotted over a pole figure for
Cycles 0 and 100. Note that the colorbar scales are different.

tem strengths increase with cycles for all orientations in general due to strain

hardening although the slip system strengths for different orientations increase

at different rates. Comparing Figure 3.14 to Figure 3.15, it appears that orienta-

tions with high slip system acticity tend to correspond to orientations with rel-

atively high slip system strength for a particular {hkl} pole figure. However, the

{111} || LD slip system activity on Cycle 0 is relatively higher compared to other

scattering vectors on the {111} pole figure whereas the slip system strengths

for the {111} || LD crystals are relatively lower compared to other orientations

on the {111} pole figure. This can be attributed to the fact that these quantities

plotted on a pole figure are averaged along a crystallographic fiber and therefore

have a significant number of crystals contributing to the average value which is
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(a) Slip system strength on Cycle 0
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(c) Difference in slip system strengths between Cycle 100 and Cycle 0

Figure 3.15: Slip system strength computed from the simulations. Note
that the scale for Figure 3.15(c) is different.
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plotted on the pole figure. It is known that grain interactions between neighbor-

ing grains will influence the crystal stress state and therefore influence the slip

system shearing rates and slip system strengths among the crystals belonging

to a crystallographic fiber.

In Figure 3.13(c), the {220} || LD stress magnitudes increase relatively more

with increasing cycles compared to other fibers on the {220} pole figure. How-

ever, in Figure 3.15(c) the {220} || LD slip systems strengths increase relatively

less with increasing cycles compared to other fibers on the {220} pole figure.

This phenomena can be attributed to the fact that even though the {220} || LD

stress magnitudes increase relatively more with cycles, these crystals are less

well oriented to cause slip system activity and slip system hardening. The pre-

ferred vertex stresses for the {220} || LD crystals are also relatively farther away

from the center of stress space compared to the preferred vertex stresses of the

{111} || LD and {200} || LD crystals, as shown in Table 3.3. Even though the

{220} || LD stress magnitudes increase relatively more with cycles, they are not

increasing enough to cause relatively more strain hardening.

The angles between the crystal stress vectors and the vector form of the

macroscopic stress are shown in Figure 3.16. It is observed that the {111} || LD

and {200} || LD crystal stress vectors are more closely aligned with the macro-

scopic stress compared to other crystallographic fibers while the {220} || LD

crystal stresses are less well-aligned with the macroscopic stress. Since the {111}

|| LD and {200} || LD crystal stresses align with their respective preferred ver-

tex stresses very early in the deformation [2], the stresses associated with these

fibers will also have the smallest angle with the macroscopic stress, as shown

in Figures 3.16(a) and 3.16(b). There is very little change in the angle between

the crystal stress and the macroscopic stress after 100 cycles. In fact, they align
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(a) Angle between macroscopic stress and crystal stress on Cycle 0
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(b) Angle between macroscopic stress and crystal stress on Cycle 100
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(c) Difference of angle between macroscopic stress and crystal stress between
Cycle 100 and Cycle 0

Figure 3.16: Angle between macroscopic stress and crystal stress com-
puted from the simulations. Note that the scale for Fig-
ure 3.16(c) is different.
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more closely with the macroscopic stress with increasing cycles. The preferred

vertex stresses of the {220} || LD crystals however, are not highly aligned with

the macroscopic stress. With increasing cycles and increasing plastic deforma-

tion, the {220} || LD crystal stresses move toward their preferred vertices and

away from the macroscopic stress, therefore the angle between the crystal stress

and the macroscopic stress increases, as shown in Figure 3.16(c).

3.7 Discussion

An important observation from the experiment and simulation SPFs presented

in Section 3.6 is that there is a clear dependence of the lattice strains on crystal-

lographic orientation. The difference SPFs shown in Figures 3.10−3.12 demon-

strate that the lattice strains in both the experiment and simulation evolve with

cycles, although they evolve at different rates at various points in the loading

history.

The {111} and {220} SPFs in Figures 3.8 and 3.9 show reasonable agreement

in terms of the evolution of the lattice strains, where the lattice strains in the

LD direction increase with cycles while the lattice strains in the TD direction

decrease with cycles. The {200} SPFs, however, do not evolve in similar direc-

tions between the experiments and simulations. The crystals associated with

the {200} SPF have the largest residual lattice strain distribution prior to load-

ing, as shown in Figure 3.7 and they also have the largest difference between

the experiment and simulation SPFs shown in Figures 3.8 and 3.9.

The crystals in the virtual specimen were not assigned residual stress states,

which influences the determination of the single crystal elastic anisotropy of

the material. Since the single crystal elastic moduli influences the crystal stress
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state, any inaccuracy in the determination of the single crystal elastic moduli

will in turn influence the evolution of the crystal stresses during cyclic load-

ing. However, the procedure for assigning a residual stress state to each crystal

in the virtual specimen from measured residual lattice strain distributions is a

non-trivial problem. As a first step, a suite of simulations can be conducted by

imposing different types of deformation conditions on the virtual polycrystal

prior to cyclic loading to investigate the effect of different residual stress distri-

butions on the evolution of the lattice strains during cyclic loading.

The crystal stress magnitudes and lattice strains do not have a one-to-one

correspondence due to the anisotropic elastic relationship between the crystal

stresses and elastic strains. Therefore, it is necessary to use the simulations to

examine the crystal stresses as part of building a more complete understanding

of the micromechanical state in these crystals under cyclic loading. The simula-

tions can be used to examine the evolution of various crystal quantities such as

the magnitude and direction of the stress, the slip system activity and the slip

system strengths which cannot be measured in the experiments. The trends in

the crystal stresses were found to be consistent with the trends in the slip sys-

tem activity and the slip system strengths when examined with respect to the

vertices of the single crystal yield surface.

The current study is not intended to be a comprehensive description of the

evolution of the micromechanical state in polycrystalline aggregates under in

situ cyclic loading, but rather a first attempt at conducting a coordinated pro-

gram of experiments and simulations to investigate the evolving stress distri-

bution in polycrystals. Neither the simulations nor the experiments are used

to validate the other, but rather they are used in a complementary manner to

build a more complete picture of the evolution of the micromechanical state of
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the polycrystal. Using the currently available experimental and computational

tools, a framework has been developed to quantify the evolution of the lattice

strains during in situ loading. This framework has the potential for additional

sophistication to more accurately characterize the microstructure of the mate-

rial and the stress/strain distribution of the crystals within the polycrystalline

aggregate.

3.8 Conclusions

• The lattice strains, in both the experiments and simulations, exhibit a clear

dependence on crystallographic orientation. The evolution of these lattice

strains with cycles exhibit an orientation dependent response as well.

• In both the experiment and simulation SPFs for all {hkl} pole figures under

investigation, the lattice strains are tensile in the loading direction (LD)

and compressive in the transverse direction (TD), which is consistent with

the Poisson effect.

• The largest difference between the experiment and simulation SPFs oc-

curs for the {200} SPF, which also has the largest measured residual lattice

strains.

• For the measured {111} and {220} SPFs, the lattice strains close to the

LD direction increase with cycles and the lattice strains close to the TD

direction decrease with cycles. However, for the measured {200} SPF, the

lattice strains close to the LD direction decrease with cycles and the lattice

strains close to the TD direction increase with cycles.

• The trends in the evolution of the computed {111} and {220} SPFs with

increasing cycles are consistent with the measured {111} and {220} SPFs
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but there is less agreement between the experiment and simulation for the

{200} SPF in terms of the direction of evolution with increasing cycles,

particularly for the lattice strains close to the LD and TD directions. The

differences in the lattice strains between Cycles 0 and 100 are on the same

order of magnitude in the experiments and simulations.

• In the simulations, orientations on the pole figure with relatively large

lattice strains do not necessarily correspond to relatively high crystal stress

magnitudes because the crystal stresses and strains are related through

anisotropic Hooke’s law.

• Even though the stress magnitudes for a particular fiber increase relatively

more with cycles compared to other fibers, the slip system strengths asso-

ciated with that fiber can exhibit relatively less increase with cycles com-

pared to other fibers. Possible reasons for this are that the crystal stresses

are less favorably oriented for slip system activity and consequently less

strain hardening occurs or that the preferred vertex is relatively farther

away from the origin of stress space.

• The {111} || LD and {200} || LD crystal stresses align with their preferred

vertex stresses as soon as yielding occurs and their relative stress magni-

tudes on the pole figure correlate well with the relative magnitudes of their

preferred vertex stresses. The {220} || LD stresses are not as well aligned

with their preferred vertex stress, even at 3–4% macroscopic strain.

• The angle between the {111} || LD and {200} || LD crystal stresses and

the macroscopic tends to decrease with cycles whereas the angle between

the {220} || LD crystal stresses and the macroscopic tends to increase with

cycles. The preferred vertex families of the {111} || LD and {200} || LD

crystals are aligned with the macroscopic stress and therefore the crystal
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stresses move into a vertex with increasing plastic straining. The preferred

vertex family of the {220} || LD crystals however, is not aligned with the

macroscopic stress and therefore with increasing plastic deformation the

{220} || LD crystal stresses tend to move into a vertex and away from the

macroscopic stress.
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CHAPTER 4

SUMMARY AND FINDINGS

The deviations of the lattice strains as a function of macroscopic stress from

linear behavior in the elastic-plastic transition regime have long been observed

experimentally in polycrystals under monotonic tensile loading. By conducting

a single crystal elastic anisotropy parametric study using a crystal-based finite

element model, the combined influence of the single crystal elastic and plastic

anisotropy on the lattice strain behaviors in fcc polycrystals can be examined.

The combination of the single crystal elastic and plastic anisotropy is quanti-

fied using the directional strength-to-stiffness ratio, which provides a means of

explaining the observed lattice strain behaviors in a consistent manner. The

different lattice strain behaviors in the elastic-plastic transition regime, which

result from different values of the directional strength-to-stiffness ratio, can also

be used to determine the single crystal elastic anisotropy of a material, if it is

unknown.

The concepts of the directional strength-to-stiffness ratio and the vertices of

the single crystal yield surface, which were previously applied to fcc polycrys-

tals under monotonic tensile loading, have also been extended to examine the

lattice strains response under fully-reversed cyclic loading. Although only a

qualitative comparison was made with previously published lattice strain data,

the lattice strains computed in the finite element simulations showed good qual-

itative agreement with measured lattice strains in stainless steel. By examining

the computed lattice strains for isotropic crystals and crystals with high single

crystal elastic anisotropy, it was found that the directional strength-to-stiffness

ratio and the residual stress distribution due to cyclic loading influences the

progression of yielding on each cycle. In fully-developed plasticity, however,
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the crystal stresses are determined by the vertices of the single crystal yield sur-

face. Although the crystal stresses are determined by the vertex stresses, the

lattice strains, which are related to the crystal stresses through Hooke’s law,

are also influenced by the elastic anisotropy in fully-developed plasticity. Ad-

ditional simulations were also conducted to examine the influence of texture

and cyclic hardening on the progression of yielding of the crystals through the

elastic-plastic transition and on the shape of lattice strain hysteresis loops dur-

ing cyclic loading. It was found that the texture and cyclic hardening do not

significantly influence the results presented.

A coordinated approach using crystal-based finite element simulations and

high-energy synchotron diffraction experiments has been conducted to quan-

tify the evolution of the lattice strains in an AA7075-T6 aluminum alloy under

in situ cyclic loading. Lattice Strain Pole Figures (SPFs) are compared between

the experiments and simulations at the same macroscopic stress level on sev-

eral cycles in the loading history. This lattice strain comparison represents the

first time a quantitative comparison has been made to quantify and track the

evolution of the micromechanical response of polycrystals under in situ cyclic

loading using our most current experimental and numerical tools. Orientation

dependent evolution in both the measured and computed lattice strains can be

observed from the SPFs. By examining the crystal stresses available in the sim-

ulation data, we observe that the crystallographic fibers with the largest stress

magnitudes do not correspond to the crystallographic fibers with the largest

lattice strains due to the anisotropic nature of the single crystal elastic moduli

relating the crystal stresses to the crystal strains. We also examine trends in the

evolution of the slip system strengths, the net slip system shearing rates and the

angle between the crystal stresses and the macroscopic stress. The vertices of
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the single crystal yield surface can be used to explain the trends in the evolution

of these quantities from a consistent, micromechanical point of view.
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APPENDIX A

APPROACH FOR VARYING SINGLE CRYSTAL ELASTIC MODULI

The approach used for varying the single crystal elastic moduli follows the ap-

proach used by Dawson et. al. [3]. The elastic strain tensor, ε, can be decom-

posed into its off-diagonal, deviatoric diagonal and spherical parts, εoff, εddg and

εsph respectively:


ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 =


0 ε12 ε13

ε12 0 ε23

ε13 ε23 0

 +


ε11 − εm 0 0

0 ε22 − εm 0

0 0 ε33 − εm

 +


εm 0 0

0 εm 0

0 0 εm


(A.1)

where εm = 1
3 trace(ε).

In the crystal coordinate system, the elastic strain can related to the Kirchoff

stress tensor, τ, through scaling coefficients:

τ = Coffεoff + Cddgεddg + Csphεsph (A.2)

The scaling coefficients Coff, Cddg and Csph are related to the single crystal elastic

moduli for a cubic crystal:

Coff = C44

Cddg = C11 −C12

Csph = C11 + 2C12

Three independent parameters are required to describe the single crystal

anisotropic behavior of a crystal. The three parameters that are chosen are the

single crystal elastic anisotropy ratio (rE), an average Young’s modulus (Eavg)

and an average Poisson’s ratio (νavg). The average parameters Eavg and νavg
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are based on the average response of a polycrystalline aggregate composed of

anisotropic single crystals with uniformly distributed lattice orientations which

results in an isotropic elastic response on the macroscopic scale. Our approach

to varying the level of single crystal elastic anisotropy is to keep Eavg and νavg

constant, while varying rE.

A simple relationship can be established between the single crystal elastic

moduli and the average parameters Eavg and νavg for a polycrystalline aggregate

with uniform texture. Recall that Hooke’s law for an isotropic material (or an

elastically isotropic aggregate) is written as:

τ = 3Kavg

(
1
3

trace(ε) · I
)

+ 2Gavg

(
ε −

1
3

trace(ε) · I
)

(A.3)

where I is the identity tensor, Kavg is the average bulk modulus and Gavg is the

average shear modulus. Since the volumetric behavior of the single crystal is in-

herently isotropic, the single crystal elastic moduli can be related to the average

isotropic parameters:

3Kavg = Csph (A.4)

The shear behavior of the single crystal is represented by the scaling coeffi-

cients Coff and Cddg in Equation (A.2). The single crystal shear behavior is related

to the average shear behavior using a crude average of the Coff and Cddg coef-

ficients, by assuming that the aggregate is elastically isotropic due to uniform

texture:

2Gavg =
1
2

(Coff + Cddg) (A.5)

The average Young’s modulus, Eavg, and average Poisson’s ratio, νavg, can be

written in terms of Kavg and Gavg:

Eavg =
9KavgGavg

3Kavg + Gavg
(A.6)
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νavg =
3Kavg − 2Gavg

2(3Kavg + Gavg)
(A.7)

rE is computed from the single crystal elastic moduli as:

rE =
1 + 2Csph/Cddg

1 + 2Csph/Coff
(A.8)

Equations (A.6)–(A.8) can be solved simultaneously for the single crystal elastic

moduli.
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APPENDIX B

DERIVATION OF SINGLE CRYSTAL DIRECTIONAL STIFFNESS

The Kirchhoff stress tensor in the d2̂3̂ coordinate system is given as:

τd2̂3̂ =


τd 0 0

0 0 0

0 0 0

 (B.1)

The stress tensor in the d2̂3̂ coordinate system is rotated to the 123 coordinate

system because the single crystal elastic constants are defined in the 123 coordi-

nate system. The rotation matrix, A, that rotates the 123 axes to the d2̂3̂ axes is

defined as follows:

A(θ, φ) =


cos φ 0 sin φ

0 1 0

− sin φ 0 cos φ




cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (B.2)

The stress tensor in the d2̂3̂ coordinate system, τd2̂3̂, then is rotated to the 123

coordinate system:

[τ123] = [A]T [τd2̂3̂][A] (B.3)

where τ123 is the stress tensor in the 123 coordinate system.

The elastic strains in the 123 coordinate system are computed using Voigt

notation with the inverse of Equation (1.7):

ε11

ε22

ε33

ε23

ε13

ε12



=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44



−1 

τ11

τ22

τ33

τ23

τ13

τ12



(B.4)
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The elastic strains in the 123 coordinate system is put into matrix form:

ε123 =


ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 (B.5)

The strain tensor in the 123 coordinate system, ε123, is then rotated back to the

d2̂3̂ coordinate system:

[εd2̂3̂] = [A][ε123][A]T (B.6)

The strain tensor in the d2̂3̂ coordinate system has the form:

εd2̂3̂ =


εd εd

12 εd
13

εd
12 εd

22 εd
23

εd
13 εd

23 εd
33

 (B.7)

The definition of the directional elastic stiffness for a single crystal, Ecrys
d , is

the ratio of the Kirchhoff stress component in the d direction, τd, to the strain

component in the d direction, εd:

Ecrys
d =

τd

εd
(B.8)
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R. Varma. A neutron diffraction and modeling study of uniaxial deforma-

140



tion in polycrystalline beryllium. Metallurgical and Materials Transactions A,

34A:1439–1449, July 2003.

[25] M. R. Daymond and N. W. Bonner. Lattice strain evolution in IMI 834 under

applied stress. Materials Science and Engineering A, A340:272–280, 2003.
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for the elastoplastic response of magnesium alloy AZ31 using in situ neu-

tron diffraction. Acta Materialia, 54:4841–4852, 2006.

[28] F. Xu, R. A. Holt, and M. R. Daymond. Modeling lattice strain evolu-

tion during uniaxial deformation of textured Zircaloy-2. Acta Materialia,

56:3672–3687, 2008.

[29] B. Clausen, T. Lorentzen, and T. Leffers. Self-consistent modelling of the

plastic deformation of f.c.c. polycrystals and its implications for diffraction

measurements of internal stresses. Acta Materialia, 46(9):3087–3098, 1998.

[30] F. C. Frank. Orientation mapping. Metallurgical Transactions A, 19(3):403–

408, 1988.

[31] A. Morawiec and D. P. Field. Rodrigues parameterization for orientation

and misorientation distributions. Philosophical Magazine A, 73(4):1113–1130,

1996.

[32] A. Kumar and P. R. Dawson. Computational modeling of f.c.c. deformation

textures over Rodrigues’ space. Acta Materialia, 48(10):2719–2736, 2000.

141



[33] J. F. Nye. Physical Properties of Crystals: Their Representation by Tensors and

Matrices. Oxford University Press, 1985.

[34] W. F. Hosford. The Mechanics of Crystals and Textured Polycrystals. Oxford

Science Publications, 1993.

[35] E. B. Marin and P. R. Dawson. On modelling the elasto-viscoplastic re-

sponse of metals using polycrystal plasticity. Computer Methods in Applied

Mechanics and Engineering, 165(1-4):1–21, 1998.

[36] E. B. Marin and P. R. Dawson. Elastoplastic finite element analyses of metal

deformations using polycrystal constitutive models. Computer Methods in

Applied Mechanics and Engineering, 165(1-4):23–41, 1998.

[37] P. R. Dawson, D. E. Boyce, and R. B. Rogge. Issues in modeling heteroge-

neous deformations in polycrystalline metals using multiscale approaches.

CMES, 10(2):123–141, 2005.

[38] U. F. Kocks. The relation between polycrystal deformation and single-

crystal deformation. Metallurgical Transactions, 1:1121–1143, 1970.

[39] U. F. Kocks, G. R. Canova, and J. J. Jonas. Yield vectors in f.c.c. crystals.

Acta Metallurgica, 31(8):1243–1252, 1983.

[40] E. Schmid and W. Boas. Plasticity of crystals with special reference to metals.

CRC Press, 1968.

[41] H. J. Frost and M. F. Ashby. Deformation-Mechanism Maps: The Plasticity and

Creep of Metals and Ceramics. Pergamon, 1982.

[42] U. F. Kocks. Polyslip in single crystals. Acta Metallurgica, 8(6):345–352, 1960.

142



[43] Y. D. Wang, H. Tian, A. D. Stoica, X.-L. Wang, P. K. Liaw, and J. W. Richard-

son. The development of grain-orientation-dependent residual stresses in

a cyclically deformed alloy. Nature Materials, 2:101–106, 2003.

[44] X.-L. Wang, Y. D. Wang, A. D. Stoica, D. J. Horton, H. Tian, P. K. Liaw,

H. Choo, J. W. Richardson, and E. Maxey. Inter- and intragranular stresses

in cyclically-deformed 316 stainless steel. Materials Science and Engineering

A, 399:114–119, 2005.

[45] J.-S. Park, P. Revesz, A. Kazimirov, and M. P. Miller. A methodology for

measuring in situ lattice strain of bulk polycrystalline material under cyclic

load. Review of Scientific Instruments, 78(2):023910, 2007.

[46] T. Lorentzen, M. R. Daymond, B. Clausen, and C. N. Tomé. Lattice strain
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