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We consider a network in which field stocking locations (FSLs) manage multiple parts ac-
cording to an (S-1,S) policy. Demand processes for the parts are assumed to be independent
stuttering Poisson processes. Regular replenishments to an FSL occur from a regional s-
tocking location (RSL) that has an unlimited supply of each part type. Demand in excess
of supply at an FSL is routed to an emergency stocking location (ESL), which also employs
an (S-1,S) policy to manage its inventory. Demand in excess of supply at the ESL is back-
ordered. Lead time from the ESL to each FSL is assumed to be negligible compared to the
RSL-ESL resupply time. In companion papers we have shown how to approximate the joint
probability distributions of units on hand, units in regular resupply, and units in emergency
resupply. In this paper, we focus on the problem of determining the stock levels at the FSLs
and ESL across all part numbers that minimize backorder, and emergency resupply costs
subject to an inventory investment budget constraint. The problem is shown to be a non-
convex integer programming problem, and we explore a collection of heuristics for solving
the optimization problem.

1. Introduction and Literature Review

1.1 Introduction

In this paper we study a system containing a regional stocking location (RSL), which serves

two types of facilities: a set of N field service locations (FSL) and an emergency stocking

location (ESL). Each location stocks multiple part types, which are used by technical service

representatives who make visits to customer sites to repair equipment. In our model, we use

a stuttering Poisson process to represent the demand process for each of I part types at each

FSL. We have employed this model since the variance to mean ratio of the demand at the

FSLs is greater than 1 in systems that we have examined. We assume the inventory control

policy followed at each location is an (s-1,s) or order-up-to, policy. Again, this policy type is

the one used in applications we have studied. The system we will examine works as follows.

1



Figure 1: A System with Emergency Resupply

When a customer order occurs, if the on hand inventory at the FSL is sufficient to satisfy

the entire customer demand, we fulfill this order from the FSL stock, and immediately place

a regular replenishment order of the same order size on the RSL. Whenever a customer’s

demand exceeds the inventory on hand at an FSL, an emergency order is immediately placed

on the ESL for an amount equal to the customer’s order size. If the ESL does not have enough

inventory on hand, the excess quantitiy becomes a backorder at the ESL. Upon receipt of

a resupply request placed by a FSL for a given amount of stock, the ESL in turn places

a replenishment order for the same amount on the RSL. Thus a customer’s order may be

satisfied by one of two different types of replenishment orders depending on whether or not

the on hand inventory at the FSL is sufficient to satisfy the customer’s demand. Additionally,

we assume that the lead times from the RSL to the FSLs and the ESL are exponentially

distributed. Figure 1 depicts the resupply system we have described.

To determine the optimal order-up-to levels at the FSLs and the ESL, we require the

stationary distributions of the number of units in regular and emergency resupply. Chen.et

al. (2011,2013) analyze the same system and propose both an exact and an approximate

method for determining these distributions. Observe that an emergency order can be treated

as a lost sale at the FSL since the FSL replenishment process from the RSL is equal to the

amount of stock withdrawn for the FSL inventory, which corresponds to customer’s demand

can be satisfied totally from FSL inventory. Chen.et al. (2011) analyze such a lost sales

system and derive the exact steady state distribution of the number of units in regular

resupply of a field service location that employs an (s-1,s) inventory policy. Furthermore,
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Chen.et.al. (2013) use a zero-truncated negative binomial distribution with an atom at

zero to approximate the steady state distribution of the number of emergency ordered units

outstanding in a system consisting of both FSLs and an ESL.

Our goal in this paper is to develop optimization algorithms for setting stock levels in

the emergency resupply network that we have described. The exact and an approximate

stationary distribution of the number of outstanding ordered units at the FSLs and ESL are

used to construct the expected cost function corresponding to the service network system.

The costs considered in the optimization model are emergency order penalty costs for each

order placed by an FSL on the ESL, and backorder penalty costs charged at the ESL for each

backordered unit per unit of time. Since each time an order arrives at the FSLs, a regular

or an emergency replenishment order is placed at the RSL therefore the inventory in the

FSLs and ESL system is kept at a constant level. We use a budget constraint instead of a

holding cost to capture the cost associated with the inventory handled in the whole system.

We show that the emergency order cost function at the FSL is non-increasing and observe

its convexity in its targeted inventory level. The backorder costs charged at the ESL depend

on the steady state distribution of the number of units in emergency resupply which in turn,

is influenced by the target inventory levels at the FSLs. These backorder costs are non-

increasing in the budget allocated to the ESL, for given FSL stock levels. Therefore, in our

algorithm, we set the inventory levels at the FSLs first and then allocate all the remaining

budget to the ESL. Using these ideas, we develop a simple bisection search method to set

the desired stock levels.

The reminder of the paper is organized as follows. In section 2 we briefly review the results

discussed in Chen. et al. (2013) and extend them to the case where there are multiple part

types. In section 3, we formulate the objective function and in the following section 4, we

build mathematical models and explain our optimization approach. In section 5, we develop

algorithms to search for the optimal stock levels for a single part type. Experimental results

are shown in section 6. Further discussion on the optimization algorithm for multi-part types

is in section 7. Concluding comments are found in section 8.

1.2 Literature Review

Sherbrooke (1966) builds a mathematical model for the inventory control of recoverable or

repairable items in a base-depot supply system. The model is well known as METRIC

(Multi-Echelon Technique for Recoverable Item Control) and is extended and improved by
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amount of subsequent papers such as Graves (1985) and Sherbrooke (1986). The METRIC

model uses negative binomial distribution to approximate the stationary distribution of the

number of units in resupply, which largely simplifies the computational complexity. Two-

phase marginal analysis algorithm is used to determine the depot and base stock levels, which

optimize the objective function under investment constraints. Alternatively, Fox and Landi

(1970) propose a Lagrangian multiplier method for solving the one-constraint optimization

problems as in METRIC by using one pass method to search for the suitable multipliers.

Muckstadt (1978) suggests a simple approximation for the optimization problem and develops

an easier algorithm to determine the stock levels compared with the previous two methods.

More details are discussed and summarized in Muckstadt (2005,2010).

One of the basic assumptions in these multi-echelon resupply networks is that each loca-

tion has a single source of resupply. However, there are numerous examples in practice that

locations share inventories among themselves (lateral transshipment) or obtain emergency

orders from alternative sources (emergency stocking locations). Early studies consider emer-

gency lateral transshipment include Gross (1963), Das (1975), Hoadly and Heyman (1977),

Karmarkar and Patel (1977), Cohen et al. (1986), Dada (1985), Bowman(1986), and Slay

(1986). Using the pooling idea of Cohen et al., Lee (1987) extends the METRIC model so

that the out-of-stock bases could get emergency lateral transshipment from other identical

bases with inventories in the same group. If all bases in the group have zero inventory, the

current demand is sent to the depot. Approximations for the system performance measures,

such as backorder level and the number of emergency lateral transshipment, are derived and

used to optimize the stocking levels with two-phase method. Axsäter (1990) applies alter-

native method to model the demand at the bases allowing non-identical bases and compares

the results with Lee’s when the bases are identical.

In contrast to the military base-depot model as METRIC, Grahovac and Chakravarty

(2001) present a commercial supply chains allowing emergency orders and lateral transship-

ment. When the inventory at the retailers is below some point K, they place emergency

orders from their upstream distribution center. An emergency transshipment is requested

only when the distribution center runs out of stock and at least one retailer has more than

K inventory on hand. With the guaranteed and expedited shipment delivery service, this

model could prevent unnecessary lateral transshipment and complicate transaction.

There are more papers examining the effect of employing decision rules for making lateral

transshipment, such as Dada (1992), Sherbrooke (1992), Evers (1997,1999), Alfredsson and
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Verrijdt (1999), Kukreja et al. (2001), Muckstadt (2005), Vidgren (2005), Axsäter (2006)

and Vliegen (2009). Another type of papers presents methods for optimizing the decisions

concerning lateral transshipment. Examples are Das (1975), Robinson (1990), Tagaras and

Cohen (1992), Archibald et al. (1997), Rudi et al. (2001), Minner et al. (2003), Wong et al.

(2006), Olsson (2009), Kranenburg and van Houtum (2009), Wijk et al. (2009) and Reijnen

et al.(2009). Paterson et al. (2009) provide an up-to-date review of the inventory models

with lateral transshipment.

Different from the resupply networks considering both lateral transshipment and emer-

gency orders from upstream or external supplier, the system considered in this paper contains

special stocking location, the ESL, which is dedicated to satisfying emergency orders. Once

the FSL is out of stock, it can only fulfill the arriving customer by placing emergency orders

from the ESL. No lateral transshipment is allowed among the FSLs at any time. It could

also be interpreted as that the inventory shared among the FSLs is stocked at the ESL and is

consumed only when one FSL incurs shortage. The systems allowing emergency orders have

also been widely studied such as the papers by Rosenshine and Obee (1976), Whittemore and

Saunders (1977), Blumenfeld et al. (1985), Moinzadeh and Schmidt (1991), Johansen and

Thorstenson (1998), Tagaras and Vlachos (2001), Chiang (2002), Axsäter (2007), etc. Refer

to Chen et al. (2010) for an overview of these papers. Most of the literature focuses on the

optimal inventory policy and the replenishment orders modeling with a single-echelon. The

emergency orders are placed either from the same source of the regular replenishment or ex-

ternal supplier with infinite inventory. In this paper, the inventory at the ESL is limited and

backorder costs at the ESL is included in the objective function. We develop optimization

algorithms to determine the optimal stocking levels for this multi-item two-echelon network

and investigate the advantage of the ESL under different variance-to-mean-ratio demand

scenarios.

2. Model Review

To analyze the system we have described, we make a number of simplifying assumptions. As

we have stated, we assume that the RSL has an infinite stock of multiple types of items on

hand and the lead time from the ESL to the FSL is negligible. Assuming that the demand

of the different types of items arrive independently, we are able to construct separable cost

and customer service measures that depend on the steady state distributions of the number
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of units in regular replenishment from the RSL to the FSL (i.e. in regular resupply) and

the number of units in regular replenishment from the RSL to the ESL (i.e. in emergency

resupply). We use the complete fill assumption at the FSLs instead of partial fill to maintain

consistency among these papers. We could easily extend our results to the partial fill case.

Let λ(n,i) denote the rate of customer arrivals at the nth FSL (n = 1, 2, . . . , N) for

type i part (i = 1, 2, . . . , I). Let X(n,i) denote the size of any customer’s order, a positive,

integer-valued, random variable. Let p
(n,i)
k ≡ P

{
X(n,i) = k

}
and let P

(n,i)

k ≡ P
{
X(n,i) > k

}
for all k = 0, 1, 2, . . .. Since the arrival processes are stuttering Poisson processes, X(n,i)

is geometrically distributed, that is, p
(n,i)
k = (1 − p(n,i))k−1p(n,i), where p(n,i) = p

(n,i)
1 for

k = 1, 2, . . . and p
(n,i)
0 = 0. We can easily generalize our results to allow for zero-sized orders.

Let I
(n,i)
t denote the inventory of item i on hand at the nth FSL if n > 0 or the ESL

if n = 0, at time t, t ≥ 0, a non-negative integer-valued random variable. Recall that the

system is managed according to an (S − 1, S) policy. Suppose a customer arrives the nth

FSL at time t with demand for part type i, denoted by X
(n,i)
t . If X

(n,i)
t ≤ I

(n,i)
t the demand

is satisfied by the inventory at the nth FSL and triggers a regular replenishment order from

the RSL to the nth FSL with size X
(n,i)
t ; otherwise, it is filled by the ESL and the ESL places

a replenishment order from the RSL of size X
(n,i)
t . Our decision variables are the stock up

to levels, denoted by S(n,i), of part type i at the nth FSL (n > 0) or the ESL (n = 0).

From Chen. et al. (2011), we have the following result:

Let fNB(·;m, p) denote the negative binomial probability distribution with parameters

m and p :

fNB(x;m, p) ≡
(
m+ x− 1

x

)
pm (1− p)x for x = 0, 1, 2, . . . .

Proposition 1. For a lost sales system with stuttering Poisson demand with complete fills

and targeted inventory level S(n,i), the stationary distribution of the number of units of item

i at the nth FSL on order, denoted by πs|S(n,i) (s = 0, 1, . . . , S(n,i)), is given by:

πs|S(n,i) =

∑s
m=0(

λ(n,i)

µ
)mfNB(s−m;m,p(n,i))

m!

G(S(n,i))
,

where S(n,i) is the stock up to level, G(S) =
∑S

s=0

∑s
m=0

(λ
(n,i)

µ
)m

m!
fNB(s − m;m, p(n,i)), and

fNB(s−m; 0, p) = 1{s = 0} when m = 0. i.e. the truncated compound Poisson distribution.

The notation πs|S(n,i) emphasizes its dependence on the value of S(n,i).
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Chen. et al. (2013) show how to approximate the steady state distribution of the

number of units of type i in emergency resupply by a zero-truncated negative binomi-

al distribution with an atom at zero given the stock levels of each item at the FSLs:

S⃗(i) = (S(1,i), S(2,i), . . . , S(N,i)). Denoting this approximate distribution function by fz(S⃗
(i))

for z = 0, 1, . . ., we have

fz(S⃗
(i)) =


f0, if z = 0,

(1− f0)[
1

1−(pE)rE
( z+rE−1

z
)(pE)

rE(1− pE)
z], if z > 0,

0, otherwise.

where f0, rE and pE depend on S⃗(i).

Next, we will use the steady state distributions πs|S(n,i) and fz(S⃗
(i)) to construct the cost

function.

3. Objective Function Formulation

As we have mentioned, our objective function consists of the emergency order penalty cost

and a backorders penalty cost at the ESL. Define S⃗
(i)
T = (S⃗(i), S(0,i)) and S⃗T = (S⃗

(1)
T , S⃗

(2)
T , . . . , S⃗

(I)
T ).

Let c
(i)
E denote the emergency order cost per backordering incident per order of part type

i at the FSLs. The expected emergency order penalty at the nth FSL equals

c
(n,i)
FSL(S

(n,i)) ≡ c
(i)
E λ(n,i){

∑S(n,i)

s=0 P [X(n,i) > S(n,i) − s]πs|S(n,i)}

= c
(i)
E λ(n,i)

∑S(n,i)

s=0 (1− p(n,i))S
(n,i)−sπs|S(n,i) ,

(1)

and the expected emergency order penalty at FSLs for part type i is given by

C
(i)
FSL(S⃗

(i)) =
N∑

n=1

c
(n,i)
FSL(S

(n,i)) (2)

which does not depend on S(0,i). The total expected emergency order penalty at the FSLs

is CFSL(S⃗T ) ≡
∑I

i=1C
(i)
FSL(S⃗

(i)
T ) =

∑I
i=1

∑N
n=1 c

(n,i)
FSL(S⃗

(n,i)
T ).

Let c
(i)
B denote the backorder cost per unit time per unit of part type i backordered at

the ESL. The expected backorder costs for part type i given S⃗
(i)
T is denoted by

C
(i)
ESL(S⃗

(i)
T ) ≡ c

(i)
B E[(z − S(0,i))|S⃗(i)] = c

(i)
B [

∞∑
z=S(0,i)

(z − S(0,i))fz(S⃗
(i))].
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The total expected backorder cost is CESL(S⃗T ) ≡
∑I

i=1 C
(i)
B (S⃗

(i)
T ).

Therefore the total expected cost associated with part type i is

C(i)(S⃗
(i)
T ) ≡ C

(i)
FSL(S⃗

(i)) + C
(i)
ESL(S⃗

(i)
T )

= c
(i)
E

∑N
n=1 λ

(n,i)
∑S(n,i)

s=0 (1− p(n,i))S
(n,i)−sπs|S(n,i) + c

(i)
B

∑∞
z=S(0,i)(z − S(0,i))fz(S⃗

(i)),

and the total cost for the system with multiple part types is

C(S⃗T ) =
I∑

i=1

C(i)(S⃗
(i)
T ) =

I∑
i=1

C
(i)
FSL(S⃗

(i)) + C
(i)
ESL(S⃗

(i), S(0,i)).

Proposition 2. For any (n, i), the function c
(n,i)
FSL(S

(n,i)) is non-increasing in S(n,i).

Proof: Without loss of generality, we drop the superscript (n, i). The value cFSL(S) is

the expected emergency order cost given the target stock level S. For the FSL with target

stock level S + 1, if the inventory policy of the FSL is changed and it is not allowed to use

the last unit on hand at the FSL (Scenario 1), the resupply process is exactly the same as

that of the FSL employing (S-1,S) inventory policy with target stock level S (Scenario 2).

For any sample path of the arrival process, the emergency order cost is the same for both

scenarios. Now given any sample path of the arrival process, if the spare unit is consumed

at any point in time and never resupplied, the corresponding emergency order cost is non-

increased. Furthermore, if the spare unit is resupplied later and could be consumed again,

the corresponding emergency order cost for the same sample path should be not larger than

the no resupply case. Therefore, given sample path of the arrival process, the emergency

order cost for the FSL employing (S-1,S) inventory policy with target stock level S + 1 is

smaller than the cost for the Scenario 1 FSL in Scenario 1, or the Scenario 2 FSL, which

employs (S-1,S) inventory policy with target stock level S. Thus, the expected emergency

order cost cFSL(S) is non-increasing in S.

In addition, empirical investigation of cFSL(S) suggests that the function is convex in S

over a wide range of parameters. Consequently, we use algorithms that exploit this apparent

convexity. Should a case emerge in which this function is found to be non-convex, we

recommend using the largest convex minorant of the true function.

Proposition 3. For any i, the function C
(i)
ESL(S⃗

(i), S(0,i)) is non-increasing and convex in

S(0,i) when S⃗(i) is fixed.

The result could be easily proved by using first order differences.
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4. Mathematical Modeling

As seen in proposition 2 and 3, it seems that the system should set the inventory levels at

the FSLs and ESL as high as possible to minimize the associated emergency order penalty

costs and backorder penalty costs. However, in real life situations, limits often exist on the

system investment in inventory over all part types due to the holding costs and capital limits.

Given the investment limits, we then have to balance the stock levels of different part types

to minimize the overall expected costs. Let B denote the fixed inventory investment budget.

Since the cost functions are non-increasing, the optimal targeted inventory stock levels should

sum up to B. Let Z+ be the state space of nonnegative integers. The mathematical model

of the whole system is as follows:

minS⃗T
C(S⃗T )

s.t.
∑I

i=1

∑N
n=0 S

(n,i) = B,

S(n,i) ∈ Z+ for n = 0, 1, . . . , N ; i = 0, 1, . . . , I.

Our approach is to minimize the cost of each product C(i)(S⃗
(i)
T ) given a specified budget

B(i) for part type i first, and then to minimize the overall cost C(S⃗T ) by varying B⃗ =

(B(1), . . . , B(I)) where
∑I

i=1B
(i) = B. Therefore, the model is changed into:

minB⃗

∑I
i=1min{

∑N
n=0 S

(n,i)=B(i)}C
(i)(S⃗

(i)
T )

s.t.
∑I

i=1B
(i) = B,

B(i) ∈ Z+ for i = 0, 1, . . . , I.

(3)

Hence, for each part type i, we have the subproblem (i):

min
S⃗
(i)
T

C(i)(S⃗
(i)
T )

s.t.
∑N

n=0 S
(n,i) = B(i),

S(n,i) ∈ Z+ for n = 0, 1, . . . , N,
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which is the same as

G∗(B(i)) ≡ minS⃗(i) CFSL(S⃗
(i)) + CESL(S⃗

(i)
T )

s.t.
∑N

n=1 S
(n,i) + S(0,i) = B(i),

S(n,i) ∈ Z+ for n = 0, 1, . . . , N.

(4)

Define the optimal minimizer as S⃗∗(B(i)). Now, our problem (3) is equivalent to

minB⃗

∑I
i=1G

∗(B(i))

s.t.
∑I

i=1B
(i) = B,

B(i) ∈ Z+ for i = 0, 1, . . . , I.

(5)

Our goal is to construct the maximal convex minorant of function G∗(B(i)) for each

part type i and then to use marginal analysis to solve the resulting optimization problem

(5). After obtaining the optimal allocation of the budget among the I part types B⃗∗ =

(B∗(1), . . . , B∗(I)), the optimal stock levels on the FSLs are the corresponding values of the

S⃗∗(B∗(i)) from (4) for the associated budgets B∗(i).

4.1 Optimize Order-up-to-Levels at Different Locations for a Sin-
gle Item

In this section, we demonstrate a method to approximate the function G∗(B(i)) for a given

part type i (problem(4)). To simplify notation, we drop the superscript (i) and use Sn instead

of S(n,i). Let S⃗ = (S1, . . . , SN) represent the stock levels for the FSLs. The optimization

problem we wish to solve, (4), is rewritten as

G∗(B) ≡ minS⃗ CFSL(S⃗) + CESL(S⃗T )

s.t.
∑N

n=1 Sn + S0 = B,

Sn ∈ Z+ for n = 0, . . . , N.

(6)

Let BF denote the total inventory at the FSLs. The the optimal stock level at the ESL

should be S0 = B−BF . That is, all of the remaining budget should be allocated to the ESL

due to the non-increasing nature of the backorder cost function. The expected cost given
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BF and B is denoted as J∗(BF , B):

J∗(BF , B) ≡ minS⃗ CFSL(S⃗) + CESL(S⃗, B −BF )

s.t.
∑N

n=1 Sn = BF

Sn ∈ Z+ for n = 1, . . . , N.

It follows that G∗(B) = minBF≤B J∗(BF , B).

Due to the time consuming step of matrix inversion used to analyze the behavior of

the ordered units at the ESL (Chen, et al. 2013), it takes a much longer time to compute

CESL(S⃗, B−BF ) than to compute CFSL(S⃗) given any S⃗. To mitigate this problem, we define

the following alternative optimization problem focusing on the FSLs:

H∗
F (BF ) ≡ minS⃗ CFSL(S⃗)

s.t.
∑N

n=1 Sn = BF

Sn ∈ Z+ for n = 1, . . . , N.

(7)

Denote its optimal solution as S⃗∗(BF ). Instead of solving problem (6), we then use

G̃∗(B) ≡ min
BF≤B

J̃∗(BF , B) = min
BF≤B

H∗
F (BF ) + CESL(S⃗

∗(BF ), B −BF ). (8)

as an approximation to J∗(BF , B) given any B and BF ≤ B.

Recall from (1) and (2) that

CFSL(S⃗) =
∑N

n=1 c
(n)
FSL(Sn)

= cE
∑N

n=1

∑Sn

s=0[λ
(n)(1− p(n))Sn−s]πs|Sn ,

(9)

where c
(n)
FSL(Sn) is non-increasing (proposition 2). As noted, numerical experiments suggest

c
(n)
FSL(Sn) convex in Sn. Therefore, we use marginal analysis to solve the optimization problem

(7) given any BF . Denote B
∗
F (B) as the optimal solution of problem (7), as found by marginal

analysis.

Next we use a line search method such as bisection or golden section search to solve

G̃∗(B) = minBF≤B J̃∗(BF , B) as an approximation of G∗(B) given B. Denote the corre-

sponding optimized inventory levels which depend on B by

S⃗T (B
∗
F (B)) = (S⃗(B∗

F (B)), B −B∗
F (B)).
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Hence we find G̃∗(B) through a combination of marginal analysis over Sn nested within a

line search over BF .

It is conceivable that the optimal solution to problem (6) does not simultaneously opti-

mize problem (8), i.e. G∗(B) ̸= G̃∗(B). To explore the difference, we compare the solutions

to (8) with the best solutions to (6) found using a more comprehensive search algorithm.

The particular search algorithm used as a benchmark is the Particle Swarm Pattern Search

method (PSWARM), developed by Vaz and Vicente(2007,2009) for solving minimization

problem subject to simple bounds (linear constraints) without the use of derivatives. We

find that by solving problem (8), we are able to obtain solutions close to the benchmark

results.

5. Heuristic Algorithms Given Inventory Investment

for Single Item

In this section, we describe the methods sketched in the previous section.

• (H1) “Nested Search”: Experimentation strongly suggests that J̃∗(BF , B) is uni-

modal in BF . Consequently, we use a bisection search for BF minimizing J̃∗(BF , B)

instead of computing CESL(S⃗, B−BF ) exhaustively for all possible values of BF . This

algorithm has two steps: Step one, use marginal analysis to determine H∗
F (BF ) and

S⃗∗(BF ) for BF = 0, . . . , B; Step two, use bisection search to determine the optimal

B∗
F (B) which minimizes J̃∗(BF , B) = H∗

F (BF ) + CESL(S⃗, B − BF ) where B is known

and fixed.

Step One: Marginal Analysis

1. Start with BF = 0 and S⃗ = (0, . . . , 0). Define g(BF ) = S⃗.

2. For all n, compute ∆c
(n)
FSL(Sn) = c

(n)
FSL(Sn+1)−c

(n)
FSL(Sn) and let n∗ = argminn∆c

(n)
FSL(Sn).

3. Update Sn∗ = Sn∗ + 1, BF = BF + 1 and g(BF ) = S⃗. If BF < B then go back to

2. Otherwise, go to Step Two.

Step Two: Bisection Search

1. Choose initial interval [a,b] over which the minimum of g(BF ) = CFSL(S⃗
∗(BF ))+

CESL(S⃗
∗(BF ), B − BF ) is to be found. For example, a = 0 and b = B. Choose

separation constant ε and stopping tolerance θ.
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2. If b−a < θ, then go to step 4. Otherwise, let a′ = (a+b)/2−ε and b′ = (a+b)/2+ε.

Round a′, b′ to their nearest integers.

3. If g(a′) < g(b′), then update b = b′. Otherwise, update a = a′. Then go back to

2.

4. Identify B∗
F (B) = argmin{x=a,a′,b,b′}g(x) and G̃∗(B) = g(B∗

F (B)).

Validate the method of approximating G∗(B) by G̃∗(B), we use PSWARM to search over

the state space

S(B) = {S⃗T ∈ {Z+, . . . , Z+}1×N+1 :
N∑

n=1

Sn + S0 = B}.

Refer to Vaz and Vicente(2007,2009) for more details of PSWARM. A high level view of the

algorithm is as follows:

• (H2) “PSWARM Search”:

1. Pick an initial point S⃗T in S(B).

2. Use PSWARM algorithm to search over S(B) for the optimal solution S⃗∗
T (B) =

(S⃗∗(B), S∗
0(B)) which minimizes CFSL(S⃗) + CESL(S⃗T ).

3. Return G∗(B) = CFSL(S⃗
∗(B)) + CESL(S⃗

∗
T (B)).

6. Experimental Results

We conduct experiments with five FSLs, N = 5, for a single part type in the system. We

fix the lead time, τF = τE, equal to 1. The backorders cost parameter is CB = 20, and the

emergency order penalty, CE, is one of the values 0.25, 1, 5 or 10.

To describe the arrival processes, let Wn(t) denote the cumulative unit arrivals during

time t for the nth FSL. Let µn denote the arrival process mean rate, which is equal to
E(Wn(t))

t
= λn

pn
. Let σ2

n denote the arrival process variance rate, which is equal to V ar(Wn(t))
t

=

λn(
1−pn
p2n

+ 1
p2n
). Let ρn denote the arrival process variance-to-mean ratio (VTMR), which is

equal to
V ar(Wn(t))/t

E(Wn(t))/t
=

σ2
n

µn

=
2− pn
pn

.

We study cases both of identical FSLs and non-identical FSLs. After considering these

cases, we explore the shape of the cost function G̃∗(B) and recommend using a convex

minorant of this function for solving multiple item problems.

13



Table 1: The Optimal Inventory Levels and Expected Total Cost for the Identical Indepen-
dent FSLs case when B = 80 :

ρn =
σ2
n

µn
= 1.01 ρn =

σ2
n

µn
= 2 ρn =

σ2
n

µn
= 5

µn CE S⃗∗(B) S∗
0 G∗(B) S⃗∗(B) S∗

0 G∗(B) S⃗∗(B) S∗
0 G∗(B)

1 0.25 [ 16 16 16 16 16 ] 0 0 [ 13 13 13 13 13 ] 15 0.000147 [ 10 10 10 10 10 ] 30 0.0207

1 [ 16 16 16 16 16 ] 0 0 [ 14 14 13 13 13 ] 13 0.000416 [ 11 11 11 10 10 ] 27 0.0692

5 [ 16 16 16 16 16 ] 0 0 [ 14 14 14 14 14 ] 10 0.00119 [ 12 12 11 11 11 ] 23 0.272

10 [ 16 16 16 16 16 ] 0 0 [ 15 15 14 14 14 ] 8 0.00197 [ 12 12 12 12 12 ] 20 0.482

5 0.25 [ 16 15 15 15 15 ] 4 0.00111 [ 14 14 13 13 13 ] 13 0.0803 [ 6 6 6 5 5 ] 52 1.14

1 [ 16 16 15 15 15 ] 3 0.00376 [ 14 14 14 14 14 ] 10 0.252 [ 8 8 8 8 8 ] 40 2.76

5 [ 16 16 16 15 15 ] 2 0.0149 [ 15 15 14 14 14 ] 8 0.990 [ 11 11 10 10 10 ] 28 8.40

10 [ 16 16 16 16 15 ] 1 0.0271 [ 15 15 15 15 14 ] 6 1.78 [ 12 11 11 11 11 ] 24 14.0

10 0.25 [ 14 13 13 13 13 ] 14 1.29 [ 8 8 7 7 7 ] 43 4.76 [ 0 0 0 0 0 ] 80 11.8

1 [ 14 14 14 14 14 ] 10 3.55 [ 11 10 10 10 10 ] 29 11.4 [ 1 1 1 1 1 ] 75 24.0

5 [ 15 15 15 15 15 ] 5 12.1 [ 13 13 13 13 12 ] 16 32.7 [ 6 6 6 6 5 ] 51 64.5

10 [ 16 15 15 15 15 ] 4 21.2 [ 14 14 13 13 13 ] 13 52.8 [ 8 8 8 8 8 ] 40 98.6

6.1 Identical Independent FSLs

First, we conduct an experimental study assuming that the demand distribution is identical

for all FSLs. Therefore µn and ρn are common for n = 1, . . . , 5. We choose µn to be equal

to one of 1, 5, or 10 and ρn to be equal to one of 1.01, 2, or 5. The investment budget B

is fixed and equal to 80. For this identical independent FSLs case, our heuristic algorithm

(H1) solving problem (8) and the benchmark PSWARM algorithm (H2) solving problem (6)

all lead to the same optimal solutions, i.e. G∗(B) = G̃∗(B).

Table 1 shows the optimal solutions of stock levels, S⃗T = [S⃗, S0], and the optimized cost,

G∗(B) = G̃∗(B). From the experimental results, we see that the optimal stock levels of the

FSLs are not necessary identical but the stock level differences are at most one. For each

combination of (µn, ρn), we observe that as the emergency order penalty CE increases, the

optimal stock levels at the FSLs increases. This means less inventory is kept at the ESL.

Furthermore, the increase in CE also causes the total expected cost G∗(B) to increase.

When the demand mean, µn is held constant but the variance-to- mean ratio ρn increases,

the total expected cost G∗(B) increases and more inventory is stocked at the ESL.

When the variance-to-mean ratio, ρn, is held constant but the mean, µn, increases, the

total expected cost G∗(B) also increases and more inventory is stocked at the ESL as well.
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Table 2: Parameters of the Non-Identical Demand Arrival Processes at the FSLs :

n 1 2 3 4 5

Demand Type LM LH MM HL HM

µn 1 1 5 10 10

σ2
n 2 5 10 10.1 20

ρn = σ2
n

µn
2 5 2 1.01 2

λn 0.667 0.333 3.33 9.95 6.67

pn 0.667 0.333 0.667 0.995 0.667

6.2 Non-Identical Independent FSLs

We conduct another experiment study assuming that the five FSLs have different arrival

process as shown in Table 2. The parameters are chosen to represent the different scenarios

that might be encountered in real life: low mean demand with medium variance (LM), low

mean demand with high variance (LH), medium mean demand with medium variance (MM),

high mean demand with low variance (HL), and high mean demand with medium variance

(HM).

In Table 3, we show the optimal solutions of stock levels S⃗T = [S⃗, S0] and the optimal

cost G̃∗(B) solved by algorithm (H1) and G∗(B) solved by algorithm (H2). The investment

budget B is equal to either 30, 50 or 80.

For this case of non-identical FSLs, the optimal solution of problem (6) is different from

but close to that of (8) for most cases. The relative error, G̃∗(B)−G∗(B)
G∗(B)

is bounded by 5% and

less than 1% for most cases. The approximation is especially good when the budget B is

small. Combined with the results of the identical independent FSLs, it suggests that G̃∗(B)

is a reasonable approximation of G∗(B) and therefore the bisection search algorithm (H2) is

recommended to save computing time.

When the investment budget B is low and equal to 30, no inventory is kept at the FSLs

with low demand rate. Instead, inventories are concentrated at the FSLs with high mean

and at the ESL. The FSL with high mean and medium variance receives less stock allocation
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Table 3: The Optimal Inventory Levels and Expected Total Cost for the Non-Identical
Independent FSLs case:

Algorithms (H1) Algorithm (H2) Relative Error

B CE S⃗∗(B) S∗
0 G̃∗(B) S⃗∗(B) S∗

0 G∗(B)
G̃∗(B)−G∗(B)

G∗(B)

30 0.25 [ 0 0 0 0 0 ] 30 36.2 [ 0 0 0 0 0 ] 30 36.2 0 %

1 [ 0 0 0 4 0 ] 26 50.9 [ 0 0 0 4 0 ] 26 50.9 0 %

5 [ 0 0 1 10 5 ] 14 100 [ 0 0 1 9 6 ] 14 99.6 0.564 %

10 [ 0 0 3 11 7 ] 9 139.9 [ 0 0 3 10 8 ] 9 139.6 0.196 %

50 0.25 [ 0 0 4 12 9 ] 25 2.10 [ 0 0 3 12 12 ] 23 2.05 2.80 %

1 [ 0 0 6 14 13 ] 17 4.84 [ 0 0 6 13 14 ] 17 4.82 0.404 %

5 [ 1 0 8 15 15 ] 11 14.0 [ 1 0 8 15 15 ] 11 14.0 0 %

10 [ 2 0 8 16 16 ] 8 23.1 [ 2 0 9 15 16 ] 8 22.9 0.908 %

80 0.25 [ 4 4 13 19 21 ] 19 0.111 [ 4 3 13 19 22 ] 19 0.106 4.36 %

1 [ 4 4 13 19 22 ] 18 0.345 [ 5 3 13 20 23 ] 16 0.332 3.77 %

5 [ 5 6 14 20 23 ] 12 1.22 [ 5 5 14 20 23 ] 13 1.21 0.958 %

10 [ 5 7 15 20 23 ] 10 2.09 [ 5 7 14 20 23 ] 11 2.09 0.188 %

than the FSL with high mean and low variance.

When the investment budget B increases to 50, the optimal stock levels for low mean

demand are still very small. In particular, the optimized solution still chooses to keep zero

inventory at the FSL which has a low mean and high variance. In addition, with increased

budget, less inventory is stocked at the ESL.

When the investment budget B increases to 80, the optimal stock levels increases signif-

icantly for all the FSLs. The FSL with a high mean demand stocks more if its variance is

higher. This suggests that if the investment budget is large enough, the optimal stock levels

are positively correlated with both the mean and variance of the demand. As a general rule,

our intuition is that when the investment budget B is large enough, all the inventory should

be kept at the FSLs to prevent out-of-stock/emergency orders and no inventory is needed

at the ESL. At the same time, the FSLs with higher variance need to stock more than FSLs

with the same mean level but low variance.
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Figure 2: Cost Curve with Largest Minimal Convex Minorant for Identical Independent
FSLs Case

6.3 Inventory Investment Budget Cost Curve

In this section, we explore the shape of the cost function G̃∗(B) and recommend using a

convex minorant of this function for advanced work.

We use bisection search algorithm, (H1) to investigate the shape of cost function G̃∗(B).

Figure 2 and 3 are the plots of G̃∗(B) (light color with different shapes) and its corresponding

convex minorant (black line with cross), named as Ĝ∗(B), for the identical and non-identical

FSLs. The plots show that G̃∗(B) is nearly convex and the corresponding largest convex

minorant Ĝ∗(B) provides a very nice approximation of G̃∗(B).

7. Algorithms Optimizing Stock up to Levels for Mul-

tiple Items

In this section, we return to the original system with I part types and propose heuristics to

search for the optimal solution to problem (6). Define an alternative optimization problem
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as follows:

minB⃗

∑I
i=1 Ĝ

∗(B(i))

s.t.
∑I

i=1B
(i) = B,

B(i) ∈ Z+ for i = 0, 1, . . . , I.

(10)

where Ĝ∗(B(i)) is the convex minorant introduced in the previous section.

As discussed in section 4 and subsection 6.3, Ĝ∗(B(i)) provides a good approximation

for G∗(B(i)). It is anticipated that the optimal solution of problem (10) will provide a good

approximation for B⃗∗, the optimal solution of problem (6).

We propose the three main elements for the algorithm to solve optimization problem (10)

as follows:

• Convex Minorant Local Construction: For each part type i = 1, . . . , I, we use

bisection search algorithm (H2) to compute the value of G̃∗(B(i)) for B(i) ∈ [0, U (i)],

where [0, U (i)] is the region containing the optimal solution B(i)∗. Initially, U (i) is

chosen to be a value much smaller than B.

• Marginal Analysis Search: Compute the convex minorant Ĝ∗(B(i)) for G̃∗(B(i))

and use a marginal analysis algorithm to search for the optimal solution of problem

(10).
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• Upper Bound Update: If the solution B(i) to the marginal analysis results in B(i) =

U (i) for some FSL, then estimate another larger upper bound U ′(i) and use bisection

search to compute G̃∗(B(i)) for B(i) ∈ [U (i), U ′(i)]. Update Ĝ∗(B(i)) over [0, U ′(i)].

Continue with the marginal analysis search for problem (10).

8. Conclusions

We develop optimization algorithms for setting stock levels in a resupply network with both

field service locations (FSL) and an emergency stocking location(ESL). We proposed a bi-

section search algorithm to determine the stock levels at the FSLs and ESL given inventory

investment for single item. Since the problem is a problem with a potentially non-convex

objective, we use PSWARM as a benchmark to validate the bisection search algorithm.

From the empirical results, we find that when the inventory investment budget is small,

as the VTMR of demand at the FSL increases, the optimal solutions incline to stock less at

the FSL. While the VTMR is small, the demand rate is the dominating factor in deciding

the stock levels at the FSLs. When the budget is small, the ESL plays an important role

to stock the inventory shared among the FSLs. However, when the inventory investment

budget becomes large enough, the optimal solutions incline to stock more at the FSLs which

have higher demand rate and higher variance. Less inventory is kept at the ESL since the

emergency orders and its associated costs are mainly reduced by the large amount inventory

stocked at the FSLs.

On the other hand, as the emergency penalty cost per order decreases, meaning that the

shortage of the FSLs incurs less penalty, the optimal stock levels of the FSLs decrease and it

is optimal to stock more at the ESL. This also supports a strategy that when there is little

emergency penalty cost, we incline to stock everything at one location, the ESL, to pool the

variability of demand at each FSL. Besides, given a fixed inventory investment budget, the

expected cost always increases as the mean and the variance of the demand increases.

We conclude that the benefit of the ESL becomes significant when the inventory invest-

ment budget is small and the VTMR of the demand is large. Besides, it is recommended to

increase the investment budget to control the system cost when the mean and the variance

of the demand at the FSLs increase.

After understanding the cost function given any inventory investment budget for single

item, we propose the main elements of an algorithm to solve the optimal stock levels for the
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multi-item and multi-location problem. These elements include using the convex minorant

of the cost function for each item and applying marginal analysis over the total inventory

investment budget.
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