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Summary 

Approaches to set estimation based on a decision-theoretic formulation have 

usually used a loss function that is a linear combination of volume and coverage 

probability. Such loss functions can suffer from paradoxical behavior of the Bayes rules, 

and thus may not be appropriate. We investigate the behavior of optimal set 

estimators for different classes of loss functions and study their decision-theoretic 

properties. 
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1. Introduction 

Set estimators contribute an inherent part of most statistical analyses, providing sets Cx 

depending on the observation x ....., f(x I B) for the parameter of interval B. Although they are thus 

bound to be used extensively in decisions, there has been hardly any move towards a decision­

theoretic evaluation of these procedures. 

Set estimators are usually derive from testing acceptance regions by duality. However, contrary 

to intuition, these estimators do not necessarily enjoy the optimality properties of their testing dual 

sets, as shown by Hwang and Casella (1982) for the domination of the usual normal confidence 

region. 

A direct approach to set estimation has to take into account two criteria, size and coverage. 

The resting alternative can also be perceived this way for one of the two criteria remaining constant, 

namely the coverage probability of the considered set. Apart from vector loss generalizations, for 

which a complete ordering is most often impossible, a loss function considered in the literature is the 

linear loss function, 

(1.1) L(B, C) = a vol(C) + II(B E C) , 

where a is a fixed constant, as in Cohen and Strawderman (1973) and Meeden and Vardeman (1985). 

This loss function indeed allows for interplay between volume and coverage but it can also suffer from 

major defects. One of these leads to a paradox pointed to us by James Berger and studied in Casella, 

Hwang and Robert (1992). We also refer the reader to this paper for additional references on loss 

estimation. 

The so-called paradox exhibits a domination under (1.1) of the Student's t-interval by a 

truncated set which is empty when s2, the empirical variance, is large enough. However, the Bayes 

estimator associated with (1.1) and the Lebesgue prior is such that its length is decreasing in S when 

S is large enough. These phenomena incriminate the loss (1.1) and the fact that it does not balance 

properly the two criteria, giving an undue importance to the volume component. 

In this paper, we propose to study the decision-theoretic properties of the losses of the form 
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(1.2) L(B, C) = S[vol(C)] + 11(0 ~C) , 

where S is a size function. Casella et a/. (1992) already showed that some losses in (1.2) can avoid 

Berger's paradox and came to the following requirements on S: the size function must be increasing 

and satisfy S(O) = 0, tim S(t) = 1 so that volume and coverage are weighted equally. These 
b-++oo 

conditions are only necessary since some functions S satisfy them but still lead to Berger's paradox 

(see Casella et a!., 1992). 

Section 2 is dedicated to a classical analysis of losses like (1.2) and the derived notions of 

admissibility, minimaxity and Bayes data. Section 3 examines the range of Bayes sets for different 

parameterized families of losses and derives conditions under which conjugate Bayes sets are never 

empty. Section 4 focuses on two particular classes of losses, one the bounded spaces, the other for 

unbounded spaces. 
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2. Decision Theory 

In this section, we consider usual decision-theoretic properties derived from the loss function 

(2.1) Ls(O, C) = S[vol(C)] + 11(0 f. C) , 

where S is increasing from 0 to 1. First note that, as mentioned in Joshi (1969), the action space is 

not ~(e), set of all measurable v subsets of e, but rather B(e), the quotient space derived from ~(e) 

by the equivalence relation C""' C' iff >.(C.6.C') = 0, where >. is the Lebesgue measure on e and C.6.C' 

denotes ( Cn(C')0) U ( C'nC0). In other words, confidence sets can only be defined up to a set of 

Lebesgue measure zero. Otherwise, no comparison is possible. For this reason, the only acceptable 

priors are those which are absolutely continuous with the Lebesgue measure. 

2.1. Bayes and Generalized Bayes Estimators 

For any given loss function L(O, C) and prior distribution 1r on 0, a (decision-theoretic) Bayes 

estimator c7r is a solution of the minimization problem 

(2.2) J R(O,C7r)7r(O)d0 = m~n J R(O, C)1r(O)dO. 

0 0 

If 7r( 0) is a proper prior distribution, for each X the Bayes estimator c~ minimizes 

(2.3) J L(O, C)1r(Oix)dO, 

0 

where 1r(OI x) is the posterior distribution. If 1r(O) is not a proper prior distribution but 1r(O I x) is 

proper, then (2.3) is taken as the definition of C~. Thus, in general, C~ minimizes the posterior 

expected loss. For loss functions (2.1), the Bayes estimators are HPD regions. 

Theorem 2.1. For X""' f(x I 0) and (possibly improper) prior 1r(IJ), the Bayes estimator against the loss 

(2.1) is given by 

where k = k(x) minimizes the quantity 

s(vol{0:7r(Oix)~k})- J 1r(Oix)dO, 

{9:7r(Oix) ~k} 

provided that {o: 7r( 0 I x) = e} has Lebesgue measure zero for every e. 
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The condition that {9: 1r( 91 x) = e} has zero Lebesgue measure is a technical one, and has been 

added to eliminate the necessity of considering randomized rules. We chose to include it in the 

assumptions for ease of understanding. A more general theorem which does not need this assumption 

is included, for completeness, in the Appendix. In most cases, however, Theorem 2.1 is general 

enough. 

2.2 Admissible Estimators 

Given the previous restrictions on the definition of the action space, we will say that an 

estimator C is admissible if, whenever there exists an estimator C' satisfying R(9,C') :5 R(9, C) for 

almost all 9, then R(9,C') = R(9, C) for almost all 9. 

We will consider here the relation between Bayes estimators and admissibility. Things are not 

as clear as for point estimation and some questions remain unanswered; in particular, we do not yet 

know if there exist equivalent theorems to the complete class theorems of point estimation. 

Theorem 2.2. If 1r gives positive measure to any set with positive Lebesgue measure, then the Bayes 

estimator C,.. is admissible. 

If 1r satisfies the conditions of the previous theorem, then all the Bayes sets are admissible, even 

if C,.. is not essentially unique. However, unlike the point estimation case with strictly convex loss, it 

may be possible to exhibit inadmissible proper Bayes estimators. Obviously, generalized Bayes 

estimators may also be inadmissible (as in the point estimation problem). 

Example 2.1. It is easily seen that the usual confidence set 

is generalized Bayes with respect to the Lebesgue measure. However, for any choice of the loss, C~ is 

inadmissible. Consider the recentered set, 

where 6"t is the positive-part James Stein estimator 

6"t(x) = ( 1- 1; 12 ) + x. 

Hwang and Casella (1982, 1984) have established that P 8(o E c~) < P 8(o E Ci) for all B and some 

values of a (depending on c), and the two sets C~ and Ci have the same volume. 
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It is not true that any S( ·) function considered in (2.1) will result in nonparadoxical behavior. 

There are, in fact, numerous examples of losses and prior distributions which give <P (or 8) as an 

admissible constant Bayes set estimator. This problem is considered in Section 4. 

2.3. Minimaxity 

For a given loss, L, the minimax risk is defined by 

(2.4) m = inf sup R(8, C) . 
c 8 

As R(B, C) = 1 for every B, it is obvious that m ~ 1. We would like to known when 8 is a minimax 

estimator, i.e., when does m = 1, in order to avoid such losses. In particular, we have the following 

condition. 

Theorem 2.3. If X,...., Np(8,1), a necessary and sufficient condition form= 1 is that 

for every c ~ 0, where Z,...., Np(O,I) and f3 is the volume of the unit ball. 

Proof. If there exists Co such that s( <:Be~)< p (I z I <Co). the estimator 

C~ = {B: lx-BI ~c0 } 

has a constant risk strictly smaller than 0. Hence m < 0, establishing the necessity. For the 

sufficiency, consider the conjugate priors N(O, r 21). The corresponding Bayes sets are 

7r'- { ·I T2 I *~2 } Cx - 8. 8--2-- X < eT -2--
T +1 T +1 

where e~ attains the minimum 

The minimum value is also the Bayes risk and hence is a lower bound on m. The sufficiency will 

therefore be established if we can show that the minimum is bounded below by zero as r 2 --+ oo. Now 

the minimum equals 
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mJn[s(~e•)- P(IZ 1 <(.;: J'12e )]~ mJ•[s(~t•)- P(lz 1 <t)] 

+ mJ•hZI <t)- P(IZI <(r'ri 1 t~)J. 
The first term of the lower bound is nonnegative by assumption, and the second term goes to zero as 

r 2 -+ oo. The proof is now complete. 0 

An example of loss for which m = 0 is given below. First, we define the effective radius of a p 

( )1/p 
dimensional set C, p(C), as p(C) = vol(C)/~ . 

Example 2.2. Let X....., x(o, Ip)• Z....., x(o, Ip) and the loss is 

L(O, C)= P(IZI <2p(C))+D(O rt C), 

under the prior distribution N(O, r 2). Then the posterior distribution is N(-F-x, -F-1) and the 
T +1 T +1 

Bayes set is of the form 

7r { I T2 I *~2 } Cx = 0: 0--2--x ~ e -2-- , 
T +1 T +1 

where e* minimizes 

(2.5) 

If [r2/(r2 +1)]>1/4, a solution of (2.5) is e* = 0 or oo; thus C~ = 0 or 0. Since 1r satisfies the 

conditions of Theorem 2.2, 0 is admissible and m = 0. 

The above example illustrates a technique used to establish that m = 1, namely to show that 

some Bayes estimators are ¢. The nonexistence of trivial Bayes sets is actually a necessary condition 

for m < 1 (see Section 2). Another way to show that m < 1 is to exhibit an estimator with maximum 

risk (in 0) less than 1, as illustrated in the following example, for a bounded parameter space [0, 1]. 

In such a case, size function is the length (volume). 

Example 2.3. Let X....., Binomial(n, 0). Then, because 0 E [0, 1], the simple loss 

(2.6) L(O, C)= €(C)+D(O~C), 

where e is the length of C, fits the requirements of (2.1). If 1r(O) is the uniform distribution on [0, 1], 
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then 1r(B I x) is Beta(x + 1, n -x + 1). We will see in Section 5 that the Bayes rule is necessarily the set 

{ 1r(B I x) ~ 1}. which is an interval [o~, o~J. Numerical solutions show that, for all the observed values 

of n, the frequentist risk is strictly negative for every (J E [0, 1]. Therefore, under (2.6), m < 1. Note 

that the Bayes sets [o~, o~] are not the UMPU intervals (Blyth and Hutchinson, 1961). For selected 

values of n, Table 2.1 gives the minimum coverage probability and maximum length of the Bayes 

rule. 

Table 2.1. Minimum coverage probability and maximal length of the Bayes set 

for binomial (J using a uniform prior. 

n 10 20 25 30 35 40 45 

Length .41 .34 .32 .30 .29 .28 .27 

Posterior 
coverage .79 .87 .88 .90 .91 .91 .92 

However, the Bayes rule is not minimax as the associated Bayes risk is always strictly lower than the 

frequentist risk. 
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3. Ranges of Bayes Sets 

As previously seen, one problem with a loss function approach to set estimation is the range of 

resulting Bayes sets. In particular, it is possible to derive proper Bayes sets that are trivial, that is, 

Bayes sets that may be either empty or equal to the entire parameter space. In Section 3.1, we derive 

a sufficient condition for a Bayes set to be nontrivial. We say that the Bayes set is nontrivial if it is 

neither ~ nor E> with positive posterior probability. In Section 3.2 we consider particular classes of 

losses and study the ranges of the Bayes sets. We give explicit bounds on this range in the normal 

case. 

3.1. Conditions for Existence of Nontrivial Bayes Sets 

We can derive a useful sufficient condition by differentiating 

(3.1) 

where C~(k) = { 0: 1r(O I x) > k}, with respect to k. 

Lemma 3.1. For the set C~(k) = { 0: 1r(O I x) ~ k}, isS is differentiable, then 

(3.2) J ds 
I V1r(Oix) I" 

{ 0:1r( Olx)=k} 

Here, ds represents the infinitesimal surface area of the set { 0: 1r( 0 I x) = k} and V 1r( 0 I x) is the gradient of 

1r(O I x) for fixed x. 

Proof. Straightforward differentiation yields 

From the definition of C~(k), 

(3.2) J dO. 

{ O:k +ilk ~ 1r( Olx) ~ k} 

Let hx( 0) be the perpendicular infinitesimal distance between the sets { 0: 1r( 0 I x) = k} and 

{0:1r(O lx) = k +ilk}. Clearly Ak = hx(O)I V1r(O lx) I and hence from (3.2) we obtain 
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(3.4) 

Similarly, we have 

(3.5) 

which, together with (3.4), establishes the lemma. D 

One nice feature of equation (3.2) is that to evaluate the sign of this derivative, only the term 

[ k- S'( vol ( c; (k))) J is important, as the sign of the integral is always nonnegative. Therefore we only 

need this function to determine whether an interior point is a minimum or maximum and the difficult 

task of calculating this surface integral can be avoided. 

A useful sufficient condition can now be easily established. Due to the fact that the posterior 

loss (3.1) is equal to zero for k = 0 and k = oo, straightforward application of Lemma 2.1 yields the 

following sufficient conditions. 

Theorem 3.2. If there exists k0 > 0 such that 

or 

the Bayes set c; is nontrivial. 

3.2. The Normal Case 

We now investigate estimation of 0 in the normal setting with 

The posterior distribution ofOIX =xis Np(m(x), u~I), with 

Instead of using Theorem 3.2, we take a slightly different approach in this setting. We feel that this 

variation, which is only appropriate in the normal setting, will provide more insight into the problem. 



-10-

Recall the definition of the effective radius p(C), of a set C. We consider three classes of size 

functions expressed in terms of effective radius p = p(C): 

i) Sa(P) = pP /(a+pP), a>O 

ii) Sa(P) = P(IZI ~ap), a>O, Z-Np(O, 1) 

iii) - -ap2 f2 Sa(p)=1-e , a>O. 

It appears that the class of losses defined using (3.6i) is a reasonable class for most situations (see 

Section 4). Examination of the losses given by (3.6ii) and (3.6iii) will further reveal the bounds of the 

theory considered here. 

We can write HPD regions for 8 in the form 

for some e which does not depend on x. In fact, the Bayes rule chooses e to minimize the posterior 

expected loss 

1 ( c~ (e) I x) = s ( eu r) + P (1 z 1 > e) , 

where Z ""Np(O, 1). 

If we now apply Theorem 3.2, we get a sufficient condition: the Bayes sets are nontrivial if 

there exists £0 such that either 

(3.7) for 0 < e < £0 

or 

(3.8) fore> £0 , 

We can now apply these formulas to the size functions in (3.6) to obtain a number of interesting 

results. 

a. For the rational size function (3.6i), the Bayes sets are nontrivial for any a> 0. 

b. For the probability size function (3.6ii), the Bayes sets are nontrivial for all Z if and only if 

a<o--1. 



-11-

For the exponential size function {3.6iii), the Bayes sets are nontrivial if p 

Bayes sets are nontrivial for all Z if and only if a< u - 1. 

1. For p ~ 2, the 

Proof a. Condition (3.8) is obviously satisfied, as the rational size function has a heavier tail than 

fz( · ), which decreases exponentially fast. 

b. For the probability size function we have 

L ( C~ ( €) lx)) = P (1 z I ~ aeu r) + P (I z I > e) , 

which is clearly negative if auT< 1. Thus, since u T-1 > u-2, part b is proved. 

c. From conditions (3. 7)- (3.8), we will have nontrivial Bayes sets if 

is positive for all sufficiently large € or negative for € sufficiently close to zero. If p = 1, it is 

straightforward to check that (8/8€) 1( C~(€) lx) < 0 for € near 0, so the Bayes sets are nontrivial. If 

p ~ 2 and auT~ 1, then it is also straightforward to check that 1( C~( €) lx) ~ 0 for all €, so the Bayes 

sets are trivial by Theorem 4.1. If auT< 1, then it can be shown that (3.9) is positive for all 

sufficiently large € and hence, the Bayes sets are nontrivial. The condition follows since u T-1 > u-2. 0 

The three size functions of (3.6) have been chosen because they span a range of possibilities. 

The relationship between the size function and the density function is of utmost importance in 

determining the behavior of the Bayes sets. With the size functions in (3.6), we have tails that can be 

heavier than normal (rational size), lighter than normal (probability size) and equal to normal 

(exponential size). It follows from the previous developments that the size function must have a tail 

heavier than the posterior density in order for the Bayes sets to be nontrivial. In less technical words, 

if the penalty for large size increases rapidly enough (to its upper bound), or increases slowly enough 

(from its lower bound), the Bayes sets will be trivial. 

3.3. Bounds on Bayes Sets 

In this section, we still concentrate on the normal case using the size functions defined in (3.6). 

For these cases, we find that as the value of a changes, there is a smallest, nonempty Bayes set. 
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However, there is no largest bounded Bayes set (that is, the maximum volume of a Bayes set is 

infinity.) 

To be explicit, for a specified value of a we write the Bayes set 

For each loss given in (3.6), there is a unique value of £(a) that describes the Bayes set. We now find 

the range of this function as a varies. Consider first the rational size function. 

Theorem 3.6. If X I 0 .....- Np(O, u2I) and 0 .....- Np(Jl, r 2I) the Bayes set under rational size is such that £(a) 

satisfies i) max £(a) = oo a 

ii) min £(a) = £* > 0 . a 

Proof. We can write the posterior loss of C~[f(a)] as 

As a-+0, L( C~[f(a)] lx) can remain negative (as it must, by Theorem 3.3) only if l-+oo. This 

establishes that (8/8a) L( C~[f(a)] lx) < 0. This implies that the minimum value of £(a) is attained for 

0 <a< oo, establishing part ii). 0 

It is straightforward to verify that the minimum value of f(a) is independent of CTT. Although 

analytic determination of this minimum is difficult, a numerical algorithm can be used. The 

following 

table gives some selected values of£* = min £(a): 
a 

Table 3.1. For dimension p = 1,2,· · ·,7, values of the minimum length£* and corresponding 

p 

t* 

Posterior 
coverage 

coverage of conjugate Bayes sets against the rational loss. 

1 2 3 4 5 6 7 

1.90 2.07 2.21 2.29 1.40 1.40 1.29 

.94 .88 .82 .74 .31 .08 .02 
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Of course, the posterior coverage of the Bayes set C~(t*) is the minimum probability, and 

corresponds to the usual frequentist coverage when the prior is taken to be Lebesgue measure. Table 

3.1 shows that for small values of p, the rational size function dictates a rather large coverage 

probability, and hence a restricted range of Bayes sets. As p increases, however, the range of the 

coverage probabilities increases. 

We next turn to the probability size function. 

Theorem 3.5. For XIO"' Np(O, u2I) and 0"' Np(J.t, r 2I), under probability size function, with a<u-1, 

the Bayes set is associated with 

and min t(a) = p1/ 2 and max f(a) = oo. 
a<u-1 a<u-1 

T T 

Thus the probability size function also results in an unbounded range of Bayes sets. As before, 

the coverage probability of the smallest Bayes set, C~(p1/2), is independent of uT' However, for this 

size function the range of the Bayes sets is wider for small p, as evidenced in Table 3.2. Moreover, it 

can be established analytically that for this loss 

mJn Pl(o E C~[t(a)] lx)~l for any p. 

Table 3.2. For selected dimensions p, values of the coverage of the 

p 

Posterior 
coverage 

minimum length Bayes set against the probability size loss. 

1 3 5 10 20 40 

.69 .61 .59 .56 .54 .50 

100 

.50 

For the exponential size function, the results are similar to those for the probability size function, 

and will only be summarized. 
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Theorem 3.6. For X I 0 ,...., N p( 0, a-21), 0 ,...., N p(J-1., r 2I) and the expo size function, when a < u - 1 and p > 2, 

the Bayes set is associated with 

(p-2)1/ 2 ~ €(a) < oo • 

Again, as with the probability size function, it can be established that, as lone as p > 2 and 

a< u -;.1, the minimum coverage probability of the Bayes set is at least 1/2. In fact, an analytic 

bound on the length is 

min £(a)~ min~ p-2
2 = ~p-2 . 

a a 1-a 

The coverage probabilities of the Bayes sets of minimum volume are given m Table 3.3. They 

indicate that the minimum length is presumably much larger than ~p-2. 

p 

Posterior 
coverage 

p 

£* 

Posterior 
coverage 

Table 3.3. For selected dimensions p, values of the minimum length£* 

and coverage of the Bayes set (4.15) against the loss (4.18). 

3 4 5 6 7 8 

2.24 2.66 3.00 3.27 3.51 3.74 

.83 .87 .89 .90 .91 .92 

10 11 12 13 14 15 

4.15 4.32 4.49 4.65 4.80 4.96 

.93 .93 .93 .94 .94 .94 

9 

3.96 

.93 

20 

5.65 

.96 
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4. Relations Between the Loss and the Distribution 

When we consider a given loss, 

(4.1) L(O, C)= Svol(C)+D(O~C), 

one important problem is to determine how much this loss depends on the distribution. For instance, 

we can look at the conditions for admissibility or minimaxity of different sets, and see how these 

conditions depend on the distribution. Another subject of interest is the value of the minimal 

coverage probability over a class of losses, as treated in the previous section. We can ask if this lower 

bound depends on the distribution. 

In general, there will be a relationship between the loss and the distribution. We can then try to 

restrict ourselves to the consideration of "robust" or "universal" losses. Although this notion is not 

easy to define, it is certain that we cannot define a loss that will be valid for any kind of problem. 

This problem is not unique to set estimation, but also is the case for point estimation problems. In 

point estimation problems, it is well known that different combinations of loss functions can give 

different "optimal" answers for the same distribution. 

We show in Section 4.1 that a natural loss exists for bounded parameter spaces. This loss can 

be called "universal" in the sense that all Bayes sets are nontrivial, independent of the distribution of 

the observations. In the more general case of unbounded parameter spaces, some of the losses we 

have considered will not behave properly for more general models. For instance, the size function 

S*(C) = P(T v E C) gives 0 as a minimax set if the observations have a t distribution with n < v 

degrees of freedom. The rational loss thus appears as the most appealing candidate. 

4.1. Bounded Parameter Space 

We now consider the case where X has a distribution depending on a parameter () E 0 with 

vol(0) = n < + oo (the volume being determined by Lebesgue measure). Example 2.3 is a particular 

case of this situation, and we still see that some of the results in Example 2.3 for the binomial 

distribution can be generalized to distributions with bounded parameter spaces. In fact, a natural loss 

in this setup is 



-16-

(4.2) 1(8, c)= vo~C) +0(8 rf_ C), 

as the volume function is increasing, bounded by one and satisfies 1(8, ~) = 1(0, e) = 0. Further-

more, the following theorem shows that the loss is independent of the distribution of the observations. 

Theorem 4.1. For any distribution f(x 18) and any prior distribution tr on e, the Bayes set is 

c~ = {8:tr(8lx) ~A}. 

Proof. In the case of the loss function (4.2), we have S'(t) = 1/0. Thus, for a set of the form C~(k) 

= { 8: tr(81 x) ~ k} it follows from Lemma 2.1 that 

(4.3) _2_(d8 ctr(k)))- [k-l] J ds ok \' X - 0 {tr(8lx) =k} 1Vtr(8lx)l' 

The integral in ( 4.3) is always nonnegative. Furthermore, this integral has to be positive for some 

values of k, otherwise tr would not be a density on e. Therefore, as k increases from 0, 

gk ( 1(8, C~(k))) changes sign only once from negative to positive. This implies that k = 1/0 gives a 

minimum of1(8, C~(k)lx), for any distribution f(xl8). D 

Theorem 4.2. For any prior distribution, tr(8), the Bayes set associated with the loss function {4.2), C~, 

is nontrivial. 

Proof. We first prove that the posterior distribution cannot be uniform. If f(x 18) is the density of X 

with respect to a measure v, we have tr(8lx) = f(xl8)tr(8) j I f(xl8)tr(8)d8. If tr(8lx) = 1/0 for 
e 

almost every x (with respect to v), then f(x l8)tr(8) = (1/0) I f(x l8)tr(8)d8. Integrating with 
e 

respect to x gives 

tr(8) = tr(8) I f(x l8)dv(x) = b J I f(x l8)tr(8)d8dv(x) 
g; g; e 

= b I I f(x l8)dv(x)tr(8)d8 = b. 
e g; 

But if f(x 18) actually depends on 8, the posterior distribution associated with tr(8) 

uniform. Thus we have a contradiction. 

1/0 is not 

As I tr(8lx)d8 = 1 and tr(8lx) f. 1/0, it follows that the sets {8:tr(8lx)>(1/0)} and 
e 

{ 8: tr( 81 x) < (1/0)} are not equivalent to the empty set or the entire space. D 
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We can deduce from Theorem 4.2 that ~ is not Bayes for (4.2) and, therefore, less likely to be 

admissible or minimax. 

4.2. The Rational Loss 

For the general case of unbounded spaces, we can no longer use the "natural" loss of Section 4.1. 

Closer examination of the bounded parameter space case helps us understand why the loss seems 

"universal." First, the linearity of the loss dictates that the tail behavior of the linear loss is 

appropriate. In fact, since the derivative of linear loss is constant, it follows that, as x--+ oo, every 

density function f(x I B) will eventually be below this constant. This is the fact that leads to the 

universality of linear loss for bounded parameter spaces. 

Secondly, only in bounded parameter spaces will the linear loss be coherent in the sense that 

S(O) = 0, S(oo) = 1, and 0 < S(v) < 1 for 0 < v < oo. Thus, to try to carry these conditions over to the 

unbounded parameter space problem, we must consider a loss function whose derivative is not too 

small. A reasonable candidate is the family of 'rational' losses, since they avoid trivial Bayes sets for 

conjugate priors and for p?: 5, the minimum coverage probability phenomenon is not of consequence 

in the normal case. An additional sufficient condition for nontriviality is given by the following 

result. 

Theorem 4.3. If { (} : 1r( (} I x) > ( 1/ a)} has positive Lebesgue measure, the Bayes rule C~ = { (}: 1r( 0 I x) > k} 

against the rational loss function is nontrivial, where k = k(x) < 1/a. 

Proof. See Casella, Hwang and Robert (1992). 

That { 1r(B I x) > (1/a)} = </> does not necessarily imply that the Bayes rule is </>, as illustrated by 

the following example. 

Example 4.1. Suppose X"'Np(B, I) and {}.-vNp(O, r 2I). Then 7r(Bix) is Np(7Jx, 77I) and the Bayes 

set is C~ = {o: IB-7Jxl 2 $C} where 7J = r 2/(r2+1). If a is such that (1/a) > (27r7JfP/2, it follows 

that { 1r(B I x) > (1/a)} is empty. However, as seen in Section 3.3, there is still a nonempty Bayes set. 
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5. Conclusion 

This paper shows how difficult it is to treat the set estimation problem in a decision-theoretic 

way, since it points out that many losses, even the nonlinear losses like in (1.2), suffer from defects 

reproched to the original linear loss. It also provides some guidelines in the selection of the size 

function S, in particular through the "coherency conditions" S(O) = 0, S(oo) = s. Unfortunately, it 

appears that the distribution of the observations, f(x I 0), also plays an important role in the 

apperition of paradoxes and undesirable features, like the existence of trivial Bayes sets or the 

minimaxity of ¢. This implies further robustness studies for specific families of losses and 

distributions. 

Despite these limitations, we deeply recommend a decision-theoretic approach to confidence set 

estimation and this for three reasons. First, an independent approach separates the testing 

imperatives from the confidence imperative and allows us to evaluate the confidence procedures for 

themselves. Second, in a related way, it compels the decision-maker to evaluate the consequences of 

his/her actions related to the confidence procedure, thus repositions confidence procedures at the core 

of the inferential process instead of presenting them as secondary tools. Last, by allowing the use of 

classical decision-theoretic notions like admissibility, minimaxity, etc., this approach brings the 

decision-maker on a sounder ground since he/she can compare estimators and look for an optimal 

solution, as is the case in point estimation, instead of borrowing from resting perspectives or devising 

ad hoc optimality notions. 

A deeper purpose of this paper is also to call for a reflection on the actual goals of confidence set 

estimation. Indeed, although the previous sections show that a decision-theoretic approach is possible 

for a careful choice of the loss function (1.3), the true purpose of decision theory is still to provide the 

decision-maker with a tool to help him to make rational/coherent decisions. Therefore, following De 

Groot (1970), Berger (1985) or Lindley (1965), this implies that the loss function he/she uses in this 

process is obtained from a corresponding utility function. It is yet unclear how this utility function 

can be constructed in practice, given the available choice of acceptable loss functions, but it is clear 

that the loss function should not be chosen for its mathematical properties or even for its compliance 
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with an "intuitive" behavior. 

Borrowing from Berger (1985, Chap. 2), we propose the following approximation for the 

determination of the size function, assuming it belongs to a parametrized family Sa, like the rational 

size Sa(v) == vfa+(J'. If the decision-maker is in fact able to compare the consequences of a large set 

with those of a smaller set, he can produce a sequence of volumes v1,-··,vm and a corresponding 

sequence of weights p2,. · ·,Pm such that Sa(v2) == p2Sa(v1),· · ·,Sa(vm) == PmSa(v2). An approximate 

value of a can then be estimated based on this information. 
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Appendix 

Theorem (Generalization of Theorem 3.1). For X ""'f(x I 0) and (possibly improper) prior 1r(O) the Bayes 

estimator, c~. against the loss 

Ls(O, C) = S[vol(C)] - D(O E C) , 

satisfies 

(A.l) C~c{0:1r(Oix)~k} or {0:7r(Oix)~k}cC~ 

for every k > 0. Furthermore, if C~ satisfies 

C~={0:7r(Oix)~k*} 

and k* minimizes 

s(vol{0:7r(Oix)~k}- J 1r(Oix)dO. 

{0:7r(Oix)~k} 

Proof. Since C~ is a Bayes set it minimizes the posterior loss 

L(C~Ix) = S[vol(C)]- J 1r(Oix)dO. 

c 
If (A.l) is not satisfied, there exists k ~ 0 such that 

the intersections being different from zero (recall that we are working with sets defined only up to sets 

of Lebesgue measure zero). Therefore, there exists sets Ax and Bx such that 

Ax c C~ n{O: 1r(O lx) < k}, Bx c (c~t n{0:1r(O lx) ~ k} 

and vol(Ax) = vol(Bx) > 0. If we now define Ci = ( C~ - Ax) U Bx, it follows that 

as vol( c~) = vol( Ci) and J 1r(O I x)dO < J 1r(O I x)dO. Thus we have a contradiction, soC~ must 
Ax Bx 

satisfy (A.l). The second part of the theorem follows immediately by continuity. D 


