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I. Introduction 

Topics in Evolutionary Ecology 
by Simon A. Levin 1 ,2,3 

and Carlos Castillo-Chavez3,4 

Mathematical models have played a central role in evolutionary theory at least since 

the pioneering work of Fisher, Wright, and Haldane. Two approaches have been 

predominant: mechanistic and reductionistic ones that assume considerable detail about 

genetic mechanisms, and phenotypically-based ones that assume quantitative inheritance, or 

that suppress genetic detail entirely. Despite the successes of both approaches, they have in 

general failed to deal adequately with some of the central problems of evolutionary 

ecology-those in which strong nonlinear feedbacks result from intra-specific or inter­

specific frequency dependence. Thus, the need for new ideas and new approaches is as 

pressing as ever. 

These notes, which are based on a series of lectures given at the University of 

Montreal by the first author, begin with a discussion of evolution as optimization, and of 

the constraints that arise due to history, stochasticity, and frequency dependence. Life­

history evolution in variable environments is treated through a consideration of dispersal 

and dormancy strategies, in which the importance of frequency dependence is illustrated. 

Finally, consideration is given to coevolution in host-parasite and plant-herbivore systems, 

with special attention to the coevolution of virulence and resistance in situations of tight and 

diffuse interactions. 
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II. Evolution as Optimization 

To a great extent, evolutionary ecology deals with the study of adaptations. The 

adaptationist approach views evolution as a problem solver, providing solutions that are in 

some sense "optimal" in a given environment. In short, evolution optimizes some 

nebulous quantity, the organism's "fitness." Herein lie the principal problems with the 

adaptionist approach: the identification of the end result (the definition of fitness) and the 

determination of the "purpose" of the genetic algorithm. As Gould ( 1977) 

argues," ... evolution has no purpose. Individuals struggle to increase the representation of 

their genes in future generations, and that is all." Lewontin (1977) clearly states that 

"Adaptation, for Darwin, was a process of becoming rather than a state of final optimality." 

Jacob (1977) expounds this view very eloquently when he points out that the process of 

evolution, being more similar to the work of a tinkerer rather than that of a master 

craftsman, is con trained by past history, chance, and the mechanics of the evolutionary 

process itself. 

Sewall Wright, Ronald Fisher, and J. B. S. Haldane were among the most 

prominent figures in the development of the modern synthesis of population genetics and 

evolutionary theory. Among their contributions were the development of a mathematical 

framework for population genetics and the exploration of the population-level 

consequences of natural selection and other evolutionary processes. The paradigm 

developed through Fisher's Fundamental Theorem of Natural Selection and Wright's 

Adaptive Surface-that through natural selection, fitness will gradually improve at a rate 

proportional to the remaining genic variance, and that the process can be viewed as hill­

climbing-has become one of the most powerful in evolutionary theory, and provided a 

mathematical justification for the rise in status of optimization theory. 

However, the usefulness of this paradigm always has been questioned. Recently, 

Provine (1986) has argued that the underlying concept of the multi-dimensional adaptive 
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landscape is a useless and misleading metaphor, and indeed that Wright's own presentation 

of the notion has itself gone through substantive evolution. Levin (1978, 1983a), 

somewhat more positive on the subject, nonetheless has argued that it can mislead: "the 

conclusion that populations evolve towards maximization of mean fitness is easily vitiated, 

and the worst culprit is frequency dependence." 

Despite the above objections, the paradigm that emerges from these approaches still 

provides one of the most important theoretical concepts in evolutionary theory. In some 

special simple cases it provides the correct picture (see Levin 1978; Ewens, 1979). In 

more complex situations, it provides a possible starting point for future extensions. For 

example, various authors have shown that variants on the metaphor are still valid for traits 

that are density-dependent, although multiple loci and frequency dependence introduce 

more fundamental problems. Although versions of the Fisher theorem can be developed 

under weak frequency dependence or weak epistasis (Ewens 1969a,b; Nagylaki 1976), in 

general the undulating landscapes that arise under frequency dependence and coevolution 

mandate entirely new approaches. 

We begin by discussing the problems that arise when landscapes are rugged and 

very high-dimensional, and then move on to the central problems of evolutionary 

ecology-frequency dependence and coevolution. 

Towards a general theory of adaptive walks 

The problems of high-dimensionality and ruggedness have been examined by 

Kauffman and Levin (1987), and their discussion forms our starting point. In particular, 

consideration of the hill-climbing metaphor as a heuristic solution algorithm is shown to be 

fraught with problems-false peaks, multiple pathways, etc. Computer simulations of 

simple cases reinforce our understanding of the importance of stochasticity and history. 
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The mutational process plays a crucial role in the generation of genetic variability. In 

this section we assume that we are dealing exclusively with point mutations that switch, 

insert, or delete single nucleotide bases. This is a reasonable starting point, because other 

types of mutations can be thought of as mechanisms that produce many mutations of the 

above type simultaneously. Kauffman and Levin (1987) construct a genotypic space by 

assuming that each genotype is surrounded by 1-mutant neighbors; that is, a single 

mutational alteration will transform the genotype under consideration into a neighboring 

type. We have then a space in which each point denotes a particular genotype and has as its 

immediate neighbors genotypes that differ by a single mutation. Note that the topology on 

this space is given by the mutational "move" generator that specifies the allowable 

transformations, i.e., that specifies which entities can mutate in one step to one another. 

Furthermore, observe that in this case the process is symmetric and reversible. This 

restriction can be relaxed. 

Kauffman and Levin (1987) define a mapping from this genotypic space to the 

appropriate phenotypic space, and specify the fitness associated with each attribute 

(phenotype). The discrete distribution of fitness values across the genotypic lattice will be 

referred to as the fitness landscape. If, for example, we restrict ourselves to a haploid 

organism with DNA genotypes of length 100,000 nucleotides, then each position in the 

DNA sequence can be occupied by 4 alternative bases, and each genome has 300,000 1-

mutant neighbors in the space of haploid genotypes. Hence, each genotype is surrounded 

by huge numbers of 1-mutant neighbors with (possibly) different fitness values. In this 

scenario, to the extent that the metaphor of the previous section is valid, adaptive evolution 

can be thought of as an uphill walk via 1-step fitter variants until a local or a global 

optimum is reached. This gradual adaptive climbing through mutation and selection 

provides the simplest trial and error optimization method, and is mimicked by the 

development of heuristic methods in combinational optimization (e.g. Lin and Kernighan 

1973) and neural computing (Hopfield 1982). 
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What are the constraints that arise from such an approach to improvement? If the 

notion of neighborhood is extended to include k point changes (k=1,2,3 ... ), how many 

local optima are there in the space with respect to k-mutants? If adaptive movement is 

allowed only through fitter neighbors, what is the expected number of improved variants 

passed on the way to a local optimum? How long are adaptive walks that use this 

optimization algorithm? In how many ways can adaptive walks branch at each uphill step? 

How many local optima are there available for an arbitrary initial genotype? What role does 

the initial fitness play in the availability of local optima? What is the probability of attaining 

a global maximum? What is the correlation structure in a fitness landscape? 

Consider the expected character of adaptive walks in (uncorrelated) spaces where the 

fitness value of each genotype is drawn at random from some fixed underlying distribution. 

Furthermore, replace the actual fitness values assigned to the genotypes in the space by 

their rank orders. The least fit has rank 1, the most fit has rank T. We assume that there 

are no tie values and that the fitness values are distributed uniformly on the real line. For 

concreteness consider (as in Kauffman and Levin 1987) a space oflength-N peptides that 

can use only two amino acids. Hence we can represent each peptide as a binary string of 

length N. The space of peptides is theN-dimensional Boolean hypercube. There are 2N 

strings, and we assign order fitnesses from 1 to 2N at random without replacement to each 

of the points in theN-dimensional Boolean hypercube. The probability that a vertex is a 

local maximum is given by 

Pm = 1/(N+1), (1) 

and the expected number of local optima with respect to 1-mutant neighbors, M 1, is 
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(2) 

For 1- and 2- step mutant neighbors, the expected number of local optima, M2 is 

2N+l 

M2 = 2 + N(N + 1) ' (3) 

and fork-step mutants, the expected number of local optima Mk is 

2N+k 

Mk =-k--- (4) 

~G) 

Hence, in an uncorrelated fitness landscape, the number of local (1-step) optima is of the 

same order of magnitude as the number of possible peptides. If the pep tides use B amino 

acids, then any peptide of length N has D = (B - 1 )N 1-mutant neighbors, and M 1 is now 

given by 

As before, the number of local optima increases exponentially in N. 

(5) 

Kauffman and Levin (1987) show that the probability that an entity in this space is a 

local optimum is low if its rank is low, and rises rapidly when the rank increases. They 

further show that an upper bound for the average walk length R is R= log2 (D-1), and find 

that for greedy walks (those that always choose the best improvement) in an uncorrelated 

space the average walk length is less than 2. Gillespie has independently derived this result 
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recently (Gillespie, personal communication), and Weinberger (1988) has confirmed it by 

developing more accurate estimations of walk length. In addition, using the fact that the 

number of alternative pathways towards increased fitness values decreases linearly with 

rank order, Kauffman and Levin (1987) calculate an upper bound for the expected number 

of local optima B accessible from the lowest rank entity: 

(6) 

Hence, only a tiny fraction of all local optima are accessible from any entity on adaptive 

walks via 1-mutant fitter variants in uncorrelated landscapes. Walks in correlated 

landscapes in general will be longer. 

For some implications of the results of this baseline case to the length of adaptive 

walks in the immune system, and to branching phylogenies in biological evolution, see 

Kauffman and Levin (1987) and Kauffman et al. (1988). Gillespie (1983, 1984) uses a 

variant of this model on the molecular clock hypothesis to show that burst-like evolution 

fits better with a selectionist theory than with a neutral theory. 

Kauffman and Levin (1987) examine these results further by applying this 

evolutionary algorithm to optimization problems such as the traveling salesman problem 

(Lin and Kernighan 1973, Johnson and Papadimitrou 1985). They demonstrate the 

tendency of the scheme to get hung up on false peaks, and the importance of stochastic 

phenomena, especially early in evolution. They furthermore show that the most efficient 

optimization occurs for intermediate levels of mutation: low levels of mutation rapidly lock 

the system in to false peaks, whereas high levels do not take advantage of local information 

and progress already made. Furthermore, optimization is significantly enhanced when the 

process occasionally can go downhill and traverse valleys. This approach, which allows 

one to get free from false peaks, involves "simulated annealing" in heuristic combinational 

optimization, and can arise from a number of genetic mechanisms (shifting balance, 

genotypic variance, outcrossing, etc.). 

7 



Evolution in Varying Environments 

The problems associated with the adaptationist approach include: the defmition of the 

putative quantity to be maximized; the determination of what is heritable; the high 

dimensionality, which leads to large numbers of optima; pleiotropy, linkage and epistasis; 

temporal variation in fitness; frequency and density dependence; and coevolutionary 

interactions (among populations and with the environment). The last two classes of 

problems are perhaps the central ones in understanding natural communities and 

ecosystems. Essentially, whatever is being optimized is a tradeoff against different 

environments, which the species defines and alters as it evolves. One of the most 

important sets of constraints, and one of the least explored in theory, arises from the 

tradeoffs involving different phenotypic aspects. These may involve pleiotropy or 

interactions among loci, but most often involve different genotypes being favored in 

different parts of a heterogeneous environment. Castillo-Chavez et al. (1988) explore the 

tradeoffs between the evolution of habitat selection and physiological adaptation in a 

heterogeneous environment. They start by developing a two-locus model that considers a 

panmictic population in which prereproductive individuals are mobile enough to move 

among patches. Alleles at one locus code for the absence or presence of physiological 

adaptation to detrimental patches, and alleles at the second locus code for the absence or 

presence of behavior that causes avoidance to detrimental patches. It is further assumed 

that the effects of alleles controlling physiology and behavior are additive and that fitnesses 

are frequency independent. 

More specifically, two semi-dominant alleles at a single locus, allele R (resistant) and 

allele r (susceptible), determine the degree of physiological resistance. Repellency is 

governed by two semi-dominant alleles at the second locus: allele A codes for a high 

degree of avoidance, while allele a codes for lower avoidance. Ten genotypes are possible. 
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To impose a price on avoidance, Castillo-Chavez et al. (1988) allow the fitnesses (w) to 

depend on whether the individual is found in a chemically treated (T) or untreated (UT) 

environment. Define the probabilities that a particular individual will be found in a given 

environment as: 

Prob (individual AA is in T) = X , 

Prob (individual aa is in T) = Y , 

Prob (individual Aa is in T) = (X + Y)/2 (7) 

The Rr genotype's fitness in a particular environment is defined to be the arithmetic 

mean of the corresponding (identical at the complementary locus) homozygous genotypes 

in the same environment. The overall expected fitness for any genotype is the arithmetic 

mean of its expected fitnesses, WT and WuT. respectively in toxic and nontoxic 

environments, weighted by the probabilities specified by (7) (the overall fitnesses are 

summarized in Table 1, from Castillo-Chavez et al. 1988). 

TABLE 1: Fitnesses of the various genotypes. 

The fitness (w) of each genotype is dependent upon whether it is in the toxic ( T) or non­

toxic (UT) environment. The fitnesses (w) in the environment (L) are "'L(RR)• "'L(rr)• and 

(wL(RR) + wL(rr)) I 2 for individuals with RR, rr, and Rr respectively, where Lis either (T) 

or (UT). X andY are defined in the text. 

w(RRAA) = XwT(RR) + (1- X) WUT(RR) 

( X+Y) ( X+Y) W (RRAa) = - 2- WT(RR) + 1 - 2 WUT(RR) 

W(RRaa) = Y WT(RR) + (1- Y) WUT(RR) 

[ WT(RR) + WT(rr)J [ WUT(RR) + WUT(rr) J 
w(RrAA) =X 2 + (1-X) 2 

"'(RrAa) =(X; Y) [ WT(RR) 2+ wT(rr) J + ( 1 _X; Y) [ WUT(RR) 2+ WUT(rr) J 

[ WT(RR) + WT(rr)J [ WUT(RR) + WUT(rr)J 
w(Rraa) = y 2 + (1- Y) 2 
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W(rrAA) = XwT(rr) + (1- X) WUT(rr) 

(X+Y) ( X+Y) 
W(rrAa) = --r- WT(rr) + 1- --r- WUT(rr) 

W(rraa) = y WT(rr) + (1- Y) WUT(rr) 

Introduce the notation W(RRAA) =a., W(RRaa) = 13, W(rrAA) = y, W(rraa) = 8, for 

the fitnesses of the double homozygotes, and let x1 (t), x2 (t), x3 (t), and x4 (t), denote the 

frequencies of the chromosomal types RA, Ra, rA, and ra, respectively. Then the 

frequencies of these chromosomal types in successive generations are related by the 

iterative scheme (Felsenstein 1965): 

W· WH 
x'· = - 1

- x· + e·kD --
1 - 1 1 - ' 

i = 1,2,3,4, 
w (x) w (x) 

where e1 = e4 = - e2 = - e3 = -1. The prime denotes the succeeding generation, D denotes 

the linkage disequilibrium coefficient, k the recombination fraction between the two loci 

and wH =(a.+ 13 + y+ 8) I 4 the double heterozygote fitness. wi is the mean fitness associ-

ated with allele xi, and w is the mean fitness in the population. 

The most general outcome of this scheme is fixation for a single gametic type. For 

example, if in the presence of a toxin the type (ra) that can make no response is the least fit 

(8<a., 13, y), then the plant species will evolve either a physiological or behavioral response, 

and may evolve both if the double homozygote possessing both (resistance and avoidance) 

is the most fit double homozygote (a. > 13, y). On the other hand, if in contrast, a. < 13, y, 

then a bistable situation may result in which either resistance or avoidance can evolve, 

depending on initial gene frequencies. In this case, which implies a burden to having both 

features when one will do, the most fit double homozygote will not necessarily prevail. 

The initial conditions, the recombination rate, and the values of a. and y can influence 
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recombination. The complexity of the situation is illustrated in Figure 1 (from Castillo-

Chavez et al. 1988). 

P4 stable 

I neither resi s lance 
nor avoidance) 

Lz P1 and f4 both stable 

(both resistance and avoidance, 
or neither, depending on 
initial conditions I 

max r-----------------------+-----' ( p, J') 

P2 or P3 stable 

I resistance or avoidance 
but nol both, depending 
on p, 'If I 

men 1--------. 
P1 stable 

(resistance and avoidance) lp,7l 
P2 and P3 
both stable 
I resistance or 
avoidance, depend­
ing on initial 
condi lions I 

min 
I p. 711 

max 
1p,7l) 

Fi2ure 1: Stability regions for various equilibria. 

L1: a+ o +max (~,"() = i ~ ~ min (~,"() , 

3+k 3+k 
L2: ~+y+o= 1 _ka, L3: ~+y+a= 1 _ko. 

The problem of joint selection for behavioral and physiological traits is exemplary 

of more general problems concerned with multiple genetic responses to single selective 

factors (e.g., Cohan 1984). Problems such as this frustrate the application of simple 

optimization approaches, because interest must be on the diversity of environments that 

might be confronted. Nonetheless, there are situations in which the objections to the 

adaptationist programme are more fundamental because of the importance of nonlinear 

feedbacks through frequency dependence and coevolution. We begin to treat these in the 

next section. 
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III. Dispersal 

Among the central problems in ecology are the statistical description of movement 

and the understanding of population distributions in terms of individual behavior. 

Questions regarding issues as diverse as the evolution of life history traits or the spread of 

genetically engineered organisms are crucially tied to our understanding of the dispersal 

patterns of plants and animals. One of the most fascinating challenges in evolutionary 

ecology is to determine the role that the spatial and temporal structure of the environment 

plays in the dispersal of individuals. These questions were raised years ago by Skellam 

(1951) and Hutchinson (1951). The evolutionary aspects of dispersal have received much 

less attention because of the complexities introduced by frequency dependence. (Levin 

1987) 

In 1977, Hamilton and May asked: What are the advantages of dispersal for annual 

plants living in a renewable and stable environment? If there is a cost to dispersal, and if 

the habitat is uniformly good (or bad), then why disperse at all? The use of naive 

optimization arguments in such situations would dictate against dispersal, since there is cost 

without apparent gain. If, however, we consider the frequency dependence that is implicit 

when different genotypes are in competition, then the answer is quite different. Dispersers 

outcompete nondispersers. Furthermore, by applying the concept of evolutionary stable 

strategies, Hamilton and May found that the best possible strategy within their model is to 

disperse with a probability equal to the reciprocal of 1 plus the probability of loss during 

dispersal. Hence, even if 90% of the dispersers are lost before reaching an appropriate 

site, the evolutionarily stable strategy (ESS) still is to disperse 52.6% of the seeds. 

The Hamilton and May approach is elegant in its clear and simple demonstration of 

the basic need to consider frequency dependence. To examine the evolution of dispersal, 

however, one must consider a more general class of environments and strategies. Indeed, 
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dispersal is just one possible evolutionary response to local unpredictability (broadly 

understood) and takes its place in a spectrum that includes dispersal, dormancy, diapause, 

iteroparity, and vegetative spread. In what follows we focus on two particular strategies: 

dispersal and dormancy. 

Intuitively, dispersal and dormancy can be thought of as alternative strategies for 

individuals that have to deal with the spatial and temporal variability of the environment. In 

the previous section, we discussed an analogous problem: in the face of a toxic 

environment, two alternative strategies are physiological resistance and behavioral 

avoidance. It was seen that there are tradeoffs among these. Hence, similarly, one expects 

that the evolved level of one factor (dispersal or resistance) is a function of the other 

(dormancy or avoidance). 

To gain understanding of the differences and similarities between dormancy and 

dispersal, and with the objective of determining the conditions needed for a strategy to 

dominate, Levin et al. (1984) developed a simple model of population growth in varying 

environments. In what follows, the effects of the spatial and temporal structure of the 

environment, as well as the relative cost of both strategies, are discussed in the context of 

the Levin, Cohen, Hastings model. Details can be found in Cohen and Levin (1987). 

A seed population of annual plants in a patchy environment is considered. For patch 

j, the basic growth equation before germination, for the seed population, is given by: 

L 

S j =Sj[GYtj(l-D)+(l-G)V]+~Lyisi 
t + 1 t i=l t t 

(9) 

We assume that an equation of this type applies for each genotype(= phenotype). In the 

above equation, G denotes the constant annual germination fraction and D denotes the 

constant dispersal fraction of seeds. Only the parameters G and D are genotype dependent; 

all others are assumed to be the same for all genotypes (although the approach could be 
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extended to examination of the evolution of those parameters as well.). A denotes the 

fraction of dispersing seeds that are successful at reaching a safe habitat, and V denotes the 

survival of those nongerminating seeds that remain dormant. Since the seeds are dispersed 

uniformly over all L patches, we take the summation over L. Y denotes a density­

dependent yield function that is assumed to have the form Y(Z) = K/(Z+b), where Z 

denotes the total density of all competing types in a given patch, and K is a random variable 

that denotes the total seed yield of the patch. For more general growth functions, see Levin 

et al. (1984). K is assumed to be independently distributed among patches; however, 

within a given patch, K has several possibilities: it may vary independently among years, 

or it may show a positive or a negative temporal correlation. D* [0*], the evolutionarily 

stable strategy for dispersal [germination], is defined by the condition that its genotype, 

once established, cannot be invaded by any rare mutant playing a different strategy. In 

what follows, the details of the genetic system are ignored and alternative strategies are 

assumed to involve competing asexual clones. 

Numerical simulations show that D* is an increasing function of the germination 

fraction, G, if the latter is held fixed, and is a decreasing function of V (the survival of 

nongerminating seeds). On the other hand, Ellner (1985) shows that in the absence of 

dispersal, G* is given implicitly by 

1N= Expectation (StfSt+1), 

and the numerical simulations seem to agree with Ellner's result as D* approaches zero. 

In the more general case, simulations indicate that G* is an increasing function of 

dispersal (D), and of the effectiveness of dispersal (A). Furthermore, A and D seem to 

affect optimal germination mostly through the factor F = AD/(1 -D), which represents the 

seed's effective dispersal fraction, and G* approaches zero as V approaches unity. 

When dispersal and dormancy both are subject to selection, the optimal strategy is 

obtained as the intersection of the curves D*(G) and G*(D). In the absence of temporal 

correlation in environmental variation, this optimum appears to be a stable equilibrium. If, 
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however, the environment is cyclical, then this internal equilibrium is unstable and there are 

two competing boundary equilibria. Simulations show that coexistence among these 

boundary equilibria is possible, but that more generally one of the strategies outcompetes 

the other. More specifically, the conclusions of the numerical simulations as reported in 

Cohen and Levin (1987) are: 

(1) The optimal dispersal decreases as the level of dormancy H = (1 - G) V 

increases. 

2) The optimal dormancy level decreases as the level of dispersal F=AD/(1-D) 

increases. 

(3) The ratio between dispersal and dormancy in the joint optimal strategy is 

affected by the ratio between the effectiveness of dispersal A and the survival of dormant 

seeds V. Therefore, the distribution of dispersal and dormancy among plant families or 

species from the same environment should be negatively correlated. This agrees with 

observations (Ellner and Shmida, unpublished, Venable and Lawlor 1980). 

(4) In environments that vary periodically, there is no single joint optimal 

strategy with intermediate levels of dispersal and dormancy. Cohen and Levin (1987) used 

simulations to investigate stability and found that the only stable equilibria were at the 

boundaries G* = 1 or D* = 0. It was found, however, that two such boundary strategies 

could coexist in a stable frequency dependent equilibrium, which would be the eventual 

evolutionary equilibrium reached among many competing mutants with a wide range of 

dispersal and dormancy levels. For further details see Cohen and Levin (1987). Further 

investigations, to be published (Cohen and Levin, in prep.), have focused on the influences 

of temporal and spatial correlation patterns and environmental variability. 

From the above summary we can see that the tradeoffs between dispersal and 

dormancy are somewhat analogous to the tradeoffs between resistance and behavior 

previously discussed. It is rare to fmd populations that select both strategies, since this will 

add the burden of having both features when one will do. 
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The most important conclusion of these investigations is the essential nature of the 

concept of ESS when frequency dependence is involved. We cannot compare one strategy 

against another unless we put them in competition, and attempts to approach such problems 

from the viewpoint of optimization theory generally give incorrect answers. 

Random walk models of dispersal 

Having made the evolutionary case for the existence of dispersal-to escape local 

environmental deterioration, to reduce sib competition, to average the negative 

consequences of unpredictability, and to explore new habitats-we make a detour to ask 

about the observed patterns of dispersal. How far and how rapidly do organisms disperse? 

The classical models of movement (e.g., Skellam 1951, Okubo 1980) are based on 

random walk models. Random walk models are derived from the assumption that 

individuals move in a series of discrete steps, the direction of each step being determined 

by probabilities totally specified by positional information (but see Kareiva and Shigesada 

(1983) for a discussion of correlated walks) The application of such models to populations 

of organisms (or molecules) does not require that the basic assumptions be valid for the 

actual movements of individuals, but rather that other details of how the individual moves 

be irrelevant to the patterns of spread of populations. 

The simplest one-dimensional random walk model can be motivated by the following 

experiment (see Okubo 1980, Levin 1986). Assume that an organism is located at the 

origin of the real line; that at discrete times kt, it jumps either forward (right) or backward 

(left) A units; and that either event has probability 1/2. If m and n are integers, then the 

probability that at time nt the organism is at position rnA after its latest jump is given by the 

general term of the Bernoulli distribution: 
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As n increases, this converges to the Gaussian distribution given by 

where 

C= {2 Vill 

If we let x = A..m and t = 'tn, then the Gaussian distribution is given by 

This tends to 

( x2 ) 1 p (x,t) = C exp - 4Dt , where C = 2{1tffi , 

provided that A. and 't shrink to zero in a way that the limit 
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exists. D is known as the diffusion coefficient. For generalizations to higher dimensions 

see Okubo (1980) or Lin and Segel (1974). As Okubo (1980) points out, the diffusion 

approximation is valid only on scales that involve a great many individual steps. 

Observe that the population is normally distributed fort> 0, and has variance 2Dt, 

which increases linearly with time; and that this distribution satisfies the diffusion or heat 

equation (Equation 17). Note further that the diffusion equation more generally describes 

the spread of a diffusing population with any distribution (that is, not just the normal 

distribution that would result if all individuals began at the same point in space and time). 

Furthermore, it can be shown that the variance V(t) has the general form: 

V=V0 +2Dt; (16) 

that is, the variance increases linearly with time from its initial value Yo. 

Kareiva (1983), using data on the foraging movements of phytophagous insects, 

estimated D from the slope of the regression of V on t. He used his estimate of D to 

generate a series of probability distributions for the spread of insects, and to compare them 

with actual observations. Agreement was excellent in many cases, but in some instances 

the habitat-dependent diffusion model, 

(17) 

provided a better fit. He concluded that the basic diffusion model was an excellent starting 

point, but that modifications of this basic formalism are necessary to take into consideration 

the substantial habitat variability that organisms often experience. 

If growth and spread occur simultaneously, then the diffusion model gives way to 
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(18) 

where F(P,x,t) denotes local population growth. If F(P,x,t) = rP(1 - P), then we arrive at 

the simplest model introduced by Fisher (1937) to describe the rate of advance of 

advantageous alleles, given that selection is operating on two alleles at a single autosomal 

locus. A more general, cubic, form is necessary when there is partial or complete 

dominance, and can lead to fundamentally different results. P in this context denotes the 

frequency of the advantageous allele. The correct approach to the population genetics 

problem is to imbed this within a fuller treatment of genotype frequencies (see Aronson and 

Weinberger 1975, Hoppensteadt 1975, Hadeler and Rothe 1975). However, the basic 

insights that emerge from Fisher's model, at least regarding rates of spread, are essentially 

the same (see Hadeler 1976). 

Fisher's fundamental insight, based on such models, lies in his estimate of the 

asymptotic speed of advance of a wave front. Fisher's conjecture-that an advancing wave 

would relax asymptotically to a front with this characteristic speed-was formalized by 

Kolmogorov et al. (1937), who considered the general equation 

(19) 

where 

f(O) = f(1) = 0, f > 0 on (0,1) (20) 

and 

f'(O) > f' (P) on [0,1]. (21) 
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By looking for traveling waves (non-negative solutions of the form) 

P = H(x - ct) , c > 0, (22) 

Kolmogorov et al. (1937) proved the existence of monotone wave solutions for all wave 

speeds greater than or equal to the critical speed 

(23) 

There are no such solutions for c < c*; furthermore, if P is initially given by a Heaviside 

distribution, then the wave corresponding to c = c* is attracting (see Hadeler 1976). For a 

complete mathematical treatment, the reader is referred to Bramson's (1983) monograph 

and to Fife (1984). 

Skellam (1951) applied models of this type to the study of species invading new 

habitats, and Aronson and Weinberger (1975) have used systems of equations of this type 

in population genetics. Kendall (1965), Hadeler (1984), and other investigators have 

extended them to the study of the spread of epidemics. Recent applications are provided by 

Lubina and Levin (1988) and Andow et al. (1988). In many cases, the agreement between 

theory and experiment is excellent; in others, the assumption that movement is the result of 

numerous small steps clearly leads to the wrong answers, and more general redistribution 

kernels are necessary (see for example Mollison 1977). 

Advection-diffusion models of dispersal 

The consideration of population rates of spread is predicated on 

assumptions concerning the movements of individuals. The spread of plant populations 

occurs via seeds and pollen. We therefore conclude the section on dispersal with a brief 

presentation of an advection-diffusion description for the wind dispersal of seeds and 
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pollen (Okubo and Levin 1988). The shape of the dispersal curve, that is, the curve 

relating the number of dispersed seeds to distance from source, varies depending upon the 

speed of descent (the "settling" velocity), the height of release, wind speed and turbulence, 

and specific morphological adaptations for dispersal (Augspurger and Franson 1987). 

Typically, it falls off with large distances; but because of the effects of wind, it achieves its 

apex at some distance away from a point source. On the other hand, for a distributed 

source, we have a different situation, as the peak usually occurs at or close to the boundary 

of the source region. 

To understand what factors control the forms of such dispersal curves, Okubo and 

Levin (1988) consider diffusive and advective forces with regard to properties of the 

propagules and height of release. As a first approximation, they do not take into account 

the influence of the parent plant on microscale air movements (Niklas 1984), and do not 

allow seeds to move once they strike the ground. 

Dispersal curves with phenomenological derivations have been used widely; 

examples include the inverse power law (Gregory 1968), and the negative exponential 

(Frampton et al. 1942, Kiyosowa and Shiyomi 1972). These curves do not deal with 

transients, being confined to the asymptotic distribution of seeds, spores, or pollen from 

point releases, or the time-averaged solutions for continuous point sources. More 

importantly, they involve curve-fitting, and do not allow predictions to be made based on 

physical parameters such as wind velocity, turbulence, seed weight or height of release. 

More details can be found in Gregory and Read (1949) and Minogue (1986). 

The inverse power law is given by 

-b y =as (24) 

where s denotes the distance from source, y the probability distribution associated with 

dispersal, and a and b are constants. It transforms to a straight line on a log-log plot, 
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making parameter estimation simpler; b is dimensionless, and hence it provides an 

advantage when one is dealing with studies on different scales. 

The log-linear (negative exponential) model has the shape 

-bs y = ae (25) 

which transforms to linear on a semi-log plot Note that for this model y remains finite ass 

tends to zero. Each of these models has advantages (see Gregory 1968, McCartney and 

Bainbridge 1984, Pitt and McCartney 1986). However (Okubo and Levin 1988), they do 

not allow extrapolation from one solution to another based on independently measured 

physical parameters, and provide no understanding of the underlying mechanisms. 

Gaussian plume models 

Gaussian plume models have been used primarily for the description of the 

dispersion of air pollutants from smokestacks, but they also have been applied to spore 

dispersal (see for example Gregory et al. 1961, Pitt and McCartney 1986). 

The Gaussian plume method (Csanady 1973; Hanna et al. 1982) uses Sutton's 

(1947) steady-state solution for a special type of the diffusion equation. The assumptions 

are: reflection at the surface of the earth, constant wind speed u in the x-direction at source 

height, and a continuous point source at height H above the ground. In addition, diffusion 

in the x direction is neglected relative to advection. Furthermore, it is assumed that 

particles are deposited at the surface of the earth at horizontal position (x, y) at the rate 

D = S (x,y,O) Vd, (26) 

where V dis the deposition velocity (Chamberlain 1975). 

Using the reflection boundary conditions, one obtains the solution 
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2 2 [ ( 2)] exp(-y /2CYy) -(H-z) 
S(x,y,z) = n(x) _ exp ci , 

21tUCYz<ly 2 z 
(27) 

where n = n(x) is the effective source strength at distance x, and the standard deviations CYz, 

cr y are functions of x. (See Pasquill and Smith 1983, p. 333). Dependence of n on x 

allows for losses due to deposition (Horst 1977). This model assumes that we are dealing 

with very light particles, and hence it does not take gravity into consideration. For heavy 

particles, the tilted plume model is obtained by replacing the effective height H of the plume 

by H-xWsfu, where Ws is the settling velocity of seeds. This extends the plume model to 

the situation when particulates have a non-trivial settling velocity (see e.g., Csanady 1973). 

Under simplifying assumptions (see Okubo and Levin 1988), it is found that the 

rate of deposition at the ground is given by 

D = S(x,y,O) Ws , (28) 

where Ws = Vd. From this, Okubo and Levin (1988) determine an expression for the 

concentration of seeds at the ground level: 

_ _ n(x)W5 { _i_ (H- W8 x/~) 2 } 
D - Q(x,y) - exp 2 + 2 · 

27tu a a 2ay 2crz y z 

(29) 

The crosswind-integrated deposition rate (CWID) is obtained by integrating across the 

direction of the wind: 

{ -2} nW5 -(H-W5x/u) 
CWID = f Q(x,y) dy = Q(x) = exp 2 

...) 21t ii crz 2crz 
(30) 
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Ignore the decay in n(x) [set n(x)=constant], and set 

~=2Ax/ii' (31) 

where A is the vertical diffusivity. This is motivated by the fact that, under pure diffusion, 

variance increases at the rate 2At, and by the fact that the time to reach position x is x/u. 

The distribution is skewed; the maximum is less than or equal to the mean, and is given by 

X,= ~[ { 1 + (A!HW, )'} ~- (A!HW, )] ' (32) 

which agrees with the mean in the absence of vertical diffusivity (A=O). 

Define 

2AH = W* (vertical mixing velocity) , (33) 

and rewrite (32) as 

(34) 

where 
I 

A= ( 1+ (W*/2W8 ) 2 );.+ W*/2W5 • (35) 

For small values ofW*/Ws (heavy seeds) 

A,.. 1 + W*/2Ws,.. 1, (36) 

and so Xm - Hu/W 8; whereas, for large values of W* /2W 8 (light seeds), 

A,.. W*/Ws » 1, (37) 
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and so Xm - Hu/W*. 

In Okubo and Levin (1988), the above model is extended to incorporate more precisely the 

dynamics of advective and diffusive movements in both the horizontal and vertical 

directions, and correct boundary conditions at the earth's swface. Horizontal advection is 

determined by mean wind speeds, while the vertical advective force is gravitational. These 

and other assumptions are made to determine the equations governing the dispersal of seeds 

or pollen from an isolated plant or tree. The major change in the calculation of the mode is 

that formula (35) is replaced by 

A.= 1 + W*/Ws. (35a) 

Actual dispersion relationships obtained with data in 15 studies are compared with model 

predictions (Okubo and Levin 1988). 

These models, borrowed from the atmospheric diffusion literature, allow 

establishment of a framework for organizing data concerning the relationship of dispersion 

distances to environmental and species-specific parameters, and to such other parameters as 

height of release. This presents us with an improved situation because the conventional 

models are phenomenological, and hence do not provide a basis for extrapolation from one 

environment to another. Further details and a more elaborate discussion can be found in 

Okubo and Levin (1988). 

IV. Tight and Diffuse Coevolution 

As mentioned previously, the study of coevolutionary interactions is one of the 

central problems in evolutionary biology. In this section, following now conventional 

usage, we make a clear distinction between tight coevolution, involving a few closely-
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linked species, and diffuse coevolution, in which the influences are spread over many 

species. 

Many models of tight coevolutionary interactions fall within the framework of 

explicit genetic models (e.g., Levin and Udovic 1977). This approach is useful when the 

bases for inheritance are well understood, and when the number of loci involved is small. 

However, for parasite-host systems, most such classical models ignore the central 

ecological and epidemiological interactions that are faced by intimately interacting species. 

Incorporating the nature of these interactions into models is critical if we are to understand 

phenomena such as the evolution of virulence and disease, because classical models do not 

take account of the truly tight interdependence of the host and parasite. 

The study of diffuse coevolutionary interactions, involving a multitude of species, 

demands a different perspective and a different approach. To this end, we discuss some 

preliminary work on the evolution of chemical defenses. 

Tight Coevolution: Models of Host-Parasite Coevolution 

One of the best examples of the successful application of explicit genetic models for 

tight coevolutionary interactions involves the gene-for gene systems of cereal plants and 

flax and their fungal pathogens (rusts). In these systems, specific genes for host resistance 

may be attached to specific genes for parasite virulence; and hence there is strong selection 

for specific characters (e.g., Feeny 1975, Janzen 1980). 

The study of the cereal-rust interactions builds on the experimental work of Flor 

(1955, 1956) and the theoretical work of Mode (1958, 1960, 1961). It is a common 

characteristic of these models to omit the epidemiological details and formulate the 

probability of association between parasites and hosts in terms of a mass-action law. For a 

review of the literature on cereal-rust interactions, see Levin (1983b ). 
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To be more specific, we briefly describe the treatment of this problem by Lewis 

(198la, 1981b). In Lewis (1981a), the host is assumed to be a diallelic diploid and the 

pathogen, a diallelic haploid. Pathogen fitnesses, for each host-parasite association, are 

described in the table below. The fitness w of the host in each pair is 1 minus the pathogen 

fitness. 

Host Genotype 

Pathogen Genotype 

Table2 

It is assumed that the frequencies of the particular associations are proportional to the 

products of the corresponding associated types. If, in addition, x denotes the fixed 

probability that a host is parasitized, then we arrive at the following model (due to Lewis): 

pW AA + (1-p) WAa 
p' = p (38) 

p (p W AA + ( 1 - p) W Aa ) + ( 1 - p) (p W Aa + ( 1 - p) Waa ) 

for the host. Here 

and 

W AA = 1-x+x [q(1-a)+(l-q)(l--y)] = 1-x [qa+(l-q)y] 

W Aa = 1- X+ X (q(1-~)+(1-q)(1-~)] = 1-x[~] 
W aa = 1-x+x[q(1-y)+(1-q)(1-a)] = 1-x[qy+-(1-q)a] 
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I VB 
q = q qVB+(1-q) Vb (40) 

for the pathogen, in which 

2 2 
VB= p a+ 2p (1-p) ~ + (1-p) y (41) 

and 

vb = p2 y+ 2p (1-p) ~ + (1-p) 2 a. (42) 

Here, p and q are, respectively, the allelic frequencies of allele A in the host and allele Bin 

the pathogen in the present generation, while p' and q' denote the frequencies of A and Bin 

the next generation. 

From the symmetry of the system, it follows that it has an internal polymorphic 

equilibrium at p = q = 0.5. However, this equilibrium is stable if and only if 

r:t a+y p<-
2 

1_2 a-i < a+y 

(a+y)2 2 
(43) 

From the viewpoint of the host population, this condition is stronger than marginal 

overdominance, which is always a necessary condition for the stability of polymorphic 

equilibria in the absence of frequency dependence (see Levin and Udovic 1977). In 

addition, oscillatory solutions have been found when ~ is increased above the threshold 

specified above, in agreement with fluctuations observed in many simplified agricultural 

systems. 
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It follows that when resistance is dominant and virulence recessive, as in many 

cereal-rust systems, stable polymorphisms cannot be established through such models, 

since marginal overdominance is impossible. How then is stability realized in host-parasite 

systems? The most likely explanation is through explicit or implicit frequency dependence, 

which stabilizes such interactions (see Gillespie 1975). 

Frequency dependence of some form is ~nescapable when one is interested in the 

evolution of virulence. As Anderson and May (1982b) point out, most standard textbooks 

take the dogmatic approach that parasite evolution is towards less and less virulent 

pathogen strains, with commensalism the inevitable end point. The situation, however, is 

not this simple. As Levin (1983a) states: "Evolution in parasite populations represents an 

interplay between conflicting factors: within an individual host, the race is to the swift and 

evolution will favor those with the highest rate of reproduction, which is likely to mean 

those with higher virulence. But the parasite population is a shifting mosaic of demes 

associated with individual hosts, and the capacity for profligate growth may doom one's 

host to a shorter life expectancy and reduce the contribution to the larger (mega-) 

population. Depending on the balance between these factors, some evolution towards 

attenuation might be expected among parasites, but this attenuation may be checked far 

short of commensalism (Levin and Pimentel1981, Anderson and May 1982a, Bremermann 

and Pickering 1982)." 

The most famous example of loss of reduced virulence occurred in the (European) 

rabbit-myxoma system in Australia. The myxoma virus was introduced to control the 

rabbit population, which had denuded the landscape (Fenner and Ratcliffe 1965); hence, 

loss of virulence may lead to loss of control. To examine this system, Levin (1983a, see 

also Levin and Pimentel1981) built upon classical epidemiological models to arrive at the 

model: 
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dS dt = (r0 S + r1 11+ r2 12 + r3 13)- bS- ~1 Sl1 -~ Sl2 + v1 11 + v2 12 

dl1 
dt = ~1 S 11 - (b + a1) 11 - v1 11 + w2 13 - 'Y2 ~2 11 lz (44) 

dl2 
dt = ~2 S l2- (b+az) l2- v2 l2 + w1 l3- 'Y1 ~1 l1 l2 

dl3 
dt = C'Y1 ~. + 'Y2 ~2) l1 l2- (w1 + wz) l3- (b + <lJ ) 13 

Here, S denotes susceptible hosts; II, 12 denote hosts infected with strain 1 and 2 

respectively; and l3 denotes hosts infected with both strains. The parameters ri represent 

the birth rates; Vi, Wi represent the recovery rates; b and b + <Xi_ represent the death rates; ~i 

denote the transmission rates; and 'Yi denote the secondary infection rates. Such a 

framework allows explicit consideration of evolutionarily stable strategies, while 

recognizing the importance of the host-parasite interaction. 

Possible outcomes of this model include: competitive exclusion of either viral type, 

their stable coexistence, or unbounded behavior. A positive polymorphic equilibrium 

satisfies the following conditions 

(45) 

Note that in order for II and lz to be positive, we need that: 
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(46) 

and 

Y2 ~2 W1 > Y1~ (w2 + b + Y3 ) · (47) 

The most important questions involve an explanation of which viral strains survive 

and why, and of how the virus can be coupled with other control measures to lead to 

effective control of the virus. We note that the results of the above modelling exercise only 

scratch the surface of the complicated questions regarding the evolution of virulence in the 

parasite and of resistance in the host. For the myxoma-rabbit system, other factors have to 

be considered: seasonality and multiple modes of transmission as well as the role played by 

this pathogen in regulating the host population. 

Dwyer et al. (ms) emphasize the importance of directing attention to an analysis of 

the myxoma-Otyctolagus interaction. The system is of fundamental theoretical and applied 

importance. If myxomatosis evolves to the point that control is lost, the rabbit population 

again may become a serious pest. Because the underlying processes occur on a variety of 

temporal and spatial scales, mathematical models are critical in dissecting the complex 

system, and in identifying underlying mechanisms. Dwyer et al. (ms) develop a simulation 

model that incorporates many of the aspects left out by simple models. Preliminary 

investigations seem to show that the spatial structure of the population plays a very 

important role in the observed coexistence of intermediate types. 

What can be said concerning the evolution of other viral diseases? Influenza, to be 

discussed in the next paragraphs, provides one particularly interesting example, because 

changes in a few surface antigens lead to the proliferation of a variety of strains, and to the 

potential for reappearance of strains previously lost. Thus, periodic or other recurrent 
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behavior is to be expected in influenza, and such behavior indeed is observed (see Liu and 

Levin 1988, Hethcote and Levin 1988). For AIDS, that modern scourge, the hope that 

might be raised by contemplation of the myxoma story is short-lived. By the standards of 

myxoma, AIDS is already attenuated, in that infected individuals live a very long time. 

Thus, selection for reduced virulence is not a potent force at all, and the rapidly changing 

AIDS virus is more likely to evolve in the direction of increased virulence. 

In the influenza-man system, attention is focused on the potential for cross­

immunity (a measure of reduced susceptibility to related strains of type A influenza) to 

facilitate oscillations and coexistence of strains (Castillo-Chavez et al. 1988a,b). Recent 

work shows the existence of long-lasting cross-immunity between related strains (i.e., 

variants of the same subtype) in human influenza (Couch and Kasel 1983). Cross­

immunity implies that the presence of one strain of the virus can reduce the pool of 

susceptible individuals for co-circulating strains, introducing a form of exploitation 

competition (Castillo-Chavez et al. 1988a,b) 

Castillo-Chavez et al. (1988a) present models to elucidate the recently observed co­

circulation of related strains, by extending the classical epidemiological approaches to allow 

for immunological interactions between strains (cross-immunity). For a homogeneous 

population, they introduce the diagram 

(48) 

z2 ~ V1 ~ w 

In the above system, the population has been divided into 8 classes: X (fraction 

susceptible), Yi (fraction infected by strain i), Zi (fraction recovered from the other strain), 
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Vi (fraction infected by strain i after recovery from the other strain), and W (recovered from 

both strains). Castillo-Chavez et al. (1988a,b) assume that the population is 

homegeneously mixing, and that the usual bilinear incidence function describes 

transmission. They then formulate the following two-strain epidemiological model: 

where 

X'(t) = [~1 (Y 1 + V 1 ) + ~ (Y 2 + V 2 ) -J.L] X+ J.l, 

Y'i (t) = ~i (Yi+ Vi) X- ('Yi + J.l) Yi • 

i = 1, j = 2 or i = 2, j = 1. 

(49) 

(50) 

(51) 

(52) 

(53) 

(54) 

In addition, ~i denotes the transmission coefficient of strain i. cri denotes the 

susceptibility~ (where j = 3-i); that is, cri is a measure of the relative susceptibility of 

types Zi and X in terms of their acquisition of strain j. Usually, but not always, cri is 

between 0 and 1. Furthermore, 'Yi denotes the recovery rate from strain i, and J.l denotes 

thelim constant natural mortality rate. Thus, the model is flexible enough to cover the range 

of possibilities, from closely related strains to distinct subtypes. 

Mathematical analysis and numerical simulations indicate that the above system 

cannot produce sustained oscillations. However, slowly-damped and hence biologically 

important oscillations are generated as a result of the cross-immunity. 

When a heterogeneous host population is considered (age-structured population) 

then the model above is replaced by: 
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ax(a,t) ax(a,t) 
aa + at = -(Al (t) b(a) + A2(t) b(a) + Jl(a)) X (a,t), (55) 

ayi (a,t) ayi (a,t) 
aa + at = Ai (t) b(a) X (a,t)- ("fi + Jl (a,t)), i = 1,2 (56) 

azi (a,t) azi (a,t) 
aa + at = 'Yi Yi (a,t)- crjA.j (t) b(a) ~ (a,t)- Jl (a) zi (a,t), i=1,2 (57) 

avi (a,t) avi (a,t) 
aa + at = (ji ~ (t) b (a) Zj (a,t) - ("fi + Jl (a)) Vi (a,t), i = 1,2 (58) 

aw(a,t) aw(a,t) 
aa + at = ('Yl + 'Y2- Jl(a)) w(a,t), (59) 

~ (t) = ~i fooo b(a') [Yi (a',t) +vi (a',t)] da', (60) 

x(O,t) = p, Yi (O,t) = 0, zi (O,t) = 0, vi (O,t) = w (O,t) = 0, (61) 

x(a,O) = xo(a), Yi(a,O) = YOi(a), zi(a,O) = zOi(a), vi(a,O) = vOi(a), w(O,t) = wo(a). (62) 

Furthermore, 

(63) 

Here x(a,t), Yi(a,t), Zi(a,t), Vi(a,t), and w(a,t) denote the densities of the individuals in each 

class previously defined, and a is an independent variable that denotes the age of an 

individual. b(a) represents the age-specific contact rate, ~denotes the instantaneous force 

of infection, ~i denotes the transmission scaling factor, m(a) is the age-specific mortality 

rate, and cri denotes the (constant) recovery rate. In this case Castille-Chavez et al. 

(1988b) and Andreasen (1988) have suggested that sustained oscillations are possible, due 

to the interaction between cross-immunity and age structure. 
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Diffuse Coevolution. 

The problem of diffuse coevolution is probably ecologically more important than 

tight coevolution, but is much less understood and rarely modeled. As Levin (1983b) 

remarks: " ... many problems of interest in the evolution of ecological communities are much 

more diffuse, involving many species with varying degrees of relationship to one another. 

Problems of this sort arise in the consideration of the chemical defenses of plants in 

response to insects and other pests (Feeny 1982), for often these do not have the finely 

tuned species-for-species relationship already discussed for the cereals and their rust. 

Similar problems occur in predator-prey systems, which are by nature less specific than the 

host-parasite relationships; in competition theory; and regarding the evolution of the 

vertebrate immune system." In this section, we describe some early and tentative attempts 

to approach such problems. 

In what follows we provide a very brief introduction to preliminary investigations 

by Levin, Segel, and Adler (unpubl.), who have begun to develop a framework within 

which to examine the patterns of diffuse coevolution in plant-herbivore communities. They 

point out that "the lack of evidence for the tight coevolution between pairs of species may 

inappropriately direct attention away from the obvious coevolution of defensive chemicals 

and mechanisms for detoxifying them." Given the impracticability of a reductionistic 

approach that includes the detailed genetics of every species, they focus on macroscopic 

variables such as the number and frequency distribution of different kinds of chemicals, 

and to other community-level descriptors. Assume that the plants possess toxins that, if 

unneutralized, prevent herbivores from consuming them. First, consider an oversimplified 

situation in which there is a pool of N chemical defenses such that each plant has exactly n. 

In addition, each herbivore is able to detoxify m of these toxins. Furthermore, assume that 

the particular group of defensive chemicals or detoxifying agents is drawn at random by the 

plant or the herbivore from the pool; it is further assumed that the plant repels or resists the 
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herbivore if and only if it has at least one defensive chemical that the herbivore cannot 

counteract. 

If L(m,n) denotes the probability that a plant with n defensive chemicals will "lose" 

in an encounter with a herbivore capable of detoxifying m substances, then clearly 

L(m,n) = 0 if m < n . (64) 

Since, for m ~ n, L(m,n) denotes the probability that m elements chosen at random from a 

set of N elements lie within a particular subset of size n, then 

_ m(m-1) ... (m-n+1) _ (N-n) / ( N) . > 
L(m,n)- (N(N-1) ... (N-n+1)- m-n m 'Ifm_ n. (65) 

The above expressions allow calculation of the probabilities of various results of an 

individual encounter between a plant and a herbivore. Levin, Segel, and Adler (ms.) 

investigate the implications of these assumptions in the development or evolution of a 

community. The first question that they ask is: What will be the fate of a rare mutant or 

migrant that appears in the community? In order to answer this question, one must assign 

benefits and costs to the winners and losers during a given encounter. Furthermore, costs 

have to be assigned for a given level of chemical defense or detoxifying ability. 

The simplest assumptions are that the new migrant (or mutant) cannot interbreed 

with the resident types, and that the number of encounters per unit time remains constant. 

More speciflcally, the total cost per plant per unit time associated with herbivory is 

k L (m,n) + en, (66) 

where the constant k is the product of the number of encounters per unit time and the cost 

per loss. The constant c gives the cost per unit time of keeping a single chemical defense. 

From here we easily conclude that the invasion of an (m,n) community by a plant with n+ 1 

chemical defenses is possible provided that 
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c ep = k < L (m,n)- L (m, n + 1) . (67) 

If we replace the linear cost function en by a function f(n) of n, then we obtain: 

Jl(n) k < L(m,n)- L(m, n + 1), (68) 

where Jl (n) = f(n+ 1)- f(n) is the marginal cost of adding an additional defensive chemical 

to the n that already are present. 

The net gain associated with herbivory per herbivore per unit time is, in the 

simplest case, 

e L(m,n)- bm. (69) 

An (m,n) community can be invaded by a rare herbivore with m+ 1 detoxifying agents if 

and only if 

b eh =- < L (m + 1, n)- L (m,n). 
e 

(70) 

The linear cost function bm similarly can be generalized. Note that similar considerations 

show that inequalities (67) and (70) are also the conditions respectively that an (m, n+ 1) 

community cannot be invaded by a type-n plant and that an (m+ 1, n) community cannot be 

invaded by a type-m herbivore. From this, Levin, Segel, and Adler (ms), endeavor to 

build a tapestry of increasing realism, initially expanding their investigations to the situation 

in which a distribution of phenotypes (containing different numbers of chemicals) exist 

within the community, and from there to consideration of the spectrum of available 

chemicals, and the distribution of phenotypes in this aspect space. At this point, the 
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treatment makes contact with the earlier work of Levin and Segel (1984) on pattern 

diversity in aspect space. 

These investigations of diffuse coevolution are very preliminary. The objective­

to develop macroscopic descriptors at the community and ecosystem level-are essential to 

the development of interfaces between population biology and ecosystem science. 

Imaginative approaches to such problems represent one of the unmet challenges of 

evolutionary theory. 
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