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ABSTRACT 

Matrices V that are linear combinations of linearly 

independent matrices K are considered. Methods are given for 

deriving eigenroots (eigenvalues) and the inverse of V when the 

K-matrices are simultaneously diagonalizable and closed under 

multiplication, including such cases as the K-matrices being 

powers of a matrix, or Kronecker products of powers of matrices. 

The methods are extensions of those used for dispersion matrices 

for balanced-data variance-components models. The result for the 

inverse exploits relationships with its spectral decomposition 

and so also requires that the matrices be simple. Applications in 

covariance structural analysis for (real symmetric) structured 

dispersion matrices and for other situations are discussed. 
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1. INTRODUCTION 

Covariance structural analysis is a generic term used when a popula-

tion dispersion (variance-covariance) matrix, V, is assumed to have some a 

priori pattern (in addition to symmetry) and structure. One particular, 

but nevertheless quite general, pattern occurring in such diverse situa-

tions as variance component estimation, experimental design and psycho-

metrics is where there are linear relationships among the variances and 

covariances that constitute the elements of V. More specifically, we 

consider the case where V is taken as a linear combination of c matrices 

K : 
c 

c 
V = E eiK. , 

i=1 1 
(1) 

where none of the matrices Ki is a function of the scalars a1 , ···, ec. 

Moreover, the Ki-matrices are taken to be linearly independent, meaning 

that V can be null only if every e. is zero. For V of order n x n there 
1 

are at most n 2 such Ki-matrices, so that c ~ n 2 ; and for V being a 

dispersion matrix and hence symmetric, c S tn(n+1). 

We refer to V of (1) as having a linear covariance pattern. Such 

patterns are considered, for example, by Anderson (1969,1970), Mukherjee 

(1976,1984) and Szatrowski (1980). They are reviewed in the encyclopedia 

article by Szatrowski (1985) and in the text by Takeuchi, Yanai and Mukher-

jee (1982, Chapter 10); and are briefly mentioned in standard texts such as 

Anderson (1984, p.101) and Seber (1984, p.l02). 

An especially important case of (1) is where the inverse of V has the 

same form as V, namely a linear combination of the same Ki-matrices that 

constitute V, i.e., 

-1 v 
c 

= 1: 't.K. 
i=1 1 1 

( 2) 
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for some set of scalars ~ 1 ,···,~c· Included here is the possibility that 

for some values of i, we might have e. = 0 and~. # 0 or e. ~ 0 and~. = 0, 
1 1 1 1 

as well as the more usual cases of both e. and~. being non-zero, or zero 
1 1 

together. This similarity of form of V and V- 1 yields some interesting 

statistical consequences. For example, Anderson (1969), Miller (1973), and 

Szatrowski (1980, Theorem 4) give conditions under which these forms lead 

to non-iterative solutions to the maximum likelihood (under normality) 

equations for the es, which are then covariance parameters. This work is 

further extended and applied by Miller (1977), Szatrowski (1978,1980), 

Szatrowski and Miller (1980) and Rubin and Szatrowski (1982). In this 

paper we develop procedures for deriving eigenroots and the inverse of 

V = Ee.K. of (1) when the K.-matrices are simple (diagonalizable- see 
1 1 1 

Section 2.1) and are pairwise commutative. Special cases are then 

considered, with applications to symmetric V in covariance structural 

analysis and to non-symmetric V in other situations. The paper is thus an 

extension of Henderson (1979, Chapter 6). 

2. SOME MATRIX PRELIMINARIES 

We briefly recall three concepts and a theorem that are well known but 

pertinent to our development. 

2.1 Simple matrices A matrix A is described as simple if there exists a 

non-singular matrix P such that P- 1AP is a diagonal matrix. And that 

diagonal matrix does, of course, have the eigenroots of A on its diagonal. 

Thus a simple matrix is said to be diagonalizable. Examples of simple 

matrices are matrices with distinct eigenroots, or matrices which are real 

and symmetric, or Hermitian, or normal, or circulant, or idempotent. 
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2.2 Simultaneous diagonalizability Simple matrices that commute in multip1i-

cation are simultaneously diagonalizable (e.g., Mirsky, 1982, p. 318). Thus 

if AB = BA where A and B are both simple, then there exists a non-singular 

-1 -1 
P such that P AP and P BP are, for the same P, diagonal matrices (of 

eigenroots of A and B, respectively). 

2.3 Closure under multiplication The set of matrices K1 , K2 , ···, Ki' 

K are said to be closed under multiplication when every product, K~ 
c 1 

and KiKj fori~ j, is a scalar multiple of some Ki fori= l,···,c. 

2.4 The spectral decomposition (e.g., Lancaster, 1969, p. 63). The n 

eigenroots of a matrix of order nxn are known as its spectrum. Denote by s 

the number of distinct eigenroots A1 ,A2 ,···,As· of a simple, non-singular 

matrix A. Then the spectral decomposition is that there exist matrices Mt 

fort= 1,···,s such that 

where 

s 
I: Mt = I, 

t==1 

and 

and 

-1 
A = (3) 

for t ~ t' . ( 4) 

Special cases of the spectral decomposition of interest in statistics 

are for A being a dispersion matrix V, which is real and symmetric, where-

upon each M. of (3) and (4) is also, e.g., Mukherjee (1976, p. 135) and 
J. 

Searle and Henderson (1979). 
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3. EIGENROOTS AND INVERSES 

The special structure of V when it has the form V = Eie.K. of (1) is 
1 1 

now exploited to give expressions for the eigenroots and inverse of V when 

the K.-matrices are simultaneously diagonalizable and the set of such 
1 

matrices is closed under multiplication. The results are given in two 

theorems: -1 the first gives eigenvalues of V and the second gives V 

3.1 Eigenroots 
c 

Theorem 1 For V = E e.K. with the K.-matrices being linearly indepen-
i=1 1 1 1 

dent and simultaneously diagonable, let e(K.) be the column vector of eigen-
1 

roots of K. sequenced in the same order as in the diagonalization 
1 

and let L be the full column rank matrix of those c vectors: 
c 

Then, for 

e' = [a 
c 1 

the vector of eigenroots of V is 

e(V) = L 9 
c c 

e(K )] 
c 

e J , 
c 

-1 
P K.P, 

1 

( 5) 

( 6) 

(7) 

Proof: Because the K.-matrices are simultaneously diagonable with 
1 

P-lv. P = D say 
""1 i ' ' 

V is also diagonable using the same P: 

c 
E aiD. = D, say, 

i=1 1 

where D is the diagonal matrix of eigenroots of V. Therefore 

e(V) = e(D) = 
c 
E 9 .e(D.) = 

i=1 1 1 

c 
L 8.e(R.) = 

i=1 1 1 
L 8 

c c 

( 8) 

( 9) 

Q.E.D. 
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Note that L has full column rank because the Ks are linearly independent. 
c 

Also, in each Di of (8) and in D of (9) the eigenroots of the Ki-matrices 

and of V are sequenced according to the (simultaneous) diagonalization of 

those matrices using P; and this same sequence holds in the column vectors 

e(K.) and e(V). 
l 

3.2 Inverse Suppose now that the c matrices Ki occurring in V come from 

a (possibly) larger set of q matrices (q ~ c) that is closed under multi-

plication. Then V can be expressed as 

q 
V = E e .K. 

i=l 1 1 
(10) 

where some of the e.-values in (10) may be zero. Theorem 1 still applies, 
1 

in the form 

e(V) = L 9 
q q 

(11) 

with L of q columns used in place of L of c columns, and with e having q 
q c q 

-1 
elements, some of which may be zero. Then V is given by the following 

theorem. 

q 
Theorem 2 Suppose V = E 9iKi is non-singular where the K.-matrices 

i=l l 

are linearly independent, simple, simultaneously diagonalizable (commuta-

tive) and the set of Ks is closed under multiplication. Let L be the 
q 

matrix of q (linearly independent) column vectors e(K.) of eigenroots of K. 
1 l 

6 ]' be the vector of n eigenroots of V. (As 
n 

before, all eigenroots are ordered by the simultaneous diagonalization 

based on P.) Then 

for 

q 
E 't. K. 

i=l 1 l 

= ['t 
1 

(12) 

(13) 

where (L'L )-1L' is the Moore-Penrose inverse of the full column rank q q q 

L . And q 
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where every 6 is non-zero because V is non-singular. 

Proof: The spectral decomposition theorem applied to 
s 

yields V = E \jM. for 
j=l J 

the s distinct eigenroots, A.1 ' ••• ' A. s ' 

v = 

(14) 

q 
E 8 . .K. 

i=1 1. 1. 

of V; and 

Theorem 1 gives e(V) = L 8 as in (11). Therefore, since for non-singular V 
q q s 

the spectral decomposition theorem gives 
-1 

V = E (1/A..)M., there must be 
j=l J 1. 

scalars T1 , T2 , ···, Tk such that 

with, from Theorem 1 

-1 v 

(15) 

-1 
But with e(V ) being known, as in (14) [its elements being reciprocals of 

elements of e(V) = L 8 given by ( 11) J , and with L having full column 
q q q 

rank, (16) yields 

1: = (16) 

for use in (12). Q.E.D. 

A consequence of this theorem is that under the conditions imposed on 

the Ki-matrices the inverse of V = E9i.Ki can be found more easily than by 

using the spectral decomposition theorem. 
-1 

Moreover, it derives V in 

terms of the Ki-matrices that constitute V itself. It can be derived 

simply by using 8 and the vectors of eigenroots of the K.-matrices, which 
1 

are often more easily obtainable than are those of V itself, as is necessi-

tated by the spectral decomposition. This is particularly so when the 

K1-matrices are patterned matrices, or powers of matrices, or of Kronecker 

(direct) products of matrices -as is often the case in statistical appli-

cations. These are considered in Section 5. 
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Note that a zero element in 9 does not mean that the corresponding~. 
q 1 

-1 will be zero. Thus a K. that does not occur in V of (1) may occur in V 
1 

of (12). This is in contrast to Anderson (1969); an example is detailed in 

Searle and Henderson (1979). Conversely, a non-zero e. may have its corre-
1 

sponding ti be zero, in which case the corresponding Ki would occur in V 

-1 but not in V . 

Since L of the set of consistent equations (15) has full column rank, 
q 

the use of L+ in (17) can be reduced to using a regular inverse, simply by 
q 

choosing q equations from (15), call them 

-1 
L0~ = e0 (v ) , (17) 

-1 such that L0 is q linearly independent rows of Lq, and e0(v ) consists of 

h di 1 Of e(v- 1). Then t e correspon ng e ements 

(18) 

Finally, we can note that with the complete set of q Ki-matrices being 

closed under multiplication, V is then in the commutative quadratic sub-

space generatedqby either the idempotent Mis or by all the q Kis' and this 

-1 implies V = .r tiKi for some t .• The spectral decomposition of (3) and 
1=1 1 

(4) is a special case of this. In general, this means that we must always 

consider all q Kis that generate the commutative quadratic subspace (i.e., 

closed under multiplication). This is similar to the quadratic subspace of 

a vector space of real symmetric matrices introduced by Seely (1971, p. 

711). Subsequently, and more appropriately, it has been referred to as a 

Jordan algebra by Jensen (1975, 1977) and by Seely (1977). The similarity 

is that Seely's symmetric matrices are replaced by other forms of patterned 

matrices, e.g., circulants. 
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Considerable simplification occurs in the special case when one of the 

K-matrices, '1 say, is I. Then 

Now, closed-under-multiplication gives every KiKj as a Ki' so the coeffi­

-1 cient of every Ki in VV is zero, save that of K1 which is unity. Hence 

equating coefficients provides linear equations for determining values of 

the~ .. This is illustrated at the end of Section 4.1. 
1 

4. TWO EXAMPLES WITH SPECIAL PROPERTIES 

4.1 A simple dispersion matrix Mukherjee (1976, p. 136) discusses the 

dispersion matrix (with a > b) 

V = [a~b ~a 
a-b 0 

a-b] [.l 
0 = 2a ~ 

a+b t 

0 

1 

0 

~] + 2b [ ~ ~ -~] 
t -t 0 t 

(20) 

the latter being the spectral decomposition for eigenroots 2a and 2b with 

multiplicities 2 and 1, respectively. Hence, from (3) 

v-1 = L[~ 2a 
t 

0 

1 

0 

;] + ~b [ ; ~ -;] = 
t -t 0 t 

1 [a+b 
4ab 0 

b-a 

Our theorems are illustrated by writing V as 

0 

2b 

0 

b-a] 
0 . 

a+b 

V = (a+b)K1 + (a-b)K2 for K1 = I and K2 = [0o1 o~ ~11 

(21) 

Then K~ = I; and K1 and K2 are linearly independent, simultaneously diagon­

alizable, and form a set that is closed under multiplication. Since 

e(K1) = [1 1 1]' and e(K2) = [1 1 -1]', Theorem 1 gives 

e(V) = L 9 
c c 

(22) 
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And Theorem 2 gives 

-1 

"t = [: ~] [: 1 

1 
1] [:~~:] = 

- 1 1/2b 
[ 

(a+b)/4ab] 

(-a+b)/4ab 

and so 

which is the same as (21). 

v-1 = a+b K + b-a K 
4ab 1 4ab 2 ' 

( 23) 

The derivation of this arising from K1 = I and given by (19) is to use 

I= [(a+ b)l + (a- b)K2 ]<~ 1 I + ~ 2K2 ) . 

Equating coefficients, using K~ = I gives 

(a + b)~ 1 + (a - b)~ 2 = 1 and (a - b)~ 1 + (a + b)~ 2 = 0 

with the same solution for "t as in (23). 

L in (22) has two rows that are identical, which leads to two ele­
c 

ments of e(V) being equal, i.e., to a multiple root. This characteristic 

is true more generally: the presence of sets of identical rows in 

L indicates multiple eigenroots of V. Nevertheless, specifying the multi­
c 

plicities is difficult because they are not easily related to multiplici-

ties of eigenroots of the Ki-matrices, nor to the ranks of those matrices, 

their linear independence, or their multiplicative closure. Certainly L 
c 

has c linearly independent rows, which form a non-singular matrix ~. and 

the vector of eigenroots of V that are linearly independent functions of 

the elements of ec is then ed(V) = L0 8c' akin to (19). But corresponding 

multipliities must be obtained as the number of times each row of 

L0 occurs in Lc. And even then, these multiplicities pertain only to the 

eigenroots viewed as linearly independent functions of elements of 8 . They 
c 

are not necessarily the multiplicities of the numerical eigenroots, 
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because some of the linearly independent functions of elements of 9 may, 
c 

depending on the numerical value of 9 , have the same value - and this is 
c 

what determines multiplicities of numerical eigenroots. 

The existence of non-singular L0 means that the number of eigenroots 

that are linearly independent functions of es equals the number of es. 

Therefore, just as e(V) = L 8 of (11) led to e(V-l) = L ~of (16), which 
q q q 

gave Y = L~e(V-1 ) 

similar to (18). 

-1 -1 
of (16), so now, ed(V) = L0oc yields Y = L0 ed(V ), 

Thus for the example 

which gives the same result as (23): 

1] [1/2a] [( a+b) /4ab] 

-1 l/2b = (b-a)/4ab . 

4.2 Circulants: power structure, and non-symaetry A circulant of order 

n is a square matrix having the form 

co cl c n-1 
c n-1 co c n-2 

c = C( cO' .•. 'c n-1 ) = ( 24) 

c1 c2 co 

It is well known (and easily confirmed) that on defining the "one-element 

type" circulant A= C(0,1,0,··· ,0), the general circulant C of (24) can be 

expressed as 

c = 
n-1 . 

~ 
E c.A 

i=O 1 
(25) 
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Since A and its powers are all permutation matrices (including 

A0 = I), they form a set of linearly independent, simple, commutative (and 

hence simultaneously diagonizable) matrices that is closed under multipli-

cation. And eigenroots of the one-element type circulant, A, are well-

known (e.g., Davis, 1979, p. 73). Application of Theorems land 2 for 

-1 
finding eigenroots of C, and C (if it exists), is therefore quite straight-

orward, including being able to use the special case (19) arising from 

A0 = I. This is seen in Gilbert (1962) whose method is just a special case 

of applying our theorems to circulants. Other methods for obtaining the 

inverse of a circulant (with the inverse itself being a circulant) are also 

available in Davis (1979), Searle (1979) and Feinsilver (1984). 

Notice that this application of our theorems introduces the idea of 

having the Ki-matrices of (1) as powers of a matrix- an idea that is 

extended to Kronecker (direct) products of powers in Section 5. But sym-

metry is not needed. Nevertheless, symmetric circulants have their place 

in statistics, as dispersion matrices for certain cyclic partially balanced 

design, e.g., Wise (1955), Srivastava (1966), Olkin and Press (1969), T.W. 

Anderson (1969) and D.A. Anderson (1972); but none of these authors appeal 

to the power structure of (25) that so easily permits using Theorems 1 and 

2 for obtaining eigenroots and inverses. 

5. EXTENSION TO KRONECKER PRODUCTS 

i i In E.c.A of (25) the general form E.e.Ki of (1) has K. =A; this is 
1 1 1 1 1 

now extended to Ki being a Kronecker (direct) product of powers of matrices, 

p of them, say. This is motivated by the matrix 

v = r e J1p * J p-1 * ... J r 
1 ( . i i 

P i=O i p p-1 r 
(26) 

(where * represents the Kronecker product operator)l/ dealt with by Searle 

l/ Footnote for typesetter: * is to be replaced throughout by 
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and Henderson (1979) in the context of variance components models. In that 

case, each J in (26) is square with every element unity, and with each i 
r r 

being 0 or 1, which ensures the needed properties of commutativity and 

multiplicative closure. The linear independent that is also needed arises 

from each power of a J-matrix in (26) being 0 or 1, with the zero power 

being an identity matrix. Some (but maybe not all) of the 9s are non-zero 

in variance components models, and represent variances; and some 9s may be 

zero. The exponents in ( 26) , ip, · · · , i 1 , are also used as subscripts to e 

where, for notational convenience and readability only, they are repre-

sented as a vector i. These subscripts are in reverse natural order to 

facilitate using the complete subscript to each 6 as a binary number (since 

every index i for r = p,p-1,···,1 takes only the 
1 r 1 

values 0 or 1), and the 
1 

summation r represents the multiple summation r • • • .E and so notation-
i=O i~=O i1=0 

ally is summation over the first 2P nonnegative b1nary numbers from 00···0 

to 11 · • · 1 . 

The generalization of (26) is to have each K. of Eie.K. as a Kronecker 
1. 1. l 

product (KP) of a power of each of p matrices A, A 1 , ···,A, ···, A1 , p p- r 

with each A being unrelated to the Ss. Thus 
r 

for 

v = 
p 

i=d 
E e1K1 

i=O 

i i 1. r=1 
= App * . . . * Ar r * . . . * ~ 1 = * 

r=p 

i 
A r 

r 

(27) 

(28) 

where in (27) the i is [i i ··· i 1 ]• and summation is over the range 
p p-1 

of powers of the A -matrices, namely over i from 0 [0 0 ··· 0]' to 
r 

d = [d d ··· d ]'. When d = d for all r = 1,···,p, the vector sub-p p-1 1 r 

script i will range through the first (d + 1)p numbers of base b = d + 1. 
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In Ki of (28), the abbreviated notation on the right-hand side represents 

the reverse natural order already referred to. Also, to whatever extent 
p 

not all n (d + 1) combinations of powers 0,1,···,d of A occur in V, 
r r p 

r=l 
some es will be zero. For example, 

v = a <A~ * A~) + a ( 1!. * ~ ) + a (A! * A 0 ) 00 -~ -l 01 -~ -l 10 -~ 1 

1 1 must be written to additionally include e11 (A2 * A1 ) so that 

with e11 = 0 • 

And, of course, 
p 

when Ar has order nr' the order of V pand of each K iis 

R = ll n . 
p r=1 r 

-1 We use Theorems 1 and 2 for finding eigenroots and V , for V of (27). 
p p 

Since eigenroots of V involve those of K., as in Theorem 1, they involve 
p 1 

the eigenroots of Ar for Ki of (28). Thus multiplicities of eigenroots of 

V occur in abundance, through the multiplicities of eigenroots of powers 
p 

of the A -matrices that occur in Kronecker products in V 
r p 

see (28). 

Though (5) - (7), eigenroots of V that are linearly independent functions 
p 

of the as can be obtained from manipulating matrices and vectors that often 

have order considerably less than V • All one needs are the distinct p 

eigenroots 
p 

order n q 
r=l r 

of A , q of them, say, and then one deals with matrices of 
r r 

p 
rather than of order ll . This can be a considerable reduction 

r=1 
in order on some occasions, particularly so, for example, with V of the 

p 

variance components models in (26), where a J can have very large order 
r 

(e.g., n = 500) but has only two distinct eigenroots, zero with multi­
r 

plicity n - 1 and n with multiplicity one. 
r r 

5.1 Eigenroots of V Recall two features of eigenroots. First, those of 

~ are the k'th powers of A . Second, those of A* B are all possible prod-
r r 

ucts of eigenroots of A and B; i.e., e(A *B) = e(A) * e(B). Notice, in 

passing, how this provides a convenient order, in a vector, of the eigenroots 

of a Kronecker product: 
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r=1 i 
e( .K.. ) = * e(A r) . 

1 r 
(29) 

r=p 

Then, because each K1 is a Kronecker-product of powers of the same 

A -matrices, the K.-matrices are simultaneously diagonalizable, and so r 1 

Theorem 1 applies directly and gives the vector of eigenroots of V as 
p 

(30) 

Now sequence the values of i in lexicon order and define 8 similarly, 

9 = [9 ••• 9 ]' • 
0 d 

Also, define L(A) as then x (d + 1) matrix of powers 0,1,2,···,d of the r r r r 

eigenroots of A . Thus for e (A) being the s'th eigenroot of A 
r s r r 

for s = 1 •·· n ' ' r 
and t = 1 .•. d +1 

' ' r 
( 31) 

where n is the order of (square) A and d is i·ts highest power in V • 
r r r p 

Then from (30) 

( 32) 

Example Suppose 

where any one or two of a00 , 901 and 910 may be zero. Then 

= [e(A0 ) + e(B'l) e(A1 ) * e(:B'l) ( 33) 

= [e(A0 ) * e(A1 )] * [e(::OO) * e(B1 ) ]8 

= [L(A) * L(B)]9 ( 34) 

as in (32). 
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Note how the derivation of (30) from (29) depends upon rewriting V so 

as to include all possible combinations of the powers of (in the example) A 

and B that are in fact in V, using zero a-coefficients for the combinations 

that do not occur in V. This is seen in (33) for the example, where 

e11 = 0 is introduced corresponding to A1 * B1 that does not occur in V. 

Note, too, that the numbers of powers of A and B need not be the same; 

e.g., for A occurring in V with three different powers and B with two, 

there would be six difficult a-coefficients with maybe some being zero. 

For L to have the Kronecker-product form indicated in (32), it is essential 
p 

to write V 
p 

in terms of all II (d + 1) 
r=1 r 

K.-matrices, with zero a-values 
1 

where appropriate. 

5.2 Inverse of V 
p 

The preceding result, based as it is on Theorem 1, 

requires simultaneous diagonability of the Ki-matrices, but not that they 

be closed under multiplication. But both properties are required for apply­

-1 
ing Theorem 2 to obtain V when it exists. In order to use (32) in (12) 

of Theorem 2, the K,s that need to be included in V with zero 6s must be 
1 

not only those needed for having all combinations of the d + l powers of 
r 

the As with each other [as already specified for e(V) of (32)], but also 
r 

those additional Kis (and possible powers of Ar greater than dr) that might 

be needed for the sake of multiplicative closure. The extent to which this 

may be necessary will depend upon the actual form of the A -matrices. 
r 

+ confine attention to just that closed set of K.-matrices and let d 
1 I 

[ d+···d+] where d+ ~ d is that largest power of A in that closed set. 
p 1 ' r r r 

We 

= 
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Example (continued). In (33), we needed a11 (A1 * B1 ) with a11 = 0, 

in order to have all combinations of powers; but, depending on the exact 

nature of A and B, multiplicative closure might also demand including 

e02 (A0 * B2 ) and a12 (A1 * B2 ) with a02 = 0 = a12 • Then, whereas d = 

[1 1]', d+ = [2 1]. 

The application of Theorem 2 using (30) - (32) and 

r=p 
q = n (d+ + 1) 

r=1 r 

is direct. It gives 

-1 
d+ r=1 i 

v = I: 'tiKi for K = * Ar 
p i=O i r r=p 

for 

't = (L'L )-1L' e(V-1) 
qx1 q q q 

r=1 
L = * [ L(A ) l q r=p r x(d++l) 

r r 

and 

e(V-1) 
p 

= [1/61 ... 1/6N] I for N = n n 
r=l r 

where .s 1 ,···,6N are the elements of e(V) of (32). Thus 

r=l 
't = * ({[L(A )]'[L(A )]}-1[L(A )]')e(V-1) 

q r r r r=p 

5.3 A simple example Consider 

where 

V= 

= a(l * I) + b(I * A) + c(A * I) + d(A * A) 

i=l i i 
= I: 9. (A 2 * A 1) 

i=O 1 

(35) 

(36) 

(37) 

( 38) 

( 39) 

(40) 

( 41) 
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A = [~ b] (42) 

and 

In terms of the general notation we here have p = 2, A2 = A1 = A, n2 = n1 = 
+ + + 2, d2 = d1 = 1 = d2 = d1 and q = ll(dr + 1) = 4. 

For obtaining e(V) from (32) we have from (31) with e1(A) = -1 and 

e 2(A) = 1 

L(Az) = L(~) = L(A) = D -u = L2 = L1' say. 

Therefore, from (32), 

is 

-1 -1 
1 -1 

-1 1 
1 1 

-i] [:] = [: ~ ~ = ~ ~ ~] -1 c a - b + c - d 
1 d a + b + c + d 

Then, with L2 = L1 being non-singular, having inverse 

(37) and (38) gives 

as 

Then 

1 1 
1 -1 

-1 1 
-1 -1 

1][1/800
] 1 1 I 60 1 

1 1/610 • 
1 1/611 

-1 
V = ~00 (I *I) + ~01 (I *A) + ~ 10 (A *I) + ~ 11 (A *A) 

i=l . . 
= E ~.(Alt * Al2) ' 

i=O 1 

for the ~-coefficients given by (44). 

( 43) 

(44) 

( 45) 
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Of course, since K = I * I = I, the simpler method of equating 
1 

coefficients based on (19) could also be used. This produces equations 

V~ = e 1 for e 1 being the first column of an identity matrix. Thus ~ is the 

-1 
first column of V , which is indeed, also the solution given by (44). 

Certainly this method is simpler than that used to derive (44); but in this 

case it needs (the first column of) v- 1 in order to get v-1 ! And, more 

importantly, that simplicity of equations v~ = el does not generalize: 

those equations arise directly from the precise nature of the multiplica-

ti ve closure of the set of K. -matrices, i.e., to which K is each 
1 

K.K. specifically equal. 
1. J 

-i. A correlation matrix. When a of ( 41) is [ 1 p1 p2 PI] I ' the 

matrix V in (40) is a quasi-circumplex correlation matrix (Guttman 1954) 

with eigenvalues coming from (43) as 

The resulting spectral decomposition of Vis given by Mukherjee (1976, p. 

139 and 1982, p. 448), although without using the Kronecker product struc-

ture. A general expression for order p x p is given in Mukherjee (1984, p. 

446). 

-ii. A tridiagonal dispersion matrix Putting b = d = 0 in (41) makes it 

a uniform tridiagonal dispersion matrix that arises in distributed lag 

models in regression., Mukherjee (1984, p. 444) gives its spectral 

decomposition as 

v = t[i -1] [a-c 0 ] . 
1 0 a-c 

Our formulation has V as 

V = a(I * I) + c(A * I) ( 46) 

which, with b = d = 0 in (43) gives e(V) = [a-c a-c a+c a+c]'. 
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Then (44) gives 

-1 
't = (a2 -c2) [a 0 -c 0]' 

and hence from (45) 

involving the same Kronecker products as does V of (46). 

-iii. A need for multiplicative closure When d = 0, there is no 

-1 (A* A) term in V of (41), but there is such a term in V of (45), thus 

illustrating the need for having in V all terms that constitute multipli-

cative closure. In fact, in (43), each eigenroot is a linear function of 

all the as; and so setting any one 9 to zero drops a term from V but not 

-1 
from V . 

5.4 Variance component aodels Dispersion matrices for variance component 

models are special cases of (1). When data from such models have equal 

numbers of observations in the subclasses (i.e., balanced data), each K. is 
1 

a Kronecker product of I- and J-matrices, as in (26). For example, for the 

two-way crossed classification random model with interaction, the customary 

dispersion matrix of the vector of observations can be written in the form 

+ cr 2 (I * T_ * J ) . aB a -b n 

Searle and Henderson (1979) deal with this example (and others) at length, 

using methods that are essentially just special cases of Theorems 1 and 2 

for finding the eigenroots and inverse of V, and we do not repeat this 

example here. Nelder (1979) kindly directed us to his formulating V in 

terms of Kronecker products of I and J matrices and the consequent spectral 

decomposition. Nelder (1965a,b) and Thompson (1979) also noted some over-

lap. Smith and Hocking ( 1978) also independently develop similar 

methodology. 
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Numerous papers have capitalized on these ideas in recent years. 

Wansbeek and Kapteyn (1982a,b, 1983) and Wansbeek (1985) have considered 

the spectral decomposition of V and Wansbeek (1985) re-analyzes a patterned 

correlation matrix from Kotz, Pearn and Wichern (1984). Other extensions 

and analyses are given by Anderson et al. (1984), Khuri (1982), Houtman and 

Speed (1983), Speed (1981, 1983, 1987) and Speed and Bailey (1982), and by 

Tjur (1984), who has many other references. More recently, Speed (1986, 

1987) and Dawid (1987) have taken these ideas to emphasize properties of 

symmetry in analysis of variance of balanced (equal-subclass-numbers) data. 

When data are unbalanced the problem of inverting V has been considered by 

Searle and Rudan (1973), Wansbeek (1982) and Bunney and Kissling (1984). 
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