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ABSTRACT 

A brief history of the early years (1820-1947) of random 

effects models and the estimation of variance components is 

followed by a personal evaluation of ML, REML and MINQUE estima­

tion. A method is suggested for combining ML estimators obtained 

from subsets of a large data set, and comments are made on the 

need for simulation studies to assess the degree of approximation 

in using asymptotic properties of ML-type estimators as if they 

were exact for finite-sized unbalanced data sets. 

I • WHEREFROM 

1.1. From 1820 to 1947 

Clear specification of mixed models, as involving a mixture 

of fixed effects and random effects, began with Eisenhart (1947). 

But the concepts of fixed effects and of random effects 

originated more than a hundred years earlier than that. We begin 

with a brief account of that early work, drawing heavily on 

Scheffe (1956) and Anderson (1978) to do so. 

Estimation of fixed effects essentially began with Legendre 

(1806) and Gauss (1809), the well-known independent fathers of 

the method of least squares. [Plackett (1972) has an intriguing 

discussion of their relative rights to priority.] As noted by 



Scheffe, (1956), an interesting aspect of those two early nine­

teenth century papers is that they both appear in books on 

astronomy. What is even more interesting is that the first 

appearance of variance components is also in astronomy books, 

Airy (1861) and Chauvenet (1863). Scheffe (1956) refers to Airy 

( 1861, especially Part IV) as being a "very explicit use of a 

variance components model for one-way layout •.. with all the 

subscript notation necessary for clarity." It is noteworthy (as 

remarked upon by Anderson, 1978) that in this earliest known use 

of a variance component model there is provision for unbalanced 

data - unequal numbers of telescopic observations from night to 

night on the same phenomenon of interest. Despite Airy's now­

accepted originality he did not see himself in this light for, 

in the preface of his book, quoted by Anderson (1978), he writes 

"No novelty, I believe, of fundamental character, will be found 

in these pages."; and" .•. the work has been written without 

reference to or distinct recollection of any other treatise 

(excepting only Laplace's Iheor~e des ProbabjJ~cLes) .•• " As 

Anderson (1978) says, this, insofar as endeavors to establish the 

exact origin of the components of variance concept are concerned, 

is an unfortunate style of writing. 

The second use of a random effects model appears, according 

to Scheffe, to be Chauvenet (1863, Vol. II, Articles 163 and 

164). Although he did not write model equations, he certainly 

implied a 1-way classification random model in which, using 
a n 

today's notation, he derived the variance of Y .. • E E yij/an as 
i•1 j=1 

) = (a 2 + a2/n)/a 
a e 

Chauvenet suggests that there is little practical advantage in 

having n greater than 5, and refers to Bessel (1820) for this 

idea; but Scheffe says that that reference is wrong, although it 

"does contain a formula for the probable error of a sum of in­

dependent random variables which could be the basis for such a 



conclusion. Probably Bessel made the remark elsewhere." If so, 

the question is "Where?" and might that other reference be an 

early germ of an idea about optimal design? Preitschopf (1987) 

has searched the 1820-1826 and 1828 yearbooks containing Bessel 

(1920) and finds not even a hint about not having "n geater than 

5"; the only pertinent remark is on page 166 of the 1823 yearbook 

which has with xi being the "random error of part i, l=l,···,n, 

total error is y ~ Jx2 +···+x2 • 
1 n 

More modern beginnings of variance components are in 

Fisher's (1918) paper on quantitative genetics wherein he made 

[adapting freely from Anderson (1978)] 

(i) Inceptive use of the terms "variance" and "analysis of 

the variance." 

(ii) Implicit, but unmistakable, use of variance components 

models. 

(iii) Definitive ascription of percentages of a total 

variance to constituent causes; e.g., that dominance 

deviations accounted for 21% of the total variance in 

human stature. 

Following that genetics paper, Fisher's book (1925; Sec. 40) 

made a major contribution to variance component models through 

initiating what has come to be known as the analysis of variance 

(ANOVA) method of estimation: equate sums of squares from an 

analysis of variance to their expected values and thereby obtain 

a set of equations that are linear in the variance components to 

be estimated. This idea arose from using an analysis of variance 

to estimate an intra-class correlation, which he wrote as p • 

A/(A+B) and described as 

" •.• merely the fraction of the total variance due to 

that cause which observations in the same class have 

in common. The value of B may be estimated directly, 

for variation within each class is due to this cause 

alone, ••• " 



From this he was led to expressions which, in to-day's 

notation for the 1-way classification random model with balanced 

data, are 

and 

a n 
E(SSE) • E E r (yij - Yi.) 2 • a(n - l)a~ 

i•1 j=1 

a n 
E(SSA) • E E E (yi· - y 

i•1 j=1 
) 2 "' (a- 1)(ncr 2 + a 2 ) • 

et e 

From these the estimation equations are taken as 

and so 

SSE= a(n- 1)&2 and SSA • (a- 1)(n82 + &2) 

&2 • MSE 
e 

e et e 

and &2 • (MSA- MSE)/n • 
Ct 

(1) 

(2) 

(3) 

(4) 

These are, for a 1-way classification random model, the ANOVA 

estimators of the variance components from balanced data. 

Had Fisher foreseen even a small part of the methodology for 

estimating variance components that he thus heralded he might 

have given more attention to this topic. But he did not. Section 

40 of Fisher (1925) remains quite unchanged in subsequent 

editions, even after variance component principles were well 

established. Furthermore, even when he extended the analysis of 

variance to a 1-way classification model with unbalanced data, to 

a 2-factor model with interaction and to more complex settings, 

he did not address the estimation of variance components in those 

settings. 

Following Fisher's work of 1918 and 1925 came Tippett (1931) 

who clarified and extended the ANOVA method of estimation and in 

his second edition (1937) displayed some explicit estimators. He 

also addressed (1931, Sec. 10.11) the problem of considering "the 

best way of distributing the observations between and within 

groups" for a 1-way model, as had Chauvenet (1863) and perhaps 

Bessel (1820). This was followed by Yates and Zacopanay's (1935) 

comprehensive study on sampling for yield in cereal experiments, 

'I ., 



which dealt with designs corresponding to higher-order models. In 

the same vein, Neyman ec aJ. (1935) considered the efficiency of 

randomized blocks and Latin square designs, and in doing so made 

extensive use of linear models (including mixed models). Maybe 

this is the first recognizable appearance of a mixed model. 

Although Fisher ( 1935) used the term "components of vari­

ation" in an acrimonious review of Neyman ec al. ( 1935), who 

themselves had used the phrase "error components", the first 

apparent use of "components of variance" is Daniels (1939): 

" .•. it is natural to use the analysis of variance ••• 

to arrive at estimates of the components of total 

variance assignable to each factor. The components of 

variance can then be used to establish an efficient 

sampling scheme... " 

It seems that the papers by Daniels (1939) and by Winsor and 

Clark (1940) can well be considered as the solid beginnings of 

the work on variance components of the last fifty years or so. 

Each paper, independently, derives (1) and (2) that Fisher (1925) 

has, using the "expected value" concept that is implicit in 

Fisher (1925). Daniels mentions Tippett (1931) but not Fisher, 

whereas Winsor and Clark describe their derivation as being "a 

straightforward extension of the suggestions of R. A. Fisher in 

his Scac.isc.icaJ .Hechods for .Research !Yorkers [Sec. 40]." 

Presumably this is the seventh edition, published in 1938, in 

which Sec. 40 deals with intraclass correlation, exactly as it 

does, unchanged, in both the first edition of 1925 and the 

twelfth edition of 1954. Yet, although Fisher (1925) has the 

idea of taking expected values he had not there specifically 

formulated it using the E operator as do Daniels, and Winsor and 

Clark. Their papers were soon followed by Snedecor (1940), his 

third edition, which has virtually no reference to variance com­

ponents at all. Page 205 contains discussion of estimating the 

intraclass correlation as A/(A +B), just as does Fisher (1938). 

The nearest thing to characterizing A as a variance component is 

,_--



the description that "A is the same for all ••• samples- it is 

the common element, analogous to covariance." And that is, of 

course, the case: the covariance between two observations in the 

same class is a2. 
a 

In describing a 2-factor no-interaction situation Jackson 

(1939) writes that one factor is "a measure of the trial effect," 

and the other is "a measure of the individual effect." This 

seems to be the first occurrence of the word "effect" in what is 

now its customary usage in linear models. Jackson also described 

his model as having one factor random and one non-random - a 

crystal-clear specification of a mixed model, although not called 

such at that time. In this connection it is surprising that it 

was eight more years before someone, Eisenhart (1947), saw the 

need for carefully describing and distinguishing between what we 

now know as fixed, random and mixed models. 

Although unbalanced data were provided for in that very 

early description of a random model in Airy (1861), they received 

little attention for another eighty years. Tippett (1931, 

Sec. 6.5) makes a passing comment that for unbalanced data 

certain relations [e.g., (1) and (2)] "do not hold, for in 

summing the squares of the deviations of the group means from the 

grand mean, each group has been given a different weight", the 

number of observations in the group. Nevertheless, in Section 

9.6, he provides an approximation for calculating an intraclass 

correlation coefficient from such data. In contrast, Snedecor 

(1934, Sec. 31) simply states: "The direct relation between 

analysis of variance and intraclass correlation disappears if 

there are unequal frequencies in the classes." Even in his third 

edition (Snedecor, 1940, Example 12.21, p. 205), in referring to 

the unbalanced data of Table 10.8, he asks "Why can't you 

calculate intraclass correlation accurately" for such data? 

Needless to say, that example does not appear in the sixth 

edition, Snedecor and Cochran (1967). The reason is, of course, 

that the now well-known results 



a 
c ( 

a 
E(SSA) "" E r ni<Yi· - y )2 n - r n 2 /n )crz +(a- 1) 11 2 

i=1 i•1 i • Ct e 

and ( 5) 
a ni 

E(SSE) "" E I: I: (y ij - y )2 -(n a) cr 2 

i•1 
i· e 

ja} 

had been derived, independently, by Cochran (1939) and Winsor and 

Clark (1940). Soon after, Ganguli (1941) specified the details 

of ANOVA estimation of variance components from unbalanced data 

in fully nested models, no matter how many nestings there are. 

1.2 Forty years, 1947-87 

After what can now be viewed as the foundation writings of 

the 30's and 40's, interest in variance component estimation 

expanded at an ever-increasing rate. Much of the activity 

continued to be motivated, as had the early publications, by 

practical problems. Statisticians with minimal concern for data 

showed no interest whatever. Geneticists, particularly (perhaps 

fired by Fisher's 1918 paper), quickly became users of variance 

components models in applications to humans, dairy cows, wheat, 

beef cattle, corn, pigs and poultry - to name but a few. Almost 

all these applications involved unbalanced data. 

This is no place for a historical survey, if for no other 

reason than most of those attending this conference are familiar 

with the details of the last forty years. Moreover, the 

excellent survey by Khuri and Sahai (1985) is where the in­

terested reader will find a full account. So just a brief and 

somewhat personal outline will be given of the major advances 

made in the matter of methods of estimation. 

For estimating variance components from unbalanced data the 

landmark paper is undoubtedly Henderson (1953). In that paper 

the ANOVA method of estimation, based on equating analysis of 

variance sums of squares to their expected values, was extended 

for unbalanced data to equating a wide variety of quadratic forms 



(not all of them sums of squares) to their expected values. Then 

followed a period of trying to evaluate those methods mostly 

through deriving expressions, under normality assumptions, for 

sampling variances of the resulting estimates, e.g., Crump 

(1951), Searle (1956, 1958, 1961), Mahamunulu (1963), Low (1964), 

Hirotsu (1966), Blischke (1968), and Rohde and Tallis (1969). In 

every case the results are, of course, quadratic functions of the 

unknown variance components; but the coefficients of the squares 

and products of those components are such hopelessly intractable 

functions of the numbers of observations in the cells of the data 

(see Searle, 1971, Chapter 11) that it is impossible to make 

analytic comparisons either of different estimation methods, or 

of the effects of different degrees of data unbalancedness on any 

one method of estimation. This absence of tractable criteria on 

which judgement can be made as to which application of the ANOVA 

method has any optimal features thus became very frustrating. 

For balanced data this frustration does not exist: Graybill and 

his co-workers (e.g., with Wortham, 1956, and with Hultquist, 

1961) had established minimum variance properties. 

But for unbalanced data that frustration persisted. 

Distinctions between the three Henderson methods could be made on 

the basis of computing requirements, and, after proofs given in 

Searle (1968), on the basis of the nature of the model being 

used: for mixed models, Method I is not suitable and neither is 

Method II if the model is to have interactions between fixed and 

random effects. But, no matter what form of the ANOVA method is 

used, the resulting estimators are unbiased - and no other 

optimal properties have been established. Of course, the 

extensive work of R. L. Anderson and colleagues (e.g., Anderson, 

1975, Anderson and Crump, 1967, Bainbridge, 1963) gives some 

indication of which of some applications of the ANOVA methods may 

be better than others for quite a variety of special designs 

planned for estimating variance components. But it can be 

difficult to extrapolate from those designs to situations often 



found with survey-style data; for example, to breeding data from 

farm livestock, where there may be several hundreds of levels of 

a random factor, and some thousands of cells in the data but with 

only 20-30% of them actually containing data. 

This unavailability of methods for estimating variance 

components from unbalanced data that have optimality criteria was 

radically changed during the 1967-72 years when three different 

(but related) methods were developed that came with built-in 

optimality criteria. The first was Hartley and Rao's (1967) 

paper presenting maximum likelihood (ML) estimation, based on 

normality assumptions being made of the data. The second was 

restricted maximum likelihood (REML) estimation initiated for 

balanced data by Anderson and Bancroft (1952) and Thompson 

(1962), and extended by Patterson and Thompson (1971) to block 

designs and thence to unbalanced data generally. The third was 

minimum norm quadratic unbiased estimation (MINQUE) coming from 

both LaMotte (1970, 1973) and Rao (1970, 1971a, b, 1972). And 

currently there is in development a method designed by Hocking 

and colleagues; it is based on treating variance components as 

covariances and estimating them from utilizing all the available 

cross-product covariance estimates that are appropriate. For 

balanced data this method is shown in Hocking ec aJ. (1986) to be 

equivalent to ANOVA estimation; and for unbalanced data I 

anticipate hearing more about this method later to-day. 

2. WHERAT? 

It is convenient to have before us the matrix formulation of 

a mixed model, a formulation which today is considered quite 

standard but which when first proposed in Hartley and Rao (1967) 

was deemed to be (and still is) very ingenious. 

2.1 A general mixed model 

Let y of order Nxl be the vector of data. 

equation for y is taken as 

The model 



(6) 

where a is a kxl vector of fixed effects, including coefficients 

of covariables whenever covariables are to be part of the model. 

X is a known Nxk matrix corresponding to the occurrence in the 

data of the elements in a. When covariates are part of the model 

X will contain columns of observed values of the covariates; 

otherwise X is usually an incidence matrix. 

incidence matrix, but does not have to be. 

Z is usually an 

where 

The form of u is important. It is partitionable as 

u = [u' u1• •.• u']' 
o r 

u • e 
0 

(7) 

is the Nxl vector of error terms in the model; and for the r 

random factors in the model, ui of order qi for i • 1, r, is 

the vector of qi effects occurring in the data, corresponding to 

the i'th random factor in the model, be it a main effects factor, 

a nested factor or an interaction factor. The distributional 

properties attributed to u that are customary for random effects 

are 

E(u.) • 0 ~ i, which includes E(u) ~ E(e) m 0 (8) 
1 0 

and 

v i ~ i'. (9) 

In the case of u • e we have q • N and 
0 0 

var(u) z var(e) • a 2 I • a 2 I and cov(ui, e') • 0 
o o N e N 

(10) 

fori • 1, 2, ••• , r. 

In (6) the coefficient matrix Z is partitioned conformably 

with the product Zu for u partitioned as in (7). Thus 

... , Z ] with Z • I 
r o N 

corresponding to u • e. And thus (6) is 
0 

(11) 

(12) 



The variance-covariance features of y are determined from 

(12). First 

D • var(u) • (13) 

is block diagonal, with the blocks being the scalar matrices ail 
qi 

fori • 0,1, .•• ,r. Thus Dis diagonal. Then from (12) and (13) 

and 

r 
V = var(y) • ! Z.D Z' • 

i•O 1 i i 

r 
C • cov{y,u') • E Zia~ 

i•1 1 

2.2. The mixed model problem 

(14) 

(15) 

One often hears the phrase "the mixed model problem" 

- frequently voiced in awesome, sometimes even fearsome, tones, 

almost as if the problem was impossibly difficult to describe and 

even more difficult to solve. Surely the problem is not 

difficult to state - and we already have some answers that go a 

long way towards being satisfactory. 

Confining attention to point and/or interval estimation, the 

three aspects of a mixed model that demand attention are 

estimation of the fixed effects, of the random effects and of the 

variance components. There are therefore three parts to "the 

mixed model problem." We consider each in turn. 

a. Estimation of fixed effects 

To estimate estimable functions of elements of 8 in (6) we 

consider estimation of X8. Every element, and any linear 

combination of elements, of X8 is estimable. The ordinary least 

squares estimator of X8 is X(X'X)-X'y; but this takes no account 

i/ 



whatever of the random effects in the model, and so it is of 

little interest as an estimator. Limiting ourselves to cases 

when V is non-singular, we then have the best linear unbiased 

estimator of XP as 

(16) 

Although this is confined to non-singular V, that is not very 

restrictive in actual practice. In most applications V will not 

be singular: e.g., whenever Z • I and cr 2 > 0. 
0 0 

As an estimator of XP, the X~0 in (16) has many good 

properties: it is not only best linear unbiased, but it is also 

ML under normality. However, it has an obvious deficiency: V is 

usually unknown. The "obvious" thing to do is to estimate 

cr2 ] • 
r 

in some way, call the estimator 8 2 , use it in place of a 2 in 

V = Eizizfa~ of (14) to get 

(17) 

and then calculate 

(18) 

(18) is not a best linear unbiased estimator. But Kackar and 
0 

Harville (1981, 1984) have shown that XPV is unbiased, and 

that its sampling variance can be calculated, "provided the data 

vector is symmetrically distributed about its expected value and 

provided the variance component estimators are translation­

invariant and are even fucntions of the data vector. The stand-

ard procedures for estimating the variance components yield even, 

translation-invariant estimators." 

An even nicer result concerns maximum likelihood. Denote 

the ML estimator of a 2 by CJ 2 [See (26), which follows.] Now 

replace a2 by CJ2 in (14) and (16) to yield V and 

xp2 • x<x·v-1x)-x'v-1y v 
Then (19) is the ML estimator of XP. 

(19) 



Thus for this first part of the mixed model problem, we have 

two useful possibilities: (i) for 82 being in the wide range 
0 

of estimators described by Kackar and Harville use XB V of (18); 

it is unbiased and its sampling dispersion matrix can be 

calculated. Unfortunately its distribution is unknown, so that 

exact interval estimates are unavailable (ii) use the ML 

- 0 estimator [see (26)] a2 to calculate v and hence xav of (19); it 

is the ML estimator of XB with all the usual attendant 

properties. And a third possibility is to (iii) use the REML 

estimator [see (27)J a2 of o 2 to 0 
calculate V and then XBy· 

0 
Properties of XBy are unknown, but they are, hopefully, 

0 
quite similar to those of XBV . 

A difficulty with (ii) and (iii) is that, for data that are 

not normally distributed, procedures for deriving ML and REML 

estimators of o2 have not been worked out. One possible course of 

action would be to try transforming the data in some manner that 

makes them normal or at least more nearly so than are crude data. 

b. Prediction of random effects 

A random effect that occurs in data is a realization of a 

random variable. But it is usually unobservable: e.g., the 

genetic make-up of the dairy cow Daisy, whose annual milk yield 

has been recorded; or the true intelligence of the schoolboy Tom 

Brown, for whom we have a score on an I.Q. test. Whilst we can­

not measure these realizations, and hesitate to refer to 

estimating them (since estimation of random variables is counter­

intuitive statistically), we can think of predicting these values 

- in the following sense. Consider two school children, Tom and 

Jane, who have taken three different versions of an I.Q. test, 

versions that have been touted as being equivalent. Tom scored 

115, 117 and 122, with an average of 118. Jane scored 110 and 

126 on the first two tests but missed taking the third. She, too, 

has an average of 118 (for her two tests). Thus Tom and Jane 

have the same average. But they do not necessarily have the same 

actual true, underlying, unobservable intelligence. (We may wish 

I_) 



to use their test average as our indicator of intelligence, but 

it is not necessarily the same as actual intelligence.) But what 

we might wish to do is to answer the question: from all school 

children who average 118 on the tests what is a good prediction 

of their intelligence? And in answering that question we will 

also be interested to see to what extent the answer takes into 

account the number of test scores that a person has. 

This is the sense in which we speak of predicting a random 

effect. One of its early occurrences (Henderson, 1955) seems to 

have been as a classroom exercise used by A.M. Mood in the late 

1940's at Iowa State University, and subsequently appearing in 

Mood (1950, p. 164, exercise 23), and in revised form in Mood and 

Graybill (1963, p. 195, exercise 32) and in Mood, Graybill and 

Boes (1974, p. 370, exercise 52). The 1950 version is as follows. 

"23. Suppose intelligence quotients for students 

in a particular age group are normally distributed 

about a mean of 100 with standard deviation 15. The 

I. Q., say x 1 , of a particular student is to be 

estimated by a test on which he scores 130. It is 

further given that test scores are normally distributed 

about the true I.Q. as a mean with standard deviation 

5. What is the maximum-likelihood estimate of the 

student's I.Q.? (The answer is not 130.)" 

The final sentence is tantalizing. Overcoming its implied 

temptation can be achieved by modeling yij' the j'th test score 

for some i'th person, as 

yij • ~ + ui + eij 

where ui is the person's true I.Q. and eij is a residual error 

term. At first we think of ui as certainly being a fixed effect 

insofar as the particular person who has been labeled as the i'th 

person is concerned. But in thinking about people in general, 

that particular person is really just a random person: and ui 

is, accordingly, simply a realized (but unobservable) value of a 

random effect - the effect on test score of the intelligence 

Ji, 



level of the i'th randomly chosen person. Therefore, we treat ui 

as random and have I.Q. and score, namely ui and yij' jointly 

distributed with bivariate normal density: 

[.:~:J . [::J ~ N [C:) . c:: 
Then, what we want from this is the maximum likelihood estimate 

of the conditional mean of the variable "ui, given yij =- 130", 

i.e., we want E(uiiYij • 130), which is 

152 
E(uiiYij) • 130) • 100 + 152 + 52 (130- 100) • 127 ~ 130 

This is what is called the predicted value of u, 
l. 

(given that 

yij - 130). 

There are many situations of this nature in the real world: 

of having a vector (or scalar value) of observations on some 

random variables from which we wish to predict the value of some 

other random variable or variables that cannot be observed. 

Biological examples include predicting the genetic merit of a 

dairy bull from the milk yields of his daughters' records, a 

practice which, as a basis for ranking bulls and selecting those 

of high genetic merit for widespread use in artificial 

insemination programs, has contributed greatly to the spectacular 

increase of per-cow milk production that has occurred over the 

last thirty years in many countries around the world. Other 

examples are those of predicting instrument bias in a micrometer 

selected randomly out of a munufacturer's lot, using measurements 

made on a number of objects; and of predicting peoples' 

intelligence from scores on a battery of tests. 

So, in terms of the general model y • XP + Zu of (6), 

the feature of interest is prediction of u, where y and 

u are jointly distributed: 

(20) 



for D, V and C of (13) - (15). Cochran (1951), Rao (1965, pages 

79 and 220-222) and Searle (1974) all describe how, for (20) the 

best (i.e., minimum mean square) predictor for u is 

ii • E(ufy) 

And the best linear predictor (linear in elements of y) is 

u • E(u) + C'V-l(y - XP) 
L 

(21) 

( 22) 

for Xll of ( 6). These results, ii and iiL, hold for any 

distribution (satisfying the usual regularity conditions) having 

finite first and second moments. Furthermore, when that 

distribution is the normal distribution we have (21) and (22) 

being equal; i.e., under normality 

ii • iiL • E(ujy) = E(u) + CV-1(y - Xll) ( 23) 

Moreover, this expression can also be viewed as a Bayes 

estimator, with the prior on u being the normal density having 

mean E(u) and variance-covariance matrix D. The posterior 

density of u is then the density of ufy, which is normal with 

mean E(ufy) shown in (23). That mean can therefore be taken as a 

Bayes estimator, the mean of the posterior density of u. 

So here, for the second part of the "mixed model problem", 

we also have procedures that have a high degree of satisfaction -

except that again they depend on knowing o2 and thus V and C. 
0 

Just as with using XPV' so here: replacing o2 in iiL by 

82 seems the "obvious" thing to do. Properties of the resulting 

expressions have been considered by Jeske and Harville (1986) 

-and we will no doubt hear more about this tomorrow. Although 

(23) can be calculated using V as can their sampling variances, 

their distributions are not known, so 

difficulties in interval estimation. 

giving rise to 

An extension of (22) given by Henderson (1963) is to the 

mixed model. He shows that the best linear predictor of w • T'XIl 

+ u is 



where X~0 • X(X'V-1X)X'V- 1y of (16). This is what animal breeders 

refer to as BLUP - best linear unbiased prediction. Again, it 

requires values of o2 for practical application. 

c. Estimating variance components 

It is clear from the preceding two subsections that 

estimation of fixed effects and prediction of random effects 

could be achieved with some degree of satisfaction if o 2 could be 

estimated satisfactorily. To do this we have, at the present 

time, four main available options as a method of estimation: 

ANOVA, ML, REML and MINQUE; and along with the latter, two 

variants of it: MIVQUE, minimum variance quadratic unbiased and 

MIMSQE, minimum mean square quadratic unbiased. We confine 

attention to the four main methods. 

ANOVA has already been discussed. Its lack of optimality 

criteria on which to pass judgement on the various forms of ANOVA 

is a serious deficiency. In many computing environments 

Henderson's Method I may be the only feasible form- or possibly 

Method II. And even if Method III is computationally feasible 

there is no unique application of it to models of two or more 

crossed factors. Therefore, except when limited computational 

facilities demand using Henderson's Method I, my recommendation 

is for abandonment of the ANOVA method of estimating variance 

components from unbalanced data. 

ML, REML and MINQUE are all to be preferred over ANOVA 

because they have built-in optimality properties. To succinctly 

display these methods we use the notation of 

i,j•t 

{ ai.} 
m J i, j=O 

and (24) 

respectively, for a square matrix of order t + 1 and a column 

vector of order t + 1. Then, along with the model formulation 

given earlier, together with 



( 25) 

these methods can be summarized as follows. 

ML: Solve by iteration for a2 : 

i ... r 
• { y'PZ Z'Py} 

c i i i•O 
( 26) 

REML: Solve by iteration for a2 : 

(27) 

MINQUE: For a set of r+1 pre-assigned numerical values w used 

in place of o 2 in V and then P, to yield P , solve 
w 

(with no iteration needed) 

i""r 
~z(w) • { y'P zizi'P Y} 

c w w i•O 

A few comments about the equations are in order. 

(28) 

(i) Each set of equations has order r + 1, the number of 

variance components. 

(ii) Each set of equations has on its left-hand side a 

matrix of elements that are each the trace of the product of six 

matrices: but each such trace can be expressed as tr(TT') for 

some T and so can be calculated as the sum of squares of elements 

of T. 

(iii) Each set of equations has a right-hand side that is a 

vector of quadratic forms in the observations. 

(iv) The REML equations differ from the ML equations only 

in having the P-matrix where the ML equations have the 
-1 V -matrix. 

(v) Both the ML and the REML equations are very non-linear 

in the sought-after estimator - 82 in ML and ~2 in REML. These 

equations therefore have to be solved iteratively; and this 

raises a number of questions that are in the realm of numerical 



analysis. Does the choice of starting value affect the attained 

value at convergence? Does that attained value always correspond 

to a global maximum of the likelihood that is being maximized -

or does it sometimes correspond to a local maximum? And if so, 

when? Since at each successive round of the iteration a 

numerical matrix is being used for V how does one ensure that 

it is always positive-definite? And if it is not, what are the 

consequences? If, after some iteration, the numerical value 

(12 to be given to 11 2 is negative, what action is to be 
t t 

taken? Were that (1~ to be at the last round of iteration 

then it would, in accord with the principles of maximum likeli-

hood estimation of a variance (e.g., Herbach, 1959), be 

changed to zero. 

correspondingly, 

The model would then be altered 

and the remaining variance components 

re-estimated. But suppose (1~ < 0 occurs before convergence; 

and suppose it is changed to zero and the model altered, and 

iteration continues using that altered model. If, as a result 

of some numerical quirk of those data, continuing with that 

unchanged negative 8 2 had, 
t 

at a subsequent round of 

iteration, led to a positive a~. then changing it to zero 

and altering the model is presumably the wrong thing to do. 

How is this situation provided for in solving the ML and REML 

equations? Does any present computing package do this? 

(vi) Solving the MINQUE equations requires no iteration. 

Once the pre-assigned numerical values that are to be elements of 

w have been decided on as replacements for elements of o 2 in P to 

yield P - once this has been done, the MINQUE equations are just 
w 

a simple set of linear equations in the unknown variance 

components estimates. 

(vii) The MINQUE equations are exactly the same as the REML 

equations except with the P-matrix in REML replaced by P for 
w 

MINQUE. Thus, as first observed by Hocking and Kutner (1975), 

a MINQUE = a first iterate of REML. (28) 

i: 



(viii) Solutions to the MINQUE equations depend on the 

pre-assigned w. 

3. WHERETO? 

3.1 ML, REML or MINQUE? 

The over-riding question is: which of the ML, REML and 

MINQUE methods of estimation should be used in analyzing 

unbalanced data? This is of particular importance when analyzing 

the very large data sets that often arise in situations where 

mixed models are appropriate. Certainly, my first conclusion is 

to not use MINQUE. Reasons for this are three-fold. First, and 

foremost is that for different values of the pre-assigned vector 

w, it gives different values of the estimated a2 • This means 

that for N people all having the same data, but each person using 

a different w, there will be N different estimated a 2 -vectors. 

Somehow I do not see this as being an acceptable feature of an 

estimation procedure to investigators who have large data sets. 

Any kind of argument about making use of prior knowledge in some 

manner, in the form of pre-assigned weights that play a role akin 

to the unknown variances, is unlikely to sit well with someone 

who has 50,000 observations from which to estimate two or three 

variance components. Second, MINQUE can produce negative 

estimates -which are not attractive. Third, having obtained a 

MINQUE estimator of a 2 it would be very natural for any 

investigator to contemplate using it as a new w- and in this 

way be led to iterating on MINQUE. This is known as the I-MINQUE 

method of estimation. Under normality assumptions it is the same 

as REML (Hocking and Kutner, 1975) and without those 

assumptions Brown (1976) has shown that I-MINQUE has a limiting 

distribution that is normal. Hence my conclusion is to favour 

REML over MINQUE. 

Then comes the question "ML or REML?" This is difficult to 

answer. One favoured characteristic of REML is that with 

balanced data the REML equations reduce to the same equations as 



are used in ANOVA estimation - and ANOVA estimators are known to 

have the attractive minimum variance properties established by 

Graybill and colleagues. But, of course, whereas ANOVA esti-

mators may well be the same as REML solutions with balanced data, 

REML solutions are not necessarily REML estimators; they are, 

only if they are positive. For example, in the 1-way classi-

fication, random model, with balanced data, of a classes and n 

observations in each, suppose the mean squares between and within 

groups are denoted by MSA and MSE respectively. Then the REML 

solutions are a2 = (MSA - MSE)/n and a2 • MSE. But only 
a e 

when (,2 > 0 are (,2 and (,2 the REML estimators. When 
a a e 

(,2 s; 0 the REML estimator of (J2 is zero and that of a2 
a a e 

is SST/(an -1) for SST • SSE + SSA of (1) and (2) - see 

Thompson, (1962). 

It is sometimes said that REML gives unbiased estimators. 

This is not so. It is true that the expected value of the 

right-hand side of the REML equations in (27) can be written in 

the same form as the left-hand side of those equations. But this 

does not imply unbiasedness. The non-negativity of any form of 

maximum likelihood estimators (as distinct from solutions of 

maximum likelihood equations) has to be taken into account. For 

example, with balanced data from a 1-way classification random 

model, the solutions of the REML equations are unbiased, but the 

two-pronged procedure just described for adapting those solutions 

so as to get REML estimators gives an estimator of a 2 that is 
« 

clearly upwardly biased, as can also be shown for the estimator 

of a2 • 
e 
Another favoured feature of REML is that it takes account of 

degrees of freedom used for estimating fixed effects; e.g., in a 

simple sample of xi - i.i.d.N(~,a 2 ) the REML estimate of a2 is 

Ei(xi- i) 2 /(n- 1) whereas the ML estimator is Ei(xi- i) 2 /n. 

In this simple case REML is unbiased - but that is not the 

general rule. And, of course, nothing is unbiased after 

iteration, neither in ML or REML. 



One of the merits of ML over REML is that the ML procedure 

includes providing an ML estimator for the fixed effects, namely 
0 

X~V of (19), with all the attendant properties of ML. The 

REML method provides no such estimator, although intuitively one 

would be inclined to use X~~ based on (18), where a2 , the 

REML estimator, leads to V, which in turn is used as V in 

(18). 

In contrast to ANOVA estimation, both ML and REML are 

methods of estimating variance components from unbalanced data 

that can be used with any mixed or random model. They 

accommodate crossed and/or nested classifications, with or with­

out covariates, and they are based on the maximum likelihood 

principle of estimation that has a long history of 

well-established, large-sample properties. The applications (26) 

and (27) do, of course, depend on normality assumptions for the 

data. Nevertheless, there are also more difficult situations that 

are not so easily accommodated, where V may have a special 

structure that cannot be expressed as EZiZ~o~. Jennrich and 

Schlueter (1986) and Berk (1987) discuss such possiblities as 

pertaining to unbalanced data arising from repeated measures 

situations. In those cases, just as with (26) and (27), there 

are the computational difficulties associated with solving non-

linear equations by iteration. But these, I believe, are 

difficulties that are progressively being overcome. For example, 

these difficulties used to also include problems of sheer size; 

e.g., the enormous amount of time and money needed for the 

inverting of matrices of large dimension, of order 5,000, say. 

The advent of supercomputers will see this problem of size 

becoming of less and less an impediment to calculating ML and 

REML estimates. 

It is difficult to be anything but inconclusive about which 

of ML and REML is the preferred method. ML has the merit of 

simultaneously providing estimators of both the fixed effects and 

the variance components - and that is appealing. On the other 

hand, REML has the attraction of providing variance components 



estimators that are unaffected by the fixed effects. The 

dependence of both ML and REML on normality assumptions may, for 

some data, be bothersome; and if that were to be felt 

overpowering then using the REML procedure and calling it 

I-MINQUE would be acceptable. That requires no normality 

assumptions on the data, but nevertheless yields estimators that 

have asymptotic normality properties. 

3.2 Dividing data into subsets 

When local computing facilities are too limited to feasibly 

cope with doing the ML or REML calculations for a very large data 

set, one possible way of obtaining ML estimates from the whole 

data set is to divide the data into portions, from each of which 

ML estimates can be calculated, and then combine those estimates. 

Since estimators from one data subset are not necessarily 

independent of those from another, simple averaging of the subset 

estimates can be improved upon. A method for doing this has been 

developed in Babb (1986). It is as equally applicable to REML as 

it is to ML, so we describe it in terms of just ML. 

Begin by dividing the data into t sets, the p'th of which 

has model equations 
r 

y - X p + I z u 
p p P i=O ip ip 

r 

a X p + I zi ui 
p p i=O P 

(29) 

(30) 

Model (29) is the same as (6) but with subscript p for the p'th 

data set and with uip (possibly) different from ui because uip 

has as elements only those of ui that are actually in data set p. 

Thus Zip of ( 30) has null columns corresponding to those 

elements of ui that are not in u 1p; and the non-null columns are 

columns of zip 

ML using ( 26) 

From either (29) or (30, o2 can be estimated by 

[or by REML using 

p • 1,2,···,t based on 
r 

( 2 7)] 

r 

to yield it 2 
p 

V = var(y ) • I Z Z' a2 • I Z Z' a2 
PP P iaO ip ip i i•O ip ip i 

for 

( 31) 



Estimates from the t data sets are combined by a weighted 

least squares procedure using an approximate variance-covariance 

matrix of [•i····,o~], developed from 

r 
V • cov(y ,y') • I Z Z' u 2 , for p ~ q • (32) 

pq p q i•l ip iq i 

(32) contains no a 2 • a 2 because no two data sets have error 
o e 

terms in common. Also, whereas (31) can be expressed equivalent-. 
ly in terms of either Zip or Zip' (32) cannot; it is available 

only through using the Z-matrices of (30). Furthermore, in any 

particular case, several terms in (32) may be zero and, indeed, 

for many (p,q) pairs, (32) itself may be zero. For example, when 

the random factors are a 2-way crossed classification, the data 

can (and probably will) be divided into sets so that each cell of 

the 2-way classification is wholly in a single data set. Then 

(32) will not involve the interaction variance component, for the 

same kind of reason that it never contains a 2 ; and only for 
e 

data sets that have levels of the a-factor in common can (30) 

contain a 2 ; and so on. 
a 

Define 

and f • {y'PZ Z'PY} r , (33) 
i i y i•l 

similar to the matrix and vector on the left and right sides, 

respectively, of (26). Denote A and f for data set p by A and 
p 

f . Then the covariance matrix of f and f is 
p p q 

G • cov(f ,f') • { 2tr(P zi Zi P V P Zj Zj' P v >} r • (34) 
pq P q m P P P P pq q q q q qp i,j•O 

Assemble these in a matrix 

G • { G } t 
m pq p,q•l 

(35) 

Then, on assuming that o 2 is known, 

_, 



gives 

t 

Now { t 2 } is an estimator of 
C p pal 

lt * a2 = (lt * I )a2 r+l 

(36) 

where * represents the direct (or Kronecker) product operator. 

Hence a weighted least squares combination of the estimates i 
p 

for p a l,···,t is 

(37) 

where Cp,q and Gp,q are the (p,q)'th sub-matrices of C and G 

respectively. 

One now iterates on (37), starting with a 2 = E i 2 /t for 
0 p p 

a2 • At least two iteration schemes are available. One would not 

involve A , using for that at each iteration its value determined 
p 

at the time i 2 was determined from data set p. Another scheme 
p 

would recalculate A with each iterated i 2 derived from (37), 
p 

just as (31), (32), (34) and the inverse of (35) will be cal-

culated after each iteration of (37). In either case, each 

i 2 would be the same at each iteration: those are the values 
p 

that are being combined in (37). Simulation studies are needed 

to evaluate this procedure. 



3.3 Confidence intervals 

With ANOVA estimation we do not have exact, analytical forms 

for the sampling distributions of variance components estimators 

(other than, in some cases, the error component). This is so 

even in the simplest case, the 1-way classification with balanced 

data. Derivation of exact confidence intervals is therefore not 

feasible. On the other hand, with ML and REML estimation, the 

estimators have several asymptotic properties that are not only 

of theoretical interest but also of great practical importance: 

consistency, and a sampling distribution that is normal, with a 

variance-covariance matrix that comes from the inverted 

information matrix. In the limit, therefore, the establishment 

of confidence intervals from ML and REML estimators presents no 

great difficulty. The problem is that data sets may be 

extensive, but they are not of infinite size, and so using 

large-sample properties for a data set involves some degree of 

approximation. The question is, therefore,: what is the degree 

of this approximation? This brings us to what, I believe, is a 

vital research problem. 

3.4 Planning evaluation studies 

A detraction from ANOVA estimation is that we do not have 

any feasible ways of comparing its various forms when using un­

balanced data. Analytic comparisons are impossible, and 

numerical comparisons using simulations can entail two big 

difficulties: tremendous amounts of computing, and the planning 

of simulation experiments in a manner that has some hope of 

yielding useful conclusions. The same is true of ML methods but 

with two ameliorating conditions. First, the time and money 

needed to do voluminous computing has declined enormously from 

even as little as ten years ago; and in the era of supercomputers 

will continue to decline. Second, with ML methodology there are 

only two methods of interest, ML and REML. With each of them we 

know their large-sample characteristics and the questions of 



interest that needs to be assessed numerically are "How valid are 

those large-sample characteristics when used with finite 

samples?" and "How is that validity affected by different degrees 

and patterns of unbalancedness ?" The literature does contain 

some studies of these questions but, naturally, in the light of 

the computing effort required, they have been predominantly 

studies of small-scale situations; e.g, 1-way classifications of 

10-15 groups with a total of 100 observations, or 2-way 

classifications with 5-8 levels of each factor. These give but 

fragile information to the investigator who has 200 levels of 

one factor, 1,000 of the other and only 87,000 records located 

in but 29% of the 200,000 cells of the 2-way classification -thus 

71% of the cells are empty and in the filled cells there is only 

an average of It observations per cell. And people do have data 

like this. Animal breeders have been estimating variance com­

ponents from this kind of data (and even larger examples) for 

many years, e.g. Lush (1931). Furthermore, with both computer­

ized data collection and statistical computing packages being so 

readily available nowadays, the need for knowing how the large­

sample properties of ML and REML estimation apply to very large 

highly unbalanced data sets is becoming ever more pressing. 

Of course, one major problem still pertains: planning 

simulation experiments so as to have some hope of their yielding 

useful conclusions; in the 2-way layout, how many levels of each 

factor, how many observations in each level, and in each cell, 

how many filled cells, and how will they be spread throughout the 

total grid of available cells? Also, what sets of values shall 

be used for the variance components when the data are generated? 

All of these questions and more must be addressed when planning 

simulation studies. It is not going to be easy to do that 

planning so that the studies yield conclusions that can be 

helpful to investigators who have large, unbalanced data sets. 

But this is, I believe, one of the most important research 

problems currently needing attention in the estimation of 



variance components from unbalanced data. We need to know just 

how good or bad are the large-sample properties (e.g., normality, 

consistency and sampling variances from the inverted information 

matrix) of ML and REML estimation when used on large and 

oft-times highly unbalanced data sets. 

This is paper BU-507 in the Biometrics Unit, Cornell 

University, Ithaca, New York 14853. 
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