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A stochastic model is described for a tag-recapture study based upon 

multiple sightings of non-permanent collars and multiple captures and 

identification by permanent bands. Survival, capture, and sighting 

probabilities are assumed to depend on year. Collar retention probabilities 

are assumed to depend on the age of the collar. Maximum likelihood 

estimates for the model do not exist in closed form but can be obtained by 

the EM algorithm. Estimates are compared with corresponding estimates from 

alternate models based upon conditioning arguments or partial data. 



1. INTRODUCTION 

In the field of biology the problem of estimation of population sizes 

and survival rates is of frequent interest for which there are many 

different approaches (Seber,l982). One model which has gained in favor is 

the Jolly-Saber model of Jolly (1965) and Seber (1965), for which the 

capture, tagging, and release of animals is followed by the possible 

reobservation of animals. Jolly and Seber derscribed reobservations as 

recaptures but in practice reobservations may be by sighting or other types 

of observation. Similarly, more than one type of reobservation can be 

included though until recently (Mardekian and McDonald,l981;Brownie and 

Robson,l983) there has been little done to combine different types of 

reobservation in a single model. 

Another shortcoming of the present theory is that tags are assumed to 

be permanent though in reality tags may be lost. Animals often fight with 

tags until habituated to the presence of tags. Similarly tags age and may 

be more likely lost after a critical age. Arnason and Mills (1981) 

recognize and describe the effects of tag-loss where tag-loss is allowed to 

depend on year but not on the age of the tag. Nelson ec.a1. (1980) 

describe the effects of tag-loss where tag loss is allowed to depend on age 

of the tag. Nelson ec.a1. found when only adult animals are tagged, 

survival estimates or coverage probabilities of confidence intervals were 

not severely affected. For populations with separate survival rates for 

different age classes, tag-loss had a greater effect on estimation. Their 

results, however, apply only if tag loss and survival rates, which are 

unknown to the investigator, are small. 

In practice, biological interest may center on not only survival rates 

for the single years, but also the probability of an animal surviving a 
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sequence of years. Therefore, even if the probabilities of survival for the 

individual years are biased only slightly by tag loss, the estimation of 

the probability of an animal surviving a sequence of years may be severely 

biased, suggesting false qualitative as well as quantitative conclusions to 

the biologist. Hence, tag loss cannot be discounted as unimportant and its 

effects should be included in the estimation of survival rates or other 

population parameters. 

With the objective of estimating survival rates in the presence of tag 

loss we obtain the likelihood for a model based upon two types of 

observations and two types of tags. The first type of observation, 

"capture", is based on the identification of animals by permanent tags, or 

"bands", as in the Jolly-Seber model. The second type of observation, 

"resighting", is based on an original capture followed by the 

identification of animals by non-peranent tags, or "collars". Special 

cases of this model include the Jolly-Seber model with one type of tag, 

which can be assumed to be either permanent or subject to loss. 

Closed form Maximum Likelihood Estimates (MLEs) do not exist for the 

parameters of the model proposed here, but MLEs can be obtained by use of 

the EM algorithm (Dempster ec.a1.,l977). If reobservations are restricted 

to sightings, we find that even though survival rates are not identifiable, 

changes in survival rates between years are estimable (without any double 

tagging). Variances and covariances of the MLEs can be estimated from an 

estimate of the information matrix. 

Estimates from this modified Jolly-Seber model are compared with 

corresponding estimates based on the hypergeometric model (Robson,l969; 

Pollock,l981) and the multinomial model (Seber,l970;Robson,and Youngs,l971; 

Brownie ec.a1.,1978). 
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2. TAG LOSS 

Nelson, eL.al. (1980) assume tag-loss probabilities to depend on age 

of the tag but not time period. Arnason and Mills (1981) assume tag-loss 

to depend on time but make clear that their approach does not account for 

dependence of tag-loss on age, thus recognizing the likely dependence of 

tag-loss rates on age. For example, tags may be applied incorrectly and 

thus be lost shortly after the release of an animal, or tags may become 

brittle and more easily lost after a certain age. To assume tag-loss is 

dependent on age of the tag and not time period we must ensure that time 

periods between observations are nearly constant throughout the sampling. 

To minimize the effect of time period on tag loss the investigator can 

ensure that time periods between samples are of the same length and that 

the conditions the animals face are similar between the different sampling 

periods. For most animals, this is reasonable if samples are taken once a 

year, as animals should encounter similar environmental conditions and 

should exhibit similar behaviors such as annual migration and establishment 

of territories, which could effect the retention and loss of the tags. 

Therefore, in our model we will allow collar-loss to depend on age of the 

collar but not time period. 

If we were to capture an animal which had lost its tag we would have 

the option of retagging the animal. Should we place a tag on an animal 

after the animal was found to have lost its first tag, we would have to 

assume that the retentions of the two tags were independent. This is 

biologically unreasonable when the animals are aware of and fight with the 

tags until habituated to the presence of the tags. However, by not placing 

a tag on an animal twice we may allow tag-loss probabilities to depend on 

both the behavior of an animal and the state of the tag. Therefore we will 
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consider the sampling scheme where each animal is collared only once. 

3. MODEL AND ESTIMATION 

Animals are captured and released, and sighted once a year for s 

years, beginning with year 1. We will refer to the period during which 

captures and sightings are made as the beginning of the year. All animals 

captured for the first time are marked by a "band" which cannot be lost by 

the animal and a "collar" which can be lost. The probability of survival 

from the beginning of one year until the beginning of the next year is 

assumed to be the same for all banded animals alive at the beginning of the 

year, and is allowed to depend on the year. If an animal survives from one 

year to the next we assume the probability of collar retention to depend on 

age of the collar, but not on the year. We assume that for every year, 

each animal is captured with the same probability, and each collared animal 

is sighted with the same probability, and that a capture of an animal 

precludes the possibility of sighting for that animal in the same year. 

We make no assumption about the catchability of each animal prior to 

or including its first capture. Hence, all estimates can be interpreted 

as either being conditional on the number of animals captured for the first 

time in each year, or being the MLEs for a model where the likelihood 

factors into two pieces, the first of which describes the first capture of 

each animal and involves none of the parameters governing survival, 

capture, or sighting probabilities, and the second of which describes all 

reobservations of animals. 

The reason for restricting the population of inference to previously 

captured animals is to avoid making undue assumptions about the likeness of 

marked and unmarked animals. If we do assume marked and unmarked animals 
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to behave alike, however, we can include first capture data for each animal 

as in Seber (1965). Should we include first observations as in the 

Jolly-Saber model, closed form MLEs do not exist for the model despite 

Seber's claim of solutions, though it appears his estimates are the proper 

estimates to use (Kremers,1984b). We avoid the confusion of whether to use 

the MLEs or Seber's estimates, in the present model, by restricting our 

population of inference to those animals previously captured. 

Therefore the parameters of the model are the following. 

S • probability that an animal survives until year (i+1) given it is 
i 

alive at the beginning of year i. 

P • probability that a collar is retained i years given the animal 
i 

bearing the collar has retained its collar i-1 years since its 

first capture, and survived i years since its first capture. 

fi• probability that a banded animal is captured in the i'th year 

given it is alive at the beginning of the year. 

g • probability that a banded bird is sighted in the i'th year given 
i 

it is alive and has its collar at the beginning of the year, and was not 

captured in the i'th year. 

~ • a reparameterization of the model, that is there is a one-to-one 

mapping between~ and the Si' Pi' fi' and gi. 

~ • the parameter space for the possible ~. 

Further, to construct and maximize the likelihood we consider the 

following definitions. 

h denotes a history observable to the investigator. Specifically for 

each year i, i=1, ••. ,s, h specifies whether an animal was captured with or 

without a collar, if an animal was sighted with a collar, or not observed 

at all. 
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h* is a "complete" history. For each year i, i•l, .•• ,s, h* specifies 

whether an animal was sighted or captured, with or without the collar, or 

not captured at all. h* also specifies whether or not an animal possessed 

its collar at the beginning of the year, for each year preceeding and 

including the last year the animal was observed. 

ho denotes the null history, that is, the history of no captures. 

H is the set of all histories h, except ho, describing captures of an 

animal with and without its collar, and sightings of the animals with its 

collar. 

H* is the set of all histories h*, except ho, describing collar 

retention for each year preceeding and including the last year that animal 

was observed, and the capture or sighting for each year. 

yh = number of animals in the study with history h for h £ H. 

~* = number of animals in the study with history h* for h* £ H*. 

{yh} • {yh : h £ H } 

{~*} = {xh* : h* £ H* } 

H is the set of all histories observable to the investigator. The 

investigator can only identify an animal by a sighting if the animal 

possesses its collar. We say the investigator "unknowingly" observes an 

animal if the investigator sights an animal which has lost its collar. We 

say the investigator "knowingly" observes an animal if the investigator 

captures an animal or sights an animal with its collar. H* is the set of 

all possible histories based upon collar retention until the time of last 

observation, and captures and sightings of animals with and without their 

collars. {~*} is only indirectly observable to the investigator through 
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{yh}. In this context {yh} can be considered as partial data based on the 

incomplete knowledge of the observer. {~} can be considered as complete 

data based on all sightings and recaptures, and also collar retention by 

each animal until each animal's last observation. 

Since only {yh} is observable to the investigator the likelihood is 

defined in terms of {yh}, and not {xh}. However, the likelihood, when 

given for {yh} is not of a form which readily suggests a maximizing 

solution. When the likelihood is written in terms of {~} a closed form 

solution for $ is obtained by use of the usual Jolly-Seber estimates for 

survival and observation probabilities. Since {~*} is not observable, but 

MLEs easily obtained if {~*} were observable, we use the EM algorithm to 

find MLEs for this model. To this end let f({~*};$) be the probability 

mass function for {xh*}' and define 

Q(~'l~) • E[ logf({xh*};$') I {yh},q, ] 

We begin the EM algorithm by giving an initial estimate of q,, q,(O). 

We then begin an iterative procedure. Each iteration of the algorithm 

gives a new estimate of q,. Let $(p) be the estimate of q, after p 

iterations. The next iteration consists of evaluating Q($' l$(p)) and 

choosing q,(p+l) such that q,(p+l) € ~ and q,(p+l) maximizes Q(q,' 14l(p)) with 

respect to$'. The iterations are stopped when a convergence criterion is 

reached and the last estimate of $ is interpreted as ~. where, in general 

9 denotes the MLE of 9. 

3.1 THE LIKELIHOOD 

To derive MLEs we do not need to derive the likelihood. But to 

estimate the covariance matrix of ' we consider the information matrix, 

and to this end we define the following random variables which are 
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functions of {yh}. 

N(i) = number of animals first captured in year i. 

R(i) • number of different animals which were first captured in year i 

which are knowingly reobserved during the entire study. 

T(i) • number of animals first captured in or before year i which are 

known to have survived until at least year i+l. 

Y(i,j,k)• number of animals first captured in year i, observed in year 

j with a collar, and observed knowingly, next in year k as a capture 

without a collar. 

Cl(i,j) = number of animals first captured in year i, observed in 

year j with a collar, and not knowingly observed again. 

CcO(i) = number of animals captured in year i without their collars, 

and not knowingly observed again. 

Cc(i) = number of animals captured in year i. 

Csy(i,j) • number of animals first captured in year i, sighted in 

year j with a collar. 

L(i) = number of animals first captured before year i, not observed 

in year i, and later knowingly observed. 

LO(i) • number of animals first captured before year i, not observed 

in year i, and later observed with a collar. 

Dy(i) • number of animals observed with collars of age at least i 

years. 

For iS:j<ks;s let 

$ = probability that a bird is not knowingly observed from the 
k,m,n 

(m+l)'th year to the (n-l)'th year and loses its collar between the 

beginning of the m'th and n'th year, given the bird is released in the k'th 

year, observed in the m'th year with a collar, and next captured in the 
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n'th year. 

j-k m-1 
~i,j,k • ~a1 ( 1-Pj-i+m)lln=1 pj-i+n( 1-gj+n). 

Further let ~1i,j be the probability that an animal is not knowingly 

observed after year j given the animal is first captured in year i and 

observed in year j with a collar • Let ~o. be the probability that an 
J 

animal is not captured after year j given the animal is caught in year j 

without a collar. ~1i,j and ~oj are most easily expressed by the recursive 

relation 

~oj • (1-s ) j + Sj(1-fj+1 )~oj+ 1 

~1. j 1, 
a (1-S.) 

J 
+ Sj(l-fj+1) { (1-P j-i+1 )~o j + Pj-i+1< 1-gj+1>wi,J+1 } 

with l)>o = ljll = 1 s i,s 

Then the likelihood may be expressed as, 

{ll~ S T(i)p D(i) fCc(i) ( 1-f )L(i)+Csy(i) 
i•1 i i i i 

(l-g )LO(i) ( 1 -~ )N(i)-R(i)} 
i i 

{n ,~.Y(i,j,k)} 
X HjSk "'i,j,k 

{n .~. 1 C1(i,j)} 
x iSj "' i ,j 

3.2 MAXIMIZATION OF THE LIKELIHOOD BY THE EM ALGORITHM 

Recall that for the EM algorithm we must evaluate 

Q($'l$(p)) = E[ logf({~*};$') I {yh},$(p) ]. 

The evaluation of Q($'l$(p)) is simplified for each iteration if we 

consider the following conditional expectations. 

a(i) = expected number of animals observed, knowingly or unknowingly, 

in sample i given {yh} if $(p) were the true parametrization of the model. 

a(<i) =number of different animals captured before sample i, which 

is directly observable from the {yh}. 

a(>i) a expected number of different animals observed, knowingly or 
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unknowingly, after sample i given {yh} and $ (p). 

a(<i'i) • a(<i) + a(i) - a(i+l) 

a(>i • i) = a(>i) + a(i) - a(>i-1) 

b(i+l) • a( >i) + a(<i+2) - a(<s) - a(s) -a(i+1) 

Cs(i) • a(i) - Cc(i) 

D(i) = expected number of animals which have retained their collars i 

years and will be knowingly or unknowingly observed at or after i years 

after their release, given {yh} and q,<P>. 

E(i) = expected number of animals which have retained their collars 

i-1 years but not i years, which will be knowingly or unknowingly observed 

at or after i years after their release, given {yh} and q,(p). 

Properly, the above conditional expectations depend on q,(p). This 

dependence on ~(p) is implicit though not explicit in our notation. The 

evaluation of the conditional expectations is described in the Appendix, 

Section 6.1. 

We also consider the following reparametrization • 

pi • fi + (1-fi)gi, 

<Xi ""~i(l-pi+1)' 

~i • $ipi+1' 

vi = fi/(fi + (1-fi) gi), 

Futher let xi be the probability that an animal is not, knowingly or 

unknowingly, observed after year i, given the animal is alive at the 

beginning of year i. xi is most easily given by the recursive relation 

where X = 1. 
s 

From this reparametrization we find that exp[ Q($' l$(p)) ] is 

proportional to 
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n { a(i)-a(>i.i) 0 a(<i+l.i+1) b(i+1) 
xi pi "1 

viCc(i) ( 1-vi)Cs(i) piD(i) ( 1-Pi)E(i) }. 

Hence to obtain +(p+l), our new estimate of +, we use the Jolly-Seber 

estimates for the ai and 6i' and the binomial MLEs for the pi and vi. In 

particular we have 

a1(p+1) a a(>i.i)b(i+1)a(i+l)/(a(>i+l.i+l)a(i)(b(i+l) + a(<i+l.i+l))) 

e.(p+l) = a(>i.i)a(<i+l.i+l)/(a(i)(b(i+l) + a(<i+l.i+l))) 
1 

vi(p+1) • Cc(i)/(Cc(i) + Cs(i)) 

P (p+ 1) = D(i)/(D(i) + E(i)) 
i 

The iterations are stopped when a convergence criterion is met and 

the last estimate of each parameter is taken as the MLE. To obtain MLEs 

of the original parameters observe, 

s = i ai + ai' 

pi = ai/(ai + ai>. 

f = i 6ivi, 

~ = (p - fi)/(1 - fi). gi i 

4. DISCUSSION OF MODIFIED JOLLY-SEBER, HYPERGEOMETRIC, AND MULTINOMIAL MODELS 

A possible drawback of this modified Jolly-Seber model which accounts 

for collar loss is the calculations required to obtain the MLEs and the 

estimated covariance matrix. That is, there are not closed form MLEs. A 

disadvantage of the Jolly-Seber model, with or without collar loss, is the 

lack of (derived) closed form MLEs when we allow for different age classes 

to have different survival and capture probabilities. Hence if we are to 

allow heterogeneity by age class, we must numerically maximize Q(+'l+(p)) 
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with respect to the Si and pi for each iteration of the EM algorithm, thus 

significantly increasing computations and programming necessary to obtain 

MLEs. 

A model allowing for separate survival and capture rates by age is 

given by Pollock (1981). Pollock's model is based on the hypergeometric 

approach of Robson (1969) for which the likelihood does not involve 

parameters for survival probabilities. Instead survival rates are defined 

in terms of changes in population sizes which are unknown parameters in the 

model. Similarly we might want to define collar retention rates in terms of 

animals which have retained or lost their collars. The hurdle, however, 

is to express the likelihood, given {yh}' while allowing retention rates to 

depend on age of the collar but not the year. 

The likelihood for a capture-recapture model allowing collar retention 

rates to depend on age class and year, and age of the collar can be 

described as in the Appendix, Section 6.2. However if collar retention is 

dependent on age of the collar and not year the model will be over fit with 

a loss of efficiency. And still there is the question of conditioning on 

sample sizes in the derivation of the hypergeometric likelihood. If 

sampling is binomial the likelihood should express this binomial property; 

if the sampling distribution is unknown it seems reasonable to condition on 

sample size but this must be done with some caution as estimates for the 

hypergeometric model are of the same basic form as in the Jolly-Seber model 

(Pollock,1981). If the binomial model gives inappropriate estimates so may 

the hypergeometric. Intuitively, conditioning on sample size is like 

estimating the nuisance parameters, the sampling probabilities. In the 

model the sampling and survival probabilities are not related but the 

random variables we observe are funtions of both types of probabilities, 



-13-

and their estimates are dependent. Hence to condition on sample sizes is to 

condition on a statistic providing information about survival and should be 

avoided if we can describe the likelihood while including the sampling 

scheme. 

An alternate approach is to consider the likelihood using only the 

data describing the first and last observation of each animal. For this 

use of partial data a series of models developed by Brownie e~.al. (1978) 

is applicable. Brownie's models are based on the multinomial approach of 

Seber (1970) and Robson and Youngs (1971). For these models either closed 

form MLEs or computer programs are available for the calculation of the 

MLEs (Brownie,1978). Properly Brownie's models are based on recoveries, 

that is recaptures of dead animals, however, the models are easily adapted 

to data involving both recoveries and resightings as in Mardekian and 

McDonald (1981) or recoveries and resightings of non-permanent collars as 

in Kremers (1984a). In a similar way Brownie's models may be adapted to 

(non-destructive) recaptures and resightings of animals. This simplifies 

the procedure of model selection and parameter estimation, though with the 

loss of information from the intermediate observations. 

Thus we are left with three approaches when considering survival 

estimation in the presence of collar loss: the Jolly-Seber model, the 

hypergeometric model, and the multinomial model. To compare the three 

models we assume the probability distribution for sample sizes is binomial 

and that collar loss is dependent on age of the collar but not on the year. 

Statistically, the modified Jolly-Seber model has the strongest appeal as 

estimation is based on the asymptotically efficient MLEs. Should survival, 

observation, and collar retention rates depend on age class though, the 

programming and calculations become burdensome rendering the Jolly-Seber 
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model less practical than if MLEs existed in closed form. 

The hypergeometric model, as presented here, is practical in that 

estimates are easily described in closed form, but the use of the 

hypergeometric model results in loss of efficiency when compared to the 

Jolly-Seber model because of 1) the over fitting of the model and, 2) the 

conditioning on the binomial sample sizes. The multinomial model has the 

advantage of being computionially simpler than the Jolly-Seber model, but 

with the loss of information by the neglection of intermediate 

observations. An advantage of the multinomial approach over the 

hypergeometric is that it does not over fit. 

Consider the circumstance where reobservations consist only of 

sightings of animals with non-permanent collars. This may occur if animals 

become trap shy or by design of the investigator. Survival rates are no 

longer identifiable. When investigating stresses placed on wildlife 

populations though, interest may concern not only absolute survival rates 

but also changes in survival rates between years. For the hypergeometric 

model the likelihood becomes indistinguishable in form from that of Pollock, 

and we are only able to estimate population sizes of collared animals. As 

collar loss is dependent on both age of the collar and year in this model, 

we are unable to estimate either survival rates or changes in survival 

rates. When observations consist only of sightings the multinomial model 

is overparameterized. Survival and collar retention probabilities are not 

identifiable but products of survival and capture probabilities, such as 

those in Table 1, are identifiable and thereby ratios of survival (or 

collar retention) probabilities are identifiable. Thus, in the absence of 

recaptures, changes in survival and collar retention probabilities can be 

estimated and tested for with the Jolly-Seber or multinomial models but not 
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with the hypergeometrtic model. 

The necessity of overfitting the hypergeometric model disallows the 

estimation of changes in survival rates when the data comprise of only 

resightings. Should the amount of recaptures in a study be small and the 

number of sightings large, we expect the overfitting to lead to instability 

of estimates of changes in survival rates and hence survival rates, for the 

hypergeometric model. For the multinomial model the captures allow the 

estimation of absolute survival rates while sightings allow accurate 

estimates of changes in survival rates between years. 

The best way to account for collar loss in the planning of studies is 

to eliminate it. If, however, collar loss cannot be eliminated and is 

thought to depend on age of the collar, the study should be designed to 

minimize the effect of year, or time periods between samples, on collar 

loss. Collar loss can then be accounted for in the likelihood, thereby 

allowing asymptotic MLEs of survival rates, from a single study. For the 

case of binomial sampling model selection might be executed using the 

multinomial model as the calculations are less involved than for the 

Jolly-Seber model, and the multinomial model does not overfit collar 

retention probabilities as in the hypergeometric model. Efficient 

estimates for survival probabilities may then be derived using the 

Jolly-Seber model. 
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6. APPENDIX 

6.1 Evaluation of conditional expectations for the EM algorithm 

From {yh} we may calculate 

ay(i) = number of animals knowingly observed in year i, 

ay(>i) = number of different animals knowingly observed after year i, 

by(i) = number of animals captured without collars before year i, not 

captured in year i but later captured (without a collar, we hope). 

We also define the following events. 

Evai is the event where an animal is unknowingly sighted in year i. 

Evbi is the event where an animal is unknowingly sighted after year i 

Evci,j,k is the event where an animal is first captured in year i, 

observed in year j with a collar, captured in year k without a collar and 

not knowingly observed from year j+1 to k-1. 
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Evli,j be the event where an animal is first captured in year i, 

observed in year j with a collar and not knowingly observed thereafter. 

EvO. be the event where a banded animal is caught in year j without 
J 

a collar and not knowingly observed thereafter. 

Writing probabilities in terms of these events we now calculate the 

conditional expectations for the EM algorithm from the newly defined random 

variables. We first evaluate a(i), observing 

a(i) • ay(i) + aso(i), 

where aso(i) is the expected number of animals unknowingly observed in 

year i. An animal can be considered when evaluating aso(i) only if the 

animal was captured before year i, not knowingly observed in year i, and 

later captured without a collar, or if the animal was last knowingly 

observed in year j, where j<i. Hence 

a(i) = ay(i) + aso(i) 

= ay(i) + by(i)g. + ~ i Y(m,n,}.) Pr[ Eva. I Eve 1 J 
1 ~.n< <}. 1 m,n,~ 

+ ~,n<i Cl(m,n) Pr[ Eva1 I Evlm,n 

+ !n<i CcO(n) Pr[ Evai I Evon ] ) 

• ay(i) + by(i)g. 
1 

+! 

+! 

+! 

Similarly, 

a(>i) = ay(>i) + ~ <i Cl(m,n) Pr[ Evbi I Evl Wm,n_ m,n 

+ !n$i CcO(n) Pr{ Evbi I Evon ] 

s }.-n 
= ay(>i) + ! Cl(m,n)[ EJ.=i+l $m,n,J. g}. llk•lsn-l+k (1-fn+k) x,_JI$1m,n 

+ ! CcO(n) [ E;•i+l g}. rrt:~ Sn-l+k(l-fn+k) x,_ll$om 
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and, 

From the a(i), a(>i), D(i), and E(i) we may calculate all other 

conditional expectations which appear in Q(''l$(p)). 

6.2 Liklihood for collar loss using the hypergeometric approach 

To use the hypergeometric approach to collar loss we first allow 

collar loss to depnd on both age of the collar and year or time period. The 

notation we use is that of Pollock's (1981) with slight modifications. Here 

in year j, the year of collaring for animals still with their collars, or 

absence of a collar, defines j subpopulations for every one subpopulation 

of Pollock's. To distinguish the subpopulations we let M1 (v) be the 
i,j 

number of animals with collars in year j, banded in year i, of age class 

v,and Mojv) be the number of animals without collars in year j of age 

(v) 
class v, Similarly let zli,j be number of animals which are later 

observed with collars, of those which we enumerate to obtain 

(v) (v) 
Mli . -m1i . ,J ,J 

(v) 
Let zlOi,j be the number of animals which are not 

later observed with a collar but are observed without a collar, of those 

which we enumerate 
(v) (v) 

to obtain Mli,j -m1i,j 

number of animals later observed (without collars), of those which we 

. (v) (v) (v) (v) 
enumerate to obta1n MOi,j -moi,j • Similarly define r1i,j , r10i,j , 

(v) (v) (v) (v) (v) 
rOOi,j ,Tli,j ,T10i,j , and TOOi,j • zlOi,j 

(v) (v) (v) 
is not observable but can be estimated by zOi,j r10i,j /rOi,j ), 

(v) (v) (v) 
where r01 . •rlO. . +rOO. and analogously 

,J 1,J J 
(v) (v) (v) 

zOi,j •z10i,j +zOOj • 



-20-

Hence we find the likelihood is proportional to 

!Ml ~ ~ l - ml E l1 l ( v ~1 ~: ~ ( v) 1 
zli,j +z10i,j r1i,j+r10i,j 

M1(v) - ml~v) + Rl(v) 1 
i,j 1,j i,j 

(v) (v) (v) (v) 
z1i,j+r1i,j+z10i,j+rl0i,j 

X 

ro~v) - mojv) RO(v) 

l 
j 

k-1 .f,-1 
zOO(~) roojv) 

x nj ... 2 n v=1 
MOjv) - mojv) + RO~v) 

1 zoojv)+ rOO~v) 
J 

M0j.f,)+M0j.f,+1)- moj.l.) !Roy> l MO(~)l MO(~+l) l 
TOO~~) TO~~~+l) zOO 0.) rOO(.f,) 

X 
j j 

M0j.f,)+M0j.f,+1)- moj.l.) + RO~.f,) 

l 

MO(~)+ MO(~+l) l 
J j j 

zOO(.f,)+rOO(.f,) TOO(.f,)+ TOO(.f,+l) 
j j j j 

By differencing we may obtain closed form estimates of the 

subpopulation sizes, from which we may give estimates of survival rates. 
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Table 1 

SIGHTING PROBABILITIES WITH COLLARS 

Sighting probabilities of animals with collars (with year of first 

capture given in the far left column). 

Year of Sighting 

2 3 4 5 

1 s1P1(1-f2)g2 s1s2P1P2(1-f2)g2 s1s2s3P1P2P3(1-f4)g4 s1s2s3P1P2P3(1-f4)g4 

2 s2P1(1-f3)g3 s2s3P1P2(1-f4)g4 s2s3s4P1P2P3(1-f5)g5 

3 s3P1(1-f4)g4 s3s4P1P2(1-f5)g5 

4 s4P1(1-f5)g5 


