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Classical decision-theoretic procedures have often been criti­

cized on the grounds that their conditional performance is undesirable. 

It is argued that this is not a deficiency of the classical approach, 

but rather a case of not considering all information when evaluating 

a procedure. For the case of estimating a multivariate normal mean, 

it is shown that a simple conditional criterion, when coupled with 

the classical criterion of (unconditional) risk evaluation, leads to 

a class of estimators which are good both conditionally and uncondi­

tionally. In particular, the ordinary James-Stein estimator is ex­

cluded from this class, while its positive-part version is included. 

This new conditional criterion is also related to more familiar 

criteria. 



EVALUATING ESTIMATORS CONDITIONALLY 

By GEORGE CASELLA~ 

Cornell University 

1. Introduction. Classical statistical procedures have often been criti-

cized on the grounds that, when evaluated conditionally, their performance is 

unreasonable. To a certain extent this criticism is justified but, on the 

other hand, it seems somewhat unreasonable to criticize a procedure for non-

optimality against a criterion when the criterion played no role in the construe-

tion of the procedure. Classical procedures are constructed to be optimal 

against unconditional criteria; those that involve averaging over the sample 

space. In doing this, classical procedures guarantee a certain degree of 

repeatability, a guarantee which cannot be made by Bayesians or likelihoodists. 

In order to evaluate a procedure conditionally, there must be a subset of 

the sample space (a 'recognizable' subset, as named by Fisher, 1956) in which 

an experimenter is interested, indeed, in which the observations are expected 

to lie. If there is no interest in a particular recognizable subset, then 

there is no sense in evaluating the procedure conditionally. Thus, it seems 

that if a conditional evaluation is expected, prior knowledge (in some sense) 

is indicated. If such prior knowledge is not taken into account when a proce-

dure is constructed, this is a fault of the method, not of the procedure. 
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The purpose of this paper is not to criticize classical procedures, but 

rather to show that when procedures are constructed taking all information into 

account, the results are good both conditionally and unconditionally. Recently, 

Berger and Wolpert (1982), commenting on conditional evaluation of classical 

procedures, remarked, "Of course, many researchers in the field study the 

issue solely to point out inadequacies in the frequentist viewpoint, and not to 

recommend specific conditional frequentist measures." For the problem of esti-

mating a multivariate normal mean, we propose a specific conditional measure 

which, when coupled with the unconditional property of minimaxi ty, yields a 

class of estimators that perform well both conditionally and unconditionally. 

Many traditional classical procedures are constructed without any regard 

to prior information, for example, a classical estimator of location is usually 

translation invariant. Research beginning with the fUndamental papers of Stein 

(1955) and James and Stein (1961) showed that the best translation invariant 

estimator of a multivariate normal mean can be beaten (unconditionally) by an 

estimator which is not translation invariant. If X is an observation from a 

p-variate normal distribution (p;;::: 3) with mean vector e and covariance matrix 

the identity, then the best translation invariant estimator, X, is beaten by 

(1.1) o(x) 

where e0 is any fixed constant. If 5(X) of (1.1) is to be used, e0 should 

represent the best prior guess at e . If this is the case, then it is reason-

able to require 5(X) to perform well on a recognizable subset of the form 

(X : IX- e0 1 ~ t}, for some fixed t . The fact that 5(X) performs poorly near 

e0 (5(X) has a singularity at X=e 0 ), coupled with the fact that, uncondi-
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tionally, o(X) is superior to X, may be viewed as a deficiency of classical 

decision theory. However, we do not view it as such. The problem, rather, 

is that the proper information was not taken into account when the estimator 

was evaluated. If, in fact, one requires both unconditional domination of 

X, and good conditional performance when X is near e0, one can work within 

classical decision theory to obtain such estimators. As will be seen, o(X) 

of (1.1) is then quickly eliminated from consideration. 

In Section 2 we define a simple conditional criterion and show that this 

criterion eliminates the ordinary Stein estimator (1.1) as an alternative to 

X, but establishes the positive-part Stein estimator as a reasonable alterna­

tive. In Section 3 this conditional criterion, which we call conditional mini­

maxity, is related to the more familiar notion of admissibility. In particular, 

it is shown that admissible estimators (hence proper Bayes estimators) are 

conditionally minimax. Furthermore, it is shown that failure of an estimator 

to be conditionally minimax is constructive in the sense that a uniformly 

better estimator can immediately be obtained. In Section 4 conditional mini­

maxity is related to another conditional criterion, the existence of relevant 

betting procedures. There it is shown that the absence of conditional mini­

maxity implies the existence of relevant betting procedures. The criticism 

is again constructive, for a relevant betting procedure can immediately be 

constructed if the estimator is not conditionally minimax. Section 5 contains 

some comments, and there is also an Appendix, which contains technical argu­

ments needed in Section 2. The Appendix also contains a lemma giving an 

identity involving noncentral chi-squared expectations, and may possibly be 

of independent interest. 
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2. The Conditional Property. Let X be an observation from a p-variate 

(p ~ 3) nonnal distribution with mean 9 and identity covariance matrix. For 

any estimator o(X) of e, the loss in estimating e by o(X) is 

L(e, o) I 9 - 5 (X) 12 
' 

where I ·I denotes Euclidean distance. Define A9 (o) to be the difference in 

loss between o(X) and X at e, i.e., 

The difference in risks is then given by E9~9 (o). Note that 5(X) is minimax 

if and only if E9 t~9 (5):;;; 0 for all e • 

Stein-type estimators of a multivariate normal mean pull the maximum like-

lihood estimator, X, toward a particular point (which, without loss of general-

ity, can be taken to be zero). This seiected point should be interpreted as 

an experimenter's best (prior) guess at the true mean, and will locate the 

portion of the parameter space in which the greatest ·risk improvement will be 

attained. It should be expected then, that given X is close to the prior 

guess, there should be good risk improvement in that portion of the parameter 

space. However, this is not always the case, and this criterion separates 

Stein-type estimators into two distinct classes. 

we begin with two definitions: 

DEFINITION 2.1. An estimator 5(X) of 9 is 

:;;; Ee A9 ( 5) for all e I= e 0 • 

said to favor e0 if E A (5) 
eo eo 

DEFINITION 2.2. An estimator o(X) of e is said to be conditionally mini-

(2.1) for all t ~ 0 
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Given that an estimator favors e 0, condition (2.1) seems a rather mild 

requirement for an estimator to satisfy. Indeed, such a condition can be 

viewed as a minimal requirement. The condition is strong enough, however, to 

separate the ordinary James-Stein estimator from its positive-part version. 

Before proceeding, there is a technical matter which must be made clear. 

A distinction is being made between estimators which favor zero and estimators 

which shrink toward zero, i.e., estimators of the form h(X)X, 0~ h(X) ~ 1. An 

estimator which favors zero need not shrink toward zero for all X (as in the 

case of the ordinary James-Stein estimator). However, since in both cases 

zero represents the best prior guess ate, it is reasonable to require all 

these estimators to perform well at e = 0 • The following theorem characterizes 

a class of estimators which favor zero. 

THEOREM 2.1. Let 5(X) = [1- r( lxl 2 )/lxi 2 JX, where r satisfies 

i) r(u) is nondecreasing , 

ii) r(u)/u is nonincreasing , 

iii) O~r(u)~2(p-2) 

If r(u) is ~ concave function of u, then 5(X) favors zero, i.e., E0t~0 (5) 

::;; Eelle (5) for all e. In fact, Ee~e (5) is ~ nondecreasing function of leI • 

PROOF. Given in the Appendix. 

Although the concavity condition on r seems rather strong, most familiar 

estimators satisfy the condition. These include not only the ordinary and 

positive-part James-Stein estimators, but also the proper Bayes minimax esti-

mators of Strawderman (1971). Also, it is easy to show that if r satisfies 

conditions i)-iii), and in addition r(u)~p-2 and is convex, then there-

sulting estimator does not favor zero. A simple transformation will show that 

if 5(X) favors zero, then e0 + 5(X- e0 ) favors e0 • 
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The conditional property with which we are concerned is that an estimator 

be conditionally minimax at any e that it favors, i.e. , at any e for which the 

infimum of the unconditional risk is attained. We will mainly be concerned 

with estimators which pull toward zero, and the reader should interpret the 

phrase 'conditionally minimax' as meaning 'conditionally minimax at the point 

9 = 0 • ' If an estimator does not favor 0, whether or not it is conditionally 

minimax ( i. e. , conditionally minimax at the point e = 0) may be irrelevant. 

However, it will arise (as in the proof of Theorem 3.1) that the conditional 

risk at e = 0, of an estimator which may not favor zero, is helpful in evaluat-

ing the conditional risk of other estimators. 

We now present the main result of this section, that the requirement of 

conditional minimaxity separates the ordinary James-Stein estimator from its 

positive-part version. 

. + 
THEOREM 2.2. Let 55 (X) = (1- x~ 2)x, and o+(x) = (1- lxa 2 ) x. 

conditionally minimax, but 5+(x! is conditionally minimax! 

55 (X) is 

not 

PROOF. Let x2 denote a chi-squared random variable with p degrees of free­
p 

dom. It is straightforward to calculate 

(2.2) 

As t 2 -o, the ratio of probabilities in (2.2) approaches oo, establishing the 

existence of a t for which E0(A0 (o5 )I[O, t]( lXI) )> 0. 

Actually, one can solve (numerically) for the unique t 0 (depending only 

on a), for which (2.2) is positive if' and only if t> t 0 • However, it is also 

straightforward to establish that t 2 s a/2 is sufficient to insure that (2.2) is 

positive. 
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For the positive-part estimator, we consider two cases. If t2 ~a, it 

is immediate that 

(2.3) 

If t 2 > a, it is readily established that 

(2.4) 

Differentiating with respect to t 2 shows that E6 [il0(5+)I[o, t]( lxl )] is decreas­

ing for t 2 > a/2, establishing the result. II 

Therefore, although the ordinary Stein estimator dominates X in (uncon-

ditional) risk if 0~ a~ 2(p- 2), it fails to dominate X conditionally. More-

over, this failure occurs at the· experimenter's best prior guess at 9, demon-

strating that the ordinary.Stein estimator is not a reasonable alternative to 

X. The positive-part Stein estimator, however, dominates X both conditionally 

and unconditionally, and is a reasonable alternative. 

The shortcoming of the ordinary James-Stein estimator is its 'uncontrolled 

overshoot' near I XI = 0 • While this deficiency is quite obvious from merely 

examining the estimator, it has never been related to a decision-theoretic 

quantity. It is our contention that the class of conditionally minimax esti-

mators defines a class of estimators which contain all the reasonable alterna-

tives to the maximum likelihood estimator. Any conditionally minimax estimator 

should be acceptable to a Bayesian, since its conditional performance is good 

(indeed, it will be shown that all Bayes estimators are conditionally minimax). 

Furthermore, any minimax conditionally minimax estimator should be acceptable 

to a frequentist, for if one requires minimaxity, one might as well choose an 

estimator with good conditional performance. 
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It is clear that an estimator which is conditionally minimax should be 

preferred over one that is not, but the question of what types of estimators 

are conditionally minimax has not yet been addressed. The next section shows 

that the class of conditionally minimax estimators is large enough to include 

estimators which are optimal against more familiar criteria. 

3. Conditional Minimaxit and Admissibilit • An estimator which is not 

conditionally minimax is not only undesirable conditionally, but also can be 

dominated unconditionally, as the following theorem shows. 

THEOREM 3.1. Suppose 8(X) = [1- r( lxj 2 )/lxi 2 JX where r(u) is nondecreasing 

and r(u)/u is nonincreasing. If there exists t>O such that E0~0(8)I[O,t](lxl) 

> 0, then 8(X) is inadmissible against squared error loss. 

PROOF. The theorem will be established by exhibiting an estimator 81 (X) 

which uniformly dominates 8(X) in risk. Direct calculation shows 

(3.1) 

where cosf3 = 8 'x/le llxi • 

Now 

{'r(lxl 2 ) } 
E9 cos~I[o t]Cixl) 

lxl ' 
(3.2) t TT 

KI I r(s2 ) p-1( . )p-2 ~(s2 -2sjejcosy)d d 
= i s s1ny cosy e y s 

0 0 s 
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~1e1 2 l 1/2 /2 ( )~-l where K = e-;;a TT 2P f (p -1)/2 j . Integrating the right-hand side of 

(3.2) by parts shows 

(3.3) t TT 

= KlelJ Jr(;2)sp-2 (si~~fp-le ~(s2-2s/8/cosY)dyds~O ' 

0 0 s 

which, combined with (3.1) establishes 

() (I I) {(I 12)(r(jxj2) ) I I} (3 • 4) Ee 6 9 o I [ o' t] X ~ E9 r X I X 12 - 2 I [ o' t] ( X ) 

for all t ~ 0 • We next show that there exists a t* for which the right-hand 

side of (3.4) is positive for all 8. Once this fact i,s established, the 

inadmissibility of o(X) is immediate, for it can be beaten by 

(3-5) 51 (X) - { X 
- o(x) 

if jxl :s: t* 

if lxl >t .. 

Thus, to complete the proof, it must be shown that there exists t*> 0 

for which 

(3.6) for all 9 

Since E060(o)I[O,t](/xl )>o for some t, it follows that 

( 3· 7) E (r(lxl 2 ) -2)r (!x/ )>O 
o jxj 2 [o,t] 

for sane t , 

otherwise, we have 

Eo6o(o)I[o,t](/xj) = Eor(jxj2)(r(i~l22) -2)I[o,t](jxl) 

( 3.8) :s: E0{ r( I xj 2 )I[o, t] (/ xj )}Eo{r(/~122 ) - 2 )I[o, t] (I xj) }/P 0 (/ X/<t) 

:s; 0 ' 
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a contradiction. The inequality in (3.8) follows from the fact that r(u) is 

nondecreasing and r(u)/u is nonincreasing. Now, using (3.7) and the fact that 

r(u)/u is nonincreasing, we have that there exists t* > 0 such that 

(3-9) 
r(jxj2)>2 

jxj2 

establishing (3.6) and completing the proof. I I 

The ordinary Stein estimator is an example of an estimator which is mini-

max but not conditionally minimax. It is also possible for an estimator to 

be conditionally minimax but not minimax. For example, the estimator 5(X) =eX, 

0< c< 1, which is proper Bayes, favors zero and, from Theorem 3.1, is condi-

tiona11y minimax at zero. However, 5(X) = eX is not minimax. 

It is interesting to examine more cl~sely the estimator 51 (X), which 

dominates 5(X) if 5(X) is not conditionally minimax. Let 55 (X) = (1- a/lxi 2 )X. 

It is easy to show that, if t*s: (a/2)i, the estimator 

if IXI<t* 

if lxl>t* 

dominates 55 (X) in risk and is conditionally minimax at zero. Figure 1 is a 

* graph of E0 [60(5)I[O,t](IXI)], as a fUnction oft, for 55 , 5+ and 5t using 

p = 3, a= p- 2, t* = [ (p-2) /'?.]~. As the picture illustrates, controlling the 

'overshoot' in an estimator results in improved conditional performance. Con-

trolling 'overshoot' also results in improved unconditional performance as 

* 5 + t seen in Figure 2, a graph of the unconditional risk of 5 , 5 .and 5 The 

* risk of 5t is always between that of 55 and 5+. 

t* 
It has not been established analytically that 5 favors zero, but Figure 

2 (and more extensive numerical calculations) indicate that this is the case. 
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t* . Although 5 1s a vast improvement over 55 , it still 'overshoots', although 

t* 
by a finite amount. Whether or not 5 itself is a good estimator is not 

clear, but it appears to be reasonable when evaluated conditionally. In any 

case, the results of Efron and Morris (1973) show that 5+ uniformly dominates 
t# 

5 in risk. Since 5+ is conditionally minimax, it is clearly preferable to 

t* 
5 . 

Thus, the property of conditional minimaxity does not necessarily imply 

that an estimator is totally desirable, but it is clear that the absence of 

conditional minimaxity indicates that the estimator is undesirable. Moreover, 

as the proof of Theorem 3.1 shows, the absence of conditional minimaxity is 

a constructive criticism, in that a better estimator can immediately be ob-

tained. In the next section it is shown how conditional minimaxity relates 

to another constructive criticism, the existence of relevant betting procedures. 
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4. Conditional Minimaxit and Relevant Betting Procedures. The theory 

of relevant betting procedures has been studied by many authors, with the first 

step in a formal theory being taken by Buehler (1959). Many others have con­

tributed to this theory (e.g., Stein, 1961; Brown, 1967; Olshen, 1973; Bondar, 

1977), with the main focus being on conditional properties of interval estima­

tors. More recently, Robinson (1979a,b) has given a detailed development of 

conditional properties of point estimators, which is what we are concerned 

with here. 

In evaluating point estimators, Robinson gives details only for the case 

of one dimension, but indicates the obvious extentions to the multivariate 

problem. For completeness, we restate some of his definitions and theorems 

as they apply to the multivariate case. 

DEFmiTION 4.1. A function s(X) is a betting procedure if it is bounded 

as a function of X. If s(X) is unbounded but Ej s(X) I is bounded, s(X) is called 

a wide-sense betting procedure. 

If s(X) is bounded, then without loss of generality the bound can be taken 

to be 1. '!be quantity ls(x)l can then be interpreted a,s the probability that 

a bet of unit size is made given that X = x is observed, hence the name 'betting 

procedure ' . 

DEFmiTION 4.2. If B(X) is a point estimator for the location vector e, 

the betting procedure s(X) is semirelevant if 

(4.1) E9[[e -o(X)]'s(X)} ~o for all a 
' 

with strict inequality for some e, is relevant if, for sane E>O, 

(4.2) \( [e- B(X)] 's(X)} ~ EE( I s(x)l} for all e 
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with strict inequality for some 9, and is super-relevant if, for some E > 0, 

(4.3) E9[[e -o(X)]'s(x)} ~E for all e 

The betting procedure s(X) defines a direction in the Euclidean space 

along which one can expect positive gain by betting that the inner product 

[9 -o(X)]'s(X) is greater than zero. As Robinson notes, the existence of a 

super-relevant betting procedure is a severe criticism of an estimator, while 

the existence of a semi-relevant betting procedure is a mild criticism. How­

ever, the existence of a relevant betting procedure is about at the level to 

cause concern, and is, in fact, a constructive criticism in the following 

sense: If s(X) is a relevant betting procedure for o(X), then the estimator 

o*(X) = o(X) +Es(X) has uniformly smaller risk. The following theorem is 

from Robinson (1979a): 

THEOREM 4.1 (Robinson). For~ point estimator o(X), of~ location vector 

s, the absence of wide-sense semi-relevant betting procedures implies admiss­

ibility with respect to squared error loss, and admissibility with respect to 

squared error loss implies the absence of relevant betting procedures. 

An admissible estimator does not allow the existence of relevant betting 

procedures, but an estimator which does not·allow the existence of relevant 

betting procedures is not necessarily admissible. However, estimators which 

do not allow relevant betting procedures are quite desirable from a conditional 

viewpoint, and the fact that such an estimator may not be admissible is of 

lesser concern. 

The property of conditional minimaxity is slightly weaker than the ab• 

sence of relevant betting procedures, but strong enough to eliminate the more 

undesirable estimators. 
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THEOREM 4.1. Let o(X) = [1- r( IXI 2 )/IXI 2 ]X where r satisf'ies the condi­

tions of' Theorem 3.1. If' there exists ~ t* > 0 such that 

(4.4) s(X) = r(lxi 2)X I * Clxl) 
lxl2 [o, t J 

is ~ wide-sense relevant betting procedure. s(X) is ~ relevant betting pro-

cedure if' r2( lxl 2 )/lxl 2 is bounded. 

PROOF. From Theorem 3.1, o(X) is dominated in risk by 51 (X), given in 

(3.5). o1 (X) can be written as 

51 (X) = o(X) + s(X) , 

where s(X) is def'ine.d by (4.4). We then have 

(4.5) 

o s Eele - o(x) 12 -Eel e - t (x) 12 

= E9{2[9- o(X)] '[t (X)- o(X)] -jo1 (X)- o(X) 12 } 

= 2Ee{[e -o(X)]'s(x) -ils(x)l 2 } • 

Recall f'rom Theorem 3.1 that r(lxl 2 )/lxl >2IXI f'or lxl st*. Hence 

l.E_ ls(x)l 2 :2:f[E ls(x)IJ2 = .:!.rE r(lxl 2
) I * Clxl2]2 

a-a e st.::e lxl [o,t J 

(4.6) 
::?! [ Ee lxii[o, t*]( lxi)J Eel s(X) I 

::2: [E0 lxii[o,t*]<lxl)] Eels(x)l 

> EE9 Is(x)l 

f'or E< E0 l XI I[o, t*] ( lxl) • Thus, combining (4. 5) and (4.6) yields 

o s 2E9{[e- o(X)]'s(X) -ils(X)/ 2 } 

(4.7) 
s 2E9{[e -o(X)]'s(x) -Ejs(x)IJ f'or all e ' 
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and hence s(X) is relevant for o(X). If r2(1xi 2 )/IXI 2 is unbounded, then s(X) 

is a wide-sense betting procedure, and is a betting procedure if r2(jxj 2 )/jxj 2 

is bounded. II 

In general, given an estimator o(X), it is a difficult task to verify 

the existence of a relevant betting procedure. It is quite simple, however, 

to verifY conditional minimaxity (since one need only work with the central 

distribution). Thus, the property of conditional minimaxity once again serves 

to eliminate estimators which have undesirable conditional properties. 

If o(X) == [1- r( lxl 2 )/lxJ 2 ]X, where r satisfies the conditions of 

Theorem 3.1, then violation of conditional minimaxity implies the existence 

of a wide-sense relevant betting procedure. Although it has not been proven, 

it is conjectured that these conditions are equivalent (for this class of 

estimators). That is, an estimator is conditionally minimax if and only if 

there does not exist a wide-sense relevant betting procedure for it. Robin­

son's theorem shows that there exist conditionally minimax estimators which 

allow the existence of wide-sense semi-relevant betting procedures (otherwise 

all conditionally minimax estimators would be admissible), and the following 

theorem demonstrates that the property of minimaxity alone is sufficient to 

insure the absence of super-relevant betting procedures. 

THEOREM 4.2. The condition of minimaxity implies the absence of super­

relevant betting procedures. 

PROOF. Suppose o(X) is a minimax estimator of e, and s(X) is a super­

relevant betting procedure for o(X) . (Assume, without loss of generality, 

that I s(X)j :S: 1 for all X.) Let E> 0 satisfY 

(4.8) for all e 
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we then have 

E9 1e -[B(X)+es(X)JI 2 = E9(ja -B(X)I 2 -2e(a -B)'s(X)+e2 js(x)j 2 } 

s; Eeje - B(X) j2 - 2e2 + E2 

for all 9 

showing that the estimator B(X) + es(X) has risk strictly less than the mini-

max risk, a contradiction. II 

Therefore, the class of estimators which are both minimax and conditionally 

minimax is in between the class of estimators which does not allow super-

relevant betting procedures, and the class that does not allow wide-sense 

relevant betting procedures. 
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5. Comments. The impact of the Stein effect has been far-reaching, 

and in this paper one of its (perhaps) more subtle implications is explored. 

Stein-type estimators allow the incorporation of prior information at no 

cost to the experimenter (since they are minimax), but the fact that the 

prior information is being used has never been incorporated into a decision-

theoretic evaluation of the estimator. As we have seen, such an evaluation 

is necessary to insure reasonable conditional performance. 

The criterion of conditional minimaxity was developed specifically to 

deal with estimators (such as Stein-type estimators) which give preference, 

in terms of unconditional risk, to certain regions of the parameter space. 

It is, in a sense, the weakest possible conditional requirement that one could 

put on such estimators, yet it is strong enough to eliminate some undesirable 

estimators. For evaluating procedures which use the Stein effect, and hence 

favor a region of the parameter space, a criterion such as conditional mini-

maxity seems more usefUl than the more general criterion of existence of 

relevant betting procedures. At the very least, we can say that it is much 

easier to check whether an estimator is conditionally minimax than it is to 

check whether any relevant betting procedures exist. 

One might argue that the whole idea of prior information has no relevance 

in any classical decision-theoretic evaluation, but such an argument is now 

antiquated. The Stein effect is one of the few instances where one can truly 

get something for nothing; prior information can be used at no cost, and one 

would be just plain foolish not to do so. Once this idea has been accepted, 

conditional minimaxity becomes a desirable property for an estimator to have. 

Indeed, if one is to take the prior information seriously, conditional mini-

maxity is a requirement, and one might as well restrict attention to the class 

of minimax conditionally minimax estimators. 
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In this paper we have dealt only with estimators which favor a known 

point e 0, corresponding to a prior point guess at 9 . In practical applica­

tions, however, it is usually more advantageous to use an estimator which is 

adaptively centered, say at the grand mean. In terms of prior input, this 

corresponds to specifying a linear subspace (of the parameter space) in 

which e is expected to lie. Such information can result in estimators of 

the form 

( 5.1) ' 

where A is a known p x p matrix. With only minor modifications, the results 

of this paper can be made to apply to such estimators. For example, if the 

prior information specifies H9 = 0 for some matrix H that is r X p of rank r, 

A would be chosen to satisf'y A = I - H' (HH') -~, making AX the maximum likeli-

hood estimator of e under the restriction H9 = 0 • The resulting estimator 

should then be required to be conditionally minimax for all e satisf'ying 

H8 =0 or, equivalently, je -Ael =0. An estimator of the form (5.l) has risk 

which depends on e only through le - A9 I, so conditional evaluation at 

je - A9 I = 0 reduces the case considered in this paper. 
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APPENDIX: PROOF OF THEOREM 2 .1 

The proof of Theorem 2.1 follows quickly with the help of the following 

lemma, which may be of independent interest. In the following, let ~,A 

denote a noncentral chi-squared random variable with p degrees of freedom and 

noncentrali ty parameter A • 

LEMMA 1. Let h : [O,c:o) _, (-co, co) be differentiable. Then, provided both 

sides exist, 

PROOF. The lemma is established by equating the results of the well-

known integration-by-parts technique with the results of some lesser-known 

identities for expectations of noncentral chi-squared random variables. We 

will proceed by evaluating the risk of the estimator o(X) ==[l-[h(/X/ 2 )/IXI 2 J}X, 

where X""'N (e,I). The usual integration-by-parts yields 
p 

(2) 

We can also write 

(3) 
E9 je -o(x)l 2 = E9 j[e -X]+[X-o(x)JI 2 

= p+2E9 [(e -x)'Xh(lxl 2 )/lx/ 2 } +Ea(h2 (1xl 2 )/lxl 2 } 

We now employ the following identities, which can be found either in Bock 

(1975) or Casella (1980). If h: [O,c:o)-+ (-c:o,c:o), then provided the expecta-

tions exist, 
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(4) E8[Xh(lxl 2 )} =eE{h(x~+2, !el2)} , 

(5) le I 2E{h(x~+2, le 12)/x~+2, le 12} =E{h(x~_2, le 12)1- (p-2)E{h(x~, jej2)/x~, je 121 , 

( 6 ) o I : 12 E{ h( x ~' I e 12)} = t{ Eh( x~+2' l e 12) - Eh( x ~' l e j2) 1 

Now, using (4) and (5) on the first expectation in (3), and rearranging terms, 

we obtain 

(7) 
E8 je -o(x)/ 2 = p-2{Eh(x~,le12J-Eh(x~_2,1el2)} 

+ E {h(/xl 2 )[h(jxj 2 ) -2(p-2)J} 
8 - lxl 2 

we note in passing that, using the fact that the noncentral chi-squared distri-

bution has monotone likelihood ratio in its degrees of freedom, equation (7) 

provides an immediate proof of the minimaxi ty of o(X) provided h is nondecreas-

ing and 0 s h s 2(p-2) . 

Now, equating (2) and (7), cancelling common terms, and using (6) 

establishes 

(8) 0 Eh(x2_2 lel2) = E8h'(lxl 2 ) = E 0 h(x2 lel2) , 
o I e 12 P ' oX~' I e 12 P' 

proving the lemma. II 

THEOREM 2.1. Let x-N (e,r), o(x) = [l- [r(jxj 2 )/jxj 2 ]}x, 
- p 

where r 

satisfies 

i) r(u) is nondecreasing in u , 

ii) r(u)/u is nonincreasing in u , 

iii) osr(u)s2(p-2) _fo_r _al_l u , 

iv) r(u) is concave in u • - -
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PROOF. Assume, for the moment, that r is twice differtiable. Then, 

using (2), we have 

Conditions i) - iii) on r insure that the fUnction inside the second expecta­

tion in (9) is nondecreasing in lx/ 2 , hence the expectation is nondecreasing 

in jej 2 • Thus, we only need establish that Ear'(lx/ 2 ) is nonincreasing in 

I e 12 . Using Lemma 1, we have 

(10) 0 E9r•(lxl 2) = 0 Er'(x2 lel2) = Er"(x._2 2 lel2) s: o 
o I e 12 o I e 12 P' Jl+ ' 

by the fact that r is concave. Thus, the theorem is established if r is twice-

differentiable. If r is not twice-differentiable, we can take a sequence [r } 
n 

of twice-differentiable concave fUnctions which uniformly approach r. By 

carrying out the above calculations, and passing to the limit, the theorem 

is readily established. I I 
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s t* + * I 1 ~or 5, 5 , and 5 with a=p-2, t =[(p-2) 2:F, p=3 
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