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On the Geometric Motivation of Basic Regression Theory 

CALVIN BERRY* 

ABSTRACT 

This paper is concerned with the geometric motivation of regression 

theory in introductory statistics courses. The development presented 

does not require any degree of geometric sophistication or familiarity 

with matrix computations. It is suggested that such a presentation 

may be easily and beneficially included in an introductory course . 
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* CALVIN BERRY 

On the Geometric Motivation of Basic Regression Theory 

l. INTRODUCTION 

The statistical literature includes numerous papers and books which pre-

sent regression theory and linear models from a geometric or coordinate-free 

approach. For a survey of the use of geometry in linear models the interested 

reader is referred to Herr (1980). 

Introductory statistics courses often present regression theory from an 

algebraic point of view with little or no mention of the underlying geometric 

properties. Instructors who take this approach argue that students at this 

level do not possess the necessary background to understand a geometric 

approach to regression. The aim of this paper is to demonstrate that this 

is not the case. It will be shown that geometric motivation can be given in 

an introductory statistics course via ideas no more complex than one-dimensional 

projections and orthogonal bases. 

At the intermediate or advanced level there are many textbooks and papers 

which present linear models and regression from a geometric point of view 

(Burdick et al., 1974; Seber, 1977; Kruskal, 1961). In his 1979 American 

Statistician article, Margolis advocates and demonstrates the use of perpendicular 

projections in basic statistics. The presentation in Margolis (1979) requires some 

farniliari tywi thrnatrix operators in the context of multidimensional projections. 

This approach may not be accessible to introductory courses where the students 

are unfamiliar with matrices or linear algebra. In fact, the use of matrix 

operators may discourage teachers from presenting geometric motivation 
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• in introductory courses. Hence this paper presents a simple approach to geo-

metric motivation more in line with the basic algebraic approach. 

The material presented herein is hardly novel. The justification for 

this paper is the widespread lack of geometric motivation in introductory 

statistic courses. HopefUlly, teachers will be motivated to reconsider the 

applicability of geometric motivation in introductory statistics. 

The presentation of regression theory from a purely algebraic point of 

view may lead to algebraic derivations which seem mysterious to some students. 

Simple geometric motivation in the teaching of regression theory gives the 

student a better grasp of the basic concepts of regression theory. In partie-

ular, the student will be more satisfied with what may otherwise appear as 

obscure algebraic results. The basic geometric ideas involved are quite simple 

and do not require any particular degree of geometric sophistication. The 

• material presented in this paper can be easily presented in one or two lectures. 

• 

2. BASIC FACTS 

2.1 Definitions 

This paper will assume some familiarity with the basic concepts of the 

n-dimensional Euclidean space, Rn • The concepts of vectors, vector addition 

and scalar multiplication will suffice. We begin with some definitions. 

The usual Euclidean inner product of the vectors x = (x.., •. ·, x ) 1 and 
- .L n 

-r= (y1, •.. ,yn) 1 , denoted by !- 1!, is defined to be the sum. of the component-

t t t d . In wise produc s of he elemen s of x an y, 1. e., x y = L.. _1x. y. • 
- - - - 1- ]. ]. 

The squared length of the vector ;:: = (~, • • ·, xn) 1 , denoted by 11:11 2 , is 

defined to be the inner product of~ with itself, i.e., 11~11 2 =~ 1_:=r.~=lxf • 

The length of the vector x, denoted by llxll, is defined as the principal square -
root of the squared length of x • 
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• The distance between the vectors x = ( x.., • • ·, x ) ' and y = (y1 , ... , y ) 1, 
- i n - n 

• 

• 

denoted by llx- Yil, is defined as the length of their difference, i.e., 

\1~-~11=/(~-!)1(~-~) =/L:~=l(xi -yi)2. 

The (linear) span of the set of vectors Zl' ···, ~k' denoted by 

[(~1,···,~k}], is defined as the set of all linear combinations of the 

vectors z1 , .•• , z. , i.e., [ ( z1, · • ·, z. } ] = ( z : z = L:~ =lA.. z. for A.. e R} . For 
- -K - _K - - J. l.-1 J. 

k = l the span [ [ _::1}] is a line and for k = 2 the span [ [ _::1 , _::2}] is the plane 

determined by the vectors ~l and ~2 • 'lli.e ideas of length and distance are 

illustrated in Figure 1. 

I INSERT FIG. 1 HERE I 

2.2 Angles and Projections 

A simple application of the law of cosines in Figure l yields 

(l) 

where 9 is the angle between :;: and !. . Furthermore, on expanding the quadra­

tic terms in 1\x- Yl\ 2 we have 

(2) 

Hence the following relationship between the angle 9 and the inner product 

x 1y is established, 

~·! = ll~llllrlicose (3) 

Consider the vectors x = (x., ... , x ) 1 and y = (y1, • · ·, y ) ' . Let _ i n _ n 

i = (1/n)L:~ 1x., y = (1/n)L:~ 1y. and with some abuse of' notation let (x- x) 
J.= J.· J.= J. 

= (x. -x,···,x -x) 1 and (y-y) = (y1 -y,···,y -y)'. Now we can readily .L n _ _ n 

observe a useful relationship between r:p, the angle between (x- x) and (y- y)' 
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~ and r(x,y), the sample correlation coefficient of x with y • From equation 

(3), it follows that 

cos¢ = 
c~-~), <r-!) 
11~-~llllr-!11 

E~ 1(x.-i)(y.-y) 
l.= l. l. = = r(x,y) 

/: n ( - )2 n ( - )2 E. 1 x.-x E. 1 y.-y 
l.= l. l.= l. 

(4) 

Taking advantage of the relationship given in equation (4), many prop-

erties of r(x, y) follow immediately from the properties of the cosine :f'unction. 

For example, the function cos¢ ranges from one to negative one as ¢ ranges 

from 0° to l8o 0 • Hence, lr(x,y)J ~1 and if r(x,y) is close to one in magni­

tude, then (.:C- ~) and (y- y) are nearly colinear. 

Next consider the projection of one vector onto the span of another. To 

avoid trivial cases assume that both vectors are non-null. The projection of 

l onto the span of~, denoted by z(~) or P(!: [(~}]), is illustrated in Figure 

~ 2 and is represented as y(x) = a~/llxll, where a = IIY.Cx)ll 

~ 

I INSERT FIG. 2 HERE I 
The triangle in Figure 2 is a right triangle, hence cose = a/IIYII • There­

fore, from equation (3) we have x'y = llxlla and 

x'y - - (5) =--x 

11~11 2 -

2.3 Orthogonalization 

Two non-null vectors ~ and ! are said to be orthogonal (perpendicular) 

if ~ '! = 0 • Since X 'y = 0 implies that cos9 = O, where 9 is _the angle between 

x andy, it follows that e = 90° and hence ~and! are orthogonal. Thus for 

non-null x andy we have the following orthogonal decomposition of y, - - . -
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y = y(x) + [y- y(x)] (6) 

This decomposition is illustrated in Figure 3. It is easily verified that 

!<~) is orthogonal to ! - r<~) . 

I INSERT FIG. 3 HERE I 
For a given set of linearly independent vectors, (~l'···,~}, it is often 

desirable to have an orthogonal basis for the span of these vectors. By 

repeated application of equation (6) we arrive at the orthogonal basis 

(_:l' ~2- ~2(~1 ), • • ·' Zk:- ~(~1, · · ·, ~k-l)} for [[~1, · · •, ~}] . The ith vector 

in this basis is the difference between z. and the projection-of z. onto the 
-~ -~ 

span of the preceding vectors in the basis. The ith vector is obtained 

sequentially as 

z. -~.(z1, ... ,z. l) 
-~ -~ - -~-

= z. - z. ( zl) - ; . [ z2 - ~2 ( zl) ] - • • • - ; . [ z. -l - ~ .- .:.l·( zl-; -•• ~' z. -2) ] 
-~ -~ - -~ - - - -~ -~ -~ - -~ 

(7) 

A bit of concentration on Figure 3 should convince the reader that this 

is an orthogonal set of vectors. Furthermore, each vector in this set is a 

linear combination of the vectors ~l' • • ·, ~k' hence it follows .t:P,at -

It is instructive to notice that for k=2, equation (8) merely states 

that the plane determined by _::l and .::2 is the same as the plane--_determined 

" by _::l and ~2 - ,::2 ( Zl), as is clear from Figure 3. 

·"":c.-· - -
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3. REGRESSION AND LEAST SQUARES 

3.1 Estimation 

For the purposes of this paper it will suffice to consider a two-variable 

regression model. In vector form the general two-variable regression model 

is given by~= f3L~ + (32...~ + :' where y is a vector of n observations, (31 and 

(32 are fixed but unknown constants, ~ and ~ are known vectors and ~ is a 

random vector with expectation zero. Thus y is observed as a vector in the 

span [(~,~2,~}] and we assume that the vector E(y), the expectation of y, 

lies in [[~,~2}] • This regression set-up is illustrated in Figure 4. 

INSERT FIG. 4 HEBE I 
A first aim is to find a reasonable estimate of E(y) • For reasons that 

A 

will become clear we denote this estimate by y • The criterion of least 
A 

squares chooses y as the estimate which minimizes the squared distance be-
A 

tween the vector of observations y and the estimate y, i.e., minimizes 

jjy - yjj 2 over all values of y • - -
A 

Since we desire that y lie in [(:1,:2}], there is a unique 
A 

solution to this minimization problem. The solution is the vector!(~,~), 

the projection of! onto [[~,:2}], since any other vector in [[~,:2J] must 
A 

lie farther from y in terms of squared distance. To see that ~(~,:2 ) is 

the least squares estimate, consider Figure 5. 

I INSERT FIG. 5 HEBE I 
Here y = !(~, ~) and "!! is an arbitrary vector in [[ ~' 32}] . Now IIY- wll2 

= II!- !11 2 +II!- "!;11 2 , which is at least as large as II!- 211 2 with equality if, 
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and only if, w = y . Hence !<5., ~) is the unique least squares estimate of 

E(y) • 

The estimate ~(~,32) = P(!: [[:1,32}]) can be represented by 

!<:1,:2> = sL~ + s~2 (9) 

A A 6 for some constants ~ and {32 as is illustrated in Figure • 

I INSERT FIG. 6 HERE I 
A second aim is to determine the relationship between the regression co-

efficients ~land 62 and the projection of! onto [(:1,~2}] . Recall from 

equation (8) that [~,~2 -~2(5_)} is an orthogonal basis for [(5_,~2}], i.e., 

[(~,:2JJ = [[:1,:2 - ~(~)}] . Hence we have 

for some constants b1 and b2 . 1 as is illustrated in Figure 7. 

I INSERT FIG. 7 HERE I 
Some reflection on Figure 7 will convince the reader that 

since (~,~-3/5_)} is an orthogonal basis for [[5_,~}] 

Now from equations (10) and (ll) we see that 

!'~ 
b,x.. = P(y: [[x..} ]) = x.. 

.~..-.L - -.L II 11 2 -.l 
~ 

and 

(lO) 

(12) 
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y'[x_-i,_(x.)] A 

= - -c -c -1. [ _ x ( ) ] 
llx -i ( )11 2 ~ - 2 ~ 
-2 _2 ~ 

(13) 

Therefore, b1 = ¥'~/11~112 and b2•1 = (!' [~-~(~)]}/II~- ~(~)112 • Notice 

A I 2 A that ~ = b1 - b2 •1 (5~ 11~11 ) and 132 = b2 .1 • 

In particular, consider the case when ~ = (1, • • • ,1)' • Then 

' 
.t~ n 

b1 = -~ = ( 1/n) E y. = y 
115_112 i=l J. 

and 

' 

which are easily recognized as the usual algebraic formulae for the sequential 

regression coefficients in the straight line regression model. Similarly, 

which are the usual algebraic formulae for the partial regression coefficients 

in the straight line regression model. 

3.2 Analysis of' Variance 

The analysis of' variance that corresponds to the regression model con­

sidered above is merely a decomposition of the squared length of' '!' 11'!112 • 

Notice that 11!11 2 = E~=lYf is the usual uncorrected total sum of' squares. 

Now 5. is orthogonal to ~2 - ~(5_); hence, it can be shown that equation 

(11) implies that 

• From this we derive the analysis of' variance table which follows: 
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INSERT TABLE 1 HERE 

Notice that the sum of the first two sums of squares is equal to 

liP(_!: [(~,_:2}])112 by equation (14) and this is the usual model sum of 

squares with two d. f. provided ~ and ~ are linearly independent. 

Finally, for the case where ~ = (1, • • • ,1)' we see that liP(!: [(~} J)ll2 

= 11~112 = n? and 2 
[L:yi(x2i-~)2 ] 

L:(~i-~)2 
, 

which are the usual algebraic formulae for the sums of squares for the mean 

and regression, respectively. 

4. CONCLUSION 

In this paper it has been demonstrated that regression theory can be 

motivated geometrically at an introductory level. The methods and concepts 

involved are no more complex than those used in the usual algebraic approach. 

This sort of geometric motivation need not be confined to regression theory 

and may be useful in the presentation of many statistical methods • 
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Table 1. The ANOVA as a Decomposition of 11!11 2 

Source df ss 

5. 1 Jjp(~: [(5_} J)ll2 

~2 1 liP(!: [[~- ~(5_)} J)ll2 

Residual n-2 ll~-ill 2 

Total n 11~11 2 

• 

-. 
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Figure l. Length and Distance 
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Figure 2. A One-Dimensional Projection 
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Figure 3. An Orthogonal Decomposition 
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Figure 4. The Simple Linear Regression 
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Figure 5. The Least Squares Estimator 
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Figure 6. A Decomposition of the Least Squares Estimate 

•• 



• 

• 

• 

-21-

/ 
/ 

/ 
/ 

/ 

I 

I 
J 

y 

,.. 
y 

Figure 7. An Orthogonal Decomposition of the 

Least Squares Estimate 


